US20110024905A1 - Structure and manufacturing method of a chip scale package with low fabrication cost, fine pitch and high reliability solder bump - Google Patents
Structure and manufacturing method of a chip scale package with low fabrication cost, fine pitch and high reliability solder bump Download PDFInfo
- Publication number
- US20110024905A1 US20110024905A1 US12/852,467 US85246710A US2011024905A1 US 20110024905 A1 US20110024905 A1 US 20110024905A1 US 85246710 A US85246710 A US 85246710A US 2011024905 A1 US2011024905 A1 US 2011024905A1
- Authority
- US
- United States
- Prior art keywords
- layer
- metal
- substrate
- solder
- contact point
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 229910000679 solder Inorganic materials 0.000 title claims abstract description 171
- 238000004519 manufacturing process Methods 0.000 title description 7
- 229910052751 metal Inorganic materials 0.000 claims abstract description 185
- 239000002184 metal Substances 0.000 claims abstract description 185
- 239000000758 substrate Substances 0.000 claims abstract description 98
- 239000004065 semiconductor Substances 0.000 claims abstract description 78
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 43
- 239000010949 copper Substances 0.000 claims description 43
- 229910052802 copper Inorganic materials 0.000 claims description 43
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 32
- 229910052759 nickel Inorganic materials 0.000 claims description 16
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 14
- 229910052710 silicon Inorganic materials 0.000 claims description 14
- 239000010703 silicon Substances 0.000 claims description 14
- 229920000642 polymer Polymers 0.000 claims description 13
- 239000010936 titanium Substances 0.000 claims description 7
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 5
- 229910052719 titanium Inorganic materials 0.000 claims description 5
- 238000000034 method Methods 0.000 abstract description 53
- 229920002120 photoresistant polymer Polymers 0.000 description 42
- 238000002161 passivation Methods 0.000 description 38
- 230000004888 barrier function Effects 0.000 description 35
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 21
- 230000008569 process Effects 0.000 description 21
- 238000013461 design Methods 0.000 description 20
- 239000000463 material Substances 0.000 description 20
- 238000005530 etching Methods 0.000 description 17
- 230000004907 flux Effects 0.000 description 13
- 230000001965 increasing effect Effects 0.000 description 13
- 229910052581 Si3N4 Inorganic materials 0.000 description 11
- 229910052782 aluminium Inorganic materials 0.000 description 10
- 238000004806 packaging method and process Methods 0.000 description 10
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 9
- 150000001875 compounds Chemical class 0.000 description 9
- 238000009792 diffusion process Methods 0.000 description 9
- 238000000465 moulding Methods 0.000 description 9
- 239000000377 silicon dioxide Substances 0.000 description 9
- 238000000151 deposition Methods 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- 239000004642 Polyimide Substances 0.000 description 7
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 7
- 238000004140 cleaning Methods 0.000 description 7
- 238000011161 development Methods 0.000 description 7
- 230000018109 developmental process Effects 0.000 description 7
- 229920001721 polyimide Polymers 0.000 description 7
- 235000012239 silicon dioxide Nutrition 0.000 description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 6
- 238000007796 conventional method Methods 0.000 description 6
- 230000008021 deposition Effects 0.000 description 6
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 6
- 229910052760 oxygen Inorganic materials 0.000 description 6
- 239000001301 oxygen Substances 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 6
- 238000013459 approach Methods 0.000 description 5
- 238000005229 chemical vapour deposition Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 238000000059 patterning Methods 0.000 description 5
- 230000002093 peripheral effect Effects 0.000 description 5
- 238000000206 photolithography Methods 0.000 description 5
- 239000003989 dielectric material Substances 0.000 description 4
- 239000002019 doping agent Substances 0.000 description 4
- 239000008393 encapsulating agent Substances 0.000 description 4
- 239000002243 precursor Substances 0.000 description 4
- 230000002829 reductive effect Effects 0.000 description 4
- 235000012431 wafers Nutrition 0.000 description 4
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 3
- 238000004380 ashing Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 3
- 229920005591 polysilicon Polymers 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 229910052814 silicon oxide Inorganic materials 0.000 description 3
- 238000009736 wetting Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- 229910052681 coesite Inorganic materials 0.000 description 2
- 229910052906 cristobalite Inorganic materials 0.000 description 2
- 238000009713 electroplating Methods 0.000 description 2
- 238000005538 encapsulation Methods 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000005360 phosphosilicate glass Substances 0.000 description 2
- 238000001020 plasma etching Methods 0.000 description 2
- 238000001552 radio frequency sputter deposition Methods 0.000 description 2
- 229910052682 stishovite Inorganic materials 0.000 description 2
- 230000008646 thermal stress Effects 0.000 description 2
- 229910052905 tridymite Inorganic materials 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- 229910016909 AlxOy Inorganic materials 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- LVDRREOUMKACNJ-BKMJKUGQSA-N N-[(2R,3S)-2-(4-chlorophenyl)-1-(1,4-dimethyl-2-oxoquinolin-7-yl)-6-oxopiperidin-3-yl]-2-methylpropane-1-sulfonamide Chemical compound CC(C)CS(=O)(=O)N[C@H]1CCC(=O)N([C@@H]1c1ccc(Cl)cc1)c1ccc2c(C)cc(=O)n(C)c2c1 LVDRREOUMKACNJ-BKMJKUGQSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- WPPDFTBPZNZZRP-UHFFFAOYSA-N aluminum copper Chemical compound [Al].[Cu] WPPDFTBPZNZZRP-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000001723 curing Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 230000032798 delamination Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical group [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 1
- 238000005272 metallurgy Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229920000052 poly(p-xylylene) Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 238000001029 thermal curing Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000003631 wet chemical etching Methods 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
- H01L23/488—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
- H01L23/498—Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
- H01L23/49811—Additional leads joined to the metallisation on the insulating substrate, e.g. pins, bumps, wires, flat leads
- H01L23/49816—Spherical bumps on the substrate for external connection, e.g. ball grid arrays [BGA]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/02—Bonding areas ; Manufacturing methods related thereto
- H01L24/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L24/06—Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/10—Bump connectors ; Manufacturing methods related thereto
- H01L24/12—Structure, shape, material or disposition of the bump connectors prior to the connecting process
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/10—Bump connectors ; Manufacturing methods related thereto
- H01L24/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L24/17—Structure, shape, material or disposition of the bump connectors after the connecting process of a plurality of bump connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/0401—Bonding areas specifically adapted for bump connectors, e.g. under bump metallisation [UBM]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/04042—Bonding areas specifically adapted for wire connectors, e.g. wirebond pads
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
- H01L2224/0554—External layer
- H01L2224/0556—Disposition
- H01L2224/05571—Disposition the external layer being disposed in a recess of the surface
- H01L2224/05572—Disposition the external layer being disposed in a recess of the surface the external layer extending out of an opening
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/06—Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
- H01L2224/061—Disposition
- H01L2224/0612—Layout
- H01L2224/0613—Square or rectangular array
- H01L2224/06134—Square or rectangular array covering only portions of the surface to be connected
- H01L2224/06136—Covering only the central area of the surface to be connected, i.e. central arrangements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/12—Structure, shape, material or disposition of the bump connectors prior to the connecting process
- H01L2224/13—Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
- H01L2224/13001—Core members of the bump connector
- H01L2224/13005—Structure
- H01L2224/13007—Bump connector smaller than the underlying bonding area, e.g. than the under bump metallisation [UBM]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/12—Structure, shape, material or disposition of the bump connectors prior to the connecting process
- H01L2224/13—Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
- H01L2224/13001—Core members of the bump connector
- H01L2224/1301—Shape
- H01L2224/13016—Shape in side view
- H01L2224/13017—Shape in side view being non uniform along the bump connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/12—Structure, shape, material or disposition of the bump connectors prior to the connecting process
- H01L2224/13—Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
- H01L2224/13001—Core members of the bump connector
- H01L2224/1302—Disposition
- H01L2224/13023—Disposition the whole bump connector protruding from the surface
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/12—Structure, shape, material or disposition of the bump connectors prior to the connecting process
- H01L2224/13—Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
- H01L2224/13001—Core members of the bump connector
- H01L2224/13075—Plural core members
- H01L2224/1308—Plural core members being stacked
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/12—Structure, shape, material or disposition of the bump connectors prior to the connecting process
- H01L2224/13—Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
- H01L2224/13001—Core members of the bump connector
- H01L2224/13075—Plural core members
- H01L2224/1308—Plural core members being stacked
- H01L2224/13083—Three-layer arrangements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/12—Structure, shape, material or disposition of the bump connectors prior to the connecting process
- H01L2224/13—Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
- H01L2224/13001—Core members of the bump connector
- H01L2224/13099—Material
- H01L2224/131—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/12—Structure, shape, material or disposition of the bump connectors prior to the connecting process
- H01L2224/13—Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
- H01L2224/13001—Core members of the bump connector
- H01L2224/13099—Material
- H01L2224/131—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/13138—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/13147—Copper [Cu] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/12—Structure, shape, material or disposition of the bump connectors prior to the connecting process
- H01L2224/13—Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
- H01L2224/13001—Core members of the bump connector
- H01L2224/13099—Material
- H01L2224/131—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/13138—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/13155—Nickel [Ni] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L2224/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/10—Bump connectors ; Manufacturing methods related thereto
- H01L24/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L24/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/00013—Fully indexed content
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01005—Boron [B]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01006—Carbon [C]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01013—Aluminum [Al]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01014—Silicon [Si]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01015—Phosphorus [P]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01018—Argon [Ar]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01022—Titanium [Ti]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01029—Copper [Cu]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01033—Arsenic [As]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01042—Molybdenum [Mo]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/0105—Tin [Sn]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01073—Tantalum [Ta]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01074—Tungsten [W]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01075—Rhenium [Re]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01078—Platinum [Pt]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01079—Gold [Au]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01082—Lead [Pb]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/013—Alloys
- H01L2924/014—Solder alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/049—Nitrides composed of metals from groups of the periodic table
- H01L2924/0494—4th Group
- H01L2924/04941—TiN
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/12—Passive devices, e.g. 2 terminal devices
- H01L2924/1204—Optical Diode
- H01L2924/12044—OLED
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/14—Integrated circuits
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/151—Die mounting substrate
- H01L2924/153—Connection portion
- H01L2924/1531—Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
- H01L2924/15311—Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/181—Encapsulation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/30—Technical effects
- H01L2924/301—Electrical effects
- H01L2924/30105—Capacitance
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/30—Technical effects
- H01L2924/35—Mechanical effects
- H01L2924/351—Thermal stress
Definitions
- the invention relates to the fabrication of integrated circuit devices, and more particularly, to a method and package for packaging semiconductor devices.
- BGA Ball Grid Array
- CGA Column Grid Array
- BGA Ball Grid Array
- BGA is an array of solder balls placed on a chip carrier. The balls contact a printed circuit board in an array configuration where, after reheat, the balls connect the chip to the printed circuit board. BGA's are known with 40, 50 and 60 mil spacings.
- Flip-chip technology fabricates bumps (typically Pb/Sn solders) on aluminum pads on a semiconductor device.
- the bumps are interconnected directly to the package media, which are usually ceramic or plastic based.
- the flip-chip is bonded face down to the package medium through the shortest paths.
- Chip-On-Board (COB) techniques are used to attach semiconductor dies to a printed circuit board; these techniques include the technical disciplines of flip chip attachment, wirebonding, and tape automated bonding (TAB).
- Flip chip attachment consists of attaching a flip chip to a printed circuit board or to another substrate.
- a flip chip is a semiconductor chip that has a pattern or arrays of terminals that are spaced around an active surface area of the flip chip, allowing for face down mounting of the flip chip to a substrate.
- the flip chip active surface has one of the following electrical connectors: BGA (wherein an array of minute solder balls is created on the surface of the flip chip that attaches to the substrate); Slightly Larger than Integrated Circuit Carrier (SLICC) (which is similar to the BGA but has a smaller solder ball pitch and diameter than the BGA); a Pin Grid Array (PGA) (wherein an array of small pins extends substantially perpendicularly from the attachment surface of a flip chip, such that the pins conform to a specific arrangement on a printed circuit board or other substrate for attachment thereto).
- BGA wherein an array of minute solder balls is created on the surface of the flip chip that attaches to the substrate
- SLICC Slightly Larger than Integrated Circuit Carrier
- PGA Pin Grid Array
- the solder or other conductive ball arrangement on the flip chip must be a mirror image of the connecting bond pads on the printed circuit board so that precise connection can be made.
- Bond pads are generally used to wire device elements and to provide exposed contact regions of the die. These contact regions are suitable for wiring the die to components that are external to the die.
- An example is where a bond wire is attached to a bond pad of a semiconductor die at one end and to a portion of a Printed Circuit Board at the other end of the wire.
- the art is constantly striving to achieve improvements in the creation of bond pads that simplify the manufacturing process while enhancing bond pad reliability.
- bonds pads Materials that are typically used for bond pads include metallic materials, such as tungsten and aluminum, while heavily doped polysilicon can also be used for contacting material.
- the bond pad is formed on the top surface of the semiconductor device whereby the electrically conducting material is frequently embedded in an insulating layer of dielectric.
- polysilicon can be doped with an n-type dopant for contacting N-regions while it can be doped with p-type dopant for contacting P-regions. This approach of doping avoids inter-diffusion of the dopants and dopant migration. It is clear that low contact resistance for the bond pad area is required while concerns of avoidance of moisture or chemical solvent absorption, thin film adhesion characteristics, delamination and cracking play an important part in the creation of bond pads.
- the conventional processing sequence that is used to create an aluminum bond pad starts with a semiconductor surface, typically the surface of a silicon single crystalline substrate.
- a layer of Intra Metal Dielectric (IMD) is deposited over the surface, a layer of metal, typically aluminum, is deposited over the surface of the layer of IMD.
- the layer of metal is patterned and etched typically using a layer of photoresist and conventional methods of photolithography and etching.
- a layer of passivation is deposited over the layer of IMD.
- An opening that aligns with the bond pad is created in the layer of passivation, again using methods of photolithography and etching.
- FIGS. 1 through 4 show an example of one of the methods that is used to create an interconnect bump.
- a semiconductor surface 10 has been provided with a metal contact pad 14 ; the semiconductor surface 10 is protected with a layer 12 of passivation.
- An opening 19 has been created in the layer 12 of passivation; the surface of the metal contact pad 14 is exposed through this opening 19 .
- a dielectric layer 16 is deposited over the surface of the layer 12 of passivation.
- the layer 16 of dielectric is patterned and etched, creating an opening 21 in the layer 16 of dielectric that aligns with the metal pad 14 and that partially exposes the surface of the metal pad 14 .
- a layer 18 of metal is created over the layer 16 of dielectric; layer 18 of metal is in contact with the surface of the metal pad 14 inside opening 21 .
- the region of layer 18 of metal that is above the metal pad 14 will, at a later point in the processing, form a pedestal over which the interconnect bump will be formed.
- This pedestal can be further extended in a vertical direction by the deposition and patterning of one or more additional layers that may contain a photoresist or a dielectric material; these additional layers are not shown in FIG. 2 .
- These layers essentially have the shape of layer 16 and are removed during one of the final processing steps that is applied for the formation of the interconnect bump.
- a layer of photoresist (not shown) is deposited, patterned and etched, creating an opening that aligns with the contact pad 14 .
- a layer 20 of metal such as copper or nickel, shown in FIG. 3 , that forms an integral part of the pedestal of the to-be-created interconnect bump, is next electroplated in the opening created in the layer of photoresist and on the surface of the layer 18 of metal, whereby the layer 18 serves as the lower electrode during the plating process.
- Layer 20 in prior art applications has a thickness of between about 1 and 10 ⁇ m with a typical value of about 5 ⁇ m.
- the final layer 22 of solder is electroplated on the surface of layer 20 .
- the patterned layer of photoresist is then removed.
- the layer 18 of metal is next etched, as in FIG. 4 , leaving in place only the pedestal for the interconnect bump. During this etch process the deposited layers 20 and 22 serve as a mask. If, as indicated above, additional layers of dielectric or photoresist have been deposited for the further shaping of pedestal 18 in FIG. 2 , these layers are also removed at this time.
- solder paste or flux (not shown) is now applied to the layer 22 of solder, and the solder 22 is melted in a reflow surface typically under a nitrogen atmosphere, creating the spherically shaped interconnect bump 22 that is shown in FIG. 4 .
- BLM layers are successive and overlying layers of chrome, copper and gold, whereby the chrome is used to enhance adhesion with an underlying aluminum contact pad, the copper layer serves to prevent diffusion of solder materials into underlying layers, while the gold layer serves to prevent oxidation of the surface of the copper layer.
- the BLM layer is layer 18 of FIGS. 2 through 4 .
- Increased device density brings with it increased closeness of components and elements that are part of the created semiconductor devices. This increased closeness is expressed as a reduction in the spacing or “pitch” between elements of a semiconductor device.
- State-of-the-art technology uses solder bumps having a pitch of about 200 ⁇ m, which imposes a limitation on further increasing device density.
- the limitation in further reducing the pitch of solder bumps is imposed by concerns of reliability, which impose a relatively large ball size for the solder bump. This relatively large solder ball restricts further reducing the solder ball pitch.
- solder bumps are used as interconnections between I/O bond pads and a substrate or printed circuit board.
- a large solder ball brings with it high standoff since a solder ball with high standoff has better thermal performance (CTE mismatching is easier to avoid resulting in reduced thermal stress on the solder balls).
- Large solder balls are therefore required in order to maintain interconnect reliability.
- Low-alpha solder is applied to avoid soft error (electrical or functional errors) from occurring, thereby eliminating the potential for inadvertent memory discharge and incorrect setting of the voltage (1 or 0).
- the invention addresses concerns of creating a BGA type package whereby the pitch of the solder ball or solder bump of the device interconnect is in the range of 200 ⁇ m or less.
- the conventional, state-of-the-art solder process runs into limitations for such a fine interconnect pad pitch.
- the invention provides a method and a package for attaching devices having very small ball pitch to an interconnect medium such as a Printed Circuit Board.
- a principal objective of the invention is to provide a method of creating a fine-pitch solder bump.
- Another objective of the invention is to provide a method of creating smaller solder bumps, further allowing for the creation of fine-pitched solder bumps.
- Another objective of the invention is to provide a cost-effective method to create a fine-pitch solder bump of high reliability, due to the increased height of the solder bump. This objective is based on the belief that solder bump reliability improves proportionally to the square of the distance between the solder ball and the underlying substrate.
- Another objective of the invention is to provide a cost-effective way of creating a solder bump. This cost-effective way is realized by using standard solder material and therewith eliminating the need for expensive “low-a solder”.
- Another objective of the invention is to provide a cost-effective method of creating a fine-pitch solder bump by reducing the alpha-effect on memory products.
- Another objective of the invention is to provide a method of creating solder bumps which allows an easy method of cleaning flux after the process of creating the solder bumps has been completed.
- Another objective of the invention is to provide a method of creating solder bumps which allows easy application of underfill.
- Another objective of the invention is to provide a method for applying fine-pitch solder bumps directly to the I/O pads of a semiconductor device, without a redistribution interface, and bonding the semiconductor device directly to a Ball Grid Array substrate using the flip-chip bonding approach.
- Another objective of the invention is to provide a method for shortening the interconnection between a semiconductor device and a substrate on which the semiconductor device is mounted, thus improving the electrical performance of the semiconductor device.
- Yet another objective of the invention is to eliminate conventional methods of re-distribution of device I/O interconnect, thereby making packaging of the device more cost-effective and eliminating performance degradation.
- a still further objective of the invention is to improve chip accessibility during testing of the device, thus eliminating the need for special test fixtures.
- a still further objective of the invention is to improve performance and device reliability of BGA packages that are used for the mounting of semiconductor devices having small-pitch I/O interconnect bumps.
- a still further objective of the invention is to perform Chip Scale Packaging (CSP) without re-distribution, including for various pad designs such as peripheral or central pad designs.
- CSP Chip Scale Packaging
- a still further objective of the invention is to provide a method of mounting small-pitch semiconductor devices in such a manner that flux removal and the dispensing of device encapsulants is improved.
- a new method and package is provided for the mounting of semiconductor devices that have been provided with small-pitch Input/Output interconnect bumps.
- Fine pitch solder bumps consisting of pillar metal and a solder bump, are applied directly to the I/O pads of the semiconductor device, and the device is then flip-chip bonded to a substrate.
- Dummy bumps may be provided for cases where the I/O pads of the device are arranged such that additional mechanical support for the device is required.
- FIGS. 1 through 4 show a prior-art method of creating a solder bump overlying a point of electrical contact, as follows:
- FIG. 1 shows a cross section of a semiconductor surface on the surface of which a contact pad has been created; the semiconductor surface is covered with a patterned layer of passivation.
- FIG. 2 shows a cross section of FIG. 1 after a patterned layer of dielectric and a layer of metal have been created on the semiconductor surface.
- FIG. 3 shows a cross section of FIG. 2 after a layer of bump metal and solder compound have been selectively deposited.
- FIG. 4 show a cross section that after excessive layers have been removed from the semiconductor surface and after the solder has been reflowed, the interconnect bump is formed.
- FIG. 5 shows a cross section of a BGA package; a semiconductor device is encapsulated in a molding compound.
- FIG. 6 shows a cross section of a BGA package; an underfill is provided to the semiconductor device.
- FIGS. 7 through 16 address the invention, as follows:
- FIG. 7 shows a cross section of a semiconductor surface, a layer of dielectric, metal pads, a layer of passivation, and a layer of barrier material.
- FIG. 8 shows a cross section after a patterned layer of photoresist has been created over the structure of FIG. 7 .
- FIG. 9 shows a cross section after pillar metal has been created aligned with the metal pads and under bump metal has been deposited over the surface of the pillar metal.
- FIG. 10 shows a cross section after solder metal has been plated over the under bump metal.
- FIG. 11 shows a cross section after the patterned layer of photoresist has been removed from the surface.
- FIG. 12 shows a cross section after the diameter of the pillar metal has been reduced.
- FIG. 13 shows a cross section after the barrier layer has been etched using isotropic etching, creating a first profile.
- FIG. 14 shows a cross section after the barrier layer has been etched using anisotropic etching or RIE, creating a second profile.
- FIG. 15 shows a cross-section of a first completed solder bump of the present invention.
- FIG. 16 shows a cross-section of a second completed solder bump of the present invention.
- FIG. 17 shows a cross section of a BGA package of the invention.
- the semiconductor device is encapsulated in a molding compound.
- FIG. 18 shows a cross section of a BGA package of the invention. An underfill is provided to the semiconductor device.
- FIG. 19 shows a top view of an array type I/O pad configuration of the semiconductor device.
- FIG. 20 shows a top view of a peripheral type I/O pad configuration of the semiconductor device.
- FIG. 21 shows a top view of a center type I/O pad configuration of the semiconductor device.
- FIG. 22 shows a top view of a center type I/O pad configuration of the semiconductor device; dummy solder bumps have been provided in support of the semiconductor device.
- FIG. 23 shows a top view of the substrate with exposed I/O contact pads; this exposure is accomplished by not depositing the solder mask in close proximity to the contact pads of the semiconductor device.
- FIG. 24 shows a cross section of the substrate of FIG. 23 .
- FIG. 25 shows a top view of a prior-art substrate with exposed I/O contact pads; a solder mask is in close proximity to the contact pads of a semiconductor device.
- FIG. 26 shows a cross section of the substrate of FIG. 25 .
- FIGS. 27 a through 27 f show examples of applications of the invention.
- FIGS. 28 a and 28 b show a conventional substrate and a substrate of the invention and demonstrate how the invention leads to the ability to reduce the pitch between I/O pads.
- the above stated objective of improving chip accessibility during testing of the device, thus eliminating the need for special test fixtures, can further be highlighted as follows.
- the disclosed method of the invention using Chip Scale Packaging (CSP), can control the cost of testing CSP devices by keeping the same body size of the chip and by using the same size substrate.
- the chip may have different body sizes, which imposes the requirement of different size test fixtures.
- CSP packages can control the cost of testing CSP devices by keeping the same body size of the chip and by using the same size substrate.
- the chip may have different body sizes, which imposes the requirement of different size test fixtures.
- additional and varying device sizes are expected to be used. This would result in ever increasing costs for back-end testing of the devices in a production environment.
- the invention provides a method where these additional back-end testing costs can be avoided.
- FIG. 5 there is shown a cross section of a typical flip chip package with a semiconductor device being encapsulated in a molding compound.
- An Integrated Circuit (IC) device 10 enters the process as a separate unit with contact points (balls 16 ) attached to the bottom of the chip 10 .
- the IC 10 is placed on the surface of a BGA substrate 12 , and an (optional) interconnect substrate 14 has been provided for additional routing of the electrical network to which the device 10 is attached.
- Balls 18 that are connected to the lower surface of the substrate 12 make contact with surrounding circuitry (not shown).
- the paths of electrical interconnect of the device 10 as shown in cross section in FIG. 5 are as follows: contact bumps (points of I/O interconnect, not shown in FIG.
- BGA substrate 12 may further have been provided with one or more layers of interconnect metal; all of the interfaces (the interconnect substrate 12 and the optional redistribution lines provided in BGA substrate 12 ) result in interconnecting balls 16 with the balls 18 .
- the Balls 18 are the contact points that connect the package that is shown in cross section in FIG. 5 to surrounding circuitry.
- FIG. 5 shows the contact balls 16 for the establishment of contacts between the device 10 and the underlying substrate 12
- some prior art applications still used wire bond connections (not shown in FIG. 5 ), in order to achieve optimum electrical performance of the device package.
- layer 19 which may be provided over the surface of the semiconductor device 10 facing the substrate 12 .
- This re-distribution layer provides interconnect lines over the surface of the device 10 and is required in prior art applications if solder bumps are required on current pad layout for wire bonding purposes.
- the main purpose of the redistribution layer is to enlarge the pitch of solder bump interconnects if the bond pads are originally designed for wire bonding applications. It will be clear from later explanations that the invention removes the need for the redistribution layer.
- FIG. 6 shows a cross section of a conventional BGA package whereby the semiconductor device 10 is provided with underfill 22 , and no molding compound ( 20 , FIG. 5 ) has been provided in the package that is shown in cross section in FIG. 6 .
- All the other statements that relate to the electrical interconnection of the device 10 of FIG. 6 are identical to the statements that have been made in the description provided for the package of FIG. 5 .
- the sides of the underfill 22 are sloping such that the physical contact between the underfill 22 and the substrate 12 is extended beyond the dimensions of the bottom surface of the chip 10 . This is a normal phenomenon with liquid underfill, which enhances the mechanical strength between the substrate 12 and the IC chip 10 .
- FIG. 15 there is shown a cross section of a first solder bump that has been created in accordance with the above referenced related application.
- the elements that are shown in FIG. 15 that form part of the solder bump of the related application are the following:
- the cross section that is shown in FIG. 16 is similar to the cross section of FIG. 15 with the exception of layer 35 , which is an anisotropically etched layer of barrier metal (etched after the solder bump 42 has been created) which, due to the nature of the anisotropic etch, protrudes from the pillar metal 38 as shown in the cross section of FIG. 16 .
- layer 35 is an anisotropically etched layer of barrier metal (etched after the solder bump 42 has been created) which, due to the nature of the anisotropic etch, protrudes from the pillar metal 38 as shown in the cross section of FIG. 16 .
- solder bump that allows easy cleaning of flux after the process of flip chip assembly and before the process of underfill and encapsulation
- FIGS. 7 through 16 provide details of the process of the invention which leads to the solder bumps that have been shown in cross section in FIGS. 5 and 6 .
- FIG. 7 shows a cross section of a substrate 10 and the following elements:
- dielectric material for the layer 30 can be used any of the typically applied dielectrics such as silicon dioxide (doped or undoped), silicon oxynitride, parylene, polyimide, spin-on-glass, plasma oxide or LPCVD oxide.
- the material that is used for the deposition of the layer 30 of dielectric of the invention is not limited to the materials indicated above, but can include any of the commonly used dielectrics in the art.
- the creation of the metal contact pads 32 can use conventional methods of metal rf sputtering at a temperature between about 100 and 400 degrees C. and a pressure between about 1 and 100 mTorr using as source, for instance, aluminum-copper material (for the creation of aluminum contact pads) at a flow rate of between about 10 and 400 sccm to a thickness between about 4000 and 11000 Angstroms. After a layer of metal has been deposited, the layer must be patterned and etched to create the aluminum contact pads 32 . This patterning and etching uses conventional methods of photolithography and patterning and etching.
- a deposited layer of AICu can be etched using Cl 2 /Ar as an etchant at a temperature between 50 and 200 degrees C., an etchant flow rate of about 20 sccm for the Cl 2 and 1000 sccm for the Ar, a pressure between about 50 mTorr and 10 Torr, and a time of the etch between 30 and 200 seconds.
- insulating layers such as silicon oxide and oxygen-containing polymers, are deposited using a Chemical Vapor Deposition (CVD) technique over the surface of various layers of conducting lines in a semiconductor device or substrate to separate the conductive interconnect lines from each other.
- the insulating layers can also be deposited over patterned layers of interconnecting lines; electrical contact between successive layers of interconnecting lines is established with metal vias created in the insulating layers.
- Electrical contact to the chip is typically established by means of bonding pads or contact pads that form electrical interfaces with patterned levels of interconnecting metal lines. Signal lines and power/ground lines can be connected to the bonding pads or contact pads.
- the bonding pads or contact pads are passivated and electrically insulated by the deposition of a passivation layer over the surface of the bonding pads.
- a passivation layer can contain silicon oxide/silicon nitride (SiO 2 /Si 3 N 4 ) deposited by CVD.
- the passivation layer is patterned and etched to create openings in the passivation layer for the bonding pads or contact pads after which a second and relatively thick passivation layer can be deposited for further insulation and protection of the surface of the chips from moisture and other contaminants and from mechanical damage during assembling of the chips.
- the passivation layer can contain silicon oxide/silicon nitride (SiO 2 /Si 3 N 4 ) deposited by CVD, or a passivation layer can be a layer of photosensitive polyimide or can comprise titanium nitride.
- a passivation layer can be a layer of photosensitive polyimide or can comprise titanium nitride.
- Another material often used for a passivation layer is phosphorous doped silicon dioxide that is typically deposited over a final layer of aluminum interconnect using a Low Temperature CVD process.
- photosensitive polyimide has frequently been used for the creation of passivation layers. Conventional polyimides have a number of attractive characteristics for their application in a semiconductor device structure which have been highlighted above.
- Photosensitive polyimides have these same characteristics but can, in addition, be patterned like a photoresist mask and can, after patterning and etching, remain on the surface on which it has been deposited to serve as a passivation layer.
- a precursor layer is first deposited by, for example, conventional photoresist spin coating.
- the precursor is, after a low temperature pre-bake, exposed using, for example, a step and repeat projection aligner and Ultra Violet (UV) light as a light source.
- UV Ultra Violet
- the portions of the precursor that have been exposed in this manner are cross-linked, thereby leaving unexposed regions (that are not cross-linked) over the bonding pads.
- the unexposed polyimide precursor layer is dissolved, thereby providing openings over the bonding pads.
- a final step of thermal curing leaves a permanent high quality passivation layer of polyimide over the substrate.
- the preferred material of the invention for the deposition of the layer 34 of passivation is Plasma Enhanced silicon nitride (PE Si 3 N 4 ), deposited using PECVD technology at a temperature between about 350 and 450 degrees C. with a pressure of between about 2.0 and 2.8 Torr for the duration between about 8 and 12 seconds.
- PE Si 3 N 4 Plasma Enhanced silicon nitride
- the layer 34 of PE Si 3 N 4 can be deposited to a thickness between about 200 and 800 Angstroms.
- the layer 34 of PE Si 3 N 4 is next patterned and etched to create openings in the layer 34 that overlay and align with the underlying contact pads 32 .
- the etching of the layer 34 of passivation can use Ar/CF 4 as an etchant at a temperature of between about 120 and 160 degrees C. and a pressure of between about 0.30 and 0.40 Torr for a time of between about 33 and 39 seconds using a dry etch process.
- the etching of the layer 34 of passivation can also use He/NF 3 as an etchant at a temperature of between about 80 and 100 degrees C. and a pressure of between about 1.20 and 1.30 Torr for a time of between about 20 and 30 seconds using a dry etch process.
- Barrier layers such as the layer 36 , are typically used to prevent diffusion of an interconnect metal into surrounding layers of dielectric and silicon. Some of the considerations that apply in selecting a material for the barrier layer become apparent by using copper for interconnect metal as an example. Although copper has a relatively low cost and low resistivity, it has a relatively large diffusion coefficient into silicon dioxide and silicon and is therefore not typically used as an interconnect metal. Copper from an interconnect may diffuse into the silicon dioxide layer causing the dielectric to be conductive and decreasing the dielectric strength of the silicon dioxide layer. Copper interconnects should be encapsulated by at least one diffusion barrier to prevent diffusion into the silicon dioxide layer.
- Silicon nitride is a diffusion barrier to copper, but the prior art teaches that the interconnects should not lie on a silicon nitride layer because it has a high dielectric constant compared with silicon dioxide. The high dielectric constant causes an undesired increase in capacitance between the interconnect and the substrate.
- a typical diffusion barrier layer may contain silicon nitride, phosphosilicate glass (PSG), silicon oxynitride, aluminum, aluminum oxide (Al x O y ), tantalum, Ti/TiN or Ti/W, nionbium, or molybdenum and is more preferably formed from TiN.
- the barrier layer can also be used to improve the adhesion of the subsequent overlying tungsten layer.
- the barrier layer is preferably between about 500 and 2000 Angstroms thick and more preferably about 300 Angstroms thick, and can be deposited using rf sputtering.
- a seed layer (not shown in FIG. 7 ) can be blanket deposited over the surface of the wafer.
- any of the conventional metallic seed materials can be used.
- the metallic seed layer can be deposited using a sputter chamber or an Ion Metal Plasma (IMP) chamber at a temperature of between about 0 and 300 degrees C. and a pressure of between about 1 and 100 mTorr, using (for instance) copper or a copper alloy as the source (as highlighted above) at a flow rate of between about 10 and 400 sccm and using argon as an ambient gas.
- IMP Ion Metal Plasma
- FIG. 8 shows a cross section of the substrate after a layer 37 of photoresist has been deposited over the surface of the barrier layer 36 .
- the layer 37 of photoresist has been patterned and etched, creating openings 31 in the layer 37 of photoresist.
- the openings 31 partially expose the surface of the barrier layer 36 .
- the layer 37 of photoresist is typically applied to a thickness of between about 100 and 200 ⁇ m, but more preferably to a thickness of about 150 ⁇ m.
- Photolithography is a common approach wherein patterned layers are formed by spinning on a layer of photoresist, projecting light through a photomask with the desired pattern onto the photoresist to expose the photoresist to the pattern, developing the photoresist, washing off the undeveloped photoresist, and plasma etching to clean out the areas where the photoresist has been washed away.
- the exposed resist may be rendered soluble (positive working) and washed away, or insoluble (negative working) and form the pattern.
- the deposited layer 37 of photoresist can, prior to patterning and etching, be cured or pre-baked, further hardening the surface of the layer 37 of photoresist.
- the layer 37 of photoresist can be etched by applying O 2 plasma and then wet stripping by using H 2 SO 4 , H 2 O 2 and NH 4 OH solution.
- Sulfuric acid (H 2 SO 4 ) and mixtures of H 2 SO 4 with other oxidizing agents such as hydrogen peroxide (H 2 O 2 ) are widely used in stripping photoresist after the photoresist has been stripped by other means.
- Wafers to be stripped can be immersed in the mixture at a temperature between about 100 degrees C. and about 150 degrees C. for 5 to 10 minutes and then subjected to a thorough cleaning with deionized water and dried by dry nitrogen.
- Inorganic resist strippers, such as the sulfuric acid mixtures are very effective in the residual free removal of highly postbaked resist. They are more effective than organic strippers and the longer the immersion time, the cleaner and more residue-free wafer surface can be obtained.
- the photoresist layer 37 can also be partially removed using plasma oxygen ashing and careful wet clean.
- the oxygen plasma ashing is heating the photoresist in a highly oxidized environment, such as an oxygen plasma, thereby converting the photoresist to an easily removed ash.
- the oxygen plasma ashing can be followed by a native oxide dip for 90 seconds in a 200:1 diluted solution of hydrofluoric acid.
- FIG. 9 shows a cross section of the substrate 10 after a layer 38 of pillar metal has been deposited (electroplated) over the surface of the layer 36 of barrier material and bounded by openings 31 that have been created in the layer 37 of photoresist.
- layers 40 of under bump metal have been deposited using deposition methods such as electroplating.
- the layer 36 preferably comprises titanium or copper and is preferably deposited to a thickness of between about 500 and 2000 Angstroms, and more preferably to a thickness of about 1000 Angstroms.
- the layer 38 preferably comprises copper and is preferred to be applied to a thickness of between about 10 and 100 ⁇ m, but more preferably to a thickness of about 50 ⁇ m.
- the layer 40 preferably comprises nickel and is preferred to be applied to a thickness of between about 1 and 10 ⁇ m, but more preferably to a thickness of about 4 ⁇ m.
- FIG. 10 shows a cross section where the process of the invention has further electroplated layers 42 of solder metal over the surface of the layers 40 of under bump metal (UBM) and bounded by the openings 31 that have been created in the layer 37 of photoresist.
- UBM under bump metal
- the layer 40 of UBM is electroplated over the layer 38 of pillar metal.
- the layer 42 of bump metal (typically solder) is electroplated in contact with the layer 40 of UBM to a thickness of between about 30 and 100 ⁇ m, but more preferably to a thickness of about 50 ⁇ m.
- the layers 38 , 40 and 42 of electroplated metal are centered in the opening 31 that has been created in the layer 37 of photoresist.
- the patterned layer 37 of photoresist has been removed from above the surface of the barrier layer 36 .
- the previously highlighted methods and processing conditions for the removal of a layer of photoresist can be applied for the purpose of the removal of the layer 37 that is shown in cross section in FIG. 11 .
- the invention further proceeds with the partial etching of the pillar metal 38 , as shown in cross section in FIG. 12 , using methods of wet chemical etching or an isotropic dry etch, selective to the pillar metal material. It is clear that, by adjusting the etching parameters, of which the time of etch is most beneficial, the diameter of the pillar metal 38 can be reduced by almost any desired amount.
- the limitation that is imposed on the extent to which the diameter of the pillar metal 38 is reduced is not imposed by the wet etching process, but by concerns of metal bump reliability and functionality. Too small a remaining diameter of the pillar metal 38 will affect the robustness of the solder bumps while this may also have the effect of increasing the resistance of the metal bump.
- the final two processing steps of the invention, before the solder metal is reflowed, are shown in the cross section of FIGS. 13 and 14 and affect the etching of the exposed surface of the barrier layer 36 .
- isotropic etching the exposed barrier layer 36 is completely removed as shown in FIG. 13 .
- anisotropic etching in FIG. 14 , the etching of the barrier layer 36 is partially impeded by the presence of the columns 42 of solder metal.
- the undercut shape of the pillar 38 will prevent wetting of the pillar 38 and the UBM layer 40 during subsequent solder reflow. It is also believed that exposure to air will oxidize the sidewalls of the pillar 38 and the UBM layer 40 and therefore prevent wetting of these surfaces during subsequent solder reflow.
- the sidewalls of the pillar 38 and the UBM layer 40 may be further oxidized by, for example, a thermal oxidation below reflow temperature of about 240 degrees C. such as heating in oxygen ambient at about 125 degrees C.
- FIGS. 15 and 16 show the final cross section of the solder bump of the invention after the solder metal has been reflowed.
- FIG. 15 corresponds to FIG. 13 while FIG. 16 corresponds to FIG. 14 , this relating to the etch in the barrier layer 36 that has been explained using FIGS. 13 and 14 .
- the etched layer 36 of barrier material that is shown in cross section in FIG. 15 corresponds to the etched layer 36 of barrier material that is shown in FIG. 13 .
- FIGS. 16 and 14 show the same correspondence exists between FIGS. 16 and 14 .
- FIG. 17 there is shown a cross section of a BGA package of the invention whereby the semiconductor device has been encapsulated in a molding compound.
- the elements that are highlighted in the cross section of FIG. 17 are the following:
- the columns 54 of pillar metal typically have a height of between about 10 and 100 ⁇ m, and more preferably about 50 ⁇ m.
- FIG. 18 The cross section that is shown in FIG. 18 is identical to the cross section of FIG. 17 , with the exception of an underfill 62 which is used instead of the molding compound 60 of FIG. 17 .
- the creation of the pillar metal 54 and the solder bump 56 starts using the I/O contact pads of the device 50 (not shown in FIGS. 17 and 18 ) as the contact pads; that is the I/O contact pads of the device 50 take the place of the contact pad 32 of FIGS. 15 and 16 in the creation of the pillar metal 54 and the solder bump 56 .
- the process of creating the pillar metal 54 and the solder bump 56 therefore is as follows:
- FIG. 19 there is shown a top view of an array type arrangement of I/O contact points 66 that form the contact points of the device 50 .
- This top view of the array type contact points 66 is shown as one example of where the process of creating pillar metal and solder bumps can be applied.
- FIGS. 20 and 21 show two more examples of arrangements of I/O contact pads that are provided on the surface of the device 50 , where the process of the invention can be applied.
- FIG. 20 shows a peripheral I/O pad design 68 while
- FIG. 21 shows a center type pad design 70 .
- peripheral I/O pad design 68 that is shown in FIG. 20 provides evenly distributed mechanical support for the device 50 , this is not the case for the center pad design 70 that is shown in FIG. 21 .
- additional mechanical support can be provided to the device 50 ; this is shown in a top view in FIG. 22 .
- the elements highlighted as 70 in FIG. 22 are the solder bumps that have been created on the I/O contact pads of the device 50 ; elements 72 are dummy solder bumps that can be provided in order to lend mechanical support to the device 50 .
- the symmetry of the dummy bumps 72 as shown in FIG. 22 makes clear that the device 50 is, with the dummy bumps 72 , adequately and symmetrically supported.
- solder flux In mounting semiconductor devices on the surface of a BGA substrate, it is important from a manufacturing point of view that solder flux, after the process of the solder flow has been completed, can be readily removed. This requires easy access to the surface areas of the BGA substrate where the solder flux has been able to accumulate.
- the device interconnects Consisting of pillar metal and solder bumps
- the flux that has accumulated in the gap between the semiconductor die and the substrate must be cleaned.
- FIGS. 25 and 26 show how prior-art procedures and conventions are applied to affect flux removal and encapsulant application.
- the metal pads 74 are typically surrounded by the solder mask 78 , even for small pitch I/O pad designs.
- the solder mask is determined by the type of contact pad design ( FIGS. 19 through 21 ), whereby the contact pads 74 require about 60 ⁇ m clearance for reasons of proper alignment registration. This results in the substrate design rule being more critical, allowing for less error and smaller tolerance in the design parameters.
- the height of the solder mask 78 is generally about 10 ⁇ m larger than the height of the contact pad 74 , further forming an obstacle in applying molding compound or in removing flux after the solder process has been completed.
- FIGS. 27 a through 27 f show examples of applications of the invention, as follows:
- FIG. 27 a shows the application of a solder mask over the surface that has previously been shown in FIG. 19 , the solder mask has been indicated with cross-hatched regions 90 , and the regions where no solder mask is present have been highlighted with 91 .
- FIGS. 27 b and 27 c relate to the previous FIG. 20 , and the solder mask has been highlighted as regions 90 while the regions where no solder mask is present have been highlighted with 91 .
- the design that is shown in FIG. 27 c is considered a “partial” peripheral type I/O pad configuration of a semiconductor device since the I/O pads 68 are only provided along two opposing sides of the semiconductor device 50 .
- FIGS. 27 b and 27 c can further be provided with supporting dummy solder bumps in the regions of the solder mask 90 , and these supporting dummy solder bumps have not been shown in FIGS. 27 b and 27 c.
- FIG. 27 d shows the design that has previously been shown in FIG. 21 .
- FIG. 27 e shows a design that is similar to the design of FIG. 27 d with the exception that the contact points 70 have now been provided in two columns. It is clear from these two drawings that channels have been created in the solder mask 90 that are in line with and include the contact pads. These channels allow for easy flow of cleaning fluid and therefore allow for easy removal of solder flux after the process of chip encapsulation and solder flow has been completed.
- FIG. 27 f relates to the previously shown FIG. 22 , and the above observation relating to the creation of a channel allowing for easy removal of the solder flux and for the easy flow of cleaning fluid equally applies to the design, which is shown in FIG. 27 f.
- FIGS. 28 a and 28 b demonstrate how the invention leads to the ability to reduce the pitch between I/O pads.
- FIG. 28 a shows how in prior art applications the solder mask 90 is provided, further shown in FIG. 28 a are:
- the required clearance is needed by the solder mask and requires that extra space is provided between the circumference 95 of the contact pad and the circumference 94 of the opening created in the solder mask.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
- Wire Bonding (AREA)
Abstract
A new method and package is provided for the mounting of semiconductor devices that have been provided with small-pitch Input/Output interconnect bumps. Fine pitch solder bumps, consisting of pillar metal and a solder bump, are applied directly to the I/O pads of the semiconductor device, the device is then flip-chip bonded to a substrate. Dummy bumps may be provided for cases where the I/O pads of the device are arranged such that additional mechanical support for the device is required.
Description
- This application is a Continuation application of Ser. No. 12/384,977, filed on Apr. 9, 2009, which is a Continuation application of Ser. No. 09/837,007, filed on Apr. 18, 2001, now pending, which is a Continuation-in-part of Ser. No. 09/798,654, filed on Mar. 5, 2001, now U.S. Pat. No. 6,818,545, all of which are incorporated herein by reference.
- (1) Field of the Invention
- The invention relates to the fabrication of integrated circuit devices, and more particularly, to a method and package for packaging semiconductor devices.
- (2) Description of the Prior Art
- Semiconductor device performance improvements are largely achieved by reducing device dimensions, a development that has, at the same time, resulted in considerable increases in device density and device complexity. These developments have resulted in placing increasing demands on the methods and techniques that are used to access the devices, also referred to as Input/Output (I/O) capabilities of the device. This has led to new methods of packaging semiconductor devices whereby structures such as Ball Grid Array (BGA) devices and Column Grid Array (CGA) devices have been developed. A Ball Grid Array (BGA) is an array of solder balls placed on a chip carrier. The balls contact a printed circuit board in an array configuration where, after reheat, the balls connect the chip to the printed circuit board. BGA's are known with 40, 50 and 60 mil spacings. Due to the increased device miniaturization, the impact that device interconnects have on device performance and device cost has also become a larger factor in package development. Device interconnects, due to their increase in length in order to package complex devices and connect these devices to surrounding circuitry, tend to have an increasingly negative impact on the package performance. For longer and more robust metal interconnects, the parasitic capacitance and resistance of the metal interconnection increase, which degrades the chip performance significantly. Of particular concern in this respect is the voltage drop along power and ground buses and the RC delay that is introduced in the critical signal paths.
- One of the approaches that has been taken to solve these packaging problems is to develop low resistance metals (such as copper) for the interconnect wires, while low dielectric constant materials are being used in between signal lines. Another approach to solve problems of I/O capability has been to design chips and chip packaging techniques that offer dependable methods of increased interconnecting of chips at a reasonable manufacturing cost.
- One of the more recent developments that is aimed at increasing the Input-Output (I/O) capabilities of semiconductor device packages is the development of Flip Chip Packages. Flip-chip technology fabricates bumps (typically Pb/Sn solders) on aluminum pads on a semiconductor device. The bumps are interconnected directly to the package media, which are usually ceramic or plastic based. The flip-chip is bonded face down to the package medium through the shortest paths. These technologies can be applied not only to single-chip packaging, but also to higher or integrated levels of packaging in which the packages are larger, and to more sophisticated substrates that accommodate several chips to form larger functional units.
- In general, Chip-On-Board (COB) techniques are used to attach semiconductor dies to a printed circuit board; these techniques include the technical disciplines of flip chip attachment, wirebonding, and tape automated bonding (TAB). Flip chip attachment consists of attaching a flip chip to a printed circuit board or to another substrate. A flip chip is a semiconductor chip that has a pattern or arrays of terminals that are spaced around an active surface area of the flip chip, allowing for face down mounting of the flip chip to a substrate.
- Generally, the flip chip active surface has one of the following electrical connectors: BGA (wherein an array of minute solder balls is created on the surface of the flip chip that attaches to the substrate); Slightly Larger than Integrated Circuit Carrier (SLICC) (which is similar to the BGA but has a smaller solder ball pitch and diameter than the BGA); a Pin Grid Array (PGA) (wherein an array of small pins extends substantially perpendicularly from the attachment surface of a flip chip, such that the pins conform to a specific arrangement on a printed circuit board or other substrate for attachment thereto). With the BGA or SLICC, the solder or other conductive ball arrangement on the flip chip must be a mirror image of the connecting bond pads on the printed circuit board so that precise connection can be made.
- In creating semiconductor devices, the technology of interconnecting devices and device features is a continuing challenge in the era of sub-micron devices. Bond pads and solder bumps are frequently used for this purpose, whereby continuous effort is dedicated to creating bond pads and solder bumps that are simple, reliable and inexpensive.
- Bond pads are generally used to wire device elements and to provide exposed contact regions of the die. These contact regions are suitable for wiring the die to components that are external to the die. An example is where a bond wire is attached to a bond pad of a semiconductor die at one end and to a portion of a Printed Circuit Board at the other end of the wire. The art is constantly striving to achieve improvements in the creation of bond pads that simplify the manufacturing process while enhancing bond pad reliability.
- Materials that are typically used for bond pads include metallic materials, such as tungsten and aluminum, while heavily doped polysilicon can also be used for contacting material. The bond pad is formed on the top surface of the semiconductor device whereby the electrically conducting material is frequently embedded in an insulating layer of dielectric. In using polysilicon as the bond pad material, polysilicon can be doped with an n-type dopant for contacting N-regions while it can be doped with p-type dopant for contacting P-regions. This approach of doping avoids inter-diffusion of the dopants and dopant migration. It is clear that low contact resistance for the bond pad area is required while concerns of avoidance of moisture or chemical solvent absorption, thin film adhesion characteristics, delamination and cracking play an important part in the creation of bond pads.
- The conventional processing sequence that is used to create an aluminum bond pad starts with a semiconductor surface, typically the surface of a silicon single crystalline substrate. A layer of Intra Metal Dielectric (IMD) is deposited over the surface, a layer of metal, typically aluminum, is deposited over the surface of the layer of IMD. The layer of metal is patterned and etched typically using a layer of photoresist and conventional methods of photolithography and etching. After a bond pad has been created in this manner, a layer of passivation is deposited over the layer of IMD. An opening that aligns with the bond pad is created in the layer of passivation, again using methods of photolithography and etching.
- A conventional method that is used to create a solder bump over a contact pad is next highlighted.
FIGS. 1 through 4 show an example of one of the methods that is used to create an interconnect bump. Asemiconductor surface 10 has been provided with ametal contact pad 14; thesemiconductor surface 10 is protected with alayer 12 of passivation. Anopening 19 has been created in thelayer 12 of passivation; the surface of themetal contact pad 14 is exposed through thisopening 19. Next, inFIG. 2 , adielectric layer 16 is deposited over the surface of thelayer 12 of passivation. Thelayer 16 of dielectric is patterned and etched, creating anopening 21 in thelayer 16 of dielectric that aligns with themetal pad 14 and that partially exposes the surface of themetal pad 14. Alayer 18 of metal, typically using Under-Bump-Metallurgy (UBM), is created over thelayer 16 of dielectric;layer 18 of metal is in contact with the surface of themetal pad 14 inside opening 21. The region oflayer 18 of metal that is above themetal pad 14 will, at a later point in the processing, form a pedestal over which the interconnect bump will be formed. This pedestal can be further extended in a vertical direction by the deposition and patterning of one or more additional layers that may contain a photoresist or a dielectric material; these additional layers are not shown inFIG. 2 . These layers essentially have the shape oflayer 16 and are removed during one of the final processing steps that is applied for the formation of the interconnect bump. - A layer of photoresist (not shown) is deposited, patterned and etched, creating an opening that aligns with the
contact pad 14. Alayer 20 of metal, such as copper or nickel, shown inFIG. 3 , that forms an integral part of the pedestal of the to-be-created interconnect bump, is next electroplated in the opening created in the layer of photoresist and on the surface of thelayer 18 of metal, whereby thelayer 18 serves as the lower electrode during the plating process.Layer 20 in prior art applications has a thickness of between about 1 and 10 μm with a typical value of about 5 μm. Thefinal layer 22 of solder is electroplated on the surface oflayer 20. The patterned layer of photoresist is then removed. - The
layer 18 of metal is next etched, as inFIG. 4 , leaving in place only the pedestal for the interconnect bump. During this etch process the depositedlayers pedestal 18 inFIG. 2 , these layers are also removed at this time. - A solder paste or flux (not shown) is now applied to the
layer 22 of solder, and thesolder 22 is melted in a reflow surface typically under a nitrogen atmosphere, creating the spherically shapedinterconnect bump 22 that is shown inFIG. 4 . - In addition to the above indicated additional layers of dielectric or photoresist that can be used to further shape the pedestal of the interconnect bump, many of the applications that are aimed at creating interconnect bumps make use of layers of metal that serve as barrier layers or that have other specific purposes, such as the improvement of adhesion of the various overlying layers or the prevention of diffusion of materials between adjacent layers. These layers collectively form
layer 18 ofFIG. 4 and have, as is clear from the above, an effect on the shape of the completed bump and are therefore frequently referred to as Ball Limiting Metal (BLM) layer. Frequently used BLM layers are successive and overlying layers of chrome, copper and gold, whereby the chrome is used to enhance adhesion with an underlying aluminum contact pad, the copper layer serves to prevent diffusion of solder materials into underlying layers, while the gold layer serves to prevent oxidation of the surface of the copper layer. The BLM layer islayer 18 ofFIGS. 2 through 4 . - Increased device density brings with it increased closeness of components and elements that are part of the created semiconductor devices. This increased closeness is expressed as a reduction in the spacing or “pitch” between elements of a semiconductor device. State-of-the-art technology uses solder bumps having a pitch of about 200 μm, which imposes a limitation on further increasing device density. The limitation in further reducing the pitch of solder bumps is imposed by concerns of reliability, which impose a relatively large ball size for the solder bump. This relatively large solder ball restricts further reducing the solder ball pitch.
- In the majority of applications, solder bumps are used as interconnections between I/O bond pads and a substrate or printed circuit board. A large solder ball brings with it high standoff since a solder ball with high standoff has better thermal performance (CTE mismatching is easier to avoid resulting in reduced thermal stress on the solder balls). Large solder balls are therefore required in order to maintain interconnect reliability. Low-alpha solder is applied to avoid soft error (electrical or functional errors) from occurring, thereby eliminating the potential for inadvertent memory discharge and incorrect setting of the voltage (1 or 0).
- U.S. Pat. No. 6,169,329 (Farnworth et al.) shows standardized die to substrate bonding locations (Ball grid or other array).
- U.S. Pat. No. 5,741,726 (Barber) shows an assembly with minimized bond finger connections.
- U.S. Pat. No. 5,744,843 (Efland et al.), U.S. Pat. No. 5,172,471 (Huang), U.S. Pat. No. 6,060,683 (Estrade), U.S. Pat. No. 5,643,830 (Rostoker et al.), and U.S. Pat. No. 6,160,715 (Degani et al.) are related patents.
- The invention addresses concerns of creating a BGA type package whereby the pitch of the solder ball or solder bump of the device interconnect is in the range of 200 μm or less. The conventional, state-of-the-art solder process runs into limitations for such a fine interconnect pad pitch. The invention provides a method and a package for attaching devices having very small ball pitch to an interconnect medium such as a Printed Circuit Board.
- A principal objective of the invention is to provide a method of creating a fine-pitch solder bump.
- Another objective of the invention is to provide a method of creating smaller solder bumps, further allowing for the creation of fine-pitched solder bumps.
- Another objective of the invention is to provide a cost-effective method to create a fine-pitch solder bump of high reliability, due to the increased height of the solder bump. This objective is based on the belief that solder bump reliability improves proportionally to the square of the distance between the solder ball and the underlying substrate.
- Another objective of the invention is to provide a cost-effective way of creating a solder bump. This cost-effective way is realized by using standard solder material and therewith eliminating the need for expensive “low-a solder”.
- Another objective of the invention is to provide a cost-effective method of creating a fine-pitch solder bump by reducing the alpha-effect on memory products.
- Another objective of the invention is to provide a method of creating solder bumps which allows an easy method of cleaning flux after the process of creating the solder bumps has been completed.
- Another objective of the invention is to provide a method of creating solder bumps which allows easy application of underfill.
- Another objective of the invention is to provide a method for applying fine-pitch solder bumps directly to the I/O pads of a semiconductor device, without a redistribution interface, and bonding the semiconductor device directly to a Ball Grid Array substrate using the flip-chip bonding approach.
- Another objective of the invention is to provide a method for shortening the interconnection between a semiconductor device and a substrate on which the semiconductor device is mounted, thus improving the electrical performance of the semiconductor device.
- Yet another objective of the invention is to eliminate conventional methods of re-distribution of device I/O interconnect, thereby making packaging of the device more cost-effective and eliminating performance degradation.
- A still further objective of the invention is to improve chip accessibility during testing of the device, thus eliminating the need for special test fixtures.
- A still further objective of the invention is to improve performance and device reliability of BGA packages that are used for the mounting of semiconductor devices having small-pitch I/O interconnect bumps.
- A still further objective of the invention is to perform Chip Scale Packaging (CSP) without re-distribution, including for various pad designs such as peripheral or central pad designs.
- A still further objective of the invention is to provide a method of mounting small-pitch semiconductor devices in such a manner that flux removal and the dispensing of device encapsulants is improved.
- In accordance with the objectives of the invention, a new method and package is provided for the mounting of semiconductor devices that have been provided with small-pitch Input/Output interconnect bumps. Fine pitch solder bumps, consisting of pillar metal and a solder bump, are applied directly to the I/O pads of the semiconductor device, and the device is then flip-chip bonded to a substrate. Dummy bumps may be provided for cases where the I/O pads of the device are arranged such that additional mechanical support for the device is required.
-
FIGS. 1 through 4 show a prior-art method of creating a solder bump overlying a point of electrical contact, as follows: -
FIG. 1 shows a cross section of a semiconductor surface on the surface of which a contact pad has been created; the semiconductor surface is covered with a patterned layer of passivation. -
FIG. 2 shows a cross section ofFIG. 1 after a patterned layer of dielectric and a layer of metal have been created on the semiconductor surface. -
FIG. 3 shows a cross section ofFIG. 2 after a layer of bump metal and solder compound have been selectively deposited. -
FIG. 4 show a cross section that after excessive layers have been removed from the semiconductor surface and after the solder has been reflowed, the interconnect bump is formed. -
FIG. 5 shows a cross section of a BGA package; a semiconductor device is encapsulated in a molding compound. -
FIG. 6 shows a cross section of a BGA package; an underfill is provided to the semiconductor device. -
FIGS. 7 through 16 address the invention, as follows: -
FIG. 7 shows a cross section of a semiconductor surface, a layer of dielectric, metal pads, a layer of passivation, and a layer of barrier material. -
FIG. 8 shows a cross section after a patterned layer of photoresist has been created over the structure ofFIG. 7 . -
FIG. 9 shows a cross section after pillar metal has been created aligned with the metal pads and under bump metal has been deposited over the surface of the pillar metal. -
FIG. 10 shows a cross section after solder metal has been plated over the under bump metal. -
FIG. 11 shows a cross section after the patterned layer of photoresist has been removed from the surface. -
FIG. 12 shows a cross section after the diameter of the pillar metal has been reduced. -
FIG. 13 shows a cross section after the barrier layer has been etched using isotropic etching, creating a first profile. -
FIG. 14 shows a cross section after the barrier layer has been etched using anisotropic etching or RIE, creating a second profile. -
FIG. 15 shows a cross-section of a first completed solder bump of the present invention. -
FIG. 16 shows a cross-section of a second completed solder bump of the present invention. -
FIG. 17 shows a cross section of a BGA package of the invention; the semiconductor device is encapsulated in a molding compound. -
FIG. 18 shows a cross section of a BGA package of the invention; an underfill is provided to the semiconductor device. -
FIG. 19 shows a top view of an array type I/O pad configuration of the semiconductor device. -
FIG. 20 shows a top view of a peripheral type I/O pad configuration of the semiconductor device. -
FIG. 21 shows a top view of a center type I/O pad configuration of the semiconductor device. -
FIG. 22 shows a top view of a center type I/O pad configuration of the semiconductor device; dummy solder bumps have been provided in support of the semiconductor device. -
FIG. 23 shows a top view of the substrate with exposed I/O contact pads; this exposure is accomplished by not depositing the solder mask in close proximity to the contact pads of the semiconductor device. -
FIG. 24 shows a cross section of the substrate ofFIG. 23 . -
FIG. 25 shows a top view of a prior-art substrate with exposed I/O contact pads; a solder mask is in close proximity to the contact pads of a semiconductor device. -
FIG. 26 shows a cross section of the substrate ofFIG. 25 . -
FIGS. 27 a through 27 f show examples of applications of the invention. -
FIGS. 28 a and 28 b show a conventional substrate and a substrate of the invention and demonstrate how the invention leads to the ability to reduce the pitch between I/O pads. - The above stated objective of improving chip accessibility during testing of the device, thus eliminating the need for special test fixtures, can further be highlighted as follows. The disclosed method of the invention, using Chip Scale Packaging (CSP), can control the cost of testing CSP devices by keeping the same body size of the chip and by using the same size substrate. For conventional CSP packages, the chip may have different body sizes, which imposes the requirement of different size test fixtures. With the continued reduction of the size of semiconductor devices, additional and varying device sizes are expected to be used. This would result in ever increasing costs for back-end testing of the devices in a production environment. The invention provides a method where these additional back-end testing costs can be avoided.
- Referring now to
FIG. 5 , there is shown a cross section of a typical flip chip package with a semiconductor device being encapsulated in a molding compound. An Integrated Circuit (IC)device 10 enters the process as a separate unit with contact points (balls 16) attached to the bottom of thechip 10. TheIC 10 is placed on the surface of aBGA substrate 12, and an (optional)interconnect substrate 14 has been provided for additional routing of the electrical network to which thedevice 10 is attached.Balls 18 that are connected to the lower surface of thesubstrate 12 make contact with surrounding circuitry (not shown). The paths of electrical interconnect of thedevice 10 as shown in cross section inFIG. 5 are as follows: contact bumps (points of I/O interconnect, not shown inFIG. 5 ) are provided on the surface of the device that faces thesubstrate 12 and thecontact balls 16 are connected to these contact bumps. Contactballs 16 interface with points of contact (contact pads) provided in the surface of the (optional)interconnect network 14 or, for applications where theinterconnect interface 14 is not provided, with points of contact (contact pads) provided in the surface of the Ball Grid Array (BGA)substrate 12.BGA substrate 12 may further have been provided with one or more layers of interconnect metal; all of the interfaces (theinterconnect substrate 12 and the optional redistribution lines provided in BGA substrate 12) result in interconnectingballs 16 with theballs 18. TheBalls 18 are the contact points that connect the package that is shown in cross section inFIG. 5 to surrounding circuitry. - Whereas the cross section that is shown in
FIG. 5 shows thecontact balls 16 for the establishment of contacts between thedevice 10 and theunderlying substrate 12, some prior art applications still used wire bond connections (not shown inFIG. 5 ), in order to achieve optimum electrical performance of the device package. - Further shown in the cross section of
FIG. 5 islayer 19, which may be provided over the surface of thesemiconductor device 10 facing thesubstrate 12. This re-distribution layer provides interconnect lines over the surface of thedevice 10 and is required in prior art applications if solder bumps are required on current pad layout for wire bonding purposes. The main purpose of the redistribution layer is to enlarge the pitch of solder bump interconnects if the bond pads are originally designed for wire bonding applications. It will be clear from later explanations that the invention removes the need for the redistribution layer. -
FIG. 6 shows a cross section of a conventional BGA package whereby thesemiconductor device 10 is provided withunderfill 22, and no molding compound (20,FIG. 5 ) has been provided in the package that is shown in cross section inFIG. 6 . All the other statements that relate to the electrical interconnection of thedevice 10 ofFIG. 6 are identical to the statements that have been made in the description provided for the package ofFIG. 5 . It should be noted inFIG. 6 that the sides of theunderfill 22 are sloping such that the physical contact between theunderfill 22 and thesubstrate 12 is extended beyond the dimensions of the bottom surface of thechip 10. This is a normal phenomenon with liquid underfill, which enhances the mechanical strength between thesubstrate 12 and theIC chip 10. - Referring now to
FIG. 15 , there is shown a cross section of a first solder bump that has been created in accordance with the above referenced related application. The elements that are shown inFIG. 15 that form part of the solder bump of the related application are the following: -
- 10, a semiconductor surface such as the surface of a substrate,
- 30, a layer of dielectric that has been deposited over the
semiconductor surface 10, - 32, contact pads that have been created on the surface of the
layer 30 of dielectric, - 34, a patterned layer of passivation that has been deposited over the surface of the
layer 30 of dielectric; openings have been created in thelayer 34 of passivation, partially exposing the surface of thecontact pads 32, - 36, an isotropically etched layer of barrier metal; this layer of barrier metal has been isotropically etched; that is, the barrier metal has been completely removed from the surface of the
layer 34 of passivation except where the barrier metal is covered by overlying pillar metal (38) of a solder bump, - 38, the pillar metal of the solder bump,
- 40, a layer of under bump metal created overlying the
pillar metal 38 of the solder bump, wherein a horizontal distance between an edge of the underbump metal layer 40 and an edge of themetal pillar 38 of the solder bump is greater than 0.2 micrometers, wherein thelayer 40 of under bump metal is an electroplated nickel layer with a thickness between 1 and 10 micrometers, and - 42, a solder metal.
- The cross section that is shown in
FIG. 16 is similar to the cross section ofFIG. 15 with the exception oflayer 35, which is an anisotropically etched layer of barrier metal (etched after thesolder bump 42 has been created) which, due to the nature of the anisotropic etch, protrudes from thepillar metal 38 as shown in the cross section ofFIG. 16 . - The cross sections that are shown in
FIGS. 15 and 16 and that have been extracted from the above referenced related application have been shown in order to highlight that the referenced application provides a method of creating: - a fine-pitch solder bump,
- smaller solder bumps,
- a fine-pitch solder bump of high reliability due to the increased height of the solder bump,
- a cost-effective solder bump by using standard solder material and eliminating the need for expensive “low-a solder”,
- a solder bump that allows easy cleaning of flux after the process of flip chip assembly and before the process of underfill and encapsulation, and
- a solder bump which allows easy application of underfill.
-
FIGS. 7 through 16 provide details of the process of the invention which leads to the solder bumps that have been shown in cross section inFIGS. 5 and 6 . -
FIG. 7 shows a cross section of asubstrate 10 and the following elements: -
- 10, a silicon substrate over the surface of which
metal contact pads 32 have been created, - 30, a layer of dielectric that has been deposited over the surface of the
substrate 10, - 32, the metal contact pads, typically comprising aluminum, created over the surface of the
layer 30 of dielectric, - 34, a layer of passivation that has been deposited over the surface of the
layer 30 of dielectric. Openings have been created in thelayer 34 of passivation that align with themetal contact pads 32, partially exposing the surface of thecontact pads 32, - 36, a layer of barrier metal that has been created over the surface of the
layer 34 of passivation, including the openings that have been created in thelayer 34 of passivation, contacting theunderlying contact pads 32.
- 10, a silicon substrate over the surface of which
- As dielectric material for the
layer 30 can be used any of the typically applied dielectrics such as silicon dioxide (doped or undoped), silicon oxynitride, parylene, polyimide, spin-on-glass, plasma oxide or LPCVD oxide. The material that is used for the deposition of thelayer 30 of dielectric of the invention is not limited to the materials indicated above, but can include any of the commonly used dielectrics in the art. - The creation of the
metal contact pads 32 can use conventional methods of metal rf sputtering at a temperature between about 100 and 400 degrees C. and a pressure between about 1 and 100 mTorr using as source, for instance, aluminum-copper material (for the creation of aluminum contact pads) at a flow rate of between about 10 and 400 sccm to a thickness between about 4000 and 11000 Angstroms. After a layer of metal has been deposited, the layer must be patterned and etched to create thealuminum contact pads 32. This patterning and etching uses conventional methods of photolithography and patterning and etching. A deposited layer of AICu can be etched using Cl2/Ar as an etchant at a temperature between 50 and 200 degrees C., an etchant flow rate of about 20 sccm for the Cl2 and 1000 sccm for the Ar, a pressure between about 50 mTorr and 10 Torr, and a time of the etch between 30 and 200 seconds. - In a typical application, insulating layers, such as silicon oxide and oxygen-containing polymers, are deposited using a Chemical Vapor Deposition (CVD) technique over the surface of various layers of conducting lines in a semiconductor device or substrate to separate the conductive interconnect lines from each other. The insulating layers can also be deposited over patterned layers of interconnecting lines; electrical contact between successive layers of interconnecting lines is established with metal vias created in the insulating layers. Electrical contact to the chip is typically established by means of bonding pads or contact pads that form electrical interfaces with patterned levels of interconnecting metal lines. Signal lines and power/ground lines can be connected to the bonding pads or contact pads. After the bonding pads or contact pads have been created on the surfaces of the chip, the bonding pads or contact pads are passivated and electrically insulated by the deposition of a passivation layer over the surface of the bonding pads. A passivation layer can contain silicon oxide/silicon nitride (SiO2/Si3N4) deposited by CVD. The passivation layer is patterned and etched to create openings in the passivation layer for the bonding pads or contact pads after which a second and relatively thick passivation layer can be deposited for further insulation and protection of the surface of the chips from moisture and other contaminants and from mechanical damage during assembling of the chips.
- Various materials have found application in the creation of passivation layers. The passivation layer can contain silicon oxide/silicon nitride (SiO2/Si3N4) deposited by CVD, or a passivation layer can be a layer of photosensitive polyimide or can comprise titanium nitride. Another material often used for a passivation layer is phosphorous doped silicon dioxide that is typically deposited over a final layer of aluminum interconnect using a Low Temperature CVD process. In recent years, photosensitive polyimide has frequently been used for the creation of passivation layers. Conventional polyimides have a number of attractive characteristics for their application in a semiconductor device structure which have been highlighted above. Photosensitive polyimides have these same characteristics but can, in addition, be patterned like a photoresist mask and can, after patterning and etching, remain on the surface on which it has been deposited to serve as a passivation layer. Typically and to improve surface adhesion and tension reduction, a precursor layer is first deposited by, for example, conventional photoresist spin coating. The precursor is, after a low temperature pre-bake, exposed using, for example, a step and repeat projection aligner and Ultra Violet (UV) light as a light source. The portions of the precursor that have been exposed in this manner are cross-linked, thereby leaving unexposed regions (that are not cross-linked) over the bonding pads. During subsequent development, the unexposed polyimide precursor layer (over the bonding pads) is dissolved, thereby providing openings over the bonding pads. A final step of thermal curing leaves a permanent high quality passivation layer of polyimide over the substrate.
- The preferred material of the invention for the deposition of the
layer 34 of passivation is Plasma Enhanced silicon nitride (PE Si3N4), deposited using PECVD technology at a temperature between about 350 and 450 degrees C. with a pressure of between about 2.0 and 2.8 Torr for the duration between about 8 and 12 seconds. Thelayer 34 of PE Si3N4 can be deposited to a thickness between about 200 and 800 Angstroms. - The
layer 34 of PE Si3N4 is next patterned and etched to create openings in thelayer 34 that overlay and align with theunderlying contact pads 32. - The etching of the
layer 34 of passivation can use Ar/CF4 as an etchant at a temperature of between about 120 and 160 degrees C. and a pressure of between about 0.30 and 0.40 Torr for a time of between about 33 and 39 seconds using a dry etch process. - The etching of the
layer 34 of passivation can also use He/NF3 as an etchant at a temperature of between about 80 and 100 degrees C. and a pressure of between about 1.20 and 1.30 Torr for a time of between about 20 and 30 seconds using a dry etch process. - Barrier layers, such as the
layer 36, are typically used to prevent diffusion of an interconnect metal into surrounding layers of dielectric and silicon. Some of the considerations that apply in selecting a material for the barrier layer become apparent by using copper for interconnect metal as an example. Although copper has a relatively low cost and low resistivity, it has a relatively large diffusion coefficient into silicon dioxide and silicon and is therefore not typically used as an interconnect metal. Copper from an interconnect may diffuse into the silicon dioxide layer causing the dielectric to be conductive and decreasing the dielectric strength of the silicon dioxide layer. Copper interconnects should be encapsulated by at least one diffusion barrier to prevent diffusion into the silicon dioxide layer. Silicon nitride is a diffusion barrier to copper, but the prior art teaches that the interconnects should not lie on a silicon nitride layer because it has a high dielectric constant compared with silicon dioxide. The high dielectric constant causes an undesired increase in capacitance between the interconnect and the substrate. - A typical diffusion barrier layer may contain silicon nitride, phosphosilicate glass (PSG), silicon oxynitride, aluminum, aluminum oxide (AlxOy), tantalum, Ti/TiN or Ti/W, nionbium, or molybdenum and is more preferably formed from TiN. The barrier layer can also be used to improve the adhesion of the subsequent overlying tungsten layer.
- The barrier layer is preferably between about 500 and 2000 Angstroms thick and more preferably about 300 Angstroms thick, and can be deposited using rf sputtering.
- After the creation of the
barrier layer 36, a seed layer (not shown inFIG. 7 ) can be blanket deposited over the surface of the wafer. For a seed layer that is blanket deposited over the surface of the wafer, any of the conventional metallic seed materials can be used. The metallic seed layer can be deposited using a sputter chamber or an Ion Metal Plasma (IMP) chamber at a temperature of between about 0 and 300 degrees C. and a pressure of between about 1 and 100 mTorr, using (for instance) copper or a copper alloy as the source (as highlighted above) at a flow rate of between about 10 and 400 sccm and using argon as an ambient gas. -
FIG. 8 shows a cross section of the substrate after alayer 37 of photoresist has been deposited over the surface of thebarrier layer 36. Thelayer 37 of photoresist has been patterned and etched, creatingopenings 31 in thelayer 37 of photoresist. Theopenings 31 partially expose the surface of thebarrier layer 36. Thelayer 37 of photoresist is typically applied to a thickness of between about 100 and 200 μm, but more preferably to a thickness of about 150 μm. - The methods used for the deposition and development of the
layer 37 of photoresist uses conventional methods of photolithography. Photolithography is a common approach wherein patterned layers are formed by spinning on a layer of photoresist, projecting light through a photomask with the desired pattern onto the photoresist to expose the photoresist to the pattern, developing the photoresist, washing off the undeveloped photoresist, and plasma etching to clean out the areas where the photoresist has been washed away. The exposed resist may be rendered soluble (positive working) and washed away, or insoluble (negative working) and form the pattern. - The deposited
layer 37 of photoresist can, prior to patterning and etching, be cured or pre-baked, further hardening the surface of thelayer 37 of photoresist. - The
layer 37 of photoresist can be etched by applying O2 plasma and then wet stripping by using H2SO4, H2O2 and NH4OH solution. Sulfuric acid (H2SO4) and mixtures of H2SO4 with other oxidizing agents such as hydrogen peroxide (H2O2) are widely used in stripping photoresist after the photoresist has been stripped by other means. Wafers to be stripped can be immersed in the mixture at a temperature between about 100 degrees C. and about 150 degrees C. for 5 to 10 minutes and then subjected to a thorough cleaning with deionized water and dried by dry nitrogen. Inorganic resist strippers, such as the sulfuric acid mixtures, are very effective in the residual free removal of highly postbaked resist. They are more effective than organic strippers and the longer the immersion time, the cleaner and more residue-free wafer surface can be obtained. - The
photoresist layer 37 can also be partially removed using plasma oxygen ashing and careful wet clean. The oxygen plasma ashing is heating the photoresist in a highly oxidized environment, such as an oxygen plasma, thereby converting the photoresist to an easily removed ash. The oxygen plasma ashing can be followed by a native oxide dip for 90 seconds in a 200:1 diluted solution of hydrofluoric acid. -
FIG. 9 shows a cross section of thesubstrate 10 after alayer 38 of pillar metal has been deposited (electroplated) over the surface of thelayer 36 of barrier material and bounded byopenings 31 that have been created in thelayer 37 of photoresist. Over the surface of thelayers 38 of metal, which will be referred to as pillar metal in view of the role these layers play in the completed structure of the solder bumps of the invention, layers 40 of under bump metal have been deposited using deposition methods such as electroplating. - The
layer 36 preferably comprises titanium or copper and is preferably deposited to a thickness of between about 500 and 2000 Angstroms, and more preferably to a thickness of about 1000 Angstroms. - The
layer 38 preferably comprises copper and is preferred to be applied to a thickness of between about 10 and 100 μm, but more preferably to a thickness of about 50 μm. - The
layer 40 preferably comprises nickel and is preferred to be applied to a thickness of between about 1 and 10 μm, but more preferably to a thickness of about 4 μm. -
FIG. 10 shows a cross section where the process of the invention has further electroplatedlayers 42 of solder metal over the surface of thelayers 40 of under bump metal (UBM) and bounded by theopenings 31 that have been created in thelayer 37 of photoresist. - The
layer 40 of UBM, typically of nickel and of a thickness between about 1 and 10 μm, is electroplated over thelayer 38 of pillar metal. Thelayer 42 of bump metal (typically solder) is electroplated in contact with thelayer 40 of UBM to a thickness of between about 30 and 100 μm, but more preferably to a thickness of about 50 μm. Thelayers opening 31 that has been created in thelayer 37 of photoresist. - In the cross section that is shown in
FIG. 11 , it is shown that the patternedlayer 37 of photoresist has been removed from above the surface of thebarrier layer 36. The previously highlighted methods and processing conditions for the removal of a layer of photoresist can be applied for the purpose of the removal of thelayer 37 that is shown in cross section inFIG. 11 . The invention further proceeds with the partial etching of thepillar metal 38, as shown in cross section inFIG. 12 , using methods of wet chemical etching or an isotropic dry etch, selective to the pillar metal material. It is clear that, by adjusting the etching parameters, of which the time of etch is most beneficial, the diameter of thepillar metal 38 can be reduced by almost any desired amount. The limitation that is imposed on the extent to which the diameter of thepillar metal 38 is reduced is not imposed by the wet etching process, but by concerns of metal bump reliability and functionality. Too small a remaining diameter of thepillar metal 38 will affect the robustness of the solder bumps while this may also have the effect of increasing the resistance of the metal bump. - The final two processing steps of the invention, before the solder metal is reflowed, are shown in the cross section of
FIGS. 13 and 14 and affect the etching of the exposed surface of thebarrier layer 36. Using isotropic etching, the exposedbarrier layer 36 is completely removed as shown inFIG. 13 . Using anisotropic etching, inFIG. 14 , the etching of thebarrier layer 36 is partially impeded by the presence of thecolumns 42 of solder metal. - It is believed that the undercut shape of the
pillar 38 will prevent wetting of thepillar 38 and theUBM layer 40 during subsequent solder reflow. It is also believed that exposure to air will oxidize the sidewalls of thepillar 38 and theUBM layer 40 and therefore prevent wetting of these surfaces during subsequent solder reflow. Optionally, the sidewalls of thepillar 38 and theUBM layer 40 may be further oxidized by, for example, a thermal oxidation below reflow temperature of about 240 degrees C. such as heating in oxygen ambient at about 125 degrees C. -
FIGS. 15 and 16 show the final cross section of the solder bump of the invention after the solder metal has been reflowed.FIG. 15 corresponds toFIG. 13 whileFIG. 16 corresponds toFIG. 14 , this relating to the etch in thebarrier layer 36 that has been explained usingFIGS. 13 and 14 . It is noted that the etchedlayer 36 of barrier material that is shown in cross section inFIG. 15 corresponds to the etchedlayer 36 of barrier material that is shown inFIG. 13 . The same correspondence exists betweenFIGS. 16 and 14 . - The above summarized processing steps of electroplating that are used for the creation of a metal bump can be supplemented by the step of curing or pre-baking of the layer of photoresist after this layer has been deposited.
- To review and summarize the invention:
-
- prior to and in preparation for the invention, a semiconductor surface is provided, a layer of dielectric has been deposited over the semiconductor surface, a contact pad has been provided on the layer of dielectric, the contact pad has an exposed surface, a layer of passivation has been deposited over a semiconductor surface including the surface of said contact pad, and the layer of passivation has been patterned and etched, creating an opening in the layer of passivation, partially exposing the surface of the contact pad, the opening in the layer of passivation is centered with respect to the contact pad
- the invention starts with a barrier layer deposited over the surface of the layer of passivation, making contact with the contact pad through the opening created in the layer of passivation
- a layer of photoresist is deposited over the surface of the barrier layer
- the layer of photoresist is patterned and etched, creating an opening through the layer of photoresist, wherein the opening in the layer of photoresist aligns with and is centered with respect to the contact pad
- in sequence are deposited, bounded by the opening created in the layer of photoresist, a layer of pillar metal, a layer of under bump metal and a layer of solder metal
- the patterned layer of photoresist is removed from the surface of the barrier layer
- the layer of pillar metal is etched, reducing the diameter of the pillar metal
- the barrier layer is etched, using either isotropic or anisotropic etching
- the solder metal is reflowed.
- The invention offers the following advantages:
-
- ball height is a very important reliability concern; in order to prevent thermal mismatch between overlying layers of a package (such as a semiconductor device and an underlying printed circuit board and the like), it is important to increase the distance between overlying elements; the invention provides this ability,
- a larger solder ball (for better thermal or reliability performance) results in increased pitch; this is contrary to state of the art design requirements,
- if small solder balls are used without providing height, it is very difficult to underfill the small gaps,
- the solder is, using the invention, relatively far removed from the semiconductor device which means that the application of low-alpha solder is not required (alpha-particles create soft errors in memory products; lead is known to emit alpha-particles when lead decays),
- for the pillar metal, a metal needs to be selected that has good conductivity and good ductility, such as copper. This is in order to provide improved thermal performance by counteracting thermal stress,
- the height of the pillar of the solder bump of the invention is important and should be between about 10 to 100 μm in order to achieve objectives of high stand-off, and
- the metal that is used for the under bump metal layer is important in that this metal must have good adhesion with the overlying solder during solder reflow while this metal must not solve too fast and in so doing form a barrier to the solder; in addition, the UBM metal when exposed to air can form a layer of protective oxide thus preventing solder wetting to the pillar metal around the perimeter of the UBM metal during the reflow process; nickel is therefore preferred for the UBM metal.
- Now the packaging of the invention using the solder bumps described above will be discussed. Referring now to the cross section that is shown in
FIG. 17 , there is shown a cross section of a BGA package of the invention whereby the semiconductor device has been encapsulated in a molding compound. The elements that are highlighted in the cross section ofFIG. 17 are the following: -
- 50, a semiconductor device that is mounted in the package of the invention shown in the cross section in
FIGS. 17 , - 52, a (BGA) substrate on the surface of which the
device 50 is mounted, - 54, a pillar metal of the interface between the
device 50 and theBGA substrate 52, similar to thepillar metal 38 ofFIGS. 15 and 16 , wherein thepillar metal - 56, a solder bump of the interface between the
device 50 and theBGA substrate 52, similar to thesolder bump 42 ofFIGS. 15 and 16 , - 58, contact balls that are used to interconnect the package of the invention with surrounding circuitry, and
- 60, molding compound into which the
device 50 is embedded for protection against the environment.
- 50, a semiconductor device that is mounted in the package of the invention shown in the cross section in
- The
columns 54 of pillar metal typically have a height of between about 10 and 100 μm, and more preferably about 50 μm. - The cross section that is shown in
FIG. 18 is identical to the cross section ofFIG. 17 , with the exception of anunderfill 62 which is used instead of themolding compound 60 ofFIG. 17 . - The following comment applies: the creation of the
pillar metal 54 and thesolder bump 56 starts using the I/O contact pads of the device 50 (not shown inFIGS. 17 and 18 ) as the contact pads; that is the I/O contact pads of thedevice 50 take the place of thecontact pad 32 ofFIGS. 15 and 16 in the creation of thepillar metal 54 and thesolder bump 56. The process of creating thepillar metal 54 and thesolder bump 56 therefore is as follows: -
- a layer of dielectric is deposited over an active surface of the
device 50; the active surface of thedevice 50 is the surface in which I/O contact points have been provided; this surface will face theBGA substrate 52 after mounting of thedevice 50 on theBGA substrate 52, - openings are created in the layer of dielectric, exposing the I/O contact pads of the
device 50; this brings the process of the invention to the point of the related application where the contact pads 32 (FIGS. 15 , 16) have been created on the surface of thelayer 30 of dielectric, - a layer of passivation is deposited over the surface of the layer of dielectric, similar to the
layer 34,FIGS. 15 , 16, - openings are created in the layer of passivation, partially exposing the surface of the device I/O contact pads,
- a barrier layer is deposited over the surface of the layer of passivation, identical to the
layer 36,FIGS. 15 , 16, - the
pillar metal 54 of the solder bump is formed, identical to thelayer 38,FIGS. 15 , 16, - the layer of under bump (not shown in
FIGS. 17 , 18) is created overlying thepillar metal 54, identical to thelayer 40,FIGS. 15 , 16, - the
solder bump 56 is formed, identical to thelayer 42,FIGS. 15 , 16, and - the layer of barrier metal is isotropically (
FIG. 15 ) or anisotropically (FIG. 16 ) etched.
- a layer of dielectric is deposited over an active surface of the
- Referring now to
FIG. 19 , there is shown a top view of an array type arrangement of I/O contact points 66 that form the contact points of thedevice 50. This top view of the array type contact points 66 is shown as one example of where the process of creating pillar metal and solder bumps can be applied. -
FIGS. 20 and 21 show two more examples of arrangements of I/O contact pads that are provided on the surface of thedevice 50, where the process of the invention can be applied.FIG. 20 shows a peripheral I/O pad design 68 whileFIG. 21 shows a centertype pad design 70. - While the peripheral I/
O pad design 68 that is shown inFIG. 20 provides evenly distributed mechanical support for thedevice 50, this is not the case for thecenter pad design 70 that is shown inFIG. 21 . For this kind of design, additional mechanical support can be provided to thedevice 50; this is shown in a top view inFIG. 22 . The elements highlighted as 70 inFIG. 22 are the solder bumps that have been created on the I/O contact pads of thedevice 50;elements 72 are dummy solder bumps that can be provided in order to lend mechanical support to thedevice 50. The symmetry of the dummy bumps 72 as shown inFIG. 22 makes clear that thedevice 50 is, with the dummy bumps 72, adequately and symmetrically supported. - In mounting semiconductor devices on the surface of a BGA substrate, it is important from a manufacturing point of view that solder flux, after the process of the solder flow has been completed, can be readily removed. This requires easy access to the surface areas of the BGA substrate where the solder flux has been able to accumulate. In addition, the device interconnects (consisting of pillar metal and solder bumps) must, after the pillar metal and the solder bumps have been formed in accordance with the related application, be readily available so that device encapsulants can be adequately applied. More importantly, after flip-chip assembly and solder reflow, the flux that has accumulated in the gap between the semiconductor die and the substrate must be cleaned. For these reasons, it is of value to apply the solder mask not across the entire surface of the substrate (blank deposition) but to leave open the surface areas of the substrate that are immediately adjacent to the I/O interconnects (of pillar metal and solder bumps). This design will create a channel though which the cleaning solution can flow easily. This is highlighted in a top view of
FIGS. 23 and 24 , where is shown: -
- 52, the BGA substrate on the surface of which the device 50 (not shown) is mounted,
- 74, I/O contact pads provided on the surface of the
substrate 52, - 76, interconnect traces provided on the surface of the
substrate 52, connected with thecontact pads 74, - 79, the surface region of the
substrate 52 over which no solder mask is applied, and - 80, the surface region of the
substrate 52 over which a solder mask is applied.
- This is further highlighted in the cross section of the
substrate 52 that is shown inFIG. 24 . It is clear that over theregion 79, which is the region where no solder mask is applied, themetal pads 74 are readily available so that removal of solder flux and the dispensing of encapsulants can be performed. It must be remembered that this is possible due to the height of the combinedpillar metal 54 and thesolder bump 56, which results in adequate spacing between thedevice 50 and the surface of thesubstrate 52. Further shown inFIG. 24 are routingtraces 82 that are provided on the surface of thesubstrate 52 for additional interconnect. -
FIGS. 25 and 26 show how prior-art procedures and conventions are applied to affect flux removal and encapsulant application. In the prior-art application, themetal pads 74 are typically surrounded by thesolder mask 78, even for small pitch I/O pad designs. Typically, the solder mask is determined by the type of contact pad design (FIGS. 19 through 21 ), whereby thecontact pads 74 require about 60 μm clearance for reasons of proper alignment registration. This results in the substrate design rule being more critical, allowing for less error and smaller tolerance in the design parameters. In addition, the height of thesolder mask 78 is generally about 10μm larger than the height of thecontact pad 74, further forming an obstacle in applying molding compound or in removing flux after the solder process has been completed. These aspects of the prior art are shown inFIGS. 25 and 26 , where themetal pads 74 are completely surrounded by thesolder mask 78. The present invention negates the highlighted negative effects of the solder mask on flux cleaning and on dispensing molding compound. -
FIGS. 27 a through 27 f show examples of applications of the invention, as follows: -
FIG. 27 a shows the application of a solder mask over the surface that has previously been shown inFIG. 19 , the solder mask has been indicated withcross-hatched regions 90, and the regions where no solder mask is present have been highlighted with 91. -
FIGS. 27 b and 27 c relate to the previousFIG. 20 , and the solder mask has been highlighted asregions 90 while the regions where no solder mask is present have been highlighted with 91. The design that is shown inFIG. 27 c is considered a “partial” peripheral type I/O pad configuration of a semiconductor device since the I/O pads 68 are only provided along two opposing sides of thesemiconductor device 50. - It must be noted that the designs that are shown in
FIGS. 27 b and 27 c can further be provided with supporting dummy solder bumps in the regions of thesolder mask 90, and these supporting dummy solder bumps have not been shown inFIGS. 27 b and 27 c. -
FIG. 27 d shows the design that has previously been shown inFIG. 21 .FIG. 27 e shows a design that is similar to the design ofFIG. 27 d with the exception that the contact points 70 have now been provided in two columns. It is clear from these two drawings that channels have been created in thesolder mask 90 that are in line with and include the contact pads. These channels allow for easy flow of cleaning fluid and therefore allow for easy removal of solder flux after the process of chip encapsulation and solder flow has been completed. -
FIG. 27 f relates to the previously shownFIG. 22 , and the above observation relating to the creation of a channel allowing for easy removal of the solder flux and for the easy flow of cleaning fluid equally applies to the design, which is shown inFIG. 27 f. -
FIGS. 28 a and 28 b demonstrate how the invention leads to the ability to reduce the pitch between I/O pads. -
FIG. 28 a shows how in prior art applications thesolder mask 90 is provided, further shown inFIG. 28 a are: -
- 94, the circumference of the opening that is created in the
solder mask 90, - 95, the circumference of the bond pad on the surface of a semiconductor device,
- 92, the distance (or spacing) S between two adjacent contact pads, and
- 93, the diameter D of a contact pad.
- 94, the circumference of the opening that is created in the
- In prior art applications as shown in
FIG. 28 a, the pitch between adjacent contact pads is P=D+S+2×(the required clearance between adjacent contact pads). The required clearance is needed by the solder mask and requires that extra space is provided between thecircumference 95 of the contact pad and thecircumference 94 of the opening created in the solder mask. - With the wide channel created by the invention through the solder mask, highlighted as a
channel 91 inFIG. 28 b, the conventional clearance is not required, resulting in the ability to reduce the pitch betweenadjacent contact pads 95. This leads to adistance 92′,FIG. 28 b, which is smaller than thedistance 92 ofFIG. 28 a. - Although the invention has been described and illustrated with reference to specific illustrative embodiments thereof, it is not intended that the invention be limited to those illustrative embodiments. Those skilled in the art will recognize that variations and modifications can be made without departing from the spirit of the invention. It is therefore intended to include within the invention all such variations and modifications which fall within the scope of the appended claims and equivalents thereof.
Claims (20)
1. A chip package comprising:
a substrate;
a semiconductor device over said substrate, wherein said semiconductor device comprises a silicon substrate, a dielectric layer under said silicon substrate, a first metal layer under said dielectric layer, wherein said first metal layer comprises a metal pad and a metal piece separate from said metal pad and neighboring said metal pad, and a polymer layer under said dielectric layer, under said metal pad, under said metal piece and in a gap between said metal pad and said metal piece, wherein an opening in said polymer layer is under a first contact point of said metal pad, and said first contact point is at a top of said opening;
a copper pillar between said first contact point and said substrate, wherein said copper pillar has a height between 10 and 100 micrometers, and wherein said copper pillar is connected to said first contact point through said opening;
a second metal layer between said first contact point and said copper pillar, wherein said second metal layer is on said first contact point, on a bottom surface of said polymer layer and in said opening, wherein said bottom surface has a first region directly over said second metal layer and directly under said metal pad and a second region directly under the middle of said gap, wherein said first region is at a substantially same horizontal level as said second region, and there is no significant step between said first region and said second region, and wherein said copper pillar is connected to said first contact point through said second metal layer;
a solder between said copper pillar and said substrate, wherein said solder is joined with said substrate, and wherein said solder is connected to said copper pillar; and
an underfill between said semiconductor device and said substrate, wherein said underfill contacts with said semiconductor device and said substrate and encloses said copper pillar.
2. The chip package of claim 1 further comprising a nickel-containing layer between said solder and said copper pillar.
3. The chip package of claim 2 , wherein said nickel-containing layer has a thickness between 1 and 10 micrometers.
4. The chip package of claim 1 , wherein said second metal layer comprises titanium.
5. The chip package of claim 1 , wherein said metal pad comprises copper.
6. The chip package of claim 1 , wherein said substrate comprises a solder mask, a second contact point in a channel in said solder mask, a third contact point in said channel, wherein said second contact point is separate from said third contact point, and wherein said channel has a first sidewall and a second sidewall opposite to and substantially parallel with said first sidewall, a first interconnect covered by said solder mask and connected to said second contact point through said first sidewall, and a second interconnect covered by said solder mask and connected to said third contact point through said second sidewall, wherein said solder is joined with said second contact point.
7. A chip package comprising:
a substrate;
a semiconductor device over said substrate, wherein said semiconductor device comprises a silicon substrate, a dielectric layer under said silicon substrate, a first metal layer under said dielectric layer, wherein said first metal layer comprises a metal pad and a metal piece separate from said metal pad and neighboring said metal pad, and a polymer layer under said dielectric layer, under said metal pad, under said metal piece and in a gap between said metal pad and said metal piece, wherein an opening in said polymer layer is under a first contact point of said metal pad, and said first contact point is at a top of said opening;
a copper-containing layer between said first contact point and said substrate, wherein said copper-containing layer is connected to said first contact point through said opening;
a second metal layer between said first contact point and said copper-containing layer, wherein said second metal layer is on said first contact point, on a bottom surface of said polymer layer and in said opening, wherein said bottom surface has a first region directly over said second metal layer and directly under said metal pad and a second region directly under the middle of said gap, wherein said first region is at a substantially same horizontal level as said second region, and there is no significant step between said first region and said second region, and wherein said copper-containing layer is connected to said first contact point through said second metal layer;
a solder between said copper-containing layer and said substrate, wherein said solder is joined with said substrate, and wherein said solder is connected to said copper-containing layer; and
an underfill between said semiconductor device and said substrate, wherein said underfill contacts with said semiconductor device and said substrate and encloses said solder.
8. The chip package of claim 7 , wherein said second metal layer comprises titanium.
9. The chip package of claim 7 , wherein said metal pad comprises copper.
10. The chip package of claim 7 , wherein said copper-containing layer has a thickness between 10 and 100 micrometers.
11. The chip package of claim 7 , wherein said substrate comprises a solder mask, a second contact point in a channel in said solder mask, a third contact point in said channel, wherein said second contact point is separate from said third contact point, and wherein said channel has a first sidewall and a second sidewall opposite to and substantially parallel with said first sidewall, a first interconnect covered by said solder mask and connected to said second contact point through said first sidewall, and a second interconnect covered by said solder mask and connected to said third contact point through said second sidewall, wherein said solder is joined with said second contact point.
12. A chip package comprising:
a substrate;
a semiconductor device over said substrate, wherein said semiconductor device comprises a silicon substrate, a dielectric layer under said silicon substrate, a first metal layer under said dielectric layer, wherein said first metal layer comprises a metal pad and a metal piece separate from said metal pad and neighboring said metal pad, and a polymer layer under said dielectric layer, under said metal pad, under said metal piece and in a gap between said metal pad and said metal piece, wherein an opening in said polymer layer is under a first contact point of said metal pad, and said first contact point is at a top of said opening;
a copper-containing layer between said first contact point and said substrate, wherein said copper-containing layer is connected to said first contact point through said opening;
a second metal layer between said first contact point and said copper-containing layer, wherein said second metal layer is on said first contact point, on a bottom surface of said polymer layer and in said opening, wherein said bottom surface has a first region directly over said second metal layer and directly under said metal pad and a second region directly under the middle of said gap, wherein said first region is at a substantially same horizontal level as said second region, and there is no significant step between said first region and said second region, and wherein said copper-containing layer is connected to said first contact point through said second metal layer;
a solder between said copper-containing layer and said substrate, wherein said solder is joined with said substrate, and wherein said solder is connected to said copper-containing layer;
a nickel-containing layer between said copper-containing layer and said solder; and
an underfill between said semiconductor device and said substrate, wherein said underfill contacts with said semiconductor device and said substrate and encloses said solder.
13. The chip package of claim 12 , wherein said second metal layer comprises titanium.
14. The chip package of claim 12 , wherein said metal pad comprises copper.
15. The chip package of claim 12 , wherein said copper-containing layer has a thickness between 10 and 100 micrometers.
16. The chip package of claim 12 , wherein said nickel-containing layer has a thickness between 1 and 10 micrometers.
17. A chip package comprising:
a substrate;
a semiconductor device over said substrate, wherein said semiconductor device comprises a silicon substrate, a dielectric layer under said silicon substrate, a first metal layer under said dielectric layer, wherein said first metal layer comprises a metal pad and a metal piece separate from said metal pad and neighboring said metal pad, and a polymer layer under said dielectric layer, under said metal pad, under said metal piece and in a gap between said metal pad and said metal piece, wherein an opening in said polymer layer is under a first contact point of said metal pad, and said first contact point is at a top of said opening;
a nickel-containing layer between said first contact point and said substrate, wherein said nickel-containing layer is connected to said first contact point through said opening;
a second metal layer between said first contact point and said nickel-containing layer, wherein said second metal layer is on said first contact point, on a bottom surface of said polymer layer and in said opening, wherein said bottom surface has a first region directly over said second metal layer and directly under said metal pad and a second region directly under the middle of said gap, wherein said first region is at a substantially same horizontal level as said second region, and there is no significant step between said first region and said second region, and wherein said nickel-containing layer is connected to said first contact point through said second metal layer;
a solder between said nickel-containing layer and said substrate, wherein said solder is joined with said substrate, and wherein said solder is connected to said nickel-containing layer; and
an underfill between said semiconductor device and said substrate, wherein said underfill contacts with said semiconductor device and said substrate and encloses said solder.
18. The chip package of claim 17 , wherein said second metal layer comprises titanium.
19. The chip package of claim 17 , wherein said metal pad comprises copper.
20. The chip package of claim 17 , wherein said nickel-containing layer has a thickness between 1 and 10 micrometers.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/852,467 US20110024905A1 (en) | 2001-03-05 | 2010-08-07 | Structure and manufacturing method of a chip scale package with low fabrication cost, fine pitch and high reliability solder bump |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/798,654 US6818545B2 (en) | 2001-03-05 | 2001-03-05 | Low fabrication cost, fine pitch and high reliability solder bump |
US83700701A | 2001-04-18 | 2001-04-18 | |
US12/384,977 US20090267213A1 (en) | 2001-03-05 | 2009-04-09 | Structure and manufacturing method of a chip scale package with low fabrication cost, fine pitch and high reliability solder bump |
US12/852,467 US20110024905A1 (en) | 2001-03-05 | 2010-08-07 | Structure and manufacturing method of a chip scale package with low fabrication cost, fine pitch and high reliability solder bump |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/384,977 Continuation US20090267213A1 (en) | 2001-03-05 | 2009-04-09 | Structure and manufacturing method of a chip scale package with low fabrication cost, fine pitch and high reliability solder bump |
Publications (1)
Publication Number | Publication Date |
---|---|
US20110024905A1 true US20110024905A1 (en) | 2011-02-03 |
Family
ID=39187738
Family Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/981,125 Expired - Fee Related US8158508B2 (en) | 2001-03-05 | 2007-10-31 | Structure and manufacturing method of a chip scale package |
US11/981,138 Expired - Fee Related US7902679B2 (en) | 2001-03-05 | 2007-10-31 | Structure and manufacturing method of a chip scale package with low fabrication cost, fine pitch and high reliability solder bump |
US12/384,977 Abandoned US20090267213A1 (en) | 2001-03-05 | 2009-04-09 | Structure and manufacturing method of a chip scale package with low fabrication cost, fine pitch and high reliability solder bump |
US12/852,470 Abandoned US20110024902A1 (en) | 2001-03-05 | 2010-08-07 | Structure and manufacturing method of a chip scale package with low fabrication cost, fine pitch and high reliability solder bump |
US12/852,467 Abandoned US20110024905A1 (en) | 2001-03-05 | 2010-08-07 | Structure and manufacturing method of a chip scale package with low fabrication cost, fine pitch and high reliability solder bump |
Family Applications Before (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/981,125 Expired - Fee Related US8158508B2 (en) | 2001-03-05 | 2007-10-31 | Structure and manufacturing method of a chip scale package |
US11/981,138 Expired - Fee Related US7902679B2 (en) | 2001-03-05 | 2007-10-31 | Structure and manufacturing method of a chip scale package with low fabrication cost, fine pitch and high reliability solder bump |
US12/384,977 Abandoned US20090267213A1 (en) | 2001-03-05 | 2009-04-09 | Structure and manufacturing method of a chip scale package with low fabrication cost, fine pitch and high reliability solder bump |
US12/852,470 Abandoned US20110024902A1 (en) | 2001-03-05 | 2010-08-07 | Structure and manufacturing method of a chip scale package with low fabrication cost, fine pitch and high reliability solder bump |
Country Status (1)
Country | Link |
---|---|
US (5) | US8158508B2 (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100081269A1 (en) * | 2008-10-01 | 2010-04-01 | Fujitsu Microelectronics Limited | Method for manufacturing semiconductor device having electrode for external connection |
US20110156230A1 (en) * | 2009-12-31 | 2011-06-30 | Stmicroelectronics Asia Pacific Pte, Ltd. | Multi-stacked semiconductor dice scale package structure and method of manufacturing same |
US20110156240A1 (en) * | 2009-12-31 | 2011-06-30 | Stmicroelectronics Asia Pacific Pte. Ltd. | Reliable large die fan-out wafer level package and method of manufacture |
US20110283034A1 (en) * | 2010-05-12 | 2011-11-17 | Samsung Electronics Co., Ltd. | Semiconductor chip, and semiconductor package and system each including the semiconductor chip |
US20130062764A1 (en) * | 2011-09-14 | 2013-03-14 | Stmicroelectronics Pte Ltd. | Semiconductor package with improved pillar bump process and structure |
US8466997B2 (en) | 2009-12-31 | 2013-06-18 | Stmicroelectronics Pte Ltd. | Fan-out wafer level package for an optical sensor and method of manufacture thereof |
US20140131072A1 (en) * | 2012-11-15 | 2014-05-15 | Siliconware Precision Industries Co., Ltd. | Connection structure for a substrate and a method of fabricating the connection structure |
US8779601B2 (en) | 2011-11-02 | 2014-07-15 | Stmicroelectronics Pte Ltd | Embedded wafer level package for 3D and package-on-package applications, and method of manufacture |
US8884422B2 (en) | 2009-12-31 | 2014-11-11 | Stmicroelectronics Pte Ltd. | Flip-chip fan-out wafer level package for package-on-package applications, and method of manufacture |
US8916481B2 (en) | 2011-11-02 | 2014-12-23 | Stmicroelectronics Pte Ltd. | Embedded wafer level package for 3D and package-on-package applications, and method of manufacture |
US9564410B2 (en) * | 2015-07-08 | 2017-02-07 | Texas Instruments Incorporated | Semiconductor devices having metal bumps with flange |
US20170069246A1 (en) * | 2015-09-08 | 2017-03-09 | Canon Kabushiki Kaisha | Liquid crystal drive apparatus, image display apparatus and storage medium storing liquid crystal drive program |
US9633965B2 (en) | 2014-08-08 | 2017-04-25 | Taiwan Semiconductor Manufacturing Company Ltd. | Semiconductor structure and manufacturing method of the same |
US20230063251A1 (en) * | 2021-08-30 | 2023-03-02 | Taiwan Semiconductor Manufacturing Company, Ltd. | Semiconductor package and method of forming the same |
US11721657B2 (en) | 2019-06-14 | 2023-08-08 | Stmicroelectronics Pte Ltd | Wafer level chip scale package having varying thicknesses |
Families Citing this family (96)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10388626B2 (en) * | 2000-03-10 | 2019-08-20 | STATS ChipPAC Pte. Ltd. | Semiconductor device and method of forming flipchip interconnect structure |
TWI245402B (en) * | 2002-01-07 | 2005-12-11 | Megic Corp | Rod soldering structure and manufacturing process thereof |
US8853001B2 (en) | 2003-11-08 | 2014-10-07 | Stats Chippac, Ltd. | Semiconductor device and method of forming pad layout for flipchip semiconductor die |
WO2005048307A2 (en) * | 2003-11-08 | 2005-05-26 | Chippac, Inc. | Flip chip interconnection pad layout |
USRE44500E1 (en) | 2003-11-10 | 2013-09-17 | Stats Chippac, Ltd. | Semiconductor device and method of forming composite bump-on-lead interconnection |
US20060216860A1 (en) | 2005-03-25 | 2006-09-28 | Stats Chippac, Ltd. | Flip chip interconnection having narrow interconnection sites on the substrate |
US8350384B2 (en) | 2009-11-24 | 2013-01-08 | Stats Chippac, Ltd. | Semiconductor device and method of forming electrical interconnect with stress relief void |
US8026128B2 (en) | 2004-11-10 | 2011-09-27 | Stats Chippac, Ltd. | Semiconductor device and method of self-confinement of conductive bump material during reflow without solder mask |
US7659633B2 (en) | 2004-11-10 | 2010-02-09 | Stats Chippac, Ltd. | Solder joint flip chip interconnection having relief structure |
US8574959B2 (en) | 2003-11-10 | 2013-11-05 | Stats Chippac, Ltd. | Semiconductor device and method of forming bump-on-lead interconnection |
US9029196B2 (en) | 2003-11-10 | 2015-05-12 | Stats Chippac, Ltd. | Semiconductor device and method of self-confinement of conductive bump material during reflow without solder mask |
USRE47600E1 (en) | 2003-11-10 | 2019-09-10 | STATS ChipPAC Pte. Ltd. | Semiconductor device and method of forming electrical interconnect with stress relief void |
US20070105277A1 (en) | 2004-11-10 | 2007-05-10 | Stats Chippac Ltd. | Solder joint flip chip interconnection |
WO2005048311A2 (en) | 2003-11-10 | 2005-05-26 | Chippac, Inc. | Bump-on-lead flip chip interconnection |
US8129841B2 (en) | 2006-12-14 | 2012-03-06 | Stats Chippac, Ltd. | Solder joint flip chip interconnection |
US8216930B2 (en) | 2006-12-14 | 2012-07-10 | Stats Chippac, Ltd. | Solder joint flip chip interconnection having relief structure |
US8076232B2 (en) | 2008-04-03 | 2011-12-13 | Stats Chippac, Ltd. | Semiconductor device and method of forming composite bump-on-lead interconnection |
US8841779B2 (en) | 2005-03-25 | 2014-09-23 | Stats Chippac, Ltd. | Semiconductor device and method of forming high routing density BOL BONL and BONP interconnect sites on substrate |
US20060255473A1 (en) * | 2005-05-16 | 2006-11-16 | Stats Chippac Ltd. | Flip chip interconnect solder mask |
US9258904B2 (en) | 2005-05-16 | 2016-02-09 | Stats Chippac, Ltd. | Semiconductor device and method of forming narrow interconnect sites on substrate with elongated mask openings |
US9847309B2 (en) | 2006-09-22 | 2017-12-19 | STATS ChipPAC Pte. Ltd. | Semiconductor device and method of forming vertical interconnect structure between semiconductor die and substrate |
US7713782B2 (en) * | 2006-09-22 | 2010-05-11 | Stats Chippac, Inc. | Fusible I/O interconnection systems and methods for flip-chip packaging involving substrate-mounted stud-bumps |
JP2008159948A (en) * | 2006-12-25 | 2008-07-10 | Rohm Co Ltd | Semiconductor device |
US9084377B2 (en) * | 2007-03-30 | 2015-07-14 | Stats Chippac Ltd. | Integrated circuit package system with mounting features for clearance |
SG152101A1 (en) * | 2007-11-06 | 2009-05-29 | Agency Science Tech & Res | An interconnect structure and a method of fabricating the same |
US8349721B2 (en) | 2008-03-19 | 2013-01-08 | Stats Chippac, Ltd. | Semiconductor device and method of forming insulating layer on conductive traces for electrical isolation in fine pitch bonding |
US9345148B2 (en) | 2008-03-25 | 2016-05-17 | Stats Chippac, Ltd. | Semiconductor device and method of forming flipchip interconnection structure with bump on partial pad |
US7759137B2 (en) * | 2008-03-25 | 2010-07-20 | Stats Chippac, Ltd. | Flip chip interconnection structure with bump on partial pad and method thereof |
US20090250814A1 (en) * | 2008-04-03 | 2009-10-08 | Stats Chippac, Ltd. | Flip Chip Interconnection Structure Having Void-Free Fine Pitch and Method Thereof |
US7897502B2 (en) | 2008-09-10 | 2011-03-01 | Stats Chippac, Ltd. | Method of forming vertically offset bond on trace interconnects on recessed and raised bond fingers |
US7928534B2 (en) | 2008-10-09 | 2011-04-19 | Taiwan Semiconductor Manufacturing Company, Ltd. | Bond pad connection to redistribution lines having tapered profiles |
US8736050B2 (en) * | 2009-09-03 | 2014-05-27 | Taiwan Semiconductor Manufacturing Company, Ltd. | Front side copper post joint structure for temporary bond in TSV application |
JP2010166025A (en) * | 2008-12-19 | 2010-07-29 | Panasonic Corp | Mounting structure |
KR101332228B1 (en) | 2008-12-26 | 2013-11-25 | 메키트 에퀴지션 코포레이션 | Chip packages with power management integrated circuits and related techniques |
US8659172B2 (en) | 2008-12-31 | 2014-02-25 | Stats Chippac, Ltd. | Semiconductor device and method of confining conductive bump material with solder mask patch |
US8198186B2 (en) | 2008-12-31 | 2012-06-12 | Stats Chippac, Ltd. | Semiconductor device and method of confining conductive bump material during reflow with solder mask patch |
KR20100104910A (en) * | 2009-03-19 | 2010-09-29 | 삼성전자주식회사 | Semiconductor package |
US20100237500A1 (en) * | 2009-03-20 | 2010-09-23 | Stats Chippac, Ltd. | Semiconductor Substrate and Method of Forming Conformal Solder Wet-Enhancement Layer on Bump-on-Lead Site |
US8759949B2 (en) * | 2009-04-30 | 2014-06-24 | Taiwan Semiconductor Manufacturing Company, Ltd. | Wafer backside structures having copper pillars |
US8169058B2 (en) | 2009-08-21 | 2012-05-01 | Stats Chippac, Ltd. | Semiconductor device and method of stacking die on leadframe electrically connected by conductive pillars |
US8383457B2 (en) | 2010-09-03 | 2013-02-26 | Stats Chippac, Ltd. | Semiconductor device and method of forming interposer frame over semiconductor die to provide vertical interconnect |
USRE48111E1 (en) | 2009-08-21 | 2020-07-21 | JCET Semiconductor (Shaoxing) Co. Ltd. | Semiconductor device and method of forming interposer frame over semiconductor die to provide vertical interconnect |
US8227926B2 (en) * | 2009-10-23 | 2012-07-24 | Ati Technologies Ulc | Routing layer for mitigating stress in a semiconductor die |
US8299632B2 (en) | 2009-10-23 | 2012-10-30 | Ati Technologies Ulc | Routing layer for mitigating stress in a semiconductor die |
US20110122592A1 (en) * | 2009-11-24 | 2011-05-26 | Sanka Ganesan | First-level interconnects with slender columns, and processes of forming same |
US20110133327A1 (en) * | 2009-12-09 | 2011-06-09 | Hung-Hsin Hsu | Semiconductor package of metal post solder-chip connection |
US20110169158A1 (en) * | 2010-01-14 | 2011-07-14 | Qualcomm Incorporated | Solder Pillars in Flip Chip Assembly |
TWI502696B (en) * | 2010-02-06 | 2015-10-01 | Ind Tech Res Inst | Bonding structure and method of fabricating the same |
US20110193212A1 (en) * | 2010-02-08 | 2011-08-11 | Qualcomm Incorporated | Systems and Methods Providing Arrangements of Vias |
KR101630394B1 (en) * | 2010-03-08 | 2016-06-24 | 삼성전자주식회사 | Package substrate, semiconductor package comprising the same and method for fabricating the semiconductor package |
US8039384B2 (en) | 2010-03-09 | 2011-10-18 | Stats Chippac, Ltd. | Semiconductor device and method of forming vertically offset bond on trace interconnects on different height traces |
US8759209B2 (en) * | 2010-03-25 | 2014-06-24 | Stats Chippac, Ltd. | Semiconductor device and method of forming a dual UBM structure for lead free bump connections |
US9142533B2 (en) | 2010-05-20 | 2015-09-22 | Taiwan Semiconductor Manufacturing Company, Ltd. | Substrate interconnections having different sizes |
JP5310947B2 (en) * | 2010-06-02 | 2013-10-09 | 株式会社村田製作所 | ESD protection device |
US8409978B2 (en) | 2010-06-24 | 2013-04-02 | Stats Chippac, Ltd. | Semiconductor device and method of forming vertically offset bond on trace interconnect structure on leadframe |
JP5539077B2 (en) * | 2010-07-09 | 2014-07-02 | ローム株式会社 | Semiconductor device |
US8492197B2 (en) | 2010-08-17 | 2013-07-23 | Stats Chippac, Ltd. | Semiconductor device and method of forming vertically offset conductive pillars over first substrate aligned to vertically offset BOT interconnect sites formed over second substrate |
JP2012074406A (en) * | 2010-09-03 | 2012-04-12 | Toshiba Corp | Semiconductor device and method of manufacturing the semiconductor device |
US8435834B2 (en) | 2010-09-13 | 2013-05-07 | Stats Chippac, Ltd. | Semiconductor device and method of forming bond-on-lead interconnection for mounting semiconductor die in FO-WLCSP |
TWI478303B (en) * | 2010-09-27 | 2015-03-21 | Advanced Semiconductor Eng | Chip having metal pillar and package having the same |
CN102148215B (en) * | 2011-01-21 | 2012-06-06 | 哈尔滨理工大学 | Interconnection structure for improving reliability of soldering spot of soft soldering of CCGA (Ceramic Column Grid Array) device and implementation method |
US20120267779A1 (en) * | 2011-04-25 | 2012-10-25 | Mediatek Inc. | Semiconductor package |
KR101782503B1 (en) * | 2011-05-18 | 2017-09-28 | 삼성전자 주식회사 | Solder collapse free bumping process of semiconductor device |
US8435881B2 (en) * | 2011-06-23 | 2013-05-07 | STAT ChipPAC, Ltd. | Semiconductor device and method of forming protective coating over interconnect structure to inhibit surface oxidation |
US8581400B2 (en) * | 2011-10-13 | 2013-11-12 | Taiwan Semiconductor Manufacturing Company, Ltd. | Post-passivation interconnect structure |
US9613917B2 (en) | 2012-03-30 | 2017-04-04 | Taiwan Semiconductor Manufacturing Company, Ltd. | Package-on-package (PoP) device with integrated passive device in a via |
US9425136B2 (en) | 2012-04-17 | 2016-08-23 | Taiwan Semiconductor Manufacturing Company, Ltd. | Conical-shaped or tier-shaped pillar connections |
US9299674B2 (en) | 2012-04-18 | 2016-03-29 | Taiwan Semiconductor Manufacturing Company, Ltd. | Bump-on-trace interconnect |
US8659153B2 (en) | 2012-07-16 | 2014-02-25 | Micron Technology, Inc. | Pillar on pad interconnect structures, semiconductor dice and die assemblies including such interconnect structures, and related methods |
KR102007780B1 (en) * | 2012-07-31 | 2019-10-21 | 삼성전자주식회사 | Methods for fabricating semiconductor devices having multi-bump structural electrical interconnections |
US9165887B2 (en) | 2012-09-10 | 2015-10-20 | Taiwan Semiconductor Manufacturing Company, Ltd. | Semiconductor device with discrete blocks |
US9607862B2 (en) | 2012-09-11 | 2017-03-28 | Globalfoundries Inc. | Extrusion-resistant solder interconnect structures and methods of forming |
US9111817B2 (en) | 2012-09-18 | 2015-08-18 | Taiwan Semiconductor Manufacturing Company, Ltd. | Bump structure and method of forming same |
US8975726B2 (en) | 2012-10-11 | 2015-03-10 | Taiwan Semiconductor Manufacturing Company, Ltd. | POP structures and methods of forming the same |
US9391041B2 (en) | 2012-10-19 | 2016-07-12 | Taiwan Semiconductor Manufacturing Company, Ltd. | Fan-out wafer level package structure |
US8847412B2 (en) | 2012-11-09 | 2014-09-30 | Invensas Corporation | Microelectronic assembly with thermally and electrically conductive underfill |
US9245770B2 (en) * | 2012-12-20 | 2016-01-26 | Stats Chippac, Ltd. | Semiconductor device and method of simultaneous molding and thermalcompression bonding |
US9881889B2 (en) * | 2013-04-12 | 2018-01-30 | Xintec Inc. | Chip package and method for fabricating the same |
US9559071B2 (en) * | 2013-06-26 | 2017-01-31 | Taiwan Semiconductor Manufacturing Company, Ltd. | Mechanisms for forming hybrid bonding structures with elongated bumps |
US9373527B2 (en) | 2013-10-30 | 2016-06-21 | Taiwan Semiconductor Manufacturing Company, Ltd. | Chip on package structure and method |
US9679839B2 (en) | 2013-10-30 | 2017-06-13 | Taiwan Semiconductor Manufacturing Company, Ltd. | Chip on package structure and method |
US9484316B2 (en) * | 2013-11-01 | 2016-11-01 | Infineon Technologies Ag | Semiconductor devices and methods of forming thereof |
US9449947B2 (en) * | 2014-07-01 | 2016-09-20 | Taiwan Semiconductor Manufacturing Company, Ltd. | Semiconductor package for thermal dissipation |
US9899239B2 (en) * | 2015-11-06 | 2018-02-20 | Apple Inc. | Carrier ultra thin substrate |
US10600220B2 (en) * | 2016-08-01 | 2020-03-24 | Facebook, Inc. | Systems and methods for content interaction |
KR102591624B1 (en) | 2016-10-31 | 2023-10-20 | 삼성전자주식회사 | Semiconductor packages |
US20190259731A1 (en) * | 2016-11-09 | 2019-08-22 | Unisem (M) Berhad | Substrate based fan-out wafer level packaging |
US10636758B2 (en) * | 2017-10-05 | 2020-04-28 | Texas Instruments Incorporated | Expanded head pillar for bump bonds |
CN110165442B (en) * | 2018-02-12 | 2020-11-03 | 泰达电子股份有限公司 | Metal block welding column combination and power module applying same |
CN110324956B (en) * | 2018-03-30 | 2022-05-20 | 广州市信宏洗衣机械有限公司 | Heat radiator for multilayer circuit board |
US10790251B2 (en) * | 2018-06-20 | 2020-09-29 | Micron Technology, Inc. | Methods for enhancing adhesion of three-dimensional structures to substrates |
DE102019103355A1 (en) | 2019-02-11 | 2020-08-13 | Infineon Technologies Ag | A semiconductor device having a copper pillar interconnection structure |
TWI692064B (en) * | 2019-06-06 | 2020-04-21 | 力成科技股份有限公司 | Semiconductor chip having coplanar bumps and manufacturing method thereof |
US11199673B2 (en) * | 2019-07-31 | 2021-12-14 | Hewlett Packard Enterprise Development Lp | Optoelectronic device with integrated underfill exclusion structure |
US11056443B2 (en) | 2019-08-29 | 2021-07-06 | Micron Technology, Inc. | Apparatuses exhibiting enhanced stress resistance and planarity, and related methods |
US20220328394A1 (en) * | 2021-04-07 | 2022-10-13 | Mediatek Inc. | Three-dimensional pad structure and interconnection structure for electronic devices |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5851911A (en) * | 1996-03-07 | 1998-12-22 | Micron Technology, Inc. | Mask repattern process |
US6181010B1 (en) * | 1998-03-27 | 2001-01-30 | Seiko Epson Corporation | Semiconductor device and method of manufacturing the same, circuit board and electronic instrument |
Family Cites Families (184)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4087314A (en) | 1976-09-13 | 1978-05-02 | Motorola, Inc. | Bonding pedestals for semiconductor devices |
US4179802A (en) | 1978-03-27 | 1979-12-25 | International Business Machines Corporation | Studded chip attachment process |
US4685998A (en) | 1984-03-22 | 1987-08-11 | Thomson Components - Mostek Corp. | Process of forming integrated circuits with contact pads in a standard array |
US4652336A (en) | 1984-09-20 | 1987-03-24 | Siemens Aktiengesellschaft | Method of producing copper platforms for integrated circuits |
US5134460A (en) * | 1986-08-11 | 1992-07-28 | International Business Machines Corporation | Aluminum bump, reworkable bump, and titanium nitride structure for tab bonding |
KR910006967B1 (en) | 1987-11-18 | 1991-09-14 | 가시오 게이상기 가부시기가이샤 | Bump electrod structure of semiconductor device and a method for forming the bump electrode |
US5132775A (en) | 1987-12-11 | 1992-07-21 | Texas Instruments Incorporated | Methods for and products having self-aligned conductive pillars on interconnects |
US5223454A (en) * | 1988-01-29 | 1993-06-29 | Hitachi, Ltd. | Method of manufacturing semiconductor integrated circuit device |
JPH01214141A (en) | 1988-02-23 | 1989-08-28 | Nec Corp | Flip-chip type semiconductor device |
US5061985A (en) | 1988-06-13 | 1991-10-29 | Hitachi, Ltd. | Semiconductor integrated circuit device and process for producing the same |
JP2785338B2 (en) | 1989-06-19 | 1998-08-13 | 日本電気株式会社 | Method for manufacturing semiconductor device |
US5349495A (en) | 1989-06-23 | 1994-09-20 | Vlsi Technology, Inc. | System for securing and electrically connecting a semiconductor chip to a substrate |
US5244833A (en) | 1989-07-26 | 1993-09-14 | International Business Machines Corporation | Method for manufacturing an integrated circuit chip bump electrode using a polymer layer and a photoresist layer |
US5071518A (en) | 1989-10-24 | 1991-12-10 | Microelectronics And Computer Technology Corporation | Method of making an electrical multilayer interconnect |
US5083187A (en) | 1990-05-16 | 1992-01-21 | Texas Instruments Incorporated | Integrated circuit device having bumped power supply buses over active surface areas and method of manufacture thereof |
US5226232A (en) | 1990-05-18 | 1993-07-13 | Hewlett-Packard Company | Method for forming a conductive pattern on an integrated circuit |
US5251806A (en) | 1990-06-19 | 1993-10-12 | International Business Machines Corporation | Method of forming dual height solder interconnections |
EP0469216B1 (en) * | 1990-07-31 | 1994-12-07 | International Business Machines Corporation | Method of forming metal contact pads and terminals on semiconductor chips |
JPH04354398A (en) | 1991-05-31 | 1992-12-08 | Internatl Business Mach Corp <Ibm> | Wiring board and manufacture thereof |
US5172471A (en) | 1991-06-21 | 1992-12-22 | Vlsi Technology, Inc. | Method of providing power to an integrated circuit |
US5261155A (en) | 1991-08-12 | 1993-11-16 | International Business Machines Corporation | Method for bonding flexible circuit to circuitized substrate to provide electrical connection therebetween using different solders |
US5326709A (en) * | 1991-12-19 | 1994-07-05 | Samsung Electronics Co., Ltd. | Wafer testing process of a semiconductor device comprising a redundancy circuit |
US6274391B1 (en) | 1992-10-26 | 2001-08-14 | Texas Instruments Incorporated | HDI land grid array packaged device having electrical and optical interconnects |
JP3258740B2 (en) | 1993-01-29 | 2002-02-18 | 三菱電機株式会社 | Method for manufacturing semiconductor device having bump electrode |
JP3057130B2 (en) | 1993-02-18 | 2000-06-26 | 三菱電機株式会社 | Resin-sealed semiconductor package and method of manufacturing the same |
US5567655A (en) | 1993-05-05 | 1996-10-22 | Lsi Logic Corporation | Method for forming interior bond pads having zig-zag linear arrangement |
US5384487A (en) | 1993-05-05 | 1995-01-24 | Lsi Logic Corporation | Off-axis power branches for interior bond pad arrangements |
US5439162A (en) * | 1993-06-28 | 1995-08-08 | Motorola, Inc. | Direct chip attachment structure and method |
KR950004464A (en) | 1993-07-15 | 1995-02-18 | 김광호 | Manufacturing method of chip bump |
US5545923A (en) | 1993-10-22 | 1996-08-13 | Lsi Logic Corporation | Semiconductor device assembly with minimized bond finger connections |
US5508561A (en) | 1993-11-15 | 1996-04-16 | Nec Corporation | Apparatus for forming a double-bump structure used for flip-chip mounting |
US5523920A (en) | 1994-01-03 | 1996-06-04 | Motorola, Inc. | Printed circuit board comprising elevated bond pads |
US5665639A (en) | 1994-02-23 | 1997-09-09 | Cypress Semiconductor Corp. | Process for manufacturing a semiconductor device bump electrode using a rapid thermal anneal |
US5503286A (en) * | 1994-06-28 | 1996-04-02 | International Business Machines Corporation | Electroplated solder terminal |
US5554940A (en) | 1994-07-05 | 1996-09-10 | Motorola, Inc. | Bumped semiconductor device and method for probing the same |
JPH0837190A (en) | 1994-07-22 | 1996-02-06 | Nec Corp | Semiconductor device |
US5532512A (en) | 1994-10-03 | 1996-07-02 | General Electric Company | Direct stacked and flip chip power semiconductor device structures |
EP0706208B1 (en) | 1994-10-03 | 2002-06-12 | Kabushiki Kaisha Toshiba | Method of manufacturing of a semiconductor package integral with semiconductor chip. |
US5656858A (en) | 1994-10-19 | 1997-08-12 | Nippondenso Co., Ltd. | Semiconductor device with bump structure |
US5468984A (en) | 1994-11-02 | 1995-11-21 | Texas Instruments Incorporated | ESD protection structure using LDMOS diodes with thick copper interconnect |
JP3353508B2 (en) | 1994-12-20 | 2002-12-03 | ソニー株式会社 | Printed wiring board and electronic device using the same |
US5633535A (en) | 1995-01-27 | 1997-05-27 | Chao; Clinton C. | Spacing control in electronic device assemblies |
JPH08213422A (en) * | 1995-02-07 | 1996-08-20 | Mitsubishi Electric Corp | Semiconductor device and bonding pad structure thereof |
DE69632969T2 (en) | 1995-03-20 | 2005-07-28 | Unitive International Ltd. | Method of forming solder bumps and solder bump structure |
EP1335422B1 (en) | 1995-03-24 | 2013-01-16 | Shinko Electric Industries Co., Ltd. | Process for making a chip sized semiconductor device |
US5545927A (en) | 1995-05-12 | 1996-08-13 | International Business Machines Corporation | Capped copper electrical interconnects |
US5541135A (en) | 1995-05-30 | 1996-07-30 | Motorola, Inc. | Method of fabricating a flip chip semiconductor device having an inductor |
US5659201A (en) | 1995-06-05 | 1997-08-19 | Advanced Micro Devices, Inc. | High conductivity interconnection line |
JPH0997791A (en) * | 1995-09-27 | 1997-04-08 | Internatl Business Mach Corp <Ibm> | Bump structure, formation of bump and installation connection body |
KR100327442B1 (en) | 1995-07-14 | 2002-06-29 | 구본준, 론 위라하디락사 | Bump structure of semiconductor device and fabricating method thereof |
US5691248A (en) | 1995-07-26 | 1997-11-25 | International Business Machines Corporation | Methods for precise definition of integrated circuit chip edges |
US5756370A (en) | 1996-02-08 | 1998-05-26 | Micron Technology, Inc. | Compliant contact system with alignment structure for testing unpackaged semiconductor dice |
US5834849A (en) | 1996-02-13 | 1998-11-10 | Altera Corporation | High density integrated circuit pad structures |
US6072236A (en) | 1996-03-07 | 2000-06-06 | Micron Technology, Inc. | Micromachined chip scale package |
US6022792A (en) | 1996-03-13 | 2000-02-08 | Seiko Instruments, Inc. | Semiconductor dicing and assembling method |
US6042953A (en) | 1996-03-21 | 2000-03-28 | Matsushita Electric Industrial Co., Ltd. | Substrate on which bumps are formed and method of forming the same |
US5792594A (en) | 1996-04-01 | 1998-08-11 | Motorola, Inc. | Metallization and termination process for an integrated circuit chip |
KR100216839B1 (en) | 1996-04-01 | 1999-09-01 | 김규현 | Solder ball land structure of bga semiconductor package |
US6169329B1 (en) | 1996-04-02 | 2001-01-02 | Micron Technology, Inc. | Semiconductor devices having interconnections using standardized bonding locations and methods of designing |
GB9610689D0 (en) | 1996-05-22 | 1996-07-31 | Int Computers Ltd | Flip chip attachment |
JP3201957B2 (en) | 1996-06-27 | 2001-08-27 | インターナショナル・ビジネス・マシーンズ・コーポレーション | Metal bump, method for manufacturing metal bump, connection structure |
US6429120B1 (en) | 2000-01-18 | 2002-08-06 | Micron Technology, Inc. | Methods and apparatus for making integrated-circuit wiring from copper, silver, gold, and other metals |
US5883435A (en) | 1996-07-25 | 1999-03-16 | International Business Machines Corporation | Personalization structure for semiconductor devices |
US5664642A (en) | 1996-08-26 | 1997-09-09 | Williams; Bernard | Fire evacuation kit |
US5744843A (en) | 1996-08-28 | 1998-04-28 | Texas Instruments Incorporated | CMOS power device and method of construction and layout |
US5790377A (en) | 1996-09-12 | 1998-08-04 | Packard Hughes Interconnect Company | Integral copper column with solder bump flip chip |
US5731223A (en) | 1996-09-24 | 1998-03-24 | Lsi Logic Corporation | Array of solder pads on an integrated circuit |
US5796169A (en) | 1996-11-19 | 1998-08-18 | International Business Machines Corporation | Structurally reinforced ball grid array semiconductor package and systems |
US5946590A (en) * | 1996-12-10 | 1999-08-31 | Citizen Watch Co., Ltd. | Method for making bumps |
US5931371A (en) | 1997-01-16 | 1999-08-03 | Ford Motor Company | Standoff controlled interconnection |
TW448524B (en) * | 1997-01-17 | 2001-08-01 | Seiko Epson Corp | Electronic component, semiconductor device, manufacturing method therefor, circuit board and electronic equipment |
JP3352352B2 (en) | 1997-03-31 | 2002-12-03 | 新光電気工業株式会社 | Plating apparatus, plating method and bump forming method |
JP3587019B2 (en) * | 1997-04-08 | 2004-11-10 | ソニー株式会社 | Method for manufacturing semiconductor device |
US6028363A (en) * | 1997-06-04 | 2000-02-22 | Taiwan Semiconductor Manufacturing Company | Vertical via/contact |
US6144100A (en) | 1997-06-05 | 2000-11-07 | Texas Instruments Incorporated | Integrated circuit with bonding layer over active circuitry |
US5882957A (en) | 1997-06-09 | 1999-03-16 | Compeq Manufacturing Company Limited | Ball grid array packaging method for an integrated circuit and structure realized by the method |
US6013571A (en) | 1997-06-16 | 2000-01-11 | Motorola, Inc. | Microelectronic assembly including columnar interconnections and method for forming same |
US6082610A (en) | 1997-06-23 | 2000-07-04 | Ford Motor Company | Method of forming interconnections on electronic modules |
US5891756A (en) | 1997-06-27 | 1999-04-06 | Delco Electronics Corporation | Process for converting a wire bond pad to a flip chip solder bump pad and pad formed thereby |
JPH1174413A (en) | 1997-07-01 | 1999-03-16 | Sony Corp | Lead frame and its manufacture, semiconductor device and its assembling method, and electronic equipment |
US6025649A (en) | 1997-07-22 | 2000-02-15 | International Business Machines Corporation | Pb-In-Sn tall C-4 for fatigue enhancement |
JP3660799B2 (en) | 1997-09-08 | 2005-06-15 | 株式会社ルネサステクノロジ | Manufacturing method of semiconductor integrated circuit device |
US6049122A (en) | 1997-10-16 | 2000-04-11 | Fujitsu Limited | Flip chip mounting substrate with resin filled between substrate and semiconductor chip |
US6015505A (en) | 1997-10-30 | 2000-01-18 | International Business Machines Corporation | Process improvements for titanium-tungsten etching in the presence of electroplated C4's |
US5903343A (en) * | 1997-12-23 | 1999-05-11 | Siemens Aktiengesellschaft | Method for detecting under-etched vias |
US6162652A (en) | 1997-12-31 | 2000-12-19 | Intel Corporation | Process for sort testing C4 bumped wafers |
US6075290A (en) | 1998-02-26 | 2000-06-13 | National Semiconductor Corporation | Surface mount die: wafer level chip-scale package and process for making the same |
US6329605B1 (en) | 1998-03-26 | 2001-12-11 | Tessera, Inc. | Components with conductive solder mask layers |
US6642136B1 (en) * | 2001-09-17 | 2003-11-04 | Megic Corporation | Method of making a low fabrication cost, high performance, high reliability chip scale package |
JPH11307389A (en) | 1998-04-24 | 1999-11-05 | Mitsubishi Electric Corp | Pattern capacitor |
JPH11354680A (en) | 1998-06-11 | 1999-12-24 | Sony Corp | Printed wiring board and semiconductor package using the same |
US5989222A (en) * | 1998-06-12 | 1999-11-23 | Abbott Laboratories | Pressure (occlusion) sensor |
US5943597A (en) | 1998-06-15 | 1999-08-24 | Motorola, Inc. | Bumped semiconductor device having a trench for stress relief |
US6436300B2 (en) | 1998-07-30 | 2002-08-20 | Motorola, Inc. | Method of manufacturing electronic components |
US6077726A (en) | 1998-07-30 | 2000-06-20 | Motorola, Inc. | Method and apparatus for stress relief in solder bump formation on a semiconductor device |
KR100268427B1 (en) * | 1998-08-10 | 2000-10-16 | 윤종용 | Method for forming of contact of semiconductor device |
US6103552A (en) | 1998-08-10 | 2000-08-15 | Lin; Mou-Shiung | Wafer scale packaging scheme |
JP3420076B2 (en) * | 1998-08-31 | 2003-06-23 | 新光電気工業株式会社 | Method for manufacturing flip-chip mounting board, flip-chip mounting board, and flip-chip mounting structure |
US6160715A (en) | 1998-09-08 | 2000-12-12 | Lucent Technologies Inc. | Translator for recessed flip-chip package |
US6060683A (en) | 1998-09-22 | 2000-05-09 | Direct Radiography Corp. | Selective laser removal of dielectric coating |
US6187680B1 (en) | 1998-10-07 | 2001-02-13 | International Business Machines Corporation | Method/structure for creating aluminum wirebound pad on copper BEOL |
JP3577419B2 (en) | 1998-12-17 | 2004-10-13 | 新光電気工業株式会社 | Semiconductor device and manufacturing method thereof |
US6165542A (en) | 1998-12-23 | 2000-12-26 | United Technologies Corporation | Method for fabricating and inspecting coatings |
US6359328B1 (en) | 1998-12-31 | 2002-03-19 | Intel Corporation | Methods for making interconnects and diffusion barriers in integrated circuits |
JP2000260803A (en) | 1999-01-05 | 2000-09-22 | Citizen Watch Co Ltd | Semiconductor device and manufacture thereof |
JP3530761B2 (en) | 1999-01-18 | 2004-05-24 | 新光電気工業株式会社 | Semiconductor device |
JP3346320B2 (en) | 1999-02-03 | 2002-11-18 | カシオ計算機株式会社 | Semiconductor device and manufacturing method thereof |
JP4131595B2 (en) | 1999-02-05 | 2008-08-13 | 三洋電機株式会社 | Manufacturing method of semiconductor device |
TW417265B (en) | 1999-02-11 | 2001-01-01 | Hon Hai Prec Ind Co Ltd | Low-cost surface-mount compatible land-grid array (lga) chips cale package (csp) for packaging solder-bumped flip chips |
US6197613B1 (en) * | 1999-03-23 | 2001-03-06 | Industrial Technology Research Institute | Wafer level packaging method and devices formed |
US6271107B1 (en) * | 1999-03-31 | 2001-08-07 | Fujitsu Limited | Semiconductor with polymeric layer |
JP3446825B2 (en) | 1999-04-06 | 2003-09-16 | 沖電気工業株式会社 | Semiconductor device and manufacturing method thereof |
KR100301064B1 (en) * | 1999-08-06 | 2001-11-01 | 윤종용 | method for manufacturing cylinder-type storage electrode of semiconductor device |
DE19939756A1 (en) * | 1999-08-21 | 2001-02-22 | Merck Patent Gmbh | New 1-(1-ethyl-piperidin-4-yl)-1-(phenyl or heterocyclyl)-alkanol derivatives, are 5-HT(2A) receptor antagonists useful e.g. for treating schizophrenia, depression, memory disorders or eating disorders |
US6709985B1 (en) * | 1999-08-26 | 2004-03-23 | Advanced Micro Devices, Inc. | Arrangement and method for providing an imaging path using a silicon-crystal damaging laser |
JP2001068836A (en) | 1999-08-27 | 2001-03-16 | Mitsubishi Electric Corp | Printed wiring board and semicondcutor module, and manufacture thereof |
JP2001085470A (en) | 1999-09-16 | 2001-03-30 | Fujitsu Ltd | Semiconductor device and manufacturing method therefor |
TW429492B (en) | 1999-10-21 | 2001-04-11 | Siliconware Precision Industries Co Ltd | Ball grid array package and its fabricating method |
US6372622B1 (en) | 1999-10-26 | 2002-04-16 | Motorola, Inc. | Fine pitch bumping with improved device standoff and bump volume |
US6803302B2 (en) | 1999-11-22 | 2004-10-12 | Freescale Semiconductor, Inc. | Method for forming a semiconductor device having a mechanically robust pad interface |
JP3287346B2 (en) | 1999-11-29 | 2002-06-04 | カシオ計算機株式会社 | Semiconductor device |
TW432653B (en) | 1999-12-06 | 2001-05-01 | Advanced Semiconductor Eng | Flip chip package structure and process with increased encapsulation efficiency and reliability |
JP3409759B2 (en) | 1999-12-09 | 2003-05-26 | カシオ計算機株式会社 | Manufacturing method of semiconductor device |
TW445618B (en) | 2000-02-21 | 2001-07-11 | Advanced Semiconductor Eng | Manufacturing method of flip-chip package |
TW444364B (en) | 2000-03-23 | 2001-07-01 | Advanced Semiconductor Eng | Manufacturing method for stacked chip package |
JP3446826B2 (en) | 2000-04-06 | 2003-09-16 | 沖電気工業株式会社 | Semiconductor device and manufacturing method thereof |
US6429531B1 (en) | 2000-04-18 | 2002-08-06 | Motorola, Inc. | Method and apparatus for manufacturing an interconnect structure |
US6578754B1 (en) | 2000-04-27 | 2003-06-17 | Advanpack Solutions Pte. Ltd. | Pillar connections for semiconductor chips and method of manufacture |
US6592019B2 (en) | 2000-04-27 | 2003-07-15 | Advanpack Solutions Pte. Ltd | Pillar connections for semiconductor chips and method of manufacture |
JP3968554B2 (en) | 2000-05-01 | 2007-08-29 | セイコーエプソン株式会社 | Bump forming method and semiconductor device manufacturing method |
US6362087B1 (en) | 2000-05-05 | 2002-03-26 | Aptos Corporation | Method for fabricating a microelectronic fabrication having formed therein a redistribution structure |
US6201305B1 (en) | 2000-06-09 | 2001-03-13 | Amkor Technology, Inc. | Making solder ball mounting pads on substrates |
JP2002016096A (en) | 2000-06-27 | 2002-01-18 | Citizen Watch Co Ltd | Semiconductor device and its manufacturing method |
US7034402B1 (en) * | 2000-06-28 | 2006-04-25 | Intel Corporation | Device with segmented ball limiting metallurgy |
US6683380B2 (en) | 2000-07-07 | 2004-01-27 | Texas Instruments Incorporated | Integrated circuit with bonding layer over active circuitry |
JP3440070B2 (en) | 2000-07-13 | 2003-08-25 | 沖電気工業株式会社 | Wafer and method of manufacturing wafer |
JP2002049447A (en) * | 2000-08-03 | 2002-02-15 | Matsushita Electric Ind Co Ltd | Signal transmitting system |
TW452950B (en) | 2000-09-19 | 2001-09-01 | Siliconware Precision Industries Co Ltd | Packaging structure of bonding pad with increased space height |
TW449813B (en) | 2000-10-13 | 2001-08-11 | Advanced Semiconductor Eng | Semiconductor device with bump electrode |
US6552436B2 (en) | 2000-12-08 | 2003-04-22 | Motorola, Inc. | Semiconductor device having a ball grid array and method therefor |
TW577152B (en) | 2000-12-18 | 2004-02-21 | Hitachi Ltd | Semiconductor integrated circuit device |
US6426556B1 (en) * | 2001-01-16 | 2002-07-30 | Megic Corporation | Reliable metal bumps on top of I/O pads with test probe marks |
JP2002217377A (en) | 2001-01-18 | 2002-08-02 | Hitachi Ltd | Semiconductor integrated circuit device and method of manufacturing the same |
JP2002228420A (en) | 2001-01-31 | 2002-08-14 | Matsushita Electric Works Ltd | Method for measuring film thickness of silicon thin film as well as semiconductor element and semiconductor device with measured film thickness of silicon thin film by the same |
KR100869013B1 (en) | 2001-02-08 | 2008-11-17 | 가부시키가이샤 히타치세이사쿠쇼 | Semiconductor integrated circuit device and its manufacturing method |
US6815324B2 (en) | 2001-02-15 | 2004-11-09 | Megic Corporation | Reliable metal bumps on top of I/O pads after removal of test probe marks |
US6818545B2 (en) | 2001-03-05 | 2004-11-16 | Megic Corporation | Low fabrication cost, fine pitch and high reliability solder bump |
US6495397B2 (en) | 2001-03-28 | 2002-12-17 | Intel Corporation | Fluxless flip chip interconnection |
US6653563B2 (en) | 2001-03-30 | 2003-11-25 | Intel Corporation | Alternate bump metallurgy bars for power and ground routing |
JP3939504B2 (en) | 2001-04-17 | 2007-07-04 | カシオ計算機株式会社 | Semiconductor device, method for manufacturing the same, and mounting structure |
US6732913B2 (en) | 2001-04-26 | 2004-05-11 | Advanpack Solutions Pte Ltd. | Method for forming a wafer level chip scale package, and package formed thereby |
US6894399B2 (en) | 2001-04-30 | 2005-05-17 | Intel Corporation | Microelectronic device having signal distribution functionality on an interfacial layer thereof |
US6853076B2 (en) | 2001-09-21 | 2005-02-08 | Intel Corporation | Copper-containing C4 ball-limiting metallurgy stack for enhanced reliability of packaged structures and method of making same |
JP3850261B2 (en) | 2001-10-25 | 2006-11-29 | イビデン株式会社 | Semiconductor chip |
US6646347B2 (en) | 2001-11-30 | 2003-11-11 | Motorola, Inc. | Semiconductor power device and method of formation |
JP4068838B2 (en) | 2001-12-07 | 2008-03-26 | 株式会社日立製作所 | Manufacturing method of semiconductor device |
TWI245402B (en) * | 2002-01-07 | 2005-12-11 | Megic Corp | Rod soldering structure and manufacturing process thereof |
JP3829325B2 (en) | 2002-02-07 | 2006-10-04 | 日本電気株式会社 | Semiconductor element, manufacturing method thereof, and manufacturing method of semiconductor device |
DE10392377T5 (en) | 2002-03-12 | 2005-05-12 | FAIRCHILD SEMICONDUCTOR CORP. (n.d.Ges.d. Staates Delaware) | Wafer level coated pin-like bumps made of copper |
US6614091B1 (en) | 2002-03-13 | 2003-09-02 | Motorola, Inc. | Semiconductor device having a wire bond pad and method therefor |
JP3856304B2 (en) | 2002-03-25 | 2006-12-13 | 株式会社リコー | Resistance element in CSP and semiconductor device having CSP |
US6740577B2 (en) | 2002-05-21 | 2004-05-25 | St Assembly Test Services Pte Ltd | Method of forming a small pitch torch bump for mounting high-performance flip-flop devices |
US20030218246A1 (en) | 2002-05-22 | 2003-11-27 | Hirofumi Abe | Semiconductor device passing large electric current |
US6661100B1 (en) | 2002-07-30 | 2003-12-09 | International Business Machines Corporation | Low impedance power distribution structure for a semiconductor chip package |
JP3580803B2 (en) | 2002-08-09 | 2004-10-27 | 沖電気工業株式会社 | Semiconductor device |
US6750133B2 (en) | 2002-10-24 | 2004-06-15 | Intel Corporation | Selective ball-limiting metallurgy etching processes for fabrication of electroplated tin bumps |
JP3969295B2 (en) | 2002-12-02 | 2007-09-05 | セイコーエプソン株式会社 | SEMICONDUCTOR DEVICE, ITS MANUFACTURING METHOD, CIRCUIT BOARD, ELECTRO-OPTICAL DEVICE, AND ELECTRONIC DEVICE |
US7008867B2 (en) | 2003-02-21 | 2006-03-07 | Aptos Corporation | Method for forming copper bump antioxidation surface |
JP4318935B2 (en) | 2003-03-05 | 2009-08-26 | 綜研化学株式会社 | Manufacturing method of color display member and reflective color image display device using the manufacturing method |
JP4492917B2 (en) | 2003-05-07 | 2010-06-30 | 旭化成イーマテリアルズ株式会社 | Method for producing polyolefin microporous membrane |
KR100523330B1 (en) | 2003-07-29 | 2005-10-24 | 삼성전자주식회사 | BGA semiconductor package with solder ball land structure mixed SMD and NSMD types |
US6977435B2 (en) | 2003-09-09 | 2005-12-20 | Intel Corporation | Thick metal layer integrated process flow to improve power delivery and mechanical buffering |
US6864165B1 (en) | 2003-09-15 | 2005-03-08 | International Business Machines Corporation | Method of fabricating integrated electronic chip with an interconnect device |
US7462942B2 (en) | 2003-10-09 | 2008-12-09 | Advanpack Solutions Pte Ltd | Die pillar structures and a method of their formation |
JP3973624B2 (en) | 2003-12-24 | 2007-09-12 | 富士通株式会社 | High frequency device |
JP4278543B2 (en) | 2004-03-19 | 2009-06-17 | マルホン工業株式会社 | Game machine |
JP2005284490A (en) | 2004-03-29 | 2005-10-13 | Sharp Corp | Data recording device and data regenerating device |
JP4119866B2 (en) | 2004-05-12 | 2008-07-16 | 富士通株式会社 | Semiconductor device |
JP2006128662A (en) | 2004-09-30 | 2006-05-18 | Taiyo Yuden Co Ltd | Semiconductor and its mounting body |
JP2006147810A (en) | 2004-11-19 | 2006-06-08 | Casio Comput Co Ltd | Semiconductor device and method of manufacturing the same |
US7135766B1 (en) | 2004-11-30 | 2006-11-14 | Rf Micro Devices, Inc. | Integrated power devices and signal isolation structure |
JP4221606B2 (en) | 2005-06-28 | 2009-02-12 | セイコーエプソン株式会社 | Manufacturing method of semiconductor device |
JP4774248B2 (en) | 2005-07-22 | 2011-09-14 | Okiセミコンダクタ株式会社 | Semiconductor device |
US7335536B2 (en) | 2005-09-01 | 2008-02-26 | Texas Instruments Incorporated | Method for fabricating low resistance, low inductance interconnections in high current semiconductor devices |
-
2007
- 2007-10-31 US US11/981,125 patent/US8158508B2/en not_active Expired - Fee Related
- 2007-10-31 US US11/981,138 patent/US7902679B2/en not_active Expired - Fee Related
-
2009
- 2009-04-09 US US12/384,977 patent/US20090267213A1/en not_active Abandoned
-
2010
- 2010-08-07 US US12/852,470 patent/US20110024902A1/en not_active Abandoned
- 2010-08-07 US US12/852,467 patent/US20110024905A1/en not_active Abandoned
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5851911A (en) * | 1996-03-07 | 1998-12-22 | Micron Technology, Inc. | Mask repattern process |
US6181010B1 (en) * | 1998-03-27 | 2001-01-30 | Seiko Epson Corporation | Semiconductor device and method of manufacturing the same, circuit board and electronic instrument |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8093148B2 (en) * | 2008-10-01 | 2012-01-10 | Fujitsu Semiconductor Limited | Method for manufacturing semiconductor device having electrode for external connection |
US20100081269A1 (en) * | 2008-10-01 | 2010-04-01 | Fujitsu Microelectronics Limited | Method for manufacturing semiconductor device having electrode for external connection |
US8884422B2 (en) | 2009-12-31 | 2014-11-11 | Stmicroelectronics Pte Ltd. | Flip-chip fan-out wafer level package for package-on-package applications, and method of manufacture |
US20110156230A1 (en) * | 2009-12-31 | 2011-06-30 | Stmicroelectronics Asia Pacific Pte, Ltd. | Multi-stacked semiconductor dice scale package structure and method of manufacturing same |
US20110156240A1 (en) * | 2009-12-31 | 2011-06-30 | Stmicroelectronics Asia Pacific Pte. Ltd. | Reliable large die fan-out wafer level package and method of manufacture |
US8466997B2 (en) | 2009-12-31 | 2013-06-18 | Stmicroelectronics Pte Ltd. | Fan-out wafer level package for an optical sensor and method of manufacture thereof |
US8502394B2 (en) | 2009-12-31 | 2013-08-06 | Stmicroelectronics Pte Ltd. | Multi-stacked semiconductor dice scale package structure and method of manufacturing same |
US20110283034A1 (en) * | 2010-05-12 | 2011-11-17 | Samsung Electronics Co., Ltd. | Semiconductor chip, and semiconductor package and system each including the semiconductor chip |
US8519470B2 (en) * | 2010-05-12 | 2013-08-27 | Samsung Electronics Co., Ltd | Semiconductor chip, and semiconductor package and system each including the semiconductor chip |
US20130062764A1 (en) * | 2011-09-14 | 2013-03-14 | Stmicroelectronics Pte Ltd. | Semiconductor package with improved pillar bump process and structure |
US9013037B2 (en) * | 2011-09-14 | 2015-04-21 | Stmicroelectronics Pte Ltd. | Semiconductor package with improved pillar bump process and structure |
US8779601B2 (en) | 2011-11-02 | 2014-07-15 | Stmicroelectronics Pte Ltd | Embedded wafer level package for 3D and package-on-package applications, and method of manufacture |
US8916481B2 (en) | 2011-11-02 | 2014-12-23 | Stmicroelectronics Pte Ltd. | Embedded wafer level package for 3D and package-on-package applications, and method of manufacture |
US20140131072A1 (en) * | 2012-11-15 | 2014-05-15 | Siliconware Precision Industries Co., Ltd. | Connection structure for a substrate and a method of fabricating the connection structure |
US20150214169A1 (en) * | 2012-11-15 | 2015-07-30 | Siliconware Precision Industries Co., Ltd. | Method of fabricating connection structure for a substrate |
US9666548B2 (en) * | 2012-11-15 | 2017-05-30 | Siliconware Precision Industries Co., Ltd. | Method of fabricating connection structure for a substrate |
US9633965B2 (en) | 2014-08-08 | 2017-04-25 | Taiwan Semiconductor Manufacturing Company Ltd. | Semiconductor structure and manufacturing method of the same |
TWI616991B (en) * | 2014-08-08 | 2018-03-01 | 台灣積體電路製造股份有限公司 | Semiconductor structure and manufacturing method of the same |
US9564410B2 (en) * | 2015-07-08 | 2017-02-07 | Texas Instruments Incorporated | Semiconductor devices having metal bumps with flange |
US20170069246A1 (en) * | 2015-09-08 | 2017-03-09 | Canon Kabushiki Kaisha | Liquid crystal drive apparatus, image display apparatus and storage medium storing liquid crystal drive program |
US11721657B2 (en) | 2019-06-14 | 2023-08-08 | Stmicroelectronics Pte Ltd | Wafer level chip scale package having varying thicknesses |
US20230063251A1 (en) * | 2021-08-30 | 2023-03-02 | Taiwan Semiconductor Manufacturing Company, Ltd. | Semiconductor package and method of forming the same |
Also Published As
Publication number | Publication date |
---|---|
US20090267213A1 (en) | 2009-10-29 |
US20110024902A1 (en) | 2011-02-03 |
US20080067677A1 (en) | 2008-03-20 |
US7902679B2 (en) | 2011-03-08 |
US8158508B2 (en) | 2012-04-17 |
US20080088019A1 (en) | 2008-04-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8158508B2 (en) | Structure and manufacturing method of a chip scale package | |
US7863739B2 (en) | Low fabrication cost, fine pitch and high reliability solder bump | |
US20080050909A1 (en) | Top layers of metal for high performance IC's | |
US6426556B1 (en) | Reliable metal bumps on top of I/O pads with test probe marks | |
US6756294B1 (en) | Method for improving bump reliability for flip chip devices | |
US8836146B2 (en) | Chip package and method for fabricating the same | |
US9369175B2 (en) | Low fabrication cost, high performance, high reliability chip scale package | |
US6674162B2 (en) | Semiconductor device and manufacturing method thereof | |
US8778792B2 (en) | Solder bump connections | |
US7112522B1 (en) | Method to increase bump height and achieve robust bump structure | |
KR20070096016A (en) | Interconnect structures with bond-pads and methods of forming bump sites on bond-pads | |
KR20070104919A (en) | Structure and method for fabricating flip chip devices | |
US6753609B2 (en) | Circuit probing contact pad formed on a bond pad in a flip chip package | |
JP2000228420A (en) | Semiconductor device and manufacture thereof | |
US6649507B1 (en) | Dual layer photoresist method for fabricating a mushroom bumping plating structure | |
JP2004501504A (en) | Method and apparatus for forming an interconnect structure | |
US6479376B1 (en) | Process improvement for the creation of aluminum contact bumps | |
US20060163729A1 (en) | Structure and manufacturing method of a chip scale package | |
JP2006332694A (en) | Method for forming metal bumps on semiconductor surface | |
JP2003258014A (en) | Method for forming metal bump on semiconductor surface | |
US20040229474A1 (en) | [method for treating wafer surface] |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: MEGIT ACQUISITION CORP., CALIFORNIA Free format text: MERGER;ASSIGNOR:MEGICA CORPORATION;REEL/FRAME:031283/0198 Effective date: 20130611 |
|
AS | Assignment |
Owner name: QUALCOMM INCORPORATED, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MEGIT ACQUISITION CORP.;REEL/FRAME:033303/0124 Effective date: 20140709 |