US20110030792A1 - Solar to electric energy conversion device - Google Patents
Solar to electric energy conversion device Download PDFInfo
- Publication number
- US20110030792A1 US20110030792A1 US12/988,451 US98845109A US2011030792A1 US 20110030792 A1 US20110030792 A1 US 20110030792A1 US 98845109 A US98845109 A US 98845109A US 2011030792 A1 US2011030792 A1 US 2011030792A1
- Authority
- US
- United States
- Prior art keywords
- solar
- electric energy
- energy conversion
- conversion device
- polymer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 39
- 239000002105 nanoparticle Substances 0.000 claims abstract description 75
- 239000004038 photonic crystal Substances 0.000 claims abstract description 62
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 104
- 238000000034 method Methods 0.000 claims description 48
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 47
- 239000000725 suspension Substances 0.000 claims description 40
- 239000000203 mixture Substances 0.000 claims description 35
- 238000000151 deposition Methods 0.000 claims description 30
- 238000004519 manufacturing process Methods 0.000 claims description 27
- 239000000758 substrate Substances 0.000 claims description 26
- 150000001875 compounds Chemical class 0.000 claims description 25
- 230000000737 periodic effect Effects 0.000 claims description 23
- 239000000377 silicon dioxide Substances 0.000 claims description 21
- 229920000642 polymer Polymers 0.000 claims description 19
- 238000004528 spin coating Methods 0.000 claims description 19
- 239000007788 liquid Substances 0.000 claims description 18
- 239000002245 particle Substances 0.000 claims description 18
- 239000003792 electrolyte Substances 0.000 claims description 17
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 claims description 17
- 239000002322 conducting polymer Substances 0.000 claims description 15
- 229920001940 conductive polymer Polymers 0.000 claims description 15
- 229910003472 fullerene Inorganic materials 0.000 claims description 14
- 229910052681 coesite Inorganic materials 0.000 claims description 11
- 229910052906 cristobalite Inorganic materials 0.000 claims description 11
- 238000007789 sealing Methods 0.000 claims description 11
- 229910052682 stishovite Inorganic materials 0.000 claims description 11
- 229910052905 tridymite Inorganic materials 0.000 claims description 11
- 229910052710 silicon Inorganic materials 0.000 claims description 9
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 8
- 238000010438 heat treatment Methods 0.000 claims description 8
- ZKATWMILCYLAPD-UHFFFAOYSA-N niobium pentoxide Chemical compound O=[Nb](=O)O[Nb](=O)=O ZKATWMILCYLAPD-UHFFFAOYSA-N 0.000 claims description 8
- 239000007787 solid Substances 0.000 claims description 8
- QDOXWKRWXJOMAK-UHFFFAOYSA-N dichromium trioxide Chemical compound O=[Cr]O[Cr]=O QDOXWKRWXJOMAK-UHFFFAOYSA-N 0.000 claims description 6
- GNTDGMZSJNCJKK-UHFFFAOYSA-N divanadium pentaoxide Chemical compound O=[V](=O)O[V](=O)=O GNTDGMZSJNCJKK-UHFFFAOYSA-N 0.000 claims description 6
- SZVJSHCCFOBDDC-UHFFFAOYSA-N ferrosoferric oxide Chemical compound O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 claims description 6
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 claims description 6
- 238000003618 dip coating Methods 0.000 claims description 5
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 claims description 4
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 claims description 4
- 238000001074 Langmuir--Blodgett assembly Methods 0.000 claims description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 3
- UHYPYGJEEGLRJD-UHFFFAOYSA-N cadmium(2+);selenium(2-) Chemical compound [Se-2].[Cd+2] UHYPYGJEEGLRJD-UHFFFAOYSA-N 0.000 claims description 3
- UBEWDCMIDFGDOO-UHFFFAOYSA-N cobalt(II,III) oxide Inorganic materials [O-2].[O-2].[O-2].[O-2].[Co+2].[Co+3].[Co+3] UBEWDCMIDFGDOO-UHFFFAOYSA-N 0.000 claims description 3
- 229910052593 corundum Inorganic materials 0.000 claims description 3
- 229910052732 germanium Inorganic materials 0.000 claims description 3
- CJNBYAVZURUTKZ-UHFFFAOYSA-N hafnium(IV) oxide Inorganic materials O=[Hf]=O CJNBYAVZURUTKZ-UHFFFAOYSA-N 0.000 claims description 3
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 claims description 3
- 229910052742 iron Inorganic materials 0.000 claims description 3
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 claims description 3
- GEYXPJBPASPPLI-UHFFFAOYSA-N manganese(III) oxide Inorganic materials O=[Mn]O[Mn]=O GEYXPJBPASPPLI-UHFFFAOYSA-N 0.000 claims description 3
- GNRSAWUEBMWBQH-UHFFFAOYSA-N nickel(II) oxide Inorganic materials [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 claims description 3
- SBIBMFFZSBJNJF-UHFFFAOYSA-N selenium;zinc Chemical compound [Se]=[Zn] SBIBMFFZSBJNJF-UHFFFAOYSA-N 0.000 claims description 3
- 229910052709 silver Inorganic materials 0.000 claims description 3
- 229910001845 yogo sapphire Inorganic materials 0.000 claims description 3
- 238000007641 inkjet printing Methods 0.000 claims description 2
- 230000001235 sensitizing effect Effects 0.000 claims description 2
- 238000004220 aggregation Methods 0.000 claims 5
- 230000002776 aggregation Effects 0.000 claims 5
- 230000003287 optical effect Effects 0.000 abstract description 11
- 238000010521 absorption reaction Methods 0.000 abstract description 4
- 230000002708 enhancing effect Effects 0.000 abstract description 2
- 229920000620 organic polymer Polymers 0.000 abstract description 2
- 239000000975 dye Substances 0.000 description 24
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 18
- 239000002243 precursor Substances 0.000 description 16
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 16
- 230000008569 process Effects 0.000 description 15
- 239000004065 semiconductor Substances 0.000 description 11
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 10
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 9
- 230000008021 deposition Effects 0.000 description 8
- 238000005286 illumination Methods 0.000 description 8
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 8
- 229910052707 ruthenium Inorganic materials 0.000 description 8
- VXUYXOFXAQZZMF-UHFFFAOYSA-N titanium(IV) isopropoxide Chemical compound CC(C)O[Ti](OC(C)C)(OC(C)C)OC(C)C VXUYXOFXAQZZMF-UHFFFAOYSA-N 0.000 description 8
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 6
- 238000000576 coating method Methods 0.000 description 6
- 238000009826 distribution Methods 0.000 description 6
- 239000011244 liquid electrolyte Substances 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 239000002159 nanocrystal Substances 0.000 description 6
- 238000000985 reflectance spectrum Methods 0.000 description 6
- 239000010703 silicon Substances 0.000 description 6
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 description 6
- 239000004408 titanium dioxide Substances 0.000 description 6
- 239000003054 catalyst Substances 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 5
- 230000010354 integration Effects 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 230000032258 transport Effects 0.000 description 5
- 238000000862 absorption spectrum Methods 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 229910052697 platinum Inorganic materials 0.000 description 4
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- 239000000470 constituent Substances 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 238000000349 field-emission scanning electron micrograph Methods 0.000 description 3
- 238000003306 harvesting Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 125000006850 spacer group Chemical group 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- OOWFYDWAMOKVSF-UHFFFAOYSA-N 3-methoxypropanenitrile Chemical compound COCCC#N OOWFYDWAMOKVSF-UHFFFAOYSA-N 0.000 description 2
- YSHMQTRICHYLGF-UHFFFAOYSA-N 4-tert-butylpyridine Chemical compound CC(C)(C)C1=CC=NC=C1 YSHMQTRICHYLGF-UHFFFAOYSA-N 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- 239000012901 Milli-Q water Substances 0.000 description 2
- 229920003182 Surlyn® Polymers 0.000 description 2
- 239000004809 Teflon Substances 0.000 description 2
- 229920006362 Teflon® Polymers 0.000 description 2
- 229910003082 TiO2-SiO2 Inorganic materials 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 238000002835 absorbance Methods 0.000 description 2
- 230000004075 alteration Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- 239000008119 colloidal silica Substances 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 239000003292 glue Substances 0.000 description 2
- 239000012943 hotmelt Substances 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 2
- 238000001764 infiltration Methods 0.000 description 2
- 230000008595 infiltration Effects 0.000 description 2
- 239000010416 ion conductor Substances 0.000 description 2
- 239000002608 ionic liquid Substances 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 239000002086 nanomaterial Substances 0.000 description 2
- 238000001935 peptisation Methods 0.000 description 2
- 238000005215 recombination Methods 0.000 description 2
- 230000006798 recombination Effects 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 239000012798 spherical particle Substances 0.000 description 2
- 238000010561 standard procedure Methods 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 229910052724 xenon Inorganic materials 0.000 description 2
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 2
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 1
- 101100297420 Homarus americanus phc-1 gene Proteins 0.000 description 1
- 101100297421 Homarus americanus phc-2 gene Proteins 0.000 description 1
- 238000007771 Langmuir-Blodgett coating Methods 0.000 description 1
- 241001124569 Lycaenidae Species 0.000 description 1
- 206010070834 Sensitisation Diseases 0.000 description 1
- 239000000370 acceptor Substances 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 125000002723 alicyclic group Chemical group 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 150000004770 chalcogenides Chemical class 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 238000007606 doctor blade method Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 229940093476 ethylene glycol Drugs 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 229910001507 metal halide Inorganic materials 0.000 description 1
- 150000005309 metal halides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 125000004424 polypyridyl Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000000565 sealant Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000010345 tape casting Methods 0.000 description 1
- QHGNHLZPVBIIPX-UHFFFAOYSA-N tin(ii) oxide Chemical class [Sn]=O QHGNHLZPVBIIPX-UHFFFAOYSA-N 0.000 description 1
- 238000004627 transmission electron microscopy Methods 0.000 description 1
- 235000012431 wafers Nutrition 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/20—Light-sensitive devices
- H01G9/209—Light trapping arrangements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/0029—Processes of manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/20—Light-sensitive devices
- H01G9/2027—Light-sensitive devices comprising an oxide semiconductor electrode
- H01G9/2031—Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/20—Light-sensitive devices
- H01G9/2027—Light-sensitive devices comprising an oxide semiconductor electrode
- H01G9/2036—Light-sensitive devices comprising an oxide semiconductor electrode comprising mixed oxides, e.g. ZnO covered TiO2 particles
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/20—Light-sensitive devices
- H01G9/2059—Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/30—Coordination compounds
- H10K85/341—Transition metal complexes, e.g. Ru(II)polypyridine complexes
- H10K85/344—Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising ruthenium
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/542—Dye sensitized solar cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to a solar-to-electric energy conversion device having a light absorbing electrode coupled to a porous photonic crystal or multilayer Bragg reflector.
- the porous reflecting element is used to enhance the power conversion efficiency of the solar cell device by selectively increasing the optical absorption in the electrode.
- DSSC dye-sensitized solar cells
- Grätzel cells U.S. Pat. No. 5,084,365.
- the DSSC combine a solid wide band gap semiconductor with a liquid ionic conductor.
- the former usually consists of one electrode made of a layer of a few micrometers of titanium dioxide nanocrystals (nc-TiO 2 , average crystal size around 20 nm), on whose surface a dye, typically a Ruthenium polypyridyl complex, is adsorbed.
- This nanocrystalline film is deposited onto a conductive, transparent substrate, typically indium tin oxide (ITO) or fluorinated SnO 2 , and soaked with a redox electrolyte, typically containing I ⁇ /I 3 ⁇ ion pairs.
- This electrolyte is also in contact with a colloidal platinum catalyst coated counter-electrode.
- Sunlight is harvested by the dye producing photo-excited electrons that are injected into the conduction band of the nanocrystalline semiconductor network, and then into the conducting substrate.
- the redox electrolyte reduces the oxidized dye and transports the electron acceptors species (I 3 ⁇ ) to the counter-electrode.
- a record value of power conversion efficiency of 11% has been reported, although good quality cells typically provide between 5% and 8%.
- Grätzel cells Current efficiencies of the different types of Grätzel cells are still low compared to silicon based devices, which have an average power conversion efficiency of 15%, there is no doubt that they have a great potential for different reasons.
- the Grätzel cells can be made transparent, which implies they can be used as coatings on windows.
- the cells also have a potential to be made flexible, which would simplify integration on different types of surfaces.
- they are usually made of less expensive materials than silicon, and there is a wide variety of compounds (semiconductors, dyes, electrolytes) that can be used to build the cells.
- a photonic crystal is primarily classified depending on the number of spatial dimensions along which there exists a periodic modulation of the refractive index, then being divided in one-dimensional (1D), two-dimensional (2D) and three-dimensional (3D) photonic crystals.
- One of their most representative features is their ability to diffract light.
- WO 2008102046 is disclosed a multilayer structure made of nanoparticles behaving as a one-dimensional photonic crystal for use in optical chemical sensing devices or frequency selective filters.
- the present invention features a solar-to-electric energy conversion device based on a light absorbing electrode coupled to a nanoparticle based one dimensional photonic crystal.
- the function of the latter is to localize the incident light within the electrode thus enhancing the optical absorption and the power conversion efficiency of dye-sensitized, organic (polymer based or hybrid) devices.
- the photonic crystal comprises alternating layers possessing different index of refraction and can be easily integrated into the cell. The alternation of layers of different refractive index provides the structure with one-dimensional photonic crystal properties necessary to efficiently localize the incident light within the absorbing layer.
- Each layer in the multilayer photonic crystal is made of nanoparticles and its porosity allows the electrolytes and the absorbing compounds to flow through the multilayer. This ensures good electrical contact with the rest of the components, while not affecting the charge transport through the cell.
- a method for manufacturing a solar to electric energy conversion device comprises the following steps:
- steps e) and g) could be replaced with the respective steps e′) infiltrating the structure with a conducting polymer and g′) sealing the electrode and counterelectrode, thus forming a cell.
- a porous tandem multilayer structure having photonic crystal properties over a larger range of wavelengths on the semi-conducting layer, thus forming a structure of alternated nanoparticle layers of controlled thicknesses, so that a periodic or quasi-periodic spatial modulation of a refractive index across the periodic structure is achieved.
- Depositing of the multilayer can be done by various techniques for example by such techniques as doctor blade, dip coating, spin-coating or by the Langmuir-Blodgett technique. Ink jet printing would also be a possible depositing technique.
- the solar to electric energy conversion device having a structure of alternated nanoparticle layers of controlled thickness, so that a periodic or quasi-periodic spatial modulation of the refractive index across the multilayer is achieved can be a dye-sensitized solar cell, a hybrid solar cell or a polymer solar cell.
- the suspensions of nanoparticles could be different suspensions of nanoparticles or suspensions having the nanoparticles of the same chemical composition but different size distribution.
- FIG. 1 a - c show the design and microstructure of a dye-sensitized solar cell coupled to a porous nanoparticle based 1-D photonic crystal.
- FIG. 1( a ) shows a scheme of the 1D PC based solar cell showing the illumination through the dye coated titanium dioxide layer.
- FIG. 1( b ) shows an FE-SEM image showing a cross-section of a cleaved nc-TiO 2 —SiO 2 periodic structure (lower vertical line) grown on top of a dye-sensitized nc-TiO 2 electrode (top vertical line). Transparent conducting substrate is placed at the top of this picture.
- FIG. 1( c ) shows a magnified view of the silica (spherical particles) and titania (smaller crystallites) nanocolloids composing the 1-D photonic crystal.
- FIG. 2 a - b show microstructures of a dye-sensitized solar cell coupled to a tandem multilayer structure.
- FIG. 2( a ) shows an FESEM image corresponding to a cross-section of a cleaved nc-TiO2—SiO2 tandem structure (vertical white line) deposited onto a dye coated titanium dioxide electrode (vertical dot line). A transparent conducting substrate is placed at the top of this picture.
- FIG. 2( b ) shows a magnified view of the tandem multilayer structure built on top the electrode. Two photonic crystals of different lattice parameter made each one of six alternate layers can be clearly distinguished. The lattice parameters are 220 ⁇ 10 nm (photonic crystal denoted as PhC1) and 150 ⁇ 10 nm (photonic crystal denoted as PhC2), respectively.
- FIG. 3 shows current voltage curves under 1 sun illumination (100 mW/cm2) of a 350 nm thick dye-sensitized nc-TiO2 electrode coupled to different 1D photonic crystals.
- the lattice parameter in each case is 140 ⁇ 10 nm (squares) and 180 ⁇ 10 nm (triangles).
- the TiO2 layer thickness is around 85 ⁇ 5 nm.
- the IV curve of a reference cell with the same electrode thickness is also plotted (black circles).
- FIG. 4 a - b show optical response of the dye-sensitized electrode coupled to a porous nanoparticle based 1-D photonic crystal.
- (a) Reflectance spectra of a 415 nm thick film of nc-TiO 2 followed by a 3 period thick 1D photonic crystal composed of 95 ⁇ 5 nm silica and 75 ⁇ 5 nm titania films measured under frontal (solid line) and rear (dashed line, shaded in red) illumination conditions.
- ⁇ 1 0.775 microns
- ⁇ 2 0.575 microns
- ⁇ 3 0.512 microns.
- FIG. 5 a - f show spectral response of the short circuit photocurrent of dye-sensitized electrodes of different thickness coupled to the same 1D photonic crystal.
- IPCE photon to current conversion efficiency
- FIG. 6 a - d show current density versus voltage bias curves for the dye-sensitized electrode coupled to different 1D photonic crystals.
- the IV curve of a reference cell having the same nc-TiO 2 electrode thickness is also shown (filled diamonds).
- (b), (c) and (d) display the specular reflectance spectrum of each one of the cells versus the absorption spectrum of the ruthenium based dye (black solid line, in arbitrary units).
- FIG. 7 a - c show design and microstructure of a dye-sensitized solar cell coupled to a porous nanoparticle based 1-D photonic crystal.
- the manufacturing process for an electric energy conversion device will be described in further detail.
- the steps of preparing a dye-sensitized solar cell can comprise the below steps.
- the metal oxide that forms the layer described in a) can be made of any compounds attainable in the shape of crystallites with sizes between 2 nm and 300 nm, for example between 5 and 100 nm.
- the compound is selected among the following group: TiO 2 , SnO 2 , CeO 2 , ZnO, Nb 2 O 5 .
- One implementation comprises the oxide TiO 2 chosen due to its particular physical-chemical properties.
- the nanoparticles mentioned in b) can be made of any compound attainable in the shape of nanoparticles with sizes between 1 nm and 100 nm.
- the nanoparticles used are those, or a mixture of those, that allow a refractive index contrast between alternate layers forming the multilayer to be attained.
- the composition of the nanoparticles can be in the form of metal oxides, metal halides, nitrides, carbides, chalcogenides, metals, semiconductors, polymers or a mixture of those.
- the materials forming the nanoparticles can be selected among any of the following list of compounds either in its amorphous or its crystalline form: SiO 2 , TiO 2 , SnO 2 , ZnO, Nb 2 O 5 , CeO 2 , Fe 2 O 3 , Fe 3 O 4 , V 2 O 5 , Cr 2 O 3 , HfO 2 , MnO 2 , Mn 2 O 3 , Co 3 O 4 , NiO, Al 2 O 3 , In 2 O 3 , SnO 2 . CdS, CdSe, ZnS, ZnSe, Ni. Co, Fe, Ag. Au, Se, Si, and Ge.
- nanoparticles made of SiO 2 and TiO 2 give rise to a very large refractive index contrast in the multilayer. These nanoparticles are used for the particular realization of the invention shown in examples 1 and 2.
- the deposition techniques to form the nanoparticle layers forming the multilayer described in c can be any that allows one to attain a layer of nanoparticles with thickness comprised between 1 nm and 1 micron, such as spin-coating, Langmuir-Blodgett or dip-coating.
- spin-coating is a suitable technique.
- all layers in the multilayer described in c) are made of nanoparticles of the same material as long as the multilayer presents a spatial modulation of the refractive index in the direction perpendicular to the layers' surface, providing the structure with the desired photonic crystal properties. This can be achieved by controlling the size distribution in the nanoparticles that form each layer, since it will determine the porosity of the layer and hence its refractive index.
- the multilayer structure deposited onto the semiconductor oxide layer as described in c) is built as a tandem multilayer structure.
- one dimensional photonic crystals with different lattice parameters can be deposited consecutively on the electrode by modifying the concentration of the nanoparticle suspensions that are employed to build each one of them, as described in b).
- These tandem structures allow one to attain photonic crystal properties in a wider range of wavelengths, so expecting to enhance the optical absorption and the power conversion efficiency of the cells coupled to these structures with respect to those using a single photonic crystal.
- FIG. 2 it is shown a cross-section image corresponding to a titanium dioxide electrode coupled to a tandem multilayer structure made of two photonic crystals with different lattice parameter.
- the dispersions or suspensions which are used as precursors to deposit the thin nanoparticle layers that form the multilayer employ as liquid dispersion medium any dispersant of the nanoparticles.
- the liquid medium is volatile.
- This liquid can be selected from among the group of water, alcohols, or alicyclic, aromatic, or aliphatic hydrocarbons, for example water, ethanol, ethyleneglycol and methanol, pure or mixed in any proportion are used.
- the dye mentioned in e) and employed to sensitize the structure described in d) can be any dye capable of absorbing part of the solar spectrum and of transferring the photo-generated charge to the semiconductor oxide layer described in a).
- the dye can be selected among the group of dyes containing an atom of ruthenium in its molecular form.
- the electrolyte, mentioned in g), employed to infiltrate the cell in order to create electrical contact between the different components, can be any of those used in the field, either in liquid or solid state phase. For example, it may be selected among those that contain mixtures of ions I ⁇ /I 3 ⁇ .
- a solar cell fabricated following the procedures described above, will show a higher solar-to-electric power conversion efficiency than a solar cell of similar characteristics (materials, compounds, dye loading, and electrode thickness) but lacking integration of a nanoparticle based one dimensional photonic crystal. This is illustrated in the examples provided.
- Nanocrystalline TiO 2 particles are synthesised by using a procedure based on the hydrolysis of titanium isopropoxide followed by a peptization process under hydrothermal conditions. 20 ml of titanium isopropoxide (97% Aldrich) was added to 36 ml of Milli-Q water and stirred for 1 hour. Once the alcoxide is hydrolysed, the product is filtered using 1.2 ⁇ m RTTP Millipore membranes, washed several times with distilled water and placed in a teflon reactor with 3.9 ml of tetramethylammonium hydroxide ( ⁇ 2.8M, Fluka).
- a layer of the abovementioned nanocrystalline TiO 2 particles is deposited onto a 25 mm ⁇ 25 mm conducting transparent substrate (FTO coated glass, Hartford) by a combination of the doctor blade technique and spin-coating.
- a course rough layer is attained through the former, but a uniform and smooth surface is achieved in the final coating after a drop of a suspension of fine titania particles is spun onto it.
- total thickness ranges between 300 nm and 2 microns.
- layers of silica and the same nc-TiO 2 particles were deposited alternately by spin-coating 250 ⁇ l drops of their colloidal suspensions.
- the titania coated conducting substrate was spun at 100 revolutions per second (rps).
- Periodic multilayers of different lattice parameter were attained by keeping the TiO 2 nanocrystal concentration constant at 5 wt. % and changing the silica concentration within the range comprised between 1 wt. % and 5 wt. %
- different rotation speeds comprised between 100 and 150 revolutions per second (rps) were used to control the thickness of each layer in the multilayer.
- the PC properties of this structure are evident to the naked eye already with four layers deposited due to the high dielectric contrast between the two types of constituent layers. In most cases, a six-layer stack was built. After this, the multilayer coated substrate was thermally annealed at 450° C.
- the structure is removed from the furnace and immersed in a 0.025% wt. solution of ruthenium bypiridile dye (Rutenio 535-bis TBA, Solaronix) in ethanol overnight in order to assure a proper adsorption of the dye on the nc-TiO 2 surface.
- the electrode is put into electrical contact with a platinum (Pt-catalyst T/SP, Solaronix) covered counterelectrode by infiltrating a liquid electrolyte in between them.
- the employed electrolyte is composed of 100 mM I 2 (Aldrich, 99.999%), 100 mM LiI (Aldrich, 99.9%), 600 mM [(C 4 H 9 ) 4 N]I (Aldrich, 98%) and 500 mM 4-tert-butylpyridine (Aldrich, 99%).
- the solvent used in this case was 3-methoxy propionitrile (Fluka, ⁇ 99%).
- the porous nature of the periodic multilayer allows the electrolyte to soak the sensitized nc-TiO 2 coating.
- a thin hot-melt polymeric window Surlyn, 1702 Dupont
- Cross sections of the cell were imaged using a field emission scanning electron microscope Hitachi 5200 operating at 5 kV and without using any conducting coating.
- Optical characterization was performed using a Fourier transform infrared spectrophotometer (BRUKER IFS-66) attached to a microscope and operating in reflection mode.
- a X4 objective with a numerical aperture of 0.1 (light cone angle ⁇ 5.7°) was used to irradiate the solar cell and collect the reflected light at quasi-normal incidence with respect to its surface.
- a spatial filter was used to selectively detect light from 1 mm 2 circular regions of the sample.
- IPCE electric current conversion efficiencies
- a 350 nm thick transparent titanium dioxide electrode is deposited by doctor-blading onto a previously cleaned 25 mm ⁇ 25 mm conducting substrate (fluorine-doped SnO2 conducting glass, Hartford Glass).
- the anatase particle paste the electrodes are made of was purchased from Solaronix (Ti-Nanoxide HT, Solaronix).
- the TiO2 layer coated glass so prepared is heated to 450° C. during 30 minutes under oxygen for sintering.
- nanocrystalline TiO2 particles are synthesised by using a procedure reported by Burnside et al, based on the hydrolysis of titanium isopropoxide followed by a peptization process under hydrothermal conditions.
- Silicon oxide nanoparticles (20 nm) were purchased from Dupont (LUDOX® TMA colloidal silica, 34 wt. % suspension in H 2 O).
- the precursor suspensions for the spin-coating process are obtained by suspending TiO 2 or SiO 2 nanoparticles in a mixture of water (21 vol. %) and methanol (79 vol. %).
- the rotation speed is set at 100 rps during the spin-coating process, and the six layer periodic stack is made from silica (3 wt. % precursor solution) and titania (5 wt. % precursor solution) nanoparticles.
- the PC properties of this structure are evident to the naked eye already with four layers deposited due to the high dielectric contrast between the two types of constituent layers.
- the multilayer coated substrate was thermally annealed at 450° C. in order to sinter the titania nanocrystals and remove all water bonded to the particles surface.
- the structure is removed from the furnace and immersed in a 0.025% wt. solution of ruthenium bypiridile dye (Rutenio 535-bis TBA, Solaronix) in ethanol overnight in order to assure a proper adsorption of the dye on the nc-TiO2 surface.
- ruthenium bypiridile dye Rutenio 535-bis TBA, Solaronix
- the electrode is put into electrical contact with a platinum (Pt-catalyst T/SP, Solaronix) covered counterelectrode by infiltrating a liquid electrolyte in between them.
- the employed electrolyte is composed of 100 mM I 2 (Aldrich, 99.999%), 100 mM LiI (Aldrich, 99.9%), 600 mM [(C 4 H 9 ) 4 N]I (Aldrich, 98%) and 500 mM 4-tert-butylpyridine (Aldrich, 99%).
- the solvent used in this case was 3-methoxy propionitrile (Fluka, ⁇ 99%).
- the porous nature of the periodic multilayer allows the electrolyte to soak the sensitized nc-TiO2 coating.
- a thin hot-melt polymeric window (Surlyn, 1702 Dupont) that softens at 120° C. was used as spacer and to seal the cell at the same time.
- IV curves were measured under white light illumination coming from a 450 W Xenon lamp (Oriel) plus UV and water IR filters. Currents were registered via a battery-operated potentiostat.
- the IV curve corresponding to the dye-sensitized solar cell 1 is presented in FIG. 3 (triangles). In this graph it is also plotted the IV curve for a reference dye-sensitized solar cell without photonic crystal (black circles).
- Example 2 The same fabrication procedure mentioned in Example 1 is employed to build the dye-sensitized solar cell 2 .
- the six layer periodic stack is made from silica (2 wt. % precursor solution) and titania (5 wt. % precursor solution) nanoparticles.
- the precursor suspensions for the spin-coating process are obtained by suspending TiO 2 or SiO 2 nanoparticles in a mixture of water (21 vol. %) and methanol (79 vol. %), and the rotation speed is kept at 100 rps during the spin-coating process.
- the IV curve corresponding to this dye-sensitized solar cell is presented in FIG. 3 (blue squares).
- the IV curve corresponding to a reference dye-sensitized solar cell is also shown in this graph (black circles).
- the same electrode thickness has been employed in all cases. It can be clearly seen that the power conversion efficiency of these thin electrodes can be improved up to 6 times by coupling the periodic multilayer structures.
- Example 2 The same fabrication procedure mentioned in Example 1 is employed to build the dye-sensitized solar cell 3 .
- the six layer periodic stack is made from silica (3 wt. % precursor solution) and titania (5 wt. % precursor solution) nanoparticles.
- the precursor suspensions for the spin-coating process are obtained by suspending TiO 2 or SiO 2 nanoparticles in a mixture of water (21 vol. %) and methanol (79 vol. %), and the rotation speed is kept at 100 rps during the spin-coating process.
- the IV curve and the specular reflectance spectrum corresponding to this dye-sensitized solar cell are presented in FIG. 6 a (circles) and 6 b , respectively.
- FIG. 6 a circles
- 6 b is also plotted the absorption spectrum of the ruthenium based dye (black solid line, in arbitrary units). It is clearly seen that the higher efficiency is achieved when the reflectance spectrum of the dye-sensitized solar cell coupled to the photonic crystal overlap the absorption spectrum of the ruthenium based dye.
- Example 2 The same fabrication procedure mentioned in Example 1 is employed to build the dye-sensitized solar cell 4 .
- the six layer periodic stack is made from silica (2.5 wt. % precursor solution) and titania (5 wt. % precursor solution) nanoparticles.
- the precursor suspensions for the spin-coating process are obtained by suspending TiO 2 or SiO 2 nanoparticles in a mixture of water (21 vol. %) and methanol (79 vol. %), and the rotation speed is kept at 100 rps during the spin-coating process.
- the IV curve and the specular reflectance spectrum corresponding to this dye-sensitized solar cell are presented in FIG. 6 a (triangles) and 6 c , respectively.
- FIG. 6 c is also plotted the absorption spectrum of the ruthenium based dye (black solid line, in arbitrary units).
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Photovoltaic Devices (AREA)
- Hybrid Cells (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/988,451 US20110030792A1 (en) | 2008-04-18 | 2009-04-16 | Solar to electric energy conversion device |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US4621208P | 2008-04-18 | 2008-04-18 | |
PCT/EP2009/054534 WO2009127692A2 (en) | 2008-04-18 | 2009-04-16 | Solar to electric energy conversion device |
US12/988,451 US20110030792A1 (en) | 2008-04-18 | 2009-04-16 | Solar to electric energy conversion device |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2009/054534 A-371-Of-International WO2009127692A2 (en) | 2008-04-18 | 2009-04-16 | Solar to electric energy conversion device |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/014,298 Continuation US10580588B2 (en) | 2008-04-18 | 2016-02-03 | Solar to electric energy conversion device |
Publications (1)
Publication Number | Publication Date |
---|---|
US20110030792A1 true US20110030792A1 (en) | 2011-02-10 |
Family
ID=41199508
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/988,451 Abandoned US20110030792A1 (en) | 2008-04-18 | 2009-04-16 | Solar to electric energy conversion device |
US15/014,298 Active 2030-11-19 US10580588B2 (en) | 2008-04-18 | 2016-02-03 | Solar to electric energy conversion device |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/014,298 Active 2030-11-19 US10580588B2 (en) | 2008-04-18 | 2016-02-03 | Solar to electric energy conversion device |
Country Status (10)
Country | Link |
---|---|
US (2) | US20110030792A1 (ru) |
EP (1) | EP2263244B1 (ru) |
JP (1) | JP5548185B2 (ru) |
CN (1) | CN102027556B (ru) |
AU (1) | AU2009237663B2 (ru) |
ES (1) | ES2554770T3 (ru) |
HK (1) | HK1150188A1 (ru) |
NZ (1) | NZ588241A (ru) |
RU (1) | RU2516242C2 (ru) |
WO (1) | WO2009127692A2 (ru) |
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102263145A (zh) * | 2011-08-26 | 2011-11-30 | 苏州瑞晟太阳能科技有限公司 | Cigs太阳能光电池及其制备方法 |
US20120048337A1 (en) * | 2009-04-30 | 2012-03-01 | Atsushi Fukui | Porous electrode, dye-sensitized solar cell, and dye-sensitized solar cell module |
US20120211077A1 (en) * | 2011-02-22 | 2012-08-23 | Byong-Cheol Shin | Dye-sensitized solar cell |
WO2012125841A1 (en) * | 2011-03-17 | 2012-09-20 | Steven Colby | Reflection solar |
WO2012153340A1 (en) * | 2011-05-10 | 2012-11-15 | Technion Research And Development Foundation Ltd. | Ultrathin film solar cells |
US8520202B2 (en) | 2011-09-15 | 2013-08-27 | Hewlett-Packard Development Company, L.P. | Asymmetrical-nanofinger device for surface-enhanced luminescense |
US8593629B2 (en) | 2011-02-17 | 2013-11-26 | Hewlett-Packard Development Company, L.P. | Apparatus for performing SERS |
US8605281B2 (en) | 2011-10-13 | 2013-12-10 | Hewlett-Packard Development Company, L.P. | Probe having nano-fingers |
US8866001B1 (en) * | 2012-05-10 | 2014-10-21 | Leidos, Inc. | Luminescent solar concentrator |
WO2014165830A3 (en) * | 2013-04-04 | 2014-12-31 | The Regents Of The University Of California | Electrochemical solar cells |
US20150050816A1 (en) * | 2013-08-19 | 2015-02-19 | Korea Atomic Energy Research Institute | Method of electrochemically preparing silicon film |
US9001324B2 (en) | 2010-07-30 | 2015-04-07 | Hewlett-Packard Development Company, L.P. | Optical fiber surface enhanced raman spectroscopy (SERS) probe |
US20150114456A1 (en) * | 2013-10-28 | 2015-04-30 | Academia Sinica | Method for the preparation of low-dimensional materials |
KR101540967B1 (ko) * | 2013-07-09 | 2015-08-03 | 연세대학교 산학협력단 | 메조 기공 구조의 브래그 스택 전극, 이를 포함하는 염료감응 태양전지 및 이의 제조방법 |
US9244015B2 (en) | 2010-04-20 | 2016-01-26 | Hewlett-Packard Development Company, L.P. | Self-arranging, luminescence-enhancement device for surface-enhanced luminescence |
US9274058B2 (en) | 2010-10-20 | 2016-03-01 | Hewlett-Packard Development Company, L.P. | Metallic-nanofinger device for chemical sensing |
US9279767B2 (en) | 2010-10-20 | 2016-03-08 | Hewlett-Packard Development Company, L.P. | Chemical-analysis device integrated with metallic-nanofinger device for chemical sensing |
US9310306B2 (en) | 2011-02-17 | 2016-04-12 | Hewlett-Packard Development Company, L.P. | Apparatus for use in sensing applications |
CN105702756A (zh) * | 2016-03-10 | 2016-06-22 | 国家纳米科学中心 | 一种具有二维光子晶体结构的光电极及其制备方法 |
US9377409B2 (en) | 2011-07-29 | 2016-06-28 | Hewlett-Packard Development Company, L.P. | Fabricating an apparatus for use in a sensing application |
EP3051600A1 (en) | 2015-01-30 | 2016-08-03 | Consejo Superior De Investigaciones Científicas | Heterojunction device |
US9842947B2 (en) | 2012-01-26 | 2017-12-12 | Fundacio Institut De Ciencies Fotoniques | Photoconversion device with enhanced photon absorption |
US10109429B2 (en) | 2013-10-04 | 2018-10-23 | Asahi Kasei Kabushiki Kaisha | Solar cell, manufacturing method therefor, semiconductor device, and manufacturing method therefor |
US10205042B2 (en) | 2012-01-26 | 2019-02-12 | Fundació Institut De Ciències Fotòniques | Photoconversion device with enhanced photon absorption |
EP3467881A1 (en) | 2017-10-03 | 2019-04-10 | Fundació Institut de Ciències Fotòniques | Photoconversion device with enhanced photon absorption |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2443640B1 (en) * | 2009-06-17 | 2014-10-22 | NLAB Solar AB | Dye sensitised solar cell and method of manufacture |
CN101752093B (zh) * | 2010-02-26 | 2011-06-01 | 上海交通大学 | 用于染料太阳能电池的光子晶体结构薄膜电极的制备方法 |
CN101752094B (zh) * | 2010-02-26 | 2011-06-01 | 上海交通大学 | 纳米金属掺杂的光子晶体结构电极及其制备方法 |
KR101135476B1 (ko) * | 2010-11-16 | 2012-04-13 | 삼성에스디아이 주식회사 | 염료 감응 태양 전지 |
CN103247731A (zh) * | 2013-04-16 | 2013-08-14 | 苏州瑞晟太阳能科技有限公司 | 一种基于纳米材料的新型光控发光二极管 |
JP6773944B2 (ja) * | 2016-01-06 | 2020-10-21 | inQs株式会社 | 光発電素子 |
CN107248450A (zh) * | 2017-05-18 | 2017-10-13 | 山东大学 | 基于钛网的柔性量子点敏化太阳能电池的制备方法 |
WO2019161333A1 (en) * | 2018-02-19 | 2019-08-22 | Corning Incorporated | Additive layer process for manufacturing glass articles from soot |
CN109554722B (zh) * | 2018-12-11 | 2020-11-13 | 温州大学 | 光子晶体复合氧化铁纳米阵列光电极的复合材料制备方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030029496A1 (en) * | 2001-06-25 | 2003-02-13 | Kazumi Wada | Back reflector of solar cells |
US20050109390A1 (en) * | 2003-08-28 | 2005-05-26 | Riken | Photoelectric conversion device and solar cell comprising same |
US20060065301A1 (en) * | 2004-09-30 | 2006-03-30 | Enplas Corporation | Photoelectrode for dye sensitizing solar cell or organic solar cell, and dye sensitizing solar cell having same |
US7087915B2 (en) * | 2002-02-20 | 2006-08-08 | Fuji Photo Film Co., Ltd. | Radiation image reproducing device and method for reproducing radiation image |
US20070235072A1 (en) * | 2006-04-10 | 2007-10-11 | Peter Bermel | Solar cell efficiencies through periodicity |
US20070269923A1 (en) * | 2006-05-18 | 2007-11-22 | Samsung Electronics Co., Ltd. | Semiconductor electrode containing phosphate and solar cell using the same |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU1140182A1 (ru) * | 1983-07-05 | 1985-02-15 | МГУ им.М.В.Ломоносова | Способ создани оптически прозрачного электронопровод щего материала |
AU650878B2 (en) * | 1990-04-17 | 1994-07-07 | Ecole Polytechnique Federale De Lausanne | Photovoltaic cells |
EP1289028B1 (en) * | 2001-09-04 | 2008-01-16 | Sony Deutschland GmbH | Photovoltaic device and method for preparing the same |
JP4204344B2 (ja) * | 2002-02-20 | 2009-01-07 | 富士フイルム株式会社 | 放射線画像形成材料および放射線画像形成方法 |
NL1020750C2 (nl) * | 2002-06-04 | 2003-12-08 | Stichting Energie | Werkwijze en inrichting voor het vullen van een halfproduct voor een vloeistofhoudend fotovoltaïsch element. |
US6852920B2 (en) | 2002-06-22 | 2005-02-08 | Nanosolar, Inc. | Nano-architected/assembled solar electricity cell |
JP4085421B2 (ja) * | 2002-08-23 | 2008-05-14 | ソニー株式会社 | 色素増感型光電変換装置及びその製造方法 |
EP1513171A1 (en) | 2003-09-05 | 2005-03-09 | Sony International (Europe) GmbH | Tandem dye-sensitised solar cell and method of its production |
JP2005197140A (ja) * | 2004-01-09 | 2005-07-21 | Sony Corp | 光励起式機能デバイス及びその製造方法 |
JP4382608B2 (ja) * | 2004-03-15 | 2009-12-16 | 住友大阪セメント株式会社 | 色素増感型太陽電池 |
JP2006024495A (ja) * | 2004-07-09 | 2006-01-26 | Sony Corp | 光電変換素子 |
CN100358160C (zh) * | 2004-12-15 | 2007-12-26 | 中国科学院化学研究所 | 电纺丝方法制备染料敏化纳米晶半导体太阳能电池光阳极 |
US20060174936A1 (en) * | 2005-02-04 | 2006-08-10 | Stmicroelectronics S.R.I. | Water-based electrolyte gel for dye-sensitized solar cells and manufacturing methods |
EP1854160B1 (en) | 2005-02-10 | 2017-06-21 | Yeda Research And Development Co., Ltd. | Redox-active structures and devices utilizing the same |
JP2006244919A (ja) * | 2005-03-04 | 2006-09-14 | Nippon Oil Corp | 光電変換素子 |
JP2006310729A (ja) * | 2005-03-28 | 2006-11-09 | Dainippon Printing Co Ltd | 有機薄膜太陽電池 |
JP4916683B2 (ja) * | 2005-07-29 | 2012-04-18 | 日揮触媒化成株式会社 | 光電気セル |
JP5109308B2 (ja) * | 2006-08-24 | 2012-12-26 | 東洋製罐株式会社 | 色素増感型太陽電池 |
JP5191647B2 (ja) * | 2006-11-07 | 2013-05-08 | 電源開発株式会社 | 酸化チタン膜、酸化チタン膜電極膜構造および色素増感太陽電池 |
JP2009178983A (ja) * | 2008-01-31 | 2009-08-13 | Kyushu Institute Of Technology | 酸化物半導体薄膜を積層した板状粒子及びその製造方法並びにそれを用いた色素増感太陽電池 |
-
2009
- 2009-04-16 CN CN2009801136805A patent/CN102027556B/zh active Active
- 2009-04-16 AU AU2009237663A patent/AU2009237663B2/en not_active Ceased
- 2009-04-16 NZ NZ588241A patent/NZ588241A/xx unknown
- 2009-04-16 JP JP2011504467A patent/JP5548185B2/ja active Active
- 2009-04-16 EP EP09731846.3A patent/EP2263244B1/en active Active
- 2009-04-16 US US12/988,451 patent/US20110030792A1/en not_active Abandoned
- 2009-04-16 RU RU2010146990/07A patent/RU2516242C2/ru active
- 2009-04-16 ES ES09731846.3T patent/ES2554770T3/es active Active
- 2009-04-16 WO PCT/EP2009/054534 patent/WO2009127692A2/en active Application Filing
-
2011
- 2011-04-29 HK HK11104302.2A patent/HK1150188A1/zh unknown
-
2016
- 2016-02-03 US US15/014,298 patent/US10580588B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030029496A1 (en) * | 2001-06-25 | 2003-02-13 | Kazumi Wada | Back reflector of solar cells |
US7087915B2 (en) * | 2002-02-20 | 2006-08-08 | Fuji Photo Film Co., Ltd. | Radiation image reproducing device and method for reproducing radiation image |
US20050109390A1 (en) * | 2003-08-28 | 2005-05-26 | Riken | Photoelectric conversion device and solar cell comprising same |
US20060065301A1 (en) * | 2004-09-30 | 2006-03-30 | Enplas Corporation | Photoelectrode for dye sensitizing solar cell or organic solar cell, and dye sensitizing solar cell having same |
US20070235072A1 (en) * | 2006-04-10 | 2007-10-11 | Peter Bermel | Solar cell efficiencies through periodicity |
US20070269923A1 (en) * | 2006-05-18 | 2007-11-22 | Samsung Electronics Co., Ltd. | Semiconductor electrode containing phosphate and solar cell using the same |
Non-Patent Citations (4)
Title |
---|
Almeida, Rui M. and Portal, Sabine, "Photonic band gap structures by-sol-gel processing", Current Opinion in Solid State and Materials Science 7, 2003, pp. 151-157. * |
Edrington, Alexander C., et al., "Polymer-Based Photonic Crystals", Advanced Materials, 2001, 13, No. 6, pages 421-425. * |
Mihi, A. and Miguez, H., "Origin of Light-Harvesting Enhancement in Colloidal-Photonic-Crystal-Based Dye-Sensitized Solar Cells", 2005, J. Phys. Chem., B, 109, pp. 15968-15976. * |
Sibilia, C. et al., "Electromagnetic properties of periodic and quasi-periodic one-dimensional, metallo-dielectric photonic band gap structures", 1999, J. Opt. A: Pure Appl. Opt. 1, pp. 490-494. * |
Cited By (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9607772B2 (en) * | 2009-04-30 | 2017-03-28 | Sharp Kabushiki Kaisha | Porous electrode, dye-sensitized solar cell, and dye-sensitized solar cell module |
US20120048337A1 (en) * | 2009-04-30 | 2012-03-01 | Atsushi Fukui | Porous electrode, dye-sensitized solar cell, and dye-sensitized solar cell module |
US9244015B2 (en) | 2010-04-20 | 2016-01-26 | Hewlett-Packard Development Company, L.P. | Self-arranging, luminescence-enhancement device for surface-enhanced luminescence |
US9001324B2 (en) | 2010-07-30 | 2015-04-07 | Hewlett-Packard Development Company, L.P. | Optical fiber surface enhanced raman spectroscopy (SERS) probe |
US9274058B2 (en) | 2010-10-20 | 2016-03-01 | Hewlett-Packard Development Company, L.P. | Metallic-nanofinger device for chemical sensing |
US9279767B2 (en) | 2010-10-20 | 2016-03-08 | Hewlett-Packard Development Company, L.P. | Chemical-analysis device integrated with metallic-nanofinger device for chemical sensing |
US9594022B2 (en) | 2010-10-20 | 2017-03-14 | Hewlett-Packard Development Company, L.P. | Chemical-analysis device integrated with metallic-nanofinger device for chemical sensing |
US9310306B2 (en) | 2011-02-17 | 2016-04-12 | Hewlett-Packard Development Company, L.P. | Apparatus for use in sensing applications |
US8593629B2 (en) | 2011-02-17 | 2013-11-26 | Hewlett-Packard Development Company, L.P. | Apparatus for performing SERS |
EP2492934A3 (en) * | 2011-02-22 | 2014-04-23 | Samsung SDI Co., Ltd. | Dye-sensitized solar cell |
US20120211077A1 (en) * | 2011-02-22 | 2012-08-23 | Byong-Cheol Shin | Dye-sensitized solar cell |
WO2012125841A1 (en) * | 2011-03-17 | 2012-09-20 | Steven Colby | Reflection solar |
WO2012153340A1 (en) * | 2011-05-10 | 2012-11-15 | Technion Research And Development Foundation Ltd. | Ultrathin film solar cells |
US9377409B2 (en) | 2011-07-29 | 2016-06-28 | Hewlett-Packard Development Company, L.P. | Fabricating an apparatus for use in a sensing application |
CN102263145A (zh) * | 2011-08-26 | 2011-11-30 | 苏州瑞晟太阳能科技有限公司 | Cigs太阳能光电池及其制备方法 |
US8520202B2 (en) | 2011-09-15 | 2013-08-27 | Hewlett-Packard Development Company, L.P. | Asymmetrical-nanofinger device for surface-enhanced luminescense |
US8605281B2 (en) | 2011-10-13 | 2013-12-10 | Hewlett-Packard Development Company, L.P. | Probe having nano-fingers |
US10205042B2 (en) | 2012-01-26 | 2019-02-12 | Fundació Institut De Ciències Fotòniques | Photoconversion device with enhanced photon absorption |
US9842947B2 (en) | 2012-01-26 | 2017-12-12 | Fundacio Institut De Ciencies Fotoniques | Photoconversion device with enhanced photon absorption |
US8866001B1 (en) * | 2012-05-10 | 2014-10-21 | Leidos, Inc. | Luminescent solar concentrator |
US9178096B2 (en) | 2012-05-10 | 2015-11-03 | Leidos, Inc. | Luminescent solar concentrator |
WO2014165830A3 (en) * | 2013-04-04 | 2014-12-31 | The Regents Of The University Of California | Electrochemical solar cells |
KR101540967B1 (ko) * | 2013-07-09 | 2015-08-03 | 연세대학교 산학협력단 | 메조 기공 구조의 브래그 스택 전극, 이를 포함하는 염료감응 태양전지 및 이의 제조방법 |
US20150050816A1 (en) * | 2013-08-19 | 2015-02-19 | Korea Atomic Energy Research Institute | Method of electrochemically preparing silicon film |
US10109429B2 (en) | 2013-10-04 | 2018-10-23 | Asahi Kasei Kabushiki Kaisha | Solar cell, manufacturing method therefor, semiconductor device, and manufacturing method therefor |
US10566144B2 (en) | 2013-10-04 | 2020-02-18 | Asahi Kasei Kabushiki Kaisha | Solar cell, manufacturing method therefor, semiconductor device, and manufacturing method therefor |
US20150114456A1 (en) * | 2013-10-28 | 2015-04-30 | Academia Sinica | Method for the preparation of low-dimensional materials |
EP3051600A1 (en) | 2015-01-30 | 2016-08-03 | Consejo Superior De Investigaciones Científicas | Heterojunction device |
CN105702756A (zh) * | 2016-03-10 | 2016-06-22 | 国家纳米科学中心 | 一种具有二维光子晶体结构的光电极及其制备方法 |
EP3467881A1 (en) | 2017-10-03 | 2019-04-10 | Fundació Institut de Ciències Fotòniques | Photoconversion device with enhanced photon absorption |
Also Published As
Publication number | Publication date |
---|---|
WO2009127692A2 (en) | 2009-10-22 |
US10580588B2 (en) | 2020-03-03 |
AU2009237663B2 (en) | 2014-10-30 |
AU2009237663A1 (en) | 2009-10-22 |
HK1150188A1 (zh) | 2011-11-04 |
JP2011517839A (ja) | 2011-06-16 |
US20160155573A1 (en) | 2016-06-02 |
JP5548185B2 (ja) | 2014-07-16 |
EP2263244A2 (en) | 2010-12-22 |
CN102027556A (zh) | 2011-04-20 |
RU2010146990A (ru) | 2012-07-27 |
EP2263244B1 (en) | 2015-09-02 |
NZ588241A (en) | 2013-04-26 |
CN102027556B (zh) | 2013-04-17 |
RU2516242C2 (ru) | 2014-05-20 |
WO2009127692A3 (en) | 2010-06-10 |
ES2554770T3 (es) | 2015-12-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10580588B2 (en) | Solar to electric energy conversion device | |
Colodrero et al. | Porous one‐dimensional photonic crystals improve the power‐conversion efficiency of dye‐sensitized solar cells | |
Seo et al. | Rapid fabrication of an inverse opal TiO2 photoelectrode for DSSC using a binary mixture of TiO2 nanoparticles and polymer microspheres | |
Mihi et al. | Spectral response of opal-based dye-sensitized solar cells | |
JP4185285B2 (ja) | 色素増感型光電変換素子およびそれを用いた太陽電池 | |
Calvo et al. | Photoconducting Bragg mirrors based on TiO2 nanoparticle multilayers | |
López-López et al. | Angular response of photonic crystal based dye sensitized solar cells | |
US20120267240A1 (en) | Photoelectrode with a polymer layer | |
Colodrero et al. | Experimental demonstration of the mechanism of light harvesting enhancement in photonic-crystal-based dye-sensitized solar cells | |
Park et al. | Enhancing the Performance of Solid‐State Dye‐Sensitized Solar Cells Using a Mesoporous Interfacial Titania Layer with a Bragg Stack | |
González-García et al. | Single-step fabrication process of 1-D photonic crystals coupled to nanocolumnar TiO 2 layers to improve DSC efficiency | |
Park et al. | Bragg Stack‐Functionalized Counter Electrode for Solid‐State Dye‐Sensitized Solar Cells | |
WO2007043408A1 (ja) | 光電変換素子およびこれを用いた太陽電池 | |
Shobana et al. | Investigation on the performance of nanostructure TiO2 bi-layer as photoanode for dye sensitized solar cell application | |
US6870266B2 (en) | Oxide semiconductor electrode and process for producing the same | |
Dominici et al. | Dye solar cells: basic and photon management strategies | |
JP4382873B1 (ja) | 酸化チタン粒子 | |
Zheng et al. | Efficiency enhancement in solid state dye sensitized solar cells by including inverse opals with controlled layer thicknesses | |
Song et al. | Fabrication of three-dimensionally ordered macroporous TiO 2 film and its application in quantum dots-sensitized solar cells | |
Marandi et al. | Optimization of the doping process and light scattering in CdS: Mn quantum dots sensitized solar cells for the efficiency enhancement | |
Marandi et al. | Facile synthesis and application of hyperbranched TiO2 hollow spheres for enhancement of power conversion efficiency of CdSeTe quantum dot-sensitized solar cells | |
JP4382608B2 (ja) | 色素増感型太陽電池 | |
Li et al. | Enhanced transient photovoltaic characteristics of core–shell ZnSe/ZnS/L-Cys quantum-dot-sensitized TiO2 thin-film | |
KR101218394B1 (ko) | 나노 구조 산란막과 이의 제조법 및 그 산란막을 탑재한 염료감응형 태양전지 | |
Bandara et al. | Nano structured diatom frustules incorporated into TiO2 photoelectrodes to enhance performance of quasi-solid-state dye-sensitized solar cells |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |