US20090153045A1 - Platinum complex compound and organic electroluminescence device using the same - Google Patents
Platinum complex compound and organic electroluminescence device using the same Download PDFInfo
- Publication number
- US20090153045A1 US20090153045A1 US12/333,370 US33337008A US2009153045A1 US 20090153045 A1 US20090153045 A1 US 20090153045A1 US 33337008 A US33337008 A US 33337008A US 2009153045 A1 US2009153045 A1 US 2009153045A1
- Authority
- US
- United States
- Prior art keywords
- ring
- bond
- bonding
- carbon atom
- group
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 150000001875 compounds Chemical class 0.000 title claims abstract description 104
- 238000005401 electroluminescence Methods 0.000 title claims description 22
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 title description 74
- 229910052697 platinum Inorganic materials 0.000 title description 15
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 131
- 125000004432 carbon atom Chemical group C* 0.000 claims abstract description 129
- 125000001424 substituent group Chemical group 0.000 claims abstract description 87
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 69
- 125000004433 nitrogen atom Chemical group N* 0.000 claims abstract description 68
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims abstract description 60
- 125000003118 aryl group Chemical group 0.000 claims abstract description 43
- 125000005647 linker group Chemical group 0.000 claims abstract description 35
- 125000006615 aromatic heterocyclic group Chemical group 0.000 claims abstract description 25
- 239000010410 layer Substances 0.000 claims description 144
- 239000012044 organic layer Substances 0.000 claims description 23
- -1 metal complex compound Chemical class 0.000 description 129
- 239000000463 material Substances 0.000 description 99
- 150000001721 carbon Chemical group 0.000 description 84
- 230000000052 comparative effect Effects 0.000 description 81
- 238000000034 method Methods 0.000 description 40
- 0 [1*]/C1=C([3*])/C([Ar])=C2/CC[Pt@@]34CCC5=N3C(=C([2*])C([4*])=C5C)CC1=N24 Chemical compound [1*]/C1=C([3*])/C([Ar])=C2/CC[Pt@@]34CCC5=N3C(=C([2*])C([4*])=C5C)CC1=N24 0.000 description 38
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 33
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 29
- 125000004093 cyano group Chemical group *C#N 0.000 description 26
- 229940125782 compound 2 Drugs 0.000 description 25
- 239000000203 mixture Substances 0.000 description 21
- 239000000758 substrate Substances 0.000 description 20
- 125000003226 pyrazolyl group Chemical group 0.000 description 18
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical group C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 16
- JFDZBHWFFUWGJE-UHFFFAOYSA-N benzonitrile Chemical compound N#CC1=CC=CC=C1 JFDZBHWFFUWGJE-UHFFFAOYSA-N 0.000 description 16
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 15
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 15
- 229910052731 fluorine Inorganic materials 0.000 description 14
- 125000000217 alkyl group Chemical group 0.000 description 13
- 125000000623 heterocyclic group Chemical group 0.000 description 13
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 12
- 125000002883 imidazolyl group Chemical group 0.000 description 12
- ZCSHNCUQKCANBX-UHFFFAOYSA-N lithium diisopropylamide Chemical compound [Li+].CC(C)[N-]C(C)C ZCSHNCUQKCANBX-UHFFFAOYSA-N 0.000 description 12
- 239000000243 solution Substances 0.000 description 12
- 125000001153 fluoro group Chemical group F* 0.000 description 11
- 125000005843 halogen group Chemical group 0.000 description 11
- 125000003373 pyrazinyl group Chemical group 0.000 description 11
- 230000015572 biosynthetic process Effects 0.000 description 10
- 125000000168 pyrrolyl group Chemical group 0.000 description 10
- 238000004544 sputter deposition Methods 0.000 description 10
- 238000003786 synthesis reaction Methods 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 9
- 238000003756 stirring Methods 0.000 description 9
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 8
- 229940125904 compound 1 Drugs 0.000 description 8
- 238000001771 vacuum deposition Methods 0.000 description 8
- BQXUPNKLZNSUMC-YUQWMIPFSA-N CCN(CCCCCOCC(=O)N[C@H](C(=O)N1C[C@H](O)C[C@H]1C(=O)N[C@@H](C)c1ccc(cc1)-c1scnc1C)C(C)(C)C)CCOc1ccc(cc1)C(=O)c1c(sc2cc(O)ccc12)-c1ccc(O)cc1 Chemical compound CCN(CCCCCOCC(=O)N[C@H](C(=O)N1C[C@H](O)C[C@H]1C(=O)N[C@@H](C)c1ccc(cc1)-c1scnc1C)C(C)(C)C)CCOc1ccc(cc1)C(=O)c1c(sc2cc(O)ccc12)-c1ccc(O)cc1 BQXUPNKLZNSUMC-YUQWMIPFSA-N 0.000 description 7
- YLQBMQCUIZJEEH-UHFFFAOYSA-N Furan Chemical group C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 7
- 229910052782 aluminium Inorganic materials 0.000 description 7
- 230000008859 change Effects 0.000 description 7
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 7
- IOMMMLWIABWRKL-WUTDNEBXSA-N nazartinib Chemical compound C1N(C(=O)/C=C/CN(C)C)CCCC[C@H]1N1C2=C(Cl)C=CC=C2N=C1NC(=O)C1=CC=NC(C)=C1 IOMMMLWIABWRKL-WUTDNEBXSA-N 0.000 description 7
- 239000012299 nitrogen atmosphere Substances 0.000 description 7
- 150000002894 organic compounds Chemical class 0.000 description 7
- 238000010898 silica gel chromatography Methods 0.000 description 7
- 238000005160 1H NMR spectroscopy Methods 0.000 description 6
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 6
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical group C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 125000002252 acyl group Chemical group 0.000 description 6
- 125000003545 alkoxy group Chemical group 0.000 description 6
- 125000004453 alkoxycarbonyl group Chemical group 0.000 description 6
- 125000004414 alkyl thio group Chemical group 0.000 description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 6
- 125000003277 amino group Chemical group 0.000 description 6
- 125000004104 aryloxy group Chemical group 0.000 description 6
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 6
- 238000007733 ion plating Methods 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 229910044991 metal oxide Inorganic materials 0.000 description 6
- 150000002739 metals Chemical class 0.000 description 6
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 6
- 238000007639 printing Methods 0.000 description 6
- 125000004076 pyridyl group Chemical group 0.000 description 6
- 125000000472 sulfonyl group Chemical group *S(*)(=O)=O 0.000 description 6
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 6
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 239000013078 crystal Substances 0.000 description 5
- 238000000605 extraction Methods 0.000 description 5
- 239000011521 glass Substances 0.000 description 5
- 239000011241 protective layer Substances 0.000 description 5
- PBMFSQRYOILNGV-UHFFFAOYSA-N pyridazine Chemical group C1=CC=NN=C1 PBMFSQRYOILNGV-UHFFFAOYSA-N 0.000 description 5
- 125000000714 pyrimidinyl group Chemical group 0.000 description 5
- 239000011541 reaction mixture Substances 0.000 description 5
- 239000002356 single layer Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 150000003852 triazoles Chemical group 0.000 description 5
- OOKAZRDERJMRCJ-KOUAFAAESA-N (3r)-7-[(1s,2s,4ar,6s,8s)-2,6-dimethyl-8-[(2s)-2-methylbutanoyl]oxy-1,2,4a,5,6,7,8,8a-octahydronaphthalen-1-yl]-3-hydroxy-5-oxoheptanoic acid Chemical compound C1=C[C@H](C)[C@H](CCC(=O)C[C@@H](O)CC(O)=O)C2[C@@H](OC(=O)[C@@H](C)CC)C[C@@H](C)C[C@@H]21 OOKAZRDERJMRCJ-KOUAFAAESA-N 0.000 description 4
- WZZBNLYBHUDSHF-DHLKQENFSA-N 1-[(3s,4s)-4-[8-(2-chloro-4-pyrimidin-2-yloxyphenyl)-7-fluoro-2-methylimidazo[4,5-c]quinolin-1-yl]-3-fluoropiperidin-1-yl]-2-hydroxyethanone Chemical compound CC1=NC2=CN=C3C=C(F)C(C=4C(=CC(OC=5N=CC=CN=5)=CC=4)Cl)=CC3=C2N1[C@H]1CCN(C(=O)CO)C[C@@H]1F WZZBNLYBHUDSHF-DHLKQENFSA-N 0.000 description 4
- FMKGJQHNYMWDFJ-CVEARBPZSA-N 2-[[4-(2,2-difluoropropoxy)pyrimidin-5-yl]methylamino]-4-[[(1R,4S)-4-hydroxy-3,3-dimethylcyclohexyl]amino]pyrimidine-5-carbonitrile Chemical compound FC(COC1=NC=NC=C1CNC1=NC=C(C(=N1)N[C@H]1CC([C@H](CC1)O)(C)C)C#N)(C)F FMKGJQHNYMWDFJ-CVEARBPZSA-N 0.000 description 4
- TVTJUIAKQFIXCE-HUKYDQBMSA-N 2-amino-9-[(2R,3S,4S,5R)-4-fluoro-3-hydroxy-5-(hydroxymethyl)oxolan-2-yl]-7-prop-2-ynyl-1H-purine-6,8-dione Chemical compound NC=1NC(C=2N(C(N(C=2N=1)[C@@H]1O[C@@H]([C@H]([C@H]1O)F)CO)=O)CC#C)=O TVTJUIAKQFIXCE-HUKYDQBMSA-N 0.000 description 4
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 4
- 229940126639 Compound 33 Drugs 0.000 description 4
- PNUZDKCDAWUEGK-CYZMBNFOSA-N Sitafloxacin Chemical compound C([C@H]1N)N(C=2C(=C3C(C(C(C(O)=O)=CN3[C@H]3[C@H](C3)F)=O)=CC=2F)Cl)CC11CC1 PNUZDKCDAWUEGK-CYZMBNFOSA-N 0.000 description 4
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 4
- FZWLAAWBMGSTSO-UHFFFAOYSA-N Thiazole Chemical group C1=CSC=N1 FZWLAAWBMGSTSO-UHFFFAOYSA-N 0.000 description 4
- SMNRFWMNPDABKZ-WVALLCKVSA-N [[(2R,3S,4R,5S)-5-(2,6-dioxo-3H-pyridin-3-yl)-3,4-dihydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl] [[[(2R,3S,4S,5R,6R)-4-fluoro-3,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl] hydrogen phosphate Chemical compound OC[C@H]1O[C@H](OP(O)(=O)OP(O)(=O)OP(O)(=O)OP(O)(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)C2C=CC(=O)NC2=O)[C@H](O)[C@@H](F)[C@@H]1O SMNRFWMNPDABKZ-WVALLCKVSA-N 0.000 description 4
- 229910052783 alkali metal Inorganic materials 0.000 description 4
- 150000001340 alkali metals Chemical class 0.000 description 4
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 4
- 150000001342 alkaline earth metals Chemical class 0.000 description 4
- 230000004888 barrier function Effects 0.000 description 4
- 125000003785 benzimidazolyl group Chemical group N1=C(NC2=C1C=CC=C2)* 0.000 description 4
- 229940125851 compound 27 Drugs 0.000 description 4
- 229940125898 compound 5 Drugs 0.000 description 4
- 229940127113 compound 57 Drugs 0.000 description 4
- 229920001577 copolymer Polymers 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 125000001841 imino group Chemical group [H]N=* 0.000 description 4
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Chemical compound [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- LQNUZADURLCDLV-UHFFFAOYSA-N nitrobenzene Chemical compound [O-][N+](=O)C1=CC=CC=C1 LQNUZADURLCDLV-UHFFFAOYSA-N 0.000 description 4
- 125000002971 oxazolyl group Chemical group 0.000 description 4
- CLSUSRZJUQMOHH-UHFFFAOYSA-L platinum dichloride Chemical compound Cl[Pt]Cl CLSUSRZJUQMOHH-UHFFFAOYSA-L 0.000 description 4
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 4
- 238000010992 reflux Methods 0.000 description 4
- 229910052938 sodium sulfate Inorganic materials 0.000 description 4
- 235000011152 sodium sulphate Nutrition 0.000 description 4
- CXNIUSPIQKWYAI-UHFFFAOYSA-N xantphos Chemical compound C=12OC3=C(P(C=4C=CC=CC=4)C=4C=CC=CC=4)C=CC=C3C(C)(C)C2=CC=CC=1P(C=1C=CC=CC=1)C1=CC=CC=C1 CXNIUSPIQKWYAI-UHFFFAOYSA-N 0.000 description 4
- 229910000838 Al alloy Inorganic materials 0.000 description 3
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 125000002947 alkylene group Chemical group 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 125000000732 arylene group Chemical group 0.000 description 3
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Inorganic materials [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 description 3
- IOJUPLGTWVMSFF-UHFFFAOYSA-N benzothiazole Chemical class C1=CC=C2SC=NC2=C1 IOJUPLGTWVMSFF-UHFFFAOYSA-N 0.000 description 3
- UFVXQDWNSAGPHN-UHFFFAOYSA-K bis[(2-methylquinolin-8-yl)oxy]-(4-phenylphenoxy)alumane Chemical compound [Al+3].C1=CC=C([O-])C2=NC(C)=CC=C21.C1=CC=C([O-])C2=NC(C)=CC=C21.C1=CC([O-])=CC=C1C1=CC=CC=C1 UFVXQDWNSAGPHN-UHFFFAOYSA-K 0.000 description 3
- 125000000609 carbazolyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3NC12)* 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- GBRBMTNGQBKBQE-UHFFFAOYSA-L copper;diiodide Chemical compound I[Cu]I GBRBMTNGQBKBQE-UHFFFAOYSA-L 0.000 description 3
- 239000002019 doping agent Substances 0.000 description 3
- 239000011737 fluorine Substances 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- 238000003475 lamination Methods 0.000 description 3
- 239000003446 ligand Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 3
- 235000019341 magnesium sulphate Nutrition 0.000 description 3
- 125000001624 naphthyl group Chemical group 0.000 description 3
- 150000004866 oxadiazoles Chemical class 0.000 description 3
- 125000001820 oxy group Chemical group [*:1]O[*:2] 0.000 description 3
- 238000000059 patterning Methods 0.000 description 3
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 3
- 238000007789 sealing Methods 0.000 description 3
- 150000004756 silanes Chemical class 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 238000006467 substitution reaction Methods 0.000 description 3
- 229940042055 systemic antimycotics triazole derivative Drugs 0.000 description 3
- 125000004149 thio group Chemical group *S* 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 239000011592 zinc chloride Substances 0.000 description 3
- 235000005074 zinc chloride Nutrition 0.000 description 3
- UWRZIZXBOLBCON-VOTSOKGWSA-N (e)-2-phenylethenamine Chemical class N\C=C\C1=CC=CC=C1 UWRZIZXBOLBCON-VOTSOKGWSA-N 0.000 description 2
- BCMCBBGGLRIHSE-UHFFFAOYSA-N 1,3-benzoxazole Chemical class C1=CC=C2OC=NC2=C1 BCMCBBGGLRIHSE-UHFFFAOYSA-N 0.000 description 2
- BOHCMQZJWOGWTA-UHFFFAOYSA-N 3-methylbenzonitrile Chemical compound CC1=CC=CC(C#N)=C1 BOHCMQZJWOGWTA-UHFFFAOYSA-N 0.000 description 2
- PYXNITNKYBLBMW-UHFFFAOYSA-N 5-(trifluoromethyl)-1h-pyrazole Chemical compound FC(F)(F)C1=CC=NN1 PYXNITNKYBLBMW-UHFFFAOYSA-N 0.000 description 2
- KLZUFWVZNOTSEM-UHFFFAOYSA-K Aluminium flouride Chemical compound F[Al](F)F KLZUFWVZNOTSEM-UHFFFAOYSA-K 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- 235000002597 Solanum melongena Nutrition 0.000 description 2
- 244000061458 Solanum melongena Species 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- JFBZPFYRPYOZCQ-UHFFFAOYSA-N [Li].[Al] Chemical compound [Li].[Al] JFBZPFYRPYOZCQ-UHFFFAOYSA-N 0.000 description 2
- 239000006096 absorbing agent Substances 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 150000001350 alkyl halides Chemical class 0.000 description 2
- 125000004397 aminosulfonyl group Chemical group NS(=O)(=O)* 0.000 description 2
- 125000005577 anthracene group Chemical group 0.000 description 2
- YCOXTKKNXUZSKD-UHFFFAOYSA-N as-o-xylenol Natural products CC1=CC=C(O)C=C1C YCOXTKKNXUZSKD-UHFFFAOYSA-N 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- XJHCXCQVJFPJIK-UHFFFAOYSA-M caesium fluoride Chemical compound [F-].[Cs+] XJHCXCQVJFPJIK-UHFFFAOYSA-M 0.000 description 2
- 239000000292 calcium oxide Substances 0.000 description 2
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 2
- 235000012255 calcium oxide Nutrition 0.000 description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- 125000003917 carbamoyl group Chemical group [H]N([H])C(*)=O 0.000 description 2
- RBHJBMIOOPYDBQ-UHFFFAOYSA-N carbon dioxide;propan-2-one Chemical compound O=C=O.CC(C)=O RBHJBMIOOPYDBQ-UHFFFAOYSA-N 0.000 description 2
- 238000003486 chemical etching Methods 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 230000021615 conjugation Effects 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- ZSWFCLXCOIISFI-UHFFFAOYSA-N cyclopentadiene Chemical class C1C=CC=C1 ZSWFCLXCOIISFI-UHFFFAOYSA-N 0.000 description 2
- 238000000295 emission spectrum Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 150000008376 fluorenones Chemical class 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 150000002367 halogens Chemical group 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- RBTKNAXYKSUFRK-UHFFFAOYSA-N heliogen blue Chemical compound [Cu].[N-]1C2=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=NC([N-]1)=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=N2 RBTKNAXYKSUFRK-UHFFFAOYSA-N 0.000 description 2
- 125000005549 heteroarylene group Chemical group 0.000 description 2
- 150000002460 imidazoles Chemical class 0.000 description 2
- 125000003453 indazolyl group Chemical group N1N=C(C2=C1C=CC=C2)* 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- 125000001041 indolyl group Chemical group 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 239000011147 inorganic material Substances 0.000 description 2
- 229940079865 intestinal antiinfectives imidazole derivative Drugs 0.000 description 2
- SNHMUERNLJLMHN-UHFFFAOYSA-N iodobenzene Chemical compound IC1=CC=CC=C1 SNHMUERNLJLMHN-UHFFFAOYSA-N 0.000 description 2
- 239000011133 lead Substances 0.000 description 2
- 238000004020 luminiscence type Methods 0.000 description 2
- 239000000395 magnesium oxide Substances 0.000 description 2
- 238000001451 molecular beam epitaxy Methods 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 239000011368 organic material Substances 0.000 description 2
- 150000007978 oxazole derivatives Chemical class 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 238000000053 physical method Methods 0.000 description 2
- 229920002493 poly(chlorotrifluoroethylene) Polymers 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 229920000123 polythiophene Polymers 0.000 description 2
- 229910000027 potassium carbonate Inorganic materials 0.000 description 2
- 125000006239 protecting group Chemical group 0.000 description 2
- MCJGNVYPOGVAJF-UHFFFAOYSA-N quinolin-8-ol Chemical class C1=CN=C2C(O)=CC=CC2=C1 MCJGNVYPOGVAJF-UHFFFAOYSA-N 0.000 description 2
- 125000002943 quinolinyl group Chemical group N1=C(C=CC2=CC=CC=C12)* 0.000 description 2
- 238000001953 recrystallisation Methods 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 238000000859 sublimation Methods 0.000 description 2
- 230000008022 sublimation Effects 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 238000001308 synthesis method Methods 0.000 description 2
- 229910001887 tin oxide Inorganic materials 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 229910001233 yttria-stabilized zirconia Inorganic materials 0.000 description 2
- UKSZBOKPHAQOMP-SVLSSHOZSA-N (1e,4e)-1,5-diphenylpenta-1,4-dien-3-one;palladium Chemical compound [Pd].C=1C=CC=CC=1\C=C\C(=O)\C=C\C1=CC=CC=C1.C=1C=CC=CC=1\C=C\C(=O)\C=C\C1=CC=CC=C1 UKSZBOKPHAQOMP-SVLSSHOZSA-N 0.000 description 1
- JYEUMXHLPRZUAT-UHFFFAOYSA-N 1,2,3-triazine Chemical group C1=CN=NN=C1 JYEUMXHLPRZUAT-UHFFFAOYSA-N 0.000 description 1
- KLCLIOISYBHYDZ-UHFFFAOYSA-N 1,4,4-triphenylbuta-1,3-dienylbenzene Chemical class C=1C=CC=CC=1C(C=1C=CC=CC=1)=CC=C(C=1C=CC=CC=1)C1=CC=CC=C1 KLCLIOISYBHYDZ-UHFFFAOYSA-N 0.000 description 1
- VERMWGQSKPXSPZ-BUHFOSPRSA-N 1-[(e)-2-phenylethenyl]anthracene Chemical class C=1C=CC2=CC3=CC=CC=C3C=C2C=1\C=C\C1=CC=CC=C1 VERMWGQSKPXSPZ-BUHFOSPRSA-N 0.000 description 1
- YQTCQNIPQMJNTI-UHFFFAOYSA-N 2,2-dimethylpropan-1-one Chemical group CC(C)(C)[C]=O YQTCQNIPQMJNTI-UHFFFAOYSA-N 0.000 description 1
- SULWTXOWAFVWOY-PHEQNACWSA-N 2,3-bis[(E)-2-phenylethenyl]pyrazine Chemical class C=1C=CC=CC=1/C=C/C1=NC=CN=C1\C=C\C1=CC=CC=C1 SULWTXOWAFVWOY-PHEQNACWSA-N 0.000 description 1
- MVWPVABZQQJTPL-UHFFFAOYSA-N 2,3-diphenylcyclohexa-2,5-diene-1,4-dione Chemical class O=C1C=CC(=O)C(C=2C=CC=CC=2)=C1C1=CC=CC=C1 MVWPVABZQQJTPL-UHFFFAOYSA-N 0.000 description 1
- FEYDZHNIIMENOB-UHFFFAOYSA-N 2,6-dibromopyridine Chemical compound BrC1=CC=CC(Br)=N1 FEYDZHNIIMENOB-UHFFFAOYSA-N 0.000 description 1
- STTGYIUESPWXOW-UHFFFAOYSA-N 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline Chemical compound C=12C=CC3=C(C=4C=CC=CC=4)C=C(C)N=C3C2=NC(C)=CC=1C1=CC=CC=C1 STTGYIUESPWXOW-UHFFFAOYSA-N 0.000 description 1
- 125000004974 2-butenyl group Chemical group C(C=CC)* 0.000 description 1
- NEAQRZUHTPSBBM-UHFFFAOYSA-N 2-hydroxy-3,3-dimethyl-7-nitro-4h-isoquinolin-1-one Chemical compound C1=C([N+]([O-])=O)C=C2C(=O)N(O)C(C)(C)CC2=C1 NEAQRZUHTPSBBM-UHFFFAOYSA-N 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- 125000001494 2-propynyl group Chemical group [H]C#CC([H])([H])* 0.000 description 1
- MJKNHXCPGXUEDO-UHFFFAOYSA-N 3,5-ditert-butylaniline Chemical compound CC(C)(C)C1=CC(N)=CC(C(C)(C)C)=C1 MJKNHXCPGXUEDO-UHFFFAOYSA-N 0.000 description 1
- LGLDSEPDYUTBNZ-UHFFFAOYSA-N 3-phenylbuta-1,3-dien-2-ylbenzene Chemical class C=1C=CC=CC=1C(=C)C(=C)C1=CC=CC=C1 LGLDSEPDYUTBNZ-UHFFFAOYSA-N 0.000 description 1
- 125000000590 4-methylphenyl group Chemical group [H]C1=C([H])C(=C([H])C([H])=C1*)C([H])([H])[H] 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical group [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- ZYASLTYCYTYKFC-UHFFFAOYSA-N 9-methylidenefluorene Chemical class C1=CC=C2C(=C)C3=CC=CC=C3C2=C1 ZYASLTYCYTYKFC-UHFFFAOYSA-N 0.000 description 1
- 229910001316 Ag alloy Inorganic materials 0.000 description 1
- MOZPSDATTUZNQX-MBDJGAHPSA-N BrC1=CC=CC(Br)=N1.BrC1=NC(Br)=C(C2=CC=CC=C2)C=C1.C1CCOC1.CC(C)(C)C1=CC(N(C2=CC=C(C3=CC=CC=C3)C(Br)=N2)C2=NC(Br)=C(C3=CC=CC=C3)C=C2)=CC(C(C)(C)C)=C1.CC(C)(C)C1=CC(N(C2=CC=C(C3=CC=CC=C3)C(N3C=CC(C(F)(F)F)=N3)=N2)C2=NC(N3C=CC(C(F)(F)F)=N3)=C(C3=CC=CC=C3)C=C2)=CC(C(C)(C)C)=C1.CC(C)(C)C1=CC(N)=CC(C(C)(C)C)=C1.CC(C)(C)C1=CC(N2C3=CC=C(C4=CC=CC=C4)C4=N3[Pt@]3(C5=CC(C(F)(F)F)=NN5C5=C(C6=CC=CC=C6)C=CC2=N53)C2=CC(C(F)(F)F)=NN24)=CC(C(C)(C)C)=C1.O=[N+]([O-])C1=CC=CC=C1.[2H-5].[BH8-5].[C-5].[H]N1C=CC(C(F)(F)F)=N1 Chemical compound BrC1=CC=CC(Br)=N1.BrC1=NC(Br)=C(C2=CC=CC=C2)C=C1.C1CCOC1.CC(C)(C)C1=CC(N(C2=CC=C(C3=CC=CC=C3)C(Br)=N2)C2=NC(Br)=C(C3=CC=CC=C3)C=C2)=CC(C(C)(C)C)=C1.CC(C)(C)C1=CC(N(C2=CC=C(C3=CC=CC=C3)C(N3C=CC(C(F)(F)F)=N3)=N2)C2=NC(N3C=CC(C(F)(F)F)=N3)=C(C3=CC=CC=C3)C=C2)=CC(C(C)(C)C)=C1.CC(C)(C)C1=CC(N)=CC(C(C)(C)C)=C1.CC(C)(C)C1=CC(N2C3=CC=C(C4=CC=CC=C4)C4=N3[Pt@]3(C5=CC(C(F)(F)F)=NN5C5=C(C6=CC=CC=C6)C=CC2=N53)C2=CC(C(F)(F)F)=NN24)=CC(C(C)(C)C)=C1.O=[N+]([O-])C1=CC=CC=C1.[2H-5].[BH8-5].[C-5].[H]N1C=CC(C(F)(F)F)=N1 MOZPSDATTUZNQX-MBDJGAHPSA-N 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical group [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- PGQRAEFUWBJUIH-UHFFFAOYSA-N C.CC.CC(C)(C)C.CC(C)(C)C(C)(C)C.CC(C)(C)C(C)(C)C(C)(C)C.CC(C)=CC=C(C)C.CC1(C)CCCC1.CC1(C)CCCCC1.CC1=C(C)C=CC=C1.CC1=C(C)C=NC=C1.CC1=CC=C(C)C=C1.CC1=CC=C(C)N1C1=CC=CC=C1.CC1=CC=C(C)O1.CC1=CC=C(C)S1.CC1=CC=CC(C)=C1.CC1=CC=NC(C)=C1.CCC.CCCC.CCCCC.CN(C)C.CN(C)C.CN(C)C1=CC=CC=C1.CN(C)C1=CC=CC=C1.CNC.COC.CP(C)C1=CC=CC=C1.CSC.C[Ge](C)(C)C.C[Ge](C)(C1=CC=CC=C1)C1=CC=CC=C1.C[Si](C)(C)C.C[Si](C)(C1=CC=CC=C1)C1=CC=CC=C1 Chemical compound C.CC.CC(C)(C)C.CC(C)(C)C(C)(C)C.CC(C)(C)C(C)(C)C(C)(C)C.CC(C)=CC=C(C)C.CC1(C)CCCC1.CC1(C)CCCCC1.CC1=C(C)C=CC=C1.CC1=C(C)C=NC=C1.CC1=CC=C(C)C=C1.CC1=CC=C(C)N1C1=CC=CC=C1.CC1=CC=C(C)O1.CC1=CC=C(C)S1.CC1=CC=CC(C)=C1.CC1=CC=NC(C)=C1.CCC.CCCC.CCCCC.CN(C)C.CN(C)C.CN(C)C1=CC=CC=C1.CN(C)C1=CC=CC=C1.CNC.COC.CP(C)C1=CC=CC=C1.CSC.C[Ge](C)(C)C.C[Ge](C)(C1=CC=CC=C1)C1=CC=CC=C1.C[Si](C)(C)C.C[Si](C)(C1=CC=CC=C1)C1=CC=CC=C1 PGQRAEFUWBJUIH-UHFFFAOYSA-N 0.000 description 1
- PVGOSLFCMCYDBT-DYCDLGHISA-L C/C1=C/C=C2/C=CC=C3O[Al](OC4=CC=C(C5=CC=CC=C5)C=C4)N1=C32.C1=CC(N2C3=C(C=CC=C3)C3=C2/C=C\C=C/3)=CC(N2C3=C(C=CC=C3)C3=C2C=CC=C3)=C1.C1=CC2=C(C=C1)/C1=N/C3=N4/C(=N\C5=C6C=CC=CC6=C6/N=C7/C8=C(C=CC=C8)C8=N7[Cu@]4(N65)N1C2=N8)C1=C3C=CC=C1.C1=CC=C(N(C2=CC=C(C3=CC=C(N(C4=CC=CC=C4)C4=C5C=CC=CC5=CC=C4)C=C3)C=C2)C2=C3C=CC=CC3=CC=C2)C=C1.CC1(C)C2=CC=CC3=N2[Pt@]2(C4=CC=C(F)C=C43)C3=C(C=C(F)C=C3)C3=CC=CC1=N32.CC1(C)C2=CC=CC3=N2[Pt@]2(C4=CC=CC=C43)C3=C(C=CC=C3)C3=CC=CC1=N32.CC1(C)C2=N3C(=CC=C2)N2N=C(C(F)(F)F)C=C2[Pt]32C3=CC(C(F)(F)F)=NN3C3=CC=CC1=N32.[2H]N=P Chemical compound C/C1=C/C=C2/C=CC=C3O[Al](OC4=CC=C(C5=CC=CC=C5)C=C4)N1=C32.C1=CC(N2C3=C(C=CC=C3)C3=C2/C=C\C=C/3)=CC(N2C3=C(C=CC=C3)C3=C2C=CC=C3)=C1.C1=CC2=C(C=C1)/C1=N/C3=N4/C(=N\C5=C6C=CC=CC6=C6/N=C7/C8=C(C=CC=C8)C8=N7[Cu@]4(N65)N1C2=N8)C1=C3C=CC=C1.C1=CC=C(N(C2=CC=C(C3=CC=C(N(C4=CC=CC=C4)C4=C5C=CC=CC5=CC=C4)C=C3)C=C2)C2=C3C=CC=CC3=CC=C2)C=C1.CC1(C)C2=CC=CC3=N2[Pt@]2(C4=CC=C(F)C=C43)C3=C(C=C(F)C=C3)C3=CC=CC1=N32.CC1(C)C2=CC=CC3=N2[Pt@]2(C4=CC=CC=C43)C3=C(C=CC=C3)C3=CC=CC1=N32.CC1(C)C2=N3C(=CC=C2)N2N=C(C(F)(F)F)C=C2[Pt]32C3=CC(C(F)(F)F)=NN3C3=CC=CC1=N32.[2H]N=P PVGOSLFCMCYDBT-DYCDLGHISA-L 0.000 description 1
- PUZBDKBYRQQXJB-UHFFFAOYSA-N C1=CC=C(C2=CC=C3N4=C2C2=CC=CC=C2[Pt@]42C4=C(C=CC=C4)C4=C(C5=CC=CC=C5)C=CC(=N42)C32CCCC2)C=C1.C1=CC=C(C2=CC=C3OC4=N5C(=C(C6=CC=CC=C6)C=C4)C4=C(C=CC=C4)[Pt@]54C5=CC=CC=C5C2=N34)C=C1.COC1=CC=C2C(=C1)[Pt@@]13C4=C(C=CC(OC)=C4)C4=C(C5=CC=CC=C5)C=CC(=N41)C(C)(C)C1=CC=C(C4=CC=CC=C4)C2=N13.[C-]#[N+]C1=CC=C2C(=C1)C1=N3C(=CC=C1C1=CC=CC=C1)C(C1=CC=CC=C1)(C1=CC=CC=C1)C1=N4C(=C(C5=CC=CC=C5)C=C1)C1=C(C=CC(C#N)=C1)[Pt@@]234.[C-]#[N+]C1=CC=C2C(=C1)C1=N3C(=CC=C1C1=CC=CC=C1)C1(CCCC1)C1=N4C(=C(C5=CC=CC=C5)C=C1)C1=C(C=CC(C#N)=C1)[Pt@@]234 Chemical compound C1=CC=C(C2=CC=C3N4=C2C2=CC=CC=C2[Pt@]42C4=C(C=CC=C4)C4=C(C5=CC=CC=C5)C=CC(=N42)C32CCCC2)C=C1.C1=CC=C(C2=CC=C3OC4=N5C(=C(C6=CC=CC=C6)C=C4)C4=C(C=CC=C4)[Pt@]54C5=CC=CC=C5C2=N34)C=C1.COC1=CC=C2C(=C1)[Pt@@]13C4=C(C=CC(OC)=C4)C4=C(C5=CC=CC=C5)C=CC(=N41)C(C)(C)C1=CC=C(C4=CC=CC=C4)C2=N13.[C-]#[N+]C1=CC=C2C(=C1)C1=N3C(=CC=C1C1=CC=CC=C1)C(C1=CC=CC=C1)(C1=CC=CC=C1)C1=N4C(=C(C5=CC=CC=C5)C=C1)C1=C(C=CC(C#N)=C1)[Pt@@]234.[C-]#[N+]C1=CC=C2C(=C1)C1=N3C(=CC=C1C1=CC=CC=C1)C1(CCCC1)C1=N4C(=C(C5=CC=CC=C5)C=C1)C1=C(C=CC(C#N)=C1)[Pt@@]234 PUZBDKBYRQQXJB-UHFFFAOYSA-N 0.000 description 1
- YPXVHFLFRIGZEN-UHFFFAOYSA-N C1=CC=C(C2=CC=C3N4=C2N2N=CC=C2[Pt@]42C4=CC=NN4C4=C(C5=CC=CC=C5)C=CC(=N42)C3(C2=CC=CC=C2)C2=CC=CC=C2)C=C1.CC(C)(C)C1=NN2C(=C1)[Pt@@]13C4=CC(C(C)(C)C)=NN4C4=N1C(=CC=C4C1=CC=CC=C1)C(C)(C)C1=N3C2=C(C2=CC=CC=C2)C=C1.CC1=NN2C(=C1)[Pt@@]13C4=CC(C)=NN4C4=N1C(=CC=C4C1=CC=CC=C1)C(C)(C)C1=N3C2=C(C2=CC=CC=C2)C=C1.FC(F)(F)C1=NN2C(=C1)[Pt@@]13C4=CC(C(F)(F)F)=NN4C4=N1C(=CC=C4C1=CC=CC=C1)C(C1=CC=CC=C1)(C1=CC=CC=C1)C1=N3C2=C(C2=CC=CC=C2)C=C1.[C-]#[N+]C1=NN2C(=C1)[Pt@@]13C4=CC(C#N)=NN4C4=C(C5=CC=CC=C5)C=CC(=N41)C(C1=CC=CC=C1)(C1=CC=CC=C1)C1=CC=C(C4=CC=CC=C4)C2=N13 Chemical compound C1=CC=C(C2=CC=C3N4=C2N2N=CC=C2[Pt@]42C4=CC=NN4C4=C(C5=CC=CC=C5)C=CC(=N42)C3(C2=CC=CC=C2)C2=CC=CC=C2)C=C1.CC(C)(C)C1=NN2C(=C1)[Pt@@]13C4=CC(C(C)(C)C)=NN4C4=N1C(=CC=C4C1=CC=CC=C1)C(C)(C)C1=N3C2=C(C2=CC=CC=C2)C=C1.CC1=NN2C(=C1)[Pt@@]13C4=CC(C)=NN4C4=N1C(=CC=C4C1=CC=CC=C1)C(C)(C)C1=N3C2=C(C2=CC=CC=C2)C=C1.FC(F)(F)C1=NN2C(=C1)[Pt@@]13C4=CC(C(F)(F)F)=NN4C4=N1C(=CC=C4C1=CC=CC=C1)C(C1=CC=CC=C1)(C1=CC=CC=C1)C1=N3C2=C(C2=CC=CC=C2)C=C1.[C-]#[N+]C1=NN2C(=C1)[Pt@@]13C4=CC(C#N)=NN4C4=C(C5=CC=CC=C5)C=CC(=N41)C(C1=CC=CC=C1)(C1=CC=CC=C1)C1=CC=C(C4=CC=CC=C4)C2=N13 YPXVHFLFRIGZEN-UHFFFAOYSA-N 0.000 description 1
- DZGFURFTAVVFMZ-UHFFFAOYSA-N C1=CC=C(C2=CC=C3OC4=N5C(=C(C6=CC=CC=C6)C=C4)N4N=CC=C4[Pt@]54C5=CC=NN5C2=N34)C=C1.CC(C)(C)C1=CC(N2C3=CC=C(C4=CC=CC=C4)C4=N3[Pt@@]3(C5=CC(C(C)(C)C)=NN5C5=C(C6=CC=CC=C6)C=CC2=N53)C2=CC(C(C)(C)C)=NN24)=CC(C(C)(C)C)=C1.[C-]#[N+]C1=NN2C(=C1)[Pt@@]13C4=CC(C#N)=NN4C4=C(C5=CC=CC=C5)C=CC(=N41)C(C)(CC)C1=CC=C(C4=CC=CC=C4)C2=N13.[C-]#[N+]C1=NN2C(=C1)[Pt@@]13C4=CC(C#N)=NN4C4=C(C5=CC=CC=C5)C=CC(=N41)N(C1=CC(C(C)(C)C)=CC(C(C)(C)C)=C1)C1=CC=C(C4=CC=CC=C4)C2=N13 Chemical compound C1=CC=C(C2=CC=C3OC4=N5C(=C(C6=CC=CC=C6)C=C4)N4N=CC=C4[Pt@]54C5=CC=NN5C2=N34)C=C1.CC(C)(C)C1=CC(N2C3=CC=C(C4=CC=CC=C4)C4=N3[Pt@@]3(C5=CC(C(C)(C)C)=NN5C5=C(C6=CC=CC=C6)C=CC2=N53)C2=CC(C(C)(C)C)=NN24)=CC(C(C)(C)C)=C1.[C-]#[N+]C1=NN2C(=C1)[Pt@@]13C4=CC(C#N)=NN4C4=C(C5=CC=CC=C5)C=CC(=N41)C(C)(CC)C1=CC=C(C4=CC=CC=C4)C2=N13.[C-]#[N+]C1=NN2C(=C1)[Pt@@]13C4=CC(C#N)=NN4C4=C(C5=CC=CC=C5)C=CC(=N41)N(C1=CC(C(C)(C)C)=CC(C(C)(C)C)=C1)C1=CC=C(C4=CC=CC=C4)C2=N13 DZGFURFTAVVFMZ-UHFFFAOYSA-N 0.000 description 1
- ADIBCTYVFZVYJY-UHFFFAOYSA-N C1=CC=C(C2=CC=C3OC4=N5C(=C(C6=CC=CC=C6)C=C4)N4N=CN=C4[Pt@]54C5=NC=NN5C2=N34)C=C1.CC1(C)C2=CC=C(C3=CC=CC=C3)C3=N2[Pt@@]2(C4=CN=CN4C4=C(C5=CC=CC=C5)C=CC1=N42)C1=CN=CN13.CC1(C)C2=CC=C(C3=CC=CC=C3)C3=N2[Pt@@]2(C4=NC=CN4C4=C(C5=CC=CC=C5)C=CC1=N42)C1=NC=CN13.CC1(C)C2=CC=C(N3C=CN=C3)C3=N2[Pt@@]2(C4=CN=CN4C4=C(N5C=CN=C5)C=CC1=N42)C1=CN=CN13.C[Si]1(C)C2=CC=C(C3=CC=CC=C3)C3=N2[Pt@@]2(C4=CN=CN4C4=C(C5=CC=CC=C5)C=CC1=N42)C1=CN=CN13.FC(F)(F)C1=NN2C(=C1)[Pt@@]13C4=CC(C(F)(F)F)=NN4C4=N1C(=CC=C4C1=NC=CN=C1)N(C1=CC=CC=C1)C1=N3C2=C(C2=CN=CC=N2)C=C1 Chemical compound C1=CC=C(C2=CC=C3OC4=N5C(=C(C6=CC=CC=C6)C=C4)N4N=CN=C4[Pt@]54C5=NC=NN5C2=N34)C=C1.CC1(C)C2=CC=C(C3=CC=CC=C3)C3=N2[Pt@@]2(C4=CN=CN4C4=C(C5=CC=CC=C5)C=CC1=N42)C1=CN=CN13.CC1(C)C2=CC=C(C3=CC=CC=C3)C3=N2[Pt@@]2(C4=NC=CN4C4=C(C5=CC=CC=C5)C=CC1=N42)C1=NC=CN13.CC1(C)C2=CC=C(N3C=CN=C3)C3=N2[Pt@@]2(C4=CN=CN4C4=C(N5C=CN=C5)C=CC1=N42)C1=CN=CN13.C[Si]1(C)C2=CC=C(C3=CC=CC=C3)C3=N2[Pt@@]2(C4=CN=CN4C4=C(C5=CC=CC=C5)C=CC1=N42)C1=CN=CN13.FC(F)(F)C1=NN2C(=C1)[Pt@@]13C4=CC(C(F)(F)F)=NN4C4=N1C(=CC=C4C1=NC=CN=C1)N(C1=CC=CC=C1)C1=N3C2=C(C2=CN=CC=N2)C=C1 ADIBCTYVFZVYJY-UHFFFAOYSA-N 0.000 description 1
- IEVHXOBXNNSGGD-UHFFFAOYSA-N C1=CC=C(N2C3=CC=C(C4=NC=CN=C4)C4=N3[Pt@@]3(C5=CC=NN5C5=C(C6=CN=CC=N6)C=CC2=N53)C2=CC=NN24)C=C1.CC1(C)C2=CC=C(C3=CC=CS3)C3=N2[Pt@@]2(C4=CC=NN4C4=C(C5=CC=CS5)C=CC1=N42)C1=CC=NN13.CC1(C)C2=CC=C(C3=CC=NC=C3)C3=N2[Pt@@]2(C4=CC(C(F)(F)F)=NN4C4=C(C5=CC=NC=C5)C=CC1=N42)C1=CC(C(F)(F)F)=NN13.CC1(C)C2=CC=C(C3=NC=CN=C3)C3=N2[Pt@@]2(C4=CC=NN4C4=C(C5=CN=CC=N5)C=CC1=N42)C1=CC=NN13.C[Ge]1(C)C2=CC=C(C3=CC=NC=C3)C3=N2[Pt@@]2(C4=CC=NN4C4=C(C5=CC=NC=C5)C=CC1=N42)C1=CC=NN13 Chemical compound C1=CC=C(N2C3=CC=C(C4=NC=CN=C4)C4=N3[Pt@@]3(C5=CC=NN5C5=C(C6=CN=CC=N6)C=CC2=N53)C2=CC=NN24)C=C1.CC1(C)C2=CC=C(C3=CC=CS3)C3=N2[Pt@@]2(C4=CC=NN4C4=C(C5=CC=CS5)C=CC1=N42)C1=CC=NN13.CC1(C)C2=CC=C(C3=CC=NC=C3)C3=N2[Pt@@]2(C4=CC(C(F)(F)F)=NN4C4=C(C5=CC=NC=C5)C=CC1=N42)C1=CC(C(F)(F)F)=NN13.CC1(C)C2=CC=C(C3=NC=CN=C3)C3=N2[Pt@@]2(C4=CC=NN4C4=C(C5=CN=CC=N5)C=CC1=N42)C1=CC=NN13.C[Ge]1(C)C2=CC=C(C3=CC=NC=C3)C3=N2[Pt@@]2(C4=CC=NN4C4=C(C5=CC=NC=C5)C=CC1=N42)C1=CC=NN13 IEVHXOBXNNSGGD-UHFFFAOYSA-N 0.000 description 1
- JZLYYEBKTRZKNU-UHFFFAOYSA-N C1=CC=C2C(=C1)C1=N3C(=CC=C1N1C=CC=N1)C1(CCCCC1)C1=N4C(=C(N5C=CC=N5)C=C1)C1=C(C=CC=C1)[Pt@@]234.CC1(C)C2=CC=C(N3C=CN=C3)C3=N2[Pt@]2(C4=CC(F)=CC=C43)C3=C(C=CC(F)=C3)C3=C(N4C=CN=C4)C=CC1=N32.CC1=CC(C2=CC=C3N4=C2C2=CC=CC=C2[Pt@]42C4=C(C=CC=C4)C4=C(C5=CC(C)=NC(C)=C5)C=CC(=N42)[Si]3(C)C)=CC(C)=N1.FC(F)(F)C1=CC=C2C(=C1)C1=N3C(=CC=C1C1=CC=NC=C1)N(C1=NC=CC=C1)C1=N4C(=C(C5=CC=NC=C5)C=C1)C1=C(C=CC(C(F)(F)F)=C1)[Pt@@]234.[C-]#[N+]C1=CC=C2C(=C1)C1=N3C(=CC=C1C1=CC=NC=C1)C(C)(C)C1=N4C(=C(C5=CC=NC=C5)C=C1)C1=C(C=CC(C#N)=C1)[Pt@@]234 Chemical compound C1=CC=C2C(=C1)C1=N3C(=CC=C1N1C=CC=N1)C1(CCCCC1)C1=N4C(=C(N5C=CC=N5)C=C1)C1=C(C=CC=C1)[Pt@@]234.CC1(C)C2=CC=C(N3C=CN=C3)C3=N2[Pt@]2(C4=CC(F)=CC=C43)C3=C(C=CC(F)=C3)C3=C(N4C=CN=C4)C=CC1=N32.CC1=CC(C2=CC=C3N4=C2C2=CC=CC=C2[Pt@]42C4=C(C=CC=C4)C4=C(C5=CC(C)=NC(C)=C5)C=CC(=N42)[Si]3(C)C)=CC(C)=N1.FC(F)(F)C1=CC=C2C(=C1)C1=N3C(=CC=C1C1=CC=NC=C1)N(C1=NC=CC=C1)C1=N4C(=C(C5=CC=NC=C5)C=C1)C1=C(C=CC(C(F)(F)F)=C1)[Pt@@]234.[C-]#[N+]C1=CC=C2C(=C1)C1=N3C(=CC=C1C1=CC=NC=C1)C(C)(C)C1=N4C(=C(C5=CC=NC=C5)C=C1)C1=C(C=CC(C#N)=C1)[Pt@@]234 JZLYYEBKTRZKNU-UHFFFAOYSA-N 0.000 description 1
- CXXYFMHGEJNBEQ-KBXBZICCSA-N C1CCOC1.CC(C)(C1=CC=C(C2=CC=CC=C2)C(Br)=N1)C1=NC(Br)=C(C2=CC=CC=C2)C=C1.CC(C)(C1=CC=C(C2=CC=CC=C2)C(N2C=CC(C(F)(F)F)=N2)=N1)C1=NC(N2C=CC(C(F)(F)F)=N2)=C(C2=CC=CC=C2)C=C1.CC(C)(C1=CC=CC(Br)=N1)C1=NC(Br)=CC=C1.CC1(C)C2=CC=C(C3=CC=CC=C3)C3=N2[Pt@@]2(C4=CC(C(F)(F)F)=NN4C4=C(C5=CC=CC=C5)C=CC1=N42)C1=CC(C(F)(F)F)=NN13.O=[N+]([O-])C1=CC=CC=C1.[2H-4].[BH7-4].[C-4].[C-4].[H]N1C=CC(C(F)(F)F)=N1 Chemical compound C1CCOC1.CC(C)(C1=CC=C(C2=CC=CC=C2)C(Br)=N1)C1=NC(Br)=C(C2=CC=CC=C2)C=C1.CC(C)(C1=CC=C(C2=CC=CC=C2)C(N2C=CC(C(F)(F)F)=N2)=N1)C1=NC(N2C=CC(C(F)(F)F)=N2)=C(C2=CC=CC=C2)C=C1.CC(C)(C1=CC=CC(Br)=N1)C1=NC(Br)=CC=C1.CC1(C)C2=CC=C(C3=CC=CC=C3)C3=N2[Pt@@]2(C4=CC(C(F)(F)F)=NN4C4=C(C5=CC=CC=C5)C=CC1=N42)C1=CC(C(F)(F)F)=NN13.O=[N+]([O-])C1=CC=CC=C1.[2H-4].[BH7-4].[C-4].[C-4].[H]N1C=CC(C(F)(F)F)=N1 CXXYFMHGEJNBEQ-KBXBZICCSA-N 0.000 description 1
- BIHLATUXOHLUJU-UHFFFAOYSA-N CC(C)(C)C1=CC(N2C3=CC=C(C4=CC=CC=C4)C4=N3[Pt@@]3(C5=CC(C(F)(F)F)=NN5C5=C(C6=CC=CC=C6)C=CC2=N53)C2=CC(C(F)(F)F)=NN24)=CC(C(C)(C)C)=C1.CC(C)(C)C1=NN2C(=C1)[Pt@@]13C4=CC(C(C)(C)C)=NN4C4=N1C(=CC=C4C1=CC=CC=C1)[Si](C)(C)C1=N3C2=C(C2=CC=CC=C2)C=C1.C[Ge]1(C)C2=CC=C(C3=CC=CC=C3)C3=N2[Pt@@]2(C4=CC=NN4C4=C(C5=CC=CC=C5)C=CC1=N42)C1=CC=NN13.C[Si]1(C)C2=CC=C(C3=CC=CC=C3)C3=N2[Pt@@]2(C4=CC(C(F)(F)F)=NN4C4=C(C5=CC=CC=C5)C=CC1=N42)C1=CC(C(F)(F)F)=NN13.C[Si]1(C)C2=CC=C(C3=CC=CC=C3)C3=N2[Pt@@]2(C4=CC=NN4C4=C(C5=CC=CC=C5)C=CC1=N42)C1=CC=NN13 Chemical compound CC(C)(C)C1=CC(N2C3=CC=C(C4=CC=CC=C4)C4=N3[Pt@@]3(C5=CC(C(F)(F)F)=NN5C5=C(C6=CC=CC=C6)C=CC2=N53)C2=CC(C(F)(F)F)=NN24)=CC(C(C)(C)C)=C1.CC(C)(C)C1=NN2C(=C1)[Pt@@]13C4=CC(C(C)(C)C)=NN4C4=N1C(=CC=C4C1=CC=CC=C1)[Si](C)(C)C1=N3C2=C(C2=CC=CC=C2)C=C1.C[Ge]1(C)C2=CC=C(C3=CC=CC=C3)C3=N2[Pt@@]2(C4=CC=NN4C4=C(C5=CC=CC=C5)C=CC1=N42)C1=CC=NN13.C[Si]1(C)C2=CC=C(C3=CC=CC=C3)C3=N2[Pt@@]2(C4=CC(C(F)(F)F)=NN4C4=C(C5=CC=CC=C5)C=CC1=N42)C1=CC(C(F)(F)F)=NN13.C[Si]1(C)C2=CC=C(C3=CC=CC=C3)C3=N2[Pt@@]2(C4=CC=NN4C4=C(C5=CC=CC=C5)C=CC1=N42)C1=CC=NN13 BIHLATUXOHLUJU-UHFFFAOYSA-N 0.000 description 1
- SHDMGTPYIXLLRB-UHFFFAOYSA-N CC(C)(C)C1=CC(N2C3=CC=C(C4=CC=CC=C4)C4=N3[Pt@]3(C5=CC=CC=C54)C4=C(C=CC=C4)C4=C(C5=CC=CC=C5)C=CC2=N43)=CC(C(C)(C)C)=C1.C[Si]1(C)C2=CC=C(C3=CC=CC=C3)C3=N2[Pt@]2(C4=CC=CC=C43)C3=C(C=CC=C3)C3=C(C4=CC=CC=C4)C=CC1=N32.FC(F)(F)C1=CC=C2C(=C1)C1=N3C(=CC=C1C1=CC=CC=C1)N(C1=CC=CC=C1)C1=N4C(=C(C5=CC=CC=C5)C=C1)C1=C(C=CC(C(F)(F)F)=C1)[Pt@@]234.[C-]#[N+]C1=CC=C2C(=C1)C1=N3C(=CC=C1C1=CC=CC=C1)N(C1=CC(C(C)(C)C)=CC(C(C)(C)C)=C1)C1=N4C(=C(C5=CC=CC=C5)C=C1)C1=C(C=CC(C#N)=C1)[Pt@@]234 Chemical compound CC(C)(C)C1=CC(N2C3=CC=C(C4=CC=CC=C4)C4=N3[Pt@]3(C5=CC=CC=C54)C4=C(C=CC=C4)C4=C(C5=CC=CC=C5)C=CC2=N43)=CC(C(C)(C)C)=C1.C[Si]1(C)C2=CC=C(C3=CC=CC=C3)C3=N2[Pt@]2(C4=CC=CC=C43)C3=C(C=CC=C3)C3=C(C4=CC=CC=C4)C=CC1=N32.FC(F)(F)C1=CC=C2C(=C1)C1=N3C(=CC=C1C1=CC=CC=C1)N(C1=CC=CC=C1)C1=N4C(=C(C5=CC=CC=C5)C=C1)C1=C(C=CC(C(F)(F)F)=C1)[Pt@@]234.[C-]#[N+]C1=CC=C2C(=C1)C1=N3C(=CC=C1C1=CC=CC=C1)N(C1=CC(C(C)(C)C)=CC(C(C)(C)C)=C1)C1=N4C(=C(C5=CC=CC=C5)C=C1)C1=C(C=CC(C#N)=C1)[Pt@@]234 SHDMGTPYIXLLRB-UHFFFAOYSA-N 0.000 description 1
- JDDZEUKJLJJGJH-UHFFFAOYSA-N CC(C)(C)C1=NN2C(=C1)[Pt@@]13C4=CC(C(C)(C)C)=NN4C4=N1C(=CC=C4C1=CC=C(C(F)(F)F)C=C1)C(C)(C)C1=N3C2=C(C2=CC=C(C(F)(F)F)C=C2)C=C1.CC1=CC=C(C2=CC=C3N4=C2N2N=C(C(F)(F)F)C=C2[Pt@]42C4=CC(C(F)(F)F)=NN4C4=C(C5=CC=C(C)C=C5)C=CC(=N42)C3(C)C)C=C1.CC1=CC=C(C2=CC=C3N4=C2N2N=CC=C2[Pt@]42C4=CC=NN4C4=C(C5=CC=C(C)C=C5)C=CC(=N42)C3(C2=CC=CC=C2)C2=CC=CC=C2)C=C1.CC1=CC=CC(C2=CC=C3N4=C2N2N=C(C(F)(F)F)C=C2[Pt@]42C4=CC(C(F)(F)F)=NN4C4=C(C5=CC=CC(C)=N5)C=CC(=N42)C3(C)C)=N1.COC1=CC2=N3C(=C1C1=CC=CC=C1)N1N=C(C(F)(F)F)C=C1[Pt@]31C3=CC(C(F)(F)F)=NN3C3=N1C(=CC(OC)=C3C1=CC=CC=C1)C2(C)C Chemical compound CC(C)(C)C1=NN2C(=C1)[Pt@@]13C4=CC(C(C)(C)C)=NN4C4=N1C(=CC=C4C1=CC=C(C(F)(F)F)C=C1)C(C)(C)C1=N3C2=C(C2=CC=C(C(F)(F)F)C=C2)C=C1.CC1=CC=C(C2=CC=C3N4=C2N2N=C(C(F)(F)F)C=C2[Pt@]42C4=CC(C(F)(F)F)=NN4C4=C(C5=CC=C(C)C=C5)C=CC(=N42)C3(C)C)C=C1.CC1=CC=C(C2=CC=C3N4=C2N2N=CC=C2[Pt@]42C4=CC=NN4C4=C(C5=CC=C(C)C=C5)C=CC(=N42)C3(C2=CC=CC=C2)C2=CC=CC=C2)C=C1.CC1=CC=CC(C2=CC=C3N4=C2N2N=C(C(F)(F)F)C=C2[Pt@]42C4=CC(C(F)(F)F)=NN4C4=C(C5=CC=CC(C)=N5)C=CC(=N42)C3(C)C)=N1.COC1=CC2=N3C(=C1C1=CC=CC=C1)N1N=C(C(F)(F)F)C=C1[Pt@]31C3=CC(C(F)(F)F)=NN3C3=N1C(=CC(OC)=C3C1=CC=CC=C1)C2(C)C JDDZEUKJLJJGJH-UHFFFAOYSA-N 0.000 description 1
- CAEUZACXVNWGTG-UHFFFAOYSA-N CC(C)(C)C1=NN2C(=C1)[Pt@@]13C4=CC(C(C)(C)C)=NN4C4=N1C(=CC=C4C1=CC=CC=C1)C(C)(C1=CC=CC=C1)C1=N3C2=C(C2=CC=CC=C2)C=C1.CC1=NN2C(=C1)[Pt@@]13C4=CC(C)=NN4C4=N1C(=CC=C4C1=CC=CC=C1)C(C)(C1=CC=CC=C1)C1=N3C2=C(C2=CC=CC=C2)C=C1.FC(F)(F)C1=NN2C(=C1)[Pt@@]13C4=CC(C(F)(F)F)=NN4C4=N1C(=CC=C4C1=CC=CC=C1)C1(CCCC1)C1=N3C2=C(C2=CC=CC=C2)C=C1.[C-]#[N+]C1=NN2C(=C1)[Pt@@]13C4=CC(C#N)=NN4C4=C(C5=CC=CC=C5)C=CC(=N41)C1(CCCCC1)C1=CC=C(C4=CC=CC=C4)C2=N13 Chemical compound CC(C)(C)C1=NN2C(=C1)[Pt@@]13C4=CC(C(C)(C)C)=NN4C4=N1C(=CC=C4C1=CC=CC=C1)C(C)(C1=CC=CC=C1)C1=N3C2=C(C2=CC=CC=C2)C=C1.CC1=NN2C(=C1)[Pt@@]13C4=CC(C)=NN4C4=N1C(=CC=C4C1=CC=CC=C1)C(C)(C1=CC=CC=C1)C1=N3C2=C(C2=CC=CC=C2)C=C1.FC(F)(F)C1=NN2C(=C1)[Pt@@]13C4=CC(C(F)(F)F)=NN4C4=N1C(=CC=C4C1=CC=CC=C1)C1(CCCC1)C1=N3C2=C(C2=CC=CC=C2)C=C1.[C-]#[N+]C1=NN2C(=C1)[Pt@@]13C4=CC(C#N)=NN4C4=C(C5=CC=CC=C5)C=CC(=N41)C1(CCCCC1)C1=CC=C(C4=CC=CC=C4)C2=N13 CAEUZACXVNWGTG-UHFFFAOYSA-N 0.000 description 1
- RMPJJVOWXCARLS-UHFFFAOYSA-N CC(C)(C)C1=NN2C(=C1)[Pt@@]13C4=CC(C(C)(C)C)=NN4C4=N1C(=CC=C4C1=CC=CC=C1)N(C1=NC=CC=C1)C1=N3C2=C(C2=CC=CC=C2)C=C1.CC1=CC=CC(C)=C1N1C2=CC=C(C3=CC=CC=C3)C3=N2[Pt@@]2(C4=CC(C(F)(F)F)=NN4C4=C(C5=CC=CC=C5)C=CC1=N42)C1=CC(C(F)(F)F)=NN13.CCCC1=NN2C(=C1)[Pt@@]13C4=CC(CCC)=NN4C4=N1C(=CC(OC)=C4C1=CC=CC=C1)C(C)(C)C1=N3C2=C(C2=CC=CC=C2)C(OC)=C1.FC(F)(F)C1=NN2C(=C1)[Pt@@]13C4=CC(C(F)(F)F)=NN4C4=N1C(=CC=C4C1=CC=CC=C1)OC1=N3C2=C(C2=CC=CC=C2)C=C1 Chemical compound CC(C)(C)C1=NN2C(=C1)[Pt@@]13C4=CC(C(C)(C)C)=NN4C4=N1C(=CC=C4C1=CC=CC=C1)N(C1=NC=CC=C1)C1=N3C2=C(C2=CC=CC=C2)C=C1.CC1=CC=CC(C)=C1N1C2=CC=C(C3=CC=CC=C3)C3=N2[Pt@@]2(C4=CC(C(F)(F)F)=NN4C4=C(C5=CC=CC=C5)C=CC1=N42)C1=CC(C(F)(F)F)=NN13.CCCC1=NN2C(=C1)[Pt@@]13C4=CC(CCC)=NN4C4=N1C(=CC(OC)=C4C1=CC=CC=C1)C(C)(C)C1=N3C2=C(C2=CC=CC=C2)C(OC)=C1.FC(F)(F)C1=NN2C(=C1)[Pt@@]13C4=CC(C(F)(F)F)=NN4C4=N1C(=CC=C4C1=CC=CC=C1)OC1=N3C2=C(C2=CC=CC=C2)C=C1 RMPJJVOWXCARLS-UHFFFAOYSA-N 0.000 description 1
- CXEIETAXRGAGNF-UHFFFAOYSA-N CC1(C)C2=CC=C(C3=CC=C(C(F)(F)F)C=C3)C3=N2[Pt@]2(C4=CC=C(C(F)(F)F)C=C43)C3=C(C=C(C(F)(F)F)C=C3)C3=C(C4=CC=C(C(F)(F)F)C=C4)C=CC1=N32.CC1(C)C2=CC=C(C3=CC=CC=C3)C3=N2[Pt@]2(C4=CC5=C(C=CC=C5)C=C43)C3=C(C=C4C=CC=CC4=C3)C3=C(C4=CC=CC=C4)C=CC1=N32.CC1(C)C2=CC=C(C3=CC=CC=N3)C3=N2[Pt@]2(C4=CC=C(C(F)(F)F)C=C43)C3=C(C=C(C(F)(F)F)C=C3)C3=C(C4=CC=CC=N4)C=CC1=N32.COC1=CC2=N3C(=C1C1=CN=CC=N1)C1=C(C=CC=C1)[Pt@]31C3=CC=CC=C3C3=N1C(=CC(OC)=C3C1=NC=CN=C1)C2(C)C.COC1=CC=C(C2=C(OC)C=C3N4=C2C2=CC=CC=C2[Pt@]42C4=C(C=CC=C4)C4=C(C5=CC=C(OC)C=C5)C(OC)=CC(=N42)C3(C)C)C=C1 Chemical compound CC1(C)C2=CC=C(C3=CC=C(C(F)(F)F)C=C3)C3=N2[Pt@]2(C4=CC=C(C(F)(F)F)C=C43)C3=C(C=C(C(F)(F)F)C=C3)C3=C(C4=CC=C(C(F)(F)F)C=C4)C=CC1=N32.CC1(C)C2=CC=C(C3=CC=CC=C3)C3=N2[Pt@]2(C4=CC5=C(C=CC=C5)C=C43)C3=C(C=C4C=CC=CC4=C3)C3=C(C4=CC=CC=C4)C=CC1=N32.CC1(C)C2=CC=C(C3=CC=CC=N3)C3=N2[Pt@]2(C4=CC=C(C(F)(F)F)C=C43)C3=C(C=C(C(F)(F)F)C=C3)C3=C(C4=CC=CC=N4)C=CC1=N32.COC1=CC2=N3C(=C1C1=CN=CC=N1)C1=C(C=CC=C1)[Pt@]31C3=CC=CC=C3C3=N1C(=CC(OC)=C3C1=NC=CN=C1)C2(C)C.COC1=CC=C(C2=C(OC)C=C3N4=C2C2=CC=CC=C2[Pt@]42C4=C(C=CC=C4)C4=C(C5=CC=C(OC)C=C5)C(OC)=CC(=N42)C3(C)C)C=C1 CXEIETAXRGAGNF-UHFFFAOYSA-N 0.000 description 1
- NGDVYVMRKUSPAF-UHFFFAOYSA-N CC1(C)C2=CC=C(C3=CC=CC=C3)C3=N2[Pt@@]2(C4=CC(C(F)(F)F)=NN4C4=C(C5=CC=CC=C5)C=CC1=N42)C1=CC(C(F)(F)F)=NN13.CC1(C)C2=CC=C(C3=CC=CC=C3)C3=N2[Pt@@]2(C4=CC=NN4C4=C(C5=CC=CC=C5)C=CC1=N42)C1=CC=NN13.FC(F)(F)C1=CC=C(C2=CC=C3N4=C2C2=CC(C(F)(F)F)=CC=C2[Pt@]42C4=C(C=C(C(F)(F)F)C=C4)C4=C(C5=CC=C(C(F)(F)F)C=C5)C=CC(=N42)C3(C2=CC=CC=C2)C2=CC=CC=C2)C=C1.[C-]#[N+]C1=CC=C2C(=C1)C1=N3C(=CC=C1C1=CC=NC=C1)OC1=N4C(=C(C5=CC=NC=C5)C=C1)C1=C(C=CC(C#N)=C1)[Pt@]243.[C-]#[N+]C1=NN2C(=C1)[Pt@@]13C4=CC(C#N)=NN4C4=C(C5=CC=CC=C5)C=CC(=N41)C(C)(C)C1=CC=C(C4=CC=CC=C4)C2=N13 Chemical compound CC1(C)C2=CC=C(C3=CC=CC=C3)C3=N2[Pt@@]2(C4=CC(C(F)(F)F)=NN4C4=C(C5=CC=CC=C5)C=CC1=N42)C1=CC(C(F)(F)F)=NN13.CC1(C)C2=CC=C(C3=CC=CC=C3)C3=N2[Pt@@]2(C4=CC=NN4C4=C(C5=CC=CC=C5)C=CC1=N42)C1=CC=NN13.FC(F)(F)C1=CC=C(C2=CC=C3N4=C2C2=CC(C(F)(F)F)=CC=C2[Pt@]42C4=C(C=C(C(F)(F)F)C=C4)C4=C(C5=CC=C(C(F)(F)F)C=C5)C=CC(=N42)C3(C2=CC=CC=C2)C2=CC=CC=C2)C=C1.[C-]#[N+]C1=CC=C2C(=C1)C1=N3C(=CC=C1C1=CC=NC=C1)OC1=N4C(=C(C5=CC=NC=C5)C=C1)C1=C(C=CC(C#N)=C1)[Pt@]243.[C-]#[N+]C1=NN2C(=C1)[Pt@@]13C4=CC(C#N)=NN4C4=C(C5=CC=CC=C5)C=CC(=N41)C(C)(C)C1=CC=C(C4=CC=CC=C4)C2=N13 NGDVYVMRKUSPAF-UHFFFAOYSA-N 0.000 description 1
- GSEJXUDPAOYQKK-UHFFFAOYSA-N CC1(C)C2=CC=C(C3=CC=CC=C3)C3=N2[Pt@]2(C4=CC(F)=CC=C43)C3=C(C=CC(F)=C3)C3=C(C4=CC=CC=C4)C=CC1=N32.CC1(C)C2=CC=C(C3=CC=CC=C3)C3=N2[Pt@]2(C4=CC=C(C(F)(F)F)C=C43)C3=C(C=C(C(F)(F)F)C=C3)C3=C(C4=CC=CC=C4)C=CC1=N32.CC1(C)C2=CC=C(C3=CC=CC=C3)C3=N2[Pt@]2(C4=CC=C(F)C=C43)C3=C(C=C(F)C=C3)C3=C(C4=CC=CC=C4)C=CC1=N32.CC1(C)C2=CC=C(C3=CC=CC=C3)C3=N2[Pt@]2(C4=CC=CC=C43)C3=C(C=CC=C3)C3=C(C4=CC=CC=C4)C=CC1=N32.[C-]#[N+]C1=CC=C2C(=C1)C1=N3C(=CC=C1C1=CC=CC=C1)C(C)(C)C1=N4C(=C(C5=CC=CC=C5)C=C1)C1=C(C=CC(C#N)=C1)[Pt@@]234 Chemical compound CC1(C)C2=CC=C(C3=CC=CC=C3)C3=N2[Pt@]2(C4=CC(F)=CC=C43)C3=C(C=CC(F)=C3)C3=C(C4=CC=CC=C4)C=CC1=N32.CC1(C)C2=CC=C(C3=CC=CC=C3)C3=N2[Pt@]2(C4=CC=C(C(F)(F)F)C=C43)C3=C(C=C(C(F)(F)F)C=C3)C3=C(C4=CC=CC=C4)C=CC1=N32.CC1(C)C2=CC=C(C3=CC=CC=C3)C3=N2[Pt@]2(C4=CC=C(F)C=C43)C3=C(C=C(F)C=C3)C3=C(C4=CC=CC=C4)C=CC1=N32.CC1(C)C2=CC=C(C3=CC=CC=C3)C3=N2[Pt@]2(C4=CC=CC=C43)C3=C(C=CC=C3)C3=C(C4=CC=CC=C4)C=CC1=N32.[C-]#[N+]C1=CC=C2C(=C1)C1=N3C(=CC=C1C1=CC=CC=C1)C(C)(C)C1=N4C(=C(C5=CC=CC=C5)C=C1)C1=C(C=CC(C#N)=C1)[Pt@@]234 GSEJXUDPAOYQKK-UHFFFAOYSA-N 0.000 description 1
- ICXGLDRPFQCFEA-UHFFFAOYSA-N CC1(C)C2=CC=C(N3C=CC(C(F)(F)F)=N3)C3=N2[Pt@@]2(C4=CC(C(F)(F)F)=NN4C4=C(N5C=CC(C(F)(F)F)=N5)C=CC1=N42)C1=CC(C(F)(F)F)=NN13.FC(F)(F)C1=NN(C2=CC=C3N(C4=CC=CC=C4)C4=N5C(=C(N6C=CC(C(F)(F)F)=N6)C=C4)N4N=C(C(F)(F)F)C=C4[Pt@]54C5=CC(C(F)(F)F)=NN5C2=N34)C=C1.FC(F)(F)C1=NN2C(=C1)[Pt@@]13C4=CC(C(F)(F)F)=NN4C4=N1C(=CC=C4C1=CC=NC=C1)N(C1=CC=CC=C1)C1=N3C2=C(C2=CC=NC=C2)C=C1.FC(F)(F)C1=NN2C(=C1)[Pt@@]13C4=CC(C(F)(F)F)=NN4C4=N1C(=CC=C4C1=NC=CN1)N(C1=CC=CC=C1)C1=N3C2=C(C2=NC=CN2)C=C1 Chemical compound CC1(C)C2=CC=C(N3C=CC(C(F)(F)F)=N3)C3=N2[Pt@@]2(C4=CC(C(F)(F)F)=NN4C4=C(N5C=CC(C(F)(F)F)=N5)C=CC1=N42)C1=CC(C(F)(F)F)=NN13.FC(F)(F)C1=NN(C2=CC=C3N(C4=CC=CC=C4)C4=N5C(=C(N6C=CC(C(F)(F)F)=N6)C=C4)N4N=C(C(F)(F)F)C=C4[Pt@]54C5=CC(C(F)(F)F)=NN5C2=N34)C=C1.FC(F)(F)C1=NN2C(=C1)[Pt@@]13C4=CC(C(F)(F)F)=NN4C4=N1C(=CC=C4C1=CC=NC=C1)N(C1=CC=CC=C1)C1=N3C2=C(C2=CC=NC=C2)C=C1.FC(F)(F)C1=NN2C(=C1)[Pt@@]13C4=CC(C(F)(F)F)=NN4C4=N1C(=CC=C4C1=NC=CN1)N(C1=CC=CC=C1)C1=N3C2=C(C2=NC=CN2)C=C1 ICXGLDRPFQCFEA-UHFFFAOYSA-N 0.000 description 1
- MEGWVEMUEZWHPQ-UHFFFAOYSA-N CC1(C)C2=CC=CC3=N2[Pt@]2(C4=CC(F)=CC=C43)C3=C(C=CC(F)=C3)C3=CC=CC1=N32.FC(F)(F)C1=CC=C2C(=C1)C1=N3C(=CC=C1)C(C1=CC=CC=C1)(C1=CC=CC=C1)C1=N4C(=CC=C1)C1=C(C=CC(C(F)(F)F)=C1)[Pt@@]234.FC(F)(F)C1=NN2C3=CC=CC4=N3[Pt]3(C2=C1)C1=CC(C(F)(F)F)=NN1C1=N3C(=CC=C1)N4C1=CC=CC=C1.[C-]#[N+]C1=NN2C(=C1)[Pt]13C4=CC(C#N)=NN4C4=CC=CC(=N41)C(C)(C)C1=CC=CC2=N13.[C-]#[N+]C1=NN2C(=C1)[Pt]13C4=CC(C#N)=NN4C4=CC=CC(=N41)N(C1=CC(C(C)(C)C)=CC(C(C)(C)C)=C1)C1=CC=CC2=N13 Chemical compound CC1(C)C2=CC=CC3=N2[Pt@]2(C4=CC(F)=CC=C43)C3=C(C=CC(F)=C3)C3=CC=CC1=N32.FC(F)(F)C1=CC=C2C(=C1)C1=N3C(=CC=C1)C(C1=CC=CC=C1)(C1=CC=CC=C1)C1=N4C(=CC=C1)C1=C(C=CC(C(F)(F)F)=C1)[Pt@@]234.FC(F)(F)C1=NN2C3=CC=CC4=N3[Pt]3(C2=C1)C1=CC(C(F)(F)F)=NN1C1=N3C(=CC=C1)N4C1=CC=CC=C1.[C-]#[N+]C1=NN2C(=C1)[Pt]13C4=CC(C#N)=NN4C4=CC=CC(=N41)C(C)(C)C1=CC=CC2=N13.[C-]#[N+]C1=NN2C(=C1)[Pt]13C4=CC(C#N)=NN4C4=CC=CC(=N41)N(C1=CC(C(C)(C)C)=CC(C(C)(C)C)=C1)C1=CC=CC2=N13 MEGWVEMUEZWHPQ-UHFFFAOYSA-N 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- 229910000799 K alloy Inorganic materials 0.000 description 1
- HYOCDMWYHXBPTI-UHFFFAOYSA-N NCCCCN=O Chemical compound NCCCCN=O HYOCDMWYHXBPTI-UHFFFAOYSA-N 0.000 description 1
- 238000006411 Negishi coupling reaction Methods 0.000 description 1
- 229920001774 Perfluoroether Polymers 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 229920000265 Polyparaphenylene Polymers 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 229920002396 Polyurea Polymers 0.000 description 1
- NRCMAYZCPIVABH-UHFFFAOYSA-N Quinacridone Chemical class N1C2=CC=CC=C2C(=O)C2=C1C=C1C(=O)C3=CC=CC=C3NC1=C2 NRCMAYZCPIVABH-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 229910004205 SiNX Inorganic materials 0.000 description 1
- 229910004286 SiNxOy Inorganic materials 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 238000006619 Stille reaction Methods 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- 239000011358 absorbing material Substances 0.000 description 1
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 125000004442 acylamino group Chemical group 0.000 description 1
- 125000004423 acyloxy group Chemical group 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 125000003342 alkenyl group Chemical group 0.000 description 1
- 125000004466 alkoxycarbonylamino group Chemical group 0.000 description 1
- 125000000304 alkynyl group Chemical group 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- REDXJYDRNCIFBQ-UHFFFAOYSA-N aluminium(3+) Chemical compound [Al+3] REDXJYDRNCIFBQ-UHFFFAOYSA-N 0.000 description 1
- SNAAJJQQZSMGQD-UHFFFAOYSA-N aluminum magnesium Chemical compound [Mg].[Al] SNAAJJQQZSMGQD-UHFFFAOYSA-N 0.000 description 1
- 125000005427 anthranyl group Chemical group 0.000 description 1
- 150000008425 anthrones Chemical class 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 229940058303 antinematodal benzimidazole derivative Drugs 0.000 description 1
- 150000004982 aromatic amines Chemical class 0.000 description 1
- 150000001491 aromatic compounds Chemical class 0.000 description 1
- 125000005162 aryl oxy carbonyl amino group Chemical group 0.000 description 1
- 125000005161 aryl oxy carbonyl group Chemical group 0.000 description 1
- 125000005110 aryl thio group Chemical group 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 125000002785 azepinyl group Chemical group 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- XJHABGPPCLHLLV-UHFFFAOYSA-N benzo[de]isoquinoline-1,3-dione Chemical class C1=CC(C(=O)NC2=O)=C3C2=CC=CC3=C1 XJHABGPPCLHLLV-UHFFFAOYSA-N 0.000 description 1
- 125000001164 benzothiazolyl group Chemical group S1C(=NC2=C1C=CC=C2)* 0.000 description 1
- 125000003236 benzoyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C(*)=O 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 229910001622 calcium bromide Inorganic materials 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- WGEFECGEFUFIQW-UHFFFAOYSA-L calcium dibromide Chemical compound [Ca+2].[Br-].[Br-] WGEFECGEFUFIQW-UHFFFAOYSA-L 0.000 description 1
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 1
- 229910001634 calcium fluoride Inorganic materials 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- 235000011132 calcium sulphate Nutrition 0.000 description 1
- 125000001951 carbamoylamino group Chemical group C(N)(=O)N* 0.000 description 1
- 150000001718 carbodiimides Chemical class 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- UUAGAQFQZIEFAH-UHFFFAOYSA-N chlorotrifluoroethylene Chemical group FC(F)=C(F)Cl UUAGAQFQZIEFAH-UHFFFAOYSA-N 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- ORTQZVOHEJQUHG-UHFFFAOYSA-L copper(II) chloride Chemical compound Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 description 1
- OMZSGWSJDCOLKM-UHFFFAOYSA-N copper(II) sulfide Chemical compound [S-2].[Cu+2] OMZSGWSJDCOLKM-UHFFFAOYSA-N 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 150000001893 coumarin derivatives Chemical class 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 125000004431 deuterium atom Chemical group 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 125000005266 diarylamine group Chemical group 0.000 description 1
- QDGONURINHVBEW-UHFFFAOYSA-N dichlorodifluoroethylene Chemical group FC(F)=C(Cl)Cl QDGONURINHVBEW-UHFFFAOYSA-N 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- YWEUIGNSBFLMFL-UHFFFAOYSA-N diphosphonate Chemical compound O=P(=O)OP(=O)=O YWEUIGNSBFLMFL-UHFFFAOYSA-N 0.000 description 1
- IIDFEIDMIKSJSV-UHFFFAOYSA-N dipropoxyphosphinothioyloxy-dipropoxy-sulfanylidene-$l^{5}-phosphane Chemical compound CCCOP(=S)(OCCC)OP(=S)(OCCC)OCCC IIDFEIDMIKSJSV-UHFFFAOYSA-N 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 125000003754 ethoxycarbonyl group Chemical group C(=O)(OCC)* 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 150000002222 fluorine compounds Chemical class 0.000 description 1
- 125000002485 formyl group Chemical group [H]C(*)=O 0.000 description 1
- 125000002541 furyl group Chemical group 0.000 description 1
- PVADDRMAFCOOPC-UHFFFAOYSA-N germanium monoxide Inorganic materials [Ge]=O PVADDRMAFCOOPC-UHFFFAOYSA-N 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 125000001072 heteroaryl group Chemical group 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- 229940083761 high-ceiling diuretics pyrazolone derivative Drugs 0.000 description 1
- 125000000717 hydrazino group Chemical group [H]N([*])N([H])[H] 0.000 description 1
- 150000007857 hydrazones Chemical class 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical group [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 150000002503 iridium Chemical class 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 150000002605 large molecules Chemical class 0.000 description 1
- 238000001182 laser chemical vapour deposition Methods 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 229910001635 magnesium fluoride Inorganic materials 0.000 description 1
- SJCKRGFTWFGHGZ-UHFFFAOYSA-N magnesium silver Chemical compound [Mg].[Ag] SJCKRGFTWFGHGZ-UHFFFAOYSA-N 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 125000001160 methoxycarbonyl group Chemical group [H]C([H])([H])OC(*)=O 0.000 description 1
- 125000006626 methoxycarbonylamino group Chemical group 0.000 description 1
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 1
- 125000004170 methylsulfonyl group Chemical group [H]C([H])([H])S(*)(=O)=O 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- IBHBKWKFFTZAHE-UHFFFAOYSA-N n-[4-[4-(n-naphthalen-1-ylanilino)phenyl]phenyl]-n-phenylnaphthalen-1-amine Chemical compound C1=CC=CC=C1N(C=1C2=CC=CC=C2C=CC=1)C1=CC=C(C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C3=CC=CC=C3C=CC=2)C=C1 IBHBKWKFFTZAHE-UHFFFAOYSA-N 0.000 description 1
- GNRSAWUEBMWBQH-UHFFFAOYSA-N nickel(II) oxide Inorganic materials [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- GVGCUCJTUSOZKP-UHFFFAOYSA-N nitrogen trifluoride Chemical compound FN(F)F GVGCUCJTUSOZKP-UHFFFAOYSA-N 0.000 description 1
- JFNLZVQOOSMTJK-KNVOCYPGSA-N norbornene Chemical compound C1[C@@H]2CC[C@H]1C=C2 JFNLZVQOOSMTJK-KNVOCYPGSA-N 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 150000004893 oxazines Chemical class 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- UJMWVICAENGCRF-UHFFFAOYSA-N oxygen difluoride Chemical compound FOF UJMWVICAENGCRF-UHFFFAOYSA-N 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- AOLPZAHRYHXPLR-UHFFFAOYSA-I pentafluoroniobium Chemical compound F[Nb](F)(F)(F)F AOLPZAHRYHXPLR-UHFFFAOYSA-I 0.000 description 1
- DGBWPZSGHAXYGK-UHFFFAOYSA-N perinone Chemical class C12=NC3=CC=CC=C3N2C(=O)C2=CC=C3C4=C2C1=CC=C4C(=O)N1C2=CC=CC=C2N=C13 DGBWPZSGHAXYGK-UHFFFAOYSA-N 0.000 description 1
- 125000002080 perylenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC5=CC=CC(C1=C23)=C45)* 0.000 description 1
- CSHWQDPOILHKBI-UHFFFAOYSA-N peryrene Natural products C1=CC(C2=CC=CC=3C2=C2C=CC=3)=C3C2=CC=CC3=C1 CSHWQDPOILHKBI-UHFFFAOYSA-N 0.000 description 1
- 150000005041 phenanthrolines Chemical class 0.000 description 1
- 125000000843 phenylene group Chemical group C1(=C(C=CC=C1)*)* 0.000 description 1
- 150000004986 phenylenediamines Chemical class 0.000 description 1
- 125000003356 phenylsulfanyl group Chemical group [*]SC1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-N phosphoric acid Substances OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 1
- DLYUQMMRRRQYAE-UHFFFAOYSA-N phosphorus pentoxide Inorganic materials O1P(O2)(=O)OP3(=O)OP1(=O)OP2(=O)O3 DLYUQMMRRRQYAE-UHFFFAOYSA-N 0.000 description 1
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical class N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 1
- 125000005936 piperidyl group Chemical group 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 150000003057 platinum Chemical class 0.000 description 1
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920000553 poly(phenylenevinylene) Polymers 0.000 description 1
- 229920003050 poly-cycloolefin Polymers 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000005023 polychlorotrifluoroethylene (PCTFE) polymer Substances 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000011112 polyethylene naphthalate Substances 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920006389 polyphenyl polymer Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920000128 polypyrrole Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- BITYAPCSNKJESK-UHFFFAOYSA-N potassiosodium Chemical compound [Na].[K] BITYAPCSNKJESK-UHFFFAOYSA-N 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- CHWRSCGUEQEHOH-UHFFFAOYSA-N potassium oxide Chemical compound [O-2].[K+].[K+] CHWRSCGUEQEHOH-UHFFFAOYSA-N 0.000 description 1
- 229910001950 potassium oxide Inorganic materials 0.000 description 1
- LPNYRYFBWFDTMA-UHFFFAOYSA-N potassium tert-butoxide Chemical compound [K+].CC(C)(C)[O-] LPNYRYFBWFDTMA-UHFFFAOYSA-N 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- JEXVQSWXXUJEMA-UHFFFAOYSA-N pyrazol-3-one Chemical class O=C1C=CN=N1 JEXVQSWXXUJEMA-UHFFFAOYSA-N 0.000 description 1
- 150000003219 pyrazolines Chemical class 0.000 description 1
- 125000005554 pyridyloxy group Chemical group 0.000 description 1
- 125000005030 pyridylthio group Chemical group N1=C(C=CC=C1)S* 0.000 description 1
- FYNROBRQIVCIQF-UHFFFAOYSA-N pyrrolo[3,2-b]pyrrole-5,6-dione Chemical class C1=CN=C2C(=O)C(=O)N=C21 FYNROBRQIVCIQF-UHFFFAOYSA-N 0.000 description 1
- 150000005255 pyrrolopyridines Chemical class 0.000 description 1
- 125000005493 quinolyl group Chemical group 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 238000005546 reactive sputtering Methods 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 229920002545 silicone oil Polymers 0.000 description 1
- 125000004469 siloxy group Chemical group [SiH3]O* 0.000 description 1
- 239000010944 silver (metal) Substances 0.000 description 1
- 125000003808 silyl group Chemical group [H][Si]([H])([H])[*] 0.000 description 1
- 239000005361 soda-lime glass Substances 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- KKCBUQHMOMHUOY-UHFFFAOYSA-N sodium oxide Chemical compound [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 description 1
- 229910001948 sodium oxide Inorganic materials 0.000 description 1
- PJANXHGTPQOBST-UHFFFAOYSA-N stilbene Chemical class C=1C=CC=CC=1C=CC1=CC=CC=C1 PJANXHGTPQOBST-UHFFFAOYSA-N 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 125000000213 sulfino group Chemical group [H]OS(*)=O 0.000 description 1
- 125000000475 sulfinyl group Chemical group [*:2]S([*:1])=O 0.000 description 1
- 125000000020 sulfo group Chemical group O=S(=O)([*])O[H] 0.000 description 1
- 125000006296 sulfonyl amino group Chemical group [H]N(*)S(*)(=O)=O 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 125000004434 sulfur atom Chemical group 0.000 description 1
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 1
- 238000002230 thermal chemical vapour deposition Methods 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- QKTRRACPJVYJNU-UHFFFAOYSA-N thiadiazolo[5,4-b]pyridine Chemical class C1=CN=C2SN=NC2=C1 QKTRRACPJVYJNU-UHFFFAOYSA-N 0.000 description 1
- 125000001544 thienyl group Chemical group 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- IBBLKSWSCDAPIF-UHFFFAOYSA-N thiopyran Chemical compound S1C=CC=C=C1 IBBLKSWSCDAPIF-UHFFFAOYSA-N 0.000 description 1
- NZFNXWQNBYZDAQ-UHFFFAOYSA-N thioridazine hydrochloride Chemical class Cl.C12=CC(SC)=CC=C2SC2=CC=CC=C2N1CCC1CCCCN1C NZFNXWQNBYZDAQ-UHFFFAOYSA-N 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- QHGNHLZPVBIIPX-UHFFFAOYSA-N tin(ii) oxide Chemical class [Sn]=O QHGNHLZPVBIIPX-UHFFFAOYSA-N 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 125000002088 tosyl group Chemical group [H]C1=C([H])C(=C([H])C([H])=C1C([H])([H])[H])S(*)(=O)=O 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 125000000026 trimethylsilyl group Chemical group [H]C([H])([H])[Si]([*])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- ZOYIPGHJSALYPY-UHFFFAOYSA-K vanadium(iii) bromide Chemical compound [V+3].[Br-].[Br-].[Br-] ZOYIPGHJSALYPY-UHFFFAOYSA-K 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
- NAWDYIZEMPQZHO-UHFFFAOYSA-N ytterbium Chemical compound [Yb] NAWDYIZEMPQZHO-UHFFFAOYSA-N 0.000 description 1
- RUDFQVOCFDJEEF-UHFFFAOYSA-N yttrium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[Y+3].[Y+3] RUDFQVOCFDJEEF-UHFFFAOYSA-N 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/30—Coordination compounds
- H10K85/341—Transition metal complexes, e.g. Ru(II)polypyridine complexes
- H10K85/346—Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising platinum
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F15/00—Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
- C07F15/0006—Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
- C07F15/0086—Platinum compounds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/02—Use of particular materials as binders, particle coatings or suspension media therefor
- C09K11/025—Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/06—Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/657—Polycyclic condensed heteroaromatic hydrocarbons
- H10K85/6572—Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1003—Carbocyclic compounds
- C09K2211/1007—Non-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1029—Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1044—Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/18—Metal complexes
- C09K2211/185—Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2101/00—Properties of the organic materials covered by group H10K85/00
- H10K2101/10—Triplet emission
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/11—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
Definitions
- the present invention relates to a platinum complex compound useful as a light-emitting material, and an organic electroluminescence device (hereinafter also referred to as “an organic EL device) using the same.
- Organic electroluminescent devices are capable of obtaining emission of high luminance by low voltage driving, and actively researched and developed in recent years.
- An organic EL device generally consists of a pair of electrodes with an organic compound layer including a light-emitting layer, and electrons injected from the cathode and holes injected from the anode are recombined in the light-emitting layer, and generated energy of exciton is used for emission.
- the increase in efficiency of the devices has been advanced by the use of phosphorescent materials.
- Iridium complexes and platinum complexes are known as the phosphorescent materials, and a platinum complex light emitting material capable of light emission of blue to green is reported (e.g., JP-A-2007-19462 (The term “JP-A” as used herein refers to an “unexamined published Japanese patent application”.)).
- JP-A-2007-19462 The term “JP-A” as used herein refers to an “unexamined published Japanese patent application”.
- the light-emitting layer of an organic electroluminescence device using emission of phosphorescence is formed by the addition of a phosphorescent material to the material bearing charge transportation (a host material).
- the improvement of luminance of light emission of an organic electroluminescence device is desired.
- a method for improving luminance of light emission of an organic electroluminescence device a method of increasing addition concentration of the phosphorescent material in a light emitting layer is known.
- the increase in the addition concentration of a phosphorescent material by the increase in the addition concentration of a phosphorescent material, light emission of the organic electroluminescence device widens to the long wavelength region, as a result there arises a problem that chromaticity change of light emission becomes large by the addition concentration of the phosphorescent material. Therefore, such a phosphorescent material that chromaticity of emission does not depend upon the addition concentration of the phosphorescent material is desired.
- the present inventors have solved the above problems by the invention of the following constitution.
- each of Ar 1 and Ar 2 independently represents an aromatic ring or an aromatic heterocyclic ring
- each of R 1 , R 2 , R 3 and R 4 independently represents a hydrogen atom or a substituent
- each of Z 1 and Z 2 independently represents a carbon atom or a nitrogen atom
- each of ring Q 1 containing a carbon atom and Z 1 , and ring Q 2 containing a carbon atom and Z 2 independently represents an aromatic ring or an aromatic heterocyclic ring;
- a 1 represents a single bond or a divalent linking group.
- each of ring Q 5 containing Z 15 , Z 17 and Z 19 , and ring Q 6 containing Z 16 , Z 18 and Z 20 independently represents a 5- or 6-membered aromatic ring or aromatic heterocyclic ring;
- each of Z 15 , Z 16 , Z 17 , Z 18 , Z 19 and Z 20 independently represents a carbon atom or a nitrogen atom;
- each of a bond for bonding Z 15 to Z 17 , a bond for bonding Z 15 to Z 19 , a bond for bonding Z 16 to Z 18 , and a bond for bonding Z 16 to Z 20 independently represents a single bond or a double bond, provided that when Z 15 represents a nitrogen atom, each of the bond for bonding Z 15 to Z 17 and the bond for bonding Z 15 to Z 19 represents a single bond, and when Z 16 represents a nitrogen atom, each of the bond for bonding Z 16 to Z 18 and the bond for bonding Z 16 to Z 20 represents a single bond;
- Z 17 , Z 18 , Z 19 and Z 20 do not have a substituent
- each of ring Q 3 containing a carbon atom, Z 11 and Z 13 , and ring Q 4 containing a carbon atom, Z 12 and Z 14 independently represents an aromatic ring or an aromatic heterocyclic ring;
- each of Z 11 , Z 12 , Z 13 and Z 14 independently represents a carbon atom or a nitrogen atom
- each of a bond for bonding Z 11 to the carbon atom coordinating to Pt contained in ring Q 3 , a bond for bonding Z 11 to Z 13 , a bond for bonding Z 12 to the carbon atom coordinating to Pt contained in ring Q 4 , and a bond for bonding Z 12 to Z 14 independently represents a single bond or a double bond, provided that when Z 11 represents a nitrogen atom, each of the bond for bonding Z 11 to the carbon atom coordinating to Pt contained in ring Q 3 and the bond for bonding Z 11 to Z 13 represents a single bond, and when Z 12 represents a nitrogen atom, each of the bond for bonding Z 12 to the carbon atom coordinating to Pt contained in ring Q 4 and the bond for bonding Z 12 to Z 14 represents a single bond;
- each of Z 25 and Z 26 represents a carbon atom
- each of Z 27 , Z 28 , Z 29 , Z 30 , Z 31 , Z 32 , Z 33 , Z 34 , Z 35 and Z 36 independently represents a carbon atom or a nitrogen atom;
- Z 27 , Z 28 , Z 29 and Z 30 do not have a substituent
- each of Z 21 , Z 22 , Z 23 and Z 24 independently represents a carbon atom or a nitrogen atom
- each of ring Q 7 containing a carbon atom, Z 21 and Z 23 and ring Q 8 containing a carbon atom, Z 22 and Z 24 independently represents an aromatic ring or an aromatic heterocyclic ring;
- each of a bond for bonding Z 21 to the carbon atom coordinating to Pt contained in ring Q 7 , a bond for bonding Z 21 to Z 23 , a bond for bonding Z 22 to the carbon atom coordinating to Pt contained in ring Q 8 , and a bond for bonding Z 22 to Z 24 independently represents a single bond or a double bond, provided that when Z 21 represents a nitrogen atom, each of the bond for bonding Z 21 to the carbon atom coordinating to Pt contained in ring Q 7 and the bond for bonding Z 21 to Z 23 represents a single bond, and when Z 22 represents a nitrogen atom, each of the bond for bonding Z 22 to the carbon atom coordinating to Pt contained in ring Q 8 and the bond for bonding Z 22 to Z 24 represents a single bond;
- each of R 21 , R 22 , R 23 and R 24 independently represents a hydrogen atom or a substituent
- a 3 represents a single bond or a divalent linking group.
- each of Z 41 , Z 42 , Z 43 and Z 44 independently represents a carbon atom or a nitrogen atom
- each of ring Q 9 containing a carbon atom, Z 41 and Z 43 and ring Q 10 containing a carbon atom, Z 42 and Z 44 independently represents an aromatic ring or an aromatic heterocyclic ring;
- each of a bond for bonding Z 41 to the carbon atom coordinating to Pt contained in ring Q 9 , a bond for bonding Z 41 to Z 43 , a bond for bonding Z 42 to the carbon atom coordinating to Pt contained in ring Q 10 , and a bond for bonding Z 42 to Z 44 independently represents a single bond or a double bond, provided that when Z 41 represents a nitrogen atom, each of the bond for bonding Z 41 to the carbon atom coordinating to Pt contained in ring Q 9 and the bond for bonding Z 41 , to Z 43 represents a single bond, and when Z 42 represents a nitrogen atom, each of the bond for bonding Z 42 to the carbon atom coordinating to Pt contained in ring Q 10 and the bond for bonding Z 42 to Z 44 represents a single bond;
- each of R 31 , R 32 , R 33 , R 34 , R 35 , R 36 , R 37 , R 38 , R 39 and R 40 independently represents a hydrogen atom or a substituent
- a 4 represents a single bond or a divalent linking group.
- each of R 41 , R 42 , R 43 , R 44 , R 45 , R 46 , R 47 , R 48 , R 49 , R 50 , R 51 , R 52 , R 53 , R 54 , R 55 and R 56 independently represents a hydrogen atom or a substituent
- a 5 represents a single bond or a divalent linking group.
- each of R 61 , R 62 , R 63 , R 64 , R 65 , R 66 , R 67 , R 68 , R 69 , R 70 , R 71 , R 72 , R 73 and R 74 independently represents a hydrogen atom or a substituent
- a 6 represents a single bond or a divalent linking group.
- each of Z 55 , Z 56 , Z 57 , Z 58 , Z 59 , Z 60 , Z 61 and Z 62 independently represents a carbon atom or a nitrogen atom;
- Z 55 , Z 56 , Z 61 and Z 62 do not have a substituent
- each of Z 51 , Z 52 , Z 53 and Z 54 independently represents a carbon atom or a nitrogen atom
- each of ring Q 11 containing a carbon atom, Z 51 and Z 53 and ring Q 12 containing a carbon atom, Z 52 and Z 54 independently represents an aromatic ring or an aromatic heterocyclic ring,
- each of a bond for bonding Z 51 to the carbon atom coordinating to Pt contained in ring Q 11 , a bond for bonding Z 51 to Z 53 , a bond for bonding Z 52 to the carbon atom coordinating to Pt contained in ring Q 12 , and a bond for bonding Z 52 to Z 54 independently represents a single bond or a double bond, provided that when Z 51 represents a nitrogen atom, each of the bond for bonding Z 51 to the carbon atom coordinating to Pt contained in ring Q 11 and the bond for bonding Z 51 to Z 53 represents a single bond, and when Z 52 represents a nitrogen atom, each of the bond for bonding Z 52 to the carbon atom coordinating to Pt contained in ring Q 12 and the bond for bonding Z 52 to Z 54 represents a single bond; and
- each of R 111 , R 112 , R 113 and R 114 independently represents a hydrogen atom or a substituent
- a 7 represents a single bond or a divalent linking group.
- each of Z 71 , Z 72 , Z 73 and Z 74 independently represents a carbon atom or a nitrogen atom;
- each of ring Q 13 containing a carbon atom, Z 71 and Z 73 and ring Q 14 containing a carbon atom, Z 72 and Z 74 independently represents an aromatic ring or an aromatic heterocyclic ring;
- each of a bond for bonding Z 71 to the carbon atom coordinating to Pt contained in ring Q 13 , a bond for bonding Z 71 to Z 73 , a bond for bonding Z 72 to the carbon atom coordinating to Pt contained in ring Q 14 , and a bond for bonding Z 72 to Z 74 independently represents a single bond or a double bond, provided that when Z 71 represents a nitrogen atom, each of the bond for bonding Z 71 to the carbon atom coordinating to Pt contained in ring Q 13 and the bond for bonding Z 71 to Z 73 represents a single bond, and when Z 72 represents a nitrogen atom, each of the bond for bonding Z 72 to the carbon atom coordinating to Pt contained in ring Q 14 and the bond for bonding Z 72 to Z 74 represents a single bond;
- each of R 121 , R 122 , R 123 , R 124 , R 125 , R 126 , R 127 and R 128 independently represents a hydrogen atom or a substituent
- a 8 represents a single bond or a divalent linking group.
- each of R 131 , R 132 , R 133 , R 134 , R 135 , R 136 , R 137 , R 138 , R 139 , R 140 , R 141 , R 142 , R 143 and R 144 independently represents a hydrogen atom or a substituent
- a 9 represents a single bond or a divalent linking group.
- each of R 151 , R 152 , R 153 , R 154 , R 155 , R 156 , R 157 , R 158 , R 161 , R 162 , R 163 and R 164 independently represents a hydrogen atom or a substituent
- a 10 represents a single bond or a divalent linking group.
- An organic electroluminescence device comprising:
- organic layer contains the compound as described in [1].
- An organic electroluminescence device comprising:
- the light-emitting layer contains the compound as described in [1] in a proportion of from 20 to 30 wt % of the total mass of the light-emitting layer.
- Substituent group B is defined as follows in the invention.
- An alkyl group (preferably having from 1 to 30 carbon atoms, more preferably from 1 to 20 carbon atoms, and especially preferably from 1 to 10 carbon atoms, e.g., methyl, ethyl, isopropyl, tert-butyl, n-octyl, n-decyl, n-hexadecyl, cyclopropyl, cyclopentyl, cyclohexyl, etc., are exemplified), an alkenyl group (preferably having from 2 to 30 carbon atoms, more preferably from 2 to 20 carbon atoms, and especially preferably from 2 to 10 carbon atoms, e.g., vinyl, allyl, 2-butenyl, 3-pentenyl, etc., are exemplified), an alkynyl group (preferably having from 2 to 30 carbon atoms, more preferably from 2 to 20 carbon atoms, and especially preferably from 2 to 10 carbon atoms, e
- the compound in the invention is represented by the following formula (I).
- a platinum complex having a tetradentate ligand represented by formula (I) (hereinafter sometimes referred to as “the complex in the invention” or “the platinum complex”) will be described below.
- the hydrogen atoms in the following explanation of formulae (I), (II), (III), (IV), (V), (VI), (VII), (VIII), (IX) and (X) also include the isotopes (e.g., deuterium atoms, etc.), and atoms further having a substituent mean to contain the isotopes thereof.
- each of Ar 1 and Ar 2 independently represents an aromatic ring or an aromatic heterocyclic ring; each of R 1 , R 2 , R 3 and R 4 independently represents a hydrogen atom or a substituent; each of Z 1 and Z 2 independently represents a carbon atom or a nitrogen atom, and each of ring Q 1 containing a carbon atom and Z 1 , and ring Q 2 containing a carbon atom and Z 2 independently represents an aromatic ring or an aromatic heterocyclic ring; and A 1 represents a single bond or a divalent linking group.
- a benzene ring, a pyridine ring, a pyrazine ring, a pyrimidine ring, a pyridazine ring, a pyrrole ring, a thiophene ring, a furan ring, a pyrazole ring, an imidazole ring, a triazole ring, an oxazole ring, and a thiazole ring are preferred, more preferably a benzene ring, a pyridine ring, a pyrazine ring, a pyrrole ring, a thiophene ring, a pyrazole ring, and an imidazole ring are exemplified, still more
- substituents represented by R 1 , R 2 , R 3 and R 4 the substituents selected from substituent group B can be exemplified.
- substituents represented by R 1 , R 2 , R 3 and R 4 a hydrogen atom, an alkyl group, an aryl group, an amino group, an alkoxyl group, an aryloxy group, an acyl group, an alkoxycarbonyl group, an alkylthio group, a sulfonyl group, a hydroxyl group, a halogen atom, a cyano group, a nitro group, and a heterocyclic group are preferred, a hydrogen atom, an alkyl group, an aryl group, a halogen atom, a cyano group, and a heterocyclic group are more preferred, a hydrogen atom, a methyl group, a t-butyl group, a trifluoromethyl group, a phenyl group
- ring Q 1 and ring Q 2 are preferably a 5-membered ring, a 6-membered ring, a condensed ring of a 5-membered ring and a 6-membered ring, a condensed ring of a 6-membered ring and a 6-membered ring, and a condensed ring of a 6-membered ring, a 6-membered ring, and a 6-membered ring, and to emit light in the blue to green regions, a 5-membered ring and a 6-membered ring are more preferred.
- ring Q 1 and ring Q 2 preferably a benzene ring, a naphthalene ring, an anthracene ring, a pyridine ring, a pyrazine ring, a pyrimidine ring, a pyridazine ring, a quinoline ring, a pyrrole ring, a thiophene ring, a furan ring, a pyrazole ring, an imidazole ring, a triazole ring, an oxazole ring, a thiazole ring, an indole ring, a benzopyrazole ring, or a benzimidazole ring, more preferably a benzene ring, a pyridine ring, a pyrazine ring, a pyrrole ring, a pyrazole ring, or an imidazole ring, still more preferably a benzene
- a 1 represents a single bond or a divalent linking group.
- the divalent linking groups represented by A 1 an alkylene group (e.g., methylene, ethylene, propylene, etc.), an arylene group (e.g., phenylene, naphthalenediyl), a heteroarylene group (e.g., pyridinediyl, thiophenediyl, etc.), an imino group (—NR—) (e.g., a phenylimino group, etc.), an oxy group (—O—), a thio group (—S—), a phosphinidene group (—PR—) (e.g., a phenylphospninidene group, etc.), a silylene group (—SiRR′—) (e.g., a dimethylsilylene group, a diphenylsilylene group, etc.), and combination of these groups are exemplified.
- a 1 preferably represents a single bond, an alkylene group, an arylene group, a heteroarylene group, an imino group, an oxy group, a thio group, or a silylene group, more preferably a single bond, an alkylene group, an arylene group, or an imino group, still more preferably a single bond, a methylene group, a phenylene group, or a nitrogen atom having a phenyl group, still yet further preferably a single bond, or a di-substituted methylene group, still yet more preferably a single bond, a dimethylmethylene group, a diethylmethylene group, a diisobutylmethylene group, a dibenzylmethylene group, an ethylmethylmethylene group, a methylpropylmethylene group, an isobutylmethylmethylene group, a diphenylmethylene group, a methylphenylmethylene group, a cycl
- R 0 represents a substituent selected from substituent group B.
- R 0 is preferably an alkyl group, and more preferably an alkyl group having from 1 to 6 carbon atoms.
- m represents an integer of from 1 to 5.
- m is preferably from 2 to 5, and more preferably 2 or 3.
- Formula (I) is preferably represented by formula (II).
- Formula (II) is preferably represented by formula (III) or (VII).
- Formula (III) is preferably represented by formula (IV).
- Formula (IV) is preferably represented by formula (V) or (VI).
- Formula (VII) is preferably represented by formula (VIII).
- Formula (VIII) is preferably represented by formula (IX) or (X).
- each of ring Q 5 containing Z 15 , Z 17 and Z 19 , and ring Q 6 containing Z 16 , Z 18 and Z 20 independently represents a 5- or 6-membered aromatic ring or an aromatic heterocyclic ring; each of Z 15 , Z 16 , Z 17 , Z 18 , Z 19 and Z 20 independently represents a carbon atom or a nitrogen atom, and each of a bond for bonding Z 15 to Z 17 , a bond for bonding Z 15 to Z 19 , a bond for bonding Z 16 to Z 18 , and a bond for bonding Z 16 to 20 independently represents a single bond or a double bond, provided that when Z 15 represents a nitrogen atom, each of the bond for bonding Z 15 to Z 17 and the bond for bonding Z 15 to Z 19 represents a single bond, and when Z 16 represents a nitrogen atom, each of the bond for bonding Z 16 to Z 18 and the bond for bonding Z 16 to Z 20 represents a single bond, and Z 17 , Z 18 ,
- Each of ring Q 5 and ring Q 6 independently represents an aromatic ring or an aromatic heterocyclic ring.
- ring Q 5 and ring Q 6 a ring little in reaction activity is preferred for the purpose of increasing stability of the platinum complex, and to lessen change of emission wavelength of the platinum complex by substitution, a ring small in broadening of ⁇ conjugation is preferred.
- a benzene ring, a pyridine ring, a pyrazine ring, a pyrimidine ring, a pyridazine ring, a pyrrole ring, a thiophene ring, a furan ring, a pyrazole ring, an imidazole ring, a triazole ring, an oxazole ring, and a thiazole ring are preferred, more preferably a benzene ring, a pyridine ring, a pyrazine ring, a pyrrole ring, a thiophene ring, a pyrazole ring, and an imidazole ring are exemplified, still more preferably a benzene ring, a pyridine ring, and a pyrazole ring, and most preferably a benzene ring.
- R 11 , R 12 , R 13 and R 14 has the same meaning as that of R 1 , R 2 , R 3 and R 4 in formula (I), and the preferred range is also the same.
- ring Q 3 and ring Q 4 are preferably a 5-membered ring, a 6-membered ring, a condensed ring of a 5-membered ring and a 6-membered ring, a condensed ring of a 6-membered ring and a 6-membered ring, and a condensed ring of a 6-membered ring, a 6-membered ring, and a 6-membered ring, and to emit light in the blue to green regions, a 5-membered ring and a 6-membered ring are more preferred.
- a 2 has the same meaning as that of A 1 in formula (I), and the preferred range is also the same.
- each of Z 25 and Z 26 represents a carbon atom; each of Z 27 , Z 28 , Z 29 , Z 30 , Z 31 , Z 32 , Z 33 , Z 34 , Z 35 and Z 36 independently represents a carbon atom or a nitrogen atom, and Z 27 , Z 28 , Z 29 and Z 30 do not have a substituent; each of Z 21 , Z 22 , Z 23 and Z 24 independently represents a carbon atom or a nitrogen atom, each of ring Q 7 containing a carbon atom, Z 21 and Z 23 and ring Qs containing a carbon atom, Z 22 and Z 24 independently represents an aromatic ring or an aromatic heterocyclic ring, each of a bond for bonding Z 21 to the carbon atom coordinating to Pt contained in ring Q 7 , a bond for bonding Z 21 to Z 23 , a bond for bonding Z 22 to the carbon atom coordinating to Pt contained in ring Q 8 , and a bond for bonding Z 22 to Z 24 independently
- Each of Z 25 , Z 27 , Z 29 , Z 31 , Z 33 and Z 35 , and Z 26 , Z 29 , Z 30 , Z 32 , Z 34 and Z 36 independently forms an aromatic ring or an aromatic heterocyclic ring, and each of them is preferably a ring little in reaction activity for the purpose of increasing stability of the platinum complex.
- a benzene ring, a pyridine ring, a pyrazine ring, a pyrimidine ring, and a pyridazine ring are preferred, more preferably a benzene ring, a pyridine ring, and a pyrazine ring are exemplified, still more preferably a benzene ring and a pyridine ring, and most preferably a benzene ring.
- R 21 , R 22 , R 23 and R 24 has the same meaning as that of R 1 , R 2 , R 3 and R 4 in formula (I), and the preferred range is also the same.
- Each of Z 21 , Z 22 , Z 23 and Z 24 has the same meaning as Z 11 , Z 12 , Z 13 and Z 14 in formula (II).
- Each of ring Q 7 and Q 8 has the same meaning as Q 3 and Q 4 in formula (II), and the preferred range is also the same.
- a 3 has the same meaning as A 1 in formula (I), and the preferred range is also the same.
- each of Z 41 , Z 42 , Z 43 and Z 44 independently represents a carbon atom or a nitrogen atom
- Z 42 and Z 44 independently represents an aromatic ring or an aromatic heterocylic ring
- a bond for bonding Z 42 to Z 44 independently represents a single bond or a double bond, provided that when Z 41 represents a nitrogen atom, each of the bond for bonding Z 41 to the carbon atom coordinating to Pt contained in ring Q 9 and the bond for bonding Z 41 to Z 43 represents a single bond, and when Z 42 represents a nitrogen atom, each of the bond for bonding Z 42 to the carbon
- each of R 31 , R 32 , R 33 and R 34 has the same meaning as that of R 1 , R 2 , R 3 and R 4 in formula (I), and the preferred range is also the same.
- substituents represented by R 35 , R 36 , R 37 , R 38 , R 39 and R 40 the substituents selected from substituent group B can be exemplified.
- substituents represented by R 35 , R 36 , R 37 , R 38 , R 39 and R 40 a hydrogen atom, an alkyl group, an aryl group, an amino group, an alkoxyl group, an aryloxy group, an acyl group, an alkoxycarbonyl group, an alkylthio group, a sulfonyl group, a hydroxyl group, a halogen atom, a cyano group, a nitro group, and a heterocyclic group are preferred, a hydrogen atom, an alkyl group, an aryl group, a halogen atom, a cyano group, and a heterocyclic group are more preferred, a hydrogen atom, a methyl group, a t-butyl group,
- Each of Z 41 , Z 42 , Z 43 and Z 44 has the same meaning as Z 11 , Z 12 , Z 13 and Z 14 in formula (II).
- Each of ring Q 9 and Q 10 has the same meaning as Q 3 and Q 4 in formula (II), and the preferred range is also the same.
- a 4 has the same meaning as A 1 in formula (I), and the preferred range is also the same.
- each of R 41 , R 42 , R 43 , R 44 , R 45 , R 46 , R 47 , R 48 , R 49 , R 50 , R 51 , R 52 , R 53 , R 54 , R 55 and R 56 independently represents a hydrogen atom or a substituent; and A 5 represents a single bond or a divalent linking group.
- each of R 41 , R 42 , R 43 and R 44 has the same meaning as that of R 1 , R 2 , R 3 and R 4 in formula (I), and the preferred range is also the same.
- R 5 , R 52 , R 53 , R 54 , R 55 and R 56 has the same meaning as that of R 35 , R 36 , R 37 , R 38 , R 39 and R 40 in formula (IV), and the preferred range is also the same.
- substituents represented by R 45 , R 46 , R 47 , R 48 , R 49 and R 50 the substituents selected from substituent group B can be exemplified.
- substituents represented by R 45 , R 46 , R 47 , R 48 , R 49 and R 50 a hydrogen atom, an alkyl group, an aryl group, an amino group, an alkoxyl group, an aryloxy group, an acyl group, an alkoxycarbonyl group, an alkylthio group, a sulfonyl group, a hydroxyl group, a halogen atom, a cyano group, a nitro group, and a heterocyclic group are preferred, a hydrogen atom, an alkyl group, an aryl group, a halogen atom, a cyano group, and a heterocyclic group are more preferred, a hydrogen atom, a methyl group, a t-butyl group,
- a 5 has the same meaning as that of A 1 in formula (I), and the preferred range is also the same.
- each of R 61 , R 62 , R 63 , R 64 , R 65 , R 66 , R 67 , R 68 , R 69 , R 70 , R 71 , R 72 , R 73 and R 74 independently represents a hydrogen atom or a substituent; and A 6 represents a single bond or a divalent linking group.
- each of R 61 , R 62 , R 63 and R 64 has the same meaning as that of R 1 , R 2 , R 3 and R 4 in formula (I), and the preferred range is also the same.
- R 69 , R 70 , R 71 , R 72 , R 73 and R 74 has the same meaning as that of R 35 , R 36 , R 37 , R 38 , R 39 and R 40 in formula (IV), and the preferred range is also the same.
- substituent group B can be exemplified.
- substituents represented by R 65 , R 66 , R 67 and R 68 a hydrogen atom, an alkyl group, an aryl group, an amino group, an alkoxyl group, an aryloxy group, an acyl group, an alkoxycarbonyl group, an alkylthio group, a sulfonyl group, a hydroxyl group, a halogen atom, a cyano group, a nitro group, and a heterocyclic group are preferred, a hydrogen atom, an alkyl group, an aryl group, a halogen atom, a cyano group, and a heterocyclic group are more preferred, a hydrogen atom, a methyl group, a t-butyl group, a trifluoromethyl group, a phenyl group
- a 6 has the same meaning as that of A 1 in formula (I), and the preferred range is also the same.
- each of Z 55 , Z 56 , Z 57 , R 58 , R 59 , R 60 , R 61 and Z 62 independently represents a carbon atom or a nitrogen atom, and Z 55 , Z 56 , R 61 and Z 62 do not have a substituent; each of Z 51 , Z 52 , Z 53 and Z 54 independently represents a carbon atom or a nitrogen atom, each of ring Q 11 containing a carbon atom, Z 51 and Z 53 and ring Q 12 containing a carbon atom, Z 52 and Z 54 independently represents an aromatic ring or an aromatic heterocylic ring, each of a bond for bonding Z 51 to the carbon atom coordinating to Pt contained in ring Q 11 , a bond for bonding Z 51 to Z 53 , a bond for bonding Z 52 to the carbon atom coordinating to Pt contained in ring Q 12 , and a bond for bonding Z 52 to Z 54 independently represents a single bond or a double bond, provided that
- Each of a 5-membered ring formed by a nitrogen atom, Z 55 , Z 57 , R 59 and R 61 , and a 5-membered ring formed by a nitrogen atom, Z 56 , R 58 , R 60 and Z 62 is preferably a ring little in reaction activity for the purpose of increasing stability of the platinum complex.
- a pyrrole ring, a pyrazole ring, an imidazole ring, and a triazole ring are preferred, a pyrrole ring, a pyrazole ring, and an imidazole ring are more preferred, a pyrazole ring and an imidazole ring are still more preferred, and, a pyrazole ring is most preferred.
- R 111 , R 112 , R 113 and R 114 has the same meaning as that of R 1 , R 2 , R 3 and R 4 in formula (I), and the preferred range is also the same.
- Each of Z 51 , Z 52 , Z 53 and Z 54 has the same meaning as Z 1 , Z 12 , Z 13 and Z 14 in formula (II).
- Each of ring Q 11 and Q 12 has the sane meaning as Q 3 and Q 4 in formula (II), and the preferred range is also the same.
- a 7 has the same meaning as A 1 in formula (I), and the preferred range is also the same.
- each of Z 71 , Z 72 , Z 73 and Z 74 independently represents a carbon atom or a nitrogen atom, each of ring Q 13 containing a carbon atom, Z 71 and Z 73 and ring Q 14 containing a carbon atom, Z 72 and Z 74 independently represents an aromatic ring or an aromatic heterocylic ring, each of a bond for bonding Z 71 to the carbon atom coordinating to Pt contained in ring Q 13 , a bond for bonding Z 71 to Z 73 , a bond for bonding Z 72 to the carbon atom coordinating to Pt contained in ring Q 14 , and a bond for bonding Z 72 to Z 74 independently represents a single bond or a double bond, provided that when Z 71 represents a nitrogen atom, each of the bond for bonding Z 71 to the carbon atom coordinating to Pt contained in ring Q 13 and the bond for bonding Z 71 to Z 73 represents a single bond, and when Z 72 represents a nitrogen
- each of R 121 , R 122 , R 123 and R 124 has the same meaning as that of R 1 , R 2 , R 3 and R 4 in formula (I), and the preferred range is also the same.
- substituent group B can be exemplified.
- substituents represented by R 125 , R 126 , R 127 and R 128 a hydrogen atom, an alkyl group, an aryl group, an amino group, an alkoxyl group, an aryloxy group, an acyl group, an alkoxycarbonyl group, an alkylthio group, a sulfonyl group, a hydroxyl group, a halogen atom, a cyano group, a nitro group, and a heterocyclic group are preferred, a hydrogen atom, an alkyl group, an aryl group, a halogen atom, a cyano group, and a heterocyclic group are more preferred, a hydrogen atom, a methyl group, a t-butyl group, a trifluoromethyl group, a pheny
- Each of Z 71 , Z 72 , Z 73 and Z 74 has the same meaning as Z 11 , Z 12 , Z 13 and Z 14 in formula (II).
- Each of ring Q 13 and Q 14 has the same meaning as Q 3 and Q 4 in formula (I), and the preferred range is also the same.
- a 8 has the same meaning as A 1 in formula (I), and the preferred range is also the same.
- each of R 131 , R 132 , R 133 , R 134 , R 135 , R 136 , R 137 , R 138 , R 139 , R 140 , R 141 , R 142 , R 143 and R 144 independently represents a hydrogen atom or a substituent; and A 9 represents a single bond or a divalent linking group.
- each of R 131 , R 132 , R 133 and R 134 has the same meaning as that of R 1 , R 2 , R 3 and R 4 in formula (I), and the preferred range is also the same.
- R 141 , R 142 , R 143 and R 144 has the same meaning as that of R 125 , R 126 , R 127 and R 128 in formula (VIII), and the preferred range is also the same.
- R 135 , R 136 , R 137 , R 138 , R 139 and R 140 has the same meaning as that of R 45 , R 46 , R 47 , R 48 , R 49 and R 50 in formula (V), and the preferred range is also the same.
- a 9 has the same meaning as that of A 1 in formula (I), and the preferred range is also the same.
- each of R 151 , R 152 , R 153 , R 154 , R 155 , R 156 , R 157 , R 158 , R 161 , R 162 , R 163 and R 164 independently represents a hydrogen atom or a substituent; and A 10 represents a single bond or a divalent linking group.
- each of R 151 , R 152 , R 153 and R 154 has the same meaning as R 1 , R 2 , R 3 and R 4 in formula (I), and the preferred range is also the same.
- R 161 , R 162 , R 163 and R 164 has the same meaning as R 125 , R 126 , R 127 and R 128 in formula (VIII), and the preferred range is also the same.
- R 155 , R 156 , R 157 and R 158 has the same meaning as R 65 , R 66 , R 67 and R 68 in formula (VI), and the preferred range is also the same.
- a 10 has the same meaning as that of A 1 in formula (I), and the preferred range is also the same.
- the platinum complex represented by any of formulae (I), (II), (III), (IV), (V), (VI), (VII), (VIII), (IX) and (X) may be a high molecular weight compound having the compound of the invention in the main chain or side chain.
- the weight average molecular weight of the platinum complex is preferably 2,000 or higher.
- the complexes in the invention can be manufactured, for example, according to the processes shown below.
- the manufacturing method of Compound (E-1) shown below will be specifically described.
- each of R 81 , R 82 , R 83 , R 84 , R 87 , R 88 , R 89 , R 90 , R 91 , R 92 , R 93 , R 94 , R 95 , R 96 , R 97 and R 98 has the same meaning as R 41 , R 42 , R 43 , R 44 , R 51 , R 52 , R 53 , R 54 , R 55 , R 56 R 45 , R 46 , R 47 , R 48 , R 49 and R 50 in formula (V).
- R 85 and R 86 have the same meaning as substituent group B.
- the complex of the invention can be obtained according to the methods described in G. R. Newkome et al., Journal of Organic Chemistry, 53, 786 (1988), page 789, from left column line 53 to right column line 7, page 790, from left column lines 18 to 38, page 790, from right column lines 19 to 30, and combination of these methods.
- Compound (A-1) being a starting material, from 1 to 1.2 equivalent weight of bases such as lithium diisopropylamide, potassium t-butoxide, sodium hydroxide, etc., are added to an N,N-dimethylformamide solution of (A-1) at 0° C. to room temperature, and the reaction mixture is reacted at 0° C.
- dialkyl substitution product (B-1) can be obtained in a yield of from 70 to 99%.
- (D-1) can be synthesized from (C-1) according to the method described in Synth. Commun., 11, 513 (1981).
- Compound (E-1) of the invention can be synthesized by dissolving Compound (D-1) and from 1 to 1.5 equivalent weight of platinous chloride in benzonitrile, heating the resulted solution at 130° C. to heat-refluxing temperature (the boiling point of benzonitrile: 191° C.) and stirring for 30 minutes to 4 hours.
- Compound (E-1) can be refined by recrystallization using chloroform or ethyl acetate, silica gel column chromatography, and sublimation refining.
- a complex represented by the following formula (E-2) can be synthesized by the following manufacturing method.
- each of R 81 , R 82 , R 83 , R 84 , R 87 , R 88 , R 89 , R 90 , R 91 , R 92 , R 99 , R 100 , R 101 and R 102 has the same meaning as R 61 , R 62 , R 63 , R 64 , R 69 , R 70 , R 71 , R 72 , R 73 , R 74 , R 65 , R 66 , R 67 and R 68 in formula (VI).
- R 85 and R 86 have the same meaning as substituent group B.
- (D-2) can be synthesized from (C-1) according to the methods described in Chem. Ber., 113, 2749 (1980) and Eur. J. Org. Chem., 4, 695 (2004).
- Compound (E-2) of the invention can be synthesized by dissolving Compound (D-2) and from 1 to 1.5 equivalent weight of platinous chloride in benzonitrile, heating the solution at 130° C. to heat-refluxing temperature (the boiling point of benzonitrile: 191° C.) and stirring for 30 minutes to 4 hours.
- Compound (E-2) can be refined by recrystallization using chloroform or ethyl acetate, silica gel column chromatography, and sublimation refining.
- the organic electroluminescence device in the invention will be described in detail below.
- the organic electroluminescence device in the invention is an organic electroluminescence device comprising a pair of electrodes and at least one organic layer between the pair of electrodes, and at least one compound (I) is contained in the at least one organic layer.
- the device When the organic compound layer consists of one layer, the device has a light-emitting layer as the organic compound layer. From the properties of the device, it is preferred that at least one electrode of the anode and the cathode is transparent or translucent.
- the organic compound layer is not especially limited, and the device may have, besides the light-emitting layer, a hole-injecting layer, a hole-transporting layer, an electron injecting layer, an electron-transporting layer, a hole blocking layer, an electron-blocking layer, an exciton blocking layer, and a protective layer. Further, each of these layers may serve for other functions.
- an embodiment of lamination of the hole-transporting layer, the light-emitting layer and the electron-transporting layer from the anode side is preferred.
- a charge-blocking layer may be provided between the hole-transporting layer and the light-emitting layer, or between the light-emitting layer and the electron transporting layer.
- the hole-injecting layer may be provided between the anode and the hole-transporting layer, or the electron injecting layer may be provided between the cathode and the electron-transporting layer.
- each of these layers may consist of a plurality of secondary layers.
- the complex of the invention may be contained in any layer.
- the complex of the invention is preferably contained in the light-emitting layer, more preferably contained in the light-emitting layer as light-emitting material or host material, still more preferably contained in the light-emitting layer as light-emitting material, and especially preferably contained in the light-emitting layer with at least one host material.
- the content of a phosphorescent material usable in the invention is preferably 0.1 wt % or more and 50 wt % or less of the total mass of the light-emitting layer, more preferably 0.2 wt % or more and 50 wt % or less, still more preferably 0.3 wt % or more and 40 wt % or less, and most preferably 20 wt % or more and 30 wt % or less.
- the chromaticity of light emission of the organic electroluminescence device is little in dependency on the addition concentration of the phosphorescent material.
- the organic electroluminescence device of the invention contains at least on of compounds (I) (the complexes of the invention) in the proportion of from 20 to 30 wt % of the total mass of the light-emitting layer.
- the host material is a compound primarily bearing injection and transportation of charge in a light-emitting layer, which is a compound that does not substantially emit light.
- the terms “does not substantially emit light” means that the amount of light emission from the compound that does not substantially emit light is preferably 5% or less of the total amount of light emission of the device as a whole, more preferably 3% or less and still more preferably 1% or less.
- the concentration of the host material in a light emitting layer is not especially restricted, but the host material is preferably the main component (the component the highest in content) in a light-emitting layer, more preferably 50 wt % or more and 99.9 wt % or less, still more preferably 50 wt % or more and 99.8 wt % or less, still yet preferably 60 wt % or more and 99.7 wt % or less, and most preferably 70 wt % or more and 80 wt % or less.
- the host material is preferably the main component (the component the highest in content) in a light-emitting layer, more preferably 50 wt % or more and 99.9 wt % or less, still more preferably 50 wt % or more and 99.8 wt % or less, still yet preferably 60 wt % or more and 99.7 wt % or less, and most preferably 70 wt % or more and 80
- the glass transition point of the host material is preferably 100° C. or higher and 500° C. or lower, more preferably 110° C. or higher and 300° C. or lower, and still more preferably 120° C. or higher and 250° C. or lower,
- the fluorescent wavelength of the host material contained in the light-emitting layer of the invention in the state of a film is preferably in the range of 400 nm or more and 650 nm or less, more preferably in the range of 420 nm or more and 600 nm or less, and still more preferably in the range of 440 nm or more and 550 nm or less.
- the host materials contained in the light-emitting layer of the invention e.g., materials having a carbazole structure, materials having a diarylamine structure, materials having a pyridine structure, materials having a pyrazine structure, materials having a triazine structure, materials having an arylsilane structure, and materials described later in the items of hole-injecting layer, hole-transporting layer, electron-injecting layer and electron-transporting layer are exemplified.
- the host materials for use in the invention e.g., the compounds disclosed in JP-A-2002-100476, paragraphs 0113 to 0161 and JP-A-2004-214179, paragraphs 0087 to 0098 can be preferably used, but the invention is not restricted to these compounds.
- the content in the layer is preferably from 10 wt % to 100 wt %, and more preferably from 30 wt % to 100 wt %.
- the substrate for use in the invention is preferably a substrate that does not scatter or attenuate the light emitted from the organic layers.
- the specific examples of the materials of the substrate include inorganic materials, e.g., yttria stabilized zirconia (YSZ), glass, etc., and organic materials, such as polyester, e.g., polyethylene terephthalate, polybutylene phthalate, polyethylene naphthalate, etc., polystyrene, polycarbonate, polyether sulfone, polyallylate, polyimide, polycycloolefin, norbornene resin, poly(chlorotrifluoroethylene), etc.
- inorganic materials e.g., yttria stabilized zirconia (YSZ), glass, etc.
- organic materials such as polyester, e.g., polyethylene terephthalate, polybutylene phthalate, polyethylene naphthalate, etc., polystyrene, polycarbonate
- non-alkali glass is preferably used as the material for reducing elution of ions from the glass.
- soda lime glass it is preferred to provide a barrier coat such as silica.
- materials excellent in heat resistance, dimensional stability, solvent resistance, electrical insulating properties and processability are preferably used.
- the shape, structure and size of the substrate are not especially restricted, and these can be arbitrarily selected in accordance with the intended use and purpose of the luminescent device.
- the substrate is preferably plate-shaped.
- the structure of the substrate may be a single layer structure or may be a lamination structure, and may consist of a single member or may be formed of two or more members.
- the substrate may be colorless and transparent, or may be colored and transparent, but from the point of not scattering or attenuating the light emitted from the organic light-emitting layer, a colorless and transparent substrate is preferably used.
- the substrate can be provided with a moisture permeation-preventing layer (a gas barrier layer) on the front surface or rear surface.
- a moisture permeation-preventing layer a gas barrier layer
- the materials of the moisture permeation-preventing layer (the gas barrier layer) inorganic materials such as silicon nitride and silicon oxide are preferably used.
- the moisture permeation-preventing layer (the gas barrier layer) can be formed, for example, by a high frequency sputtering method.
- thermoplastic substrate When a thermoplastic substrate is used, if necessary, a hard coat layer and an undercoat layer may further be provided.
- the anode is generally sufficient to have the function of the electrode to supply holes to an organic layer.
- the shape, structure and size of the anode are not especially restricted, and these can be arbitrarily selected from known materials of electrode in accordance with the intended use and purpose of the luminescent device.
- the anode is generally provided as the transparent anode.
- the materials of anode for example, metals, alloys, metallic oxides, electrically conductive compounds, and mixtures of these materials are preferably exemplified.
- the specific examples of the materials of anode include electrically conductive metallic oxides, e.g., tin oxides doped with antimony or fluorine (ATO, FTO), tin oxide, zinc oxide, indium oxide, indium tin oxide (ITO), indium zinc oxide (IZO), etc., metals, e.g., gold, silver, chromium, nickel, etc., mixtures or laminates of these metals with electrically conductive metallic oxides, inorganic electrically conductive substances, e.g., copper iodide, copper sulfide, etc., organic electrically conductive materials, e.g., polyaniline, polythiophene, polypyrrole, etc., laminates of these materials with ITO, etc. Of these materials, electrically conductive metallic oxides are preferred, and ITO is
- the anode can be formed on the substrate in accordance with various methods arbitrarily selected from, for example, wet methods, e.g., a printing method, a coating method, etc., physical methods, e.g., a vacuum deposition method, a sputtering method, an ion plating method, etc., and chemical methods, e.g., a CVD method, a plasma CVD method, etc., taking the suitability with the material to be used in the anode into consideration.
- wet methods e.g., a printing method, a coating method, etc.
- physical methods e.g., a vacuum deposition method, a sputtering method, an ion plating method, etc.
- chemical methods e.g., a CVD method, a plasma CVD method, etc.
- the anode can be formed according to a direct current or high frequency sputtering method, a vacuum deposition method, an ion plating method, etc.
- the position of the anode to be formed is not especially restricted and can be formed anywhere in accordance with the intended use and purpose of the luminescent device, but preferably provided on the substrate.
- the anode may be formed on the entire surface of one side of the substrate, or may be formed at a part.
- patterning in forming the anode may be performed by chemical etching such as by photo-lithography, may be carried out by physical etching by laser and the like, may be performed by vacuum deposition or sputtering on a superposed mask, or a lift-off method and a printing method may be used.
- the thickness of the anode can be optionally selected in accordance with the materials of the anode, so that it cannot be regulated unconditionally, but the thickness is generally from 10 nm to 50 ⁇ m or so, and is preferably from 50 nm to 20 ⁇ m
- the value of resistance of the anode is preferably 10 3 ⁇ / ⁇ or less, and more preferably 10 2 ⁇ / ⁇ or less.
- the anode may be colorless and transparent, or may be colored and transparent.
- the transmittance is preferably 60% or more, and more preferably 70% or more.
- the cathode is generally sufficient to have the function of the electrode to inject electrons to organic layers.
- the shape, structure and size of the cathode are not especially restricted, and these can be arbitrarily selected from known materials of electrode in accordance with the intended use and purpose of the luminescent device.
- the materials to constitute the cathode for example, metals, alloys, metallic oxides, electrically conductive compounds, and mixtures of these materials are exemplified.
- the specific examples of the materials of cathode include alkali metals (e.g., Li, Na, K, Cs, etc.), alkaline earth metals (e.g., Mg, Ca, etc.), gold, silver, lead, aluminum, sodium-potassium alloy, lithium-aluminum alloy, magnesium-silver alloy, indium, rare earth metals, e.g., ytterbium, etc.
- alkali metals e.g., Li, Na, K, Cs, etc.
- alkaline earth metals e.g., Mg, Ca, etc.
- These materials
- alkali metals and alkaline earth metals are preferred of these materials in the point of an electron injecting property, and materials mainly comprising aluminum are preferred for their excellent preservation stability.
- the materials mainly comprising aluminum mean aluminum alone, alloys of aluminum with 0.01 to 10 wt % of alkali metal or alkaline earth metal, or mixtures of these (e.g., lithium-aluminum alloy, magnesium-aluminum alloy, etc.).
- the materials of the cathode are disclosed in detail in JP-A-2-15595 and JP-A-5-121172, and the materials described in these patents can also be used in the invention.
- the cathode can be formed by known methods with no particular restriction.
- the cathode can be formed according to wet methods, e.g., a printing method, a coating method, etc., physical methods, e.g., a vacuum deposition method, a sputtering method, an ion plating method, etc., and chemical methods, e.g., a CVD method, a plasma CVD method, etc., taking the suitability with the material constituting the cathode into consideration.
- the cathode can be formed with one or two or more kinds of the materials at the same time or in order by a sputtering method, etc.
- Patterning in forming the cathode may be performed by chemical etching such as a method by photo-lithography, may be carried out by physical etching such as a method by laser, may be performed by vacuum deposition or sputtering on a superposed mask, or a lift-off method and a printing method may be used.
- the position of the cathode to be formed is not especially restricted and can be formed anywhere in the invention.
- the cathode may be formed on the entire surface of the organic layer, or may be formed at a part.
- a dielectric layer comprising fluoride or oxide of alkali metal or alkaline earth metal may be inserted between the cathode and the organic layer in a thickness of from 0.1 to 5 nm.
- the dielectric layer can be regarded as a kind of an electron-injecting layer.
- the dielectric layer can be formed, for example, according to a vacuum deposition method, a sputtering method, an ion plating method, etc.
- the thickness of the cathode can be optionally selected in accordance with the materials of the cathode, so that it cannot be regulated unconditionally, but the thickness is generally from 10 nm to 5 ⁇ m or so, and is preferably from 50 nm to 1 ⁇ m.
- the cathode may be transparent or opaque.
- the transparent cathode can be formed by forming a membrane of the material of the cathode in a thickness of from 1 to 10 nm, and further laminating transparent conductive materials such as ITO and IZO.
- the organic layer in the invention is described below.
- the device in the invention has at least one organic layer including a light-emitting layer, and as organic layers other than the light-emitting layer, a hole-transporting layer, an electron-transporting layer, a hole-blocking layer, an electron-blocking layer, a hole-injecting layer, and an electron-injecting layer are exemplified, as described above.
- each organic layer can be preferably formed by any of dry film-forming methods, e.g., a vacuum evaporation method and a sputtering method, a transfer method, a printing method, etc.
- the light-emitting layer is a layer having functions to receive, at the time of electric field application, holes, from the anode, hole-injecting layer or hole-transporting layer, and to receive electrons from the cathode, electron-injecting layer or electron-transporting layer, and offer the field of recombination of holes and electrons to emit light.
- the light-emitting layer in the invention may consist of light-emitting materials alone, or may comprise a mixed layer of a host material and a light-emitting material.
- the light-emitting material may be a fluorescent material or may be a phosphorescent material, and a dopant may be one or two or more kinds.
- the host material is preferably a charge transporting material.
- the host material may be one or two or more kinds For example, a constitution of a mixture of an electron-transporting host material and a hole-transporting host material is exemplified. Further, a material not having a charge-transporting property and not emitting light may be contained in the light-emitting layer.
- a light-emitting layer using the complex of the invention as the light-emitting material and the host material is preferred.
- the light-emitting layer may be a single layer, or may comprise two or more layers, and each layer may emit light in different luminescent color
- the examples of fluorescent materials capable of being used in the invention include various complexes represented by complexes of benzoxazole derivatives, benzimidazole derivatives, benzothiazole derivatives, styrylbenzene derivatives, polyphenyl derivatives, diphenylbutadiene derivatives, tetraphenylbutadiene derivatives, naphthalimide derivatives, coumarin derivatives, condensed aromatic compounds, perinone derivatives, oxadiazole derivatives, oxazine derivatives, aldazine derivatives, pyraridine derivatives, cyclopentadiene derivatives, bisstyrylanthracene derivatives, quinacridone derivatives, pyrrolopyridine derivatives, thiadiazolopyridine derivatives, cyclopentadiene derivatives, styrylamine derivatives, diketopyrrolopyrrole derivatives, aromatic dimethylidyne compounds, 8-quinolinol derivatives and complexe
- phosphorescent materials usable in the invention in addition to the compounds of the invention, phosphorescent compounds disclosed, for example, in U.S. Pat. Nos. 6,303,238B1, 6,097,147, WO 00/57,676, WO 00/70,655, WO 01/08,230, WO 01/39,234A2, WO 01/41,512A1, WO 02/02,714A2, WO 02/15,645A1, WO 02/44,189A1, WO 05/19,373A2, JP-A-2001-247859, JP-A-2002-302671, JP-A-2002-117978, JP-A-2003-133074, JP-A-2002-235076, JP-A-2003-123982, JP-A-2002-170684, EP 1,211,257, JP-A-2002-226495, JP-A-2002-234894, JP-A-2001-247859, JP-A-2001-298470
- an Ir complex, a Pt complex, a Cu complex, an Re complex, a W complex, an Rh complex, an Ru complex, a Pd complex, an Os complex, an Eu complex, a Tb complex, a Gd complex, a Dy complex, and a Ce complex are exemplified.
- an Ir complex, a Pt complex and an Re complex are exemplified.
- An Ir complex, a Pt complex and an Re complex including at least one coordination system of a metal-carbon bond, a metal-nitrogen bond, a metal-oxygen bond, and a metal-sulfur bond are preferred above all.
- an Ir complex, a Pt complex and an Re complex containing a tridentate or higher multidentate ligand are especially preferred.
- the content of phosphorescent materials in a light-emitting layer is preferably in the range of 0.1 wt % or more and 50 wt % or less of the total mass of the light-emitting layer, more preferably in the range of 0.2 wt % or more and 50 wt % or less, still more preferably in the range of 0.3 wt % or more and 40 wt % or less, and most preferably in the range of 20 wt % or more and 30 wt % or less.
- the thickness of a light-emitting layer is not especially restricted, and generally preferably from 1 to 500 nm, more preferably from 5 to 200 nm, and still more preferably from 10 to 100 nm.
- the hole-injecting layer and the hole-transporting layer are layers having the functions of receiving holes from the anode or anode side and transporting the holes to the cathode side.
- the hole-injecting layer and the hole-transporting layer are preferably layers specifically containing carbazole derivatives, triazole derivatives, oxazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aromatic tertiary amine compounds, styrylamine compounds, porphyrin compounds, organic silane derivatives, or carbon.
- the thickness of the hole-injecting layer and hole transporting layer is each preferably 500 nm or less in view of lowering driving voltage.
- the thickness of the hole-transporting layer is preferably from 1 to 500 nm, more preferably from 5 to 200 nm, and still more preferably from 10 to 100 nm.
- the thickness of the hole-injecting layer is preferably from 0.1 to 200 nm, more preferably from 0.5 to 100 nm, and still more preferably from 1 to 100 nm.
- the hole-injecting layer and the hole-transporting layer may have a single layer structure comprising one kind or two or more kinds of the above materials, or may be a multilayer structure comprising a plurality of layers having the same composition or different compositions.
- Electron Injecting Layer and Electron Transporting Layer are Electron Injecting Layer and Electron Transporting Layer
- the electron-injecting layer and the electron-transporting layer are layers having functions of receiving electrons from the cathode or cathode side and transporting the electrons to the anode side.
- the electron-injecting layer and the electron-transporting layer are specifically preferably layers containing various complexes represented by complexes of triazole derivatives, oxazole derivatives, oxadiazole derivatives, imidazole derivatives, fluorenone derivatives, anthraquinodimethane derivatives, anthrone derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, carbodiimide derivatives, fluorenylidenemethane derivatives, distyrylpyrazine derivatives, aromatic cyclic tetracarboxylic anhydrides such as naphthalene and perylene, phthalocyanine derivatives, complexes of 8-quinolinol derivatives, complexes having metalphthalocyanine, benzoxazole or benzothiazole as the ligand, and organic silane derivatives.
- complexes represented by complexes of triazole derivatives, oxazole derivatives, oxadiazole derivative
- the thickness of the electron injecting layer and the electron transporting layer is preferably 500 mm or less from the point of lowering the driving voltage.
- the thickness of the electron transporting layer is preferably from 1 to 500 nm, more preferably from 5 to 200 nm, and still more preferably from 10 to 100 nm.
- the thickness of the electron injecting layer is preferably from 0.1 to 200 nm, more preferably from 0.2 to 100 nm, and still more preferably from 0.5 to 50 nm.
- the electron injecting layer and the electron transporting layer may have a single layer structure comprising one kind or two or more kinds of the above materials, or may be a multilayer structure comprising a plurality of layers having the same composition or different compositions.
- the hole-blocking layer is a layer having a function of preventing the holes transported from the anode side to the light-emitting layer from passing through to the cathode side.
- a hole-blocking layer can be provided as an organic layer contiguous to the light-emitting layer on the cathode side.
- organic compounds constituting the hole-blocking layer aluminum complexes such as aluminum(III)bis(2-methyl-8-quinolinato)-4-phenylphenolate (abbreviation: BAlq), triazole derivatives, and phenanthroline derivatives such as 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (abbreviation: BCP) can be exemplified.
- BAlq aluminum(III)bis(2-methyl-8-quinolinato)-4-phenylphenolate
- BCP phenanthroline derivatives
- BCP 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline
- the thickness of the hole-blocking layer is preferably from 1 to 500 nm, more preferably from 5 to 200 nm, and still more preferably from 10 to 100 nm.
- the hole-blocking layer may have a single layer structure comprising one kind or two or more kinds of the above materials, or may be a multilayer structure comprising a plurality of layers having the same composition or different compositions.
- the organic EL device may be entirely protected with a protective layer.
- the materials contained in the protective layer are sufficient to have a function of preventing substances that accelerate deterioration of the device such as water and oxygen from entering the device.
- metals e.g., In, Sn, Pb, Au, Cu, Ag, Al, Ti, Ni, etc.
- metallic oxides e.g., MgO, SiO, SiO 2 , Al 2 O 3 , GeO, NiO, CaO, BaO, Fe 2 O 3 , Y 2 O 3 , TiO 2 , etc.
- metallic nitrides e.g., SiN x , SiN x O y , etc.
- metallic fluorides e.g., MgF 2 , LiF, AlF3, CaF 2 , etc., copolymers of any of polyethylene, polypropylene, polymethyl methacrylate, polyimide, polyurea, polytetrafluoroethylene, polychlorotrifluoroethylene, polydichlorodifluoroethylene, and chlorotrifluoroethylene with dichlorodifluoroethylene, copolymers obtained by copolymerization of
- the method of forming the protective layer is not especially restricted and, for example, a vacuum deposition method, a sputtering method, a reactive sputtering method, an MBE (molecular beam epitaxy) method, a cluster ion beam method, an ion plating method, a plasma polymerization method (a high frequency excitation ion plating method), a plasma CVD method, a laser CVD method, a thermal CVD method, a gas source CVD method, a coating method, a printing method, and a transfer method can be used.
- a vacuum deposition method a sputtering method, a reactive sputtering method, an MBE (molecular beam epitaxy) method, a cluster ion beam method, an ion plating method, a plasma polymerization method (a high frequency excitation ion plating method), a plasma CVD method, a laser CVD method, a thermal CVD method, a gas source CVD method, a coating method,
- the device in the invention may be entirely sealed with a sealing case.
- a water-absorbing agent or an inactive liquid may be sealed in the space between the sealing case and the device.
- the water-absorbing agent is not especially restricted, and, for example, barium oxide, sodium oxide, potassium oxide, calcium oxide, sodium sulfate, calcium sulfate, magnesium sulfate, phosphorus pentoxide, calcium chloride, magnesium chloride, copper chloride, cesium fluoride, niobium fluoride, calcium bromide, vanadium bromide, molecular sieve, zeolite, and magnesium oxide can be exemplified.
- the inactive liquid is not especially restricted, and, for example, paraffins, liquid paraffins, fluorine solvents, e.g., perfluoroalkane, perfluoroamine, perfluoroether, etc., chlorine solvents, and silicone oils can be exemplified.
- D.C. if necessary, A.C. component may be contained
- voltage generally from 2 to 15 volts
- D.C. electric current light emission of the device of the invention can be obtained.
- the device in the invention can be preferably used in display devices, displays, backlights, electrophotography, illumination light sources, recording light sources, exposure light sources, reading light sources, indicators, signboards, interior designs, optical communications, and the like.
- An ITO substrate (a glass substrate having an ITO film (manufactured by Geomatec Co., Ltd., surface resistance: 10 ⁇ / ⁇ )) having a size of 2.5 cm square and a thickness of 0.5 mm is put in a washer and subjected to ultrasonic washing in 2-propanol, and then UV-ozone treatment for 30 minutes to be cleaned.
- the ITO substrate is placed in a vacuum evaporator, copper phthalocyanine is deposited on the substrate in a thickness of 10 nm, and NPD (N,N′-di- ⁇ -naphthyl-N,N′-diphenyl)-benzidine is deposited thereon in a thickness of 40 nm.
- mCP and the Compound 2 disclosed in JP-A-2007-19462 in a ratio of 80/20 (by mass) are deposited on the above deposited film in a thickness of 10 nm, then BAlq is deposited thereon in a thickness of 40 nm, and then lithium fluoride is deposited thereon in a thickness of 3 nm, followed by deposition of aluminum in a thickness of 60 nm to prepare a device.
- the obtained EL device is subjected to application of DC constant voltage with a source measure unit Model 2400 (manufactured by Toyo Corporation) to emit light. It is confirmed that the emission of blue light originating in Compound 2 described in JP-A-2007-19462 is obtained.
- An organic EL device in Comparative Example 2 is manufactured in the same manner as in Comparative Example 1 except for changing the ratio of mCP and Compound 2 described in JP-A-2007-19462 to 70/30.
- the obtained EL device is subjected to application of DC constant voltage with a source measure unit Model 2400 (manufactured by Toyo Corporation) to emit light. It is confirmed that the emission of blue light originating in Compound 2 described in JP-A-2007-19462 is obtained.
- An organic EL device in Example 1 is manufactured in the same manner as in Comparative Example 1 except for using Exemplified Compound 32 according to the invention in place of Compound 2 described in JP-A-2007-19462.
- the obtained EL device is subjected to application of DC constant voltage with a source measure unit Model 2400 (manufactured by Toyo Corporation) to emit light. It is confirmed that the emission of blue light originating in Exemplified Compound 32 of the invention is obtained.
- Example 2 An organic EL device in Example 2 is manufactured in the same manner as in Example 1 except for changing the ratio of mCP and Exemplified Compound 32 of the invention to 70/30.
- the obtained EL device is subjected to application of DC constant voltage with a source measure unit Model 2400 (manufactured by Toyo Corporation) to emit light. It is confirmed that the emission of blue light originating in Exemplified Compound 32 of the invention is obtained.
- Each of luminescence devices obtained is driven by constant current at 20° C., and luminance is measured with a luminometer BM-8 (a trade name, manufactured by Topcon Corporation). Change in chromaticity is computed from emission spectrum measured at 20° C. (CIE chromaticity value (xy chromaticity value) found with a light emission spectrum measuring system (ELS1500), manufactured by Shimadzu Corporation).
- CIE chromaticity value xy chromaticity value
- Relative luminance and CIE chromaticity of each of devices manufactured are shown in Table 1 below. From Table 1, it can be seen that the compound of the invention is little in chromaticity variation of light emission due to addition concentration even when the compound is added in high concentration.
- An organic EL device in Comparative Example 3 is manufactured in the same manner as in Comparative Example 1 except for using Compound 79 described in JP-A-2005-310733 in place of Compound 2 described in JP-A-2007-19462.
- the obtained EL device is subjected to application of DC constant voltage with a source measure unit Model 2400 (manufactured by Toyo Corporation) to emit light. It is confirmed that the emission of green light originating in Compound 79 in JP-A-2005-310733 is obtained.
- An organic EL device in Comparative Example 4 is manufactured in the same manner as in Comparative Example 3 except for changing the ratio of mCP and Compound 79 described in JP-A-2005-310733 to 70/30.
- the obtained EL device is subjected to application of DC constant voltage with a source measure unit Model 2400 (manufactured by Toyo Corporation) to emit light. It is confirmed that the emission of green light originating in Compound 79 described in JP-A-2005-310733 is obtained.
- An organic EL device in Example 3 is manufactured in the same manner as in Comparative Example 1 except for using Exemplified Compound 1 according to the invention in place of Compound 2 described in JP-A-2007-19462.
- the obtained EL device is subjected to application of DC constant voltage with a source measure unit Model 2400 (manufactured by Toyo Corporation) to emit light. It is confirmed that the emission of green light originating in Exemplified Compound 1 of the invention is obtained.
- Example 4 An organic EL device in Example 4 is manufactured in the same manner as in Example 3 except for changing the ratio of mCP and Exemplified Compound 1 of the invention to 70/30.
- the obtained EL device is subjected to application of DC constant voltage with a source measure unit Model 2400 (manufactured by Toyo Corporation) to emit light. It is confirmed that the emission of green light originating in Exemplified Compound 1 of the invention is obtained.
- Relative luminance and CIE chromaticity of each of devices manufactured are shown in Table 2 below. From Table 2, it can be seen that the compound of the invention is little in chromaticity variation of light emission due to addition concentration even when the compound is added in high concentration.
- An organic EL device in Comparative Example 5 is manufactured in the same manner as in Comparative Example 1 except for using Compound 34 described in JP-A-2006-93542 in place of Compound 2 described in JP-A-2007-19462.
- the obtained EL device is subjected to application of DC constant voltage with a source measure unit Model 2400 (manufactured by Toyo Corporation) to emit light. It is confirmed that the emission of green light originating in Compound 34 described in JP-A-2006-93542 is obtained.
- An organic EL device in Comparative Example 6 is manufactured in the same manner as in Comparative Example 5 except for changing the ratio of mCP and Compound 34 described in JP-A-2006-93542 to 70/30.
- the obtained EL device is subjected to application of DC constant voltage with a source measure unit Model 2400 (manufactured by Toyo Corporation) to emit light. It is confirmed that the emission of green light originating in Compound 34 described in JP-A-2006-93542 is obtained.
- An organic EL device in Example 5 is manufactured in the same manner as in Comparative Example 1 except for using Exemplified Compound 4 according to the invention in place of Compound 2 described in JP-A-2007-19462.
- the obtained EL device is subjected to application of DC constant voltage with a source measure unit Model 2400 (manufactured by Toyo Corporation) to emit light. It is confirmed that the emission of green light originating in Exemplified Compound 4 according to the invention is obtained.
- Example 6 An organic EL device in Example 6 is manufactured in the same manner as in Example 5 except for changing the ratio of mCP and Exemplified Compound 4 of the invention to 70/30.
- the obtained EL device is subjected to application of DC constant voltage with a source measure unit Model 2400 (manufactured by Toyo Corporation) to emit light. It is confirmed that the emission of green light originating in Exemplified Compound 4 of the invention is obtained.
- Relative luminance and CIE chromaticity of each of devices manufactured are shown in Table 3 below. From Table 3, it can be seen that the compound of the invention is little in chromaticity variation of light emission due to addition concentration even when the compound is added in high concentration.
- An organic EL device in Comparative Example 7 is manufactured in the same manner as in Comparative Example 1 except for using Compound 5 described in JP-A-2007-19462 in place of Compound 2 described in JP-A-2007-19462.
- the obtained EL device is subjected to application of DC constant voltage with a source measure unit Model 2400 (manufactured by Toyo Corporation) to emit light. It is confirmed that the emission of blue light originating in Compound 5 described in JP-A-2007-19462 is obtained.
- An organic EL device in Comparative Example 8 is manufactured in the same manner as in Comparative Example 7 except for changing the ratio of mCP and Compound 5 described in JP-A-2007-19462 to 70/30.
- the obtained EL device is subjected to application of DC constant voltage with a source measure unit Model 2400 (manufactured by Toyo Corporation) to emit light. It is confirmed that the emission of blue light originating in Compound 5 described in JP-A-2007-19462 is obtained.
- An organic EL device in Example 7 is manufactured in the same manner as in Comparative Example 1 except for using Exemplified Compound 33 according to the invention in place of Compound 2 described in JP-A-2007-19462.
- the obtained EL device is subjected to application of DC constant voltage with a source measure unit Model 2400 (manufactured by Toyo Corporation) to emit light. It is confirmed that the emission of blue light originating in Exemplified Compound 33 according to the invention is obtained.
- Example 8 An organic EL device in Example 8 is manufactured in the same manner as in Example 7 except for changing the ratio of mCP and Exemplified Compound 33 of the invention to 70/30.
- the obtained EL device is subjected to application of DC constant voltage with a source measure unit Model 2400 (manufactured by Toyo Corporation) to emit light. It is confirmed that the emission of blue light originating in Exemplified Compound 33 of the invention is obtained.
- Relative luminance and CIE chromaticity of each of devices manufactured are shown in Table 4 below. From Table 4, it can be seen that the compound of the invention is little in chromaticity variation of light emission due to addition concentration even when the compound is added in high concentration.
- An organic EL device in Comparative Example 9 is manufactured in the same manner as in Comparative Example 1 except for using Compound 255 described in JP-A-2007-19462 in place of Compound 2 described in JP-A-2007-19462.
- the obtained EL device is subjected to application of DC constant voltage with a source measure unit Model 2400 (manufactured by Toyo Corporation) to emit light. It is confirmed that the emission of blue light originating in Compound 255 described in JP-A-2007-19462 is obtained.
- An organic EL device in Comparative Example 10 is manufactured in the same manner as in Comparative Example 9 except for changing the ratio of mCP and Compound 255 described in JP-A-2007-19462 to 70/30.
- the obtained EL device is subjected to application of DC constant voltage with a source measure unit Model 2400 (manufactured by Toyo Corporation) to emit light. It is confirmed that the emission of blue light originating in Compound 255 described in JP-A-2007-19462 is obtained.
- An organic EL device in Example 9 is manufactured in the same manner as in Comparative Example 1 except for using Exemplified Compound 47 according to the invention in place of Compound 2 described in JP-A-2007-19462.
- the obtained EL device is subjected to application of DC constant voltage with a source measure unit Model 2400 (manufactured by Toyo Corporation) to emit light. It is confirmed that the emission of blue light originating in Exemplified Compound 47 according to the invention is obtained.
- Example 10 An organic EL device in Example 10 is manufactured in the same manner as in Example 9 except for changing the ratio of mCP and Exemplified Compound 47 according to the invention to 70/30.
- the obtained EL device is subjected to application of DC constant voltage with a source measure unit Model 2400 (manufactured by Toyo Corporation) to emit light. It is confirmed that the emission of blue light originating in Exemplified Compound 47 according to the invention is obtained.
- Relative luminance and CIE chromaticity of each of devices manufactured are shown in Table 5 below. From Table 5, it can be seen that the compound of the invention is little in chromaticity variation of light emission due to addition concentration even when the compound is added in high concentration.
- An organic EL device in Comparative Example 11 is manufactured in the same manner as in Comparative Example 1 except for using Compound 249 described in JP-A-2007-19462 in place of Compound 2 described in JP-A-2007-19462.
- the obtained EL device is subjected to application of DC constant voltage with a source measure unit Model 2400 (manufactured by Toyo Corporation) to emit light. It is confirmed that the emission of blue light originating in Compound 249 described in JP-A-2007-19462 is obtained.
- An organic EL device in Comparative Example 12 is manufactured in the same manner as in Comparative Example 11 except for changing the ratio of mCP and Compound 249 described in JP-A-2007-19462 to 70/30.
- the obtained EL device is subjected to application of DC constant voltage with a source measure unit Model 2400 (manufactured by Toyo Corporation) to emit light. It is confirmed that the emission of blue light originating in Compound 249 described in JP-A-2007-19462 is obtained.
- An organic EL device in Example 11 is manufactured in the same manner as in Comparative Example 1 except for using Exemplified Compound 69 according to the invention in place of Compound 2 described in JP-A-2007-19462.
- the obtained EL device is subjected to application of DC constant voltage with a source measure unit Model 2400 (manufactured by Toyo Corporation) to emit light. It is confirmed that the emission of blue light originating in Exemplified Compound 69 according to the invention is obtained.
- Example 12 An organic EL device in Example 12 is manufactured in the same manner as in Example 11 except for changing the ratio of mCP and Exemplified Compound 69 according to the invention to 70/30.
- the obtained EL device is subjected to application of DC constant voltage with a source measure unit Model 2400 (manufactured by Toyo Corporation) to emit light. It is confirmed that the emission of blue light originating in Exemplified Compound 69 according to the invention is obtained.
- Relative luminance and CIE chromaticity of each of devices manufactured are shown in Table 6 below. From Table 6, it can be seen that the compound of the invention is little in chromaticity variation of light emission due to addition concentration even when the compound is added in high concentration.
- An organic EL device in Comparative Example 13 is manufactured in the same manner as in Comparative Example 1 except for using Comparative Compound 1 in place of Compound 2 described in JP-A-2007-19462.
- the obtained EL device is subjected to application of DC constant voltage with a source measure unit Model 2400 (manufactured by Toyo Corporation) to emit light. It is confirmed that the emission of green light originating in Comparative Compound 1 is obtained.
- An organic EL device in Comparative Example 14 is manufactured in the same manner as in Comparative Example 13 except for changing the ratio of mCP and Comparative Compound 1 to 70/30.
- the obtained EL device is subjected to application of DC constant voltage with a source measure unit Model 2400 (manufactured by Toyo Corporation) to emit light. It is confirmed that the emission of green light originating in Comparative Compound 1 is obtained.
- An organic EL device in Example 13 is manufactured in the same manner as in Comparative Example 1 except for using Exemplified Compound 27 according to the invention in place of Compound 2 described in JP-A-2007-19462.
- the obtained EL device is subjected to application of DC constant voltage with a source measure unit Model 2400 (manufactured by Toyo Corporation) to emit light. It is confirmed that the emission of green light originating in Exemplified Compound 27 according to the invention is obtained.
- Example 14 An organic EL device in Example 14 is manufactured in the same manner as in Example 13 except for changing the ratio of mCP and Exemplified Compound 27 according to the invention to 70/30.
- the obtained EL device is subjected to application of DC constant voltage with a source measure unit Model 2400 (manufactured by Toyo Corporation) to emit light. It is confirmed that the emission of green light originating in Exemplified Compound 27 according to the invention is obtained.
- Relative luminance and CIE chromaticity of each of devices manufactured are shown in Table 7 below. From Table 7, it can be seen that the compound of the invention is little in chromaticity variation of light emission due to addition concentration even when the compound is added in high concentration.
- An organic EL device in Comparative Example 15 is manufactured in the same manner as in Comparative Example 1 except for using Comparative Compound 2 in place of Compound 2 described in JP-A-2007-19462.
- the obtained EL device is subjected to application of DC constant voltage with a source measure unit Model 2400 (manufactured by Toyo Corporation) to emit light. It is confirmed that the emission of green light originating in Comparative Compound 2 is obtained.
- An organic EL device in Comparative Example 16 is manufactured in the same manner as in Comparative Example 15 except for changing the ratio of mCP and Comparative Compound 2 to 70/30.
- the obtained EL device is subjected to application of DC constant voltage with a source measure unit Model 2400 (manufactured by Toyo Corporation) to emit light. It is confirmed that the emission of green light originating in Comparative Compound 2 is obtained.
- An organic EL device in Example 15 is manufactured in the same manner as in Comparative Example 1 except for using Exemplified Compound 30 according to the invention in place of Compound 2 described in JP-A-2007-19462.
- the obtained EL device is subjected to application of DC constant voltage with a source measure unit Model 2400 (manufactured by Toyo Corporation) to emit light. It is confirmed that the emission of green light originating in Exemplified Compound 30 according to the invention is obtained.
- Example 16 An organic EL device in Example 16 is manufactured in the same manner as in Example 15 except for changing the ratio of mCP and Exemplified Compound 30 according to the invention to 70/30.
- the obtained EL device is subjected to application of DC constant voltage with a source measure unit Model 2400 (manufactured by Toyo Corporation) to emit light. It is confirmed that the emission of green light originating in Exemplified Compound 30 according to the invention is obtained.
- Relative luminance and CIE chromaticity of each of devices manufactured are shown in Table 8 below. From Table 8, it can be seen that the compound of the invention is little in chromaticity variation of light emission due to addition concentration even when the compound is added in high concentration.
- An organic EL device in Example 17 is manufactured in the same manner as in Comparative Example 1 except for using Exemplified Compound 57 according to the invention in place of Compound 2 described in JP-A-2007-19462.
- the obtained EL device is subjected to application of DC constant voltage with a source measure unit Model 2400 (manufactured by Toyo Corporation) to emit light. It is confirmed that the emission of blue light originating in Exemplified Compound 57 according to the invention is obtained.
- Example 18 An organic EL device in Example 18 is manufactured in the same manner as in Example 17 except for changing the ratio of mCP and Exemplified Compound 57 according to the invention to 70/30.
- the obtained EL device is subjected to application of DC constant voltage with a source measure unit Model 2400 (manufactured by Toyo Corporation) to emit light. It is confirmed that the emission of blue light originating in Exemplified Compound 57 according to the invention is obtained.
- Relative luminance and CIE chromaticity of each of devices manufactured are shown in Table 9 below. From Table 9, it can be seen that the compound of the invention is little in chromaticity variation of light emission due to addition concentration even when the compound is added in high concentration.
- the invention can provide an organic electroluminescence device little in chromaticity change due to addition concentration of a phosphorescent material in a light-emitting layer and capable of emission in high luminance.
- the invention can further provide a metal complex compound suitable for the electroluminescence device.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Electroluminescent Light Sources (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/969,162 US10374175B2 (en) | 2007-12-14 | 2015-12-15 | Platinum complex compound and organic electroluminescence device using the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007-323682 | 2007-12-14 | ||
JP2007323682 | 2007-12-14 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/969,162 Division US10374175B2 (en) | 2007-12-14 | 2015-12-15 | Platinum complex compound and organic electroluminescence device using the same |
Publications (1)
Publication Number | Publication Date |
---|---|
US20090153045A1 true US20090153045A1 (en) | 2009-06-18 |
Family
ID=40386317
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/333,370 Abandoned US20090153045A1 (en) | 2007-12-14 | 2008-12-12 | Platinum complex compound and organic electroluminescence device using the same |
US14/969,162 Active 2030-06-30 US10374175B2 (en) | 2007-12-14 | 2015-12-15 | Platinum complex compound and organic electroluminescence device using the same |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/969,162 Active 2030-06-30 US10374175B2 (en) | 2007-12-14 | 2015-12-15 | Platinum complex compound and organic electroluminescence device using the same |
Country Status (5)
Country | Link |
---|---|
US (2) | US20090153045A1 (fr) |
EP (1) | EP2070936B1 (fr) |
JP (1) | JP5438955B2 (fr) |
AT (1) | ATE469160T1 (fr) |
DE (1) | DE602008001365D1 (fr) |
Cited By (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100270916A1 (en) * | 2009-04-28 | 2010-10-28 | Universal Display Corporation | Iridium complex with methyl-d3 substitution |
US20100314613A1 (en) * | 2009-06-11 | 2010-12-16 | Fujifilm Corporation | Organic electroluminescence element |
US20110073848A1 (en) * | 2009-09-30 | 2011-03-31 | Fujifilm Corporation | Organic electroluminescence device |
CN103732602A (zh) * | 2011-08-10 | 2014-04-16 | 默克专利有限公司 | 金属络合物 |
US20140350642A1 (en) * | 2011-12-27 | 2014-11-27 | Merck Patent Gmbh | Metal Complexes Comprising 1,2,3-Triazoles |
US10177323B2 (en) | 2016-08-22 | 2019-01-08 | Arizona Board Of Regents On Behalf Of Arizona State University | Tetradentate platinum (II) and palladium (II) complexes and octahedral iridium complexes employing azepine functional groups and their analogues |
US10211414B2 (en) | 2013-06-10 | 2019-02-19 | Arizona Board Of Regents On Behalf Of Arizona State University | Phosphorescent tetradentate metal complexes having modified emission spectra |
US10263197B2 (en) | 2010-04-30 | 2019-04-16 | Arizona Board Of Regents Acting For And On Behalf Of Arizona State University | Synthesis of four coordinated palladium complexes and their applications in light emitting devices thereof |
US10294417B2 (en) | 2014-08-22 | 2019-05-21 | Arizona Board Of Regents On Behalf Of Arizona State University | Metal-assisted delayed fluorescent materials as co-host materials for fluorescent OLEDS |
US10516117B2 (en) | 2017-05-19 | 2019-12-24 | Arizona Board Of Regents On Behalf Of Arizona State University | Metal-assisted delayed fluorescent emttters employing benzo-imidazo-phenanthridine and analogues |
US10566553B2 (en) | 2013-10-14 | 2020-02-18 | Arizona Board Of Regents On Behalf Of Arizona State University | Platinum complexes and devices |
US10622571B2 (en) | 2012-09-24 | 2020-04-14 | Arizona Board Of Regents For And On Behalf Of Arizona State University | Metal compounds, methods, and uses thereof |
US10793546B2 (en) | 2014-08-15 | 2020-10-06 | Arizona Board Of Regents On Behalf Of Arizona State University | Non-platinum metal complexes for excimer based single dopant white organic light emitting diodes |
US10822363B2 (en) | 2016-10-12 | 2020-11-03 | Arizona Board Of Regents On Behalf Of Arizona State University | Narrow band red phosphorescent tetradentate platinum (II) complexes |
US10836785B2 (en) | 2015-06-03 | 2020-11-17 | Arizona Board Of Regents On Behalf Of Arizona State University | Tetradentate and octahedral metal complexes containing naphthyridinocarbazole and its analogues |
US10886478B2 (en) | 2014-07-24 | 2021-01-05 | Arizona Board Of Regents On Behalf Of Arizona State University | Tetradentate platinum (II) complexes cyclometalated with functionalized phenyl carbene ligands and their analogues |
US10937976B2 (en) | 2014-01-07 | 2021-03-02 | Arizona Board Of Regents On Behalf Of Arizona State University | Tetradentate platinum and palladium complex emitters containing phenyl-pyrazole and its analogues |
US10944064B2 (en) | 2014-11-10 | 2021-03-09 | Arizona Board Of Regents On Behalf Of Arizona State University | Tetradentate metal complexes with carbon group bridging ligands |
US10991897B2 (en) | 2014-11-10 | 2021-04-27 | Arizona Board Of Regents On Behalf Of Arizona State University | Emitters based on octahedral metal complexes |
US10995108B2 (en) | 2012-10-26 | 2021-05-04 | Arizona Board Of Regents On Behalf Of Arizona State University | Metal complexes, methods, and uses thereof |
US11011712B2 (en) | 2014-06-02 | 2021-05-18 | Arizona Board Of Regents On Behalf Of Arizona State University | Tetradentate cyclometalated platinum complexes containing 9,10-dihydroacridine and its analogues |
US11101435B2 (en) | 2017-05-19 | 2021-08-24 | Arizona Board Of Regents On Behalf Of Arizona State University | Tetradentate platinum and palladium complexes based on biscarbazole and analogues |
US11183670B2 (en) | 2016-12-16 | 2021-11-23 | Arizona Board Of Regents On Behalf Of Arizona State University | Organic light emitting diode with split emissive layer |
US11329244B2 (en) | 2014-08-22 | 2022-05-10 | Arizona Board Of Regents On Behalf Of Arizona State University | Organic light-emitting diodes with fluorescent and phosphorescent emitters |
US11335865B2 (en) | 2016-04-15 | 2022-05-17 | Arizona Board Of Regents On Behalf Of Arizona State University | OLED with multi-emissive material layer |
US11594691B2 (en) | 2019-01-25 | 2023-02-28 | Arizona Board Of Regents On Behalf Of Arizona State University | Light outcoupling efficiency of phosphorescent OLEDs by mixing horizontally aligned fluorescent emitters |
US11594688B2 (en) | 2017-10-17 | 2023-02-28 | Arizona Board Of Regents On Behalf Of Arizona State University | Display and lighting devices comprising phosphorescent excimers with preferred molecular orientation as monochromatic emitters |
US11647643B2 (en) | 2017-10-17 | 2023-05-09 | Arizona Board Of Regents On Behalf Of Arizona State University | Hole-blocking materials for organic light emitting diodes |
US11708385B2 (en) | 2017-01-27 | 2023-07-25 | Arizona Board Of Regents On Behalf Of Arizona State University | Metal-assisted delayed fluorescent emitters employing pyrido-pyrrolo-acridine and analogues |
US11785838B2 (en) | 2019-10-02 | 2023-10-10 | Arizona Board Of Regents On Behalf Of Arizona State University | Green and red organic light-emitting diodes employing excimer emitters |
US11878988B2 (en) | 2019-01-24 | 2024-01-23 | Arizona Board Of Regents On Behalf Of Arizona State University | Blue phosphorescent emitters employing functionalized imidazophenthridine and analogues |
US11930662B2 (en) | 2015-06-04 | 2024-03-12 | Arizona Board Of Regents On Behalf Of Arizona State University | Transparent electroluminescent devices with controlled one-side emissive displays |
US11945985B2 (en) | 2020-05-19 | 2024-04-02 | Arizona Board Of Regents On Behalf Of Arizona State University | Metal assisted delayed fluorescent emitters for organic light-emitting diodes |
US12037348B2 (en) | 2018-03-09 | 2024-07-16 | Arizona Board Of Regents On Behalf Of Arizona State University | Blue and narrow band green and red emitting metal complexes |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9175211B2 (en) * | 2010-03-03 | 2015-11-03 | Universal Display Corporation | Phosphorescent materials |
CN103907217B (zh) | 2011-09-12 | 2016-10-12 | 新日铁住金化学株式会社 | 有机电致发光元件 |
KR101891308B1 (ko) | 2011-09-12 | 2018-08-23 | 신닛테츠 수미킨 가가쿠 가부시키가이샤 | 유기 전계 발광 소자 |
JPWO2013038929A1 (ja) | 2011-09-12 | 2015-03-26 | 新日鉄住金化学株式会社 | 含ケイ素四員環構造を有する有機電界発光素子用材料及び有機電界発光素子 |
JP6006732B2 (ja) | 2011-12-12 | 2016-10-12 | 新日鉄住金化学株式会社 | 有機電界発光素子用材料及びそれを用いた有機電界発光素子 |
US9985219B2 (en) | 2012-03-12 | 2018-05-29 | Nippon Steel & Sumikin Chemical Co., Ltd. | Organic electroluminescent element |
WO2014002629A1 (fr) | 2012-06-28 | 2014-01-03 | 新日鉄住金化学株式会社 | Élément à électroluminescence organique et matériau pour un élément à électroluminescence organique |
WO2014013936A1 (fr) | 2012-07-19 | 2014-01-23 | 新日鉄住金化学株式会社 | Élément électroluminescent organique |
TWI599570B (zh) | 2012-09-28 | 2017-09-21 | 新日鐵住金化學股份有限公司 | Compounds for organic electroluminescent devices and organic electroluminescent devices |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070184301A1 (en) * | 2004-02-26 | 2007-08-09 | Konica Minolta Holdings, Inc. | Material for organic electroluminescence element, organic electroluminescence element, display device and illumination device |
US7981524B2 (en) * | 2005-03-16 | 2011-07-19 | Fujifilm Corporation | Platinum complex compound and organic electroluminescent device |
Family Cites Families (45)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4885211A (en) | 1987-02-11 | 1989-12-05 | Eastman Kodak Company | Electroluminescent device with improved cathode |
US4996523A (en) | 1988-10-20 | 1991-02-26 | Eastman Kodak Company | Electroluminescent storage display with improved intensity driver circuits |
JP2780880B2 (ja) | 1990-11-28 | 1998-07-30 | 出光興産株式会社 | 有機エレクトロルミネッセンス素子および該素子を用いた発光装置 |
JP3236332B2 (ja) | 1991-01-29 | 2001-12-10 | パイオニア株式会社 | 有機エレクトロルミネッセンス素子 |
JP2784615B2 (ja) | 1991-10-16 | 1998-08-06 | 株式会社半導体エネルギー研究所 | 電気光学表示装置およびその駆動方法 |
JP3063453B2 (ja) | 1993-04-16 | 2000-07-12 | 凸版印刷株式会社 | 有機薄膜el素子の駆動方法 |
JPH07134558A (ja) | 1993-11-08 | 1995-05-23 | Idemitsu Kosan Co Ltd | 有機エレクトロルミネッセンス表示装置 |
US5550066A (en) | 1994-12-14 | 1996-08-27 | Eastman Kodak Company | Method of fabricating a TFT-EL pixel |
US6137467A (en) | 1995-01-03 | 2000-10-24 | Xerox Corporation | Optically sensitive electric paper |
US6303238B1 (en) | 1997-12-01 | 2001-10-16 | The Trustees Of Princeton University | OLEDs doped with phosphorescent compounds |
US6097147A (en) | 1998-09-14 | 2000-08-01 | The Trustees Of Princeton University | Structure for high efficiency electroluminescent device |
JP4619546B2 (ja) | 1999-03-23 | 2011-01-26 | ザ ユニバーシティー オブ サザン カリフォルニア | 有機ledの燐光性ドーパントとしてのシクロメタル化金属錯体 |
EP1449238B1 (fr) | 1999-05-13 | 2006-11-02 | The Trustees Of Princeton University | Dispositifs electroluminescents organiques a tres haute performance utilisant l'electrophosphorescence |
US6310360B1 (en) | 1999-07-21 | 2001-10-30 | The Trustees Of Princeton University | Intersystem crossing agents for efficient utilization of excitons in organic light emitting devices |
US6458475B1 (en) | 1999-11-24 | 2002-10-01 | The Trustee Of Princeton University | Organic light emitting diode having a blue phosphorescent molecule as an emitter |
EP3379591A1 (fr) | 1999-12-01 | 2018-09-26 | The Trustees of Princeton University | Complexes de forme l2mx |
JP3929690B2 (ja) | 1999-12-27 | 2007-06-13 | 富士フイルム株式会社 | オルトメタル化イリジウム錯体からなる発光素子材料、発光素子および新規イリジウム錯体 |
JP3929706B2 (ja) | 2000-02-10 | 2007-06-13 | 富士フイルム株式会社 | イリジウム錯体からなる発光素子材料及び発光素子 |
JP2001298470A (ja) | 2000-04-11 | 2001-10-26 | Dx Antenna Co Ltd | データ伝送システム |
US20020121638A1 (en) | 2000-06-30 | 2002-09-05 | Vladimir Grushin | Electroluminescent iridium compounds with fluorinated phenylpyridines, phenylpyrimidines, and phenylquinolines and devices made with such compounds |
JP4340401B2 (ja) | 2000-07-17 | 2009-10-07 | 富士フイルム株式会社 | 発光素子及びイリジウム錯体 |
JP4712232B2 (ja) | 2000-07-17 | 2011-06-29 | 富士フイルム株式会社 | 発光素子及びアゾール化合物 |
CN102041001B (zh) | 2000-08-11 | 2014-10-22 | 普林斯顿大学理事会 | 有机金属化合物和发射转换有机电致磷光 |
JP4505162B2 (ja) | 2000-09-21 | 2010-07-21 | 富士フイルム株式会社 | 発光素子および新規レニウム錯体 |
JP4067286B2 (ja) | 2000-09-21 | 2008-03-26 | 富士フイルム株式会社 | 発光素子及びイリジウム錯体 |
JP4086498B2 (ja) | 2000-11-29 | 2008-05-14 | キヤノン株式会社 | 金属配位化合物、発光素子及び表示装置 |
JP4086499B2 (ja) | 2000-11-29 | 2008-05-14 | キヤノン株式会社 | 金属配位化合物、発光素子及び表示装置 |
AU2002222566A1 (en) | 2000-11-30 | 2002-06-11 | Canon Kabushiki Kaisha | Luminescent element and display |
JP4154145B2 (ja) | 2000-12-01 | 2008-09-24 | キヤノン株式会社 | 金属配位化合物、発光素子及び表示装置 |
JP2002203678A (ja) | 2000-12-27 | 2002-07-19 | Fuji Photo Film Co Ltd | 発光素子 |
JP2002203679A (ja) | 2000-12-27 | 2002-07-19 | Fuji Photo Film Co Ltd | 発光素子 |
JP3812730B2 (ja) | 2001-02-01 | 2006-08-23 | 富士写真フイルム株式会社 | 遷移金属錯体及び発光素子 |
JP3988915B2 (ja) | 2001-02-09 | 2007-10-10 | 富士フイルム株式会社 | 遷移金属錯体及びそれからなる発光素子用材料、並びに発光素子 |
JP2003123982A (ja) | 2001-08-07 | 2003-04-25 | Fuji Photo Film Co Ltd | 発光素子及び新規イリジウム錯体 |
JP4524093B2 (ja) | 2002-12-17 | 2010-08-11 | 富士フイルム株式会社 | 有機電界発光素子 |
JP2004357791A (ja) | 2003-06-02 | 2004-12-24 | Sea Shell:Kk | 履物 |
JP4460952B2 (ja) * | 2003-06-02 | 2010-05-12 | 富士フイルム株式会社 | 有機電界発光素子及び錯体化合物 |
DE10338550A1 (de) | 2003-08-19 | 2005-03-31 | Basf Ag | Übergangsmetallkomplexe mit Carbenliganden als Emitter für organische Licht-emittierende Dioden (OLEDs) |
DE10350722A1 (de) * | 2003-10-30 | 2005-05-25 | Covion Organic Semiconductors Gmbh | Metallkomplexe |
US20050170206A1 (en) * | 2004-02-03 | 2005-08-04 | Bin Ma | OLEDs utilizing multidentate ligand systems |
JP4531509B2 (ja) * | 2004-09-27 | 2010-08-25 | 富士フイルム株式会社 | 発光素子 |
JP4399429B2 (ja) * | 2005-03-16 | 2010-01-13 | 富士フイルム株式会社 | 有機電界発光素子 |
JP4399382B2 (ja) * | 2005-03-16 | 2010-01-13 | 富士フイルム株式会社 | 有機電界発光素子 |
JP5046548B2 (ja) | 2005-04-25 | 2012-10-10 | 富士フイルム株式会社 | 有機電界発光素子 |
JP2007084635A (ja) | 2005-09-21 | 2007-04-05 | Konica Minolta Holdings Inc | 有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置 |
-
2008
- 2008-12-11 JP JP2008315788A patent/JP5438955B2/ja active Active
- 2008-12-12 DE DE602008001365T patent/DE602008001365D1/de active Active
- 2008-12-12 AT AT08021623T patent/ATE469160T1/de not_active IP Right Cessation
- 2008-12-12 EP EP08021623A patent/EP2070936B1/fr active Active
- 2008-12-12 US US12/333,370 patent/US20090153045A1/en not_active Abandoned
-
2015
- 2015-12-15 US US14/969,162 patent/US10374175B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070184301A1 (en) * | 2004-02-26 | 2007-08-09 | Konica Minolta Holdings, Inc. | Material for organic electroluminescence element, organic electroluminescence element, display device and illumination device |
US7981524B2 (en) * | 2005-03-16 | 2011-07-19 | Fujifilm Corporation | Platinum complex compound and organic electroluminescent device |
US8247091B2 (en) * | 2005-03-16 | 2012-08-21 | Fujifilm Corporation | Platinum complex compound and organic electroluminescent device |
Cited By (62)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8557400B2 (en) * | 2009-04-28 | 2013-10-15 | Universal Display Corporation | Iridium complex with methyl-D3 substitution |
US10374173B2 (en) | 2009-04-28 | 2019-08-06 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9634265B2 (en) | 2009-04-28 | 2017-04-25 | Universal Display Corporation | Organic electroluminescent materials and devices |
US20100270916A1 (en) * | 2009-04-28 | 2010-10-28 | Universal Display Corporation | Iridium complex with methyl-d3 substitution |
US20100314613A1 (en) * | 2009-06-11 | 2010-12-16 | Fujifilm Corporation | Organic electroluminescence element |
US8217392B2 (en) * | 2009-06-11 | 2012-07-10 | Fujifilm Corporation | Organic electroluminescence element |
US20110073848A1 (en) * | 2009-09-30 | 2011-03-31 | Fujifilm Corporation | Organic electroluminescence device |
US8253130B2 (en) * | 2009-09-30 | 2012-08-28 | Fujifilm Corporation | Organic electroluminescence device |
US20120313089A1 (en) * | 2009-09-30 | 2012-12-13 | Udc Ireland Ltd. | Organic electroluminescence device |
US10263197B2 (en) | 2010-04-30 | 2019-04-16 | Arizona Board Of Regents Acting For And On Behalf Of Arizona State University | Synthesis of four coordinated palladium complexes and their applications in light emitting devices thereof |
US10727422B2 (en) | 2010-04-30 | 2020-07-28 | Arizona Board Of Regents On Behalf Of Arizona State University | Synthesis of four coordinated palladium complexes and their applications in light emitting devices thereof |
CN103732602A (zh) * | 2011-08-10 | 2014-04-16 | 默克专利有限公司 | 金属络合物 |
US9847499B2 (en) | 2011-08-10 | 2017-12-19 | Merck Patent Gmbh | Metal complexes |
US20140350642A1 (en) * | 2011-12-27 | 2014-11-27 | Merck Patent Gmbh | Metal Complexes Comprising 1,2,3-Triazoles |
US10622571B2 (en) | 2012-09-24 | 2020-04-14 | Arizona Board Of Regents For And On Behalf Of Arizona State University | Metal compounds, methods, and uses thereof |
US11114626B2 (en) | 2012-09-24 | 2021-09-07 | Arizona Board Of Regents On Behalf Of Arizona State University | Metal compounds, methods, and uses thereof |
US10995108B2 (en) | 2012-10-26 | 2021-05-04 | Arizona Board Of Regents On Behalf Of Arizona State University | Metal complexes, methods, and uses thereof |
US12043633B2 (en) | 2012-10-26 | 2024-07-23 | Arizona Board Of Regents On Behalf Of Arizona State University | Metal complexes, methods, and uses thereof |
US10211414B2 (en) | 2013-06-10 | 2019-02-19 | Arizona Board Of Regents On Behalf Of Arizona State University | Phosphorescent tetradentate metal complexes having modified emission spectra |
US10566553B2 (en) | 2013-10-14 | 2020-02-18 | Arizona Board Of Regents On Behalf Of Arizona State University | Platinum complexes and devices |
US11189808B2 (en) | 2013-10-14 | 2021-11-30 | Arizona Board Of Regents On Behalf Of Arizona State University | Platinum complexes and devices |
US11930698B2 (en) | 2014-01-07 | 2024-03-12 | Arizona Board Of Regents On Behalf Of Arizona State University | Tetradentate platinum and palladium complex emitters containing phenyl-pyrazole and its analogues |
US10937976B2 (en) | 2014-01-07 | 2021-03-02 | Arizona Board Of Regents On Behalf Of Arizona State University | Tetradentate platinum and palladium complex emitters containing phenyl-pyrazole and its analogues |
US11839144B2 (en) | 2014-06-02 | 2023-12-05 | Arizona Board Of Regents On Behalf Of Arizona State University | Tetradentate cyclometalated platinum complexes containing 9,10-dihydroacridine and its analogues |
US11011712B2 (en) | 2014-06-02 | 2021-05-18 | Arizona Board Of Regents On Behalf Of Arizona State University | Tetradentate cyclometalated platinum complexes containing 9,10-dihydroacridine and its analogues |
US10886478B2 (en) | 2014-07-24 | 2021-01-05 | Arizona Board Of Regents On Behalf Of Arizona State University | Tetradentate platinum (II) complexes cyclometalated with functionalized phenyl carbene ligands and their analogues |
US12082486B2 (en) | 2014-07-24 | 2024-09-03 | Arizona Board Of Regents On Behalf Of Arizona State University | Tetradentate platinum (II) complexes cyclometalated with functionalized phenyl carbene ligands and their analogues |
US12043611B2 (en) | 2014-08-15 | 2024-07-23 | Arizona Board Of Regents On Behalf Of Arizona State University | Non-platinum metal complexes for excimer based single dopant white organic light emitting diodes |
US10793546B2 (en) | 2014-08-15 | 2020-10-06 | Arizona Board Of Regents On Behalf Of Arizona State University | Non-platinum metal complexes for excimer based single dopant white organic light emitting diodes |
US10294417B2 (en) | 2014-08-22 | 2019-05-21 | Arizona Board Of Regents On Behalf Of Arizona State University | Metal-assisted delayed fluorescent materials as co-host materials for fluorescent OLEDS |
US11795387B2 (en) | 2014-08-22 | 2023-10-24 | Arizona Board Of Regents On Behalf Of Arizona State University | Metal-assisted delayed fluorescent materials as co-host materials for fluorescent OLEDs |
US10745615B2 (en) | 2014-08-22 | 2020-08-18 | Arizona Board Of Regents On Behalf Of Arizona State University | Metal-assisted delayed fluorescent materials as co-host materials for fluorescent OLEDs |
US11339324B2 (en) | 2014-08-22 | 2022-05-24 | Arizona Board Of Regents On Behalf Of Arizona State University | Metal-assisted delayed fluorescent materials as co-host materials for fluorescent OLEDs |
US11329244B2 (en) | 2014-08-22 | 2022-05-10 | Arizona Board Of Regents On Behalf Of Arizona State University | Organic light-emitting diodes with fluorescent and phosphorescent emitters |
US11856840B2 (en) | 2014-11-10 | 2023-12-26 | Arizona Board Of Regents On Behalf Of Arizona State University | Emitters based on octahedral metal complexes |
US10944064B2 (en) | 2014-11-10 | 2021-03-09 | Arizona Board Of Regents On Behalf Of Arizona State University | Tetradentate metal complexes with carbon group bridging ligands |
US10991897B2 (en) | 2014-11-10 | 2021-04-27 | Arizona Board Of Regents On Behalf Of Arizona State University | Emitters based on octahedral metal complexes |
US11653560B2 (en) | 2014-11-10 | 2023-05-16 | Arizona Board Of Regents On Behalf Of Arizona State University | Tetradentate metal complexes with carbon group bridging ligands |
US10836785B2 (en) | 2015-06-03 | 2020-11-17 | Arizona Board Of Regents On Behalf Of Arizona State University | Tetradentate and octahedral metal complexes containing naphthyridinocarbazole and its analogues |
US11472827B2 (en) | 2015-06-03 | 2022-10-18 | Arizona Board Of Regents On Behalf Of Arizona State University | Tetradentate and octahedral metal complexes containing naphthyridinocarbazole and its analogues |
US11930662B2 (en) | 2015-06-04 | 2024-03-12 | Arizona Board Of Regents On Behalf Of Arizona State University | Transparent electroluminescent devices with controlled one-side emissive displays |
US11335865B2 (en) | 2016-04-15 | 2022-05-17 | Arizona Board Of Regents On Behalf Of Arizona State University | OLED with multi-emissive material layer |
US10177323B2 (en) | 2016-08-22 | 2019-01-08 | Arizona Board Of Regents On Behalf Of Arizona State University | Tetradentate platinum (II) and palladium (II) complexes and octahedral iridium complexes employing azepine functional groups and their analogues |
US10566554B2 (en) | 2016-08-22 | 2020-02-18 | Arizona Board Of Regents On Behalf Of Arizona State University | Tetradentate platinum (II) and palladium (II) complexes and octahedral iridium complexes employing azepine functional groups and their analogues |
US10822363B2 (en) | 2016-10-12 | 2020-11-03 | Arizona Board Of Regents On Behalf Of Arizona State University | Narrow band red phosphorescent tetradentate platinum (II) complexes |
US11183670B2 (en) | 2016-12-16 | 2021-11-23 | Arizona Board Of Regents On Behalf Of Arizona State University | Organic light emitting diode with split emissive layer |
US11708385B2 (en) | 2017-01-27 | 2023-07-25 | Arizona Board Of Regents On Behalf Of Arizona State University | Metal-assisted delayed fluorescent emitters employing pyrido-pyrrolo-acridine and analogues |
US11101435B2 (en) | 2017-05-19 | 2021-08-24 | Arizona Board Of Regents On Behalf Of Arizona State University | Tetradentate platinum and palladium complexes based on biscarbazole and analogues |
US10516117B2 (en) | 2017-05-19 | 2019-12-24 | Arizona Board Of Regents On Behalf Of Arizona State University | Metal-assisted delayed fluorescent emttters employing benzo-imidazo-phenanthridine and analogues |
US12010908B2 (en) | 2017-05-19 | 2024-06-11 | Arizona Board Of Regents On Behalf Of Arizona State University | Metal-assisted delayed fluorescent emitters employing benzo-imidazo-phenanthridine and analogues |
US11974495B2 (en) | 2017-05-19 | 2024-04-30 | Arizona Board Of Regents On Behalf Of Arizona State University | Tetradentate platinum and palladium complexes based on biscarbazole and analogues |
US11063228B2 (en) | 2017-05-19 | 2021-07-13 | Arizona Board Of Regents On Behalf Of Arizona State University | Metal-assisted delayed fluorescent emitters employing benzo-imidazo-phenanthridine and analogues |
US11594688B2 (en) | 2017-10-17 | 2023-02-28 | Arizona Board Of Regents On Behalf Of Arizona State University | Display and lighting devices comprising phosphorescent excimers with preferred molecular orientation as monochromatic emitters |
US11647643B2 (en) | 2017-10-17 | 2023-05-09 | Arizona Board Of Regents On Behalf Of Arizona State University | Hole-blocking materials for organic light emitting diodes |
US12120945B2 (en) | 2017-10-17 | 2024-10-15 | Arizona Board Of Regents On Behalf Of Arizona State University | Display and lighting devices comprising phosphorescent excimers with preferred molecular orientation as monochromatic emitters |
US12037348B2 (en) | 2018-03-09 | 2024-07-16 | Arizona Board Of Regents On Behalf Of Arizona State University | Blue and narrow band green and red emitting metal complexes |
US11878988B2 (en) | 2019-01-24 | 2024-01-23 | Arizona Board Of Regents On Behalf Of Arizona State University | Blue phosphorescent emitters employing functionalized imidazophenthridine and analogues |
US12082490B2 (en) | 2019-01-25 | 2024-09-03 | Arizona Board Of Regents On Behalf Of Arizona State University | Light outcoupling efficiency of phosphorescent OLEDs by mixing horizontally aligned fluorescent emitters |
US11594691B2 (en) | 2019-01-25 | 2023-02-28 | Arizona Board Of Regents On Behalf Of Arizona State University | Light outcoupling efficiency of phosphorescent OLEDs by mixing horizontally aligned fluorescent emitters |
US11785838B2 (en) | 2019-10-02 | 2023-10-10 | Arizona Board Of Regents On Behalf Of Arizona State University | Green and red organic light-emitting diodes employing excimer emitters |
US12120946B2 (en) | 2019-10-02 | 2024-10-15 | Arizona Board Of Regents On Behalf Of Arizona State University | Green and red organic light-emitting diodes employing excimer emitters |
US11945985B2 (en) | 2020-05-19 | 2024-04-02 | Arizona Board Of Regents On Behalf Of Arizona State University | Metal assisted delayed fluorescent emitters for organic light-emitting diodes |
Also Published As
Publication number | Publication date |
---|---|
EP2070936A1 (fr) | 2009-06-17 |
EP2070936B1 (fr) | 2010-05-26 |
US10374175B2 (en) | 2019-08-06 |
DE602008001365D1 (de) | 2010-07-08 |
US20160099426A1 (en) | 2016-04-07 |
ATE469160T1 (de) | 2010-06-15 |
JP5438955B2 (ja) | 2014-03-12 |
JP2009161524A (ja) | 2009-07-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10374175B2 (en) | Platinum complex compound and organic electroluminescence device using the same | |
US11937504B2 (en) | Organic electroluminescent device | |
US11393989B2 (en) | Organic electroluminescent devices and metal complex compounds | |
EP2094810B1 (fr) | Del organique et dérivé d'indole | |
EP2129739B1 (fr) | Dispositif electroluminescent organique | |
US8187729B2 (en) | Organic electroluminescence device | |
US9193747B2 (en) | Organic electroluminescent device | |
EP2144974B1 (fr) | Dispositif électroluminescent organique | |
US20100060151A1 (en) | Organic electroluminescent device and indole derivative | |
US20080241589A1 (en) | Organic electroluminescent device | |
US8211551B2 (en) | Organic electroluminescent device | |
JP4849812B2 (ja) | 有機電界発光素子およびケイ素化合物 | |
US7914910B2 (en) | Organic electroluminescence device and novel organic compound containing silicon substituent |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: FUJIFILM CORPORATION, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KINOSHITA, IKUO;MURAKAMI, TAKESHI;IGARASHI, TATSUYA;REEL/FRAME:021969/0273 Effective date: 20081210 |
|
AS | Assignment |
Owner name: UDC IRELAND LIMITED, IRELAND Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FUJIFILM CORPORATION;REEL/FRAME:028889/0636 Effective date: 20120726 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |