US20130107444A1 - System and method for flexible storage and networking provisioning in large scalable processor installations - Google Patents

System and method for flexible storage and networking provisioning in large scalable processor installations Download PDF

Info

Publication number
US20130107444A1
US20130107444A1 US13284855 US201113284855A US2013107444A1 US 20130107444 A1 US20130107444 A1 US 20130107444A1 US 13284855 US13284855 US 13284855 US 201113284855 A US201113284855 A US 201113284855A US 2013107444 A1 US2013107444 A1 US 2013107444A1
Authority
US
Grant status
Application
Patent type
Prior art keywords
system
storage
compute
io
chassis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13284855
Inventor
Arnold Thomas Schnell
Richard Owen Waldorf
David Borland
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Silicon Valley Bank
III Holdings 2 LLC
Original Assignee
Calxeda Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/14Mounting supporting structure in casing or on frame or rack
    • H05K7/1485Servers; Data center rooms, e.g. 19-inch computer racks
    • H05K7/1498Resource management, Optimisation arrangements, e.g. configuration, identification, tracking, physical location
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 – G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/18Packaging or power distribution
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 – G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/18Packaging or power distribution
    • G06F1/181Enclosures
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 – G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/18Packaging or power distribution
    • G06F1/189Power distribution
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 – G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/20Cooling means
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/38Information transfer, e.g. on bus
    • G06F13/40Bus structure
    • G06F13/4004Coupling between buses
    • G06F13/4027Coupling between buses using bus bridges
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/14Mounting supporting structure in casing or on frame or rack
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/14Mounting supporting structure in casing or on frame or rack
    • H05K7/1485Servers; Data center rooms, e.g. 19-inch computer racks
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/14Mounting supporting structure in casing or on frame or rack
    • H05K7/1485Servers; Data center rooms, e.g. 19-inch computer racks
    • H05K7/1487Blade assembly, e.g. cases and inner arrangements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/14Mounting supporting structure in casing or on frame or rack
    • H05K7/1485Servers; Data center rooms, e.g. 19-inch computer racks
    • H05K7/1488Cabinets therefore, e.g. chassis, racks
    • H05K7/1489Cabinets therefore, e.g. chassis, racks characterized by the mounting of blades therein, e.g. brackets, rails, trays
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/14Mounting supporting structure in casing or on frame or rack
    • H05K7/1485Servers; Data center rooms, e.g. 19-inch computer racks
    • H05K7/1488Cabinets therefore, e.g. chassis, racks
    • H05K7/1492Cabinets therefore, e.g. chassis, racks having electrical distribution arrangements, e.g. power supply or data communications
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2029Modifications to facilitate cooling, ventilating, or heating using a liquid coolant with phase change in electronic enclosures
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20709Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
    • H05K7/20718Forced ventilation of a gaseous coolant
    • H05K7/20736Forced ventilation of a gaseous coolant within cabinets for removing heat from server blades
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing

Abstract

A system and method for provisioning within a system design to allow the storage and IO resources to scale with compute resources are provided.

Description

    FIELD
  • [0001]
    The disclosure relates generally to provisioning within a system design to allow the storage and networking resources to scale with compute resources.
  • BACKGROUND
  • [0002]
    Server systems generally provide a fixed number of options. For example, there are a fixed number of PCI Express IO slots and a fixed number of hard drive bays, which often are delivered empty as they provide future upgradability. The customer is expected to gauge future needs and select a server chassis category that will serve present and future needs. Historically, and particularly with x86-class servers, predicting the future needs has been achievable because product improvements from one generation to another have been incremental.
  • [0003]
    With the advent of scalable servers, the ability to predict future needs has become less obvious. For example, in the class of servers within a 2U chassis, it is possible to install 120 compute nodes in an incremental fashion. Using this server as a data storage device, the user may require only 4 compute nodes, but may desire 80 storage drives. Using the same server as a pure compute function focused on analytics, the user may require 120 compute nodes and no storage drives. The nature of scalable servers lends itself to much more diverse applications which require diverse system configurations. As the diversity increases over time, the ability to predict the system features that must scale becomes increasingly difficult.
  • [0004]
    An example of a typical server system is shown in FIG. 1. The traditional server system has fixed areas for 24 hard drives along its front surface and a fixed area for compute subsystem (also called motherboard) and a fixed area for IO expansion (PCI slots). This typical server system does not provide scalability of the various computer components. Thus, it is desirable to create a system and method to scale storage and networking within a server system and it is to this end that this disclosure is directed. The benefit of this scalability is a much more flexible physical system that fits many user applications.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0005]
    FIG. 1 illustrates a traditional server system, depicting fixed areas for 24 hard drives along its front surface and a fixed area for compute subsystem (also called motherboard) and a fixed area for IO expansion (PCI slots).
  • [0006]
    FIG. 2 illustrates an exemplary system with multiple slots that can house a compute module, a storage module, or an IO module.
  • [0007]
    FIG. 3 illustrates an exemplary compute module.
  • [0008]
    FIGS. 4 a 1 and 4 a 2 are a side view and a top view, respectively, of an exemplary storage module which implements industry standard 2.5″ hard drives or SSDs (solid state drives).
  • [0009]
    FIG. 4 b illustrates an exemplary storage module which implements SATA SSD modules.
  • [0010]
    FIG. 4 c illustrates an exemplary storage module which implements mSATA SSD modules.
  • [0011]
    FIG. 5 illustrates an exemplary IO module.
  • [0012]
    FIG. 6 illustrates an exemplary hybrid module.
  • [0013]
    FIG. 7 illustrates a module block (or super module) made up of an integrated collection of modules connected together by way of a private interconnect.
  • [0014]
    FIG. 8 a illustrates an example of how the exemplary system can be populated specifically for high compute applications which require no local storage.
  • [0015]
    FIG. 8 b illustrates an example of how the exemplary system can be populated with a 1:1 ratio of mix of compute and storage. These are useful, for example, for Hadoop applications.
  • [0016]
    FIG. 8 c illustrates another example of how the exemplary system can be populated specifically for storage applications.
  • [0017]
    FIG. 8 d illustrates an example of a straddle slot. For long chassis', a practical limit is reached on system board size. The center columns of slots straddle across system boards.
  • [0018]
    FIG. 8 e illustrates the use of straddle slots in systems with a much larger system board area.
  • DETAILED DESCRIPTION OF ONE OR MORE EMBODIMENTS
  • [0019]
    The disclosure is particular applicable to a 2U chassis which is the most widely favored form factor for PC-class servers. The concepts herein apply to any chassis form factor, such as tower and rack chassis' of varying customary sizes and any unconventional form. For example, FIG. 8 e shows an unconventional form factor, the sliding door, which relies on rack rails at the top and bottom of a server rack, rather than left and right sides as used by conventional rack chassis'. The sliding door approach expands the usable space for system boards, but at the same time, it creates a new interconnect problem between system boards that should be solved by the flexible provisioning concepts herein.
  • [0020]
    Computer architecture have various components and those components can be categorized in three categories: compute, storage, and IO wherein the compute category may include computing related or processor components, the storage category are storage type devices and IO are input/output components of the computer architecture. Each category can be further subdivided, and each category can be defined to contain certain element types. For example, compute can be subdivided into an ALU, cache, system memory, and local peripherals. Also for example, the storage category can contain element types of hard drives, solid state storage devices, various industry-standard form factors, or non-standard devices. For this disclosure, the component level (compute, storage, IO) are used with the understanding that each component has dimensions and attributes to which the same concepts may be applied.
  • [0021]
    The system and method of the disclosure allow the same physical space to be used by any of the computer components: compute devices, storage devices, or IO devices. This provides the greatest flexibility in configuration of systems for different applications. In addition, devices within the computer system that support all three components, such as power supplies and fans, will be assumed to be stationary for simplicity in the examples provided. It is understood that these support devices do not have to be stationary, depending on the goals in differentiation of the system design, meaning that they also can scale as needed.
  • [0022]
    In this example, a “slot” consists of physical connectors and a defined volume of space above these connectors. In one implementation, two PCI Express x16 connectors are used, along with a volume of 10″ length by 2.7″ height by 1″ width. This volume is selected based on associated component heights, the restrictions of a 2U chassis, and a length driven by the PCB space required to accommodate this implementation. It is understood that other connector types can be used, depending on the signaling frequency and quantity of pins required. It is understood that other volumes can be used, depending on the physical constraints that are acceptable for the application. The connector pin definitions are critical to accommodate the many needs of the computer components, both in power delivery and bandwidth of the electrical interfaces. FIG. 2 depicts the resulting example system 20 that has one or more fixed locations 22 in the system for fans, one or more fixed locations 24 for the power supplies, and one or more slots 26 (30 slots in this example) for processors, storage or IO components of the system in which
  • [0023]
    An exemplary compute module 30 is shown in FIG. 3. In support of the principle of scaling, the compute module 30 has one or more nodes, such as four nodes 32-38 in this example. Each node consists of a highly integrated SOC (System On Chip) 40, associated DIMM 42 for system memory, nonvolatile memory (NAND) 44 for local storage space, one or more known SATA channels 46 for connectivity to storage components and other necessary small devices which are necessary for general functions of the node (EEPROMs, boot flash memory, sensors, etc). The four nodes 32-38 have local IO connections to each other, which provide intercommunication and redundancy if an external IO connection fails. Each of the nodes runs an independent operating system, although as another example, a cache-coherent compute module is possible which would run one instance of an operating system on each node.
  • [0024]
    Examples of storage modules 50 that may be used in the system are shown in FIGS. 4 a, 4 b, and 4 c. FIGS. 4 a 1 and 4 a 2 illustrate a storage module that leverages the existing industry-standard 2.5″ drive form factor for hard drives (defined to contain spinning mechanical platters which store data) or for solid state drives (defined to have no moving parts and uses integrated circuits for its storage media). In this example, it is possible to use a printed circuit board (PCB) card edge connector for power delivery and/or data delivery using the necessary IO standard, such as SATA or SAS. The IO standard selected is purely a convenience based on support by the implemented devices. Any IO protocol can be routed through this card edge connector as long as the mechanical interface can support the necessary signaling frequency. Alternatively, directly connecting the IO for data delivery to the drive provides further flexibility in system configuration.
  • [0025]
    In FIG. 4 a 1, a printed circuit board 52 is shown to which power/data connectors and voltage regulators are integrated for connection to subsequently attached storage devices. The storage modules also have one or more connectors 54, such as SATA power connectors, and power cables to connect power from PCB power rails to the attached storage media (in this case, SATA 2.5″ mechanical spindle hard drives). In this example, these cables are not needed for SATA SSD nor mSATA. The storage module may also have stand-offs 55 that mount the 2.5″ SATA HDD to the blue mounting holes in 4 a 2. The storage module also has the SATA data cable 56 which do not convey power.
  • [0026]
    In FIG. 4 a 2, the storage module has a set of SATA power/data connector 56 that are another method of attaching a hard drive to the PCB. The storage module in FIG. 4 s 2 may also have one or more mounting holes 57 for the standoffs 55 shown in FIG. 4 al. They also include holes used for standard manufacturing of the PCB assembly.
  • [0027]
    FIG. 4 b depicts a storage module that implements an industry-standard 22-pin SATA connector and interface, along with mechanical support features, to support SATA SSD modules per the JEDEC MO-297 standard. FIG. 4 c depicts a storage module that implements an industry-standard x1 PCI connector, along with mechanical support features to support the mSATA modules per the JEDEC MO-300 standard.
  • [0028]
    The example in FIG. 4 c demonstrates an opportunity to expand beyond the industry standard to maximize the benefit of a storage module that can be very close to its associated compute module. The reuse of an x1 PCI connector for the mSATA module left many pins unused, as the JEDEC standard had need for only one SATA channel through this interface. In fact, there is space for 5 additional SATA channels, even when allocating pins for sufficient grounding. This allows up to 6 SATA channels, each with smaller memories, as opposed to one SATA channel with one large memory block, although both scenario's can result in the same total storage space. The advantage of the multiple SATA channels is increased interface bandwidth, created by the possibility of parallel access to memory. Given that the operating system can stripe across multiple physical disks to create a single logical disk, the net change is a boost in SATA interface performance. Thus, mSATA modules with greater than one SATA channel can provide a new solution to IO bottlenecks to disks.
  • [0029]
    An exemplary IO module 60 for the system is shown in FIG. 5. Unlike a Network Interface Controller (NIC) that would plug into a conventional server and tie into its operating system, this IO module 60 connects to the infrastructural IO of the system at its edge connectors 62 and provides a translation 64 (using an IO translation circuit) from the internal IO protocol to an external IO protocol, such as Ethernet. The IO module 60 operates independent of any particular operating system of any node. The IO module 60 can support one or many external IO ports, and can take on a form factor that is suitable for a particular chassis design. The benefit of modularity allows the quantity of IO modules to be determined by the bandwidth requirement for data traversing from this system to/from others.
  • [0030]
    An exemplary hybrid module 70 is shown in FIG. 6, demonstrating that a combination of compute 30, storage 50, and IO 60 concepts can be implemented on a single module that are then incorporated into the system.
  • [0031]
    FIG. 7 illustrates a module block (or super module) 100 made up of an integrated collection of modules 70 connected together by way of a private interconnect 102.
  • [0032]
    With the compute, storage, and IO module concepts described above, exemplary systems of FIG. 8 are now described. FIGS. 8 a, 8 b, and 8 c depict different system configurations to address the basic categories of compute-intensive applications, Hadoop applications, and storage applications respectively. Of course, many other combinations of modules are possible to form the recipe needed for specific applications. As shown, the module form factor is kept consistent for convenience, but when required, it can change also, as shown by the IO module labeled “Network”. These degrees of flexibility allow creation of a family of modules that can be mixed and matched according to software application needs, with very little volume within the chassis tied to dedicated purposes. For example, FIG. 8 a shows a system 20 that has the fans 22 and power supplies 24 and a plurality of compute modules 30 for a compute intensive system. In FIG. 8 b, the system 20 has the same form factor and the fans and power supplies, but the slots 26 are filled with a combination of compute modules 20 and storage modules 50 as shown for a system that requires more storage than the system in FIG. 8 a. FIG. 8 c illustrates a system 20 has the same form factor and the fans and power supplies, but the slots 26 are filled a few compute modules 20 and many more storage modules 50 as shown for a system that requires more storage than computing power than the systems in FIGS. 8 a and 8 b.
  • [0033]
    FIG. 8 d expands on the system 20 concepts by considering a chassis that is particularly long, such that the system board size is larger than the practical limit allowed by PCB fabrication factories. Typical PCB panel sizes are 18″×24″ or 24″×24″, although panels up to 30″ are also available with limited sources. Given a typical 2U chassis that fits in a 19″ wide rack, the 18″×24″ PCB panel is the preferred size for most server motherboards today. To expand beyond the 24″ limit, board-to-board connectors must be used to interconnect two assemblies. When high speed signaling must pass between the two assemblies, a relatively expensive interconnect solution must be implemented, such as FCI AirMax connectors. The use of these connectors complicates the electrical design by adding signal integrity considerations and complicates the mechanical design due to the volume required for these connectors. Alternatively, the two system boards do not need to be directly connected at all, relying instead on the IO fabric within a Compute module to traverse data between them, called a “straddle slot”. In FIG. 8 d, the left system board might be aligned based on controlled mounting points, while the right system board might be designed to “float” on its mounting points such that installed modules can control the alignment of associated edge connectors.
  • [0034]
    FIG. 8 e breaks away from the 2U chassis example with an exemplary vertical system 20 that greatly expands the area possible for system boards. Each section on rails is referred to as a “vertical chassis”. The black dashed lines represent module slots. Note the angled slot orientation enhances air flow due to natural convection, without the consequence of undue heat build-up caused in true vertical chimney rack designs. The straddle slot concept can be employed here to avoid the expense and space requirements of board-to-board high speed connectors. Power and cooling are not shown, as it is self-evident that space in the enclosure can be dedicated to these as needed.
  • [0035]
    While the foregoing has been with reference to a particular embodiment of the invention, it will be appreciated by those skilled in the art that changes in this embodiment may be made without departing from the principles and spirit of the disclosure, the scope of which is defined by the appended claims.

Claims (34)

  1. 1. A scalable system, comprising:
    a chassis having a predetermined physical form factor, the chassis having a plurality of slots into which modules are placed;
    one or more compute components that are capable of being housed within the chassis in the plurality of slots;
    one or more storage components that are capable of being housed within the chassis in the plurality of slots;
    one or more IO components that are capable of being housed within the chassis in the plurality of slots; and
    wherein the compute components, the storage components and the IO components housed in the chassis are determined based on a desired computing power, storage power and input/output power of the system such that the system in the chassis is scalable.
  2. 2. The system of claim 1 further comprising one or more support devices within the chassis that support the other components housed within the chassis.
  3. 3. The system of claim 2, wherein the one or more support devices are one of a fan and a power supply.
  4. 4. The system of claim 1, wherein the chassis has a set of physical connectors and a volume of space.
  5. 5. The system of claim 4, wherein the set of physical connectors is one or more PCIe connectors.
  6. 6. The system of claim 5, wherein the set of physical connectors are two PCI Express x16 connectors and the volume of space is 10″ length by 2.7″ height by 1″ width.
  7. 7. The system of claim 1, wherein the chassis is one of a 2U chassis and a vertical chassis.
  8. 8. The system of claim 1, wherein each compute component further comprises one or more compute nodes,
  9. 9. The system of claim 8, wherein each node has a system on chip, a set of system memory that is accessible by the system on chip, a local storage space for the system on chip and connectivity.
  10. 10. The system of claim 1, wherein each storage component is one of 2.5″ cased SATA drive, caseless SATA SSD (solid state device) and mSATA (Modular SATA) SSD.
  11. 11. The system of claim 1, wherein each IO component has set of connectors and a translation circuit that translates between IO protocols.
  12. 12. The system of claim 1 further comprising one or more hybrid components that are capable of being housed within the chassis in the plurality of slots, wherein each hybrid component has one or more of the compute component, the storage component and the IO component.
  13. 13. The system of claim 1 further comprising a straddle slot that spans one or more boards and accepts different components.
  14. 14. A method for building a scalable system in a fixed area, the method comprising:
    providing a chassis having a predetermined physical form factor, the chassis having a plurality of slots into which modules are placed;
    providing one or more compute components that are capable of being housed within the chassis in the plurality of slots, one or more storage components that are capable of being housed within the chassis in the plurality of slots and one or more IO components that are capable of being housed within the chassis in the plurality of slots; and
    determining, for a system with a desired computing power, storage power and input/output power, one of the one or more compute components, the one or more storage components and the one or more IO components that are housed within the chassis such that the system in the chassis is scalable.
  15. 15. The method of claim 14 further comprising providing one or more support devices within the chassis that support the other components housed within the chassis.
  16. 16. The method of claim 15, wherein the one or more support devices are one of a fan and a power supply.
  17. 17. The method of claim 14, wherein the chassis has a set of physical connectors and a volume of space.
  18. 18. The method of claim 17, wherein the set of physical connectors is one or more PCIe connectors.
  19. 19. The method of claim 18, wherein the set of physical connectors are two PCI Express x16 connectors and the volume of space is 10″ length by 2.7″ height by 1″ width.
  20. 20. The method of claim 14, wherein the chassis is one of a 2U chassis and a vertical chassis.
  21. 21. The method of claim 14, wherein each compute component further comprises one or more compute nodes,
  22. 22. The method of claim 21, wherein each node has a method on chip, a set of method memory that is accessible by the method on chip, a local storage space for the method on chip and connectivity.
  23. 23. The method of claim 14, wherein each storage component is one of 2.5″ cased SATA drive, caseless SATA SSD (solid state device) and mSATA (Modular SATA) SSD.
  24. 24. The method of claim 14, wherein each IO component has set of connectors and a translation circuit that translates between IO protocols.
  25. 25. The method of claim 14 further comprising providing one or more hybrid components that are capable of being housed within the chassis in the plurality of slots, wherein each hybrid component has one or more of the compute component, the storage component and the IO component.
  26. 26. A printed circuit board, comprising:
    one or more PCIe connectors through which power is routed;
    one or more regulators connected to the printed circuit board that are powered by the one or more PCIe connectors and generate a regulated voltage;
    one of a SATA, mSATA and miniSATA connector connected to the printed circuit board that are powered by the regulated voltage; and
    wherein a storage component can be connected to the connector to power the storage component.
  27. 27. The printed circuit board of claim 26, wherein the storage component is one of a 2.5″ cased SATA drive, caseless SATA solid state device and an mSATA solid state device.
  28. 28. The printed circuit board of claim 26 further comprising one of a SATA connector, mSATA connector and a miniSATA connector connected to the storage component through which a set of SATA signals from the storage component are communicated.
  29. 29. The printed circuit board of claim 26 further comprising one of a SATA connector, mSATA connector and a miniSATA connector connected to the storage component through which a set of SATA signals from the storage component are communicated and the set of SATA signals are routed on the printed circuit board to the PCIe connectors.
  30. 30. The printed circuit board of claim 28 further comprising a compute component connected to the printed circuit board using a SATA connector and the set of SATA signals are communicated to the compute component.
  31. 31. The printed circuit board of claim 26 further comprising one or more digital enables that are routable through the PCIe connectors to allow external control of the one or more regulators.
  32. 32. The printed circuit board of claim 26 further comprising one or more of a power good signal and an acknowledge signal are routable through the PCIe connectors from the one or more regulators.
  33. 33. The printed circuit board of claim 31 further comprising a compute component connected to the printed circuit board and the compute component controls the digital enables.
  34. 34. The printed circuit board of claim 26 further comprising a temperature sensor attached to the printed circuit board and a temperature sensor interface is routed through the PCIe connector.
US13284855 2011-10-28 2011-10-28 System and method for flexible storage and networking provisioning in large scalable processor installations Abandoned US20130107444A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13284855 US20130107444A1 (en) 2011-10-28 2011-10-28 System and method for flexible storage and networking provisioning in large scalable processor installations

Applications Claiming Priority (11)

Application Number Priority Date Filing Date Title
US13284855 US20130107444A1 (en) 2011-10-28 2011-10-28 System and method for flexible storage and networking provisioning in large scalable processor installations
KR20157007817A KR101604962B1 (en) 2011-10-28 2012-10-24 System and method for flexible storage and networking provisioning in large scalable processor installations
KR20147014433A KR101558118B1 (en) 2011-10-28 2012-10-24 System and method for flexible storage and networking provisioning in large scalable processor installations
KR20167006459A KR20160032274A (en) 2011-10-28 2012-10-24 System and method for flexible storage and networking provisioning in large scalable processor installations
PCT/US2012/061747 WO2013063158A1 (en) 2011-10-28 2012-10-24 System and method for flexible storage and networking provisioning in large scalable processor installations
KR20177001784A KR20170010908A (en) 2011-10-28 2012-10-24 System and method for flexible storage and networking provisioning in large scalable processor installations
US13662759 US9465771B2 (en) 2009-09-24 2012-10-29 Server on a chip and node cards comprising one or more of same
US14106697 US9585281B2 (en) 2011-10-28 2013-12-13 System and method for flexible storage and networking provisioning in large scalable processor installations
US14106698 US20140104778A1 (en) 2011-10-28 2013-12-13 System And Method For Flexible Storage And Networking Provisioning In Large Scalable Processor Installations
US15281462 US20170115712A1 (en) 2009-09-24 2016-09-30 Server on a Chip and Node Cards Comprising One or More of Same
US15430959 US20170156234A1 (en) 2011-10-28 2017-02-13 System And Method For Flexible Storage And Networking Provisioning In Large Scalable Processor Installations

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US13622759 Continuation-In-Part
US13453086 Continuation-In-Part US8599863B2 (en) 2009-10-30 2012-04-23 System and method for using a multi-protocol fabric module across a distributed server interconnect fabric

Related Child Applications (4)

Application Number Title Priority Date Filing Date
US12794996 Continuation-In-Part US20110103391A1 (en) 2009-10-30 2010-06-07 System and method for high-performance, low-power data center interconnect fabric
US13662759 Continuation-In-Part US9465771B2 (en) 2009-09-24 2012-10-29 Server on a chip and node cards comprising one or more of same
US14106698 Division US20140104778A1 (en) 2011-10-28 2013-12-13 System And Method For Flexible Storage And Networking Provisioning In Large Scalable Processor Installations
US14106697 Division US9585281B2 (en) 2011-10-28 2013-12-13 System and method for flexible storage and networking provisioning in large scalable processor installations

Publications (1)

Publication Number Publication Date
US20130107444A1 true true US20130107444A1 (en) 2013-05-02

Family

ID=48168450

Family Applications (4)

Application Number Title Priority Date Filing Date
US13284855 Abandoned US20130107444A1 (en) 2011-10-28 2011-10-28 System and method for flexible storage and networking provisioning in large scalable processor installations
US14106697 Active 2032-10-12 US9585281B2 (en) 2011-10-28 2013-12-13 System and method for flexible storage and networking provisioning in large scalable processor installations
US14106698 Pending US20140104778A1 (en) 2011-10-28 2013-12-13 System And Method For Flexible Storage And Networking Provisioning In Large Scalable Processor Installations
US15430959 Pending US20170156234A1 (en) 2011-10-28 2017-02-13 System And Method For Flexible Storage And Networking Provisioning In Large Scalable Processor Installations

Family Applications After (3)

Application Number Title Priority Date Filing Date
US14106697 Active 2032-10-12 US9585281B2 (en) 2011-10-28 2013-12-13 System and method for flexible storage and networking provisioning in large scalable processor installations
US14106698 Pending US20140104778A1 (en) 2011-10-28 2013-12-13 System And Method For Flexible Storage And Networking Provisioning In Large Scalable Processor Installations
US15430959 Pending US20170156234A1 (en) 2011-10-28 2017-02-13 System And Method For Flexible Storage And Networking Provisioning In Large Scalable Processor Installations

Country Status (3)

Country Link
US (4) US20130107444A1 (en)
KR (4) KR20170010908A (en)
WO (1) WO2013063158A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150046621A1 (en) * 2013-08-08 2015-02-12 Hon Hai Precision Industry Co., Ltd. Expansion card
US20150277512A1 (en) * 2014-03-07 2015-10-01 Seagate Technology Llc Solid state storage system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5971804A (en) * 1997-06-30 1999-10-26 Emc Corporation Backplane having strip transmission line ethernet bus
US7203063B2 (en) * 2004-05-21 2007-04-10 Hewlett-Packard Development Company, L.P. Small form factor liquid loop cooling system
US20100040053A1 (en) * 2008-08-14 2010-02-18 Dell Products, Lp System and method for dynamic maintenance of fabric subsets in a network
US7719834B2 (en) * 2007-04-13 2010-05-18 Hitachi, Ltd. Storage device

Family Cites Families (333)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5594908A (en) 1989-12-27 1997-01-14 Hyatt; Gilbert P. Computer system having a serial keyboard, a serial display, and a dynamic memory with memory refresh
US5396635A (en) 1990-06-01 1995-03-07 Vadem Corporation Power conservation apparatus having multiple power reduction levels dependent upon the activity of the computer system
US5451936A (en) 1991-06-20 1995-09-19 The Johns Hopkins University Non-blocking broadcast network
US5781187A (en) 1994-05-31 1998-07-14 Advanced Micro Devices, Inc. Interrupt transmission via specialized bus cycle within a symmetrical multiprocessing system
JPH08123763A (en) 1994-10-26 1996-05-17 Nec Corp Memory assigning system for distributed processing system
US6055618A (en) 1995-10-31 2000-04-25 Cray Research, Inc. Virtual maintenance network in multiprocessing system having a non-flow controlled virtual maintenance channel
US6842430B1 (en) 1996-10-16 2005-01-11 Koninklijke Philips Electronics N.V. Method for configuring and routing data within a wireless multihop network and a wireless network for implementing the same
JP3662378B2 (en) 1996-12-17 2005-06-22 川崎マイクロエレクトロニクス株式会社 Network repeaters
US5968176A (en) 1997-05-29 1999-10-19 3Com Corporation Multilayer firewall system
US6507586B1 (en) 1997-09-18 2003-01-14 International Business Machines Corporation Multicast data transmission over a one-way broadband channel
KR100286375B1 (en) 1997-10-02 2001-01-12 윤종용 Radiator of electronic system and computer system having the same
US5908468A (en) 1997-10-24 1999-06-01 Advanced Micro Devices, Inc. Data transfer network on a chip utilizing a multiple traffic circle topology
US5901048A (en) 1997-12-11 1999-05-04 International Business Machines Corporation Printed circuit board with chip collar
KR100250437B1 (en) 1997-12-26 2000-04-01 정선종 Path control device for round robin arbitration and adaptation
US6192414B1 (en) 1998-01-27 2001-02-20 Moore Products Co. Network communications system manager
US7801132B2 (en) 1999-11-09 2010-09-21 Synchrodyne Networks, Inc. Interface system and methodology having scheduled connection responsive to common time reference
US8108508B1 (en) 1998-06-22 2012-01-31 Hewlett-Packard Development Company, L.P. Web server chip for network manageability
US6373841B1 (en) 1998-06-22 2002-04-16 Agilent Technologies, Inc. Integrated LAN controller and web server chip
US6181699B1 (en) 1998-07-01 2001-01-30 National Semiconductor Corporation Apparatus and method of assigning VLAN tags
US6314501B1 (en) 1998-07-23 2001-11-06 Unisys Corporation Computer system and method for operating multiple operating systems in different partitions of the computer system and for allowing the different partitions to communicate with one another through shared memory
US6574238B1 (en) 1998-08-26 2003-06-03 Intel Corporation Inter-switch link header modification
US6963926B1 (en) 1999-03-31 2005-11-08 British Telecommunications Public Limited Company Progressive routing in a communications network
US20060034275A1 (en) 2000-05-03 2006-02-16 At&T Laboratories-Cambridge Ltd. Data transfer, synchronising applications, and low latency networks
US6711691B1 (en) 1999-05-13 2004-03-23 Apple Computer, Inc. Power management for computer systems
US6442137B1 (en) 1999-05-24 2002-08-27 Advanced Micro Devices, Inc. Apparatus and method in a network switch for swapping memory access slots between gigabit port and expansion port
US7020695B1 (en) 1999-05-28 2006-03-28 Oracle International Corporation Using a cluster-wide shared repository to provide the latest consistent definition of the cluster (avoiding the partition-in time problem)
US6446192B1 (en) 1999-06-04 2002-09-03 Embrace Networks, Inc. Remote monitoring and control of equipment over computer networks using a single web interfacing chip
US6697359B1 (en) 1999-07-02 2004-02-24 Ancor Communications, Inc. High performance switch fabric element and switch systems
US8171204B2 (en) 2000-01-06 2012-05-01 Super Talent Electronics, Inc. Intelligent solid-state non-volatile memory device (NVMD) system with multi-level caching of multiple channels
US6857026B1 (en) 1999-12-14 2005-02-15 Nortel Networks Limited Using alternate routes for fail-over in a communication network
US6608564B2 (en) 2000-01-25 2003-08-19 Hewlett-Packard Development Company, L.P. Removable memory cartridge system for use with a server or other processor-based device
US6990063B1 (en) 2000-03-07 2006-01-24 Cisco Technology, Inc. Distributing fault indications and maintaining and using a data structure indicating faults to route traffic in a packet switching system
US6556952B1 (en) 2000-05-04 2003-04-29 Advanced Micro Devices, Inc. Performance monitoring and optimizing of controller parameters
US7080078B1 (en) 2000-05-09 2006-07-18 Sun Microsystems, Inc. Mechanism and apparatus for URI-addressable repositories of service advertisements and other content in a distributed computing environment
US7143153B1 (en) 2000-11-09 2006-11-28 Ciena Corporation Internal network device dynamic health monitoring
JP2001333091A (en) 2000-05-23 2001-11-30 Fujitsu Ltd Communication equipment
US6816750B1 (en) 2000-06-09 2004-11-09 Cirrus Logic, Inc. System-on-a-chip
US6668308B2 (en) 2000-06-10 2003-12-23 Hewlett-Packard Development Company, L.P. Scalable architecture based on single-chip multiprocessing
US6760861B2 (en) 2000-09-29 2004-07-06 Zeronines Technology, Inc. System, method and apparatus for data processing and storage to provide continuous operations independent of device failure or disaster
US7032119B2 (en) 2000-09-27 2006-04-18 Amphus, Inc. Dynamic power and workload management for multi-server system
US7274705B2 (en) 2000-10-03 2007-09-25 Broadcom Corporation Method and apparatus for reducing clock speed and power consumption
US20020040391A1 (en) 2000-10-04 2002-04-04 David Chaiken Server farm formed of systems on a chip
US7165120B1 (en) 2000-10-11 2007-01-16 Sun Microsystems, Inc. Server node with interated networking capabilities
US20020107903A1 (en) 2000-11-07 2002-08-08 Richter Roger K. Methods and systems for the order serialization of information in a network processing environment
US6452809B1 (en) 2000-11-10 2002-09-17 Galactic Computing Corporation Scalable internet engine
US6954463B1 (en) 2000-12-11 2005-10-11 Cisco Technology, Inc. Distributed packet processing architecture for network access servers
US7616646B1 (en) 2000-12-12 2009-11-10 Cisco Technology, Inc. Intraserver tag-switched distributed packet processing for network access servers
JP3532153B2 (en) 2000-12-22 2004-05-31 株式会社 沖マイクロデザイン Level shifter control circuit
CN1503946A (en) 2000-12-29 2004-06-09 明 裘 Server array hardware architecture and system
US20020097732A1 (en) 2001-01-19 2002-07-25 Tom Worster Virtual private network protocol
US6977939B2 (en) 2001-01-26 2005-12-20 Microsoft Corporation Method and apparatus for emulating ethernet functionality over a serial bus
US7339786B2 (en) 2001-03-05 2008-03-04 Intel Corporation Modular server architecture with Ethernet routed across a backplane utilizing an integrated Ethernet switch module
US7093280B2 (en) 2001-03-30 2006-08-15 Juniper Networks, Inc. Internet security system
US20020188754A1 (en) 2001-04-27 2002-12-12 Foster Michael S. Method and system for domain addressing in a communications network
US20020161917A1 (en) 2001-04-30 2002-10-31 Shapiro Aaron M. Methods and systems for dynamic routing of data in a network
WO2002091672A3 (en) 2001-05-07 2003-09-12 Vitesse Semiconductor Corp A system and a method for processing data packets or frames
US7161901B2 (en) 2001-05-07 2007-01-09 Vitesse Semiconductor Corporation Automatic load balancing in switch fabrics
US6766389B2 (en) 2001-05-18 2004-07-20 Broadcom Corporation System on a chip for networking
DE10127198A1 (en) 2001-06-05 2002-12-19 Infineon Technologies Ag Physical address provision method for processor system with virtual addressing uses hierarchy mapping process for conversion of virtual address
US6950895B2 (en) 2001-06-13 2005-09-27 Intel Corporation Modular server architecture
US7159017B2 (en) 2001-06-28 2007-01-02 Fujitsu Limited Routing mechanism for static load balancing in a partitioned computer system with a fully connected network
US7200662B2 (en) 2001-07-06 2007-04-03 Juniper Networks, Inc. Integrated rule network management system
US6813676B1 (en) 2001-07-27 2004-11-02 Lsi Logic Corporation Host interface bypass on a fabric based array controller
US6968470B2 (en) 2001-08-07 2005-11-22 Hewlett-Packard Development Company, L.P. System and method for power management in a server system
US6724635B2 (en) 2001-08-07 2004-04-20 Hewlett-Packard Development Company, L.P. LCD panel for a server system
US7337333B2 (en) 2001-09-19 2008-02-26 Dell Products L.P. System and method for strategic power supply sequencing in a computer system with multiple processing resources and multiple power supplies
US7325050B2 (en) 2001-09-19 2008-01-29 Dell Products L.P. System and method for strategic power reduction in a computer system
US6779086B2 (en) 2001-10-16 2004-08-17 International Business Machines Corporation Symmetric multiprocessor systems with an independent super-coherent cache directory
US7447197B2 (en) 2001-10-18 2008-11-04 Qlogic, Corporation System and method of providing network node services
US8325716B2 (en) 2001-10-22 2012-12-04 Broadcom Corporation Data path optimization algorithm
US6963948B1 (en) 2001-11-01 2005-11-08 Advanced Micro Devices, Inc. Microcomputer bridge architecture with an embedded microcontroller
US7310319B2 (en) 2001-11-02 2007-12-18 Intel Corporation Multiple-domain processing system using hierarchically orthogonal switching fabric
US7464016B2 (en) 2001-11-09 2008-12-09 Sun Microsystems, Inc. Hot plug and hot pull system simulation
US7209657B1 (en) 2001-12-03 2007-04-24 Cheetah Omni, Llc Optical routing using a star switching fabric
US7599360B2 (en) 2001-12-26 2009-10-06 Cisco Technology, Inc. Methods and apparatus for encapsulating a frame for transmission in a storage area network
US20030140190A1 (en) 2002-01-23 2003-07-24 Sun Microsystems, Inc. Auto-SCSI termination enable in a CPCI hot swap system
US7284067B2 (en) 2002-02-20 2007-10-16 Hewlett-Packard Development Company, L.P. Method for integrated load balancing among peer servers
US20030172191A1 (en) 2002-02-22 2003-09-11 Williams Joel R. Coupling of CPU and disk drive to form a server and aggregating a plurality of servers into server farms
US7970929B1 (en) 2002-03-19 2011-06-28 Dunti Llc Apparatus, system, and method for routing data to and from a host that is moved from one location on a communication system to another location on the communication system
US7096377B2 (en) 2002-03-27 2006-08-22 Intel Corporation Method and apparatus for setting timing parameters
US20030196126A1 (en) 2002-04-11 2003-10-16 Fung Henry T. System, method, and architecture for dynamic server power management and dynamic workload management for multi-server environment
US20030202520A1 (en) 2002-04-26 2003-10-30 Maxxan Systems, Inc. Scalable switch fabric system and apparatus for computer networks
US7095738B1 (en) 2002-05-07 2006-08-22 Cisco Technology, Inc. System and method for deriving IPv6 scope identifiers and for mapping the identifiers into IPv6 addresses
US7353530B1 (en) 2002-05-10 2008-04-01 At&T Corp. Method and apparatus for assigning communication nodes to CMTS cards
US7376125B1 (en) 2002-06-04 2008-05-20 Fortinet, Inc. Service processing switch
US7161904B2 (en) 2002-06-04 2007-01-09 Fortinet, Inc. System and method for hierarchical metering in a virtual router based network switch
US7685254B2 (en) 2003-06-10 2010-03-23 Pandya Ashish A Runtime adaptable search processor
US7415723B2 (en) 2002-06-11 2008-08-19 Pandya Ashish A Distributed network security system and a hardware processor therefor
US7453870B2 (en) 2002-06-12 2008-11-18 Intel Corporation Backplane for switch fabric
US7180866B1 (en) 2002-07-11 2007-02-20 Nortel Networks Limited Rerouting in connection-oriented communication networks and communication systems
US7039018B2 (en) 2002-07-17 2006-05-02 Intel Corporation Technique to improve network routing using best-match and exact-match techniques
US7286544B2 (en) 2002-07-25 2007-10-23 Brocade Communications Systems, Inc. Virtualized multiport switch
US7286527B2 (en) 2002-07-26 2007-10-23 Brocade Communications Systems, Inc. Method and apparatus for round trip delay measurement in a bi-directional, point-to-point, serial data channel
US8295288B2 (en) 2002-07-30 2012-10-23 Brocade Communications System, Inc. Registered state change notification for a fibre channel network
US7055044B2 (en) 2002-08-12 2006-05-30 Hewlett-Packard Development Company, L.P. System and method for voltage management of a processor to optimize performance and power dissipation
EP1394985A1 (en) 2002-08-28 2004-03-03 Siemens Aktiengesellschaft Test method for network path between network elements in communication networks
US20110090633A1 (en) * 2002-09-23 2011-04-21 Josef Rabinovitz Modular sata data storage device assembly
US7934005B2 (en) 2003-09-08 2011-04-26 Koolspan, Inc. Subnet box
US7080283B1 (en) 2002-10-15 2006-07-18 Tensilica, Inc. Simultaneous real-time trace and debug for multiple processing core systems on a chip
US8199636B1 (en) 2002-10-18 2012-06-12 Alcatel Lucent Bridged network system with traffic resiliency upon link failure
US7792113B1 (en) 2002-10-21 2010-09-07 Cisco Technology, Inc. Method and system for policy-based forwarding
US7512788B2 (en) 2002-12-10 2009-03-31 International Business Machines Corporation Method and apparatus for anonymous group messaging in a distributed messaging system
US7917658B2 (en) 2003-01-21 2011-03-29 Emulex Design And Manufacturing Corporation Switching apparatus and method for link initialization in a shared I/O environment
US8024548B2 (en) 2003-02-18 2011-09-20 Christopher Joseph Daffron Integrated circuit microprocessor that constructs, at run time, integrated reconfigurable logic into persistent finite state machines from pre-compiled machine code instruction sequences
US7447147B2 (en) 2003-02-28 2008-11-04 Cisco Technology, Inc. Ethernet switch with configurable alarms
US7039771B1 (en) 2003-03-10 2006-05-02 Marvell International Ltd. Method and system for supporting multiple external serial port devices using a serial port controller in embedded disk controllers
US7216123B2 (en) 2003-03-28 2007-05-08 Board Of Trustees Of The Leland Stanford Junior University Methods for ranking nodes in large directed graphs
US7340777B1 (en) 2003-03-31 2008-03-04 Symantec Corporation In memory heuristic system and method for detecting viruses
US20040215650A1 (en) 2003-04-09 2004-10-28 Ullattil Shaji Interfaces and methods for group policy management
US7047372B2 (en) 2003-04-15 2006-05-16 Newisys, Inc. Managing I/O accesses in multiprocessor systems
US7676600B2 (en) * 2003-04-23 2010-03-09 Dot Hill Systems Corporation Network, storage appliance, and method for externalizing an internal I/O link between a server and a storage controller integrated within the storage appliance chassis
US20040215991A1 (en) 2003-04-23 2004-10-28 Dell Products L.P. Power-up of multiple processors when a voltage regulator module has failed
US20040215864A1 (en) 2003-04-28 2004-10-28 International Business Machines Corporation Non-disruptive, dynamic hot-add and hot-remove of non-symmetric data processing system resources
US7400996B2 (en) 2003-06-26 2008-07-15 Benjamin Thomas Percer Use of I2C-based potentiometers to enable voltage rail variation under BMC control
US7894348B2 (en) 2003-07-21 2011-02-22 Qlogic, Corporation Method and system for congestion control in a fibre channel switch
US7477655B2 (en) 2003-07-21 2009-01-13 Qlogic, Corporation Method and system for power control of fibre channel switches
US7646767B2 (en) 2003-07-21 2010-01-12 Qlogic, Corporation Method and system for programmable data dependant network routing
US7512067B2 (en) 2003-07-21 2009-03-31 Qlogic, Corporation Method and system for congestion control based on optimum bandwidth allocation in a fibre channel switch
US7412588B2 (en) 2003-07-25 2008-08-12 International Business Machines Corporation Network processor system on chip with bridge coupling protocol converting multiprocessor macro core local bus to peripheral interfaces coupled system bus
US7353362B2 (en) 2003-07-25 2008-04-01 International Business Machines Corporation Multiprocessor subsystem in SoC with bridge between processor clusters interconnetion and SoC system bus
US7170315B2 (en) 2003-07-31 2007-01-30 Actel Corporation Programmable system on a chip
US7028125B2 (en) 2003-08-04 2006-04-11 Inventec Corporation Hot-pluggable peripheral input device coupling system
US7620736B2 (en) 2003-08-08 2009-11-17 Cray Canada Corporation Network topology having nodes interconnected by extended diagonal links
US7512808B2 (en) 2003-08-29 2009-03-31 Trend Micro, Inc. Anti-computer viral agent suitable for innoculation of computing devices
JP2007507990A (en) 2003-10-14 2007-03-29 ラプター・ネツトワークス・テクノロジー・インコーポレイテツド Switching system comprising a distributed switching structure
US7174470B2 (en) 2003-10-14 2007-02-06 Hewlett-Packard Development Company, L.P. Computer data bus interface control
US7415543B2 (en) 2003-11-12 2008-08-19 Lsi Corporation Serial port initialization in storage system controllers
US7916638B2 (en) 2003-12-24 2011-03-29 Alcatel Lucent Time-independent deficit round robin method and system
US7109760B1 (en) 2004-01-05 2006-09-19 Integrated Device Technology, Inc. Delay-locked loop (DLL) integrated circuits that support efficient phase locking of clock signals having non-unity duty cycles
JP4248420B2 (en) 2004-02-06 2009-04-02 日本電信電話株式会社 Handover control method of a mobile communication network
US7664110B1 (en) 2004-02-07 2010-02-16 Habanero Holdings, Inc. Input/output controller for coupling the processor-memory complex to the fabric in fabric-backplane interprise servers
US7583661B2 (en) 2004-03-05 2009-09-01 Sid Chaudhuri Method and apparatus for improved IP networks and high-quality services
US7865582B2 (en) 2004-03-24 2011-01-04 Hewlett-Packard Development Company, L.P. System and method for assigning an application component to a computing resource
US7437540B2 (en) 2004-03-26 2008-10-14 Atmel Corporation Complex domain floating point VLIW DSP with data/program bus multiplexer and microprocessor interface
EP1591906A1 (en) 2004-04-27 2005-11-02 Texas Instruments Incorporated Efficient data transfer from an ASIC to a host using DMA
US7440467B2 (en) 2004-05-05 2008-10-21 Gigamon Systems Llc Asymmetric packet switch and a method of use
ES2246702B2 (en) 2004-06-02 2007-06-16 L & M DATA COMMUNICATIONS, S.A. ethernet universal telecommunications service.
US7467358B2 (en) 2004-06-03 2008-12-16 Gwangju Institute Of Science And Technology Asynchronous switch based on butterfly fat-tree for network on chip application
WO2005125027A1 (en) 2004-06-15 2005-12-29 Fujitsu Component Limited Transceiver module
JP4334419B2 (en) 2004-06-30 2009-09-30 富士通株式会社 Transmission equipment
US7586904B2 (en) 2004-07-15 2009-09-08 Broadcom Corp. Method and system for a gigabit Ethernet IP telephone chip with no DSP core, which uses a RISC core with instruction extensions to support voice processing
US9264384B1 (en) 2004-07-22 2016-02-16 Oracle International Corporation Resource virtualization mechanism including virtual host bus adapters
US7466712B2 (en) 2004-07-30 2008-12-16 Brocade Communications Systems, Inc. System and method for providing proxy and translation domains in a fibre channel router
US7657756B2 (en) 2004-10-08 2010-02-02 International Business Machines Corporaiton Secure memory caching structures for data, integrity and version values
US7257655B1 (en) 2004-10-13 2007-08-14 Altera Corporation Embedded PCI-Express implementation
WO2006041218A3 (en) 2004-10-15 2007-04-26 Sony Computer Entertainment Inc Methods and apparatus for supporting multiple configurations in a multi-processor system
US7620057B1 (en) 2004-10-19 2009-11-17 Broadcom Corporation Cache line replacement with zero latency
US20060090025A1 (en) * 2004-10-25 2006-04-27 Tufford Robert C 9U payload module configurations
US7760720B2 (en) 2004-11-09 2010-07-20 Cisco Technology, Inc. Translating native medium access control (MAC) addresses to hierarchical MAC addresses and their use
US7644215B2 (en) 2004-11-10 2010-01-05 Tekelec Methods and systems for providing management in a telecommunications equipment shelf assembly using a shared serial bus
US7278582B1 (en) 2004-12-03 2007-10-09 Sun Microsystems, Inc. Hardware security module (HSM) chip card
US7394288B1 (en) 2004-12-13 2008-07-01 Massachusetts Institute Of Technology Transferring data in a parallel processing environment
US7657677B2 (en) 2004-12-27 2010-02-02 Quanta Computer Inc. Blade server system with a management bus and method for managing the same
US8533777B2 (en) 2004-12-29 2013-09-10 Intel Corporation Mechanism to determine trust of out-of-band management agents
US8423695B2 (en) * 2005-01-19 2013-04-16 Broadcom Corporation Dual PCI-X/PCI-E card
US7676841B2 (en) 2005-02-01 2010-03-09 Fmr Llc Network intrusion mitigation
JP4489030B2 (en) 2005-02-07 2010-06-23 株式会社ソニー・コンピュータエンタテインメント Method and apparatus for providing a secure boot sequence in the processor
US8140770B2 (en) 2005-02-10 2012-03-20 International Business Machines Corporation Data processing system and method for predictively selecting a scope of broadcast of an operation
US7467306B2 (en) 2005-03-08 2008-12-16 Hewlett-Packard Development Company, L.P. Methods and systems for allocating power to an electronic device
US7881332B2 (en) 2005-04-01 2011-02-01 International Business Machines Corporation Configurable ports for a host ethernet adapter
JP4591185B2 (en) 2005-04-28 2010-12-01 株式会社日立製作所 The server device
US7363463B2 (en) 2005-05-13 2008-04-22 Microsoft Corporation Method and system for caching address translations from multiple address spaces in virtual machines
US7586841B2 (en) 2005-05-31 2009-09-08 Cisco Technology, Inc. System and method for protecting against failure of a TE-LSP tail-end node
US7596144B2 (en) 2005-06-07 2009-09-29 Broadcom Corp. System-on-a-chip (SoC) device with integrated support for ethernet, TCP, iSCSI, RDMA, and network application acceleration
US8200739B2 (en) 2005-06-23 2012-06-12 Telefonaktiebolaget L M Ericsson (Publ) Arrangement and method relating to load distribution
JP2007012000A (en) 2005-07-04 2007-01-18 Hitachi Ltd Storage controller and storage system
US7461274B2 (en) 2005-08-23 2008-12-02 International Business Machines Corporation Method for maximizing server utilization in a resource constrained environment
US8982778B2 (en) 2005-09-19 2015-03-17 Qualcomm Incorporated Packet routing in a wireless communications environment
US7382154B2 (en) 2005-10-03 2008-06-03 Honeywell International Inc. Reconfigurable network on a chip
US8516165B2 (en) 2005-10-19 2013-08-20 Nvidia Corporation System and method for encoding packet header to enable higher bandwidth efficiency across bus links
US7574590B2 (en) 2005-10-26 2009-08-11 Sigmatel, Inc. Method for booting a system on a chip integrated circuit
CN100417118C (en) 2005-10-28 2008-09-03 华为技术有限公司;西安电子科技大学 System and method for renewing network mobile node position in wireless net-like network
CN2852260Y (en) 2005-12-01 2006-12-27 华为技术有限公司 Server
EP1808994A1 (en) 2006-01-12 2007-07-18 Alcatel Lucent Universal switch for transporting packet data frames
WO2007084403A3 (en) 2006-01-13 2008-04-24 Andreas V Bechtolsheim Compact rackmount storage server
WO2007084422A3 (en) 2006-01-13 2008-05-08 Sun Microsystems Inc Modular blade server
US20070174390A1 (en) 2006-01-20 2007-07-26 Avise Partners Customer service management
US7991817B2 (en) 2006-01-23 2011-08-02 California Institute Of Technology Method and a circuit using an associative calculator for calculating a sequence of non-associative operations
US20070180310A1 (en) 2006-02-02 2007-08-02 Texas Instruments, Inc. Multi-core architecture with hardware messaging
US7606225B2 (en) 2006-02-06 2009-10-20 Fortinet, Inc. Integrated security switch
US20070226795A1 (en) 2006-02-09 2007-09-27 Texas Instruments Incorporated Virtual cores and hardware-supported hypervisor integrated circuits, systems, methods and processes of manufacture
US9177176B2 (en) 2006-02-27 2015-11-03 Broadcom Corporation Method and system for secure system-on-a-chip architecture for multimedia data processing
US20090133129A1 (en) 2006-03-06 2009-05-21 Lg Electronics Inc. Data transferring method
FR2898753B1 (en) 2006-03-16 2008-04-18 Commissariat Energie Atomique SoC has semi-distributed control
US7555666B2 (en) 2006-05-04 2009-06-30 Dell Products L.P. Power profiling application for managing power allocation in an information handling system
JP2007304687A (en) 2006-05-09 2007-11-22 Hitachi Ltd Cluster constitution and its control means
US7660922B2 (en) 2006-05-12 2010-02-09 Intel Corporation Mechanism to flexibly support multiple device numbers on point-to-point interconnect upstream ports
US20070280230A1 (en) 2006-05-31 2007-12-06 Motorola, Inc Method and system for service discovery across a wide area network
US7522468B2 (en) 2006-06-08 2009-04-21 Unity Semiconductor Corporation Serial memory interface
CN101094125A (en) 2006-06-23 2007-12-26 华为技术有限公司 Exchange structure in ATCA / ATCA300 expanded exchange bandwidth
US7693072B2 (en) 2006-07-13 2010-04-06 At&T Intellectual Property I, L.P. Method and apparatus for configuring a network topology with alternative communication paths
US20080040463A1 (en) 2006-08-08 2008-02-14 International Business Machines Corporation Communication System for Multiple Chassis Computer Systems
CN101127696B (en) 2006-08-15 2012-06-27 华为技术有限公司 Data forwarding method for layer 2 network and network and node devices
EP1892913A1 (en) 2006-08-24 2008-02-27 Siemens Aktiengesellschaft Method and arrangement for providing a wireless mesh network
US20080052437A1 (en) 2006-08-28 2008-02-28 Dell Products L.P. Hot Plug Power Policy for Modular Chassis
US7802082B2 (en) 2006-08-31 2010-09-21 Intel Corporation Methods and systems to dynamically configure computing apparatuses
US8599685B2 (en) 2006-09-26 2013-12-03 Cisco Technology, Inc. Snooping of on-path IP reservation protocols for layer 2 nodes
US7853755B1 (en) 2006-09-29 2010-12-14 Tilera Corporation Caching in multicore and multiprocessor architectures
US8684802B1 (en) 2006-10-27 2014-04-01 Oracle America, Inc. Method and apparatus for balancing thermal variations across a set of computer systems
US8447872B2 (en) 2006-11-01 2013-05-21 Intel Corporation Load balancing in a storage system
US7992151B2 (en) 2006-11-30 2011-08-02 Intel Corporation Methods and apparatuses for core allocations
US8296337B2 (en) 2006-12-06 2012-10-23 Fusion-Io, Inc. Apparatus, system, and method for managing data from a requesting device with an empty data token directive
US20080140930A1 (en) 2006-12-08 2008-06-12 Emulex Design & Manufacturing Corporation Virtual drive mapping
US20080140771A1 (en) 2006-12-08 2008-06-12 Sony Computer Entertainment Inc. Simulated environment computing framework
CN101212345A (en) 2006-12-31 2008-07-02 联想(北京)有限公司 Blade server management system
US8504791B2 (en) 2007-01-26 2013-08-06 Hicamp Systems, Inc. Hierarchical immutable content-addressable memory coprocessor
US7865614B2 (en) 2007-02-12 2011-01-04 International Business Machines Corporation Method and apparatus for load balancing with server state change awareness
FI120088B (en) 2007-03-01 2009-06-30 Kone Corp The arrangement and method for monitoring a safety circuit
US7870907B2 (en) 2007-03-08 2011-01-18 Weatherford/Lamb, Inc. Debris protection for sliding sleeve
JP4370336B2 (en) 2007-03-09 2009-11-25 株式会社日立製作所 Low Power job management method and a computer system
US7783910B2 (en) 2007-03-30 2010-08-24 International Business Machines Corporation Method and system for associating power consumption of a server with a network address assigned to the server
US20090097200A1 (en) * 2007-04-11 2009-04-16 Viswa Sharma Modular blade for providing scalable mechanical, electrical and environmental functionality in the enterprise using advancedtca boards
US7715400B1 (en) 2007-04-26 2010-05-11 3 Leaf Networks Node identification for distributed shared memory system
US7515412B2 (en) 2007-04-26 2009-04-07 Enermax Technology Corporation Cooling structure for power supply
DE102007020296A1 (en) 2007-04-30 2008-11-13 Philip Behrens Apparatus and method for wireless making contact
US7925795B2 (en) 2007-04-30 2011-04-12 Broadcom Corporation Method and system for configuring a plurality of network interfaces that share a physical interface
EP2003571A3 (en) 2007-05-16 2010-03-31 Coreworks, S.A. Network core access architecture
US7552241B2 (en) 2007-05-18 2009-06-23 Tilera Corporation Method and system for managing a plurality of I/O interfaces with an array of multicore processor resources in a semiconductor chip
US7693167B2 (en) 2007-05-22 2010-04-06 Rockwell Collins, Inc. Mobile nodal based communication system, method and apparatus
WO2008147926A1 (en) 2007-05-25 2008-12-04 Venkat Konda Fully connected generalized butterfly fat tree networks
US8141143B2 (en) 2007-05-31 2012-03-20 Imera Systems, Inc. Method and system for providing remote access to resources in a secure data center over a network
US7783813B2 (en) 2007-06-14 2010-08-24 International Business Machines Corporation Multi-node configuration of processor cards connected via processor fabrics
US8060775B1 (en) 2007-06-14 2011-11-15 Symantec Corporation Method and apparatus for providing dynamic multi-pathing (DMP) for an asymmetric logical unit access (ALUA) based storage system
JP4962152B2 (en) 2007-06-15 2012-06-27 日立電線株式会社 Combined optical and electrical transmission assembly
EP2009554A1 (en) 2007-06-25 2008-12-31 Stmicroelectronics SA Method for transferring data from a source target to a destination target, and corresponding network interface
US7761687B2 (en) 2007-06-26 2010-07-20 International Business Machines Corporation Ultrascalable petaflop parallel supercomputer
US8060760B2 (en) 2007-07-13 2011-11-15 Dell Products L.P. System and method for dynamic information handling system prioritization
US7688578B2 (en) 2007-07-19 2010-03-30 Hewlett-Packard Development Company, L.P. Modular high-density computer system
WO2009023563A1 (en) 2007-08-10 2009-02-19 Smith Robert B Path redundant hardware efficient communications interconnect system
US7840703B2 (en) 2007-08-27 2010-11-23 International Business Machines Corporation System and method for dynamically supporting indirect routing within a multi-tiered full-graph interconnect architecture
US7895463B2 (en) 2007-08-28 2011-02-22 Cisco Technology, Inc. Redundant application network appliances using a low latency lossless interconnect link
US20090080428A1 (en) 2007-09-25 2009-03-26 Maxxan Systems, Inc. System and method for scalable switch fabric for computer network
US7739475B2 (en) 2007-10-24 2010-06-15 Inventec Corporation System and method for updating dirty data of designated raw device
US7822841B2 (en) 2007-10-30 2010-10-26 Modern Grids, Inc. Method and system for hosting multiple, customized computing clusters
EP2061191A1 (en) 2007-11-13 2009-05-20 STMicroelectronics (Grenoble) SAS Buffering architecture for packet injection and extraction in on-chip networks.
US8068433B2 (en) 2007-11-26 2011-11-29 Microsoft Corporation Low power operation of networked devices
US7877622B2 (en) 2007-12-13 2011-01-25 International Business Machines Corporation Selecting between high availability redundant power supply modes for powering a computer system
US7962771B2 (en) 2007-12-31 2011-06-14 Intel Corporation Method, system, and apparatus for rerouting interrupts in a multi-core processor
US20090166065A1 (en) 2008-01-02 2009-07-02 Clayton James E Thin multi-chip flex module
US7779148B2 (en) 2008-02-01 2010-08-17 International Business Machines Corporation Dynamic routing based on information of not responded active source requests quantity received in broadcast heartbeat signal and stored in local data structure for other processor chips
US20090204837A1 (en) 2008-02-11 2009-08-13 Udaykumar Raval Power control system and method
US20090204834A1 (en) 2008-02-11 2009-08-13 Nvidia Corporation System and method for using inputs as wake signals
US8082400B1 (en) 2008-02-26 2011-12-20 Hewlett-Packard Development Company, L.P. Partitioning a memory pool among plural computing nodes
US8156362B2 (en) 2008-03-11 2012-04-10 Globalfoundries Inc. Hardware monitoring and decision making for transitioning in and out of low-power state
US20090248943A1 (en) 2008-04-01 2009-10-01 Inventec Corporation Server
US8762759B2 (en) 2008-04-10 2014-06-24 Nvidia Corporation Responding to interrupts while in a reduced power state
US20090259864A1 (en) 2008-04-10 2009-10-15 Nvidia Corporation System and method for input/output control during power down mode
JP5350461B2 (en) 2008-04-16 2013-11-27 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Expansion of the traffic instructions in Connectivity Fault Management
US7742844B2 (en) 2008-04-21 2010-06-22 Dell Products, Lp Information handling system including cooling devices and methods of use thereof
JP5075727B2 (en) 2008-04-25 2012-11-21 株式会社日立製作所 Stream distribution system and fault detection method
US7861110B2 (en) 2008-04-30 2010-12-28 Egenera, Inc. System, method, and adapter for creating fault-tolerant communication busses from standard components
US7921315B2 (en) 2008-05-09 2011-04-05 International Business Machines Corporation Managing power consumption in a data center based on monitoring circuit breakers
US20090282419A1 (en) 2008-05-09 2009-11-12 International Business Machines Corporation Ordered And Unordered Network-Addressed Message Control With Embedded DMA Commands For A Network On Chip
CN102090029A (en) 2008-05-12 2011-06-08 爱立信电话股份有限公司 Re-routing traffic in a communications network
US8180996B2 (en) 2008-05-15 2012-05-15 Calxeda, Inc. Distributed computing system with universal address system and method
US20100008038A1 (en) * 2008-05-15 2010-01-14 Giovanni Coglitore Apparatus and Method for Reliable and Efficient Computing Based on Separating Computing Modules From Components With Moving Parts
US8775718B2 (en) 2008-05-23 2014-07-08 Netapp, Inc. Use of RDMA to access non-volatile solid-state memory in a network storage system
US7519843B1 (en) 2008-05-30 2009-04-14 International Business Machines Corporation Method and system for dynamic processor speed control to always maximize processor performance based on processing load and available power
US7904345B2 (en) 2008-06-10 2011-03-08 The Go Daddy Group, Inc. Providing website hosting overage protection by transference to an overflow server
US8244918B2 (en) 2008-06-11 2012-08-14 International Business Machines Corporation Resource sharing expansion card
US8767749B2 (en) 2008-06-12 2014-07-01 Tejas Israel Ltd Method and system for transparent LAN services in a packet network
US8886985B2 (en) 2008-07-07 2014-11-11 Raritan Americas, Inc. Automatic discovery of physical connectivity between power outlets and IT equipment
EP2313819A2 (en) 2008-07-14 2011-04-27 The Regents of the University of California Architecture to enable energy savings in networked computers
US20100026408A1 (en) 2008-07-30 2010-02-04 Jeng-Jye Shau Signal transfer for ultra-high capacity circuits
US8132034B2 (en) 2008-08-28 2012-03-06 Dell Products L.P. System and method for managing information handling system power supply capacity utilization based on load sharing power loss
JP5428267B2 (en) 2008-09-26 2014-02-26 富士通株式会社 Power control system, and a power supply control method
US8484493B2 (en) 2008-10-29 2013-07-09 Dell Products, Lp Method for pre-chassis power multi-slot blade identification and inventory
US8068482B2 (en) 2008-11-13 2011-11-29 Qlogic, Corporation Method and system for network switch element
US20100125915A1 (en) 2008-11-17 2010-05-20 International Business Machines Corporation Secure Computer Architecture
JP5151924B2 (en) 2008-11-19 2013-02-27 富士通株式会社 Power management proxy system, the server device, server power control method using the proxy device, the proxy device power management program, the server device power management program
US20100161909A1 (en) 2008-12-18 2010-06-24 Lsi Corporation Systems and Methods for Quota Management in a Memory Appliance
US20100158005A1 (en) 2008-12-23 2010-06-24 Suvhasis Mukhopadhyay System-On-a-Chip and Multi-Chip Systems Supporting Advanced Telecommunication Functions
US20100169479A1 (en) 2008-12-26 2010-07-01 Electronics And Telecommunications Research Institute Apparatus and method for extracting user information using client-based script
US8804710B2 (en) 2008-12-29 2014-08-12 Juniper Networks, Inc. System architecture for a scalable and distributed multi-stage switch fabric
US8122269B2 (en) 2009-01-07 2012-02-21 International Business Machines Corporation Regulating power consumption in a multi-core processor by dynamically distributing power and processing requests by a managing core to a configuration of processing cores
US8775544B2 (en) 2009-02-04 2014-07-08 Citrix Systems, Inc. Methods and systems for dynamically switching between communications protocols
US8510744B2 (en) 2009-02-24 2013-08-13 Siemens Product Lifecycle Management Software Inc. Using resource defining attributes to enhance thread scheduling in processors
GB0903229D0 (en) 2009-02-25 2009-04-08 Advanced Risc Mach Ltd Blade server
JP5816407B2 (en) 2009-02-27 2015-11-18 ルネサスエレクトロニクス株式会社 The semiconductor integrated circuit device
US8725946B2 (en) 2009-03-23 2014-05-13 Ocz Storage Solutions, Inc. Mass storage system and method of using hard disk, solid-state media, PCIe edge connector, and raid controller
US8140871B2 (en) 2009-03-27 2012-03-20 International Business Machines Corporation Wake on Lan for blade server
US7889490B2 (en) 2009-04-17 2011-02-15 Inventec Corporation Server with trays for electronic components
US8127128B2 (en) 2009-05-04 2012-02-28 International Business Machines Corporation Synchronization of swappable module in modular system
US8004922B2 (en) 2009-06-05 2011-08-23 Nxp B.V. Power island with independent power characteristics for memory and logic
US9001846B2 (en) 2009-06-09 2015-04-07 Broadcom Corporation Physical layer device with dual medium access controller path
US8321688B2 (en) 2009-06-12 2012-11-27 Microsoft Corporation Secure and private backup storage and processing for trusted computing and data services
CN102473157B (en) 2009-07-17 2015-12-16 惠普开发有限公司 Shared virtual hot i / o insertion environment
CN101989212B (en) 2009-07-31 2015-01-07 国际商业机器公司 Method and device for providing virtual machine management program for starting blade server
US8340120B2 (en) 2009-09-04 2012-12-25 Brocade Communications Systems, Inc. User selectable multiple protocol network interface device
US9465771B2 (en) 2009-09-24 2016-10-11 Iii Holdings 2, Llc Server on a chip and node cards comprising one or more of same
US20110075369A1 (en) 2009-09-29 2011-03-31 Inventec Corporation Electronic device
US20110087771A1 (en) 2009-10-05 2011-04-14 Vss Monitoring, Inc. Method, apparatus and system for a layer of stacked network captured traffic distribution devices
US8194659B2 (en) 2009-10-06 2012-06-05 Red Hat, Inc. Mechanism for processing messages using logical addresses
US8571031B2 (en) 2009-10-07 2013-10-29 Intel Corporation Configurable frame processing pipeline in a packet switch
US8599863B2 (en) 2009-10-30 2013-12-03 Calxeda, Inc. System and method for using a multi-protocol fabric module across a distributed server interconnect fabric
US9876735B2 (en) 2009-10-30 2018-01-23 Iii Holdings 2, Llc Performance and power optimized computer system architectures and methods leveraging power optimized tree fabric interconnect
US9054990B2 (en) 2009-10-30 2015-06-09 Iii Holdings 2, Llc System and method for data center security enhancements leveraging server SOCs or server fabrics
US9311269B2 (en) 2009-10-30 2016-04-12 Iii Holdings 2, Llc Network proxy for high-performance, low-power data center interconnect fabric
US20110103391A1 (en) 2009-10-30 2011-05-05 Smooth-Stone, Inc. C/O Barry Evans System and method for high-performance, low-power data center interconnect fabric
US9680770B2 (en) 2009-10-30 2017-06-13 Iii Holdings 2, Llc System and method for using a multi-protocol fabric module across a distributed server interconnect fabric
CN103444133A (en) 2010-09-16 2013-12-11 卡尔克塞达公司 Performance and power optimized computer system architecture and leveraging power optimized tree fabric interconnecting
US9767070B2 (en) 2009-11-06 2017-09-19 Hewlett Packard Enterprise Development Lp Storage system with a memory blade that generates a computational result for a storage device
US20110119344A1 (en) 2009-11-17 2011-05-19 Susan Eustis Apparatus And Method For Using Distributed Servers As Mainframe Class Computers
US20110191514A1 (en) 2010-01-29 2011-08-04 Inventec Corporation Server system
JP5648926B2 (en) 2010-02-01 2015-01-07 日本電気株式会社 Network system, controller, network control method
US8291147B2 (en) 2010-02-08 2012-10-16 Hon Hai Precision Industry Co., Ltd. Computer motherboard with adjustable connection between central processing unit and peripheral interfaces
US20110210975A1 (en) 2010-02-26 2011-09-01 Xgi Technology, Inc. Multi-screen signal processing device and multi-screen system
US8397092B2 (en) * 2010-03-24 2013-03-12 Emulex Design & Manufacturing Corporation Power management for input/output devices by creating a virtual port for redirecting traffic
CN201781162U (en) 2010-04-09 2011-03-30 威盛电子股份有限公司 Cable group and electronic device
KR101641108B1 (en) 2010-04-30 2016-07-20 삼성전자주식회사 Target device providing debugging functionality and test system comprising the same
US8045328B1 (en) 2010-05-04 2011-10-25 Chenbro Micom Co., Ltd. Server and cooler moduel arrangement
US8407428B2 (en) 2010-05-20 2013-03-26 Hicamp Systems, Inc. Structured memory coprocessor
US8750164B2 (en) 2010-07-06 2014-06-10 Nicira, Inc. Hierarchical managed switch architecture
US8812400B2 (en) 2010-07-09 2014-08-19 Hewlett-Packard Development Company, L.P. Managing a memory segment using a memory virtual appliance
US9083612B2 (en) 2010-08-20 2015-07-14 Nec Corporation Communication system, control apparatus, communication method, and program
CN102385417B (en) 2010-08-25 2013-02-20 英业达股份有限公司 Rack-mounted server
US8601288B2 (en) 2010-08-31 2013-12-03 Sonics, Inc. Intelligent power controller
JP2012053504A (en) 2010-08-31 2012-03-15 Hitachi Ltd Blade server device
US20120081850A1 (en) 2010-09-30 2012-04-05 Dell Products L.P. Rack Assembly for Housing and Providing Power to Information Handling Systems
US8699220B2 (en) 2010-10-22 2014-04-15 Xplore Technologies Corp. Computer with removable cartridge
US8738860B1 (en) 2010-10-25 2014-05-27 Tilera Corporation Computing in parallel processing environments
DE102011056141A1 (en) 2010-12-20 2012-06-21 Samsung Electronics Co., Ltd. Negative voltage generator, decoders, non-volatile memory device and memory system that uses a negative voltage
US20120198252A1 (en) 2011-02-01 2012-08-02 Kirschtein Phillip M System and Method for Managing and Detecting Server Power Connections
US8670450B2 (en) 2011-05-13 2014-03-11 International Business Machines Corporation Efficient software-based private VLAN solution for distributed virtual switches
US8547825B2 (en) 2011-07-07 2013-10-01 International Business Machines Corporation Switch fabric management
US8683125B2 (en) 2011-11-01 2014-03-25 Hewlett-Packard Development Company, L.P. Tier identification (TID) for tiered memory characteristics
US9565132B2 (en) 2011-12-27 2017-02-07 Intel Corporation Multi-protocol I/O interconnect including a switching fabric
US8782321B2 (en) 2012-02-08 2014-07-15 Intel Corporation PCI express tunneling over a multi-protocol I/O interconnect
US8854831B2 (en) 2012-04-10 2014-10-07 Arnouse Digital Devices Corporation Low power, high density server and portable device for use with same
US20130290650A1 (en) 2012-04-30 2013-10-31 Jichuan Chang Distributed active data storage system
US20130290643A1 (en) 2012-04-30 2013-10-31 Kevin T. Lim Using a cache in a disaggregated memory architecture
US9286472B2 (en) 2012-05-22 2016-03-15 Xockets, Inc. Efficient packet handling, redirection, and inspection using offload processors
US9304896B2 (en) 2013-08-05 2016-04-05 Iii Holdings 2, Llc Remote memory ring buffers in a cluster of data processing nodes

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5971804A (en) * 1997-06-30 1999-10-26 Emc Corporation Backplane having strip transmission line ethernet bus
US7203063B2 (en) * 2004-05-21 2007-04-10 Hewlett-Packard Development Company, L.P. Small form factor liquid loop cooling system
US7719834B2 (en) * 2007-04-13 2010-05-18 Hitachi, Ltd. Storage device
US20100040053A1 (en) * 2008-08-14 2010-02-18 Dell Products, Lp System and method for dynamic maintenance of fabric subsets in a network

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150046621A1 (en) * 2013-08-08 2015-02-12 Hon Hai Precision Industry Co., Ltd. Expansion card
US9367507B2 (en) * 2013-08-08 2016-06-14 Hong Fu Jin Precision Industry (Shenzhen) Co., Ltd. Expansion card
US20150277512A1 (en) * 2014-03-07 2015-10-01 Seagate Technology Llc Solid state storage system
US9746886B2 (en) * 2014-03-07 2017-08-29 Seagate Technology Llc Solid state storage system

Also Published As

Publication number Publication date Type
KR20140101338A (en) 2014-08-19 application
KR20170010908A (en) 2017-02-01 application
US20170156234A1 (en) 2017-06-01 application
US20140104778A1 (en) 2014-04-17 application
US20140101932A1 (en) 2014-04-17 application
US9585281B2 (en) 2017-02-28 grant
KR101558118B1 (en) 2015-10-06 grant
WO2013063158A1 (en) 2013-05-02 application
KR20160032274A (en) 2016-03-23 application
KR101604962B1 (en) 2016-03-18 grant
KR20150041805A (en) 2015-04-17 application

Similar Documents

Publication Publication Date Title
US7480147B2 (en) Heat dissipation apparatus utilizing empty component slot
US6363450B1 (en) Memory riser card for a computer system
US6606253B2 (en) Scalable internet engine
US6895480B2 (en) Apparatus and method for sharing boot volume among server blades
US20050207134A1 (en) Cell board interconnection architecture
US20100067278A1 (en) Mass data storage system with non-volatile memory modules
US20080253076A1 (en) Physical Configuration of Computer System
US20020080575A1 (en) Network switch-integrated high-density multi-server system
US20110191514A1 (en) Server system
US20060253633A1 (en) System and method for indirect throttling of a system resource by a processor
US20080239649A1 (en) Design structure for an interposer for expanded capability of a blade server chassis system
US20130304775A1 (en) Storage unit for high performance computing system, storage network and methods
US20110069441A1 (en) Incorporation of multiple, 2.5-inch or smaller hard disk drives into a single drive carrier with a single midplane or baseboard connector
US20120050981A1 (en) Rack server
US7722359B1 (en) Connection assembly having midplane with enhanced connection and airflow features
US20060194460A1 (en) Universal backplane connection or computer storage chassis
US20080043405A1 (en) Chassis partition architecture for multi-processor system
US20110261526A1 (en) Input/output and disk expansion subsystem for an electronics rack
US20080244052A1 (en) Adapter blade with interposer for expanded capability of a blade server chassis system
US20070069585A1 (en) Fail safe redundant power supply in a multi-node computer system
US20100281199A1 (en) Data storage device carrier system
US20080201515A1 (en) Method and Systems for Interfacing With PCI-Express in an Advanced Mezannine Card (AMC) Form Factor
JP2010079445A (en) Ssd device
US20070204332A1 (en) Authentication of baseboard management controller users in a blade server system
US7672141B2 (en) Alignment and support apparatus for component and card coupling

Legal Events

Date Code Title Description
AS Assignment

Owner name: CALXEDA, INC., TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SCHNELL, ARNOLD THOMAS;WALDORF, RICHARD OWEN;BORLAND, DAVID JAMES;SIGNING DATES FROM 20111206 TO 20111208;REEL/FRAME:028048/0032

AS Assignment

Owner name: SILICON VALLEY BANK, CALIFORNIA

Free format text: SECURITY AGREEMENT;ASSIGNOR:CALXEDA, INC.;REEL/FRAME:030292/0207

Effective date: 20130422

AS Assignment

Owner name: SILICON VALLEY BANK, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CALXEDA, INC.;REEL/FRAME:033281/0855

Effective date: 20140701

Owner name: CALXEDA, INC., TEXAS

Free format text: RELEASE OF SECURITY INTEREST;ASSIGNOR:SILICON VALLEY BANK;REEL/FRAME:033281/0887

Effective date: 20140703

AS Assignment

Owner name: III HOLDINGS 2, LLC, DELAWARE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SILICON VALLEY BANK;REEL/FRAME:033551/0683

Effective date: 20140630

AS Assignment

Owner name: SILICON VALLEY BANK, CALIFORNIA

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE INCORRECT APPL. NO. 13/708,340 PREVIOUSLY RECORDED AT REEL: 030292 FRAME: 0207. ASSIGNOR(S) HEREBY CONFIRMS THE SECURITY AGREEMENT;ASSIGNOR:CALXEDA, INC.;REEL/FRAME:035121/0172

Effective date: 20130422