US20090099366A1 - Process and intermediates for preparing integrase inhibitors - Google Patents

Process and intermediates for preparing integrase inhibitors Download PDF

Info

Publication number
US20090099366A1
US20090099366A1 US12/208,952 US20895208A US2009099366A1 US 20090099366 A1 US20090099366 A1 US 20090099366A1 US 20895208 A US20895208 A US 20895208A US 2009099366 A1 US2009099366 A1 US 2009099366A1
Authority
US
United States
Prior art keywords
compound
formula
salt
mixture
converted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/208,952
Other languages
English (en)
Inventor
Eric Dowdy
Steven Pfeiffer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gilead Sciences Inc
Original Assignee
Gilead Sciences Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gilead Sciences Inc filed Critical Gilead Sciences Inc
Priority to US12/208,952 priority Critical patent/US20090099366A1/en
Assigned to GILEAD SCIENCES, INC. reassignment GILEAD SCIENCES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DOWDY, ERIC, PFEIFFER, STEVEN
Publication of US20090099366A1 publication Critical patent/US20090099366A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D215/00Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems
    • C07D215/02Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom
    • C07D215/16Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D215/48Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen
    • C07D215/54Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen attached in position 3
    • C07D215/56Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen attached in position 3 with oxygen atoms in position 4
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/18Antivirals for RNA viruses for HIV
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C227/00Preparation of compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/18Preparation of ethers by reactions not forming ether-oxygen bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/18Preparation of ethers by reactions not forming ether-oxygen bonds
    • C07C41/30Preparation of ethers by reactions not forming ether-oxygen bonds by increasing the number of carbon atoms, e.g. by oligomerisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/15Preparation of carboxylic acids or their salts, halides or anhydrides by reaction of organic compounds with carbon dioxide, e.g. Kolbe-Schmitt synthesis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/347Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups
    • C07C51/377Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups by splitting-off hydrogen or functional groups; by hydrogenolysis of functional groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/30Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group
    • C07C67/333Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by isomerisation; by change of size of the carbon skeleton
    • C07C67/343Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms

Definitions

  • the present invention provides new synthetic processes and synthetic intermediates that are useful for preparing the 4-oxoquinolone compounds reported in International Patent Application Publication Number WO 2004/046115 and in International Patent Application Publication Number WO 2005/113508.
  • the present invention provides a method for preparing a compound of formula 10
  • the invention provides a method for preparing a compound of formula 15:
  • the invention also provides other synthetic processes and synthetic intermediates disclosed herein that are useful for preparing the 4-oxoquinone compounds.
  • halo is fluoro, chloro, bromo, or iodo.
  • Alkyl denotes both straight and branched groups, but reference to an individual radical such as propyl embraces only the straight chain radical, a branched chain isomer such as isopropyl being specifically referred to.
  • a compound having a chiral center may exist in and be isolated in optically active and racemic forms. Some compounds may exhibit polymorphism. It is to be understood that the present invention encompasses processes for preparing any racemic, optically-active, polymorphic, tautomeric, or stereoisomeric form, or mixtures thereof, of a compound described herein, it being well known in the art how to prepare optically active forms (for example, by resolution of the racemic form by recrystallization techniques, by synthesis from optically-active starting materials, by chiral synthesis, or by chromatographic separation using a chiral stationary phase).
  • C 1 -C 6 alkyl can be methyl, ethyl, propyl, isopropyl, butyl, iso-butyl, sec-butyl, pentyl, 3-pentyl, or hexyl.
  • a specific value for R a is methyl.
  • a specific value for R b is methyl.
  • R c is 1-imidazolyl.
  • a specific value for R is ethyl.
  • the compound of formula 4 or a salt thereof is prepared by metalating the compound of formula 15 or a salt thereof and treating with carbon dioxide to provide the compound of formula 3:
  • the compound of formula 15 or a salt thereof may be, for example, a salt of formula 15a
  • the compound of formula 15 is converted into a compound of formula 16
  • the step of replacing the bromine atom with a carboxyl group is a carboxylation.
  • This step may conveniently be effected by metalation, for example, by treatment with isopropylmagnesium chloride or isopropylmagnesium chloride lithium chloride complex, followed by treatment with carbon dioxide.
  • the step of replacing the hydroxyl group with a hydrogen atom is a dehydroxylation.
  • This step may be effected by treatment with a trialkylsilane, such as triethylsilane, conveniently in the presence of trifluoroacetic acid.
  • the compound of formula 15 or a salt thereof can be converted to the compound of formula 3 or a salt thereof by metalating the compound of formula 15 or the salt thereof (e.g. by treatment with isopropylmagnesium chloride) and treating with carbon dioxide to provide the compound of formula 3 or the salt thereof.
  • R c is a leaving group (such as halo or 1-imidazolyl).
  • the carboxylic acid functional group of Compound 4 can be converted to an activated species, for example an acid chloride or an acyl imidazolide (Compound 5′) by treatment with a suitable reagent, such as, for example, thionyl chloride, oxalyl chloride, cyanuric chloride or 1,1′-carbonyldiimidazole in a suitable solvent (e.g., toluene or tetrahydrofuran).
  • a suitable solvent e.g., toluene or tetrahydrofuran.
  • Any suitable leaving group R c can be incorporated into the molecule, provided the compound of formula 5′ can be subsequently converted to a compound of formula 6.
  • the reaction can conveniently be carried out using about 1 equivalent of 1,1′-carbonyldiimidazole in tetrahydrofuran.
  • the compound of formula 5′
  • the compound of formula 4 may be converted to the compound of formula 5a by treatment with 1,1′-carbonyldiimidazole.
  • the compound of formula 5′ is converted to the compound of formula 6 by treatment with the corresponding mono-alkylmalonate salt.
  • a mono-alkylmalonate salt is potassium monoethylmalonate.
  • a compound of formula 5′ can be combined with about 1 to 5 equivalents of a monoalkyl malonate salt and about 1 to 5 equivalents of a magnesium salt in a suitable solvent.
  • a compound of formula 5′ can be combined with about 1.7 equivalents of potassium monoethyl malonate and about 1.5 equivalents of magnesium chloride.
  • a suitable base for example triethylamine or imidazole
  • the reaction can conveniently be carried out at an elevated temperature (e.g., about 100 ⁇ 50° C.) and monitored for completion by any suitable technique (e.g., by HPLC).
  • any suitable technique e.g., by HPLC.
  • Compound 6 can be isolated using any suitable technique (e.g., by chromatography or crystallization).
  • R a and R b are each independently C 1 -C 6 alkyl; and R is C 1 -C 6 alkyl.
  • Compound 6 can be converted to an activated alkylidene analog, such as Compound 7, by treatment with a formate group donor such as a dimethylformamide dialkyl acetal (e.g., dimethylformamide dimethyl acetal) or a trialkylorthoformate.
  • a formate group donor such as a dimethylformamide dialkyl acetal (e.g., dimethylformamide dimethyl acetal) or a trialkylorthoformate.
  • the reaction can be carried out at elevated temperature (e.g., about 100 ⁇ 50° C.).
  • This reaction may be accelerated by the addition of an acid catalyst, such as, for example, an alkanoic acid, a benzoic acid, a sulfonic acid or a mineral acid.
  • About 500 ppm to 1% acetic acid can conveniently be used.
  • R is C 1 -C 6 alkyl.
  • Compound 7 can be combined with (S)-2-amino-3-methyl-1-butanol (S-Valinol, about 1.1 equivalents) to provide compound 8.
  • the progress of the reaction can be monitored by any suitable technique (e.g., by HPLC).
  • the compound of formula 8 can be isolated or used directly to prepare a compound of formula 9 as described below.
  • the invention provides a method for preparing a compound of formula 9:
  • R is C 1 -C 6 alkyl, comprising cyclizing a corresponding compound of formula 8:
  • Compound 8 can be cyclized to provide Compound 9 by treatment with a silylating reagent (e.g., N, O-bis(trimethylsilyl)acetamide, N,O-bis(trimethylsilyl)trifluoroacetamide or hexamethyldisilazane).
  • a silylating reagent e.g., N, O-bis(trimethylsilyl)acetamide, N,O-bis(trimethylsilyl)trifluoroacetamide or hexamethyldisilazane.
  • the reaction can be conducted in a polar aprotic solvent (e.g., dimethylformamide, dimethylacetamide, N-methylpyrrolidinone or acetonitrile).
  • a salt e.g., potassium chloride, lithium chloride, sodium chloride or magnesium chloride
  • a salt such as potassium chloride is added.
  • the reaction may be conducted at elevated temperature (e.g., a temperature of about 100 ⁇ 20° C.) if necessary to obtain a convenient reaction time.
  • the progress of the reaction can be monitored by any suitable technique (e.g., by HPLC).
  • an acid can be used to hydrolyze any silyl ethers that form due to reaction of the silylating reagent with the alcohol moiety of compound 8.
  • Typical acids include mineral acids, sulfonic acids, or alkanoic acids.
  • One specific acid that can be used is aqueous hydrochloric acid.
  • Compound 9 can be isolated by any suitable method (e.g., by chromatography or by crystallization).
  • the silating reagent transiently protects the alcohol and is subsequently removed. This eliminates the need for separate protection and deprotection steps, thereby increasing the efficiency of the conversion.
  • Compound 9 can be converted to Compound 10 by treatment with a suitable base (e.g., potassium hydroxide, sodium hydroxide or lithium hydroxide).
  • a suitable base e.g., potassium hydroxide, sodium hydroxide or lithium hydroxide.
  • potassium hydroxide e.g., sodium hydroxide or lithium hydroxide
  • This reaction may be conducted in any suitable solvent, such as, for example, tetrahydrofuran, methanol, ethanol or isopropanol, or a mixture thereof.
  • the solvent can also include water. A mixture of isopropanol and water can conveniently be used.
  • the progress of the reaction can be monitored by any suitable technique (e.g., by HPLC).
  • the initially formed carboxylate salt can be neutralized by treatment with an acid (e.g., hydrochloric acid or acetic acid).
  • an acid e.g., hydrochloric acid or acetic acid
  • acetic acid e.g., about 1.5 equivalents of
  • the compound of formula 10 can be crystallized by adding a seed crystal to a solution that comprises the compound of formula 10.
  • International Patent Application Publication Number WO 2005/113508 provides certain specific crystalline forms of 6-(3-chloro-2-fluorobenzyl)-1-[(S)-1-hydroxymethyl-2-methylpropyl]-7-methoxy-4-oxo-1,4-dihydroquinolone-3-carboxylic acid.
  • the entire contents of International Patent Application Publication Number WO 2005/113508 is incorporated herein by reference (in particular, see pages 12-62 therein).
  • the specific crystalline forms are identified therein as Crystal Form II and Crystal Form III.
  • Crystal form II has an X-ray powder diffraction pattern having characteristic diffraction peaks at diffraction angles 2 ⁇ (°) of 6.56, 13.20, 19.86, 20.84, 21.22, and 25.22 as measured by an X-ray powder diffractometer.
  • Crystal form III has an X-ray powder diffraction pattern having characteristic diffraction peaks at diffraction angles 2 ⁇ (°) of 8.54, 14.02, 15.68, 17.06, 17.24, 24.16, and 25.74 as measured by an X-ray powder diffractometer.
  • International Patent Application Publication Number WO 2005/113508 also describes how to prepare a crystalline form of 6-(3-chloro-2-fluorobenzyl)-1-[(S)-1-hydroxymethyl-2-methylpropyl]-7-methoxy-4-oxo-1,4-dihydroquinolone-3-carboxylic acid that have an extrapolated onset temperature of about 162.1° C., as well as how to prepare a seed crystal having a purity of crystal of not less than about 70%.
  • seed crystals of 6-(3-chloro-2-fluorobenzyl)-1-[(S)-1-hydroxymethyl-2-methylpropyl]-7-methoxy-4-oxo-1,4-dihydroquinolone-3-carboxylic acid can optionally be prepared as described in International Patent Application Publication Number WO 2005/113508.
  • the process illustrated in Scheme I below provides a crude mixture of Compound 10 that can be directly crystallized to provide Crystal Form III without additional purification (e.g. without the prior formation of another polymorph such as Crystal Form II, or without some other form of prior purification), see Example 6 below.
  • the invention also provides salts of such compounds.
  • Such salts may be useful as intermediates, for example, for purifying such compounds.
  • useful salts include organic acid addition salts formed with acids, for example, tosylate, methanesulfonate, acetate, citrate, malonate, tartarate, succinate, benzoate, ascorbate, ⁇ -ketoglutarate, and ⁇ -glycerophosphate.
  • Suitable inorganic salts may also be formed, including hydrochloride, sulfate, nitrate, bicarbonate, and carbonate salts.
  • Salts may be obtained using standard procedures well known in the art, for example by reacting a sufficiently basic compound such as an amine with a suitable acid affording an anion.
  • a sufficiently basic compound such as an amine
  • a suitable acid affording an anion.
  • Alkali metal for example, sodium, potassium, or lithium
  • alkaline earth metal for example calcium or magnesium
  • An integrase inhibitor of formula 10 can be prepared as illustrated in the following Scheme 1.
  • Triethylsilane (6.83 g) was added to trifluoroacetic acid (33.13 g) that had been pre-cooled in an ice bath.
  • Compound 3 (10 g) was added to the mixture keeping the temperature below 15° C. After stirring for 2 h MTBE was added to precipitate the product. The slurry was filtered and the product washed with additional MTBE. After drying, 9.12 g of Compound 4 was isolated: 1 H NMR (DMSO-d 6 , 400 MHz) ⁇ 12.11 (br s, 1H), 7.47 (s, 1H), 7.42-7.38 (m, 1H), 7.14-7.08 (m, 2H), 6.67 (s, 1H), 3.87-3.84 (m, 8H).
  • Compound 4 can be prepared as follows.
  • Triethylsilane (7.50 g) was added to trifluoroacetic acid (49.02 g) that had been pre-cooled in an ice bath.
  • Compound 3 14.65 g was added to the mixture keeping the temperature below 15° C. After stirring for 1 h a solution of 17.63 g sodium acetate in 147 mL methanol was added. The mixture was heated to reflux for 3 hours then cooled to 0° C. The slurry was filtered and the product washed with additional methanol.
  • Imidazole (0.42 g) and 1,1′-carbonyldiimidazole (5.49 g) were slurried in 30 mL of THF at ambient temperature.
  • Compound 5a (10 g) was added in one portion and the mixture was stirred at ambient temperature for 4 hours to form a slurry of compound 5a.
  • 8.91 g of potassium monoethyl malonate was slurried in 40 mL of THF.
  • Magnesium chloride (4.40 g) was added and the resulting slurry was warmed to 55° C. for 90 minutes.
  • the slurry of Compound 5a was transferred to the magnesium chloride/potassium monoethyl malonate mixture and stirred at 55° C.
  • Compound 6a can be prepared as follows.
  • Carbonyldiimidazole (10.99 g) was slurried in 60 mL of THF at ambient temperature.
  • Compound 4 (20 g) was added in one portion and the mixture was stirred at ambient temperature for 30 min to form a slurry of compound 5.
  • 15.72 g of potassium monoethyl malonate was slurried in 100 mL of THF.
  • Magnesium chloride (6.45 g) was added and the resulting slurry was warmed to 55° C. for 5 hours.
  • the slurry of Compound 5 was transferred to the magnesium chloride/potassium monoethyl malonate mixture and stirred at 55° C. overnight.
  • the mixture was then cooled to room temperature and quenched onto 120 mL of 28 wt % aqueous H 3 PO 4 .
  • the phases were separated and the organic phase was washed successively with aqueous KHCO 3 and NaCl solutions.
  • the organic phase was concentrated to an oil and then coevaporated with ethanol.
  • the resulting solid was dissolved in 100 mL ethanol and 12 mL water.
  • Compound 6a was crystallized by cooling. The solid was isolated by filtration and the product was washed with aqueous ethanol.
  • Dilute hydrochloride acid 44 g, about 1N was added and the mixture stirred at ambient temperature for 20 min. The phases were separated and the organic phase was washed successively with water, aqueous sodium bicarbonate and water. The solvent was exchanged to acetonitrile and the volume was adjusted to 160 mL. The mixture was heated to clarity, cooled slightly, seeded and cooled to crystallize Compound 9a. The product was isolated by filtration and washed with additional cold acetonitrile.
  • Compound 9a can be prepared as follows.
  • Dilute hydrochloride acid 110 g of ⁇ 1N was added and the mixture stirred at ambient temperature for 30 min.
  • the phases were separated and the organic phase was washed successively with water, aqueous sodium bicarbonate and water.
  • the solvent was exchanged to acetonitrile by distillation.
  • the mixture was heated to clarity, cooled slightly, seeded and cooled to crystallize Compound 9a.
  • the product was isolated by filtration and washed with additional cold acetonitrile.
  • Compound 10 can be prepared from Compound 4 as described in the following illustrative Examples 7-9.
  • Carbonyldiimidazole and imidazole are combined with anhydrous tetrahydrofuran.
  • Compound 4 is added to this mixture to form Compound 5 and the reaction is monitored by HPLC.
  • HPLC HPLC monitoring
  • potassium monoethylmalonate is combined with tetrahydrofuran before anhydrous magnesium chloride is added while maintaining the temperature NMT 30° C.
  • the resulting slurry is warmed to 50° C. and held for at least two hours before the Compound 5 mixture is added.
  • the reaction is monitored by HPLC. Once the formation of Compound 5 is complete, the mixture is cooled to 18 to 25° C. and added to aqueous phosphoric acid to quench.
  • the organic phase is washed with aqueous sodium bisulfate, brine, potassium bicarbonate and brine solutions before being polish filtered.
  • the solvent is exchanged for anhydrous ethanol. Water is added and the mixture is warmed to dissolve solids, cooled to about 40° C., seeded with Compound 6a and cooled to 0 to 5° C.
  • the product is filtered, washed with cold aqueous ethanol and dried at NMT 40° C. to yield Compound 6a.
  • Compound 6a is combined with toluene, N,N-dimethylformamide dimethyl acetal and glacial acetic acid before being warmed to 100° C.
  • the reaction is monitored by HPLC.
  • Once the formation of Compound 7a is complete the mixture is cooled to 18 to 25° C. before (S)-(+)-valinol is added.
  • the reaction is monitored by HPLC.
  • Once the formation of Compound 8a is complete the mixture is concentrated.
  • the residue is combined with dimethylformamide, potassium chloride and N,O-bistrimethylsilyl acetamide and warmed to 100° C.
  • the reaction is monitored by HPLC. Once complete the mixture is cooled and dichloromethane is added. Aqueous hydrochloric acid is added to desilylate Compound 9a.
  • Compound 9a is combined with aqueous isopropyl alcohol and warmed to 30 to 40° C.
  • Aqueous potassium hydroxide is added and the reaction is monitored by HPLC. Once complete, glacial acetic acid is added and the mixture warmed to 60 to 70° C.
  • the solution is hot filtered and cooled to 55 to 65° C.
  • the solution is seeded (see International Patent Application Publication Number WO 2005/113508) and cooled to 0° C.
  • the product is isolated by filtration, washed with cold aqueous isopropyl alcohol and dried at NMT 50° C. to yield Compound 10.
  • Bisdimethylaminoethyl ether (2.84 g) was dissolved in 42 mL THF and cooled in an ice bath. Isopropylmagnesium chloride (8.9 mL of a 2 M solution in THF) followed by Compound 14 (5 g dissolved in 5 mL THF) were added slowly sequentially. The mixture was allowed to warm to ambient temperature and stirred overnight. Next, 2.1 mL of 3-chloro-2-fluorobenzaldehyde was added. After stirring for ⁇ 1 h, the mixture was quenched to pH ⁇ 7 with 2N HCl. The product was extracted into ethyl acetate and the organic phase was dried over sodium sulfate.
  • Triethylsilane (1.2 mL) was added to trifluoroacetic acid (2.3 mL) that had been pre-cooled in an ice bath.
  • Compound 15 (1.466 g) was added to the mixture keeping the temperature below 5° C. After stirring for ⁇ 2 h ice was added to quench the reaction. The product was extracted with DCM and the organic phase was washed with aq. NaHCO 3 . The organic phase was dried over Na 2 SO 4 and concentrated to dryness.
  • the compound of formula 16 can be carboxylated to provide a compound of Formula 4 following a method analogous to that described in Example 1.
  • Compound 14 is combined with anhydrous tetrahydrofuran:dioxane (5:0.9), and the mixture is agitated under a nitrogen atmosphere until a homogeneous solution is achieved.
  • the solution is cooled to ⁇ 3° C. and 1.3 eq. of i-PrMgCl.LiCl in tetrahydrofuran is added.
  • the reaction mixture is agitated at 0° C. until the formation of the mono-Grignard is complete as determined by HPLC analysis.
  • a solution of 1.1 eq. of 3-chloro-2-fluorobenzaldehyde in tetrahydrofuran is added. This mixture is allowed to stir at 0° C.
  • the organic phase is solvent exchanged to a mixture of isopropyl alcohol and water and the resulting slurry is cooled to about 0° C.
  • the product is isolated by filtration, washed with a mixture of isopropyl alcohol and water and dried at about 40° C. to yield Compound 3.
  • Trifluoroacetic acid (10 eq.) is charged to a reactor and cooled to 0° C.
  • Triethylsilane (1.5 eq.) is added maintaining the temperature ⁇ 15° C. and the mixture agitated thoroughly.
  • Compound 3 is added to the well-stirred mixture in portions maintaining the temperature ⁇ 15° C.
  • Compound 4 is precipitated by adding a solution of 5 eq. sodium acetate in methanol (13 volumes) maintaining the temperature not more than 45° C. Warm the slurry to reflux and agitate for 2 to 3 h. The slurry is cooled to about 0° C. and then agitated at that temperature for 2 to 3 h. The product is isolated by filtration, washed with methanol and dried at about 40° C. to yield Compound 4.
  • reaction is monitored by HPLC. Once the reaction is complete the mixture is cooled and dichloromethane (6 vol.) is added. Aqueous hydrochloric acid is added to desilylate the product. This reaction is monitored by TLC. Once the reaction is complete the organic phase is washed with water, aqueous sodium bicarbonate and water. The solvent is exchanged for acetonitrile and the mixture is warmed to form a solution. The mixture is seeded and cooled to crystallize Compound 9a. The product is filtered, washed with cold acetonitrile and dried at NMT 40° C. to yield Compound 9a.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Virology (AREA)
  • Veterinary Medicine (AREA)
  • Molecular Biology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • AIDS & HIV (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Quinoline Compounds (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
US12/208,952 2007-09-11 2008-09-11 Process and intermediates for preparing integrase inhibitors Abandoned US20090099366A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/208,952 US20090099366A1 (en) 2007-09-11 2008-09-11 Process and intermediates for preparing integrase inhibitors

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US97139507P 2007-09-11 2007-09-11
US12/208,952 US20090099366A1 (en) 2007-09-11 2008-09-11 Process and intermediates for preparing integrase inhibitors

Publications (1)

Publication Number Publication Date
US20090099366A1 true US20090099366A1 (en) 2009-04-16

Family

ID=39887255

Family Applications (4)

Application Number Title Priority Date Filing Date
US12/208,952 Abandoned US20090099366A1 (en) 2007-09-11 2008-09-11 Process and intermediates for preparing integrase inhibitors
US12/676,553 Active US8153801B2 (en) 2007-09-11 2008-09-11 Process and intermediates for preparing integrase inhibitors
US13/413,518 Active US8440831B2 (en) 2007-09-11 2012-03-06 Process and intermediates for preparing integrase inhibitors
US13/868,836 Active US8759525B2 (en) 2007-09-11 2013-04-23 Process and intermediates for preparing integrase inhibitors

Family Applications After (3)

Application Number Title Priority Date Filing Date
US12/676,553 Active US8153801B2 (en) 2007-09-11 2008-09-11 Process and intermediates for preparing integrase inhibitors
US13/413,518 Active US8440831B2 (en) 2007-09-11 2012-03-06 Process and intermediates for preparing integrase inhibitors
US13/868,836 Active US8759525B2 (en) 2007-09-11 2013-04-23 Process and intermediates for preparing integrase inhibitors

Country Status (21)

Country Link
US (4) US20090099366A1 (ru)
EP (1) EP2190804B1 (ru)
JP (2) JP5202635B2 (ru)
KR (1) KR101488550B1 (ru)
CN (1) CN101821223B (ru)
AP (1) AP2785A (ru)
AR (1) AR068403A1 (ru)
AU (1) AU2008298943B2 (ru)
BR (1) BRPI0816694A2 (ru)
CA (1) CA2698245C (ru)
CO (1) CO6270255A2 (ru)
EA (1) EA019431B1 (ru)
ES (1) ES2562080T3 (ru)
HK (1) HK1141785A1 (ru)
MX (1) MX2010002783A (ru)
NZ (1) NZ583647A (ru)
PT (1) PT2190804E (ru)
TW (1) TWI419867B (ru)
UA (1) UA101956C2 (ru)
WO (1) WO2009036161A1 (ru)
ZA (1) ZA201002066B (ru)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060217413A1 (en) * 2002-11-20 2006-09-28 Japan Tobacco Inc. 4-Oxoquinoline compound and use thereof as HIV integrase inhibitor
US20070219243A1 (en) * 2005-12-30 2007-09-20 Kearney Brian P Method for improving the pharmacokinetics of HIV integrase inhibitors
US20090093467A1 (en) * 2007-06-29 2009-04-09 Gilead Sciences, Inc. Therapeutic compositions and methods
US20090093482A1 (en) * 2007-06-29 2009-04-09 Gilead Sciences, Inc. Therapeutic compositions and methods
US20090318702A1 (en) * 2006-03-06 2009-12-24 Koji Matsuda Process for production of 4-oxoquinoline compound
US7825252B2 (en) 2006-09-12 2010-11-02 Gilead Sciences, Inc. Process and intermediates for preparing integrase inhibitors
US20100292480A1 (en) * 2007-09-11 2010-11-18 Gilead Sciences, Inc Process and intermediates for preparing integrase inhibitors
US8383819B2 (en) 2006-03-06 2013-02-26 Japan Tobacco Inc. Method for producing 4-oxoquinoline compound
WO2013082476A1 (en) 2011-11-30 2013-06-06 Emory University Antiviral jak inhibitors useful in treating or preventing retroviral and other viral infections
US8877931B2 (en) 2012-08-03 2014-11-04 Gilead Sciences, Inc. Process and intermediates for preparing integrase inhibitors

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011004389A2 (en) 2009-06-18 2011-01-13 Matrix Laboratories Ltd An improved process for the preparation of elvitegravir
CN102212032B (zh) * 2011-04-20 2013-07-31 复旦大学 一种5-羟基喹诺酮类衍生物及其制备方法和用途
CZ304984B6 (cs) * 2012-10-12 2015-03-11 Zentiva, K.S. Zlepšený způsob výroby a nové intermediáty syntézy elvitegraviru
CZ304983B6 (cs) * 2012-10-12 2015-03-11 Zentiva, K.S. Způsob výroby a nové intermediáty syntézy elvitegraviru
KR102406288B1 (ko) 2012-12-21 2022-06-13 길리애드 사이언시즈, 인코포레이티드 폴리시클릭-카르바모일피리돈 화합물 및 그의 제약 용도
NO2865735T3 (ru) 2013-07-12 2018-07-21
ES2859102T3 (es) 2013-07-12 2021-10-01 Gilead Sciences Inc Compuestos de carbamoilpiridona policíclica y su uso para el tratamiento de infecciones por VIH
TWI677489B (zh) 2014-06-20 2019-11-21 美商基利科學股份有限公司 多環型胺甲醯基吡啶酮化合物之合成
TW201613936A (en) 2014-06-20 2016-04-16 Gilead Sciences Inc Crystalline forms of(2R,5S,13aR)-8-hydroxy-7,9-dioxo-n-(2,4,6-trifluorobenzyl)-2,3,4,5,7,9,13,13a-octahydro-2,5-methanopyrido[1',2':4,5]pyrazino[2,1-b][1,3]oxazepine-10-carboxamide
NO2717902T3 (ru) 2014-06-20 2018-06-23
TWI738321B (zh) 2014-12-23 2021-09-01 美商基利科學股份有限公司 多環胺甲醯基吡啶酮化合物及其醫藥用途
BR112017020837A2 (pt) 2015-04-02 2018-07-03 Gilead Sciences, Inc. compostos de carbamoilpiridona policíclicos e seu uso farmacêutico
CN111733133B (zh) * 2020-07-22 2020-12-01 华夏源(上海)生命科技有限公司 一种促进表皮干细胞分化和生长的方法
CN111944761B (zh) * 2020-08-23 2021-03-26 泉州伟业生物医学科技有限公司 促进表皮干细胞分化和生长的方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050104233A1 (en) * 2002-05-31 2005-05-19 Shinji Kato Method of substituent introduction through halogen-metal exchange reaction
US7176220B2 (en) * 2002-11-20 2007-02-13 Japan Tobacco Inc. 4-oxoquinoline compound and use thereof as pharmaceutical agent
US20080125594A1 (en) * 2006-09-12 2008-05-29 Gilead Sciences, Inc. Process and intermediates for preparing integrase inhibitors
US20080207618A1 (en) * 2006-06-23 2008-08-28 Motohide Satoh 6- (Heterocyclyl-substituted Benzyl) -4-Oxoquinoline Compound and Use Thereof as HIV Integrase Inhibitor
US20090036684A1 (en) * 2006-03-06 2009-02-05 Koji Matsuda Method for producing 4-oxoquinoline compound
US20090093467A1 (en) * 2007-06-29 2009-04-09 Gilead Sciences, Inc. Therapeutic compositions and methods
US20090093482A1 (en) * 2007-06-29 2009-04-09 Gilead Sciences, Inc. Therapeutic compositions and methods
US20090233964A1 (en) * 2005-12-30 2009-09-17 Gilead Sciences, Inc. Methods for improving the pharmacokinetics of hiv integrase inhibitors

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1564210A (en) * 1925-12-08 Obin d
DE3501247A1 (de) * 1985-01-16 1986-07-17 Bayer Ag, 5090 Leverkusen Aminoacrylsaeure-derivate
EP1343766B1 (en) * 2000-12-14 2005-07-27 The Procter & Gamble Company Cyclization process step in the making of quinolones and naphthyridines
TW200300349A (en) 2001-11-19 2003-06-01 Sankyo Co A 4-oxoqinoline derivative
US6803469B2 (en) * 2002-08-05 2004-10-12 The Procter & Gamble Company Process for preparing quinolone antibiotic intermediates
TW200409759A (en) 2002-09-25 2004-06-16 Wyeth Corp Substituted 4-(indazol-3-yl)phenols
EP1582524B1 (en) 2004-04-02 2008-08-13 Ludwig Maximilians Universität Method of preparing organomagnesium compounds
EP1582523A1 (en) 2004-04-02 2005-10-05 Ludwig-Maximilians-Universität München Method of preparing organomagnesium compounds
MY134672A (en) * 2004-05-20 2007-12-31 Japan Tobacco Inc Stable crystal of 4-oxoquinoline compound
US7531554B2 (en) 2004-05-20 2009-05-12 Japan Tobacco Inc. 4-oxoquinoline compound and use thereof as HIV integrase inhibitor
JP4629104B2 (ja) 2004-05-21 2011-02-09 日本たばこ産業株式会社 4−オキソキノリン誘導体および抗hiv剤を含む併用剤
WO2007063869A1 (ja) 2005-11-30 2007-06-07 Japan Tobacco Inc. 高純度キノロン化合物の製造方法
CN101437801B (zh) 2006-03-06 2013-02-06 日本烟草产业株式会社 制备4-氧代喹啉化合物的方法
AR068403A1 (es) * 2007-09-11 2009-11-18 Gilead Sciences Inc Proceso e intermediarios para la preparacion de inhibidores de integrasa

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050104233A1 (en) * 2002-05-31 2005-05-19 Shinji Kato Method of substituent introduction through halogen-metal exchange reaction
US7176220B2 (en) * 2002-11-20 2007-02-13 Japan Tobacco Inc. 4-oxoquinoline compound and use thereof as pharmaceutical agent
US20090233964A1 (en) * 2005-12-30 2009-09-17 Gilead Sciences, Inc. Methods for improving the pharmacokinetics of hiv integrase inhibitors
US20090036684A1 (en) * 2006-03-06 2009-02-05 Koji Matsuda Method for producing 4-oxoquinoline compound
US20080207618A1 (en) * 2006-06-23 2008-08-28 Motohide Satoh 6- (Heterocyclyl-substituted Benzyl) -4-Oxoquinoline Compound and Use Thereof as HIV Integrase Inhibitor
US20080125594A1 (en) * 2006-09-12 2008-05-29 Gilead Sciences, Inc. Process and intermediates for preparing integrase inhibitors
US7825252B2 (en) * 2006-09-12 2010-11-02 Gilead Sciences, Inc. Process and intermediates for preparing integrase inhibitors
US20090093467A1 (en) * 2007-06-29 2009-04-09 Gilead Sciences, Inc. Therapeutic compositions and methods
US20090093482A1 (en) * 2007-06-29 2009-04-09 Gilead Sciences, Inc. Therapeutic compositions and methods
US20100331331A1 (en) * 2007-06-29 2010-12-30 Therapeutic Compositons And Use Thereof Therapeutic compositions and the use thereof
US20110009411A1 (en) * 2007-06-29 2011-01-13 Gilead Sciences ,Inc. Therapeutic compositions and the use thereof

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060217413A1 (en) * 2002-11-20 2006-09-28 Japan Tobacco Inc. 4-Oxoquinoline compound and use thereof as HIV integrase inhibitor
US8232401B2 (en) 2002-11-20 2012-07-31 Japan Tobacco Inc. 4-oxoquinoline compound and use thereof as HIV integrase inhibitor
US20070219243A1 (en) * 2005-12-30 2007-09-20 Kearney Brian P Method for improving the pharmacokinetics of HIV integrase inhibitors
US20090318702A1 (en) * 2006-03-06 2009-12-24 Koji Matsuda Process for production of 4-oxoquinoline compound
US8420821B2 (en) 2006-03-06 2013-04-16 Japan Tobacco Inc. Process for production of 4-oxoquinoline compound
US8383819B2 (en) 2006-03-06 2013-02-26 Japan Tobacco Inc. Method for producing 4-oxoquinoline compound
US7825252B2 (en) 2006-09-12 2010-11-02 Gilead Sciences, Inc. Process and intermediates for preparing integrase inhibitors
US8796459B2 (en) 2006-09-12 2014-08-05 Gilead Sciences, Inc. Process and intermediates for preparing integrase inhibitors
US8324244B2 (en) 2006-09-12 2012-12-04 Gilead Sciences, Inc. Process and intermediates for preparing integrase inhibitors
US20090093482A1 (en) * 2007-06-29 2009-04-09 Gilead Sciences, Inc. Therapeutic compositions and methods
US20090093467A1 (en) * 2007-06-29 2009-04-09 Gilead Sciences, Inc. Therapeutic compositions and methods
US8153801B2 (en) 2007-09-11 2012-04-10 Gilead Sciences, Inc. Process and intermediates for preparing integrase inhibitors
US8440831B2 (en) 2007-09-11 2013-05-14 Gilead Sciences, Inc. Process and intermediates for preparing integrase inhibitors
US8759525B2 (en) 2007-09-11 2014-06-24 Gilhead Sciences, Inc. Process and intermediates for preparing integrase inhibitors
US20100292480A1 (en) * 2007-09-11 2010-11-18 Gilead Sciences, Inc Process and intermediates for preparing integrase inhibitors
WO2013082476A1 (en) 2011-11-30 2013-06-06 Emory University Antiviral jak inhibitors useful in treating or preventing retroviral and other viral infections
EP3750544A2 (en) 2011-11-30 2020-12-16 Emory University Jak inhibitors for use in the prevention or treatment of viral infection
US8877931B2 (en) 2012-08-03 2014-11-04 Gilead Sciences, Inc. Process and intermediates for preparing integrase inhibitors

Also Published As

Publication number Publication date
CA2698245C (en) 2015-06-16
PT2190804E (pt) 2016-03-15
KR20100069675A (ko) 2010-06-24
MX2010002783A (es) 2010-03-31
CN101821223B (zh) 2014-07-09
US8153801B2 (en) 2012-04-10
CA2698245A1 (en) 2009-03-19
TW200927716A (en) 2009-07-01
ES2562080T3 (es) 2016-03-02
BRPI0816694A2 (pt) 2015-03-17
US20120238758A1 (en) 2012-09-20
EA201070256A1 (ru) 2010-12-30
JP5202635B2 (ja) 2013-06-05
AR068403A1 (es) 2009-11-18
ZA201002066B (en) 2010-12-29
HK1141785A1 (zh) 2010-11-19
EP2190804A1 (en) 2010-06-02
KR101488550B1 (ko) 2015-02-02
AP2785A (en) 2013-10-31
UA101956C2 (ru) 2013-05-27
US20130253200A1 (en) 2013-09-26
US8440831B2 (en) 2013-05-14
US8759525B2 (en) 2014-06-24
TWI419867B (zh) 2013-12-21
US20100292480A1 (en) 2010-11-18
WO2009036161A1 (en) 2009-03-19
AU2008298943B2 (en) 2013-10-10
CO6270255A2 (es) 2011-04-20
CN101821223A (zh) 2010-09-01
JP2013129659A (ja) 2013-07-04
AU2008298943A1 (en) 2009-03-19
NZ583647A (en) 2012-07-27
EA019431B1 (ru) 2014-03-31
EP2190804B1 (en) 2015-11-18
AP2010005187A0 (en) 2010-04-30
JP2010539101A (ja) 2010-12-16

Similar Documents

Publication Publication Date Title
US8153801B2 (en) Process and intermediates for preparing integrase inhibitors
US7825252B2 (en) Process and intermediates for preparing integrase inhibitors
UA101946C2 (ru) Способ и интермедиаты для получения ингибиторов интегразы

Legal Events

Date Code Title Description
AS Assignment

Owner name: GILEAD SCIENCES, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DOWDY, ERIC;PFEIFFER, STEVEN;REEL/FRAME:021922/0472

Effective date: 20081202

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION