US20080003571A1 - Reagents, methods, and libraries for bead-based sequencing - Google Patents

Reagents, methods, and libraries for bead-based sequencing Download PDF

Info

Publication number
US20080003571A1
US20080003571A1 US11/345,979 US34597906A US2008003571A1 US 20080003571 A1 US20080003571 A1 US 20080003571A1 US 34597906 A US34597906 A US 34597906A US 2008003571 A1 US2008003571 A1 US 2008003571A1
Authority
US
United States
Prior art keywords
probe
template
extension
sequence
probes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/345,979
Other languages
English (en)
Inventor
Kevin McKernan
Alan Blanchard
Lev Kotler
Gina Costa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applied Biosystems LLC
Applied Biosystems Inc
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US11/345,979 priority Critical patent/US20080003571A1/en
Application filed by Individual filed Critical Individual
Assigned to AGENCOURT BIOSCIENCE CORPORATION reassignment AGENCOURT BIOSCIENCE CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BLANCHARD, ALAN, COSTA, GINA, KOTLER, LEV, MCKERNAN, KEVIN
Assigned to AGENCOURT PERSONAL GENOMICS, INC. reassignment AGENCOURT PERSONAL GENOMICS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: AGENCOURT BIOSCIENCE CORPORATION
Assigned to APPLERA CORPORATION reassignment APPLERA CORPORATION AGREEMENT AND PLAN OF MERGER DOCUMENT (REDACTED) Assignors: AGENCOURT PERSONAL GENOMICS, INC.
Publication of US20080003571A1 publication Critical patent/US20080003571A1/en
Priority to US12/220,201 priority patent/US20090181385A1/en
Priority to US12/220,208 priority patent/US8431691B2/en
Assigned to BANK OF AMERICA, N.A, AS COLLATERAL AGENT reassignment BANK OF AMERICA, N.A, AS COLLATERAL AGENT SECURITY AGREEMENT Assignors: APPLIED BIOSYSTEMS, LLC
Assigned to APPLERA CORPORATION reassignment APPLERA CORPORATION MERGER (SEE DOCUMENT FOR DETAILS). Assignors: AGENCOURT PERSONAL GENOMICS, INC.
Assigned to APPLIED BIOSYSTEMS INC. reassignment APPLIED BIOSYSTEMS INC. MERGER (SEE DOCUMENT FOR DETAILS). Assignors: ATOM ACQUISITION CORPORATION
Assigned to APPLIED BIOSYSTEMS, LLC reassignment APPLIED BIOSYSTEMS, LLC MERGER (SEE DOCUMENT FOR DETAILS). Assignors: ATOM ACQUISITION, LLC & APPLIED BIOSYSTEMS INC.
Assigned to APPLIED BIOSYSTEMS INC. reassignment APPLIED BIOSYSTEMS INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: APPLERA CORPORATION
Priority to US12/628,209 priority patent/US20100297626A1/en
Priority to US12/629,858 priority patent/US20110077169A1/en
Assigned to APPLIED BIOSYSTEMS INC. reassignment APPLIED BIOSYSTEMS INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: APPLERA CORPORATION
Assigned to APPLIED BIOSYSTEMS, LLC reassignment APPLIED BIOSYSTEMS, LLC MERGER (SEE DOCUMENT FOR DETAILS). Assignors: APPLIED BIOSYSTEMS INC.
Priority to US13/410,919 priority patent/US8329404B2/en
Priority to US13/737,534 priority patent/US9217177B2/en
Assigned to APPLIED BIOSYSTEMS, INC. reassignment APPLIED BIOSYSTEMS, INC. LIEN RELEASE Assignors: BANK OF AMERICA, N.A.
Priority to US14/057,055 priority patent/US9493830B2/en
Assigned to APPLIED BIOSYSTEMS, LLC reassignment APPLIED BIOSYSTEMS, LLC CORRECTIVE ASSIGNMENT TO CORRECT THE RECEIVING PARTY NAME PREVIOUSLY RECORDED AT REEL: 030182 FRAME: 0705. ASSIGNOR(S) HEREBY CONFIRMS THE RELEASE THE SECURITY INTEREST Assignors: BANK OF AMERICA, N.A.
Priority to US15/291,982 priority patent/US10323277B2/en
Priority to US16/405,534 priority patent/US20190323078A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing
    • C12Q1/6874Methods for sequencing involving nucleic acid arrays, e.g. sequencing by hybridisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6834Enzymatic or biochemical coupling of nucleic acids to a solid phase
    • C12Q1/6837Enzymatic or biochemical coupling of nucleic acids to a solid phase using probe arrays or probe chips
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B50/00ICT programming tools or database systems specially adapted for bioinformatics
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2533/00Reactions characterised by the enzymatic reaction principle used
    • C12Q2533/10Reactions characterised by the enzymatic reaction principle used the purpose being to increase the length of an oligonucleotide strand
    • C12Q2533/107Probe or oligonucleotide ligation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2537/00Reactions characterised by the reaction format or use of a specific feature
    • C12Q2537/10Reactions characterised by the reaction format or use of a specific feature the purpose or use of
    • C12Q2537/165Mathematical modelling, e.g. logarithm, ratio
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2565/00Nucleic acid analysis characterised by mode or means of detection
    • C12Q2565/10Detection mode being characterised by the assay principle
    • C12Q2565/102Multiple non-interacting labels
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2565/00Nucleic acid analysis characterised by mode or means of detection
    • C12Q2565/10Detection mode being characterised by the assay principle
    • C12Q2565/137Chromatographic separation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2565/00Nucleic acid analysis characterised by mode or means of detection
    • C12Q2565/50Detection characterised by immobilisation to a surface
    • C12Q2565/513Detection characterised by immobilisation to a surface characterised by the pattern of the arrayed oligonucleotides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2565/00Nucleic acid analysis characterised by mode or means of detection
    • C12Q2565/50Detection characterised by immobilisation to a surface
    • C12Q2565/518Detection characterised by immobilisation to a surface characterised by the immobilisation of the nucleic acid sample or target
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2565/00Nucleic acid analysis characterised by mode or means of detection
    • C12Q2565/50Detection characterised by immobilisation to a surface
    • C12Q2565/537Detection characterised by immobilisation to a surface characterised by the capture oligonucleotide acting as a primer

Definitions

  • Nucleic acid sequencing techniques are of major importance in a wide variety of fields ranging from basic research to clinical diagnosis.
  • the results available from such technologies can include information of varying degrees of specificity.
  • useful information can consist of determining whether a particular polynucleotide differs in sequence from a reference polynucleotide, confirming the presence of a particular polynucleotide sequence in a sample, determining partial sequence information such as the identity of one or more nucleotides within a polynucleotide, determining the identity and order of nucleotides within a polynucleotide, etc.
  • DNA strands are typically polymers composed of four types of subunits, namely deoxyribonucleotides containing the bases adenine (A), cytosine (C), guanine (G), and thymidine (T). These subunits are attached to one another by covalent phosphodiester bonds that link the 5′ carbon of one deoxyribose group to the 3′ carbon of the following group. Most naturally occurring DNA consists of two such strands, which are aligned in an antiparallel orientation and are held together by hydrogen bonds formed between complementary bases, i.e., between A and T and between G and C.
  • DNA sequencing first became possible on a large scale with the development of the chain termination or dideoxynucleotide method (Sanger, et al., Proc. Natl. Acad. Sci. 74:5463-5467, 1977) and the chemical degradation method (Maxam & Gilbert, Proc. Natl. Acad. Sci. 74:560-564, 1977), of which the former has been most extensively employed, improved upon, and automated.
  • the use of fluorescently labeled chain terminators was of key importance in the development of automatic DNA sequencers.
  • CAE capillary electrophoresis
  • an oligonucleotide primer is first hybridized to a target template.
  • the primer is then extended by successive cycles of polymerase-catalyzed addition of differently labeled nucleotides, whose incorporation into the growing strand is detected.
  • the identity of the label serves to identify the complementary nucleotide in the template.
  • multiple reactions can be performed in parallel using each of the nucleotides, and incorporation of a labeled nucleotide in the reaction that uses a particular nucleotide identifies the complementary nucleotide in the template.
  • nucleotide analogs that can serve as chain terminators but can be modified after their incorporation such that they can be extended in a subsequent step have been proposed. Such “reversible terminators” have been described, for example, in U.S. Pat. Nos.
  • pyrosequencing is based on the detection of the pyrophosphate (PPi) that is released during DNA polymerization (see, e.g., U.S. Pat. Nos. 6,210,891 and 6,258,568. While avoiding the need for electrophoretic separation, pyrosequencing suffers from a large number of drawbacks that have as yet limited its widespread applicability (Franca, et al., Quarterly Reviews of Biophysics, 35(2):169-200, 2002). Sequencing by hybridization has also been proposed as an alternative (U.S. Pat. No.
  • the present invention provides new and improved sequencing methods that avoid the necessity for performing fragment separation and also in certain embodiments avoid the need to use polymerase enzymes.
  • An alternative to the methods discussed in the Background is described in U.S. Pat. Nos. 5,740,341 and 6,306,597, to Macevicz.
  • the methods are based on repeated cycles of duplex extension along a single-stranded template. In preferred embodiments of these methods a nucleotide is identified in each cycle.
  • the present invention provides improvements to these methods. The improvements allow efficient implementation of the methods and are particularly suited for high throughput sequencing.
  • the invention provides methods for sequence determination that involve repeated cycles of duplex extension along a single-stranded template but do not involve identification of any individual nucleotide during each cycle.
  • the invention provides improved methods for sequencing based on successive cycles of duplex extension along a single-stranded template, ligation of labeled extension probes, and detection of the label.
  • extension starts from a duplex formed by an initializing oligonucleotide and a template.
  • the initializing oligonucleotide is extended by ligating an oligonucleotide probe to its end to form an extended duplex, which is then repeatedly extended by successive cycles of ligation.
  • the identity of one or more nucleotides in the template is determined by identifying a label on or associated with a successfully ligated oligonucleotide probe.
  • the label of the newly added probe can also be detected prior to ligation, instead of, or in addition to, after ligation. Generally it is preferred to detect the label after ligation.
  • the probe has a non-extendable moiety in a terminal position (at the opposite end of the probe from the nucleotide that is ligated to the growing nucleic acid strand of the duplex) so that only a single extension of the extended duplex takes place in a single cycle.
  • non-extendable is meant that the moiety does not serve as a substrate for ligase without modification.
  • the moiety may be a nucleotide residue that lacks a 5′ phosphate or 3′ hydroxyl group.
  • the moiety may be a nucleotide with a blocking group attached thereto that prevents ligation.
  • the non-extendable moiety is removed after ligation to regenerate an extendable terminus so that the duplex can be further extended in subsequent cycles.
  • the probe contains at least one internucleoside linkage that can be cleaved under conditions that will not substantially cleave phosphodiester bonds.
  • Such linkages are referred to herein as “scissile internucleosidic linkages” or “scissile linkages”. Cleavage of the scissile internucleosidic linkage removes the non-extendable moiety and either regenerates an extendable probe terminus or leaves a terminal residue that can be modified to form an extendable probe terminus.
  • the scissile internucleosidic linkage may be located between any two nucleosides in the probe.
  • the scissile linkage is located at least several nucleotides away from (i.e., distal to) the newly formed bond.
  • the nucleotides in the extension probe between the terminal nucleotide that is ligated to the extendable terminus and the scissile linkage need not hybridize perfectly to the template. These nucleotides may serve as a “spacer” and allow identification of nucleotides located at intervals along the template without performing a cycle for each nucleotide within the interval.
  • the scissile internucleosidic linkage and the label are preferably located such that cleavage of the scissile internucleosidic linkage separates the extension probe into a labeled portion and a portion that remains part of the growing nucleic acid strand, allowing the labeled portion to diffuse away (e.g., upon raising the temperature).
  • the label may be attached to the terminal nucleotide of the extension probe, at the opposite end from the nucleotide that is ligated. Alternately, the label may be removed using any of a number of approaches.
  • phosphorothiolate linkages in which one of the bridging oxygen atoms in the phosphodiester bond is replaced by a sulfur atom, are particularly advantageous scissile internucleosidic linkages.
  • the sulfur atom in the phosphorothiolate linkage may be attached to either the 3′ carbon of one nucleoside or the 5′ carbon of the adjacent nucleoside.
  • a plurality of sequencing reactions is performed.
  • the reactions use initializing oligonucleotides that hybridize to different sequences of the template such that the terminus at which the first ligation occurs is located at different positions with respect to the template. For example, the locations at which the first ligation occurs may be shifted, or “out of phase”, relative to one another by 1 nucleotide increments.
  • the same relative phase exists between the ends of the initializing oligonucleotides on the different templates.
  • the reactions can be performed in parallel, in separate compartments each containing copies of the same template, or in series, i.e., by removing the extended duplex from the template after obtaining sequence information using a first initializing oligonucleotide and then performing additional reaction(s) using initializing oligonucleotides that hybridize to different sequences of the template.
  • the invention provides solutions that are of use for a variety of nucleic acid manipulations.
  • the invention provides a solution containing or consisting essentially of 1.0-3.0% SDS, 100-300 mM NaCl, and 5-15 mM sodium bisulfate (NaHSO 4 ) in water.
  • the solution may contain or consist essentially of about 2% SDS, about 200 mM NaCl, and about 10 mM sodium bisulfate (NaHSO 4 ) in water.
  • the solution contains 2% SDS, 200 mM NaCl, and 10 mM sodium bisulfate (NaHSO 4 ) in water.
  • the solution consists essentially of 2% SDS, 200 mM NaCl, and 10 mM sodium bisulfate (NaHSO 4 ) in water.
  • the solution has a pH between 2.0 and 3.0, e.g., 2.5.
  • the solutions are useful to separate double-stranded nucleic acids, e.g., double-stranded DNA, into individual strands, i.e., to denature (melt) double-stranded nucleic acids.
  • both strands are DNA.
  • both strands are RNA.
  • one strand is DNA and the other strand is RNA.
  • one or both strands contains both RNA and DNA.
  • one or both of the strands contains at least one nucleotide other than A, G, C, or T. In some embodiments one or both of the strands contains a non-naturally occurring nucleotide. In yet other embodiments one or more of the residues is a trigger residue, e.g., an abasic residue or damaged base. In some embodiments one or more residues contains a universal base. In some embodiments one or both of the strands contains a scissile linkage.
  • the double-stranded nucleic acids may be fully or partially double-stranded. They may be free in solution or one or both strands may be physically associated with (e.g., covalently or noncovalently attached to) a solid or semi-solid support or substrate.
  • double-stranded nucleic acids incubated in these solutions are effectively separated into single strands in the absence of heat or harsh denaturants that could cause gel delamination (e.g., when the nucleic acids are located in or attached to a semi-solid support such as a polyacrylamide gel) or could disrupt noncovalent associations such as streptavidin (SA)-biotin association (e.g., when the nucleic acids are attached to a support or substrate via a SA-biotin association).
  • SA streptavidin
  • the solutions are used to separate double-stranded nucleic acids wherein one of the nucleic acids is attached to a bead via a SA-biotin association.
  • the invention also provides a method of separating strands of a double-stranded nucleic acid comprising the step of: contacting the double stranded nucleic acid with any of the afore-mentioned solutions, e.g., an aqueous solution containing about 1.0-3.0% SDS, about 100-300 mM NaCl, and about 5-15 mM sodium bisulfate (NaHSO 4 ), e.g., containing 1.0-3.0% SDS, 100-300 mM NaCl, and 5-15 mM sodium bisulfate (NaHSO 4 ).
  • any of the afore-mentioned solutions e.g., an aqueous solution containing about 1.0-3.0% SDS, about 100-300 mM NaCl, and about 5-15 mM sodium bisulfate (NaHSO 4 ).
  • the solution contains about 2% SDS, 200 mM NaCl, and 10 mM sodium bisulfate (NaHSO 4 ), e.g., 2% SDS, 200 mM NaCl, and 10 mM sodium bisulfate (NaHSO 4 ).
  • the solution consists essentially of 2% SDS, 200 mM NaCl, and 10 mM sodium bisulfate (NaHSO 4 ) in water.
  • the solution has a pH between 2.0 and 3.0, e.g., 2.5.
  • the double-stranded nucleic acid is incubated in the solution.
  • the double-stranded nucleic acid (preferably attached to a support or substrate) is washed with the solution.
  • the double-stranded nucleic acid is contacted with the solution for a time sufficient to separate at least 10% of the double-stranded nucleic acid molecules into single strands.
  • the double-stranded nucleic acid is contacted with the solution for a time sufficient to separate at least 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 98%, 99% or more of the double-stranded nucleic acids into single strands.
  • the double-stranded nucleic acid is contacted with the solution for between 15 seconds and 3 hours.
  • the double-stranded nucleic acid is contacted with the solution for between 1 minute and 1 hour. In certain embodiments the double-stranded nucleic acid is contacted with the solution for about 1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, or 60 minutes.
  • the methods may comprise a further step of removing the solution or removing some or all of the nucleic acids from the solution following a period of incubation.
  • the solutions find use in one or more steps of a number of the sequencing methods described herein and may be employed in any of these methods.
  • the solutions may be used to separate an extended duplex from a template.
  • the solutions may be used following cleavage of a scissile linkage to remove the portion of an extension probe that is no longer attached to the extended duplex.
  • the solutions are also of use in separating strands of a triple-stranded nucleic acids or in separating double-stranded regions of a single nucleic acid strand that contains self-complementary portions that have hybridized to one another.
  • the invention provides methods for obtaining information about a sequence using a collection of at least two distinguishably labeled oligonucleotide probe families.
  • the probes in the probe families contain an unconstrained portion and a constrained portion.
  • extension starts from a duplex formed by an initializing oligonucleotide and a template.
  • the initializing oligonucleotide is extended by ligating an oligonucleotide probe to its end to form an extended duplex, which is then repeatedly extended by successive cycles of ligation.
  • the probe has a non-extendable moiety in a terminal position (at the opposite end of the probe from the nucleotide that is ligated to the growing nucleic acid strand of the duplex) so that only a single extension of the extended duplex takes place in a single cycle.
  • a label on or associated with a successfully ligated probe is detected, and the non-extendable moiety is removed or modified to generate an extendable terminus.
  • the label corresponds to the probe family to which the probe belongs.
  • Successive cycles of extension, ligation, and detection produce an ordered list of probe families to which successive successfully ligated probes belong.
  • the ordered list of probe families is used to obtain information about the sequence.
  • knowing to which probe family a newly ligated probe belongs is not by itself sufficient to determine the identity of a nucleotide in the template. Instead, knowing to which probe family the newly ligated probe belongs eliminates certain sequences as possibilities for the sequence of the constrained portion of the probe but leaves at least two possibilities for the identity of the nucleotide at each position.
  • nucleotides in the template that are located at opposite positions to the nucleotides in the constrained portion of the newly ligated probe (i.e., the nucleotides that are complementary to the nucleotides in the constrained portion of the probe).
  • a set of candidate sequences is generated using the ordered series of probe family identities.
  • the set of candidate sequences may provide sufficient information to achieve an objective.
  • one or more additional steps are performed to select the correct sequence from among the candidate sequences.
  • the sequences can be compared with a database of known sequences, and the candidate sequence closest to one of the sequences in the database is selected as the correct sequence.
  • the template is subjected to another round of sequencing by successive cycles of extension, ligation, detection, and cleavage, using a differently encoded set of probe families, and the information obtained in the second round is used to select the correct sequence.
  • at least one item of information is combined with the information obtained from ordered list of probe family identities to determine the sequence.
  • the invention also provides methods of performing error checking when templates are sequenced using probe families. Certain of the methods distinguish between single nucleotide polymorphisms (SNPs) and sequencing errors.
  • SNPs single nucleotide polymorphisms
  • the invention also provides nucleic acid fragments (e.g., DNA fragments) containing at least two segments of interest (e.g., at least two tags) and at least three primer binding regions (PBRs), such that at least two distinct templates, each corresponding to a segment of interest, can be amplified from each fragment.
  • a “primer binding region” is a portion of a nucleic acid to which an oligonucleotide can hybridize such that the oligonucleotide can serve as an amplification primer, sequencing primer, initializing oligonucleotide, etc.
  • the primer binding region should have a known sequence in order to allow selection of a suitable complementary olignucleotide.
  • a portion of a nucleic acid strand used in a method of the invention may be referred to as a primer binding region regardless of whether, in the practice of the method, the primer actually binds to the region or binds to the corresponding portion of a complementary strand of the nucleic acid strand.
  • a portion of a nucleic acid may be referred to as a primer binding region regardless of whether, when used in a method of the invention, a primer actually binds to that region (in which case the sequence of the primer is complementary or substantially complementary to that of the region) or binds to the complement of the region (in which case the sequence of the primer is identical to or substantially identical to the sequence of the primer binding region)
  • a segment of interest is any segment of nucleic acid for which sequence information is desired.
  • a sequence of interest may be a tag, and for purposes of the present disclosure it will be assumed that the segment of interest is a tag (also referred to herein and elsewhere as an “end tag”).
  • end tag also referred to herein and elsewhere as an “end tag”.
  • the invention is not limited to segments of interest that are tags.
  • the at least two tags are a paired tag.
  • the nucleic acid fragments can contain one or more pairs of tags, e.g., one or more paired tags, e.g., 2, 3, 4, 5, or more pairs of paired tags.
  • the invention further provides libraries containing such nucleic acid fragments, and methods for making the templates and libraries.
  • the invention further provides a microparticle, e.g., a bead, having at least two distinct populations of nucleic acids attached thereto, wherein each of the at least two populations consists of a plurality of substantially identical nucleic acids, and wherein the populations were produced by amplification (e.g., PCR amplification) from a single nucleic acid fragment.
  • amplification e.g., PCR amplification
  • the single nucleic acid fragment contains a 5′ tag and 3′ tag, wherein the 5′ and 3′ tags are a paired tag.
  • one of the populations of nucleic acids attached to the microparticle comprises at least a portion of the 5′ tag and one of the populations of nucleic acids attached to the microparticle comprises at least a portion of the 3′ tag.
  • one of the populations comprises a complete 5′ tag and one of the populations comprises a complete 3′ tag.
  • the nucleic acid fragment contains multiple PBRs, at least one of which is located between the tags and at least two of which flank a portion of the nucleic acid fragment that contains the tags, so that a region comprising at least a portion of the 5′ tag can be amplified, and a region comprising at least a portion of the 3′ tag can be amplified, to produce two distinct populations of nucleic acids.
  • the entire 5′ tag and the entire 3′ tag can be amplified.
  • the nucleic acid fragment can contain first and second primer binding sites flanking the 5′ tag and also third and fourth primer binding sites flanking the 3′ tag. A PCR amplification using primers that bind to the first and second primer binding sites amplifies the 5′ tag.
  • a PCR amplification using primers that bind to the third and fourth primer binding sites amplifies the 3′ tag.
  • the primers should be selected so that extension from each primer proceeds towards the region of the DNA fragment containing the tag to be amplified.
  • a first primer binding site can be located upstream of one of the tags, and a second primer binding site can be located downstream of the other tag, and a third primer binding site can be located between the two tags.
  • the third primer binding site serves as a binding site for a forward primer for a PCR amplification that amplifies one of the tags and serves as a binding site for a reverse primer for a PCR amplification that amplifies the other tag.
  • the invention provides a microparticle, e.g., a bead, having at least two distinct populations of nucleic acids attached thereto, wherein each of the at least two populations consists of a plurality of substantially identical nucleic acids, and wherein a first distinct population comprises a 5′ tag and a second distinct population comprises a 3′ tag.
  • the invention further provides a population of microparticles, e.g., beads, wherein individual microparticles having at least two distinct populations of nucleic acids attached thereto, wherein each of the at least two populations consists of a plurality of substantially identical nucleic acids, and wherein the populations were produced by amplification (e.g., PCR amplification) from a single DNA fragment.
  • the substantially identical populations can be, e.g., a 5′ tag and a 3′ tag.
  • the invention further provides arrays of such microparticles and methods of sequencing that involve sequencing the populations of substantially identical nucleic acids.
  • each of the two populations of substantially identical nucleic acids attached to an individual microparticle comprises a different primer binding region (PBR), so that by using different sequencing primers, one of the populations can be sequenced without interference from the other population.
  • PBR primer binding region
  • each of the populations can have a unique PBR, such that a primer that binds to a given PBR does not bind to a PBR present in the other substantially identical populations of nucleic acids attached to the microparticle.
  • the methods of the invention allow for producing microparticles having at least two different substantially identical populations of nucleic acids attached thereto (e.g., a multiple copies of template containing a 5′ tag and multiple copies of template containing a 3′ tag), wherein the tags are paired tags.
  • the templates contain different PBRs, which provide binding sites for sequencing primers. Therefore, by selecting a sequencing primer complementary to the PBR in the template that contains the 5′ tag, sequence information can be obtained from the 5′ tag without interference from the template containing the 3′ tag, even though the template containing the 3′ tag is also present on the same microparticle.
  • sequence information can be obtained from the 3′ tag without interferene from the template containing the 5′ tag, even though the template containing the 5′ tag is also present on the same microparticle.
  • the fact that both of the paired tags are present on the same microparticle means that the sequence of the 5′ and 3′ paired tags can be associated with one another, just as would be the case if they were present within a single template as in the prior art.
  • the invention also provides automated sequencing systems that may be used, e.g., to sequence templates arrayed in or on a substantially planar support.
  • the invention further provides image processing methods, which may be stored on a computer-readable medium such as a hard disc, CD, zip disk, flash memory, or the like.
  • the system achieves 40,000 nucleotide identifications per second, or more.
  • the system generates 8.6 gigabytes (Gb) of sequence data per day (24 hours), or more.
  • the system produces 48 Gb of sequence information (nucleotide identifications) per day, or more.
  • the invention provides a computer-readable medium that stores information generated by applying the inventive sequencing methods.
  • the information may be stored in a database.
  • FIG. 1A diagrammatically illustrates initialization followed by two cycles of extension, ligation, and identification.
  • FIG. 1B diagrammatically illustrates initialization followed by two cycles of extension, ligation, and identification in an embodiment in which extension proceeds inwards from the free end of the template towards a support.
  • FIG. 2 shows a scheme for assigning colors to oligonucleotide probes in which the identity of the 3′ base of the probe is determined by identifying the color of a fluorophore.
  • FIG. 3A diagrammatically shows extended duplexes resulting from hybridization of initializing oligonucleotides at different positions in the binding region of a template followed by ligation of extension probes.
  • FIG. 3B diagrammatically shows assembly of a continuous sequence by using the extension, ligation, and cleavage method with extension probes designed to read every 6th base of the template molecule.
  • FIG. 4A illustrates a 5′-S-phosphorothiolate linkage (3′-O—P—S-5′).
  • FIG. 4B illustrates a 3′-S-phosphorothiolate linkage (3′-S—P—O-5′).
  • FIG. 5A diagrammatically illustrates a single cycle of extension, ligation, and cleavage for sequencing in the 5′ ⁇ 3′ direction using extension probes having 3′-O—P—S-5′ phosphorothiolate linkages.
  • FIG. 5B diagrammatically illustrates a single cycle of extension, ligation, and cleavage for sequencing in the 3′ ⁇ 5′ direction using extension probes having 3′-S—P—O-5′ phosphorothiolate linkages.
  • FIG. 6A-6F is a more detailed diagrammatic illustration of several sequencing reactions performed on a single template.
  • the reactions utilize initializing oligonucleotides that bind to different portions of the template.
  • FIG. 7 is a schematic showing a synthesis scheme for 3′-phosphoroamidites of dA and dG.
  • FIGS. 8A-8E shows results of a gel shift assay demonstrating two cycles of successful ligation and cleavage of extension probes containing phosphorothiolate linkages.
  • FIG. 8F shows a schematic diagram of the mechanism of ligation by DNA ligases.
  • FIG. 9 results of a gel shift assay demonstrating the ligation efficiency of degenerate inosine-containing oligonucleotide probes.
  • FIG. 10 shows results of a gel shift assay demonstrating the ligation efficiency of degenerate inosine-containing oligonucleotide probes on multiple templates.
  • FIG. 11 shows results of an analysis conducted to assess the fidelity of each of two DNA ligases (T4 DNA ligase and Taq DNA ligase) for 3′ ⁇ 5′ extensions.
  • FIG. 12 shows results of a gel shift assay (A) demonstrating the ligation efficiency of degenerate inosine-containing oligonucleotide probes and of a direct sequencing analysis of the ligation reactions (B) conducted to assess the fidelity of T4 DNA ligase in oligonucleotide probe ligation. Results are tabulated in panels C-F.
  • FIG. 13A-13C shows results of an experiment that demonstrates in-gel ligation when bead-based templates are embedded in polyacrylamide gels on slides.
  • FIG. 13A shows a schematic of the ligation reaction. In gel ligation reactions were performed in the absence (B) and in the presence (C) of T4 DNA ligase.
  • FIG. 14A shows an image of an emulsion PCR reaction performed on beads having attached first amplification primers, using a fluorescently labeled second amplification primer and an excess of template.
  • FIG. 14B shows a fluorescence image of a portion of a slide on which beads with an attached template, to which a Cy3-labeled oligonucleotide was hybridized, were immobilized within a polyacrylamide gel. (This slide was used in a different experiment, but is representative of the slides used here.)
  • FIG. 14B (bottom) shows a schematic diagram of a slide equipped with a Teflon mask to enclose the polyacrylamide solution.
  • FIG. 15 illustrates three sets of labeled oligonucleotide probes designed to address issues of probe specificity and selectivity and also shows excitation and emission values for a set of four spectrally resolvable labels.
  • FIG. 16 shows results of an experiment confirming 4-color spectral identity of oligonucleotide probes.
  • Slides containing four unique single-stranded template populations (A) were subjected to hybridization and ligations reactions using an oligonucleotide probe mixture that contained four unique fluorophore probes, were imaged under bright light (B) and with fluorescence excitation using four bandpass filters before and after ligation.
  • Individual populations were pseudocolored (C).
  • the spectral identity, which showed minimal signal overlap, is plotted in (D).
  • FIG. 17 shows an experiment confirming ligation specificity of oligonucleotide extension probes.
  • FIG. 17 (A) shows a schematic outline of the ligation.
  • FIG. 17 (B) is a bright light image
  • FIG. 17 (C) is a corresponding fluorescence image of a population of beads embedded in a polyacrylamide gel after ligation.
  • FIG. 17 (D) shows fluorescence detected from each label before (pre) or after (post) ligation.
  • FIG. 18 shows another experiment confirming ligation specificity and selectivity of oligonucleotide extension probes.
  • FIG. 18 (A) shows a schematic outline of the ligation.
  • FIG. 17 (B) is a bright light image
  • FIG. 18 (C) is a corresponding fluorescence image of a population of beads embedded in a polyacrylamide gel after ligation.
  • FIG. 18 (D) shows expected versus observed ligation frequencies, showing a high correlation between frequencies expected based on the proportion of particular extension probes in a population and frequencies observed.
  • FIG. 19 shows an experiment confirming that degenerate and universal base containing oligonucleotide extension probe pools can be used to afford specific and selective in-gel ligation.
  • FIG. 19 (A) shows a schematic outline of the ligation experiment, illustrating four differentially labeled degenerate inosine-containing probe pools following ligation.
  • FIG. 19 (B) is a bright light image
  • FIG. 19 (C) is a corresponding fluorescence image of a population of beads embedded in a polyacrylamide gel after ligation.
  • FIG. 19 (D) shows expected versus observed ligation frequencies, showing a high correlation between frequencies expected based on the proportion of particular extension probes in a population and frequencies observed.
  • FIG. 19 (E) shows a scatter plot of the raw unprocessed data and filtered data representing the top 90% of bead signal values.
  • FIG. 20 is a chart showing the signal detected in sequential cycles of hybridization and stripping of an initializing oligonucleotide (primer) to a template. As shown in the figure, minimal signal loss occurred over 10 cycles.
  • FIG. 21 is a photograph of an automated sequencing system that may be used to gather sequence information, e.g., from templates arrayed in or on a substantially planar support. Also shown is a dedicated computer for controlling operation of various components of the system, processing and storing collected image data, providing a user interface, etc. The lower portion of the figure shows an enlarged view of a flow cell oriented to achieve gravimetric bubble displacement.
  • FIG. 22 shows a schematic diagram of a high throughput automated sequencing instrument that may be used to sequence templates arrayed in or on a substantially planar support.
  • FIG. 23 shows a scatter plot of alignment inconsistency, illustrating minimal inconsistency over 30 frames.
  • FIGS. 24 A-I shows schematic diagrams of inventive flow cells or portions thereof in a variety of different views.
  • FIG. 25A shows an exemplary encoding for a preferred collection of probe families comprising partially constrained probes comprising constrained portions that are 2 nucleotides in length.
  • FIG. 25B shows a preferred collection of probe families (upper panel) and a cycle of ligation, detection, and cleavage (lower panel).
  • FIG. 26 shows an exemplary encoding for another preferred collection of probe families comprising partially constrained probes comprising constrained portions that are 2 nucleotides in length.
  • FIGS. 27A-27C represent an alternate method to schematically define the 24 preferred collections of probe families that are defined in Table 1.
  • FIG. 28 shows a less preferred collection of probe families in which the probes comprise constrained portions that are 2 nucleotides in length.
  • FIG. 29A shows a diagram that can be used to generate constrained portions for a collection of probe families that comprises probes with a constrained portion 3 nucleotides long.
  • FIG. 29B shows a diagram a mapping scheme that can be used to generate constrained portions for a collection of probe families that comprises probes with a constrained portion 3 nucleotides long from the 24 preferred collections of probe families.
  • FIG. 30 shows a method in which sequence determination is performed using a collection of probe families. An embodiment using a preferred set of probe families is depicted.
  • FIGS. 31A-31C show a method in which sequence determination is performed using a first collection of probe families to generate candidate sequences and a second collection of probe families to decode.
  • FIG. 32 shows a method in which sequence determination is performed using a less preferred collection of probe families.
  • FIG. 33A shows a schematic diagram of a slide with beads attached thereto. DNA templates are attached to the beads.
  • FIG. 33B shows a population of beads attached to a slide.
  • the lower panels show the same region of the slide under white light (left) and fluorescence microscopy.
  • the upper panel shows a range of bead densities.
  • FIGS. 34A-34C show a scheme for amplifying both tags of a paired tag present in a nucleic acid fragment (template) as individual populations of nucleic acids and capturing them to a microparticle via the amplification process.
  • FIGS. 35A and 35B show details of primer design and amplification for the scheme of FIG. 35 .
  • Both strands of a nucleic acid fragment (template) are shown for clarity.
  • Primers and primer binding regions having the same sequence are presented in the same color.
  • P1 is represented in dark blue, indicating that primer P1, which is present on the microparticle and in solution, has the same sequence as the correspondingly colored portion of the indicated strand of the template.
  • the dark blue region of the template, labeled P1 may be referred to as a primer binding region even though the corresponding primer (P1) in fact binds to the complementary portion of the other strand and has the same sequence as primer P1.
  • FIGS. 35C and 35D show sequencing of the first and second tags, respectively, attached to a microparticle produced by the method of FIGS. 35A and 35B .
  • an “abasic residue” is a residue that has the structure of the portion of a nucleoside or nucleotide that remains after removal of the nitrogenous base or removal of a sufficient portion of the nitrogenous base such that the resulting molecule no longer participates in hydrogen bonds characteristic of a nucleoside or nucleotide.
  • An abasic residue may be generated by removing a nitrogenous base from a nucleoside or nucleotide.
  • the term “abasic” is used to refer to the structural features of the residue and is independent of the manner in which the residue is produced.
  • the terms “abasic residue” and “abasic site” are used herein to refer to a residue within a nucleic acid that lacks a purine or pyrimidine base.
  • the AP endonuclease is an AP lyase.
  • Examples of AP endonucleases include, but are not limited to, E. coli endonuclease VIII and homologs thereof and E. coli endonuclease III and homologs thereof. It is to be understood that references to specific enzymes, e.g., endonucleases such as E.
  • coli Endo VIII, Endo V, etc. are intended to encompass homologs from other species that are recognized in the art as being homologs and as possessing similar biochemical activity with respect to removal of damaged bases and/or cleavage of DNA containing abasic residues or other trigger residues.
  • the term “array” refers to a collection of entities that is distributed over or in a support matrix; preferably, individual entities are spaced at a distance from one another sufficient to permit the identification of discrete features of the array by any of a variety of techniques.
  • the entities may be, for example, nucleic acid molecules, clonal populations of nucleic acid molecules, microparticles (optionally having clonal populations of nucleic acid molecules attached thereto), etc.
  • the term “array” and variations thereof refers to any process for forming an array, e.g., distributing entities over or in a support matrix.
  • a “damaged base” is a purine or pyrimidine base that differs from an A, G, C, or T in such a manner as to render it a substrate for removal from DNA by a DNA glycosylase. Uracil is considered a damaged base for purposes of the present invention. In some embodiments of the invention the damaged base is hypoxanthine.
  • “Degenerate”, with respect to a position in a polynucleotide that is one of a population of polynucleotides, means that the identity of the base that forms part of the nucleoside occupying that position varies among different members of the population. Thus the population contains individual members whose sequence differs at the degenerate position.
  • position refers to a numerical value that is assigned to each nucleoside in a polynucleotide, generally with respect to the 5′ or 3′ end. For example, the nucleoside at the 3′ end of an extension probe may be assigned position 1. Thus in a pool of extension probes of structure 3′-XXXNXXXX-5′, the N is at position 4.
  • Position 4 is considered degenerate if, in different members of the pool, the identity of N can vary.
  • the pool of extension probes is also said to be degenerate at position N.
  • a position is said to be k-fold degenerate if it can be occupied by nucleosides having any of k different identities. For example, a position that can be occupied by nucleosides comprising either of 2 different bases is 2-fold degenerate.
  • Determining information about a sequence encompasses “sequence determination” and also encompasses other levels of information such as eliminating one or more possibilities for the sequence. It is noted that performing sequence determination on a polynucleotide typically yields equivalent information regarding the sequence of a perfectly complementary (100% complementary) polynucleotide and thus is equivalent to sequence determination performed directly on a perfectly complementary polynucleotide.
  • “Independent”, with respect to a plurality of elements, e.g., nucleosides in an oligonucleotide probe molecule or portion thereof, means that the identity of each element does not limit and is not limited by the identity of any of the other elements, e.g., the identity of each element is selected without regard for the identity of any of the other element(s). Thus knowing the identity of one or more of the elements does not provide any information regarding the identity of any of the other elements.
  • the nucleosides in the sequence NNNN are independent if the identity of each N can be A, G, C, or T, regardless of the identity of any other N.
  • “Ligation” means to form a covalent bond or linkage between the termini of two or more nucleic acids, e.g. oligonucleotides and/or polynucleotides, in a template-driven reaction.
  • the nature of the bond or linkage may vary widely and the ligation may be carried out enzymatically or chemically.
  • microparticle is used herein to refer to particles having a smallest cross-sectional dimension of 50 microns or less, preferably 10 microns or less. In certain embodiments the smallest cross-sectional dimension is approximately 3 microns or less, approximately 1 micron or less, approximately 0.5 microns or less, e.g., approximately 0.1, 0.2, 0.3, or 0.4 microns. Microparticles may be made of a variety of inorganic or organic materials including, but not limited to, glass (e.g., controlled pore glass), silica, zirconia, cross-linked polystyrene, polyacrylate, polymethylmethacrylate, titanium dioxide, latex, polystyrene, etc.
  • glass e.g., controlled pore glass
  • silica silica
  • zirconia zirconia
  • cross-linked polystyrene polyacrylate
  • polymethylmethacrylate titanium dioxide
  • latex polystyrene
  • Dyna beads available from Dynal, Oslo, Norway, are an example of commercially available microparticles of use in the present invention.
  • Magnetically responsive microparticles can be used. The magnetic responsiveness of certain preferred microparticles permits facile collection and concentration of the microparticle-attached templates after amplification, and facilitates additional steps (e.g., washes, reagent removal, etc.).
  • a population of microparticles having different shapes e.g., some spherical and others nonspherical is employed.
  • microsphere or “bead” is used herein to refer to substantially spherical microparticles having a diameter of 50 microns or less, preferably 10 microns or less. In certain embodiments the diameter is approximately 3 microns or less, approximately 1 micron or less, approximately 0.5 microns or less, e.g., approximately 0.1, 0.2, 0.3, or 0.4 microns. In certain embodiments of the invention a population of monodisperse microspheres is used, i.e., the microspheres are of substantially uniform size. For example, the diameters of the microparticles may have a coefficient of variation of less than 5%, e.g., 2% of less, 1% or less, etc.
  • the coefficient of variation of a population of microparticles is 5% or greater, e.g., 5%, between 5% and 10% (inclusive), between 10% and 25%, inclusive, etc.
  • a mixed population of microparticles is used.
  • a mixture of two populations, each of which has a coefficient of variation of less than 5% may be used, resulting in a mixed population that is not monodisperse.
  • a mixture of microspheres having diameters of 1 micron and 3 microns can be employed.
  • additional information is provided by the size of the microsphere when sequencing is performed using templates attached to microspheres of a population that is not monodisperse.
  • different libraries of templates may be attached to differently sized microspheres.
  • the intensity of the signals may vary, which may facilitate multiplex sequencing.
  • nucleic acid sequence can refer to the nucleic acid material itself and is not restricted to the sequence information (i.e. the succession of letters chosen among the five base letters A, G, C, T, or U) that biochemically characterizes a specific nucleic acid, e.g., a DNA or RNA molecule. Nucleic acids shown herein are presented in a 5′ ⁇ 3′ orientation unless otherwise indicated.
  • nucleoside comprises a nitrogenous base linked to a sugar molecule.
  • the term includes natural nucleosides in their 2′-deoxy and 2′-hydroxyl forms as described in Kornberg and Baker, DNA Replication, 2nd Ed. (Freeman, San Francisco, 1992) and nucleoside analogs.
  • natural nucleosides include adenosine, thymidine, guanosine, cytidine, uridine, deoxyadenosine, deoxythymidine, deoxyguanosine, and deoxycytidine.
  • Nucleoside “analogs” refers to synthetic nucleosides having modified base moieties and/or modified sugar moieties, e.g.
  • Nucleoside analogs include 2-aminoadenosine, 2-thiothymidine, pyrrolo-pyrimidine, 3-methyl adenosine, C5-propynylcytidine, C5-propynyluridine, C5-bromouridine, C5-fluorouridine, C5-iodouridine, C5-methylcytidine, 7-deazaadenosine, 7-deazaguanosine, 8-oxoadenosine, 8-oxoguanosine, O(6)-methylguanine, 2-thiocytidine, etc. Nucleoside analogs may comprise any of the universal bases mentioned herein.
  • organism is used herein to indicate any living or nonliving entity that comprises nucleic acid that is capable of being replicated and is of interest for sequence determination. It includes plasmids; viruses; prokaryotic, archaebacterial and eukaryotic cells, cell lines, fungi, protozoa, plants, animals, etc.
  • “Perfectly matched duplex” in reference to the protruding strands of probes and template polynucleotides means that the protruding strand from one forms a double stranded structure with the other such that each nucleoside in the double stranded structure undergoes Watson-Crick basepairing with a nucleoside on the opposite strand.
  • the term also comprehends the pairing of nucleoside analogs, such as deoxyinosine, nucleosides with 2-aminopurine bases, and the like, that may be employed to reduce the degeneracy of the probes, whether or not such pairing involves formation of hydrogen bonds.
  • polymorphism is given its ordinary meaning in the art and refers to a difference in genome sequence among individuals of the same species.
  • a “single nucleotide polymorphism” refers to a polymorphism at a single position.
  • Polynucleotide refers to a linear polymer of nucleosides (including deoxyribonucleosides, ribonucleosides, or analogs thereof) joined by internucleosidic linkages.
  • a polynucleotide comprises at least three nucleosides.
  • one or more nucleosides in an extension probe comprises a universal base.
  • oligonucleotides range in size from a few monomeric units, e.g. 3-4, to several hundreds of monomeric units.
  • a polynucleotide such as an oligonucleotide is represented by a sequence of letters, such as “ATGCCTG,” it will be understood that the nucleotides are in 5′ ⁇ 3′ order from left to right and that “A” denotes deoxyadenosine, “C” denotes deoxycytidine, “G” denotes deoxyguanosine, and “T” denotes thymidine, unless otherwise noted.
  • the letters A, C, G, and T may be used to refer to the bases themselves, to nucleosides, or to nucleotides comprising the bases, as is standard in the art.
  • the internucleoside linkage is typically a phosphodiester bond, and the subunits are referred to as “nucleotides”.
  • oligonucleotide probes comprising other internucleoside linkages, such as phosphorothiolate linkages, are used in certain embodiments of the invention. It will be appreciated that one or more of the subunits that make up such an oligonucleotide probe with a non-phosphodiester linkage may not comprise a phosphate group.
  • nucleotide As used herein, and nucleic acids comprising one or more internucleoside linkages that are not phosphodiester linkages are still referred to as “polynucleotides”, “oligonucleotides”, etc.
  • a polynucleotide such as an oligonucleotide probe comprises a linkage that contains an AP endonuclease sensitive site.
  • the oligonucleotide probe may contain an abasic residue, a residue containing a damaged base that is a substrate for removal by a DNA glycosylase, or another residue or linkage that is a substrate for cleavage by an AP endonuclease.
  • an oligonucleotide probe contains a disaccharide nucleoside.
  • primer refers to a short polynucleotide, typically between about 10-100 nucleotides in length, that binds to a target polynucleotide or “template” by hybridizing with the target.
  • the primer preferably provides a point of initiation for template-directed synthesis of a polynucleotide complementary to the target, which can take place in the presence of appropriate enzyme(s), cofactors, substrates such as nucleotides, oligonucleotides, etc.
  • the primer typically provides a terminus from which extension can occur.
  • primers for synthesis catalyzed by a polymerase enzyme such as a DNA polymerase
  • a polymerase enzyme such as a DNA polymerase
  • the primer typically has, or can be modified to have, a free 3′ OH group.
  • a PCR reaction employs a pair of primers (first and second amplification primers) including an “upstream” (or “forward”) primer and a “downstream” (or “reverse”) primer, which delimit a region to be amplified.
  • the primer typically has, or can be modified to have, a free 5′ phosphate group or 3′ OH group that serves as a substrate for DNA ligase.
  • probe family refers to a group of probes, each of which comprises the same label.
  • sequence determination in reference to polynucleotides includes determination of partial as well as full sequence information of the polynucleotide. That is, the term includes sequence comparisons, fingerprinting, and like levels of information about a target polynucleotide, as well as the express identification and ordering of each nucleoside of the target polynucleotide within a region of interest.
  • sequence determination comprises identifying a single nucleotide, while in other embodiments more than one nucleotide is identified.
  • sequence information that is insufficient by itself to identify any nucleotide in a single cycle is gathered. Identification of nucleosides, nucleotides, and/or bases are considered equivalent herein. It is noted that performing sequence determination on a polynucleotide typically yields equivalent information regarding the sequence of a perfectly complementary (100% complementary) polynucleotide and thus is equivalent to sequence determination performed directly on a perfectly complementary polynucleotide.
  • Sequence reaction refers to a set of cycles of extension, ligation, and detection. When an extended duplex is removed from a template and a second set of cycles is performed on the template, each set of cycles is considered a separate sequencing reaction though the resulting sequence information may be combined to generate a single sequence.
  • “Semi-solid”, as used herein, refers to a compressible matrix with both a solid and a liquid component, wherein the liquid occupies pores, spaces or other interstices between the solid matrix elements.
  • Exemplary semi-solid matrices include matrices made of polyacrylamide, cellulose, polyamide (nylon), and cross-linked agarose, dextran and polyethylene glycol.
  • a semi-solid support may be provided on a second support, e.g., a substantially planar, rigid support, also referred to as a substrate, which supports the semi-solid support.
  • “Support”, as used herein, refers to a matrix on or in which nucleic acid molecules, microparticles, and the like may be immobilized, i.e., to which they may be covalently or noncovalently attached or, in or on which they may be partially or completely embedded so that they are largely or entirely prevented from diffusing freely or moving with respect to one another.
  • a “trigger residue” is a residue that, when present in a nucleic acid, renders the nucleic acid more susceptible to cleavage (e.g., cleavage of the nucleic acid backbone) by a cleavage agent (e.g., an enzyme, silver nitrate, etc.) or combination of agents than would be an otherwise identical nucleic acid not including the trigger residue, and/or is susceptible to modification to generate a residue that renders the nucleic acid more susceptible to such cleavage.
  • a cleavage agent e.g., an enzyme, silver nitrate, etc.
  • presence of a trigger residue in a nucleic acid can result in presence of a scissile linkage in the nucleic acid.
  • an abasic residue is a trigger residue since the presence of an abasic residue in a nucleic acid renders the nucleic acid susceptible to cleavage by an enzyme such as an AP endonuclease.
  • a nucleoside containing a damaged base is a trigger residue since the presence of a nucleoside comprising a damaged base in a nucleic acid also renders the nucleic acid more susceptible to cleavage by an enzyme such as an AP endonuclease, e.g., after removal of the damaged base by a DNA glycosylase.
  • the cleavage site may be at a bond between the trigger residue and an adjacent residue or may be at a bond that is one or more residues removed from the trigger residue.
  • deoxyinosine is a trigger residue since the presence of a deoxyinosine in a nucleic acid renders the nucleic acid more susceptible to cleavage by E. coli Endonuclease V and homologs thereof. Such enzymes cleave the second phosphodiester bond 3′ to deoxyinosine.
  • Any of the probes disclosed herein may contain one or more trigger residues.
  • the trigger residue may, but need not, comprise a ribose or deoxyribose moiety.
  • the cleavage agent is one that does not substantially cleave a nucleic acid in the absence of a trigger residue but exhibits significant cleavage activity against a nucleic acid that contains the trigger residue under the same conditions, which conditions may include the presence of agents that modify the nucleic acid to render it sensitive to the cleavage agent.
  • the likelihood that the nucleic acid containing the trigger residue will be cleaved is at least: 10; 25; 50; 100; 250; 500; 1000; 2500; 5000; 10,000; 25,000; 50,000; 100,000; 250,000; 500,000; 1,000,000 or more, as great as the likelihood that the nucleic acid not containing the trigger residue will be cleaved, e.g., the ratio of the likelihood of cleavage of a nucleic acid containing a trigger residue to the likelihood of cleavage of a nucleic acid not containing the trigger residue but otherwise identical is between 10 and 10 6 , or any integral subrange thereof. It will be appreciated that the ratio may differ depending upon the particular nucleic acid and location and nucleotide context of the trigger residue.
  • the nucleic acid containing the trigger residue needs to be modified in order to render the nucleic acid susceptible to cleavage by a cleavage agent
  • modification occurs readily in the presence of suitable modifying agent(s), e.g., the modification occurs in reasonable yield and in a reasonable period of time.
  • suitable modifying agent(s) e.g., the modification occurs in reasonable yield and in a reasonable period of time.
  • at least 50%, at least 60%, at least 70%, preferably at least 80%, at least 90% or more preferably at least 95% of the nucleic acids containing the trigger residue are modified within, e.g., 24 hours, preferably within 12 hours, more preferably within less than 1 minute to 4 hours.
  • trigger residues and corresponding cleavage reagents are exemplified herein. Any trigger residue and cleavage reagent having similar activity to those described herein may be used.
  • One of ordinary skill in the art will be able to determine whether a particular trigger residue and cleavage reagent combination is suitable for use in the present invention, e.g., whether the cleavage efficiency and speed, the selectivity of the cleavage agent for nucleic acids containing a trigger residue, etc, are suitable for use in the methods of the invention.
  • a “trigger residue” is distinguished from a nucleotide that simply forms part of a restriction enzyme site in that the ability of the trigger residue to confer increased susceptibility to cleavage does not, in general, depend significantly on the particular sequence context in which the trigger residue is found although, as noted above, the context can have some influence on the susceptibility to modification and/or cleavage. Of course depending on the surrounding nucleotides, a trigger residue may form part of a restriction site. Thus, in most cases, the cleavage agent is not a restriction enzyme, though use of an enzyme that is both a restriction enzyme and has non-sequence specific cleavage ability is not excluded.
  • a “universal base”, as used herein, is a base that can “pair” with more than one of the bases typically found in naturally occurring nucleic acids and can thus substitute for such naturally occurring bases in a duplex.
  • the base need not be capable of pairing with each of the naturally occurring bases. For example, certain bases pair only or selectively with purines, or only or selectively with pyrimidines.
  • Certain preferred universal bases can pair with any of the bases typically found in naturally occurring nucleic acids and can thus substitute for any of these bases in duplex.
  • the base need not be equally capable of pairing with each of the naturally occurring bases.
  • a probe mix contains probes that comprise (at one or more positions) a universal base that does not pair with all of the naturally occurring nucleotides, it may be desirable to utilize two or more universal bases at that position in the particular probe so that at least one of the universal bases pairs with A, at least one of the universal bases pairs with G, at least one of the universal bases pairs with C, and at least one of the universal bases pairs with T.
  • a number of universal bases are known in the art including, but not limited to, hypoxanthine, 3-nitropyrrole, 4-nitroindole, 5-nitroindole, 4-nitrobenzimidazole, 5-nitroindazole, 8-aza-7-deazaadenine, 6H,8H-3,4-dihydropyrimido[4,5-c][1,2]oxazin-7-one (P. Kong Thoo Lin. and D. M. Brown, Nucleic Acids Res., 1989, 17, 10373-10383), 2-amino-6-methoxyaminopurine (D. M. Brown and P. Kong Thoo Lin, Carbohydrate Research, 1991, 216, 129-139), etc.
  • hypoxanthine is one preferred fully universal base.
  • Nucleosides comprising hypoxanthine include, but are not limited to, inosine, isoinosine, 2′-deoxyinosine, and 7-deaza-2′-deoxyinosine, 2-aza-2′deoxyinosine.
  • the universal base may, but need not, form hydrogen bonds with an oppositely located base.
  • the universal base may form hydrogen bonds via Watson-Crick or non-Watson-Crick interactions (e.g., Hoogsteen interactions).
  • an oligonucleotide probe comprising a universal base an oligonucleotide probe comprising an abasic residue is used.
  • the abasic residue can occupy a position opposite any of the four naturally occurring nucleotides and can thus serve the same function as a nucleotide comprising a universal base.
  • the linkage adjacent to an abasic residue is cleaved by an AP endonuclease, but abasic residues are also of use as described here (i.e., to serve the function of a universal base) in embodiments in which other scissile linkages (e.g., phosphorothiolates) are present and other cleavage reagents are used.
  • abasic residues are also of use as described here (i.e., to serve the function of a universal base) in embodiments in which other scissile linkages (e.g., phosphorothiolates) are present and other cleavage reagents are used.
  • FIG. 1A The overall scheme of one aspect of the invention is shown diagrammatically in FIG. 1A , and generally resembles a method taught in U.S. Pat. Nos. 5,740,341 and 6,306,597, both issued to Macevicz. For purposes of convenience, these patents will be referred to collectively as “Macevicz” herein.
  • Macevicz teaches a method for identifying a sequence of nucleotides in a polynucleotide, the method comprising the steps of: (a) extending an initializing oligonucleotide along the polynucleotide by ligating an oligonucleotide probe thereto to form an extended duplex; (b) identifying one or more nucleotides of the polynucleotide; and (c) repeating steps (a) and (b) until the sequence of nucleotides is determined.
  • Macevicz further teaches a method for determining a sequence of nucleotides in a template polynucleotide, the method comprising the steps of: (a) providing a probe-template duplex comprising an initializing oligonucleotide probe hybridized to a template polynucleotide, said probe having an extendable probe terminus; (b) ligating an extension oligonucleotide probe to said extendable probe terminus, to form an extended duplex containing an extended oligonucleotide probe; (c) identifying, in the extended duplex, at least one nucleotide in the template polynucleotide that is either (1) complementary to the just-ligated extension probe or (2) a nucleotide residue in the template polynucleotide which is immediately downstream of the extended oligonucleotide probe; (d) generating an extendable probe terminus on the extended probe, if an extendable probe terminus is not already present, such that the terminus generated is different
  • each extension probe has a chain-terminating moiety at a terminus distal to the initializing oligonucleotide probe.
  • the step of regenerating includes cleaving a chemically scissile internucleosidic linkage in the extended oligonucleotide probe.
  • polynucleotide template 20 comprising a polynucleotide region 50 of unknown sequence and binding region 40 is attached to support 10 .
  • Nucleotide 41 at the distal end of binding region 40 , and nucleotide 51 , at the proximal end of polynucleotide region 50 , are adjacent to one another.
  • An initializing oligonucleotide 30 is provided that hybridizes with binding region 40 to form a duplex at a location in binding region 40 .
  • Initializing oligonucleotide 30 is also referred to as a “primer” herein, and binding region 40 may be referred to as a “primer binding region”.
  • the duplex may, but need not be, a perfectly matched duplex.
  • the initializing oligonucleotide has an extendable terminus 31 .
  • the initializing oligonucleotide binds to the binding region such that extendable terminus 31 is located opposite nucleotide 41 .
  • the initializing oligonucleotide could bind elsewhere in the binding region, as discussed further below.
  • An extension oligonucleotide probe 60 of length N is hybridized to the template adjacent to the initializing oligonucleotide. Terminal nucleotide 61 of the extension oligonucleotide probe is ligated to extendable terminus 31 .
  • Terminal nucleotide 61 is complementary to the first unknown nucleotide in polynucleotide region 50 . Therefore, the identity of terminal nucleotide 61 specifies the identity of nucleotide 51 .
  • nucleotide 51 is identified by detecting a label (not shown) associated with an extension probe known to have A, G, C, or T, as terminal nucleotide 61 . The label is removed following detection.
  • FIG. 2 shows a scheme for assigning different labels, e.g., fluorophores of different colors, to extension probes having different 3′ terminal nucleotides.
  • an extendable probe terminus is generated on extension probe 60 if probe 60 does not already have such a terminus.
  • a second extension probe 70 preferably also of length N, is annealed to the template adjacent to extension probe 60 and is ligated to the extendable terminus of probe 60 .
  • the identity of terminal nucleotide 71 of extension probe 70 specifies the identity of oppositely located nucleotide 52 in polynucleotide 50 .
  • Terminal nucleotide 71 therefore constitutes the “sequence determining portion” of the extension probe, by which is meant the portion of the probe whose hybridization specificity is used as a basis from which to determine the identity of one or more nucleotides in the template. It will be appreciated that typically additional nucleotides in the extension probe will hybridize with the template, but only those nucleotides in the probe whose identity is associated with a particular label are used to identify nucleotides in the template.
  • generation of the extendable terminus involves cleavage of an internucleoside linkage as described further below.
  • cleavage also removes the label.
  • Cleavage removes a number of nucleotides M from the extension probe (not shown). Therefore, the duplex is extended by N-M nucleotides in each cycle, and nucleotides located at intervals of N-M in the template are identified. It is to be understood that multiple copies of a given template will typically be attached to a single support, and the sequencing reaction will be performed simultaneously on these templates.
  • the oligonucleotide probes should generally be capable of being ligated to an initializing oligonucleotide or extended duplex to generate the extended duplex of the next extension cycle; the ligation should be template-driven in that the probe should form a duplex with the template prior to ligation; the probe should possess a blocking moiety to prevent multiple probe ligations on the same template in a single extension cycle; the probe should be capable of being treated or modified to regenerate an extendable end after ligation; and the probe should possess a signaling moiety (i.e., a detectable moiety) that permits the acquisition of sequence information relating to the template after a successful ligation.
  • a signaling moiety i.e., a detectable moiety
  • Macevicz teaches characteristics of certain suitable initializing oligonucleotides, extension oligonucleotide probes, templates, binding sites, and various methods for synthesizing, designing, producing, or obtaining such components. Macevicz further teaches certain suitable ligases, ligation conditions, and a variety of suitable labels. Macevicz also teaches an alternative method for identification using polymerase extension to add a labeled chain-terminating nucleotide to a newly ligated extension probe. The identity of the added nucleotide identifies the nucleotide located oppositely in the template.
  • references to templates, initializing oligonucleotides, extension probes, primers, etc. generally mean populations or pools of nucleic acid molecules that are substantially identical within a relevant region rather than single molecules.
  • a “template” generally means a plurality of substantially identical template molecules;
  • a “probe” generally means a plurality of substantially identical probe molecules, etc.
  • probes that are degenerate at one or more positions it will be appreciated that the sequence of the probe molecules that comprise a particular probe will differ at the degenerate positions, i.e., the sequences of the probe molecules that constitute a particular probe may be substantially identical only at the nondegenerate position(s).
  • nucleic acid molecules i.e., one molecule
  • template molecule i.e., one molecule
  • probe molecule i.e., one molecule
  • primer molecule i.e., one molecule
  • the plural nature of a population of substantially identical nucleic acid molecules will be explicitly indicated.
  • a population of substantially identical nucleic acid molecules may be obtained or produced using any of a variety of known methods including chemical synthesis, biological synthesis in cells, enzymatic amplification in vitro from one or more starting nucleic acid molecules, etc.
  • a nucleic acid of interest can be cloned by inserting it into a suitable expression vector, e.g., a DNA or RNA plasmid, which is then introduced into cells, e.g., bacterial cells, in which it replicates. Plasmid DNA or RNA containing copies of the nucleic acid of interest is then isolated from the cells.
  • Genomic DNA isolated from viruses, cells, etc., or cDNA produced by reverse transcription of mRNA can also be a source of a population of substantially identical nucleic acid molecules (e.g., template polynucleotides whose sequence is to be determined) without an intermediate step of cloning or in vitro amplification, though generally it is preferred to perform such an intermediate step.
  • substantially identical nucleic acid molecules e.g., template polynucleotides whose sequence is to be determined
  • members of a population need not be 100% identical, e.g., a certain number of “errors” may occur during the course of synthesis.
  • at least 50% of the members of a population are at least 90%, or more preferably at least 95% identical to a reference nucleic acid molecule (i.e., a molecule of defined sequence used as a basis for a sequence comparison). More preferably at least 60%, at least 70%, at least 80%, at least 90%, at least 95%, at least 99%, or more of the members of a population are at least 90%, or more preferably at least 95% identical, or yet more preferably at least 99% identical to the reference nucleic acid molecule.
  • the percent identity of at least 95% or more preferably at least 99% of the members of the population to a reference nucleic acid molecule is at least 98%, 99%, 99.9% or greater.
  • Percent identity may be computed by comparing two optimally aligned sequences, determining the number of positions at which the identical nucleic acid base (e.g., A, T, C, G, U, or I) occurs in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions, and multiplying the result by 100 to yield the percentage of sequence identity.
  • nucleic acid molecule such as a template, probe, primer, etc.
  • a nucleic acid molecule may be a portion of a larger nucleic acid molecule that also contains a portion that does not serve a template, probe, or primer function. In that case individual members of a population need not be substantially identical with respect to that portion.
  • Macevicz teaches methods in which a template is attached to a support such as a bead and extension proceeds towards the end of the template that is located distal to the support, as shown in FIG. 1A .
  • the binding region is located closer to the support than the unknown sequence, and the extended duplex grows in the direction away from the support.
  • the method can advantageously be practiced using an alternative approach in which the binding region is located at the end of the template that is distal to the support, and extension proceeds inwards toward the support.
  • FIG. 1B depicted in FIG. 1B , in which the various elements are numbered as in FIG. 1A .
  • the inventors have determined that sequencing “inwards” from the distal end of the template towards the support provides superior results.
  • sequencing from the distal end of the template towards a support such as a bead results in higher ligation efficiencies than sequencing outwards from the support.
  • the oligonucleotide probes are applied to templates as mixtures comprising oligonucleotides of all possible sequences of a predetermined length.
  • the probes are of structure X(N) k N*, where N represents any nucleotide, and k is between 1 and 100, * represents a label, and X represents a nucleotide whose identity corresponds to the label.
  • k is between 1 and 100, between 1 and 50, between 1 and 30, between 1 and 20, e.g., between 4 and 10.
  • One or more of the nucleotides may comprise a universal base.
  • the probe is 4-fold degenerate at positions represented by N or comprises a degeneracy-reducing nucleotide at one or more positions represented by N.
  • the mixture can be divided into subsets of probes (“stringency classes) whose perfectly matched duplexes with complementary sequences have similar stability or free energy of binding. The subsets may be used in separate hybridization reactions as taught by Macevicz.
  • the complexity (i.e., the number of different sequences) of probe mixtures can be reduced by a number of methods, including using so-called degeneracy-reducing nucleotides or nucleotide analogs.
  • a library of probes containing all possible sequences of 8 nucleotides would contain 4 8 probes.
  • the number of probes can be reduced to 4 6 while retaining various desirable features of an octamer library, such as the length, by using universal bases at two of the positions.
  • the present invention comprehends the use of any of the universal bases mentioned above or described in the references cited above.
  • the extended duplex or initializing oligonucleotide may be extended in either the 5′ ⁇ 3′ direction or the 3′ ⁇ 5′ direction by oligonucleotide probes, as described further below.
  • the oligonucleotide probe need not form a perfectly matched duplex with the template, although such binding may be preferred.
  • perfect base pairing is only required for identifying that particular nucleotide.
  • perfect base pairing i.e.
  • the probe primarily serves as a spacer, so specific hybridization to the template is not critical.
  • each reaction utilizes a different initializing oligonucleotide i.
  • the initializing oligonucleotides i bind to different portions of the binding region.
  • the initializing oligonucleotides bind at positions such the extendable termini of the different initializing oligonucleotides are offset by 1 nucleotide from each other when hybridized to the binding region. For example, as shown in FIG. 3 , sequencing reactions 1 . . . N are performed.
  • Initializing oligonucleotides i 1 . . . i n have the same length and bind such that their terminal nucleotides 31 , 32 , 33 , etc., hybridize to successive adjacent positions 41 , 42 , 43 , etc., in binding region 40 .
  • Extension probes e 1 . . . e n thus bind at successive adjacent regions of the template and are ligated to the extendable termini of the initializing oligonucleotides.
  • Terminal nucleotide 61 of probe e n ligated to i n is complementary to nucleotide 55 of polynucleotide region 50 , i.e., the first unknown polynucleotide in the template.
  • terminal nucleotide 71 of probe e 12 is complementary to nucleotide 56 of polynucleotide region 50 , i.e., the second nucleotide of unknown sequence.
  • terminal nucleotides of extension probes ligated to duplexes initialized with initializing oligonucleotides i 2 , i 3 , i 4 , and so on, will be complementary to the third, fourth, and fifth nucleotides of unknown sequence 50 .
  • the initializing oligonucleotides may bind to regions progressively further away from polynucleotide region 50 rather than progressively closer to it.
  • the spacer function of the non-terminal nucleotides of the extension probes allows the acquisition of sequence information at positions in the template that are considerably removed from the position at which the initializing oligonucleotide binds without requiring a correspondingly large number of cycles to be performed on any given template. For example, by successive cycles of ligation of probes of length N, followed by cleavage to remove a single terminal nucleotide from the extension probe, nucleotides at intervals of N-1 nucleotides can be identified in successive rounds.
  • nucleotides at positions 1, N, 2N-1, 3N-2, 4N-3, and 5N-4 in the template can be identified in 6 cycles where the nucleotide at position 1 in the template is the nucleotide opposite the nucleotide that is ligated to the extendable probe terminus in the duplex formed by the binding of the initializing oligonucleotide to the template.
  • nucleotides at positions separated from each other by N-2 nucleotides can be identified in successive rounds.
  • nucleotides at positions 1, N-1, 2N-3, 3N-5, 4N-7 in the template can be identified in 6 cycles.
  • the probes are 8 nucleotides in length and 2 nucleotides are removed in each cycle, nucleotides at positions 1, 7, 13, 19, and 25 are identified.
  • the number of cycles needed to identify a nucleotide at a distance X from the first nucleotide in the template is on the order of X/M, where M is the length of the extension probe that remains following cleavage, rather than on the order of X.
  • the schematic depicted in FIG. 3B shows the net result of using the extension, ligation, and cleavage method with extension probes designed to read every 6th base of the template.
  • extension probes designed to read every 6th base of the template.
  • An advantageous feature of certain of the methods described herein is that they allow the identification of every n th base (depending on the position of the cleavable moiety in the probe), such that after a given number of cycles (y), one reaches the n*y ⁇ (n ⁇ 1) th base (e.g., the 71 st base in the foregoing example after 15 cycles, or the 115 th base after 20 cycles using a probe with 6 bases on the 3′ side of the cleavage site).
  • the ability to “reset” the initializing oligonucleotide at the n ⁇ 1, n ⁇ 2, etc., positions greatly minimizes serial error accumulation (via dephasing or attrition) for a given read length since the process of stripping the extended strands from the template and hybridizing a new initializing oligonucleotide effectively resets background signals to zero.
  • the signal to noise ratio at each extension cycle is 99:1
  • the ratio after 100 cycles for the polymerase based approach will be 37:63 and for the ligase based method, 85:15.
  • the net result for the ligase based method is a large increase in read length over polymerase based methods.
  • the ability to identify nucleotides using fewer cycles than would be required if it was necessary to perform a cycle for each preceding nucleotide in the template is important for a number of reasons. In particular, it is unlikely that each step in the method will occur with 100% efficiency. For example, some templates may not be successfully ligated to an extension probe; some extension probes may not be cleaved, etc. Thus in each cycle the reactions occurring on different copies of the template become progressively dephased, and the number of templates from which useful and accurate information can be acquired is reduced. It is thus particularly desirable to minimize the number of cycles required to read nucleotides located more than a few positions away from the extendable terminus of the initializing oligonucleotide.
  • extension probe potentially results in greater complexity of the probe mixture, which decreases the effective concentration of each individual probe sequence.
  • degeneracy-reducing nucleotides can be used to reduce the complexity but may result in decreased hybridization strength and/or decreased ligation efficiency.
  • the inventors have recognized the need to balance these competing factors in order to optimize results.
  • extension probes 8 nucleotides in length are used, with degeneracy-reducing nucleotides at selected positions.
  • the inventors have recognized the importance of selecting appropriate scissile linkages and cleavage conditions and times to optimize the efficiency of the cleavage step (i.e., the percentage of linkages that is successfully cleaved in each cleavage step) and its specificity for the appropriate linkage.
  • degeneracy-reducing nucleoside analogs may be used in the oligonucleotide extension probes
  • the present inventors have recognized that it may be particularly advantageous to utilize degeneracy-reducing nucleosides (e.g., nucleosides that comprise a universal base) at particular positions and in particular numbers in the oligonucleotide extension probes.
  • nucleotides at position 6 or greater comprise a universal base.
  • at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, or at least 100% of the nucleotides at position 6 or greater may comprise a universal base.
  • the nucleotides need not all comprise the same universal base.
  • hypoxanthine and/or a nitro-indole is used as a universal base.
  • nucleosides such as inosine can be used.
  • extension probes that are greater than 6 nucleotides in length, and in which one or more of the nucleotides at position 6 or greater from the proximal terminus of the probe, counting from the nucleotide to be ligated to the extendable probe terminus, is a degeneracy-reducing nucleotide, e.g., comprises a universal base (i.e., if the most proximal nucleotide is considered position 1, one or more of the nucleotides at position 6 or greater comprises a universal base), e.g., 1, 2, or 3 of the nucleotides at position 6 or greater in the case of octamer probes comprises a universal base.
  • a universal base i.e., if the most proximal nucleotide is considered position 1, one or more of the nucleotides at position 6 or greater comprises a universal base
  • probes having the structure 3′-XNNNNsINI-5′ can be used, where X and N represent any nucleotide, “s” represents a scissile linkage, such that cleavage occurs between the fifth and sixth residues counting from the 3′ end, and at least one of the residues between the scissile linkage and the 5′ end preferably has a label that corresponds to the identity of X.
  • Another design is 3′-XNNNNsNII-5′.
  • Yet another probe design is 3′-XNNNNsIII-5′.
  • This design yields a probe mixture with a modest complexity of 1024 different species, is long enough to prevent formation of significant adenylation products (see Example 1), and has the advantage that the resulting extension product remaining after cleavage would consist of unmodified DNA.
  • This probe extends the primer by only 5 bases at a time. Since the read length is a function of the extension length times the number of cycles, each additional base on the extension length has the potential to increase the read length by the 1 ⁇ the cycle number (e.g. 20 bases if 20 cycles are used).
  • Another probe design leaves one or more inosines (or other universal base) at the end of the extension probe following cleavage to create a 6 base, or longer, extended duplex.
  • the duplex would be extended by 6 bases at a time, leaving a 5′ inosine at the junction.
  • at least one of the residues between the scissile linkage and the 5′ end preferably has a label that corresponds to the identity of X.
  • the third nucleotide from the distal terminus of the probe, counting from the end opposite the nucleotide to be ligated to the extendable probe terminus comprises a universal base, (i.e., if the distal terminus is considered position K, the nucleotide at position K-2 comprises a universal base).
  • locked nucleic acid (LNA) bases are used at one or more positions in an initializing oligonucleotide probe, extension probe, or both.
  • Locked nucleic acids are described, for example, in U.S. Pat. No. 6,268,490; Koshkin, A A, et al., Tetrahedron, 54:3607-3630, 1998; Singh, S K, et al., Chem. Comm., 4:455-456, 1998.
  • LNA can be synthesized by automatic DNA synthesizers using standard phosphoramidite chemistry and can be incorporated into oligonucleotides that also contain naturally occurring nucleotides and/or nucleotide analogues. They can also be synthesized with labels such as those described below.
  • Macevicz teaches a process in which a template comprising a plurality of substantially identical template molecules is first synthesized, e.g., by amplification in a tube or other vessel as in conventional polymerase chain reaction (PCR) methods. Macevicz teaches that the amplified template molecules are preferably attached to supports such as magnetic microparticles (e.g., beads) after synthesis.
  • PCR polymerase chain reaction
  • templates to be sequenced may desirably be synthesized on or in a support itself, e.g., by using supports such as microparticles or various semi-solid support materials such as gel matrices to which one of a pair of amplification primers is attached prior to performing the PCR reaction.
  • supports such as microparticles or various semi-solid support materials such as gel matrices to which one of a pair of amplification primers is attached prior to performing the PCR reaction.
  • This approach avoids the need for a separate step of attaching the template molecules to the support after synthesis.
  • a plurality of template species of differing sequence can be conveniently amplified in parallel.
  • synthesis on microparticles results in a population of individual microparticles, each with multiple copies of a particular template molecule (or its complement) attached thereto, wherein the template molecules attached to each microparticle differ in sequence from the template molecules attached to other microparticles.
  • Each of the supports thus has a clonal population of templates attached thereto, e.g., support A will have multiple copies of template X attached thereto; support B will have multiple copies of template Y attached thereto; support C will have multiple copies of template Z attached thereto, etc.
  • clonal population of templates By “clonal population of templates”, “clonal population of nucleic acids”, etc., is meant a population of substantially identical template molecules, preferably generated by successive rounds of amplification that start from a single template molecule of interest (starting template).
  • the substantially identical template molecules may be substantially identical to the starting template or to its complement.
  • Amplification is typically performed using PCR, but other amplification methods may also be used (see below). It will be understood that members of a clonal population need not be 100% identical, e.g., a certain number of “errors” may occur during the course of synthesis, e.g., during amplification. Preferably at least 50% of the members of a clonal population are at least 90%, or more preferably at least 95% identical to a starting template molecule (or to its complement).
  • At least 60%, at least 70%, at least 80%, at least 90%, at least 95%, at least 99%, or more of the members of a population are at least 90%, or more preferably at least 95% identical, or yet more preferably at least 99% identical to the starting template molecule (or to its complement).
  • the percent identity of at least 95% or more preferably at least 99% of the members of the population to a starting template molecule (or to its complement) is at least 98%, 99%, 99.9% or greater.
  • Amplification primers may be attached to supports using any of a variety of techniques.
  • one end of the primer (the 5′ end) of the primer may be functionalized with one member of a binding pair (e.g., biotin), and the support functionalized with the other member of the binding pair (e.g., streptavidin). Any similar binding pair may be used.
  • nucleic acid tags of defined sequence may be attached to the support and primers having complementary nucleic acid tags can be hybridized to the nucleic acid tags attached to the support.
  • Various linkers and crosslinkers can also be used.
  • PCR Methods for performing PCR are well known in the art and are described, for example, in U.S. Pat. Nos. 4,683,195, 4,683,202, and 4,965,188, and in Dieffenbach, C. and Dveksler, G S, PCR Primer: A Laboratory Manual, 2 nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 2003.
  • Methods for amplifying nucleic acids on microparticles are well known in the art and are described, for example, standard PCR can be performed in wells of a microtiter dish or in tubes on beads with primers attached thereto (e.g., beads prepared as in Example 12. While PCR is a convenient amplification method, any of numerous other methods known in the art can also be used. For example, multiple strand displacement amplification, helicase displacement amplification (HDA), nick translation, Q beta replicase amplification, rolling circle amplification, and other isothermal amplification methods etc., can be used.
  • HDA helicase
  • Template molecules can be obtained from any of a variety of sources.
  • DNA may be isolated from a sample, which may be obtained or derived from a subject.
  • sample is used in a broad sense to denote any source of a template on which sequence determination is to be performed.
  • the phrase “derived from” is used to indicate that a sample and/or nucleic acids in a sample obtained directly from a subject may be further processed to obtain template molecules.
  • the source of a sample may be of any viral, prokaryotic, archaebacterial, or eukaryotic species. In certain embodiments of the invention the source is a human.
  • the sample may be, e.g., blood or another body fluid containing cells; sperm; a biopsy sample, etc.
  • Genomic or mitochondrial DNA from any organism of interest may be sequenced.
  • cDNA may be sequenced.
  • RNA may also be sequenced, e.g., by first reverse transcribing to yield cDNA, using methods known in the art such as RT-PCR. Mixtures of DNA from different samples and/or subjects may be combined. Samples may be processed in any of a variety of ways. Nucleic acids may be isolated, purified, and/or amplified from a sample using known methods. Of course entirely artificial, synthetic nucleic acids, recombinant nucleic acids not derived from an organism can also be sequenced.
  • Templates can be provided in double or single-stranded form. Typically when a template is initially provided in double-stranded form the two strands will subsequently be separated (e.g., the DNA will be denatured), and only one of the two strands will be amplified to produce a localized clonal population of template molecules, e.g., attached to a microparticle, immobilized in or on a semi-solid support, etc.
  • Templates may be selected or processed in a variety of additional ways. For example, templates obtained from DNA that has been subjected to treatment to with a methyl-sensitive restriction enzyme (e.g., MspI) can be used. Such treatment, which results in DNA fragments, can be performed prior to amplification. Fragments containing methylated bases do not amplify. Sequence information obtained from the hypomethylated templates may be compared with sequence information obtained from templates derived from the same source, which were not subjected to selection for hypomethylation.
  • a methyl-sensitive restriction enzyme e.g., MspI
  • Templates may be inserted into, provided in, or derived from a library.
  • hypomethylated libraries are known in the art. Inserting templates into libraries can allow for the convenient concatenation of additional nucleotide sequences to the ends of templates, e.g., tags, binding sites for primers or initializing oligonucleotides, etc.
  • tags having a plurality of binding sites, e.g., a binding site for an amplification primer, a binding site for an initializing oligonucleotide, a binding site for a capture agent, etc.
  • nucleic acid segments typically DNA
  • each of which contain two nucleic acid segments of interest separated by sequences that are complementary to amplification and/or sequencing primers that are used in sequencing steps, i.e., these sequences serve as primer binding regions (PBRs).
  • PBRs primer binding regions
  • the nucleic acid segments are portions of a contiguous piece of naturally occurring DNA.
  • the segments may be from the 5′ and 3′ end of a contiguous piece of genomic DNA as described in the afore-mentioned references.
  • Such nucleic acid segments are referred to herein in a manner consistent with the afore-mentioned references, as “tags” or “end tags”.
  • a paired tag Two tags derived from a single contiguous nucleic acid, e.g., from the 5′ and 3′ ends thereof, are referred to as “a paired tag”, “paired tags”, or “a ditag”. It will be appreciated that a “paired tag” comprises two tags, even if used in the singular. By selecting the contiguous pieces of DNA from which the tags of a paired tag are derived to be within a predefined size limit, the distance separating the two tags is constrained.
  • the nucleic acid fragments of the libraries typically also contain sequences complementary to sequencing and/or amplification primers flanking the tags, i.e., a first such sequence may be located 5′ to the tag that is closer to the 5′ end of the fragment, and a second such sequence may be located 3′ to the tag that is located closer to the 3′ end of the fragment. It is noted that the position of the two tags as present in the contiguous nucleic acid from which the tags are derived may, but need not, correspond with the position of the tag in the DNA fragment of the library in various embodiments.
  • the nucleic acid fragments and the tags can have a range of different sizes.
  • the nucleic acid fragments may be, for example, between 80 and 300 nucleotides in length, e.g., between 100-200, 100-150, approximately 150 nucleotides in length, approximately 200 nucleotides in length, etc.
  • the tags can be, e.g., between 15-25 nucleotides in length, e.g., approximately 17-18 nucleotides in length, etc. It is noted that these lengths are exemplary and are not intended to be limiting. Shorter or longer fragments and/or tags could be used.
  • the important aspect of the paired tags is the fact that they are separated from one another by a distance (“separation distance”) in the nucleic acid from which they were originally derived, wherein the separation distance falls within a predetermined range of distances.
  • separation distance a distance in the nucleic acid from which they were originally derived, wherein the separation distance falls within a predetermined range of distances.
  • the fact that the tags are separated by a separation distance that falls within a predetermined range allows the sequence of the tags to be aligned against a reference sequence (e.g., a reference genome sequence).
  • the 5′ and 3′ tags of a paired tag represent (i.e., they have the sequence of) segments of a larger piece of nucleic acid, e.g., genomic DNA, which segments are located within a predefined distance from one another in a naturally occurring piece of DNA, e.g., within a piece of genomic DNA.
  • the 5′ and 3′ tags of a paired tag represent segments of DNA located within up to 500 nucleotides of each other, within up to 1 kB of each other, within up to 2 kB of each other, within up to 5 kB of each other, within up to 10 kB of each other, within up to 20 kB of each other, in a naturally occurring piece of DNA.
  • the 5′ and 3′ tags of a paired tag are located between 500 nucleotides and 2 kB apart, e.g., between 700 nucleotides and 1.2 kB apart, approximately 1 kB apart, etc., in a naturally occurring piece of DNA.
  • tags are originally obtained from a larger piece of nucleic acid
  • the word “tag” applies to any nucleic acid segment that has the sequence of the tag, whether present in its original sequence context or in a library fragment, amplification product from a library fragment, template to be sequenced, etc.
  • a nucleic acid fragment (e.g., a library molecule) may have the following structure:
  • Tag 1 and Tag 2 can be 5′ and 3′ tags of a paired tag. Either of the tags can be the 5′ tag or the 3′ tag.
  • Linker 1 and Linker 2 contain primer binding regions for one or more primers.
  • Linkers 1 and 2 each contain a PBR for an amplification primer and a PBR for a sequencing primer. The primers in each linker can be nested, such that the sequencing primer PBR is located internal to the amplification primer PBR.
  • Linker 3 may contain PBRs for one or more sequencing primers to allow for sequencing of Tag 1 and Tag 2.
  • the term “linker” refers to a nucleic acid sequence that is present in multiple nucleic acid fragments of a library, e.g., in substantially all fragments of the library.
  • a linker may or may not actually have served a linking function during construction of the library and can simply be considered to be a defined sequence that is common to most or all members of a given library. Such a sequence is also referred to as a “universal sequence”. Thus a nucleic acid complementary to the linker or a portion thereof would hybridize to multiple members of the library and could be used as an amplification primer or sequencing primer for most or all molecules in the library.
  • a nucleic acid fragment has the following structure:
  • Tag 1 and Tag 2 and Linker 1 and Linker 2 contain PBRs as described above.
  • Internal Adaptor contains two primer binding regions, which may be referred to as IA and IB, as discussed further below. These PBRs are of use to produce microparticles having two distinct substantially identical populations of nucleic acids attached thereto, wherein nucleic acids of one of the populations comprise Tag 1 and nucleic acids of the other population comprise Tag 2.
  • the two distinct populations of nucleic acids have at least partially different sequences, e.g., they differ in the sequence of the tag regions.
  • the Internal adaptor can contain a spacer region between the two primer binding regions.
  • the spacer region may contain abasic residues, which will prevent a polymerase from extending through the spacer.
  • spacer regions containing any other blocking group that would prevent polymerase extension through the spacer could be used.
  • a nucleic acid fragment includes one or more additional tags (e.g., 2, 4, 6, etc.) and one or more additional internal adaptors.
  • a nucleic acid fragment can have the following structure:
  • Linker 1 Tag 1—Internal Adaptor 1—Tag 2—Linker 2—Tag 3—Internal Adaptor 2—Tag 4—Linker 3
  • inventive nucleic acid fragments and libraries of such fragments, microparticles containing two or more substantially identical populations of nucleic acids, and arrays of such microparticles can be used in a wide variety of sequencing methods other than the ligation-based sequencing methods described herein.
  • sequencing methods such as FISSEQ, pyrosequencing, etc.
  • FISSEQ FISSEQ
  • pyrosequencing etc.
  • the ligation-based methods can also advantageously be employed.
  • the term “sequencing primer” may be understood to mean “initializing oligonucleotide”.
  • the templates to be sequenced are synthesized by PCR in individual aqueous compartments (also called “reactors”) of an emulsion.
  • the compartments each contain a particulate support such as a bead having a suitable first amplification primer attached thereto, a first copy of the template, a second amplification primer, and components needed for the PCR reaction (e.g., nucleotides, polymerase, cofactors, etc.).
  • a particulate support such as a bead having a suitable first amplification primer attached thereto, a first copy of the template, a second amplification primer, and components needed for the PCR reaction (e.g., nucleotides, polymerase, cofactors, etc.).
  • short ( ⁇ 500 nucleotide) templates suitable for PCR are created by attaching (e.g., by ligation) a universal adaptor sequence to each end of a population of different target sequences (templates).
  • a bulk PCR reaction is prepared with the adapted templates, one free amplification primer, microparticles with a second amplification primer attached thereto, and other PCR reagents (e.g., polymerase, cofactors, nucleotides, etc.).
  • the aqueous PCR reaction is mixed with an oil phase (containing light mineral oil and surfactants) in a 1:2 ratio. This mixture is vortexed to create a water-in-oil emulsion.
  • One milliliter of mixture is sufficient to create more than 4 ⁇ 10 9 aqueous compartments within the emulsion, each a potential PCR reactor.
  • Aliquots of the emulsion sample are dispensed into the wells of a microtiter plate (e.g., 96 well plate, 384 well plate, etc.) and thermally cycled to achieve solid-phase PCR amplification on the microparticles.
  • a microtiter plate e.g., 96 well plate, 384 well plate, etc.
  • the microparticle and template concentrations are carefully controlled so that the reactors rarely contain more than one bead or template molecule.
  • At least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, or more of the reactors contain a single bead and a single template.
  • Members of each clonal populations of templates are thus spatially localized in proximity to one another as a result of their attachment to the microparticle.
  • the points of attachment of the templates may be substantially uniformly distributed on the surface of the particle.
  • the present invention provides an approach that allows the use of smaller amplicons while still preserving the paired tag information that arises when a single nucleic acid fragment containing 5′ and 3′ tags of a paired tags is attached via amplification to a microparticle.
  • the invention provides a microparticle, e.g., a bead, having at least two distinct populations of nucleic acids attached thereto, wherein each of the at least two populations consists of a plurality of substantially identical nucleic acids, and wherein a first population of substantially identical nucleic acids comprises a first nucleic acid segment of interest, e.g., 5′ tag, and a second population of nucleic acids comprises a second nucleic acid segment of interest, e.g., 3′ tag.
  • the first and second populations of nucleic acids are amplified from a single larger nucleic acid fragment that contains the two tags and also contains appropriately positioned primer binding sites flanking and separating the tags, so that two amplification reactions can be performed either sequentially or, preferably, simultaneously, in a single reactor of a PCR emulsion in the presence of a microparticle and amplification reagents.
  • the microparticle has attached thereto two different populations of primers, one of which corresponds in sequence with a primer binding region external to one of the tags in the nucleic acid fragment, and the other of which corresponds in sequence with a primer binding region external to the other tag in the nucleic acid fragment, i.e., the primer binding regions flank the two tags.
  • primers that bind to primer binding regions located between the two tags, so that two separate PCR reactions can be performed, each amplifying a portion of the nucleic acid fragment containing one of the tags.
  • the amplified nucleic acid segments contain additional primer binding regions, which are different from one another. These additional primer binding regions are present in the nucleic acid fragment and are located internal to the PBRs for the amplification primers, i.e., they are nested. These additional PBRs serve as binding regions for two different sequencing primers.
  • either one or the other of the two nucleic acid segments can be sequenced without interference due to the presence of the other nucleic acid segment.
  • Each of the nucleic acid segments is significantly shorter than the nucleic acid fragment from which it was amplified, thus improving the efficiency with which emulsion-based PCR can be performed using libraries of fragments containing paired tags, while still preserving the association between the tags of a paired tag.
  • FIGS. 34A and 35A show the same steps, with FIG. 35A providing additional details.
  • paired-end library fragments containing two tags (Tag 1 and Tag 2) are constructed with an internal adapter cassette (IA-IB) and unique flanking linker sequences (P1 and P2). Both the internal adapter cassette and the flanking linker sequences contain nucleotide sequences that afford both PCR amplification and DNA sequencing.
  • PCR primer regions are designed as to allow the use of nested DNA sequencing primers.
  • DNA capture microparticles are generated by attaching two oligonucleotide sequences that are identical to the unique flanking linker sequences.
  • DNA capture microparticles bound with oligonucleotides having P1 and P2 sequences are seeded into reactions containing a single di-tag library fragment (i.e., a library fragment containing a 5′ tag and 3′ tag of a paired tag) and solution-based PCR primers.
  • Solution-based flanking linker primers are added in limiting amounts in comparison to the internal adapter primers (IA and IB) and will serve to promote efficient drive-to-bead amplification of PCR-generated tag products (i.e., [P1 ⁇ IB], [P2 ⁇ IA]).
  • controlling the amount of primers appropriately can also ensure that the populations of nucleic acids contain substantially the same number of nucleic acids, e.g., approximately half the nucleic acids on an individual microparticle belong to the first population and approximately half the nucleic acids on an individual microparticle belong to the second population.
  • a form of asymmetric PCR can be employed, if desired, in order to control the ratio of the different populations.
  • the single paired-end library fragment in the presence of the four oligonucleotide primers (P1, P2, IA and IB), will generate two unique PCR products.
  • One population contains Tag 1 flanked by P1 and IA, and a second population contains Tag 2 flanked by P2 and IB.
  • microparticles Following amplification microparticles will be loaded with two unique PCR populations corresponding to Tag 1 and Tag 2 generated from the initial library fragment. Each tag thus contains a unique set of priming regions to allow serial sequencing of each tag as shown in FIGS. 34C, 35C , and 35 D.
  • FIGS. 35C and 35D show sequential sequencing of tags 1 and 2, using different sequencing primers. Any of a variety of sequencing methods can be used.
  • the above methods can be used to generate microparticles having more than two distinct populations of nucleic acid sequences attached thereto, e.g., 4, 6, 8, 12, 16, 20, populations, e.g., wherein the populations comprise 2, 3, 4, 6, 8, 10 paired tags.
  • Each population can be individually sequenced by providing a unique primer binding region in each sequence, as described above in the case of two tags.
  • the invention encompasses nucleic acid fragments having the structures shown in FIGS. 34 and 35 and described above, libraries of such fragments, microparticles having nucleic acid segments from such fragments attached thereto, populations of such microparticles wherein the individual microparticles have populations of nucleic acids attached thereto that differ in sequence from those of other microparticles, arrays of microparticles, amplification primers for amplifying nucleic acid segments (tags) from the nucleic acid fragments, sequencing primers for sequencing nucleic acid segments attached to microparticles, methods for making the fragments, libraries and microparticles, and methods of sequencing the nucleic acids attached to the microparticles.
  • the invention encompasses kits containing any combination of the afore-mentioned components, optionally also containing one or more enzymes, buffers, or other reagents useful in amplification, sequencing, etc.
  • a variety of methods may be used to enrich for microparticles that have templates attached thereto.
  • a hybridization-based method can be used in which an oligonucleotide (capture agent) complementary to a portion of an amplification product (template) attached to the microparticles is attached to a capture entity such as another (preferably larger) microparticle, microtiter well, or other surface.
  • the portion of the amplification product may be referred to as a target region.
  • the target region may be incorporated into templates during amplification, e.g., at one end of the portion of the template having unknown sequence.
  • the target region may be present in the amplification primers that is not attached to the microparticle, so that a complementary portion is present in the amplified template.
  • multiple different templates can include the same target region, so that a single capture agent will hybridize to multiple different templates, allowing the capture of multiple microparticles using only a single oligonucleotide sequence as the capture agent.
  • Microparticles that have been subjected to amplification are exposed to the capture agent under conditions in which hybridization can occur. As a result, microparticles having amplified templates attached thereto are attached to the capture entity via the capture agent. Unattached microparticles are then removed, and the retained microparticles released (e.g., by raising the temperature).
  • aggregates consisting of the capture entity with microparticles attached thereto after hybridization are separated from particulate capture entities lacking attached microparticles and from microparticles that are not attached to a capture entity, e.g., by centrifugation in a viscous solution such as glycerol.
  • Other methods of separation based on size, density, etc. can also be used.
  • Hybridization is but one of a number of methods that can be used for enrichment. For example, capture agents having an affinity for any of a number of different ligands that can be incorporated into a template (e.g., during synthesis) may be used. Multiple rounds of enrichment can be used.
  • FIG. 14A shows an image of compartments of a water-in-oil emulsion, in which PCR reactions were performed on beads having first amplification primers attached thereto, using a fluorescently labeled second amplification primer and an excess of template.
  • Aqueous reactors fluoresce weakly from diffuse free primer whereas beads strongly fluoresce from primers accumulating on the bead as a result of solid-phase amplification (i.e., fluorescent primers are incorporated into the amplified templates that are attached to the beads via the first amplification primer).
  • Bead signal is uniform in the different sized reactors.
  • microparticles are collected (e.g., by use of a magnet in the case of magnetic particles) and used for sequencing by repeated cycles of extension, ligation, and cleavage as described herein.
  • the microparticles are arrayed in or on a semi-solid support prior to sequencing, as described below.
  • Examples 12, 13, 14, and 15 provide additional details of representative and nonlimiting methods that may be used to (i) prepare microparticles having an amplification primer attached thereto, for synthesis of templates on the microparticles (Example 12); (ii) preparation of an emulsion comprising a plurality of reactors for performing PCR (Example 13); (iii) PCR amplification in compartments of an emulsion (Example 13); (iv) breaking the emulsion and recovering microparticles (Example 13); (v) enriching for microparticles having clonal template populations attached thereto (Example 14); (vi) preparation of glass slides to serve as substrates for a semi-solid polyacrylamide support (Example 15); and (vii) mixing microparticles with unpolymerized acrylamide, forming an array of microparticles having templates attached thereto, embedded in acrylamide on a substrate (Example 15).
  • Example 15 also describes a protocol for polymerase trapping, which is used
  • the templates are amplified by PCR in a semi-solid support such as a gel having suitable amplification primers immobilized therein. Templates, additional amplification primers, and reagents needed for the PCR reaction are present within the semi-solid support.
  • One or both of a pair of amplification primers is attached to the semi-solid support via a suitable linking moiety, e.g., an acrydite group. Attachment may occur during polymerization.
  • Additional reagents may be present in prior to formation of the semi-solid support (e.g., in a liquid prior to gel formation), or one or more of the reagents may be diffused into the semi-solid support after its formation.
  • the pore size of the semi-solid support is selected to allow such diffusion. As is well known in the art, in the case of a polyacrylamide gel, pore size is determined mainly by the concentration of acrylamide monomer and to a lesser extent by the crosslinking agent. Similar considerations apply in the case of other semi-solid support materials. Appropriate cross-linkers and concentrations to achieve a desired pore size can be selected.
  • an additive such as a cationic lipid, polyamine, polycation, etc.
  • a cationic lipid, polyamine, polycation, etc. is included in the solution prior to polymerization, which forms in-gel micelles or aggregates surrounding the microparticles.
  • Methods disclosed in U.S. Pat. Nos. 5,705,628, 5,898,071, and 6,534,262 may also be used.
  • various “crowding reagents” can be used to crowd DNA near beads for clonal PCR.
  • SPRI® magnetic bead technology and/or conditions can also be employed. See, e.g., U.S. Pat. No. 5,665,572, demonstrating effective PCR amplification in the presence of 10% polyethylene glycol (PEG).
  • amplification e.g., PCR
  • ligation or both, are performed in the presence of a reagent such as betaine, polyethylene glycol, PVP-40, or the like.
  • a reagent such as betaine, polyethylene glycol, PVP-40, or the like.
  • the semi-solid support may be located or assembled on a substantially planar rigid substrate.
  • the substrate is transparent to radiation of the excitation and emission wavelengths used for excitation and detection of typical labels (e.g., fluorescent labels, quantum dots, plasmon resonant particles, nanoclusters), e.g., between approximately 400-900 nm. Materials such as glass, plastic, quartz, etc., are suitable.
  • the semi-solid support may adhere to the substrate and may optionally be affixed to the substrate using any of a variety of methods.
  • the substrate may or may not be coated with a substance that enhances adherence or bonding, e.g., silane, polylysine, etc.
  • 6,511,803 describes methods for synthesizing clonal populations of templates using PCR in semi-solid supports, methods for preparing semi-solid supports on substantially planar substrates, etc. Similar methods may be used in the present invention.
  • the substrate may have a well or depression to contain the liquid prior to formation of the semi-solid substrate. Alternately, a raised barrier or mask may be used for this purpose.
  • the above approach provides an alternative to the use of reactors in emulsions to generate spatially localized populations of clonal templates.
  • the clonal populations are present at discrete locations in the semi-solid support, such that a signal can be acquired from each population during sequencing for purposes of detecting a newly ligated extension probe, e.g., by imaging.
  • two or more distinct clonal populations are amplified from a single nucleic acid fragment and are present as a mixture at a discrete location in the semi-solid support.
  • Each of the clonal populations in the mixture may comprise a tag, e.g., so that the discrete location contains fragments containing a 5′ tag and fragments containing a 3′ tag.
  • the clonal templates comprising the 5′ tag and the 3′ tag contain different sequencing primers, so that they can be sequenced independently of one another.
  • This approach is identical to the approach described above for producing multiple populations of substantially identical nucleic acids on a microparticle and obtaining sequencing information for both members of a paired tag from a single microparticle.
  • a semi-solid support for use in any of the inventive methods forms a layer of about 100 microns or less in thickness, e.g., about 50 microns thick or less, e.g., between about 20 and 40 microns thick, inclusive.
  • a cover slip or other similar object having a substantially planar surface can be placed atop the semi-solid support material, preferably prior to polymerization, to help produce a uniform gel layer, e.g. to form a gel layer that is substantially planar and/or substantially uniform in thickness.
  • templates are synthesized by PCR on microparticles having a suitable amplification primer attached thereto, wherein the microparticles are immobilized in or on a semi-solid support prior to template synthesis, i.e., they are fully or partially embedded in the semi-solid support.
  • the microparticles are completely surrounded by the semi-solid support material, though they may rest on an underlying substrate. The microparticles thus remain at substantially fixed positions with respect to one another unless the semi-solid support is disrupted.
  • This approach provides another alternative to the use of emulsions to generate spatially localized populations of clonal templates.
  • Microparticles may be mixed with liquid prior to formation of the semi-solid support.
  • microparticles may be arrayed on a substantially planar substrate, and liquid added to the microparticle array prior to polymerization, crosslinking, etc.
  • the microparticles have a first amplification primer attached thereto.
  • the second amplification primer may, but need not be, be attached to the semi-solid support.
  • Additional reagents e.g., template, second amplification primer, polymerase, nucleotides, cofactors, etc.
  • the semi-solid substrate is generally formed as described above, e.g., on a glass slide.
  • the gel can be solubilized (e.g., digested or depolymerized or dissolved) so that microparticles with attached clonal template populations can be conveniently recovered (e.g., by use of a magnet in the case of magnetic particles) following template synthesis.
  • Gels that can be solubilized, digested, depolymerized, dissolved, etc., are referred to herein as “reversible”.
  • Conventional polyacrylamide polymerization involves the use of N—N′ methylenebisacrylamide (BIS) as a crosslinking agent together with a suitable catalyst to initiate polymerization (e.g., N,N,N′,N′-tetramethylethylenediamine (TEMED)).
  • BIOS N—N′ methylenebisacrylamide
  • TEMED N,N,N′,N′-tetramethylethylenediamine
  • DATD N—N′ diallyltartardiamide
  • This compound is structurally similar to BIS but possesses cis-diol groups that can be cleaved by periodic acid, e.g., in a solution containing sodium periodate (Anker, H. S.: F.E.B.S. Lett., 7: 293, 1970).
  • DATD gels can be readily solubilized.
  • Gels made using DATD as the crosslinker are highly transparent and bind well to glass
  • Another crosslinking agent with DATD-like properties of forming reversible gels is ethylene diacrylate (Choules, G. L. and Zimm, B.
  • N,N′-bisacrylylcystamine is another crosslinker that can be used to form a reversible polyacrylamide gel.
  • Another crosslinking agent that can be used to form gels that dissolve in periodate is N,N′-(1,2-Dihydroxyethylene)bis-acrylamide (DHEBA).
  • DHEBA N,N′-(1,2-Dihydroxyethylene)bis-acrylamide
  • Any of a variety of other materials that form reversible semi-solid supports can also be used.
  • thermo-reversible polymers such as Pluronics (available from BASF) can be used.
  • Pluronics are a family of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) triblock copolymers (Nace, V. M., et al., Nonionic Surfactants , Marcel-Dekker, NY, 1996). These materials become semi-solid (gel) at elevated temperatures (e.g., temperatures greater than room temperature) and liquefy upon cooling.
  • Various methods can be used to chemically derivatize Pluronics, e.g., to facilitate attachment of primers thereto (see, e.g., Neff, J. A. et al., J. Biomed. Mater. Res., 40:511, 1998; Prud' Subscribe, R K, et al., Langmuir, 12:4651, 1996).
  • the microparticles can be collected and subjected to sequencing using repeated cycles of extension, ligation, and cleavage.
  • the microparticles Prior to sequencing, the microparticles may be arrayed in or on a second semi-solid support, e.g., at a higher density than that at which they were present in or on the first semi-solid support.
  • the semi-solid support is typically itself supported by a substantially planar and rigid substrate, e.g., a glass slide.
  • the first approach involves performing amplification on microparticles that are not present in the semi-solid support (e.g., by emulsion-based PCR) and then immobilizing the microparticles in or on a semi-solid support.
  • the second general approach involves immobilizing microparticles in or on a semi-solid support and then performing amplication. In either case, it may be desirable to employ procedures to reduce clumping of the microparticles and/or to align the microparticles substantially in a single focal plane.
  • the concentrations of monomer and crosslinker are selected so that the particles will sink to the bottom of the solution prior to complete polymerization, so that they settle on an underlying planar substrate and are thus arranged in a single plane.
  • an object having a substantially planar surface such as a cover slip, is placed on top of the liquid acrylamide (or other material capable of forming a semi-solid support) containing microparticles so that the acrylamide is trapped between two layers of a “sandwich” structure. The sandwich is then turned over, so that by the action of gravity the microparticles sink down and rest on the cover slip (or other object having a substantially planar surface). After polymerization, the cover slip is removed. The microparticles are thus embedded in substantially a single plane, close to the surface of the semi-solid support. (e.g., tangent to the surface).
  • microparticles are either covalently or noncovalently attached to a substantially planar, rigid substrate without use of a semi-solid support to immobilize them.
  • substrates such as glass, plastic, quartz, silicon, etc.
  • the substrate may or may not be coated (e.g., spin-coated) or functionalized with a material (e.g., any of a variety of polymers) or agent that facilitates attachment.
  • the coating may be a thin film, self-assembled monolayer, etc. Either the microparticles, a moiety attached to the microparticles, or oligonucleotides attached to the microparticles (e.g., the templates) can be attached.
  • any pair of molecules that exhibit affinity for one another such that they form a binding pair may be used to attach microparticles or templates to a substrate.
  • the first member of the binding pair is attached covalently or noncovalently to the substrate, and the second member of the binding pair is attached covalently or noncovalently to the microparticles or templates.
  • the first binding partner may be attached to the substrate via a linker.
  • the second binding partner may be attached to the microparticles or templates via a linker.
  • a slide or other suitable substrate is modified with an amine-reactive group (e.g., using a PEG linker containing an amine-reactive group). The amine-reactive group reacts under aqueous conditions (e.g.
  • an amine e.g., a lysine in any protein, for example, streptavidin.
  • Microparticles functionalized with a moiety bearing an amine will therefore become immobilized on the substrate.
  • the moiety bearing an amine can be a protein or a suitably functionalized nucleic acid, e.g., a DNA template.
  • Multiple moieties can be attached to a bead.
  • a bead may have proteins attached thereto that react with the NHS ester to attach the bead to the substrate and may also have DNA templates attached thereto, which can be sequenced after the bead is attached to the substrate.
  • coated slides bearing a polymer tether having an amine-reactive NHS moiety on one end are commercially available, e.g., from Schott Nexterion, Schott North America, Inc., Elmsford, N.Y. 10523). Alternately, coated slides (e.g., biotin-coated slides) are available from Accelr8 Technology Corporation, Denver, Colo. Their OptiChemTM technology represents but one method for attaching microparticles to a substrate. See, e.g., U.S. Pat. No. 6,844,028.
  • microparticles may be attached to a substrate by functionalising polynucleotides on the bead with biotin by, e.g., the use of terminal transferase with biotin-dideoxyATP and/or biotin-deoxyATP, and then contacting them with a streptavidin-coated slide (available from, e.g., Accelr8 Technology Corporation, Denver, Colo.) under conditions which promote a biotin-streptavidin bond.
  • a streptavidin-coated slide available from, e.g., Accelr8 Technology Corporation, Denver, Colo.
  • any of a wide variety of methods known in the art can be used to modify nucleic acids such as oligonucleotide primers, probes, templates, etc., to facilitate the attachment of such nucleic acids to microparticles or to other supports or substrates.
  • any of a wide variety of methods known in the art can be used to modify microparticles or others supports to facilitate the attachment of nucleic acids thereto, to facilitate the attachment of microparticles to supports or substrates, etc.
  • Microspheres are available that have surface chemistries that facilitate the attachment of a desired functionality.
  • Some examples of these surface chemistries include, but are not limited to, amino groups including aliphatic and aromatic amines, carboxylic acids, aldehydes, amides, chloromethyl groups, hydrazide, hydroxyl groups, sulfonates and sulfates. These groups may react with groups present in nucleic acids, or nucleic acids may be modified by attachment of a reactive group.
  • a large number of stable bifunctional groups are well known in the art, including homobifunctional and heterobifunctional linkers. See, e.g., Pierce Chemical Technical Library, available at the Web site having URL www.piercenet.com (originally published in the 1994-95 Pierce Catalog) and G. T. Hermanson, Bioconjugate Techniques , Academic Press, Inc., 1996. See also U.S. Pat. No. 6,632,655.
  • Arrays of microparticles formed according to the methods described herein are generally random.
  • the terms “randomly-patterned” or “random” refer to a non-ordered, non-Cartesian distribution (in other words, not arranged at pre-determined points or locations along the x- and y axes of a grid or at defined ‘clock positions’, degrees or radii from the center of a radial pattern) of entities (features) over a support, that is not achieved through an intentional design (or program by which such a design may be achieved) or by placement of individual entities.
  • Such a “randomly-patterned” or “random” array of entities may be achieved by dropping, spraying, plating, spreading, distributing, etc., a solution, emulsion, aerosol, vapor or dry preparation comprising a pool of entities onto or into a support and allowing them to settle onto or into the support without intervention in any manner to direct them to specific sites in or on the support.
  • entities may be suspended in a solution that contains precursors to a semi-solid support (e.g., acrylamide monomers). The solution is then distributed on a second support and the semi-solid support forms on the second support. Entities are embedded in or on the semi-solid support.
  • non-random arrays can also be used.
  • the methods for forming arrays used herein are distinct from methods in which, for example, synthesis of a polynucleotide occurs by sequential application of individual nucleotide subunits at predefined locations on a substrate.
  • FIG. 14B shows a fluorescence image of a slide (1 inch by 3 inch) having a polyacrylamide gel thereon. Beads (1 micron diameter) with a fluorescently labeled oligonucleotide hybridized to templates attached to the beads are immobilized in the gel.
  • the image shows a bead surface density (i.e., number of beads per unit area of the substrate, within the region where the beads are located) sufficient to image approximately 280 million beads per slide.
  • the surface density and imageable area are sufficient to image at least 500 million beads on a single slide. For example, FIG.
  • 14B shows a schematic diagram of a slide with a Teflon® mask surrounding a clear area in which beads are to be embedded in a semi-solid support layer such as a polyacrylamide gel.
  • the area of this mask is 864 mm 2 .
  • the surface density is 578,000 beads per mm 2 .
  • a close-packed hexagonal array of 1 micron beads gives 1,155,000 beads per mm 2 , so this embodiment results in an array having 52% of the theoretical maximum density. It will be appreciated that smaller and larger numbers of beads, and greater or lesser bead surface densities, can be used than in this particular embodiment.
  • Microparticles may be arrayed in or on a substantially planar semi-solid support, or on another support or substrate, at a variety of densities, which can be defined in a number of ways.
  • the density may be expressed in terms of the number of microparticles (e.g., spherical microparticles) per unit area of a substantially planar array.
  • the number of microparticles per unit area of a substantially planar array is at least 80% of the number of microparticles in a hexagonal array (by “hexagonal array” is meant a substantially planar array of microparticles in which every microparticle in the array contacts at least six other adjacent microparticles of equal area as described in U.S. Pat.
  • the microparticle density is lower, e.g., the number of microparticles per unit area of a substantially planar array is less than 80%, less than 70%, less than 60%, or less than 50% of the number of microparticles in a hexagonal array.
  • a mixing device e.g., devices that achieve fluid mixing by mechanical or acoustical means, is included within the chamber of a flow cell.
  • suitable mixing devices are known in the art.
  • inventive sequencing methods can be practiced using templates arranged in array formats of all types, including both random and nonrandom arrays, which can be arrays of microparticles or arrays of templates themselves.
  • arrays may be located on a wide variety of substrates such as filters, membranes (e.g., nylon), metal surfaces, etc.
  • Additional examples of array formats on which sequencing by repeated cycles of extension, ligation, and cleavage can be performed are arrays of beads located in wells at the terminal or distal end of individual optical fibers in a fiber optic bundle.
  • Beads with templates attached thereto can be arrayed as described therein. Amplification is preferably performed prior to formation of the array. Arrays formed on such substrates need not necessarily be substantially planar.
  • PCR is performed on arrays that comprise oligonucleotides attached to a substrate or support, (see, e.g., U.S. Pat. Nos. 5,744,305; 5,800,992; 6,646,243 and related patents (Affymetrix); PCT publications WO2004029586; WO03065038; WO03040410 (Nimblegen)).
  • oligonucleotides have a free 3′ or 5′ end. If desired, the end can be modified, e.g., by adding a phosphate group or an OH group to a 3′ end if one is not already present.
  • Template molecules comprising a region complementary to the oligonucleotide attached to the support or substrate are hybridized to the oligonucleotide, and PCR is performed in situ on the array, resulting in a clonal template population at each location on the array.
  • the oligonucleotide attached to the array may serve as one of the amplification primers.
  • the templates are then sequenced using the ligation-based methods described herein. Sequencing can also be performed on templates in arrays such as those described in U.S. Pub. No. 20030068629.
  • alkanethiols modified with terminal aldehyde groups can be used to prepare a self-assembled monolayer (SAM) on a gold surface.
  • SAM self-assembled monolayer
  • the aldehyde groups of the monolayer may be reacted with amine-modified oligonucleotides or other amine-bearing biomolecules to form a Schiff base, which may then be reduced to a stable secondary amine by treatment with sodium cyanoborohydride (Peelen & Smith, Langmuir, 21(1):266-71, 2005).
  • PCR amplification of templates can then be performed.
  • microparticles having clonal populations of templates attached thereto may be attached to surfaces by reacting an amine group on the microparticle or on templates or oligonucleotides attached to the particle, with such surfaces.
  • Still another method of obtaining microparticles with clonal template populations attached thereto is the “solid phase cloning” approach described in U.S. Pat. No. 5,604,097, which makes use of oligonucleotide tags for sorting polynucleotides onto microparticles such that only polynucleotides of the same sequence will be attached to any particular microparticle.
  • sequencing by repeated cycles of extension, ligation, and cleavage is performed by diffusing sequencing reagents (e.g., extension probes, ligase, phosphatase, etc.) into a semi-solid support such as a gel having clonal populations of templates immobilized in or on the support such that each clonal population is localized to a spatially distinct region of the support.
  • sequencing reagents e.g., extension probes, ligase, phosphatase, etc.
  • a semi-solid support such as a gel having clonal populations of templates immobilized in or on the support such that each clonal population is localized to a spatially distinct region of the support.
  • the templates are attached directly to the semi-solid support as described above.
  • the templates are immobilized on a second support such as a microparticle that is in turn immobilized in or on the semi-solid support, as also described above.
  • the invention thus provides a method of ligating a first polynucleotide to a second polynucleotide comprising steps of: (a) providing a first polynucleotide immobilized in or on a semi-solid support; (b) contacting the first polynucleotide with a second polynucleotide and a ligase; and (c) maintaining the first and second polynucleotides in the presence of ligase under suitable conditions for ligation.
  • Suitable conditions include the provision of appropriate buffers, cofactors, temperature, times, etc., for the particular ligase being used.
  • the semi-solid support is a gel such as an acrylamide gel.
  • the first polynucleotide is immobilized in or on the semi-solid support as a result of attachment to a support such as a bead, which is itself immobilized in or on the semi-solid support, e.g., by being partly or completely embedded in the support matrix.
  • the first polynucleotide may be attached directly to the semi-solid support via a linkage such as an acrydite moiety.
  • the linkage may be covalent or noncovalent (e.g., via a biotin-avidin interaction).
  • U.S. Pat. No. 6,511,803 describes a variety of methods that may be used to a attach a nucleic acid molecule to a preferred support of the invention, i.e., a polyacrylamide gel.
  • the invention further provides a method of cleaving a polynucleotide comprising steps of: (a) providing a polynucleotide immobilized in or on a semi-solid support, wherein the polynucleotide comprises a scissile linkage; (b) contacting the polynucleotide with a cleavage agent; and (c) maintaining the polynucleotide in the presence of the cleavage agent under conditions suitable for cleavage. Suitable conditions include the provision of appropriate buffers, temperatures, times, etc., for the particular cleavage agent.
  • the semi-solid support is a gel such as an acrylamide gel.
  • the polynucleotide is immobilized in the semi-solid support as a result of attachment to a support such as a bead, which is itself immobilized in the semi-solid support.
  • the polynucleotide may be attached directly to the semi-solid support via a linkage such as an acrydite moiety.
  • the linkage may be covalent or noncovalent (e.g., via a biotin-avidin interaction).
  • Macevicz discloses sequencing a single template species having a particular sequence. He does not discuss the possibility of performing his method in parallel to simultaneously sequence a plurality of templates having different sequences.
  • the inventors have recognized that in order to efficiently perform sequencing in a high throughput manner, it is desirable to prepare a plurality of supports (e.g., beads), as described above, such that each support has templates of a particular sequence attached thereto, and to perform the methods described herein simultaneously on templates attached to each support.
  • a plurality of such supports are arrayed in or on a planar substrate such as a slide.
  • the supports are arrayed in or on a gel.
  • the supports may be arrayed in a random fashion, i.e., the location of each support on the substrate is not predetermined.
  • the supports need not be located at regularly spaced intervals or positioned in an ordered arrangement of rows and columns, etc.
  • the supports are arrayed at a density such that it is possible to detect an individual signal from many or most of the supports.
  • the supports are primarily distributed in a single focal plane. Multiple supports having templates of the same sequence attached thereto may be included, e.g., for purposes of quality control. Sequencing reactions are performed in parallel on templates attached to each of the supports.
  • Signals may be collected using any of a variety of means, including various imaging modalities.
  • the imaging device has a resolution of 1 ⁇ m or less.
  • a scanning microscope fitted with a CCD camera, or a microarray scanner with sufficient resolution could be used.
  • beads can be passed through a flow cell or fluidics workstation attached to a microscope equipped for fluorescence detection.
  • Other methods for collecting signal include fiber optic bundles. Appropriate image acquisition and processing software may be used.
  • sequencing is performed in a microfluidic device.
  • beads with attached templates may be loaded into the device and reagents flowed therethrough.
  • Template synthesis e.g., using PCR, can also be performed in the device.
  • U.S. Pat. No. 6,632,655 describes an example of a suitable microfluidic device.
  • the extended strand generated by extending a first initializing oligonucletide is removed from the template following a sufficient number of cycles and a second initializing oligonucleotide is annealed to the binding region, followed by cycles of extension, ligation, and detection.
  • the process is repeated with any number of different initializing oligonucleotides.
  • the extension probes are cleaved, preferably the number of different initializing oligonucleotides used (and thus the number of reactions) equals the length of the portion of the extension probe that remains hybridized to the template following release of the distal portion of the probe.
  • sequence information e.g., the order and identity of each nucleotide
  • sequence information can be obtained from the templates that are attached to a single support while still reading deep into the sequence using substantially fewer cycles than would be required if successive nucleotides were identified in each cycle.
  • Embodiments in which the initializing oligonucleotides are bound sequentially to the same template have certain advantages over an approach that requires dividing the template into multiple aliquots, such as the methods taught by Macevicz. For example, applying the initializing oligonucleotides to the same template avoids the need to keep track of, and later, combine data acquired from multiple aliquots. In embodiments in which the supports are arrayed in a random fashion such that the position of individual supports is not predetermined, it would be difficult or impossible to reliably combine partial sequence information from multiple supports each of which had templates of the same sequence attached thereto.
  • Macevicz teaches identification of single nucleotides in the template in each cycle of extension, ligation, and detection.
  • the methods may be modified to allow identification of multiple nucleotides in the template in each cycle.
  • the extension probes are labeled so that the identity of two or more, preferably contiguous, nucleotides abutting the extended duplex can be determined from the label.
  • the sequence determining portion of the extension probes is more than a single nucleotide and typically comprises the proximal nucleotide, the immediately adjacent nucleotide, and possibly one or more additional, preferably contiguous nucleotides, all of which hybridize specifically to the template.
  • 16 distinguishably labeled probes or probe combinations are used to identify the 16 possible dinucleotides AA, AG, AC, AT, GA, GG, GC, GT, CA, CG, CC, CT, TA, TG, TC, and TT.
  • the sequence determining portion of each distinguishably labeled extension probe is complementary to one of these dinucleotides. Similar methods utilizing more labels allow identification of longer nucleotide sequences in each cycle.
  • label is used herein in a broad sense to denote any detectable moiety or plurality of detectable moieties attached to or associated with a probe, by which probes of different species (e.g., probes with different terminal nucleotides) may be distinguished from one another. Thus there need not be a one to one correspondence between a label and a specific detectable moiety. For example, multiple detectable moieties can be attached to a single probe, resulting in a combined signal that allows the probe to be distinguished from probes having a different detectable moiety or set of detectable moieties attached thereto.
  • combinations of detectable moieties can be used in accordance with a labeling scheme referred to as “Combinatorial Multicolor Coding”, which is described in U.S. Pat. No. 6,632,609 and in Speicher, et al., Nature Genetics, 12:368-375, 1996.
  • the probes of the invention can be labeled in a variety of ways, including the direct or indirect attachment of fluorescent or chemiluminescent moieties, calorimetric moieties, enzymatic moieties that generate a detectable signal when contacted with a substrate, and the like. Macevicz teaches that the probes may be labeled with fluorescent dyes, e.g. as disclosed by Menchen et al, U.S. Pat. No. 5,188,934; Begot et al PCT application PCT/US90105565.
  • fluorescent dye and “fluorophore” as used herein refer to moieties that absorb light energy at a defined excitation wavelength and emit light energy at a different wavelength.
  • the labels selected for use with a given mixture of probes are spectrally resolvable.
  • “spectrally resolvable” means that the labels may be distinguished on the basis of their spectral characteristics, particularly fluorescence emission wavelength, under conditions of operation. For example, the identity of the one or more terminal nucleotides may be correlated to a distinct wavelength of maximum light emission intensity, or perhaps a ratio of intensities at different wavelengths.
  • the spectral characteristic(s) of a label that is/are used to detect and identify a label is referred to as a “color” herein.
  • a label is frequently identified on the basis of a specific spectral characteristic, e.g., the frequency of maximum emission intensity in the case of labels that consist of a single detectable moiety, or the frequencies of emission peaks in the case of labels that consist of multiple detectable moieties.
  • spectrally resolvable fluorescent dyes are provided that allow a one-to-one correspondence between each of four spectrally resolvable fluorescent dyes and the four possible terminal nucleotides of the probes.
  • Sets of spectrally resolvable dyes are disclosed in U.S. Pat. Nos. 4,855,225 and 5,188,934; International application PCT/US90/05565; and Lee et al, Nucleic Acids Researches, 20: 2471-2483 (1992).
  • a set consisting of FITC, HEXTM, Texas Red, and Cy5 is preferred.
  • Numerous suitable fluorescent dyes are commercially available, e.g., from Molecular Probes, Inc., Eugene Oreg.
  • fluorescent dyes include, but are not limited to: Alexa Fluor dyes (Alexa Fluor 350, Alexa Fluor 488, Alexa Fluor 532, Alexa Fluor 546, Alexa Fluor 568, Alexa Fluor 594, Alexa Fluor 633, Alexa Fluor 660 and Alexa Fluor 680), AMCA, AMCA-S, BODIPY dyes (BODIPY FL, BODIPY R6G, BODIPY TMR, BODIPY TR, BODIPY 530/550, BODIPY 558/568, BODIPY 564/570, BODIPY 576/589, BODIPY 581/591, BODIPY 630/650, BODIPY 650/665), CAL dyes, Carboxyrhodamine 6G, carboxy-X-rhodamine (ROX), Cascade Blue, Cascade Yellow, Cyanine dyes (Cy3, Cy5, Cy3.5, Cy5.5), Dansyl, Dapoxyl, Dial,
  • quenchers refers to a moiety that is capable of absorbing the energy of an excited fluorescent label when located in close proximity and of dissipating that energy without the emission of visible light.
  • quenchers include, but are not limited to DABCYL (4-(4′-dimethylaminophenylazo) benzoic acid) succinimidyl ester, diarylrhodamine carboxylic acid, succinimidyl ester (QSY-7), and 4′,5′-dinitrofluorescein carboxylic acid, succinimidyl ester (QSY-33) (all available from Molecular Probes), quencher1 (Q1; available from Epoch), or “Black hole quenchers” BHQ-1, BHQ-2, and BHQ-3 (available form BioSearch, Inc.).
  • detectable moieties In addition to the various detectable moieties mentioned above, the present invention also comprehends use of spectrally resolvable quantum dots, metal nanoparticles or nanoclusters, etc., which may either be directly attached to an oligonucleotide probe or may be embedded in or associated with a polymeric matrix which is then attached to the probe.
  • detectable moieties need not themselves be directly detectable. For example, they may act on a substrate which is detected, or they may require modification to become detectable.
  • a label consists of a plurality of detectable moieties.
  • the combined signal from these detectable moieties produces a color that is used to identify the probe.
  • a “purple” probe of a particular sequence could be constructed by attaching “blue” and “red” detectable moieties thereto.
  • a distinct color can be generated by combining two species of probe having the same sequence but labeled with different detectable moieties to produce a mixed probe.
  • a “purple” probe of a particular sequence can be produced by constructing two species of probe having that sequence. “Red” detectable moieties are attached to the first species, and “blue” detectable moieties are attached to the second species.
  • Aliquots of these two species are mixed.
  • Various shades of purple can be produced by mixing aliquots in different ratios.
  • This approach offers a number of advantages. Firstly, it allows the production of multiple distinguishable probes using a smaller number of detectable moieties.
  • using a mixed probe can provide a degree of redundancy that may help reduce bias that may result from interactions between particular detectable moieties and particular nucleotides.
  • a detectable moiety is attached to a nucleotide in an oligonucleotide extension probe by a cleavable linkage, which allows removal of the detectable moiety following ligation and detection.
  • a cleavable linkage Any of a variety of different cleavable linkages may be used.
  • cleavable linkage refers to a chemical moiety that joins a detectable moiety to a nucleotide, and that can be cleaved to remove the detectable moiety from the nucleotide when desired, essentially without altering the nucleotide or the nucleic acid molecule it is attached to.
  • Cleavage may be accomplished, for example, by acid or base treatment, or by oxidation or reduction of the linkage, or by light treatment (photocleavage), depending upon the nature of the linkage.
  • cleavable linkages and cleavage agents are described in Shirnkus et al., 1985, Proc. Natl. Acad. Sci. USA 82: 2593-2597; Soukup et al., 1995, Bioconjug. Chem. 6: 135-138; Shimikus et al., 1986, DNA 5: 247-255; and Herman and Fenn, 1990, Meth. Enzymol. 184: 584-588.
  • a disulfide linkage can be reduced and thereby cleaved using thiol compound reducing agents such as dithiothreitol (DTT).
  • DTT dithiothreitol
  • Fluorophores are available with a sulfhydryl (SH) group available for conjugation (e.g., Cyanine 5 or Cyanine 3 fluorophores with SH groups; New England Nuclear—DuPont), as are nucleotides with a reactive aryl amino group (e.g., dCTP).
  • a reactive pyridyldithiol will react with a sulfhydryl group to give a sulfhydryl bond that is cleavable with reducing agents such as dithiothreitol.
  • An NHS-ester heterobifunctional crosslinker (Pierce) can be used to link a deoxynucleotide comprising a reactive aryl amino group to a pyridyldithiol group, which is in turn reactive with the SH on a fluorophore, to yield a disulfide bonded, cleavable nucleotide-fluorophore complex useful in the methods of the invention.
  • a cis-glycol linkage between a nucleotide and a fluorophore can be cleaved by periodate.
  • a variety of cleavable linkages are described in U.S. Pat. Nos. 6,664,079, and 6,632,655, US Published Application 20030104437, WO 04/18497 and WO 03/48387.
  • a detectable moiety that can be rendered nondetectable by exposure to electromagnetic energy such as light (photobleaching) is used.
  • a the sequencing methods will typically include a step of cleavage or photobleaching in one or more cycles after ligation and label detection have been performed.
  • cleavage of the scissile linkage present in the oligonucleotide extension probes may not proceed to completion (i.e., less than 100% of the newly ligated probes may be cleaved in the cycle in which they were ligated). Since such probes generally comprise a non-extendable terminus, or are capped, they will not contribute to successive cycles.
  • failure to cleave the probe means that the label remains associated with the template molecule to which the probe ligated, which contributes background signal (i.e., background fluorescence) that can increase the noise in subsequent cycles.
  • Incorporating a step of cleavage or photobleaching to remove the label or render it undetectable reduces this background and improves the signal to noise ratio.
  • Cleavage or photobleaching can be performed as often as every cycle, or less frequently, such as every other, every third, or every fifth or more cycles.
  • a cleavage agent such as DTT may already be present in a wash buffer that may be used to remove unligated extension probes.
  • extension probes having at least one phosphorothiolate linkage are particularly useful in the practice of methods for sequencing by successive cycles of extension, ligation, detection, and cleavage.
  • linkages one of the bridging oxygen atoms of a phosphodiester bond is replaced by a sulfur atom.
  • the phosphorothiolate linkage can be either a 5′-S— phosphorothiolate linkage (3′-O—P—S-5′) as shown in FIG. 4A or a 3′-S-phosphorothiolate linkage (3′-S—P—O-5′) as shown in FIG. 4B .
  • the phosphorus atom in linkages represented as 3′-O—P—S-5′ or 3′-S—P—O-5′ may be attached to two non-bridging oxygen atoms as shown in FIGS. 4A and 4B (as in typical phosphodiester bonds).
  • the phosphorus atom could be attached to any of a variety of other atoms or groups, e.g., S, CH 3 , BH 3 , etc.
  • one aspect of the invention is labeled olignucleotide probes comprising phosphorothiolate linkages. While the probes find particular use in the sequencing methods described herein, they may also be used for a variety of other purposes.
  • the invention provides (i) an oligonucleotide of the form 5′-O—P—O—X—O—P—S—(N) k N B *-3′; and (ii) an oligonucleotide of the form 5′-N B *(N) k —S—P—O—X-3′.
  • N represents any nucleotide
  • N B represents a moiety that is not extendable by ligase
  • * represents a detectable moiety
  • X represents a nucleotide
  • k is between 1 and 100.
  • k is between 1 and 50, between 1 and 30, between 1 and 20, e.g., between 4 and 10, with the proviso that a detectable moiety may be present on any nucleotide of (N) k instead of, or in addition to, N B .
  • the terminal nucleotides in any of these probes may or may not include a phosphate group or a hydroxyl group.
  • the phosphorus atoms will generally be attached to two additional (non-bridging) oxygen atoms in preferred embodiments.
  • FIG. 7 shows a synthesis scheme for a 3′-phosphoroamidite of dA.
  • a similar scheme may be used for synthesis of a 3′-phosphoroamidite of dG.
  • These phosphoroamidites may be used to synthesize oligonucleotides containing 3′-S-phosphorothiolate linkages associated with purine nucleosides, e.g., using an automated DNA synthesizer.
  • Phosphorothiolate linkages can be cleaved using a variety of metal-containing agents.
  • the metal can be, for example, Ag, Hg, Cu, Mn, Zn or Cd.
  • the agent is a water-soluble salt that provides Ag + , Hg ++ , Cu ++ , Mn ++ , Zn + or Cd + anions (salts that provide ions of other oxidation states can also be used). 12 can also be used.
  • Silver-containing salts such as silver nitrate (AgNO 3 ), or other salts that provide Ag + ions, are particularly preferred. Suitable conditions include, for example, 50 mM AgNO 3 at about 22-37° C. for 10 minutes or more, e.g., 30 minutes.
  • the pH is between 4.0 and 10.0, more preferably between 5.0 and 9.0, e.g., between about 6.0 and 8.0, e.g., about 7.0. See, e.g., Mag, M., et al., Nucleic Acids Res., 19(7):1437-1441, 1991.
  • An exemplary protocol is provided in Example 1.
  • FIG. 5A shows a single cycle of hybridization, ligation, and cleavage using an extension probe of the form 5′-O—P—O—X—O—P—S—NNNNN B *-3′
  • N represents any nucleotide
  • N B represents a moiety that is not extendable by ligase (e.g., N B is a nucleotide that lacks a 3′ hydroxyl group or has an attached blocking moiety)
  • * represents a detectable moiety
  • X represents a nucleotide whose identity corresponds to the detectable moiety.
  • any of a large number of blocking moieties can be attached to the 3′ terminal nucleotide to prevent multiple ligations.
  • attaching a bulky group to the sugar portion of the nucleotide, e.g., at the 2′ or 3′ position, will prevent ligation.
  • a fluorescent label may serve as an appropriate bulky group.
  • a template containing binding region 40 and polynucleotide region 50 of unknown sequence is attached to a support, e.g., a bead.
  • the binding region is located at the opposite end of the template from the point of attachment to the support.
  • An initializing oligonucleotide 30 with an extendable terminus (in this case a free 3′ OH group) is annealed to binding region 40 .
  • Extension probe 60 is hybridized to the template in polynucleotide region 50 .
  • Nucleotide X forms a complementary base pair with unknown nucleotide Y in the template.
  • Extension probe 60 is ligated to the initializing oligonucleotide (e.g., using T4 ligase). Following ligation, the label attached to extension probe 60 is detected (not shown). The label corresponds to the identity of nucleotide X. Thus nucleotide Y is identified as the nucleotide complementary to nucleotide X. Extension probe 60 is then cleaved at the phosphorothiolate linkage (e.g., using AgNO 3 or another salt that provides Ag + ions), resulting in an extended duplex. Cleavage leaves a phosphate group at the 3′ end of the extended duplex. Phosphatase treatment is used to generate an extendable probe terminus on the extended duplex. The process is repeated for a desired number of cycles.
  • T4 ligase T4 ligase
  • sequencing is performed in the 3′ ⁇ 5′ direction using extension probes containing a 3′-S—P—O-5′ linkage.
  • FIG. 5B shows a single cycle of hybridization, ligation, and cleavage using an extension probe of the form 5′-N B *—N—S—P—O—X-3′ where N represents any nucleotide, N B represents a moiety that is not extendable by ligase (e.g., N B is a nucleotide that lacks a 5′ phosphate group or has an attached blocking moiety), * represents a detectable moiety, and X represents a nucleotide whose identity corresponds to the detectable moiety.
  • a template containing binding region 40 and polynucleotide region 50 of unknown sequence is attached to a support, e.g., a bead.
  • the binding region is located at the opposite end of the template from the point of attachment to the support.
  • An initializing oligonucleotide 30 with an extendable terminus (in this case a free 5′ phosphate group) is annealed to binding region 40 .
  • Extension probe 60 is hybridized to the template in polynucleotide region 50 .
  • Nucleotide X forms a complementary base pair with unknown nucleotide Y in the template.
  • Extension probe 60 is ligated to the initializing oligonucleotide (e.g., using T4 ligase). Following ligation, the label attached to extension probe 60 is detected (not shown). The label corresponds to the identity of nucleotide X. Thus nucleotide Y is identified as the nucleotide complementary to nucleotide X. Extension probe 60 is then cleaved at the phosphorothiolate linkage (e.g., using AgNO 3 or another salt that provides Ag + ions), resulting in an extended duplex. Cleavage leaves an extendable monophosphate group at the 5′ terminus of the extended duplex and it is therefore unnecessary to perform an additional step to generate an extendable terminus. The process is repeated for a desired number of cycles.
  • T4 ligase T4 ligase
  • the probe may be shorter or longer than 6 nucleotides; the label need not be on the 3′ terminal nucleotide; the P—S linkage can be located between any two adjacent nucleotides, etc.
  • successive cycles of extension, ligation, detection, and cleavage result in identification of adjacently located nucleotides.
  • the P—S linkage closer to the distal end of the extension probe (i.e., the end opposite to that at which ligation occurs), the nucleotides that are sequentially identified will be spaced at intervals along the template, as described above and shown in FIGS. 1 and 6 .
  • FIG. 6A-6F is a more detailed diagrammatic illustration of several sequencing reactions performed sequentially on a single template. Sequencing is performed in the 3′ ⁇ 5′ direction using extension probes containing 3′-S—P—O-5′ linkages. Each sequencing reaction comprises multiple cycles of extension, ligation, detection, and cleavage. The reactions utilize initializing oligonucleotides that bind to different portions of the template.
  • the extension probes are 8 nucleotides in length and contain phosphorothiolate linkages located between the 6 th and 7 th nucleotides counting from the 3′ end of the probe. Nucleotides 2-6 serve as a spacer such that each reaction allows the identification of a plurality of nucleotides spaced at intervals along the template. By performing multiple reactions in series and appropriately combining the partial sequence information obtained from each reaction, the complete sequence of a portion of the template is determined.
  • FIG. 6A shows initialization using a first initializing oligonucleotide (referred to as a primer in FIGS. 6A-6F ) that is hybridized to an adapter sequence (referred to above as a binding region) in the template to provide an extendable duplex.
  • FIGS. 6B-6D show several cycles of nucleotide identification in which every 6 th base of the template is read.
  • a first extension probe having a 3′ terminal nucleotide complementary to the first unknown nucleotide in the template sequence binds to the template and is ligated to the extendable terminus of the primer.
  • the label attached to the extension probe identifies the probe as having an A as the 3′ terminal nucleotide and thus identifies the first unknown nucleotide in the template sequence as A.
  • FIG. 6C shows cleavage of the extension oligonucleotide at the phosphorothiolate linkage with AgNO 3 and release of a portion of the extension probe to which a label is attached.
  • FIG. 6D shows additional cycles of extension, ligation, and cleavage. Since the probes contain a spacer 5 nucleotides in length, the sequencing reaction identifies every 6 th nucleotide in the template.
  • FIG. 6E shows a second sequencing reaction in which initialization is performed with a second initializing oligonucleotide, followed by several cycles of nucleotide identification.
  • FIG. 6F shows initialization using a third initializing oligonucleotide followed by several cycles of nucleotide identification. Extension from the second initializing oligonucleotide allows identification of every 6 th base in a different “frame” from the nucleotides identified in the first sequencing reaction.
  • extension probes comprising phosphorothiolate linkages are preferred in certain embodiments of the invention
  • a variety of other scissile linkages may be advantageously employed.
  • O—P—O linkage found in naturally occurring nucleic acids are known (see, e.g., Micklefield, J. Curr. Med. Chem., 8:1157-1179, 2001).
  • Any structures described therein that contain a P—O bond can be modified to contain a scissile P—S bond.
  • an NH—P—O bond can be changed to an NH—P—S bond.
  • the extension probes comprise a trigger residue that renders the nucleic acid susceptible to cleavage by a cleavage agent or combination thereof, optionally following modification of the trigger residue by a modifying agent.
  • a trigger residue such as a damaged base or abasic residue in an extension probe may render the probe susceptible to cleavage by one or more DNA repair enzymes, optionally following modification by a DNA glycosylase.
  • extension probes comprising linkages that are substrates for cleavage by enzymes involved in DNA repair such as AP endonucleases are of use in the invention.
  • Extension probes containing residues that are substrates for modification by enzymes involved in DNA repair, such as DNA glycosylases, wherein the modification renders the probe susceptible to cleavage by an AP endonuclease are also of particular use in the invention.
  • the extension probe comprises an abasic residue, i.e., it lacks a purine or pyrimidine base. The linkage between the abasic residue and an adjacent nucleoside is susceptible to cleavage by an AP endonuclease and is therefore a scissile linkage.
  • the abasic residue comprises 2′ deoxyribose.
  • the extension probe comprises a damaged base.
  • the damaged base is a substrate for an enzyme that removes damaged bases, such as a DNA glycosylase. Following removal of the damaged base, the linkage between the resulting abasic residue and an adjacent nucleoside is susceptible to cleavage by an AP endonuclease and is therefore considered a scissile linkage in accordance with the invention.
  • AP endonucleases are of use as cleavage reagents in the present invention.
  • Two major classes of AP endonuclease have been distinguished on the basis of the mechanism by which they cleave linkages adjacent to abasic residues.
  • Class I AP endonucleases such as endonuclease III (Endo III) and endonuclease VIII (Endo VIII) of E.
  • coli and the human homologs hNTH1, NEIL1, NEIL2, and NEIL3, are AP lyases that cleave DNA on the 3′ side of the AP residue, resulting in a 5′ portion that has a 3′ terminal phosphate and a 3′ portion that bears a 5′ terminal phosphate.
  • Class II AP endonucleases such as endonuclease IV (Endo IV) and exonuclease III (Exo III) of E. coli cleave the DNA 5′ of the AP site, which produces a 3′ OH and 5′ deoxyribose phosphate moiety at the termini of the resulting fragments.
  • Certain enzymes are bifunctional in that they possess both glycosylase activity that removes a damaged base to generate an AP residue and also display a lyase activity that cleaves the phosphodiester backbone 3′ to the AP site generated by the glycosylase activity.
  • these dual activity enzymes are both AP endonucleases and DNA glycosylases.
  • Endo VIII acts as both an N-glycosylase and an AP-lyase.
  • the N-glycosylase activity releases damaged pyrimidines from double-stranded DNA, generating an apurinic (AP site).
  • the AP-lyase activity cleaves 3′ and 5′ to the AP site leaving a 5′ phosphate and a 3′ phosphate.
  • Damaged bases recognized and removed by Endonuclease VIII include urea, 5,6-dihydroxythymine, thymine glycol, 5-hydroxy-5-methylhydanton, uracil glycol, 6-hydroxy-5,6-dihydrothymine and methyltartronylurea.
  • Dizdaroglu M., et al., Biochemistry, 32, 12105-12111, 1993 and Hatahet, Z. et al., J. Biol. Chem., 269, 18814-18820, 1994
  • Fpg (formamidopyrimidine [fapy]-DNA glycosylase) (also known as 8-oxoguanine DNA glycosylase) also acts both as a N-glycosylase and an AP-lyase.
  • the N-glycosylase activity releases damaged purines from double stranded DNA, generating an apurinic (AP site).
  • the AP-lyase activity cleaves both 3′ and 5′ to the AP site thereby removing the AP site and leaving a 1 base gap.
  • Some of the damaged bases recognized and removed by Fpg include 7,8-dihydro-8-oxoguanine (8-oxoguanine), 8-oxoadenine, fapy-guanine, methyl-fapy-guanine, fapy-adenine, aflatoxin Bi-fapy-guanine, 5-hydroxy-cytosine and 5-hydroxy-uracil.
  • 8-oxoguanine 8-oxoadenine
  • fapy-guanine methyl-fapy-guanine
  • fapy-adenine fapy-adenine
  • aflatoxin Bi-fapy-guanine 5-hydroxy-cytosine and 5-hydroxy-uracil.
  • DNA glyscosylases and AP endonucleases are commercially available, e.g., from New England Biolabs, Ipswich, Mass.
  • extension probes comprising a site that is a substrate for cleavage by an AP endonuclease are used in the sequencing method as described above for extension probes containing a phosphorothiolate linkage or in sequencing methods AB (see below).
  • the extension probe following ligation of an extension probe to a growing nucleic acid strand, the extension probe is cleaved using an AP endonuclease to remove the portion of the probe that comprises a label.
  • an extendable terminus is generated by treatment with a polynucleotide kinase or phosphatase.
  • buffers will be employed for the various enzymes, and additional steps of washing may be included to remove enzymes and provide appropriate conditions for subsequent steps in the methods.
  • the extension probe comprises a damaged base that is a substrate for removal by a DNA glycosylase.
  • a wide range of cytotoxic and mutagenic DNA bases are removed by different DNA glycosylases, which initiate the base excision repair pathway following damage to DNA (Krokan, H. E., et al., Biochem J, 325 (Pt 1):1-16, 1997).
  • DNA glycosylases cleave the N-glycosydic bond between the damaged base and deoxyribose, thus releasing a free base and leaving an apurinic/apyrimidinic (AP) site.
  • the extension probe comprises a uracil residue, which is removed by a uracil-DNA glycosylase (UDG).
  • UDGs are found in all living organisms studied to date, and a large number of these enzymes are known in the art and are of use in this invention (Frederica, et al, Biochemistry, 29, 2353-2537, 1990; Krokan, supra).
  • mammalian cells contain at least 4 types of UDG: mitochondrial UNG1 and nuclear UNG2, SMUG1, TDG, and MBD4 (Krokan, et al., Oncogene, 21, 8935-8948, 2002).
  • UNG1 and UNG2 belong to a highly conserved family typified by E. coli Ung.
  • the extended duplex is contacted with a glycosylase that removes the damaged base, thereby producing an abasic residue.
  • a glycosylase that removes the damaged base, thereby producing an abasic residue.
  • An extension probe that comprises a damaged base that is subject to removal by a glycosylase is considered to be “readily modifiable to comprise a scissile linkage”.
  • the extended duplex is then contacted with an AP endonuclease, which cleaves a linkage between the abasic residue and an adjacent nucleoside, as described above.
  • a dual activity enzyme that is both a DNA glycosylase and an AP endonuclease is used to perform both of these reactions.
  • the extended duplex containing a damaged base is contacted with a DNA glycosylase and an AP endonuclease.
  • the enzymes can be used in combination or sequentially (i.e., glycosylase followed by endonuclease) in various embodiments of the invention.
  • an extension probe comprises a trigger residue which is deoxyinosine.
  • E. coli Endonuclease V also called deoxyinosine 3′ endonuclease, and homologs thereof cleave a nucleic acid containing deoxyinosine at the second phosphodiester bond 3′ to the deoxyinosine residue, leaving a 3′ OH and 5′ phosphate termini. Thus this bond serves as a scissile linkage in the extension probe.
  • Endo V and its cleavage properties are known in the art (Yao, M. and Kow Y. W., J. Biol.
  • Endo V also recognizes deoxyuridine, deoxyxanthosine, and deoxyoxanosine (Hitchcock, T. et al., Nuc. Acids Res., 32(13), 32(13) (2004).
  • Mammalian homologs such as mEndo V also exhibit cleavage activity (Moe, A., et al., Nuc.
  • Endo V is a preferred cleavage agent for probes comprising deoxyinosine
  • other cleavage reagents may also be used to cleave probes comprising deoxyinosine.
  • hypoxanthine may be subject to removal by an appropriate DNA glycosylase, and the resulting extension probe containing an abasic residue is then subject to cleavage by an endonuclease.
  • deoxyinosine is used as a trigger residue, it may be desirable to avoid using deoxyinosine elsewhere in the probe, particularly at positions between the terminus that will be ligated to the extendable probe terminus and the trigger residue.
  • the probe comprises one or more universal bases, a nucleoside other than deoxyinosine may be used.
  • a trigger residue that renders a nucleic acid containing the trigger residue susceptible to cleavage by a particular cleavage agent is used in an extension probe, it may be desirable to avoid including other residues in the probe (or in other probes that would be used in a sequencing reaction together with that extension probe) that would trigger cleavage by the same cleavage agent.
  • the present invention encompasses the use of any enzyme that cleaves a nucleic acid that comprises a trigger residue. Additional enzymes may be identified by perusing the catalog of enzyme suppliers such as New England Biolabs®, Inc. The New England Biolabs Catalog, 2005 edition (New England Biolabs, Ipswich, Mass. 01938-2723) is incorporated herein by reference, and the present invention contemplates use of any enzyme disclosed therein that cleaves a nucleic acid containing a trigger residue, or a homolog of such an enzyme. Other enzymes of use include, e.g., hOGGI and homologs thereof (Radicella, J P, et al., Proc Natl Acad Sci USA., 94(15):8010-5, 1997).
  • oligonucleotides containing a trigger residue such as a damaged base, abasic residue, etc.
  • Methods for synthesizing oligonucleotides containing site that is a substrate for an AP endonuclease e.g., oligonucleotides containing an abasic residue are known in the art and are generally amenable to automated solid phase oligonucleotide synthesis.
  • an oligonucleotide containing uridine at the desired location of the abasic residue is synthesized.
  • the oligonucleotide is then treated with an enzyme such as a UDG, which removes uracil, thereby producing an abasic residue wherever uridine was present in the oligonucleotide.
  • the oligonucleotide probe comprises a disaccharide nucleoside as described in Nauwelaerts, K., et al, Nuc. Acids. Res., 31(23), 2003.
  • the extended duplex is cleaved using periodate (NaIO 4 ), followed by treatment with base (e.g., NaOH) to remove the label, resulting in a free 3′ OH and P5-OPO 3 H 2 group.
  • base e.g., NaOH
  • an extendable terminus is generated by treatment with a polynucleotide kinase or phosphatase.
  • a polynucleotide comprising a disaccharide nucleoside is considered to comprise an abasic residue.
  • a polynucleotide containing a ribose residue inserted between the 3′OH of one nucleotide and the 5′ phosphate group of the next nucleotide is considered to comprise an abasic residue.
  • fewer than all probes with extendable termini participate in a successful ligation reaction in each cycle of extension, ligation, and cleavage. It will be appreciated that if such probes participated in succeeding cycles, the accuracy of each nucleotide identification step would progressively decline.
  • a capping step is included to prevent those extendable termini that do not undergo ligation from participating in future cycles.
  • capping may be performed by extending the unligated extendable termini with a DNA polymerase and a non-extendable moiety, e.g., a chain-terminating nucleotide such as a dideoxynucleotide or a nucleotide with a blocking moiety attached, e.g., following the ligation or detection step.
  • a non-extendable moiety e.g., a chain-terminating nucleotide such as a dideoxynucleotide or a nucleotide with a blocking moiety attached, e.g., following the ligation or detection step.
  • capping may be performed, e.g., by treating the template with a phosphatase, e.g., following ligation or detection. Other capping methods may also be used.
  • Methods A there is a direct and known correspondence between the label attached to any particular extension probe and the identity of one or more nucleotides at the proximal terminus of the probe (i.e., the terminus that is ligated to the extendable probe terminus of the extended duplex. Therefore, identifying the label of a newly ligated extension probe is sufficient to identify one or more nucleotides in the template.
  • the invention provides additional sequencing methods, referred to collectively as “Methods AB”, and also involving successive cycles of extension, ligation, and, preferably, cleavage, that adopt a different approach to nucleotide identification.
  • the invention provide sequencing methods AB that use a collection of at least two distinguishably labeled oligonucleotide probe families. Each probe family is assigned a name based on the label, e.g., “red”, “blue”, “yellow”, “green”.
  • extension starts from a duplex formed by an initializing oligonucleotide and a template.
  • the initializing oligonucleotide is extended by ligating an oligonucleotide probe to its end to form an extended duplex, which is then repeatedly extended by successive cycles of ligation.
  • the probe has a non-extendable moiety in a terminal position (at the opposite end of the probe from the nucleotide that is ligated to the growing nucleic acid strand of the duplex) so that only a single extension of the extended duplex takes place in a single cycle.
  • a label on or associated with a successfully ligated probe is detected, and the non-extendable moiety is removed or modified to generate an extendable terminus. Detection of the label identifies the name of the probe family to which the probe belongs.
  • the labels correspond to the probe families to which successfully ligated probes that hybridize to the template at successive positions belong.
  • the probes have proximal termini that are located opposite different nucleotides in the template following ligation. Thus there is a correspondence between the order of probe family names and the order of nucleotides in the template.
  • the ordered list of probe family names may be obtained by successive cycles of extension, ligation, detection, and cleavage that begin from a single initializing oligonucleotide since the extended oligonucleotide probe is extended by one nucleotide in each cycle. If the scissile linkage is located between two of the other nucleosides, the ordered list of probe family names is assembled from results obtained from a plurality of sequencing reactions in which initializing oligonucleotides that hybridize to different positions within the binding reaction are used, as described for sequencing methods A.
  • determining the probe family name eliminates certain combinations of nucleotides as possibilities for the sequence of at least a portion of the probe but leaves at least two possibilities for the identity of each nucleotide.
  • knowledge of the probe family name in the absence of additional information, leaves open least two possibilities for the identity of the nucleotides in the template that are located at opposite positions to the nucleotides in the newly ligated probe. Therefore any single cycle of extension, ligation, detection (and, optionally, cleavage) does not itself identify any nucleotide in the template.
  • sequencing methods AB thus comprise two phases: a first phase in which an ordered list of probe family names is obtained, and a second phase in which the ordered list is decoded to determine the sequence of the template.
  • sequencing methods A and AB generally employ similar methods for synthesizing probes, preparing templates, and performing the steps of extension, ligation, cleavage, and detection.
  • Probe families for use in sequencing methods AB are characterized in that each probe family comprises a plurality of labeled oligonucleotide probes of different sequence and, at each position in the sequence, a probe family comprises at least 2 probes having different bases at that position. Probes in each probe family comprise the same label. Preferably the probes comprise a scissile internucleoside linkage. The scissile linkage can be located anywhere in the probe. Preferably the probes have a moiety that is not extendable by ligase at one terminus.
  • the probes are labeled at a position between the scissile linkage and the moiety that is not extendable by ligase, such that cleavage of the scissile linkage following ligation of a probe to an extendable probe terminus results in an unlabeled portion that is ligated to the extendable probe terminus and a labeled portion that is no longer attached to the unlabeled portion.
  • the probes in each probe family preferably comprise at least j nucleosides X, wherein j is at least 2, and wherein each X is at least 2-fold degenerate among the probes in the probe family.
  • Probes in each probe family further comprise at least k nucleosides N, wherein k is at least 2, and wherein N represents any nucleoside.
  • j+k is equal to or less than 100, typically less than or equal to 30.
  • Nucleosides X can be located anywhere in the probe. Nucleosides X need not be located at contiguous positions. Similarly nucleosides N need not be located at contiguous positions. In other words, nucleosides X and N can be interspersed.
  • nucleosides X can be considered to have a 5′ ⁇ 3′ sequence, with the understanding that the nucleosides need not be contiguous.
  • nucleosides X in a probe of structure X A NX G NNX C N would be considered to have the sequence AGC.
  • nucleosides N can be considered to have a sequence.
  • Nucleosides X can be identical or different but are not independently selected, i.e., the identity of each X is constrained by the identity of one or more other nucleosides X in the probe. Thus in general only certain combinations of nucleosides X are present in any particular probe and within the probes in any particular probe family. In other words, in each probe, the sequences of nucleosides X can only represent a subset of all possible sequences of length j. Thus the identity of one or more nucleotides in X limits the possible identities for one or more of the other nucleosides.
  • Nucleosides N are preferably independently selected and can be A, G, C, or T (or, optionally, a degeneracy-reducing nucleoside).
  • sequence of nucleosides N represents all possible sequences of length k, except that one or more N may be a degeneracy-reducing nucleoside.
  • the probes thus contain two portions, of which the portion consisting of nucleosides N is referred to as the unconstrained portion and the portion consisting of nucleosides X is referred to as the constrained portion. As described above, the portions need not be contiguous nucleosides. Probes that contain a constrained portion and an unconstrained portion are referred to herein as partially constrained probes.
  • one or more nucleosides in the constrained portion is at the proximal end of the probes, i.e., at the end that contains the nucleoside that will be ligated to the extendable probe terminus, which can be either the 5′ or 3′ end of the oligonucleotide probe in different embodiments of the invention.
  • knowing the identity of one or more of the nucleosides in the constrained portion of a probe provides information about one or more of the other nucleosides. The information may or may not be sufficient to precisely identify one or more of the other nucleosides, but it will be sufficient to eliminate one or more possibilities for the identity of one or more of the other nucleosides in the constrained portion.
  • knowing the identity of one nucleoside in the constrained portion of a probe is sufficient to precisely identify each of the other nucleosides in the constrained portion, i.e., to determine the identity and order of the nucleosides that comprise the constrained portion.
  • the most proximal nucleoside in an extension probe that is complementary to the template is ligated to an extendable terminus of an initializing oligonucleotide (in the first cycle of extension, ligation, and detection) and to an extendable terminus of an extended oligonucleotide probe in subsequent cycles of extension, ligation, and detection.
  • Detection determines the name of the probe family to which the newly ligated probe belongs. Since each position in the constrained portion of the probe is at least 2-fold degenerate, the name of the probe family does not in itself identify any nucleotide in the constrained portion.
  • the sequence of the constrained portion is one of a subset of all possible sequences of length j
  • identifying the probe family does eliminate certain possibilities for the sequence of the constrained portion.
  • the constrained portion of the probe constitutes its sequence determining portion. Therefore, eliminating one or more possibilities for the identity of one or more nucleosides in the constrained portion of the probe by identifying the probe family to which it belongs eliminates one or more possibilities for the identity of a nucleotide in the template to which the extension probe hybridizes.
  • the partially constrained probes comprise a scissile linkage between any two nucleosides.
  • the partially constrained probes have the general structure (X) j (N) k , in which X represents a nucleoside, (X) j is at least 2-fold degenerate at each position such that X can be any of at least 2 nucleosides having different base-pairing specificities, N represents any nucleoside, j is at least 2, k is between 1 and 100, and at least one N or X other than the X at the probe terminus comprises a detectable moiety.
  • (N) k is independently 4-fold degenerate at each position so that, in each probe, (N) k represents all possible sequences of length k, except that one or more positions in (N) k may be occupied by a degeneracy-reducing nucleotide.
  • Nucleosides in (X) j can be identical or different but are not independently selected. In other words, in each probe, (X) j can only represent a subset of all possible sequences of length j. Thus the identity of one or more nucleotides in (X) j limits the possible identities for one or more of the other nucleosides.
  • the probes thus contain two portions, of which (N) k is the unconstrained portion and (X) j is the constrained portion.
  • the partially constrained probes have the structure 5′-(X) j (N) k N B *-3′ or 3′-(X) j (N) k N B *-5′, wherein N represents any nucleoside, N B represents a moiety that is not extendable by ligase, * represents a detectable moiety, (X) j is a constrained portion of the probe that is at least 2-fold degenerate at each position, nucleosides in (X) j can be identical or different but are not independently selected, at least one internucleoside linkage is a scissile linkage, j is at least 2, and k is between 1 and 100, with the proviso that a detectable moiety may be present on any nucleoside N or X other than the X at the probe terminus instead of, or in addition to, N B .
  • the scissile linkage can be between two nucleosides in (X) j , between the most distal nucleotide in (X) j and the most proximal nucleoside in (N) k , between nucleosides within (N) k , or between the terminal nucleoside in (N) k and N B .
  • the scissile linkage is a phosphorothiolate linkage.
  • the probes have the structure 5′-(XY)(N) k N B *-3′ or 3′-(XY)(N) k N B *-5′, wherein N represents any nucleoside, N B represents a moiety that is not extendable by ligase, * represents a detectable moiety, XY is a constrained portion of the probe in which X and Y represent nucleosides that are identical or different but are not independently selected, X and Y are at least 2-fold degenerate, at least one internucleoside linkage is a scissile linkage, and k is between 1 and 100, inclusive, with the proviso that a detectable moiety may be present on any nucleotide N or X other than the X at the probe terminus instead of, or in addition to, N B .
  • the scissile linkage is a phosphorothiolate linkage.
  • Probes having the structure 5′-(XY)(N) k —N B *-3′ are of use for sequencing in the 5′ ⁇ 3′ direction.
  • Probes having the structure 3′-(XY)(N) k N B *-5′ are of use for sequencing in the 3′ ⁇ 5′ direction.
  • N any nucleoside
  • N B represents a moiety that is not extendable by ligase
  • * represents a detectable moiety
  • (X) j is a constrained portion of the probe that is at least 2-fold degenerate at each position
  • nucleotides in (X) j can be identical or different but are not independently selected
  • j is at least 2
  • i is between 1 and 100, with the proviso that a detectable moiety may be present on any nucleoside of (N); instead of, or in addition to, N B .
  • (X) j is (XY), in which positions X and Y are at least 2-fold degenerate and X and Y represent nucleosides that are identical or different but are not independently selected.
  • Yet other preferred probes for sequencing in the 5′ ⁇ 3′ direction have the structure 5′-O—P—O—(X) j —O—P—S—(X) k (N) i N B *-3′ in which N represents any nucleoside, N B represents a moiety that is not extendable by ligase, * represents a detectable moiety
  • (X) j —O—P—S—(X) k is a constrained portion of the probe that is at least 2-fold degenerate at each position, positions in (X) j —O—P—S—(X) k are at least 2-fold degenerate and can be identical or different but are not independently selected, j and k are both at least 1 and (j+k) is at least 2 (e.g
  • N any nucleoside
  • N B represents a moiety that is not extendable by ligase
  • * represents a detectable moiety
  • (X) j is a constrained portion of the probe that is at least 2-fold degenerate at each position
  • nucleosides in (X) j can be identical or different but are not independently selected
  • j is at least 2
  • i is between 1 and 100, with the proviso that a detectable moiety may be present on any nucleoside of (N) i instead of, or in addition to, N B .
  • (X) j is (XY) in which X and Y are at least 2-fold degenerate and represent nucleosides that are identical or different but are not independently selected. In certain embodiments of the invention j is between 2 and 5, e.g., 2, 3, 4, or 5, in any of the partially constrained probes.
  • Yet other preferred probes for sequencing in the 3′ ⁇ 5′ direction have the structure 5′-N B *(N) i —S—P—O—(X) k —O—P—O—(X) j -3 where N represents any nucleoside, N B represents a moiety that is not extendable by ligase, * represents a detectable moiety, —(X) k —O—P—O—(X) j is a constrained portion of the probe that is at least 2-fold degenerate at each position, nucleosides in —(X) k —O—P—O—(X) j can be identical or different but are not independently selected, j and k are both at least 1 and (j+k) is at least 2 (e.g., 2, 3, 4, or 5), i is between 1 and 100, with the proviso that a detectable moiety may be present on any nucleoside of (N) i instead of, or in addition to, N B .
  • the ordered list of probe family names may be obtained by successive cycles of extension, ligation, detection, and cleavage that begin from a single initializing oligonucleotide since the extended oligonucleotide probe is extended by one nucleotide in each cycle.
  • the ordered list of probe family names is assembled from results obtained from a plurality of sequencing reactions in which initializing oligonucleotides that hybridize to different positions within the binding reaction are used, as described for sequencing methods A.
  • probes having any of a large number of structures other than those described above can be employed in sequencing methods AB.
  • probes can have structures such as XNY(N) k in which the constrained nucleosides X and Y are not adjacent, or XIY(N) k where I is a universal base.
  • (N) k X(N) l , (N) i X(N) j Y(N) k Z(N) l , (N) i X(N) j YIZ(N), and (N) i X(N) j Y(N) k Z(I) l represent additional possibilities.
  • these probes comprise a scissile linkage, a detectable moiety, and a moiety at one terminus that is not extendable by ligase.
  • the probes do not comprise a detectable moiety attached to the nucleotide at the opposite end of the probe from the moiety that is not extendable by ligase.
  • Probe families comprising probes having any of these structures, or others, satisfy the criterion that each probe family comprises a plurality of labeled probes of different sequence and, at each position in the sequence, a probe family comprises at least 2 probes having different bases at that position.
  • the total number of nucleosides in each probe is 100 or less, e.g., 30 or less.
  • an “encoding” refers to a scheme that associates a particular label with a probe comprising a portion that has one of a defined set of sequences, such that probes comprising a portion that has a sequence that is a member of the defined set of sequences are labeled with the label.
  • an encoding associates each of a plurality of distinguishable labels with one or more probes, such that each distinguishable label is associated with a different group of probes, and each probe is labeled by only a single label (which can comprise a combination of detectable moieties).
  • the probes in each group of probes each comprise a portion that has a sequence that is a member of the same defined set of sequences.
  • the portion may be a single nucleoside or may be multiple nucleosides in length, e.g., 2, 3, 4, 5, or more nucleosides in length.
  • the length of the portion may constitute only a small fraction of the entire length of the probe or may constitute up to the entire probe.
  • the defined set of sequences may contain only a single sequence or may contain any number of different sequences, depending on the length of the portion. For example, if the portion is a single nucleoside, the defined set of sequences could have at most 4 elements (A, G, C, T).
  • the defined set of sequences could have up to 16 elements (AA, AG, AC, AT, GA, GG, GC, GT, CA, CG, CC, CT, TA, TG, TC, TT).
  • the defined set of sequences will contain fewer elements than the total number of possible sequences, and an encoding will employ more than one defined set of sequences.
  • Sequencing methods A described herein generally make use of a set of probes having a simple encoding in which there is a direct correspondence between the proximal nucleoside in the probe (i.e., the nucleoside that is ligated to the extendable probe terminus) and the identity of the label.
  • the proximal nucleoside is complementary to the nucleotide with which it hybridizes in the template, so the identity of the proximal nucleoside in a newly ligated probe determines the identity of the nucleotide in the template that is located at the opposite position in the extended duplex.
  • probes of use in the other sequencing methods described herein have the structure X(N) k , in which X is the proximal nucleoside, and each nucleoside N is 4-fold degenerate, such that all possible sequences of length k are represented in the pool of oligonucleotide probe molecules that constitutes the probe.
  • X represents only a single base pairing specificity, which typically corresponds to a particular nucleoside identity, e.g., A, G, C, or T.
  • FIG. 2 shows a suitable encoding for probes having the structure X(N) k .
  • the above approach in which the identity of the label of a newly ligated extension probe corresponds to the identity of the most proximal nucleoside in the extension probe may be broadened to encompass encodings in which the identity of the label corresponds not to the identity of only the most proximal nucleoside in the extension probe but rather to the sequence of the most proximal 2 or more nucleosides in the extension probe, so that the identity of multiple nucleotides in the template can be determined in a single cycle of extension, ligation, and detection (typically followed by cleavage).
  • Sequencing method AB employs an alternative approach to associating labels with probes. Rather than a one-to-one correspondence between the identity of the label and the sequence of the sequence determining portion of the probe, the same label is assigned to multiple probes having different sequence determining portions.
  • the probes are partially constrained, and the constrained portion of the probe is its sequence determining portion.
  • the same label is assigned to a plurality of different probes, each having a constrained portion with a different sequence, wherein the sequence is one of a defined set of sequences.
  • probes comprising the same label constitute a “probe family”.
  • the method employs a plurality of such probe families, each comprising a plurality of probes having a constrained portion with a different sequence, wherein the sequence is one of a defined set of sequences.
  • a plurality of probe families is referred to as a “collection” of probe families.
  • Probes in each probe family in a collection of probe families are labeled with a label that is distinguishable from labels used to label other probe families in the collection.
  • Each probe family preferably has its own defined set of sequences.
  • the constrained portions of the probes in each probe family are the same length, and preferably the constrained portions of probe families in a collection of probe families are of the same length.
  • the combination of sets of defined sequences for probe families in a collection of probe families includes all possible sequences of the length of the constrained portion.
  • a collection of probe families comprises or consists of 4 distinguishably labeled probe families.
  • the constrained portion of the probes is 2 nucleosides in length.
  • FIG. 25A An exemplary encoding for a preferred collection of 4 distinguishably labeled probe families comprising partially constrained probes is shown in FIG. 25A .
  • the constrained portion consists of the 2 most 3′ nucleosides in the probe.
  • the probe families are labeled “red”, “yellow”, “green”, and “blue”.
  • Probes in each probe family comprise a constrained portion whose sequence is one of a defined set of sequences, the defined set being different for each probe family.
  • the defined set of sequences for the “red” probe family is ⁇ CT, AG, GA, TC ⁇ ; the defined set of sequences for the “yellow” probe family is ⁇ CC, AT, GG, TA ⁇ ; the defined set of sequences for the “green” probe family is ⁇ CA, AC, GT, TG ⁇ ; the defined set of sequences for the “blue” probe family is ⁇ CG, AA, GC, TT ⁇ .
  • Each defined set does not contain any member that is present in one of the other sets, a characteristic that is preferred.
  • the combination of sets of defined sequences for probe families in a collection of probe families includes all possible sequences of length 2, i.e., all possible dinucleosides.
  • Another characteristic of this collection of probe families, which is preferred but not required, is that each position in the constrained portion of the probes is 4-fold degenerate, i.e., it can be occupied by either A, G, C, or T.
  • Another characteristic of this collection of probe families, which is preferred but not required, is that within each set of defined sequences only a single sequence has any specific nucleoside at any position, e.g., at the most proximal position or at any of other positions.
  • each set of defined sequences only a single sequence has any specific nucleoside at position 2 or higher within the constrained portion, considering the most proximal nucleoside to be at position 1.
  • the defined set of sequences for the Red probe family only one sequence has T at position 2; only one sequence has G at position 2; only one sequence has A at position 2; only one sequence has C at position 2.
  • knowing the identity of one or more nucleosides in the constrained portion of a probe in one of the probe families provides information about the other nucleotides in the constrained portion of that probe.
  • knowing the identity of one or more nucleosides in the constrained portion of a probe in a probe family provides sufficient information to eliminate one or more possible identities for a nucleoside at one of the other positions, because the defined set of sequences for that probe family will not contain a sequence having a nucleoside with that identity at that position.
  • knowing the identity of one or more nucleosides in the constrained portion of a probe in a probe family provides sufficient information to eliminate one or more possible identities for a plurality of nucleosides, e.g., each of the other nucleosides.
  • knowing the identity of one or more nucleosides in the contained portion of a probe in the probe family eliminates all but one possibility for each of the other nucleosides in the probe. For example, in the case of the encoded probe families shown in FIG. 25A , if it is known that a probe is a member of the red family, and if it is also known that the most proximal nucleoside is C, then the adjacent nucleoside must be T.
  • FIG. 25B shows a preferred collection of probe families (upper panel) and a cycle of ligation, detection, and cleavage (lower panel) using sequencing methods AB.
  • the inventors have designed 24 collections of probe families containing constrained portions that are 2 nucleosides in length and that have the advantageous features of the collection of probe families depicted in FIG. 25A . These probe families are maximally informative in that knowing the name of the probe family to which a probe belongs, and knowing the identity of one nucleoside in the probe, is sufficient to precisely identify the other nucleoside in the constrained portion. This is the case for all probes, and for all nucleosides in each constrained portion.
  • the encoding schemes for each of the 24 preferred collections of probe families are shown in Table 1. Table 1 assigns an encoding ID ranging from 1 to 24 to each collection of probe families.
  • Each encoding defines the constrained portions of a collection of preferred probe families of general structure (XY)N k for use in sequencing methods AB, and thereby defines the collection itself.
  • Table 1 a value of 1 in the column under an encoding ID indicates that, according to that encoding, a probe comprising nucleosides X and Y as indicated in the first and second columns, respectively, is assigned to the first probe family; (ii) a value of 2 in the column under an encoding ID indicates that, according to that encoding, a probe comprising nucleosides X and Y as indicated in the first and second columns, respectively, is assigned to the second probe family; (iii) a value of 3 in the column under an encoding ID indicates that, according to that encoding, a probe comprising nucleosides X and Y as indicated in the first and second columns, respectively, is assigned to the third probe family; and (iv) a value of 4 in the column under an encoding ID indicates that, according to
  • the values 1, 2, 3, and 4 each represent a label.
  • encoding 9 defines the collection of probe families depicted in FIG. 25A , in which 1 represents blue, 2 represents green, 3 represents red, and 4 represents yellow. It will be appreciated that the assignment of values to labels is arbitrary, e.g., 1 could equally well represent green, red, or yellow. Changing the association between values 1, 2, 3, and 4, and the labels would not change the set of probes in each probe families but would merely associate a different label with each probe family.
  • probes having constrained portions AA, GC, TG, and CT are assigned to label 1 (e.g., red); probes having constrained portions CA, AC, GG, and TT are assigned to label 2 (e.g., yellow); probes having constrained portions TA, CC, AG, and GT are assigned to label 3 (e.g., green); and probes having constrained portions GA, TC, CG, and AT are assigned to label 4 (e.g., blue).
  • label 1 e.g., red
  • probes having constrained portions CA, AC, GG, and TT are assigned to label 2 (e.g., yellow)
  • probes having constrained portions TA, CC, AG, and GT are assigned to label 3 (e.g., green)
  • probes having constrained portions GA, TC, CG, and AT are assigned to label 4 (e.g., blue).
  • label 1 e.g., red
  • probes having constrained portions CA, AC, GG, and TT are assigned to
  • FIGS. 27A-27C represent an alternate method to schematically define the 24 preferred collections of probe families.
  • the method makes use of diagrams such as that in FIG. 27A .
  • the first column in such a diagram represents the first base.
  • Each label is attached to four different base sequences, each of which is given by juxtaposing the base from the first column with the base from the chosen label's column.
  • a probe with constrained portion having sequence AA is assigned to probe family 1 (label 1); a probe with constrained portion having sequence AC is assigned to probe family 2 (label 2); a probe with constrained portion having sequence AG is assigned to probe family 3 (label 3); and a probe with constrained portion having sequence AT is assigned to probe family 4 (label 4).
  • Assignments to probe families are made in a similar manner for probes with constrained portions beginning with C, G, or T.
  • FIG. 27B shows diagrams that may be inserted in place of the shaded portion of the diagram in FIG. 27A in order to generate each of the 24 preferred collections of probe families. Methods of using the preferred collections of probe families in sequencing methods AB are described further below.
  • the 24 collections of encoded probe families defined by Table 1 represent only the preferred embodiments of collections of probe families for use in sequencing methods AB.
  • a wide variety of other encoding schemes, probe families, and probe structures can be used that employ the same basic principle, in which knowing a probe family name, together with knowledge of the identity of one or more nucleosides in a constrained portion, provides information about one or more other nucleosides.
  • the less preferred collections of probe families are generally less preferred because: (i) at least with respect to some probes, the amount of information afforded by knowing a probe family name and a nucleoside identity is less; or (ii) at least with respect to some probes, the amount of information afforded by knowing a probe family name is more.
  • less preferred collections of probe families may be used to perform sequencing methods AB in a similar manner to the way in which preferred collections of probe families are used.
  • the steps needed for decoding may differ. For example, in some situations comparing candidate sequences with each other may be sufficient to determine at least a portion of a sequence.
  • probes having constrained portions in the set ⁇ AA, AC, GA, GC ⁇ are assigned to probe family 1; probes having constrained portions in the set ⁇ CA, CC, TA, TC ⁇ are assigned to probe family 2; probes having constrained portions in the set ⁇ AG, AT, GG, GT ⁇ are assigned to probe family 3; and probes having constrained portions in the set ⁇ CG, CT, TG, TT ⁇ are assigned to probe family 4.
  • knowing the name of a probe family eliminates certain possibilities for the identity of a nucleotide in the template that is located opposite the proximal nucleoside in a newly ligated extension probe whose label was detected to determine the name of the probe family. For example, if the probe family name is 1, then the proximal nucleoside in a newly ligated extension probe must be A or G, so the complementary nucleotide in the template must be T or C. Since there are at least two possibilities at each position in the constrained portion, the nucleotide cannot be precisely identified, but information sufficient to rule out some possibilities is obtained from the single cycle, in contrast to the situation when preferred collections of probe families are employed.
  • FIG. 29A shows a diagram that can be used to generate constrained portions for a collection of probe families that comprises probes with a constrained portion 3 nucleosides long (trinucleosides).
  • the figure shows 4 sets of rows indicated A, G, C, and T, and 4 columns with probe family names 1, 2, 3, and 4. Each set of 4 rows is opposite a box with a nucleoside identity inside.
  • the box containing the last nucleoside in the trinucleoside is first selected. Within the four rows adjacent to that box, the row labeled with the letter identifying the first nucleoside in the trinucleoside is selected. Within that row, the column containing the second nucleoside of the trinucleoside is selected. The trinucleoside is assigned to the probe family indicated at the top of the column. For example, the following procedure is followed to assign the trinucleoside “TCG” to a probe family: Since the last nucleoside is a “G”, attention is confined to the set of 4 rows located opposite the box containing “G”, i.e., the third set of rows.
  • the probe family assignment is determined by the heading of the column that contains middle nucleoside. Since the middle nucleoside is “C”, the trinucleoside is assigned to probe family 1.
  • FIG. 29B shows a procedure for constructing additional constrained portions for a collection of probe families that comprises probes with a constrained portion 3 nucleosides long.
  • the procedure is used to construct such a collection from each of the 24 preferred collections of probe families described above, in which constrained portions are 2 nucleosides in length and the collection contains 4 probe families.
  • An exemplary diagram representing a preferred collection of probe families is shown in the upper portion of the figure. The columns of this diagram map directly into the columns of the lower portion of the figure in accordance with the color assigned to each column in the upper diagram. Thus the columns in the upper diagram are blue, green, yellow, and red, moving from left to right.
  • the entries under column 1 in the lower diagram are blue, green, yellow, and red, moving from top to bottom, with each set of 4 nucleosides corresponding to a column in the upper diagram.
  • Columns 2, 3, and 4 in the lower diagram are generated by progressively moving each set of 4 nucleosides in column 1 downwards.
  • a “probe family” can be considered to be a single “super-probe” comprising a plurality of different probes, each with the same label.
  • the probe molecules that constitute the probe will generally not be a population of substantially identical molecules across any portion of the probe.
  • Use of the term “probe family” is not intended to have any limiting effect but is used for convenience to describe the characteristics of probes that would constitute such a “super-probe”.
  • successive cycles of extension, ligation, detection, and cleavage using a collection of probe families yields an ordered list of probe family names either from a single sequencing reaction or from assembling probe family names determined in multiple sequencing reactions that initiate from different sites in the template into an ordered list.
  • the number of cycles performed should be approximately equivalent to the length of sequence desired.
  • the ordered list contains a substantial amount of information but not in a form that will immediately yield the sequence of interest. Further step(s), at least one of which involves gathering at least one item of additional information about the sequence, must be performed in order to obtain a sequence that is most likely to represent the sequence of interest.
  • the sequence that is most likely to represent the sequence of interest is referred to herein as the “correct” sequence, and the process of extracting the correct sequence from the ordered list of probe families is referred to as “decoding”.
  • decoding the process of extracting the correct sequence from the ordered list of probe families.
  • ordered list is thus intended to encompass rearranged, fragmented, and/or permuted versions of an ordered list generated as described above, provided that such rearranged, fragmented, and/or permuted versions include substantially the same information content.
  • the ordered list can be decoded using a variety of approaches. Some of these approaches involve generating a set of at least one candidate sequence from the ordered list of probe family names. The set of candidate sequences may provide sufficient information to achieve an objective. In preferred embodiments one or more additional steps are performed to select the sequence that is most likely to represent the sequence of interest from among the candidate sequences or from a set of sequences with which the candidate sequence is compared. For example, in one approach at least a portion of at least one candidate sequence is compared with at least one other sequence. The correct sequence is selected based on the comparison. In certain embodiments of the invention, decoding involves repeating the method and obtaining a second ordered list of probe family names using a collection of probe families that is encoded differently from the original collection of probe families.
  • Information from the second ordered list of probe families is used to determine the correct sequence.
  • information obtained from as little as one cycle of extension, ligation, and detection using the alternately encoded collection of probe families is sufficient to allow selection of the correct sequence.
  • the first probe family identified using the alternately encoded probe family provides sufficient information to determine which candidate sequence is correct.
  • decoding approaches involve specifically identifying at least one nucleotide in the template by any available sequencing method, e.g., a single cycle of sequencing method A.
  • Information about the one or more nucleotide(s) is used as a “key” to decode the ordered list of probe family names.
  • the portion of the template that is sequenced may comprise a region of known sequence in addition to a region whose sequence is unknown. If sequencing methods AB are applied to a portion of the template that includes both unknown sequence and at least one nucleotide of known sequence, the known sequence can be used as a “key” to decode the ordered list of probe family names.
  • the following section describes the process of generating candidate sequences. Subsequent sections describe using the candidate sequences to select the correct sequence by comparing with known sequences, by comparing with a second set of candidate sequences, and by utilizing a known nucleotide identity.
  • the region of the template to be sequenced is complementary to the extended duplex that is produced by successive cycles of extension, ligation, and cleavage. Therefore, generating a candidate sequence for the extended duplex is equivalent to generating a candidate sequence for the region of the template to be sequenced.
  • the set of constrained portions associated with that probe family limits the possibilities for the initial nucleotides in the sequence, out to a length equivalent to the length of the constrained portion. For example, if the constrained portion is a dinucleotide, then the possible sequences for the first dinucleotide in the extended duplex are limited to those constrained portions that occur in probes that fall within that probe family (and thus the possible sequences for the first dinucleotide in the region of the template to be sequenced are limited to those combinations that are complementary to the constrained portions that occur in probes that fall within that probe family).
  • the possibilities for the first dinucleotide are recorded, typically by a computer.
  • the possible sequences for the second dinucleotide in the extended duplex are limited to those constrained portions that occur in probes that fall within the second probe family (and therefore, the possible sequences for the second dinucleotide in the template, i.e., the dinucleotide that is one nucleotide offset from the first dinucleotide are limited to those combinations that are complementary to the constrained portions that occur in probes that fall within the second probe family).
  • the possible sequences for the second dinucleotide are also recorded. Possibilities for succeeding dinucleotides are likewise recorded until possibilities have been recorded for dinucleotides that correspond to the desired length of the sequence to be determined or there are no more probe families in the list.
  • FIG. 30 A representative example of the process of recording possibilities is depicted in FIG. 30 , in which it is assumed that a list of probe family names has been generated using the probe family collection shown in FIG. 25A .
  • the leftmost column of FIG. 30 shows the list of probe families in order from top to bottom: Yellow, Green, Red, Blue.
  • the sequence possibilities for the dinucleotide corresponding to each probe family in the list are shown on the right side of the figure. Nucleotide positions are indicated above the sequence possibilities. The sequence begins at position 1, so the first dinucleotide occupies positions 1 and 2; the second dinucleotide occupies positions 2 and 3, etc.
  • the possibilities are CC, AT, GG, and TA, as shown in FIG. 30 .
  • the possibilities are CA, AC, GT, and TG, etc.
  • the process of recording the possible sequences of each dinucleotide is continued until a desired sequence length has been reached.
  • a first assumption is made about the identity of the first nucleotide in the candidate sequence, which is assumed to be at the 5′ position of the sequence, indicated as position 1 in FIG. 30 .
  • the first assumption can be that the nucleotide is A, that the nucleotide is G, that the nucleotide is C, or that the nucleotide is T.
  • the possible sequences for each dinucleotide are limited by the possible sequences of the adjacent dinucleotides, since adjacent dinucleotides overlap, i.e., the second nucleotide of the first dinucleotide is also the first nucleotide of the second dinucleotide.
  • the first nucleotide is assumed to be C
  • the first dinucleotide must be CC.
  • the second dinucleotide must have a C at its first position. Since the only possible sequence for the second dinucleotide that has a C at its first position is CA, it is evident that the second dinucleotide must be CA.
  • the sequence of the first 3 nucleotides must be CCA.
  • the possible sequences for the third dinucleotide are limited by the possible sequences of the second dinucleotide. If the second dinucleotide is CA, then the third dinucleotide must be AG since that is the only possibility that has A at its first position. Thus the sequence of the first 4 nucleotides must be CCAG. Continuing this process results in a sequence of 5′-CCAGC-3′ for the first 5 nucleotides. CCAGC is thus the first candidate sequence.
  • a second candidate sequence is generated by assuming that the first nucleotide is A. This assumption yields AT for the first dinucleotide.
  • TG is the only possible sequence for the second dinucleotide that is consistent with a sequence of AT for the first dinucleotide.
  • GA is the only possible sequence for the third dinucleotide that is consistent with a sequence of TG for the second dinucleotide.
  • AA is the only possible sequence for the fourth dinucleotide that is consistent with a sequence of GA for the third dinucleotide. Assembling these dinucleotides into a full length candidate sequence yields ATGAA.
  • an assumption that the first nucleotide is a G yields the candidate sequence GGTCG
  • an assumption that the first nucleotide is a T yields the candidate sequence TACTT.
  • the assumption must be made about the first nucleotide rather than one of the other nucleotides.
  • an assumption could equally well have been made about the identity of the fourth nucleotide, in which case the candidate sequences would have been generated by moving “backwards” along the template (i.e., in a 3′ ⁇ 5′ direction).
  • the fourth nucleotide is T means that the fourth dinucleotide must be TT; the third dinucleotide must be CT; the second dinucleotide must be AC; and the first dinucleotide must be CC.
  • nucleotides are written in the 5′ ⁇ 3′ orientation although their identities are generated by moving from 3′ 5′ in the sequence.
  • an assumption can be made about any nucleotide in the middle of the sequence, and dinucleotide identities generated by moving both in the 5′ ⁇ 3′ and the 3′ ⁇ 5 directions. It will be appreciated that in the absence of an assumption about one of the nucleotides, the identity of each nucleotide remains completely undetermined since each position could be occupied by A, G, C, or T.
  • any single nucleotide e.g., the first nucleotide
  • a less preferred collection of probe families may include a family with members whose defined sequences are AA and AC. In such a case, assuming that the first nucleotide is A leaves two possibilities for the second nucleotide. Sequencing using less preferred collections of probe families is discussed further below. It will be appreciated that if the constrained portions consist of noncontiguous nucleotides, the approach described above can still be used with minor modifications.
  • candidate sequences of the extended duplexes were determined, as described above, corresponding candidate sequences for the region of the template to be sequenced are obtained by taking their complements. In some instances, the candidate sequences themselves will provide enough information to achieve an objective. For example, if the purpose of sequencing is simply to rule out certain sequence possibilities, then comparing the candidate sequences with those possibilities would be sufficient.
  • the candidate sequences shown in FIG. 30 would allow a determination that the region being sequenced was not part of a polyA tail, for example. A longer sequence could confirm that the region being sequenced was not part of a vector.
  • the correct sequence is identified by comparing the candidate sequences for the region of the template to be sequenced with a set of known sequences.
  • the set of known sequences may, for example, be a set of sequences for a particular organism of interest. For example, if human DNA is being sequenced, then the candidate sequences can be compared with the Human Draft Genome Sequence.
  • nucleic acid derived from an infectious agent e.g., a bacterium or virus isolated from a subject
  • an infectious agent e.g., a bacterium or virus isolated from a subject
  • a database containing sequences of variant strains of that bacterium or virus can be searched.
  • Many such organism-specific databases, containing either complete or partial sequences, are known in the art, and more will become available as sequencing efforts accelerate.
  • Some representative examples include databases for the mouse (see, e.g., the web site having URL www.ncbi.nlm.nih.gov/genome/seq/Mmflome.html), human immunodeficiency virus (see, e.g., the web site having URL hiv-web.lanl.gov/content/hiv-db/mainpage.html), malaria species Plasmodium falciparum (see, e.g., the web site having URL www.tigr.org/tdb/edb2/pfal/htmls/index.shtml), etc. Of course it is not necessary to use an organism-specific set of sequences.
  • GenBank web site having URL www.ncbi.nlm.nih.gov/Genbank/
  • GenBank web site having URL www.ncbi.nlm.nih.gov/Genbank/
  • the database need not even contain any sequences from the organism or virus from which the template was derived.
  • the sequences can be genomic sequences, cDNA sequences, ESTs, etc. Multiple sequences can be searched.
  • Simply performing the search may be sufficient to achieve an objective. For example, if viral nucleic acid is isolated from a patient, comparing the candidate sequences with a set of known sequences of that virus can determine that the viral nucleic acid either does or does not contain sequences from that virus, even if the matching sequence is never examined. The existence of a match would confirm that the patient is infected with the virus, while lack of a match would indicate that the patient is not infected with the virus.
  • the set of known sequences contains a narrower range of sequences, which may be specifically tailored to the purpose for which the sequencing is performed.
  • information about the nucleic acid being sequenced may be used to select the set of known sequences.
  • the known sequences may represent different alleles of a gene, mutant and wild type sequences at a given locus of interest, etc. It may only be necessary to compare the candidate sequences with a single known sequence to determine which of the candidate sequences is correct.
  • the template is obtained by amplifying DNA that contains a region of interest (e.g., using primers that flank the region of interest).
  • the region of interest may encompass a site at which mutations or polymorphisms may exist, e.g., mutations or polymorphisms that are associated with a particular disease. If it is known that the template represents a sequence from a particular region of interest, then the candidate sequences need only be compared with a single reference sequence for that region, e.g., a wild type or mutant form of the sequence. In other words, if part or all of the sequence of the template is known, it may not be necessary to perform a comparison with a plurality of known sequences. Instead, a candidate sequence that comprises all or part of the known sequence is selected as correct.
  • the template comprises sequence from the BRCA1 gene, e.g., if primers flanking a region of interest that encompasses a portion of the gene were used to produce a clonal population of templates, then the candidate sequences need only be compared against the wild type or mutant BRCA1 sequence to determine the correct sequence.
  • comparing the candidate sequences with the set of known sequences will identify any known sequences that are similar to any of the candidate sequences. Provided that the candidate sequences are of sufficient length, the likelihood that a database will contain sequences that is identical to or closely resemble more than one of the candidate sequences are very small. In other words, if the candidate sequences are long enough, it is unlikely that more than one of them will be represented in the set of known sequences.
  • the candidate sequences are compared with any sequences that are considered to be a “match”. It will typically be desirable to set a threshold for the degree of identity required to establish that a match exists.
  • a known sequence may be considered to be a match if a candidate sequence and the known sequence are at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 95%, at least 99%, or even 100% identical.
  • the percent identity will be evaluated over a window of at least 10 nucleotides in length, e.g., 10-15 nucleotides, 15-20 nucleotides, 20-25 nucleotides, 25-30 nucleotides, etc.
  • the length of the window may be selected according to a variety of different criteria including, but not limited to, the number of sequences in the plurality of known sequences, the identity or source of the plurality of known sequences, etc.
  • sequences are compared across a plurality of different windows, not necessarily adjacent to one another.
  • the combined length of the windows is at least 10 nucleotides in length, e.g., 10-15 nucleotides, 15-20 nucleotides, 20-25 nucleotides, 25-30 nucleotides, etc.
  • sequences in the set of known sequences may match.
  • the sequences may, for example, represent homologous genes found in the same organism as that from which the template was derived, homologous genes from different organisms, pseudogenes, cDNA and genomic sequences, etc.
  • the candidate sequence that most closely resembles a sequence in the set of known sequences is selected as correct.
  • the candidate sequence that most closely resembles a sequence in the set of known sequences is selected as correct.
  • the corresponding sequence from the database is selected as correct.
  • the error rate is known to be above a predetermined threshold it may be preferable to select a sequence from the database as the correct sequence.
  • the length required in order to ensure that the likelihood of matches being found for multiple candidate sequences will depend on a variety of considerations including, but not limited to, the particular set of known sequences, the threshold for accepting matches, etc. In general, a sequence of length ⁇ 25-26 nucleotides would only be represented once in the genome of a typical organism. Therefore generating candidate sequences of approximately this length is sufficient to identify the correct sequence. In general, the candidate sequence should be at least 10 nucleotides in length, preferably at least 15, at least 20 nucleotides in length, e.g., between 20-25, 25-30, 30-35, 35-40, 45-50, or even longer.
  • decoding is performed by generating a first ordered list of probe families using a first collection of probe families encoded according to a first encoding, generating a first set of candidate sequences therefrom and then generating a second ordered list of probe families from the same template using a second collection of probe families encoded according to a second encoding and generating a second set of candidate sequences therefrom.
  • the newly synthesized DNA strand is removed from the template between the two sequencing reactions, or a template of identical sequence is sequenced using the second collection of probe families.
  • the sets of candidate sequences are compared. It will be appreciated that regardless of which collection of probe families is used, one of the candidate sequences will be the correct sequence while the others are not correct (or are at best partially correct).
  • every set of candidate sequences will contain the correct sequence, but in most cases the other candidate sequences in any given set candidate sequences will differ from those found in another set of candidate sequences. Therefore, by simply comparing the two sets of candidate sequences, the correct sequence can be determined. It is not necessary to generate candidate sequences of equal length using the two differently encoded collections of probe families.
  • the candidate sequences generated using the second collection of probe families can be as short as 2 nucleotides or, equivalently, the ordered list of probe families generated using the second collection of probe families can be as short as 1 element (i.e., a single cycle of ligation and detection).
  • FIGS. 31A-31C show an example of candidate sequence generation and decoding using two distinguishably labeled preferred probe families.
  • FIG. 31A shows a preferred collection of probe families encoded according to a first encoding.
  • FIG. 31C shows a preferred collection of probe families encoded according to a second encoding. Since the first dinucleotide in the template is CA, the uppermost probe in the Yellow probe family will ligate to the extendable terminus in the first cycle of extension.
  • the first and second collections of probe families should fulfill the following criteria: When the first and second collections of probe families are compared, (i) 3 of the 4 probes in each of the probe families in the first collection should be assigned to a new probe family in the second collection; and (ii) each of the 3 reassigned probes should be assigned to a different probe family in the second collection.
  • candidate sequences can be generated by assuming an identity for a single nucleotide in the extended duplex or template. Depending on the specific probe family collection used, it will generally be necessary to generate at least 4 candidate sequences. However, generation of multiple candidate sequences can be avoided if the identity of at least one nucleotide in the template (and therefore also in the extended duplex) is known. In that case, it will only be necessary to generate a single candidate sequence. The method for generating the candidate sequence is identical to that described above.
  • the identity of the at least one nucleotide in the template may be determined using any sequencing method including, but not limited to sequencing methods A, primer extension from an initializing oligonucleotide using a set of distinguishably labeled nucleotides and a polymerase, etc. It will be appreciated that one or more nucleotides in the template can first be sequenced using a sequencing method other than sequencing method AB, and the initializing oligonucleotide and any extension products can then be removed, and the same template subjected to sequencing using sequencing methods AB (or vice versa).
  • Another approach is to simply sequence a template that contains one or more known nucleotides of known identity in addition to a portion whose sequence is to be determined.
  • the portion of the template between the region to which the initializing oligonucleotide binds and at which the unknown sequence begins can include one or more nucleotides of known identity.
  • the methods described above therefore comprise steps of (i) assigning an identity to a nucleotide in the template adjacent to a nucleotide of known identity by determining which identity is consistent with the identity of the known nucleotide and the possible sequences of the constrained portion of the probe whose proximal nucleotide ligated opposite the nucleotide adjacent to the nucleotide of known identity; (ii) assigning an identity to a succeeding nucleotide by determining which identity is consistent with possible sequences of the constrained portion of the probe whose proximal nucleotide ligated opposite the succeeding nucleotide; and (iii) repeating step (ii) until the sequence is determined. It is to be understood that these steps are equivalent to performing the same steps on the extended duplex since there is a precise correspondence between the extended duplex and the region of the template to be sequenced.
  • FIG. 32 shows an example of sequence determination using a less preferred collection of probe families encoded as shown in FIG. 28 . Sequence determination generally proceeds as described for preferred collections of probe families.
  • the template of interest has the sequence “GCATGA”, which results in “12341” as the ordered list of probe families. Assuming that the nucleotide at position 1 is A yields “ACATGA” as a candidate sequence.
  • collections of probe families need not consist of four different probe families but can consist of any number greater than 2, up to 4 N , where N is the length of the constrained portion. However, if fewer than 4 families are used it may be necessary to generate more than 4 candidate sequences, while if more than 4 probe families are used additional labels will be required. For these and other reasons collections consisting of 4 probe families are preferred.
  • part or all of a sequence of interest may be determined by comparing candidate sequences with each other. In general, such a comparison may not be sufficient to determine which of the candidate sequences is correct across its entire length. However, if two or more of the candidate sequences are identical or sufficiently similar over a portion of the sequences, this information may be sufficient to explicitly identify the sequence of nucleotides in the template within that portion as described above.
  • the template can be sequenced one or more additional times using alternatively encoded probe families to yield additional portions with an identified sequence. These portions can be combined to assemble a sequence of a desired length.
  • Probe Families It is often desirable to sequence multiple templates that represent all or part of the same DNA sequence and to align the sequences. If the templates contain only part of a region of interest, a longer sequence is then obtained by assembling overlapping fragments. For example, when sequencing the genome of an organism, typically the DNA is fragmented, and enough fragments are sequenced so that each stretch of DNA is represented in several (e.g., 4-12) different fragments. Computer software for assembling overlapping sequences into a longer sequence is known to one of skill in the art.
  • the invention provides novel methods of performing error checking using sequencing methods AB.
  • templates comprising fragments that represent the same stretch of DNA are sequenced using a collection of distinguishably labeled probe families as described above, resulting in an ordered list of probe families for each template.
  • the ordered lists of probe families are aligned. If several lists align perfectly over a predetermined length, e.g., 10, 15, 20, or 25 or more elements in the lists, except for one list that differs at a single position from the other fragments, the difference is ascribed to a sequencing error. If an actual polymorphism exists, the ordered probe list generated from the anomalous fragment will differ at two or more adjacent positions from the ordered probe lists generated from the other fragments.
  • sequencing methods AB using a preferred collection of probe families that uses encoding 4 in Table 1 to a template comprising the sequence 5′-CAGACGACAAGTATAATG-3′ yields the following ordered list of probe families: “23324322132444142”, as shown below: 23324322132444142 CAGACGACAAGTATAATG
  • SNP e.g., CAGACGA G AAGTATAATG, in which the underlined nucleotide represents the polymorphic site
  • changes in two consecutive elements in the list 233243 33 132444142, in which underlining indicates the change that occurs as a result of the SNP.
  • the correspondence between the ordered list of probe families and sequence containing a SNP is shown below: 233243 33 132444142 CAGACGA G AAGTATAATG
  • an error in identifying the label associated with a ligated extension probe results in a single error in the ordered list of probe families and a change in the resulting candidate sequence from that point forward.
  • an error in determining the label associated with the 7 th ligated extension probe 233243 3 2132444142 changes the resulting candidate sequence to CAGACGA GTTCATATTAC , in which the underlined portion indicates the change that occurs as a result of the sequencing error.
  • the correspondence between the ordered list of probe families and the sequence is shown below: 233243 3 2132444142 CAGACGA GTTCATATTAC
  • a fragment that contains a SNP results in 3 consecutive differences in the ordered list of probe families for the anomalous fragment, while a sequencing error results in only 1 difference.
  • an ordered list of probe family identities for the sequence CAGACGACAAGTATAATG is shown below: 2322224132412244 CAGACGACAAGTATAATG
  • An anomalous fragment containing a SNP e.g., CAGACGA G AAGTATAATG
  • CAGACGA G AAGTATAATG would result in an ordered list of probe families that differs at 3 consecutive positions relative to ordered lists generated from fragments that do not contain the SNP, as shown below: 2322213332412244 CAGACGAGAAGTATAATG
  • a sequencing error would result in only a single difference in the ordered list of probe families and would result in a completely different generated candidate sequence from the point of the error forward.
  • the aligned portions of the ordered lists of probe families are at least 3 or 4 elements in length, preferably at least 6, 8, or more elements in length.
  • the aligned portions are at least 66% identical, at least 70% identical, at least 80% identical, at least 90% identical, or more, e.g., 100% identical.
  • the aligned portions of the candidate sequences are at least 4 nucleotides in length.
  • the aligned portions are at least 66% identical, at least 70% identical, at least 80% identical, at least 90% identical, or more, e.g., 100% identical.
  • the invention therefore provides a method of distinguishing a single nucleotide polymorphism from a sequencing error comprising steps of: (a) sequencing a plurality of templates using sequencing methods AB, wherein the templates represent overlapping fragments of a single nucleic acid sequence; (b) aligning the sequences obtained in step (a); and (c) determining that a difference between the sequences represents a sequencing error if the sequences are substantially identical across a first portion and substantially different across a second portion, each portion having a length of at least 3 nucleotides.
  • the invention further provides a method of distinguishing a single nucleotide polymorphism from a sequencing error comprising steps of: (a) obtaining a plurality of ordered lists of probe families by performing sequencing methods AB using a plurality of templates that represent overlapping fragments of a single nucleic acid sequence; (b) aligning the ordered lists of probe families obtained in step (a) to obtain an aligned region within which the lists are at least 90% identical; and (c) determining that a difference between the ordered lists of probe families represents a sequencing error if the lists differ at only one position within the aligned region; or (d) determining that a difference between the ordered lists of probe families represents a single nucleotide polymorphism if the lists differ at two or more consecutive positions within the aligned region.
  • a “bit” (binary digit) refers to a single digit number in base 2, in other words, either a 1 or a zero, and represent the smallest unit of digital data. Since a nucleotide can have any of 4 different identities, it will be appreciated that specifying the identity of a nucleotide requires 2 bits. For example, A, G, C, and T could be represented as 00, 01, 10, and 11, respectively. Specifying the name of a probe family in a preferred collection of distinguishably labeled probe families requires 2 bits since there are four distinguishably labeled probe families.
  • each nucleotide is identified as a discrete unit, and information corresponding to one nucleotide at a time is gathered.
  • Each detection step acquires two bits of information from a single nucleotide.
  • sequencing methods AB acquire less than two bits of information from each of a plurality of nucleotides in each detection step while still acquiring 2 bits of information per detection step when a preferred collection of probe families is used.
  • Each probe family name in an ordered list of probe families represents the identity of at least 2 nucleotides in the template, with the exact number being determined by the length of the sequence determining portion of the probes.
  • Probe family 2 is the first probe family in the list since the dinucleotide CA is one of the specified portions present in probes of probe family 2.
  • Probe family 3 is the second probe family in the list since the dinucleotide AG is one of the specified portions present in probes of probe family 3.
  • each probe family identity represents 2 bits of information. Thus each detection step gathers 2 bits of information about 2 nucleotides, resulting in an average of 1 bit of information from each nucleotide.
  • the invention therefore provides a method for determining a sequence, wherein the method comprises multiple cycles of extension, ligation, and detection, and wherein the detecting step comprises simultaneously acquiring an average of two bits of information from each of at least two nucleotides in the template without acquiring two bits of information from any individual nucleotide.
  • the invention further provides a method for determining a sequence of nucleotides in a template polynucleotide using a first collection of oligonucleotide probe families, the method comprising the steps of: (a) performing sequential cycles of extension, ligation, detection, and cleavage, wherein an average of two bits of information are simultaneously acquired from each of at least two nucleotides in the template during each cycle without acquiring two bits of information from any individual nucleotide; and (b) combining the information obtained in step (a) with at least one bit of additional information to determine the sequence.
  • the at least one bit of additional information comprises an item selected from the group consisting of: the identity of a nucleotide in the template, information obtained by comparing a candidate sequence with at least one known sequence; and information obtained by repeating the method using a second collection of oligonucleotide probe families.
  • Delocalized information collection has a number of advantages including allowing the application of error checking methods such as those described above.
  • delocalized information collection can help avoid systematic biases in detecting fluorophores associated with particular nucleotides.
  • the probe families and collections of probe families described herein can be used in a variety of sequencing methods in addition to methods that involve successive cycles of extension, ligation, and cleavage of the probe.
  • the invention also provides probe families and collections of probe families having the sequences and structures as described above, wherein the probes optionally do not contain a scissile linkage.
  • the probes can contain only phosphodiester backbone linkages and/or may not contain a trigger residue.
  • the probe families are used to perform sequencing using successive cycles of extension and ligation, but not involving cleavage during each cycle.
  • the probe families can be used in a ligation-based method such as that described in WO2005021786 and elsewhere in the art.
  • the label on the probe should be attached by a cleavable linker, e.g., as disclosed in WO2005021786, such that it can be removed without cleaving a scissile linkage of the nucleic acid.
  • a cleavable linker e.g., as disclosed in WO2005021786
  • Such a method can be used to generate an ordered list of probe families, e.g., by performing multiple reactions in parallel or sequentially, using the probe families rather than the ligation cassettes described in WO2005021786, and then assembling the list of probe families. The list is decoded as described above.
  • kits may be provided for carrying out different embodiments of the invention.
  • Certain of the kits include extension oligonucleotide probes comprising a phosphorothiolate linkage.
  • the kits may further include one or more initializing oligonucleotides.
  • the kits may contain a cleavage reagent suitable for cleaving phosphorothiolate linkages, e.g., AgNO 3 and appropriate buffers in which to perform the cleavage.
  • Certain of the kits include extension oligonucleotide probes comprising a trigger residue such as a nucleoside containing a damaged base or an abasic residue.
  • the kits may further include one or more initializing oligonucleotides.
  • kits may contain a cleavage reagent suitable for cleaving a linkage between a nucleoside and an adjacent abasic residue and/or a reagent suitable for removing a damaged base from a polynucleotide, e.g., a DNA glycosylase.
  • a cleavage reagent suitable for cleaving a linkage between a nucleoside and an adjacent abasic residue
  • a reagent suitable for removing a damaged base from a polynucleotide e.g., a DNA glycosylase.
  • kits contain oligonucleotide probes that comprise a disaccharide nucleotide and contain periodate as a cleavage reagent.
  • the kits contain a collection of distinguishably labeled oligonucleotide probe families.
  • Kits may further include ligation reagents (e.g., ligase, buffers, etc.) and instructions for practicing the particular embodiment of the invention.
  • ligation reagents e.g., ligase, buffers, etc.
  • Appropriate buffers for the other enzymes that may be used, e.g., phosphatase, polymerases, may be included. In some cases, these buffers may be identical.
  • Kits may also include a support, e.g. magnetic beads, for anchoring templates. The beads may be functionalized with a primer for performing PCR amplification.
  • washing solutions include washing solutions; vectors for inserting templates for PCR amplification; PCR reagents such as amplification primers, thermostable polymerase, nucleotides; reagents for preparing an emulsion; reagents for preparing a gel, etc.
  • fluorescently labeled oligonucleotide probes comprising phosphorothiolate linkages are provided such that probes corresponding to different terminal nucleotides of the probe carry distinct spectrally resolvable fluorescent dyes. More preferably, four such probes are provided that allow a one-to-one correspondence between each of four spectrally resolvable fluorescent dyes and the four possible terminal nucleotides of a probe.
  • An identifier e.g., a bar code, radio frequency ID tag, etc.
  • the identifier can be used, e.g., to uniquely identify the kit for purposes of quality control, inventory control, tracking, movement between workstations, etc.
  • Kits will generally include one or more vessels or containers so that certain of the individual reagents may be separately housed.
  • the kits may also include a means for enclosing the individual containers in relatively close confinement for commercial sale, e.g., a plastic box, in which instructions, packaging materials such as styrofoam, etc., may be enclosed.
  • the invention provides a variety of automated sequencing systems that can be used to gather sequence information from a plurality of templates in parallel, i.e., substantially simultaneously.
  • the templates are arrayed on a substantially planar substrate.
  • FIG. 21 shows a photograph of one of the inventive systems.
  • the inventive system comprises a CCD camera, a fluorescence microscope, a movable stage, a Peltier flow cell, a temperature controller, a fluid handling device, and a dedicated computer. It will be appreciated that various substitutions of these components can be made. For example, alternative image capture devices can be used. Further details of this system are provided in Example 9.
  • inventive automated sequencing system and associated image processing methods and software can be used to practice a variety of sequencing methods including both the ligation-based methods described herein and other methods including, but not limited to, sequencing by synthesis methods such as fluorescence in situ sequencing by synthesis (FISSEQ) (see, e.g., Mitra R D, et al., Anal Biochem., 320(1):55-65, 2003).
  • FISSEQ fluorescence in situ sequencing by synthesis
  • FISSEQ may be practiced on templates immobilized directly in or on a semi-solid support, templates immobilized on microparticles in or on a semi-solid support, templates attached directly to a substrate, etc.
  • a flow cell comprises a chamber that has input and output ports through which fluid can flow. See, e.g., U.S. Pat. Nos. 6,406,848 and 6,654,505 and PCT Pub. No. WO98053300 for discussion of various flow cells and materials and methods for their manufacture.
  • the flow of fluid allows various reagents to be added and removed from entities (e.g., templates, microparticles, analytes, etc.) located in the flow cell.
  • a suitable flow cell for use in the inventive sequencing system comprises a location at which a substrate, e.g. a substantially planar substrate such as a slide, can be mounted so that fluid flows over the surface of the substrate, and a window to allow illumination, excitation, signal acquisition, etc.
  • a substrate e.g. a substantially planar substrate such as a slide
  • entities such as microparticles are typically arrayed on the substrate before it is placed within the flow cell.
  • the flow cell is vertically oriented, which allows air bubbles to escape from the top of the flow cell.
  • the flow cell is arranged such that the fluid path runs from bottom to top of the flow cell, e.g., the input port is at the bottom of the cell and the output port is at the top of the cell. Since any bubbles that may be introduced are buoyant, they rapidly float to the output port without obscuring the illumination window.
  • This approach in which gas bubbles are allowed to rise to the surface of a liquid by virtue of their lower density relative to that of the liquid is referred to herein as “gravimetric bubble displacement”.
  • the invention provides a sequencing system comprising a flow cell oriented so as to allow gravimetric bubble displacement.
  • the substrate having microparticles directly or indirectly attached thereto e.g., covalently or noncovalently linked to the substrate
  • immobilized in or on a semi-solid support that is adherent to or affixed to the substrate is mounted vertically within the flow cell, i.e., the largest planar surface of the substrate is perpendicular to the ground plane. Since in preferred embodiments the microparticles are immobilized in or on a support or substrate, they remain at substantially fixed positions with respect to one another, which facilitates serial acquisition of images and image registration.
  • FIGS. 24 A-J shows schematic diagrams of inventive flow cells or portions thereof, in various orientations.
  • inventive flow cells can be used for any of a variety of purposes including, but not limited to, analysis methods (e.g., nucleic acid analysis methods such as sequencing, hybridization assays, etc.; protein analysis methods, binding assays, screening assays, etc.
  • analysis methods e.g., nucleic acid analysis methods such as sequencing, hybridization assays, etc.
  • protein analysis methods e.g., binding assays, screening assays, etc.
  • the flow cells may also be used to perform synthesis, e.g., to generate combinatorial libraries, etc.
  • FIG. 22 shows a schematic diagram of another inventive automated sequencing system.
  • the flow cell is mounted on a temperature-controlled, automated stage (similar to the one described in Example 9) and is attached to a fluid handling system, such as a syringe pump with a multi-port valve.
  • the stage accommodate multiple flow cells in order to allow one flow cell to be imaged while other steps such as extension, ligation, and cleavage are being performed on another flow cell. This approach maximizes utilization of the expensive optical system while increasing the throughput.
  • the fluid lines are equipped with optical and/or conductance sensors to detect bubbles and to monitor reagent usage. Temperature control and sensors in the fluidics system assure that reagents are maintained at an appropriate temperature for long term stability but are raised to the working temperature as they enter the flow cell to avoid temperature fluctuations during the annealing, ligation and cleavage steps. Reagents are preferably pre-packaged in kits to prevent errors in loading.
  • the optics includes four cameras—each taking one image through one of four filter sets.
  • the illumination optics may be engineered to illuminate only the area being imaged, to avoid multiple illumination of the edges of the fields.
  • the imaging optics may be built from standard infinity-corrected microscope objectives and standard beam-splitters and filters. Standard 2,000 ⁇ 2,000 pixel CCD cameras can be used to acquire the images.
  • the system incorporates appropriate mechanical supports for the optics. Illumination intensity is preferably monitored and recorded for later use by the analysis software.
  • the system preferably uses a fast autofocus system.
  • Autofocus systems based on analysis of the images themselves are well known in the art. These generally require at least 5 frames per focusing event. This is both slow and costly in terms of the extra illumination required to acquire the focusing images (increases photobleaching).
  • an alternate autofocusing system is used, e.g., a system based on independent optics that can focus as quickly as the mechanical systems can respond. Such systems are known in the art and include, for examples the focusing systems used in consumer CD players, which maintain sub-micron focusing in real time as the CD spins.
  • the system is operated remotely.
  • Scripts for implementing specific protocols may be stored in a central database and downloaded for each sequencing run. Samples can be barcoded to maintain integrity of sample tracking and associating samples with the final data. Central, real-time monitoring will allow quick resolution of process errors.
  • images gathered by the instruments will immediately be uploaded to a central, multi-terabyte storage system and a bank of one or more processor(s).
  • the processor(s) analyze the images and generate sequence data and, optionally, process metrics, such as background fluorescence levels and bead density, in order, e.g., to track instrument performance.
  • Control software is used to properly sequence the pumps, stage, cameras, filters, temperature control and to annotate and store the image data.
  • a user interface is provided, e.g., to assist the operator in setting up and maintaining the instrument, and preferably includes functions to position the stage for loading/unloading slides and priming the fluid lines. Display functions may be included, e.g., to show the operator various running parameters, such as temperatures, stage position, current optical filter configuration, the state of a running protocol, etc.
  • an interface to the database to record tracking data such as reagent lots and sample IDs is included.
  • the invention provides a variety of image and data processing methods that may be implemented at least in part as computer code (i.e., software) stored on a computer readable medium. Further details are presented in Examples 9 and 10.
  • both sequencing methods A and B generally employ appropriate computer software to perform the processing steps involved, e.g., keeping track of data gathered in multiple sequencing reactions, assembling such data, generating candidate sequences, performing sequence comparisons, etc.
  • the invention provides a computer-readable medium that stores information generated by applying the inventive sequencing methods.
  • Information includes raw data (i.e., data that has not been further processed or analyzed), processed or analyzed data, etc.
  • Data includes images, numbers, etc.
  • the information may be stored in a database, i.e., a collection of information (e.g., data) typically arranged for ease of retrieval, for example, stored in a computer memory.
  • Information includes, e.g., sequences and any information related to the sequences, e.g., portions of the sequence, comparisons of the sequence with a reference sequence, results of sequence analysis, genomic information, such as polymorphism information (e.g., whether a particular template contains a polymorphism) or mutation information, etc., linkage information (i.e., information pertaining to the physical location of a nucleic acid sequence with respect to another nucleic acid sequence, e.g., in a chromosome), disease association information (i.e., information correlating the presence of or susceptibility to a disease to a physical trait of a subject, e.g., an allele of a subject), etc.
  • genomic information such as polymorphism information (e.g., whether a particular template contains a polymorphism) or mutation information, etc.
  • linkage information i.e., information pertaining to the physical location of a nucleic acid sequence with respect to another nucleic acid sequence, e
  • the information may be associated with a sample ID, subject ID, etc. Additional information related to the sample, subject, etc., may be included, including, but not limited to, the source of the sample, processing steps performed on the sample, interpretations of the information, characteristics of the sample or subject, etc.
  • the invention also includes a method comprising receiving any of the aforesaid information in a computer-readable format, e.g., stored on a computer-readable medium.
  • the method may further include a step of providing diagnostic, prognostic, or predictive information based on the information, or a step of simply providing the information to a third party, preferably stored on a computer-readable medium.
  • This example describes an experiment demonstrating efficient ligation and cleavage of extension oligonucleotides containing a 3′-S phosphorothiolate linkage.
  • Each of these short template populations were designed with an identical primer binding region (40 bp) and a unique sequence region (30 bp) at the 3′ end.
  • the short oligonucleotide template populations were termed ligation sequencing templates 1-7 (LST1-7).
  • the second set of bead-based template populations were designed from long, PCR-generated DNA fragments (232-bp) derived by inserting 183-bp of spacer sequence (from a human p53 exon) into each template population. Templates were amplified with dual biotin-containing forward primers and reverse primers containing the same 30 base unique 3′ end sequence as the short template populations. The templates were made single-stranded by melting off one of the strands with sodium hydroxide-containing buffer. These long template populations were designed to mimic the species generated from short-fragment paired-end libraries described in a copending patent application and were termed long-LST1-7.
  • Primer Hybridization 2.5 ⁇ L of 100 ⁇ M FAM-labeled primer was premixed with 100 ⁇ L 1 ⁇ Klenow Buffer. This solution was added to a 30 ⁇ L aliquot of magnetic beads (10 6 / ⁇ L) with attached template after removal of the buffer, and the resulting solution was well mixed. After allowing template/primer hybridization to occur (hybridization reaction was carried out for 2 minutes at 65° C., 2 minutes at 40° C.
  • the primer/buffer was removed, and the beads were washed using 3 ⁇ Wash 1E buffer, and then resuspended in 300 ⁇ L (10 6 /mL) in TENT buffer (containing 10 mM Tris, 2 mM EDTA, 30 mM NaOAc, and 0.01% Triton X-100).
  • Ligation 1 2.5 ⁇ 10 6 LST7 beads with hybridized LigSeq-FAM were then incubated for 30 minutes at 37° C. in a mixture containing 1 ⁇ L of 100 ⁇ M LST7-1 Nonamer, 4 ⁇ L 5 ⁇ T4 Ligase Buffer (Invitrogen), 14 ⁇ L of H 2 O and 1 ⁇ L of T4 Ligase (1 u/ ⁇ L, Invitrogen).
  • Cleavage 1 The beads were then washed 3 times with 100 ⁇ L of LSWash1 (containing 1 ⁇ TE, 30 mM sodium acetate, 0.01% Triton X100); a 10 ⁇ L-aliquot of this solution was removed and saved for analysis. The beads (1 ⁇ ) were then washed in 100 ⁇ L of 30 mM sodium acetate. 50 ⁇ L of 50 mM AgNO 3 was added to this solution and the resulting mixture was incubated at 37° C. for 20 minutes. AgNO 3 was removed, and the beads were washed once in 100 ⁇ L of 30 mM sodium acetate. The beads were then washed in 3 times with 100 ⁇ L of LSWash1, resuspended in 90 ⁇ L Wash (TENT buffer); and a 10 ⁇ L-aliquot of this solution was removed and saved for analysis.
  • LSWash1 containing 1 ⁇ TE, 30 mM sodium acetate, 0.01% Triton X100
  • Ligation 2 After removal of the TENT buffer, the beads were resuspended in 14 ⁇ L of H 2 O, and incubated at 37° C. for 30 minutes with a mixture containing 1 ⁇ L of 100 ⁇ M LST7-5 Nonamer, 4 ⁇ L of 5 ⁇ T4 Ligase Buffer (Invitrogen) and 1 ⁇ L of T4 Ligase (1 u/ ⁇ L, Invitrogen).
  • Cleavage 2 The beads were washed 3 times in 100 ⁇ L of LSWash1(1 ⁇ TE, 30 mM sodium acetate, 0.01% Triton X100), and resuspended in 45 ⁇ L Wash1E. A 15 ⁇ L-aliquot of this mixture was removed and saved for analysis. The beads were then washed once with 100 ⁇ L of 30 mM sodium acetate and resuspended in 5 ⁇ L of 20 mM sodium acetate. 50 ⁇ L of 50 mM AgNO 3 was added to the beads and the mixture was incubated at 37° C. for 20 minutes. After removal of AgNO 3 , the beads were washed once with 100 ⁇ L of 30 mM sodium acetate. The beads were then washed three times in 100 ⁇ L of LSWash1, and resuspended in 30 ⁇ L Wash1E. A 20 ⁇ L-aliquot of this mixture was removed and saved for analysis.
  • FIG. 8 shows an overall outline of the experimental procedure.
  • An initializing oligonucleotide (primer) was hybridized to a template (designated LST7), which was attached to a bead via a biotin linkage.
  • the initializing oligonucleotide contained a 5′ phosphate and was fluorescently labeled with FAM at its 3′ end.
  • Two 9mer (nonamer) oligonucleotide probes (1 st cleavable oligo and 2 nd cleavable oligo) were synthesized to contain an internal phosphorothiolated thymidine base (sT) (underlined).
  • sT phosphorothiolated thymidine base
  • the first cleavable probe was ligated to the extendable terminus of the primer using T4 DNA ligase and was then cleaved using silver nitrate. Cleavage removed the terminal 5 nucleotides of the extension probe and generated an extendable terminus on the portion of the probe that remained ligated to the primer. The second cleavable probe was then ligated to the extendable terminus and was then similarly cleaved.
  • a fluorescent capillary electrophoresis gel shift assay was used to monitor steps of ligation and cleavage.
  • the primer is hybridized to a template strand such that the 5′ phosphate can serve as a ligation substrate for incoming oligonucleotide probes (the fluorophore serves as a reporter for mobility-based capillary gel electrophoresis). After each step an aliquot of beads was removed for analysis.
  • the magnetic beads were collected using a magnet and the ligated species consisting of the primer and probe(s) ligated thereto was released from the template beads by heat denaturation and subjected to fluorescent capillary electrophoresis using an automated DNA sequencing instrument (ABI 3730) with labeled size standards (lissamine ladder; size range 15-120 nucleotides; appears as a set of orange peaks in chromatograms, see FIG. 8 ).
  • the potential peaks include, i) primer peaks (due to no extension or the lack of primer extension), ii) adenylation peaks (due to the attachment of an adenosine residue at the 5′ end of a nonproductive ligation junction by the action of DNA ligase—see mechanism in FIG. 8F , see also Lehman, I. R., Science, 186:790-797, 1974), and iii) completion peaks (due to the attachment of an oligo probe).
  • primer peaks due to no extension or the lack of primer extension
  • adenylation peaks due to the attachment of an adenosine residue at the 5′ end of a nonproductive ligation junction by the action of DNA ligase—see mechanism in FIG. 8F , see also Lehman, I. R., Science, 186:790-797, 1974
  • completion peaks duee to the attachment of an oligo probe.
  • FIG. 8A shows a control ligation performed using T4 DNA ligase and an exact match probe containing only phosphodiester linkages (shown to the left of FIG. 8A ). Orange peaks represent size markers. The blue peak at the left indicates the position of the primer in the absence of ligation. Ligation of the exact match probe results in a shift to the left (arrow).
  • FIG. 8B shows a ligation performed under the same conditions using a probe containing an internal thiolated T base (shown to the left of FIG. 8B ). A shift identical to that observed with the control probe was seen (arrow). Bead-linked template populations containing the ligated phosphorothiolated probes were then incubated with silver nitrate to induce probe cleavage.
  • FIG. 8C Gel-shift analysis confirmed efficient cleavage by demonstration of a left-shifted, 4-bp cleavage product ( FIG. 8C ).
  • the expected cleavage product is shown to the left of FIG. 8C .
  • Cleaved bead-based template populations were then exposed to a second round of ligation and demonstrated productive ligation by the appearance of a right-shifted, 13-bp extension product ( FIG. 8D ).
  • the expected cleavage product is shown to the left of FIG. 8D .
  • a second round of cleavage confirmed efficient multiple cleavage steps could be accomplished as demonstrated by the expected left-shifted, 8-bp cleavage product ( FIG. 8E ).
  • ligation did not proceed to 100% completion in these experiments, although a greater degree of completion was observed in other experiments using T4 DNA ligase (see below). While it is certainly desirable that the ligation proceed to completion it is not a requirement. For example, it is possible to effectively “cap” any unligated 5′ ends by treating with a 5′-phosphatase after the ligation step as described above. In that case, however, there would be a limit to the number of sequential ligations that could be performed, due to attrition of ligatable molecules.
  • the read length will depend on the length of the probe remaining after each ligation/cleavage cycle and on the number of sequencing reactions, each followed by removal of the primer and hybridization of a primer that binds to a different portion of the primer binding site, that can be performed on a given template, also referred to as the number of “resets”).
  • This argues for the use of longer probes with the cleavable linkage located towards the 5′ end of the probe.
  • hexamer probes lead to greater amounts of un-ligatable adenylation products than octamers and longer probes. Thus octamers and longer probes will ligate substantially to completion (see below).
  • a competing consideration to probe length is the fidelity of the extended oligonucleotide and its effect on subsequent ligation efficiency.
  • the fidelity of T4 DNA ligase has been shown to decrease rapidly following the 5 th base after the junction (Luo et al., Nucleic Acid Res., 24: 3071-3078 and 3079-3085, 1996). If mismatches are introduced at the 5′ side of a new ligation junction, the ligation efficiency may be reduced by attrition, however, no dephasing or increase in background signal will be generated (a major obstacle encountered in polymerase-based sequencing by synthesis methods).
  • Probe sets should preferably be capable of hybridizing to any DNA sequence in order to permit de novo sequencing of uncharacterized DNA.
  • the complexity of a labeled probe set grows exponentially with the length and number of 4-fold degenerate bases.
  • a complex probe set is more challenging to synthesize while maintaining approximately equal representation of all probe species, and is harder to purify. It also requires a higher concentration of probe mixture to maintain a constant concentration of each species.
  • One way to manage this complexity is to use nucleotides incorporating universal bases, such as deoxyinosine, at certain positions instead of 4-fold degenerate bases.
  • octanucleotide probes were designed with 4-fold degenerate bases (N; equimolar amounts of A, C, G, T) and the universal base inosine (I) at various positions within the octamer (inosine is capable of bi-dentate hydrogen bonding with any of the four canonical bases in B-DNA; the order of stabilities of inosine base pairs is I:C>I:A>I:T ⁇ I:G).
  • N 4-fold degenerate bases
  • I universal base inosine
  • oligonucleotide probes were ligated to bead-based templates (long-LST1) using T4 DNA ligase.
  • the fluorophore-labeled primer (3′FAM Primer) shifts right in proportion to the amount of oligonucleotide probe ligated.
  • Probe design N18-9 showed the highest level of completion, with >99% of the primer population shifting right due to efficient ligation of the probe (see FIG. 9 ).
  • These reactions were conducted at 25° C.; when the reaction temperature was increased to 37° C., ligation was somewhat less efficient and the completion rates were more variable.
  • FIG. 10 demonstrates ligation completion as evaluated using the gel-shift assay with selected probe compositions on multiple templates using T4 DNA ligase. Data from these initial experiments demonstrated that ligation efficiency, and hence completion, is variable and sequence-dependent when inosine residues are placed within the first five 3′ positions of the ligation junction (underlined). Efficient ligation of octamers was observed consistently, however, with oligonucleotide probe design N18-9, as demonstrated here with >99% completion on all templates tested.
  • T4 DNA ligase Bacterial NAD-dependent ligases, such as Taq DNA ligase, have been reported to have high sequence fidelity across ligation junctions, with mismatches on the 3′ side having essentially no nick-closure activity, but mismatches on the 5′ side being tolerated to some degree (Luo et al., Nucleic Acid Res., 24: 3071-3078 and 3079-3085, 1996).
  • T4 DNA ligase has been reported to be somewhat less stringent, allowing mismatches on both the 3′- and 5′-sides of the junction. It was therefore of interest to evaluate the fidelity of probe ligation with T4 DNA ligase in comparison to Taq DNA ligase in the context of our system.
  • the first method was designed to clone and sequence ligation products. In this method, ligation extension products were attached to adapter sequences, cloned and transformed into bacteria. Individual colonies were picked and sequenced to provide a quantitative assessment of the mismatch frequency at each position across the ligation junction.
  • the second method was designed to sequence of ligation products directly. In that approach, single-stranded ligation products were denatured from bead-based templates and sequenced directly using a complementary primer. Positions with low accuracy display multiple overlapping peaks in the resulting sequence traces, providing a qualitative assessment that is indicative of the sequence fidelity at that position.
  • the first method was used to assess the relative fidelity of probe ligation by T4 and Taq DNA ligases.
  • a single bead-based template population (LST1) was hybridized to a universal sequencing primer, which was used as an initializing oligonucleotide.
  • Solution-based ligation reactions were then performed in the presence of a degenerate oligonucleotide probe (N7A, 3′ANNNNN5′, 2000 pmoles) at 37° C. for 30 minutes with either T4 DNA ligase (15 U per 1 ⁇ 10 6 beads) or Taq DNA ligase (60 U per 1 ⁇ 10 6 beads) ( FIG. 11 , panel A).
  • the direct sequencing method was used to assess the fidelity of T4 DNA ligase with degenerate, inosine-containing probes. Oligonucleotide probes were evaluated at 25° C. and 37° C. in ligation reactions that contained T4 DNA ligase and bead-based templates. Oligonucleotide probe ligation efficiencies were evaluated using a gel-shift assay ( FIG. 12 , panel A). Direct sequencing of the ligation reactions using an ABI3730x1 DNA Analyzer was conducted to assess the fidelity of T4 DNA ligase in oligonucleotide probe ligation ( FIG. 12 , panel B).
  • a single bead-based template population (LST1) was hybridized to a universal sequencing primer that contained 5′phosphates, which was used as an initializing oligonucleotide.
  • Solution-based ligation reactions were performed at 37 C for 30 minutes with T4 DNA ligase (1 U per 250,000 beads) in the presence of a degenerate, inosine-containing oligonucleotide probe (3′NNNNNiii5′, 3′NNNNNiNi5′, or 3′NNNiNNNi5′, 600 pmoles). Ligation products were cloned and colonies were picked and sequenced. Sequence fidelity was determined by calculating the number of clones represented for each position across the ligation junction. Results are tabulated in FIG. 12 , panels C-F. These studies demonstrate that 3′ ⁇ 5′ ligation of degenerate, inosine-containing probes with T4 DNA ligase has high-level fidelity in the first 1-5 positions.
  • FIG. 14 shows a fluorescence image of a portion of a slide on which beads with an attached template, to which a Cy3-labeled primer was hybridized, were immobilized within a polyacrylamide gel. (This slide was used in a different experiment, but is representative of the slides used here.)
  • FIG. 14 (bottom) shows a schematic diagram of a slide equipped with a Teflon mask to enclose the polyacrylamide solution.
  • oligonucleotide probes with distinct labels corresponding to each possible base addition product. This was modeled in our automated sequencing instrument equipped with appropriate excitation and emission filters, as outlined in FIG. 15 .
  • Three sets of octamer probes were designed to address issues of probe specificity and selectivity. The first set included four octamers, complementary to four unique template populations, with different 3′ bases and 5′ dye labels. The second set included seven unique octamers with unique 3′ bases and 5′ dyes. The third set corresponded to a probe design with four degenerate, inosine-containing octamers, each having a unique 3′ end base identified by a different 5′ dye label.
  • probe set #1 was employed to detect four unique template populations (see FIG. 16 ).
  • Slides were prepared containing four, unique single-stranded template populations attached to beads, which were embedded in polyacrylamide (panel A). Each bead had a clonal population of templates attached thereto.
  • a universal sequencing primer containing 5′ phosphates was hybridized, in situ, and ligation reactions were performed using an oligonucleotide probe mixture that contained four unique fluorophore probes (Cy5, CAL 610, CAL 560, FAM; 100 pmoles each) and T4 DNA ligase (10 U/slide). Slides were incubated at 37° C. for 30 minutes and washed to remove unbound probes.
  • probe set #2 was used to interrogate a single template population (see FIG. 17 ).
  • Slides were prepared with a beads having a single template population (LST1.T) attached thereto embedded in a polyacrylamide gel, and were hybridized, in situ, with a universal sequencing primer (panel A).
  • In-gel ligation reactions were conducted with T4 DNA ligase (10 U/slide) using an oligonucleotide probe mixture comprised of four 5′ end-labeled probes that differed only by a single 3′ base. Slides were incubated at 37° C. for 30 minutes and washed to remove unbound probe populations.
  • probe set #2 was used to identify a mixture of bead-based template populations containing single base differences and present in different amounts.
  • Slides were prepared with mixtures of beads each having one of four template populations, each with a single nucleotide polymorphism (LST1; A, G, C or T), attached thereto, as indicated in panel A of FIG. 18 .
  • LST1 single nucleotide polymorphism
  • the beads were embedded in a polyacrylamide gel on the slide.
  • Bead-based template populations were used at various different frequencies, as outlined in panel D. Slides were hybridized, in situ, with universal sequencing primers.
  • In-gel ligation reactions were conducted using T4 DNA ligase (10 U/slide) and an oligonucleotide probe mixture containing equimolar amounts (100 pmoles, each) of four 5′ end-labeled probes that differed only by a single 3′ base. Slides were incubated at 37° C. for 30 minutes and washed to remove unbound probe populations. Slides were imaged in white light to create a base image (panel B) and with fluorescence using four distinct bandpass filters (FITC, Cy3, TxRed, and Cy5). Individual probe images were overlaid and pseudocolored (panel C). Fluorescent images were enumerated using bead-calling software.
  • T4 DNA ligase 10 U/slide
  • an oligonucleotide probe mixture containing equimolar amounts (100 pmoles, each) of four 5′ end-labeled probes that differed only by a single 3′ base. Slides were incubated at 37
  • the results are presented in panel D and confirm that observed ligation frequencies (Obs) correlated with the expected frequencies (Exp).
  • the data demonstrate high probe specificity and probe selectivity after ligation in the presence of multiple templates and demonstrate the capability of detecting single nucleotide polymorphisms (SNPs), i.e., alterations that occur in a single nucleotide base in a stretch of genomic DNA in different individuals of a population, by ligation.
  • SNPs single nucleotide polymorphisms
  • N degenerate bases
  • I inosine
  • Positive dephasing occurs when nucleotides are misincorporated in a growing strand, hence causing the base sequence of that particular strand to run ahead of the sequence obtained from the remaining templates and to be out of phase by n+1 base calls.
  • Negative dephasing which is more common, occurs when strands are not fully extended, resulting in background base calls that run behind the growing strand (n ⁇ 1).
  • This example describes a representative inventive automated sequencing system that can be used to gather sequence information from one or more templates.
  • the templates are located on a substantially planar substrate such as a glass microscope slide.
  • the templates may be attached to beads that are arrayed on the substrate.
  • a photograph of the system is presented in FIG. 21 .
  • the system is based on an Olympus epi-fluorescence microscope body (mounted sideways) with an automated, auto-focusing stage and CCD camera.
  • Four filter cubes in a rotating holder permit four-color detection at a variety of excitation and emission wavelengths.
  • a flow cell with peltier temperature control which can be opened and closed to accept a substrate such as a slide (with a gasket to seal around the edge of an area containing a semi-solid support such as a gel), is mounted on the stage.
  • the vertical orientation of the flow cell is an important aspect of the inventive system and allows air bubbles to escape from the top of the flow cell.
  • the cell can be completely filled with air to eject all reagents prior to each wash step.
  • the flow cell is connected to a fluid handler with two 9-port Cavro syringe pumps, which allow delivery of 4 differentially labeled probe mixtures, cleavage reagent, any other desired reagents, enzyme equilibration buffer, wash buffer and air to the flow cell through a single port.
  • the operation of the system is completely automated and programmable through control software using a dedicated computer with multiple I/O ports.
  • the Cooke Sensicam camera incorporates a 1.3 megapixel cooled CCD though cameras having lesser or greater sensitivity could also be used (e.g., 4 megapixel, 8 megapixel, etc., can be used).
  • the flow cell utilizes a 0.25 micron stage, with a 1 micron feature size.
  • This example describes representative methods for acquiring and processing images from arrays of beads having labeled nucleic acids attached thereto.
  • Accurate feature identification and alignment are important for reliable analysis of each acquired image.
  • the features are identified by first discarding all but the most intense pixels for each bead.
  • the pixel values for a given image are plotted in a histogram; pixels corresponding to background are discarded and the remaining pixel values are sorted.
  • the algorithm eliminates the bottom 80-90% of pixel values. Pixels having values in the top 10-20% are then scanned to identify those at a local maximum in a 4 pixel radius. The average intensity in that region as well as the average intensity of the perimeter are then recorded.
  • Bead images are collected in the Cy5 channel (corresponding to the sequencing primer) prior to extension probe addition. These images are used to create a feature map marking both positional coordinates and raw signal intensities as fluorescent units (RFU values) for each bead. For each subsequent duplex extension, an image set is acquired both before and after the Cy3-labeled nucleotides are added. These images are aligned to the original Cy5 images and RFU values are then assigned to each of the beads and recorded. A baseline correction is applied by subtracting the difference of intensities between the unlabeled (pre-extension) and labeled (fluorescent-addition) images of each base addition.
  • RFU values fluorescent units
  • This example describes representative methods for processing images from arrays of beads having labeled nucleic acids attached thereto and for sequence determination from the acquired data.
  • Image analysis starts by convolving the image using a zero-integral circular top-hat kernel with a diameter matched to the bead size. This will automatically normalize the background to zero while identifying the centers of individual beads through local maxima. The maxima are located and those which are isolated from other local maxima are used as alignment points. These alignment points are computed for each image in a time-series. For each pair of images, the alignment points are compared and a displacement vector is computed based on the average displacement of all the common alignment points. This provides pair-wise image displacements with sub-pixel resolution.
  • N images there are N*(N ⁇ 1)/2 pairwise displacements, but only N ⁇ 1 of these are independent since the rest can be calculated from the independent set.
  • measuring the displacements between images 1 and 2 and between images 1 and 3 implies a displacement between images 2 and 3. If the measured displacement between images 2 and 3 is not the same as the implied displacement, then the measurements are inconsistent.
  • the magnitude of this inconsistency can be used as a metric to gauge how well the alignment algorithm is working. Our initial tests show inconsistencies that are generally less than 0.1 pixel in each dimension (see FIG. 23 ).
  • the optical center-of-mass of each individual bead can be identified and a region around the bead integrated to compute the bead intensity. If the bead density is so high that most of the beads touch, then it is not possible to identify individual beads by a dark background band around them. However, with all the images aligned to sub-pixel resolution, it is possible to identify pixels belonging to the same bead by computing the correlation, in time, of adjacent pixels. Highly correlated pixel pairs can be confidently assigned to the same bead.
  • the throughput of the sequencing system is defined primarily by the number of images that the machine can generate per day and the number of nucleotides (bases) of sequence data per image. Since the machine is preferably designed to keep the cameras constantly busy, calculations are based on 100% camera utilization. In implementations in which each bead is imaged in 4 colors to determine the identity of one base, either 4 images by one camera, 2 images by 2 cameras, or one image by 4 cameras can be used. Four-camera imaging permits dramatically higher throughputs than the other options, and preferred systems utilize that approach.
  • One significant issue in maintaining 100% camera utilization is matching the time it takes to perform one cycle of ligation/cleavage chemistry with the time required to image the entire flow cell.
  • a reasonable estimate for the time taken by a cycle of extension, cleavage, and ligation is 1 hours (5,400 seconds). That 5,400 seconds will accommodate 1,800 image fields, or an area of about 15 mm ⁇ 45 mm, which is a comfortable size for a flow cell.
  • a conservative estimate of the throughput of the system utilizing four cameras is 40,000 bases per second with a 15 mm ⁇ 45 mm flow cell. This is equivalent to approximately 2,000 ABI3730x1 sequencing machines, based on a throughput of 28 runs per day with ⁇ 650 base read lengths (20 bases/sec), which we have achieved using these machines.
  • a 2.5 fold increase in bead density, to 200,000 per image enables an overall increase in throughput to 100,000 bases per second, approximately equivalent to 5,000 ABI3730x1 machines.
  • the total output per day at this throughput level is ⁇ 8.6 Gb per day, so the time required to complete a 12 ⁇ human genome sequence would be ⁇ 4.2 days.
  • inventive sequencing methods described herein may be practiced using a variety of different sequencing systems, image capture and processing methods, etc. See, e.g., U.S. Pat. Nos. 6,406,848 and 6,654,505 and PCT Pub. No. WO98053300 for discussion.
  • This example describes a protocol preparation of microparticles (in this example, magnetic beads) with amplification primers attached thereto so that a template can be amplified (e.g., by PCR) so as to result in a clonal population of template molecules attached to each microparticle.
  • amplification beads have one primer needed in the clonal PCR reaction attached thereto.
  • This primer can be covalently coupled or, for example, biotin labeled and bound to streptavidin on the bead surface.
  • Beads can be used in a standard PCR reaction (e.g., in wells of a microtiter plate, tubes, etc.), in an emulsion PCR reaction as described in Example 13, etc., to obtain beads having clonal populations of template molecules attached thereto.
  • a standard PCR reaction e.g., in wells of a microtiter plate, tubes, etc.
  • emulsion PCR reaction as described in Example 13, etc.
  • Beads Store DNA capture beads at 4 C or place on ice prior to use. Beads should be used within 1 week (beads will tend to clump at storage times >1 week).
  • This example describes methods that can be used to perform PCR on microparticles in an emulsion to produce microparticles with clonal templates attached thereto.
  • the microparticles (DNA beads in the nomenclature used below) are first functionalized with a first primer (P1).
  • a second primer (P2) is present in the aqueous phase, where the PCR reaction occurs.
  • P1 a low concentration of P1 may also be included, e.g., (20-fold less) in the aqueous phase. Doing so allows a rapid build-up of templates in the aqueous phase, which are substrates for additional amplification. As P1 is depleted in solution, the reaction is driven towards utilization of P1 attached to the microparticles.
  • P1_P2 degen10 is an oligonucleotide template (100 bp) that has sequences that hybridize to P1 and P2 to afford amplification by PCR and a stretch of approx 10 degenerate bases (incorporated during oligonucleotide synthesis) that give the oligonucleotide population a complexity of 410.
  • Cycling time is ⁇ 6 hours.
  • Beads should preferably be monodispersed, with the majority of droplets containing single beads.
  • This example describes a method for enriching for microparticles on which template amplification has successfully occurred in, e.g., in a PCRemulsion.
  • the method makes use of larger microparticles that have a capture oligonucleotide attached thereto.
  • the capture oligonucleotide comprises a nucleotide region that is complementary to a nucleotide region present in the templates.
  • Bead stock (0.5% w/v): 33,125 beads/ ⁇ l
  • This example describes preparation of slides on which microparticles having templates attached thereto are immobilized (e.g., embedded) in a semi-solid support located on the slide. Such slides may be referred to as polony slides.
  • the semi-solid support used in this example is polyacrylamide.
  • One of the protocols employs methods that trap polymerase molecules in the vicinity of templates to enhance amplification.
  • Bind-Silane facilitates the attachment of the acrylamide gel to the glass slide surface. Slides should be pre-treated with Bind-Silane prior to use.
  • Bind-Silane is an irritant. Work in a chemical when preparing solution.
  • ssDNA template beads are prepared at 1M/ ⁇ l. [Prepare polony slides with 4-5M beads per slide].
  • Polony slides are ready to be subjected to ligation-based sequencing.
  • Polony slides with embedded beads can be stored in gaskets at 4 C in wash 1E.
  • This example describes preparation of slides on which microparticles having templates attached thereto are attached to a solid support.
  • the DNA can be, e.g., DNA templates for sequencing.
  • the DNA can include, e.g., an amine linker for reaction with NHS.
  • bead populations can be assessed by bright field image analysis using white light (WL) or by fluorescence using complementary DNA oligonucleotides attached to fluorophore-based dyes.
  • DNA templates can be sequenced, e.g., using ligation-based sequencing.
  • FIG. 33A shows a schematic diagram of the slide with beads attached thereto. Note that only a small proportion of the DNA template molecules are attached to the slide.
  • One micron beads (Dynabeads MyOne Streptavidin beads; Dynal Biotech, Inc., Product No. 650.01) were used. However, a wide variety of beads could be used.
  • FIG. 33B shows a population of beads attached to a slide.
  • the lower panels show the same region of the slide under white light (left) and fluorescence microscopy.
  • the upper panel shows a range of bead densities.
  • any one or more embodiments may be explicitly excluded from the claims even if the specific exclusion is not set forth explicitly herein.
  • a reagent e.g., a template, microsphere, probe, probe family, etc.
  • such disclosure also encompasses methods for sequencing using the reagent according either to the specific methods disclosed herein, or other methods known in the art unless one of ordinary skill in the art would understand otherwise, or unless otherwise indicated in the specification.
  • any one or more of the reagents disclosed herein may be used in the method, unless one of ordinary skill in the art would understand otherwise, or unless use of the reagent in such method is explicitly excluded in the specification.
  • the invention encompasses methods for making the reagents also.
  • the term “component” is used broadly to refer to any item used in sequencing, including templates, microparticles having templates attached thereto, libraries, etc.
  • the figures are an integral part of the specification, and the invention includes structures shown in the figures, e.g., microparticles having templates attached thereto, and methods disclosed in the figures.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Databases & Information Systems (AREA)
  • Bioethics (AREA)
  • Evolutionary Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Medical Informatics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
US11/345,979 2005-02-01 2006-02-01 Reagents, methods, and libraries for bead-based sequencing Abandoned US20080003571A1 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
US11/345,979 US20080003571A1 (en) 2005-02-01 2006-02-01 Reagents, methods, and libraries for bead-based sequencing
US12/220,201 US20090181385A1 (en) 2005-02-01 2008-07-21 Reagents, methods, and libraries for bead-based sequencing
US12/220,208 US8431691B2 (en) 2005-02-01 2008-07-21 Reagents, methods, and libraries for bead-based sequencing
US12/628,209 US20100297626A1 (en) 2005-02-01 2009-11-30 Reagents, Methods, and Libraries for Bead-Based Sequencing
US12/629,858 US20110077169A1 (en) 2005-02-01 2009-12-02 Reagents, Methods, and Libraries for Bead-Based Sequencing
US13/410,919 US8329404B2 (en) 2005-02-01 2012-03-02 Reagents, methods, and libraries for bead-based sequencing
US13/737,534 US9217177B2 (en) 2005-02-01 2013-01-09 Methods for bead-based sequencing
US14/057,055 US9493830B2 (en) 2005-02-01 2013-10-18 Reagents, methods, and libraries for bead-based sequencing
US15/291,982 US10323277B2 (en) 2005-02-01 2016-10-12 Reagents, methods, and libraries for bead-based sequencing
US16/405,534 US20190323078A1 (en) 2005-02-01 2019-05-07 Reagents, Methods, and Libraries for Bead-Based Sequencing

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US64929405P 2005-02-01 2005-02-01
US65659905P 2005-02-25 2005-02-25
US67374905P 2005-04-21 2005-04-21
US69954105P 2005-07-15 2005-07-15
US72252605P 2005-09-30 2005-09-30
US11/345,979 US20080003571A1 (en) 2005-02-01 2006-02-01 Reagents, methods, and libraries for bead-based sequencing

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US12/220,208 Continuation US8431691B2 (en) 2005-02-01 2008-07-21 Reagents, methods, and libraries for bead-based sequencing
US12/220,201 Continuation US20090181385A1 (en) 2005-02-01 2008-07-21 Reagents, methods, and libraries for bead-based sequencing
US12/629,858 Continuation US20110077169A1 (en) 2005-02-01 2009-12-02 Reagents, Methods, and Libraries for Bead-Based Sequencing

Publications (1)

Publication Number Publication Date
US20080003571A1 true US20080003571A1 (en) 2008-01-03

Family

ID=36777972

Family Applications (10)

Application Number Title Priority Date Filing Date
US11/345,979 Abandoned US20080003571A1 (en) 2005-02-01 2006-02-01 Reagents, methods, and libraries for bead-based sequencing
US12/220,208 Active 2026-08-29 US8431691B2 (en) 2005-02-01 2008-07-21 Reagents, methods, and libraries for bead-based sequencing
US12/220,201 Abandoned US20090181385A1 (en) 2005-02-01 2008-07-21 Reagents, methods, and libraries for bead-based sequencing
US12/628,209 Abandoned US20100297626A1 (en) 2005-02-01 2009-11-30 Reagents, Methods, and Libraries for Bead-Based Sequencing
US12/629,858 Abandoned US20110077169A1 (en) 2005-02-01 2009-12-02 Reagents, Methods, and Libraries for Bead-Based Sequencing
US13/410,919 Active US8329404B2 (en) 2005-02-01 2012-03-02 Reagents, methods, and libraries for bead-based sequencing
US13/737,534 Active US9217177B2 (en) 2005-02-01 2013-01-09 Methods for bead-based sequencing
US14/057,055 Active 2026-12-12 US9493830B2 (en) 2005-02-01 2013-10-18 Reagents, methods, and libraries for bead-based sequencing
US15/291,982 Active 2026-08-25 US10323277B2 (en) 2005-02-01 2016-10-12 Reagents, methods, and libraries for bead-based sequencing
US16/405,534 Abandoned US20190323078A1 (en) 2005-02-01 2019-05-07 Reagents, Methods, and Libraries for Bead-Based Sequencing

Family Applications After (9)

Application Number Title Priority Date Filing Date
US12/220,208 Active 2026-08-29 US8431691B2 (en) 2005-02-01 2008-07-21 Reagents, methods, and libraries for bead-based sequencing
US12/220,201 Abandoned US20090181385A1 (en) 2005-02-01 2008-07-21 Reagents, methods, and libraries for bead-based sequencing
US12/628,209 Abandoned US20100297626A1 (en) 2005-02-01 2009-11-30 Reagents, Methods, and Libraries for Bead-Based Sequencing
US12/629,858 Abandoned US20110077169A1 (en) 2005-02-01 2009-12-02 Reagents, Methods, and Libraries for Bead-Based Sequencing
US13/410,919 Active US8329404B2 (en) 2005-02-01 2012-03-02 Reagents, methods, and libraries for bead-based sequencing
US13/737,534 Active US9217177B2 (en) 2005-02-01 2013-01-09 Methods for bead-based sequencing
US14/057,055 Active 2026-12-12 US9493830B2 (en) 2005-02-01 2013-10-18 Reagents, methods, and libraries for bead-based sequencing
US15/291,982 Active 2026-08-25 US10323277B2 (en) 2005-02-01 2016-10-12 Reagents, methods, and libraries for bead-based sequencing
US16/405,534 Abandoned US20190323078A1 (en) 2005-02-01 2019-05-07 Reagents, Methods, and Libraries for Bead-Based Sequencing

Country Status (7)

Country Link
US (10) US20080003571A1 (de)
EP (9) EP2857523A1 (de)
JP (1) JP2008528040A (de)
KR (1) KR20070112785A (de)
AU (1) AU2006210553A1 (de)
CA (1) CA2596496A1 (de)
WO (1) WO2006084132A2 (de)

Cited By (119)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070212747A1 (en) * 2005-09-26 2007-09-13 Rapid Micro Biosystems Cassette containing growth medium
US20080182757A1 (en) * 2007-01-26 2008-07-31 Illumina, Inc. Image data efficient genetic sequencing method and system
US20090062129A1 (en) * 2006-04-19 2009-03-05 Agencourt Personal Genomics, Inc. Reagents, methods, and libraries for gel-free bead-based sequencing
US20090181385A1 (en) * 2005-02-01 2009-07-16 Applied Biosystems Inc. Reagents, methods, and libraries for bead-based sequencing
US20090250615A1 (en) * 2008-04-04 2009-10-08 Life Technologies Corporation Scanning system and method for imaging and sequencing
US20090269771A1 (en) * 2008-04-24 2009-10-29 Life Technologies Corporation Method of sequencing and mapping target nucleic acids
US20090269759A1 (en) * 2008-04-29 2009-10-29 Life Technologies Unnatural polymerase substrates that can sustain enzymatic synthesis of double stranded nucleic acids from a nucleic acid template and methods of use
WO2009137366A2 (en) * 2008-05-06 2009-11-12 Kollmorgen Corporation Genetic sequencer incorporating fluorescence microscopy
WO2010003132A1 (en) * 2008-07-02 2010-01-07 Illumina Cambridge Ltd. Using populations of beads for the fabrication of arrays on surfaces
US20100036110A1 (en) * 2008-08-08 2010-02-11 Xiaoliang Sunney Xie Methods and compositions for continuous single-molecule nucleic acid sequencing by synthesis with fluorogenic nucleotides
WO2010036827A1 (en) * 2008-09-24 2010-04-01 Straus Holdings Inc. Method for detecting analytes
US20100081140A1 (en) * 2008-08-08 2010-04-01 President And Fellows Of Harvard College Chemically cleavable phosphoramidite linkers for sequencing by ligation
US20100092988A1 (en) * 2007-06-04 2010-04-15 President And Fellows Of Harvard College Methods and Compounds For Chemical Ligation
US20100092985A1 (en) * 2008-10-15 2010-04-15 Samsung Electronics Co., Ltd. Solid support with enhanced density of signal material, kit containing the same and method of detecting target material using the same
US20100112588A1 (en) * 2008-11-04 2010-05-06 Caerus Molecular Diagnostics, Inc. Methods for sanger sequencing using particle associated clonal amplicons and highly parallel electrophoretic size-based separation
WO2010028366A3 (en) * 2008-09-05 2010-06-03 Life Technologies Corporation Methods and systems for nucleic acid sequencing validation, calibration and normalization
US20100137166A1 (en) * 2007-01-26 2010-06-03 Illumina, Inc. Independently removable nucleic acid sequencing system and method
US20100167353A1 (en) * 2008-04-30 2010-07-01 Integrated Dna Technologies, Inc. Rnase h-based assays utilizing modified rna monomers
US20100227327A1 (en) * 2008-08-08 2010-09-09 Xiaoliang Sunney Xie Methods and compositions for continuous single-molecule nucleic acid sequencing by synthesis with fluorogenic nucleotides
WO2010111656A2 (en) * 2009-03-27 2010-09-30 Life Technologies Corporation Systems and methods for assessing images
US20100248281A1 (en) * 2001-09-06 2010-09-30 Rapid Micro Biosystems, Inc. Rapid detection of replicating cells
US20100291558A1 (en) * 2009-05-12 2010-11-18 Samsung Electronics Co., Ltd. Magnetic particles for nucleic acid sequencing and method of sequencing nucleic acid using the same
US20110105361A1 (en) * 2009-10-30 2011-05-05 Illumina, Inc. Microvessels, microparticles, and methods of manufacturing and using the same
US20110117559A1 (en) * 2009-11-13 2011-05-19 Integrated Dna Technologies, Inc. Small rna detection assays
US20110207624A1 (en) * 2010-02-19 2011-08-25 Life Technologies Corporation Methods and systems for nucleic acid sequencing validation, calibration and normalization
US20110224098A1 (en) * 2010-03-15 2011-09-15 International Business Machines Corporation Nanopore Based Device for Cutting Long DNA Molecules into Fragments
US20120004126A1 (en) * 2006-10-27 2012-01-05 Complete Genomics, Inc. Efficient Arrays of Amplified Polynucleotides
EP2456892A2 (de) * 2009-07-24 2012-05-30 Illumina, Inc. Verfahren zur sequenzierung einer polynukleotidmatrize
WO2012071434A2 (en) 2010-11-22 2012-05-31 Life Technologies Corporation Model-based residual correction of intensities
WO2012082464A2 (en) 2010-12-14 2012-06-21 Life Technologies Corporation Systems and methods for run-time sequencing run quality monitoring
WO2012139125A2 (en) 2011-04-07 2012-10-11 Life Technologies Corporation System and methods for making and processing emulsions
US20120270740A1 (en) * 2009-10-09 2012-10-25 Stc. Umn Polony sequencing methods
WO2012177774A2 (en) 2011-06-21 2012-12-27 Life Technologies Corporation Systems and methods for hybrid assembly of nucleic acid sequences
WO2013009654A1 (en) 2011-07-08 2013-01-17 Life Technologies Corporation Method and apparatus for automated sample manipulation
WO2013043909A1 (en) 2011-09-20 2013-03-28 Life Technologies Corporation Systems and methods for identifying sequence variation
EP2644707A1 (de) 2008-04-30 2013-10-02 Integrated Dna Technologies, Inc. RNase-H basierte Assays unter Verwendung von RNA Monomeren
US20130281308A1 (en) * 2012-04-24 2013-10-24 Gen9, Inc. Methods for sorting nucleic acids and preparative in vitro cloning
US8764968B2 (en) 2011-01-28 2014-07-01 International Business Machines Corporation DNA sequencing using multiple metal layer structure with organic coatings forming transient bonding to DNA bases
WO2014113815A1 (en) 2013-01-21 2014-07-24 Life Technologies Corporation Systems and methods for gene expression analysis
US20140256595A1 (en) * 2006-01-11 2014-09-11 Raindance Technologies, Inc. Microfluidic devices and methods of use in the formation and control of nanoreactors
US8835362B2 (en) 2012-12-26 2014-09-16 International Business Machines Corporation Modifying single proteins (GPCR), ligands, and nanopore surfaces to create binding-induced molecular changes of protein-ligand complexes detected in nanochannel translocation
US8852407B2 (en) 2011-01-28 2014-10-07 International Business Machines Corporation Electron beam sculpting of tunneling junction for nanopore DNA sequencing
WO2014186152A1 (en) * 2013-05-13 2014-11-20 Intelligent Bio-Systems, Inc. Analyte enrichment methods and compositions
US8986524B2 (en) 2011-01-28 2015-03-24 International Business Machines Corporation DNA sequence using multiple metal layer structure with different organic coatings forming different transient bondings to DNA
WO2015058093A1 (en) * 2013-10-18 2015-04-23 Seven Bridges Genomics Inc. Methods and systems for genotyping genetic samples
US9046511B2 (en) 2013-04-18 2015-06-02 International Business Machines Corporation Fabrication of tunneling junction for nanopore DNA sequencing
US9097698B2 (en) 2013-06-19 2015-08-04 International Business Machines Corporation Nanogap device with capped nanowire structures
US9121047B2 (en) 2011-04-07 2015-09-01 Life Technologies Corporation System and methods for making and processing emulsions
US9128078B2 (en) 2013-06-19 2015-09-08 International Business Machines Corporation Manufacturable sub-3 nanometer palladium gap devices for fixed electrode tunneling recognition
US9255321B2 (en) 2013-10-15 2016-02-09 Globalfoundries Inc. Directed surface functionalization on selected surface areas of topographical features with nanometer resolution
US9268903B2 (en) 2010-07-06 2016-02-23 Life Technologies Corporation Systems and methods for sequence data alignment quality assessment
US9303310B2 (en) 2013-10-15 2016-04-05 International Business Machines Corporation Nanofluidic sensor comprising spatially separated functional sensing components
US9366632B2 (en) 2010-02-12 2016-06-14 Raindance Technologies, Inc. Digital analyte analysis
US9422592B2 (en) 2012-01-06 2016-08-23 Viomics, Inc. System and method of detecting RNAS altered by cancer in peripheral blood
US9434988B2 (en) 2008-04-30 2016-09-06 Integrated Dna Technologies, Inc. RNase H-based assays utilizing modified RNA monomers
US9533240B2 (en) 2013-11-12 2017-01-03 Life Technologies Corporation System and method for emulsion breaking
US9534215B2 (en) 2014-06-11 2017-01-03 Life Technologies Corporation Systems and methods for substrate enrichment
US9745546B2 (en) 2011-11-07 2017-08-29 Rapid Micro Biosystems, Inc. Cassette for sterility testing
US9752176B2 (en) 2011-06-15 2017-09-05 Ginkgo Bioworks, Inc. Methods for preparative in vitro cloning
US9791453B2 (en) 2012-12-26 2017-10-17 International Business Machines Corporation Methods for determining binding capability of target ligands with G protein-coupled receptors using translocation through nanochannels
US9898575B2 (en) 2013-08-21 2018-02-20 Seven Bridges Genomics Inc. Methods and systems for aligning sequences
US9904763B2 (en) 2013-08-21 2018-02-27 Seven Bridges Genomics Inc. Methods and systems for detecting sequence variants
US9921181B2 (en) 2014-06-26 2018-03-20 International Business Machines Corporation Detection of translocation events using graphene-based nanopore assemblies
US20180178174A1 (en) * 2006-05-11 2018-06-28 Raindance Technologies, Inc. Microfluidic devices
US10024852B2 (en) 2013-10-15 2018-07-17 International Business Machines Corporation Use of disulfide bonds to form a reversible and reusable coating for nanofluidic devices
US10029915B2 (en) 2012-04-04 2018-07-24 International Business Machines Corporation Functionally switchable self-assembled coating compound for controlling translocation of molecule through nanopores
CN108373971A (zh) * 2017-03-11 2018-08-07 南京科维思生物科技股份有限公司 用于进行实时数字pcr的方法和装置
US10053736B2 (en) 2013-10-18 2018-08-21 Seven Bridges Genomics Inc. Methods and systems for identifying disease-induced mutations
US10055539B2 (en) 2013-10-21 2018-08-21 Seven Bridges Genomics Inc. Systems and methods for using paired-end data in directed acyclic structure
US10081807B2 (en) 2012-04-24 2018-09-25 Gen9, Inc. Methods for sorting nucleic acids and multiplexed preparative in vitro cloning
WO2019018561A1 (en) * 2017-07-19 2019-01-24 The Scripps Research Institute GENOMIC LIBRARY GENERATION IN SOLID PHASE FOR HIGH FLOW SEQUENCING
US10202608B2 (en) 2006-08-31 2019-02-12 Gen9, Inc. Iterative nucleic acid assembly using activation of vector-encoded traits
US10227647B2 (en) 2015-02-17 2019-03-12 Complete Genomics, Inc. DNA sequencing using controlled strand displacement
US10262102B2 (en) 2016-02-24 2019-04-16 Seven Bridges Genomics Inc. Systems and methods for genotyping with graph reference
US10275567B2 (en) 2015-05-22 2019-04-30 Seven Bridges Genomics Inc. Systems and methods for haplotyping
US10308931B2 (en) 2012-03-21 2019-06-04 Gen9, Inc. Methods for screening proteins using DNA encoded chemical libraries as templates for enzyme catalysis
US10351905B2 (en) 2010-02-12 2019-07-16 Bio-Rad Laboratories, Inc. Digital analyte analysis
US10364468B2 (en) 2016-01-13 2019-07-30 Seven Bridges Genomics Inc. Systems and methods for analyzing circulating tumor DNA
US10378010B2 (en) * 2016-04-07 2019-08-13 Illumina, Inc. Methods and systems for construction of normalized nucleic acid libraries
US10407707B2 (en) 2012-04-16 2019-09-10 Rapid Micro Biosystems, Inc. Cell culturing device
US10457935B2 (en) 2010-11-12 2019-10-29 Gen9, Inc. Protein arrays and methods of using and making the same
US10460829B2 (en) 2016-01-26 2019-10-29 Seven Bridges Genomics Inc. Systems and methods for encoding genetic variation for a population
US10472671B2 (en) 2011-01-17 2019-11-12 Life Technologies Corporation Workflow for detection of ligands using nucleic acids
US10494671B2 (en) 2011-01-17 2019-12-03 Life Technologies Corporation Enzymatic ligation of nucleic acids
US10584380B2 (en) 2015-09-01 2020-03-10 Seven Bridges Genomics Inc. Systems and methods for mitochondrial analysis
US10647981B1 (en) 2015-09-08 2020-05-12 Bio-Rad Laboratories, Inc. Nucleic acid library generation methods and compositions
US10724110B2 (en) 2015-09-01 2020-07-28 Seven Bridges Genomics Inc. Systems and methods for analyzing viral nucleic acids
US20200239877A1 (en) * 2009-05-29 2020-07-30 Life Technologies Corporation Scaffolded nucleic acid polymer particles and methods of making and using
US20200277673A1 (en) * 2017-08-31 2020-09-03 Mgi Tech Co., Ltd. Nucleic acid probe and nucleic acid sequencing method
US10793895B2 (en) 2015-08-24 2020-10-06 Seven Bridges Genomics Inc. Systems and methods for epigenetic analysis
US10832797B2 (en) 2013-10-18 2020-11-10 Seven Bridges Genomics Inc. Method and system for quantifying sequence alignment
US10927407B2 (en) 2006-05-11 2021-02-23 Bio-Rad Laboratories, Inc. Systems and methods for handling microfluidic droplets
US10960397B2 (en) 2007-04-19 2021-03-30 President And Fellows Of Harvard College Manipulation of fluids, fluid components and reactions in microfluidic systems
US20210146364A1 (en) * 2017-06-21 2021-05-20 Base4 Innovation Ltd Method for investigating molecules such as nucleic acids
US11049587B2 (en) 2013-10-18 2021-06-29 Seven Bridges Genomics Inc. Methods and systems for aligning sequences in the presence of repeating elements
US11072789B2 (en) 2012-06-25 2021-07-27 Gen9, Inc. Methods for nucleic acid assembly and high throughput sequencing
US11077415B2 (en) 2011-02-11 2021-08-03 Bio-Rad Laboratories, Inc. Methods for forming mixed droplets
US11084014B2 (en) 2010-11-12 2021-08-10 Gen9, Inc. Methods and devices for nucleic acids synthesis
US11091791B2 (en) 2017-02-24 2021-08-17 Mgi Tech Co., Ltd. Methods for hybridization based hook ligation
US11111340B2 (en) 2018-06-26 2021-09-07 Kookmin University Industry Academy Cooperation Foundation Method for preparing biocompatible poly-γ-glutamic acid hydrogel by using ultraviolet rays
US11168353B2 (en) 2011-02-18 2021-11-09 Bio-Rad Laboratories, Inc. Compositions and methods for molecular labeling
US11174509B2 (en) 2013-12-12 2021-11-16 Bio-Rad Laboratories, Inc. Distinguishing rare variations in a nucleic acid sequence from a sample
US11187702B2 (en) 2003-03-14 2021-11-30 Bio-Rad Laboratories, Inc. Enzyme quantification
US11250931B2 (en) 2016-09-01 2022-02-15 Seven Bridges Genomics Inc. Systems and methods for detecting recombination
US11254968B2 (en) 2010-02-12 2022-02-22 Bio-Rad Laboratories, Inc. Digital analyte analysis
US11347704B2 (en) 2015-10-16 2022-05-31 Seven Bridges Genomics Inc. Biological graph or sequence serialization
US11359237B2 (en) 2015-07-22 2022-06-14 Qiagen Sciences, Llc Modular flow cells and methods of sequencing
US11390917B2 (en) 2010-02-12 2022-07-19 Bio-Rad Laboratories, Inc. Digital analyte analysis
US11511242B2 (en) 2008-07-18 2022-11-29 Bio-Rad Laboratories, Inc. Droplet libraries
US11635427B2 (en) 2010-09-30 2023-04-25 Bio-Rad Laboratories, Inc. Sandwich assays in droplets
US11674168B2 (en) 2015-10-30 2023-06-13 Exact Sciences Corporation Isolation and detection of DNA from plasma
US11702662B2 (en) 2011-08-26 2023-07-18 Gen9, Inc. Compositions and methods for high fidelity assembly of nucleic acids
US11786872B2 (en) 2004-10-08 2023-10-17 United Kingdom Research And Innovation Vitro evolution in microfluidic systems
US11819849B2 (en) 2007-02-06 2023-11-21 Brandeis University Manipulation of fluids and reactions in microfluidic systems
US11901041B2 (en) 2013-10-04 2024-02-13 Bio-Rad Laboratories, Inc. Digital analysis of nucleic acid modification
US11898193B2 (en) 2011-07-20 2024-02-13 Bio-Rad Laboratories, Inc. Manipulating droplet size
US12031985B2 (en) 2018-04-19 2024-07-09 First Light Diagnostics, Inc. Detection of targets
US12038438B2 (en) 2008-07-18 2024-07-16 Bio-Rad Laboratories, Inc. Enzyme quantification
US12049671B2 (en) 2017-01-27 2024-07-30 Exact Sciences Corporation Detection of colon neoplasia by analysis of methylated DNA

Families Citing this family (275)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1791682B (zh) 2003-02-26 2013-05-22 凯利达基因组股份有限公司 通过杂交进行的随机阵列dna分析
EP1758981A4 (de) 2004-05-28 2013-01-16 Wafergen Inc Vorrichtungen und verfahren für multiplex-analysen
US7709197B2 (en) 2005-06-15 2010-05-04 Callida Genomics, Inc. Nucleic acid analysis by random mixtures of non-overlapping fragments
SG10201405158QA (en) 2006-02-24 2014-10-30 Callida Genomics Inc High throughput genome sequencing on dna arrays
US7754429B2 (en) 2006-10-06 2010-07-13 Illumina Cambridge Limited Method for pair-wise sequencing a plurity of target polynucleotides
US20090111705A1 (en) 2006-11-09 2009-04-30 Complete Genomics, Inc. Selection of dna adaptor orientation by hybrid capture
AU2006249239B2 (en) * 2006-12-07 2010-02-18 Canon Kabushiki Kaisha A method of ordering and presenting images with smooth metadata transitions
JP5745842B2 (ja) 2007-06-19 2015-07-08 ストラトス ゲノミクス インコーポレイテッド 拡張によるハイスループット核酸配列決定
EP2181204A2 (de) * 2007-08-23 2010-05-05 Applied Biosystems Inc. Verfahren zur änderung von substratflächen zur immobiliserung von partikeln und verwendung der immobilisierten partikel zur nukleinsäurenanalyse
JP2010537643A (ja) 2007-08-29 2010-12-09 アプライド バイオシステムズ, エルエルシー 代替的な核酸配列決定法
EP2212434A1 (de) * 2007-10-01 2010-08-04 Applied Biosystems Inc. Chase-ligation-sequenzierung
US20090139311A1 (en) 2007-10-05 2009-06-04 Applied Biosystems Inc. Biological Analysis Systems, Devices, and Methods
WO2009052214A2 (en) 2007-10-15 2009-04-23 Complete Genomics, Inc. Sequence analysis using decorated nucleic acids
US8298768B2 (en) 2007-11-29 2012-10-30 Complete Genomics, Inc. Efficient shotgun sequencing methods
US8415099B2 (en) 2007-11-05 2013-04-09 Complete Genomics, Inc. Efficient base determination in sequencing reactions
CN101910399B (zh) 2007-10-30 2015-11-25 考利达基因组股份有限公司 用于核酸高通量测序的装置
US20090264298A1 (en) * 2007-11-06 2009-10-22 Ambergen, Inc. Methods for enriching subpopulations
WO2009067628A1 (en) * 2007-11-20 2009-05-28 Applied Biosystems Inc. Reversible di-nucleotide terminator sequencing
US8592150B2 (en) 2007-12-05 2013-11-26 Complete Genomics, Inc. Methods and compositions for long fragment read sequencing
WO2009097368A2 (en) * 2008-01-28 2009-08-06 Complete Genomics, Inc. Methods and compositions for efficient base calling in sequencing reactions
US20110003701A1 (en) * 2008-02-27 2011-01-06 454 Life Sciences Corporation System and method for improved processing of nucleic acids for production of sequencable libraries
US8173198B2 (en) 2008-07-23 2012-05-08 Life Technologies Corporation Deposition of metal oxides onto surfaces as an immobilization vehicle for carboxylated or phophated particles or polymers
JP2012517813A (ja) * 2009-02-16 2012-08-09 エピセンター テクノロジーズ コーポレイション 1本鎖dnaの鋳型非依存性ライゲーション
GB0907372D0 (en) 2009-04-29 2009-06-10 Invitrogen Dynal As Particles
AU2010242073C1 (en) 2009-04-30 2015-12-24 Good Start Genetics, Inc. Methods and compositions for evaluating genetic markers
US9524369B2 (en) 2009-06-15 2016-12-20 Complete Genomics, Inc. Processing and analysis of complex nucleic acid sequence data
WO2011026128A2 (en) 2009-08-31 2011-03-03 Life Technologies Corporation Flowcells and methods of filling and using same
US20110096975A1 (en) 2009-09-09 2011-04-28 Life Technologies Corporation Systems and methods for identifying microparticles
WO2011050340A1 (en) * 2009-10-23 2011-04-28 Life Technologies Corporation Systems and methods for error correction in dna sequencing
WO2011100617A2 (en) 2010-02-12 2011-08-18 Life Technologies Corporation Nucleic acid, biomolecule and polymer identifier codes
US10030045B2 (en) 2010-02-19 2018-07-24 Ohio State Innovation Foundation Primers and methods for nucleic acid amplification
US9499860B2 (en) 2010-02-19 2016-11-22 The Ohio State University Primers and methods for nucleic acid amplification
WO2011106460A2 (en) 2010-02-23 2011-09-01 Life Technologies Corporation Methods for flip-strand immobilizing and sequencing nucleic acids
US10787701B2 (en) 2010-04-05 2020-09-29 Prognosys Biosciences, Inc. Spatially encoded biological assays
US20190300945A1 (en) 2010-04-05 2019-10-03 Prognosys Biosciences, Inc. Spatially Encoded Biological Assays
WO2011143525A2 (en) * 2010-05-13 2011-11-17 Life Technologies Corporation Computational methods for translating a sequence of multi-base color calls to a sequence of bases
EP2390351A1 (de) 2010-05-27 2011-11-30 Centre National de la Recherche Scientifique (CNRS) Verfahren zur DNA-Sequenzierung durch Hybridisierung
EP2390350A1 (de) 2010-05-27 2011-11-30 Centre National de la Recherche Scientifique (CNRS) Verfahren zur DNA-Sequenzierung durch Polymerisation
EP2405017A1 (de) 2010-07-06 2012-01-11 Alacris Theranostics GmbH Verfahren zur Sequenzierung von Nukleinsäure
US9184099B2 (en) 2010-10-04 2015-11-10 The Board Of Trustees Of The Leland Stanford Junior University Biosensor devices, systems and methods therefor
US9399217B2 (en) 2010-10-04 2016-07-26 Genapsys, Inc. Chamber free nanoreactor system
SG189839A1 (en) 2010-10-04 2013-06-28 Genapsys Inc Systems and methods for automated reusable parallel biological reactions
US10233501B2 (en) 2010-10-19 2019-03-19 Northwestern University Biomarkers predictive of predisposition to depression and response to treatment
US10093981B2 (en) 2010-10-19 2018-10-09 Northwestern University Compositions and methods for identifying depressive disorders
US20150218639A1 (en) 2014-01-17 2015-08-06 Northwestern University Biomarkers predictive of predisposition to depression and response to treatment
US20150225792A1 (en) 2014-01-17 2015-08-13 Northwestern University Compositions and methods for identifying depressive disorders
WO2012061818A1 (en) 2010-11-05 2012-05-10 Life Technologies Corporation Flowcells and flowcell reaction chambers
WO2013082164A1 (en) 2011-11-28 2013-06-06 Life Technologies Corporation Enhanced ligation reactions
US9163281B2 (en) * 2010-12-23 2015-10-20 Good Start Genetics, Inc. Methods for maintaining the integrity and identification of a nucleic acid template in a multiplex sequencing reaction
JP5858415B2 (ja) * 2011-01-05 2016-02-10 国立大学法人埼玉大学 mRNA/cDNA−タンパク質連結体作製用リンカーとそれを用いたヌクレオチド−タンパク質連結体の精製方法
US9738930B2 (en) 2011-01-28 2017-08-22 The Broad Institute, Inc. Paired end bead amplification and high throughput sequencing
JP5705579B2 (ja) 2011-02-18 2015-04-22 株式会社日立ハイテクノロジーズ 分析装置
US8399262B2 (en) * 2011-03-23 2013-03-19 Darrel A. Mazzari Biosensor
EP2505665A1 (de) 2011-03-31 2012-10-03 Queen Mary And Westfield College, University Of London Krebsmarker
GB201106254D0 (en) 2011-04-13 2011-05-25 Frisen Jonas Method and product
WO2012159025A2 (en) 2011-05-18 2012-11-22 Life Technologies Corporation Chromosome conformation analysis
EP2714935B1 (de) 2011-05-27 2017-03-15 Genapsys Inc. Systeme und verfahren für genetische und biologische analysen
US9926596B2 (en) 2011-05-27 2018-03-27 Genapsys, Inc. Systems and methods for genetic and biological analysis
US8585973B2 (en) 2011-05-27 2013-11-19 The Board Of Trustees Of The Leland Stanford Junior University Nano-sensor array
KR102003660B1 (ko) 2011-07-13 2019-07-24 더 멀티플 마이얼로머 리서치 파운데이션, 인크. 데이터 수집 및 분배 방법
WO2013022778A1 (en) 2011-08-05 2013-02-14 Ibis Biosciences, Inc. Nucleic acid sequencing by electrochemical detection
WO2013022961A1 (en) 2011-08-08 2013-02-14 3The Broad Institute Compositions and methods for co-amplifying subsequences of a nucleic acid fragment sequence
EP2766498B1 (de) 2011-10-14 2019-06-19 President and Fellows of Harvard College Sequenzierung durch strukturanordnung
CA2852665A1 (en) 2011-10-17 2013-04-25 Good Start Genetics, Inc. Analysis methods
EP2785868B1 (de) 2011-12-01 2017-04-12 Genapsys Inc. Systeme und verfahren für hocheffiziente elektronische sequenzierung und nachweis
JP6093498B2 (ja) 2011-12-13 2017-03-08 株式会社日立ハイテクノロジーズ 核酸増幅方法
US20130189679A1 (en) 2011-12-20 2013-07-25 The Regents Of The University Of Michigan Pseudogenes and uses thereof
WO2013096819A2 (en) 2011-12-22 2013-06-27 Ibis Biosciences, Inc. Macromolecule positioning by electrical potential
WO2013096838A2 (en) 2011-12-22 2013-06-27 Ibis Biosciences, Inc. Systems and methods for isolating nucleic acids
CA2859761C (en) 2011-12-22 2023-06-20 President And Fellows Of Harvard College Compositions and methods for analyte detection
US11021737B2 (en) 2011-12-22 2021-06-01 President And Fellows Of Harvard College Compositions and methods for analyte detection
WO2013096799A1 (en) 2011-12-22 2013-06-27 Ibis Biosciences, Inc. Systems and methods for isolating nucleic acids from cellular samples
WO2013102091A1 (en) 2011-12-28 2013-07-04 Ibis Biosciences, Inc. Nucleic acid ligation systems and methods
WO2013102081A2 (en) 2011-12-29 2013-07-04 Ibis Biosciences, Inc. Macromolecule delivery to nanowells
US9855559B2 (en) 2011-12-30 2018-01-02 Abbott Molecular Inc. Microorganism nucleic acid purification from host samples
US9822417B2 (en) 2012-01-09 2017-11-21 Oslo Universitetssykehus Hf Methods and biomarkers for analysis of colorectal cancer
CN104334739A (zh) 2012-01-13 2015-02-04 Data生物有限公司 通过新一代测序进行基因分型
CN104220876A (zh) 2012-02-21 2014-12-17 奥斯陆大学医院 用于宫颈癌的检测和预后的方法和生物标志物
US20150111758A1 (en) 2012-03-06 2015-04-23 Oslo Universitetssykehus Hf Gene signatures associated with efficacy of postmastectomy radiotherapy in breast cancer
EP2834370B1 (de) 2012-04-03 2019-01-02 The Regents Of The University Of Michigan Biomarker im zusammenhang mit dem reizdarmsyndrom und morbus crohn
US8209130B1 (en) 2012-04-04 2012-06-26 Good Start Genetics, Inc. Sequence assembly
US8812422B2 (en) 2012-04-09 2014-08-19 Good Start Genetics, Inc. Variant database
US10227635B2 (en) 2012-04-16 2019-03-12 Molecular Loop Biosolutions, Llc Capture reactions
EP2844767A4 (de) 2012-05-02 2015-11-18 Ibis Biosciences Inc Systeme und verfahren für nukleinsäuresequenzierung
ES2683978T3 (es) 2012-05-02 2018-10-01 Ibis Biosciences, Inc. Secuenciación de ADN
EP3783111A1 (de) 2012-05-02 2021-02-24 Ibis Biosciences, Inc. Dna-sequenzierung
WO2013166303A1 (en) 2012-05-02 2013-11-07 Ibis Biosciences, Inc. Dna sequencing
WO2013184754A2 (en) 2012-06-05 2013-12-12 President And Fellows Of Harvard College Spatial sequencing of nucleic acids using dna origami probes
WO2014005076A2 (en) 2012-06-29 2014-01-03 The Regents Of The University Of Michigan Methods and biomarkers for detection of kidney disorders
WO2014001982A1 (en) 2012-06-29 2014-01-03 Koninklijke Philips N.V. Processing of bound and unbound magnetic particles
FR2993282B1 (fr) 2012-07-13 2017-11-10 Expanscience Lab Procede d'identification de marqueurs moleculaires de la peau d'enfant
EP2692870A1 (de) 2012-08-03 2014-02-05 Alacris Theranostics GmbH Verfahren zur Nukleinsäureverstärkung
US9725768B2 (en) 2012-08-31 2017-08-08 Biovest International, Inc. Methods for producing high-fidelity autologous idiotype vaccines
JP5663541B2 (ja) * 2012-09-19 2015-02-04 株式会社日立ハイテクノロジーズ 反応容器,並列処理装置、及びシーケンサ
USRE50065E1 (en) 2012-10-17 2024-07-30 10X Genomics Sweden Ab Methods and product for optimising localised or spatial detection of gene expression in a tissue sample
CA2928520C (en) 2012-10-23 2023-03-14 Caris Life Sciences Switzerland Holdings, S.A.R.L. Aptamers and uses thereof
US10942184B2 (en) 2012-10-23 2021-03-09 Caris Science, Inc. Aptamers and uses thereof
EP2743354A1 (de) 2012-12-13 2014-06-18 Alacris Theranostics GmbH Primer mit niedriger Schmelztemperatur
EP2935628B1 (de) 2012-12-19 2018-03-21 Caris Life Sciences Switzerland Holdings GmbH Zusammensetzungen und verfahren für aptamer-screening
FR3001889B1 (fr) 2013-02-11 2021-02-12 Expanscience Lab Utilisation d'une composition comprenant un perseose d'avocat dans la protection des cellules souches epidermiques .
JP5978147B2 (ja) * 2013-02-12 2016-08-24 株式会社日立ハイテクノロジーズ 生体物質分析装置
WO2014138385A1 (en) * 2013-03-06 2014-09-12 Ohio State Innovation Foundation Isothermal amplification of nuleic acid, and library preparation and clone generation in sequencing
US9289502B2 (en) 2013-03-08 2016-03-22 Emerald Therapeutics, Inc. Preparation of oligo conjugates
EP2971184B1 (de) 2013-03-12 2019-04-17 President and Fellows of Harvard College Verfahren zur erzeugung einer dreidimensionalen nukleinsäure mit matrix
WO2014160233A1 (en) 2013-03-13 2014-10-02 Abbott Molecular Inc. Systems and methods for isolating nucleic acids
WO2014160117A1 (en) 2013-03-14 2014-10-02 Abbott Molecular Inc. Multiplex methylation-specific amplification systems and methods
US8778609B1 (en) 2013-03-14 2014-07-15 Good Start Genetics, Inc. Methods for analyzing nucleic acids
WO2014152937A1 (en) 2013-03-14 2014-09-25 Ibis Biosciences, Inc. Nucleic acid control panels
CA2905410A1 (en) 2013-03-15 2014-09-25 Abbott Molecular Inc. Systems and methods for detection of genomic copy number changes
ES2716094T3 (es) 2013-03-15 2019-06-10 Ibis Biosciences Inc Métodos para analizar la contaminación en la secuenciación del ADN
WO2014152625A1 (en) 2013-03-15 2014-09-25 Genapsys, Inc. Systems and methods for biological analysis
EP3005200A2 (de) 2013-06-03 2016-04-13 Good Start Genetics, Inc. Verfahren und systeme zur speicherung von sequenzlesedaten
DK3013984T3 (da) 2013-06-25 2023-06-06 Prognosys Biosciences Inc Metode til bestemmelse af spatiale mønstre i biologiske targets i en prøve
EP2818865A1 (de) 2013-06-27 2014-12-31 Alacris Theranostics GmbH Verfahren zur Identifizierung von wirksamen Arzneimitteln
US9797011B2 (en) 2013-09-13 2017-10-24 Life Technologies Corporation Device preparation using condensed nucleic acid particles
FR3011008B1 (fr) 2013-09-24 2017-12-29 Expanscience Lab Procedes d'evaluation des effets deleteres des uv sur la peau d'enfant
EP3058092B1 (de) 2013-10-17 2019-05-22 Illumina, Inc. Verfahren und zusammensetzungen zur herstellung von nukleinsäure-bibliotheken
EP3058096A1 (de) 2013-10-18 2016-08-24 Good Start Genetics, Inc. Verfahren zur beurteilung eines genomischen bereichs einer person
US10851414B2 (en) 2013-10-18 2020-12-01 Good Start Genetics, Inc. Methods for determining carrier status
DE102013221402A1 (de) * 2013-10-22 2015-04-23 Siemens Aktiengesellschaft Verfahren zur Detektion und Quantifizierung von einer einzelsträngigen Ziel-Nukleinsäure
AU2014364180B2 (en) 2013-12-09 2021-03-04 Illumina, Inc. Methods and compositions for targeted nucleic acid sequencing
WO2015089238A1 (en) 2013-12-11 2015-06-18 Genapsys, Inc. Systems and methods for biological analysis and computation
US9909181B2 (en) 2013-12-13 2018-03-06 Northwestern University Biomarkers for post-traumatic stress states
US10768181B2 (en) 2013-12-17 2020-09-08 The Brigham And Women's Hospital, Inc. Detection of an antibody against a pathogen
EP2886663A1 (de) 2013-12-19 2015-06-24 Centre National de la Recherche Scientifique (CNRS) Nanoporensequenzierung mit replikativen Polymerasen und Helicasen
FR3016373B1 (fr) 2014-01-10 2018-01-19 Laboratoires Expanscience Modele de peau de mammelon reconstitue
WO2015107430A2 (en) 2014-01-16 2015-07-23 Oslo Universitetssykehus Hf Methods and biomarkers for detection and prognosis of cervical cancer
FR3019186B1 (fr) 2014-03-31 2019-06-07 Laboratoires Expanscience Procedes d'evaluation des effets deleteres de l'urine sur la peau d'enfant
WO2015161054A2 (en) 2014-04-18 2015-10-22 Genapsys, Inc. Methods and systems for nucleic acid amplification
US11053548B2 (en) 2014-05-12 2021-07-06 Good Start Genetics, Inc. Methods for detecting aneuploidy
WO2015188178A1 (en) 2014-06-06 2015-12-10 The Regents Of The University Of Michigan Compositions and methods for characterizing and diagnosing periodontal disease
CN114214314A (zh) 2014-06-24 2022-03-22 生物辐射实验室股份有限公司 数字式pcr条码化
WO2015200833A2 (en) 2014-06-27 2015-12-30 Abbott Laboratories COMPOSITIONS AND METHODS FOR DETECTING HUMAN PEGIVIRUS 2 (HPgV-2)
US20160001249A1 (en) * 2014-07-02 2016-01-07 Life Technologies Corporation Methods for Loading a Sensor Substrate
ES2962636T3 (es) 2014-07-24 2024-03-20 Abbott Molecular Inc Métodos para la detección y análisis de mycobacterium tuberculosis
US11408024B2 (en) 2014-09-10 2022-08-09 Molecular Loop Biosciences, Inc. Methods for selectively suppressing non-target sequences
JP2017536087A (ja) 2014-09-24 2017-12-07 グッド スタート ジェネティクス, インコーポレイテッド 遺伝子アッセイのロバストネスを増大させるためのプロセス制御
WO2016084489A1 (ja) * 2014-11-27 2016-06-02 株式会社日立ハイテクノロジーズ スポットアレイ基板、その製造方法、核酸ポリマー解析方法及び装置
CA3010579A1 (en) 2015-01-06 2016-07-14 Good Start Genetics, Inc. Screening for structural variants
EP3822361A1 (de) 2015-02-20 2021-05-19 Takara Bio USA, Inc. Verfahren zur schnellen präzisen abgabe, visualisierung und analyse von einzelzellen
FI3901281T3 (fi) 2015-04-10 2023-01-31 Biologisten näytteiden spatiaalisesti eroteltu moninkertainen nukleiinihappoanalyysi
EP3653728B1 (de) 2015-06-09 2023-02-01 Life Technologies Corporation Verfahren, systeme, zusammensetzungen, kits, vorrichtung und computerlesbare medien zur molekularen markierung
EP3322483A4 (de) 2015-07-14 2019-01-02 Abbott Molecular Inc. Zusammensetzungen und verfahren zum nachweis von wirkstoffresistenter tuberkulose
EP3988658A1 (de) 2015-07-14 2022-04-27 Abbott Molecular Inc. Reinigung von nukleinsäuren unter verwendung von kupfer-titan-oxiden
US9938572B1 (en) 2015-09-08 2018-04-10 Raindance Technologies, Inc. System and method for forming an emulsion
CA2999795C (en) 2015-10-07 2023-10-03 Andreas Hjarne KUNDING Flow system and methods for digital counting
WO2017079406A1 (en) 2015-11-03 2017-05-11 President And Fellows Of Harvard College Method and apparatus for volumetric imaging of a three-dimensional nucleic acid containing matrix
FR3045669B1 (fr) 2015-12-16 2019-04-05 Laboratoires Expanscience Procedes d'evaluation des effets de la deshydratation sur la peau d'enfant
US10730030B2 (en) 2016-01-08 2020-08-04 Bio-Rad Laboratories, Inc. Multiple beads per droplet resolution
WO2017139260A1 (en) 2016-02-08 2017-08-17 RGENE, Inc. Multiple ligase compositions, systems, and methods
US20190062827A1 (en) 2016-03-14 2019-02-28 RGENE, Inc. HYPER-THERMOSTABLE LYSINE-MUTANT ssDNA/RNA LIGASES
US10160987B2 (en) 2016-04-07 2018-12-25 Rebecca F. McClure Composition and method for processing DNA
CN116200465A (zh) 2016-04-25 2023-06-02 哈佛学院董事及会员团体 用于原位分子检测的杂交链反应方法
WO2017201302A1 (en) 2016-05-18 2017-11-23 The University Of Chicago Btk mutation and ibrutinib resistance
WO2017222453A1 (en) 2016-06-21 2017-12-28 Hauling Thomas Nucleic acid sequencing
FR3053053B1 (fr) 2016-06-23 2018-07-13 Laboratoires Expanscience Modeles de la dermatite atopique juvenile
EP3478702A4 (de) 2016-06-27 2020-03-18 Dana-Farber Cancer Institute, Inc. Verfahren zur messung der rna-translationsraten
WO2018013509A1 (en) 2016-07-11 2018-01-18 Arizona Board Of Regents On Behalf Of The University Of Arizona Compositions and methods for diagnosing and treating arrhythmias
CN116397014A (zh) 2016-07-20 2023-07-07 测序健康公司 用于核酸测序的系统和方法
JP7075394B2 (ja) 2016-07-21 2022-05-25 タカラ バイオ ユーエスエー, インコーポレイテッド マルチウェルデバイスを用いたマルチz撮像及び分注
US11035854B2 (en) 2016-07-29 2021-06-15 Selma Diagnostics Aps Methods in digital counting
JP7239465B2 (ja) 2016-08-31 2023-03-14 プレジデント アンド フェローズ オブ ハーバード カレッジ 蛍光in situ配列決定による検出のための核酸配列ライブラリの作製法
EP4428536A2 (de) 2016-08-31 2024-09-11 President and Fellows of Harvard College Verfahren zur kombination des nachweises von biomolekülen in einem einzigen test mit fluoreszenter in-situ-sequenzierung
US10415080B2 (en) 2016-11-21 2019-09-17 Nanostring Technologies, Inc. Chemical compositions and methods of using same
FR3059550B1 (fr) 2016-12-01 2020-01-03 Universite De Rouen Normandie Traitement des troubles causes par l'alcoolisation foetale (tcaf)
CN110139932B (zh) 2016-12-19 2024-05-17 生物辐射实验室股份有限公司 液滴加标的相邻性保留的标签化dna
GB201700983D0 (en) 2017-01-20 2017-03-08 Life Tech As Polymeric particles
US11834653B2 (en) 2017-06-08 2023-12-05 The Brigham And Women's Hospital, Inc. Methods and compositions for identifying epitopes
US11542540B2 (en) 2017-06-16 2023-01-03 Life Technologies Corporation Control nucleic acids, and compositions, kits, and uses thereof
EP3642363A1 (de) 2017-06-20 2020-04-29 Bio-Rad Laboratories, Inc. Mda mit bead-oligonukleotid
FR3068045B1 (fr) 2017-06-22 2021-06-04 Expanscience Lab Modeles de peau sensible reconstituee
FI3663407T3 (fi) 2017-08-01 2023-04-18 Mgi Tech Co Ltd Nukleiinihapon sekvensointimenetelmä
SK862017A3 (sk) 2017-08-24 2020-05-04 Grendar Marian Doc Mgr Phd Spôsob použitia fetálnej frakcie a chromozómovej reprezentácie pri určovaní aneuploidného stavu v neinvazívnom prenatálnom testovaní
SG11202003557YA (en) 2017-09-07 2020-05-28 Coopergenomics Inc Systems and methods for non-invasive preimplantation genetic diagnosis
WO2019074615A2 (en) 2017-09-14 2019-04-18 OneSkin Technologies, Inc. IN VITRO METHODS FOR DISCOVERING THERAPEUTIC COMPOUNDS FOR THE SKIN USING SKIN AGING BIOMARKERS
CN111566224A (zh) 2017-09-21 2020-08-21 吉纳普赛斯股份有限公司 用于核酸测序的系统和方法
WO2019067635A1 (en) 2017-09-27 2019-04-04 Ultima Genomics, Inc. METHODS AND SYSTEMS FOR NUCLEIC ACID SEQUENCING
CA3077085A1 (en) 2017-10-06 2019-04-11 Oncotherapy Science, Inc. Screening of t lymphocytes for cancer-specific antigens
CA3078158A1 (en) 2017-10-06 2019-04-11 Cartana Ab Rna templated ligation
WO2019089959A1 (en) 2017-11-02 2019-05-09 Bio-Rad Laboratories, Inc. Transposase-based genomic analysis
JP7019200B2 (ja) 2017-11-13 2022-02-15 ザ マルチプル ミエローマ リサーチ ファウンデーション, インコーポレイテッド 統合された、分子、オーミクス、免疫療法、代謝、エピジェネティック、および臨床のデータベース
AU2018372906A1 (en) 2017-11-22 2020-06-11 The Regents Of The University Of Michigan Compositions and methods for treating cancer
JP2021509024A (ja) 2018-01-02 2021-03-18 ザ リージェンツ オブ ザ ユニバーシティ オブ ミシガン 多数の液滴の捕捉
WO2019152395A1 (en) 2018-01-31 2019-08-08 Bio-Rad Laboratories, Inc. Methods and compositions for deconvoluting partition barcodes
EP3788377A1 (de) 2018-05-04 2021-03-10 Abbott Laboratories Hbv-diagnostische, prognostische und therapeutische verfahren und produkte
SG11202011274YA (en) 2018-05-14 2020-12-30 Nanostring Technologies Inc Chemical compositions and methods of using same
FR3081707A1 (fr) 2018-05-30 2019-12-06 Universite De Rouen Normandie Traitement des troubles neurologiques causes par l'alcoolisation foetale
US11093547B2 (en) 2018-06-19 2021-08-17 Intel Corporation Data storage based on encoded DNA sequences
CA3106418A1 (en) 2018-07-20 2020-01-23 Pierre Fabre Medicament Receptor for vista
SG11202101934SA (en) 2018-07-30 2021-03-30 Readcoor Llc Methods and systems for sample processing or analysis
CN118406747A (zh) 2018-08-20 2024-07-30 生物辐射实验室股份有限公司 通过分区中条码珠共定位生成核苷酸序列
WO2020056389A1 (en) 2018-09-13 2020-03-19 Human Longevity, Inc. Multimodal signatures and use thereof in the diagnosis and prognosis of diseases
US20200111573A1 (en) 2018-10-05 2020-04-09 Coopergenomics, Inc. Systems and methods for autonomous machine interpretation of high throughput biological assays for embryo selection
WO2020076976A1 (en) 2018-10-10 2020-04-16 Readcoor, Inc. Three-dimensional spatial molecular indexing
WO2020077352A1 (en) 2018-10-12 2020-04-16 Human Longevity, Inc. Multi-omic search engine for integrative analysis of cancer genomic and clinical data
EP3888021B1 (de) 2018-11-30 2024-02-21 Caris MPI, Inc. Molekulare profilierung der nächsten generation
EP3894587A1 (de) 2018-12-10 2021-10-20 10X Genomics, Inc. Auflösung von räumlichen anordnungen durch nähebasierte dekonvolution
FR3091351B1 (fr) 2018-12-27 2021-05-21 Univ Rouen Centre Hospitalier Biomarqueur de la maladie de fabry
US20220081714A1 (en) 2019-01-04 2022-03-17 Northwestern University Storing temporal data into dna
US11926867B2 (en) 2019-01-06 2024-03-12 10X Genomics, Inc. Generating capture probes for spatial analysis
US11649485B2 (en) 2019-01-06 2023-05-16 10X Genomics, Inc. Generating capture probes for spatial analysis
SK500482021A3 (sk) 2019-02-20 2021-12-07 Comenius University In Bratislava Metóda určovania neistoty stupňa placentárneho mozaicizmu vzorky v neinvazívnom prenatálnom skríningu
US11281856B2 (en) 2019-05-24 2022-03-22 Gnx Data Systems Ltd. Systems and methods for using dynamic reference graphs to accurately align sequence reads
WO2020243579A1 (en) 2019-05-30 2020-12-03 10X Genomics, Inc. Methods of detecting spatial heterogeneity of a biological sample
AU2020282024A1 (en) 2019-05-31 2021-11-11 10X Genomics, Inc. Method of detecting target nucleic acid molecules
CN114402392A (zh) 2019-06-21 2022-04-26 酷博尔外科器械有限公司 使用单核苷酸变异密度验证人类胚胎中拷贝数变异的系统和方法
EP3987524A1 (de) 2019-06-21 2022-04-27 CooperSurgical, Inc. Systeme und verfahren zur bestimmung von genomploidie
JP7362789B2 (ja) 2019-06-21 2023-10-17 クーパーサージカル・インコーポレイテッド 精子提供者、卵母細胞提供者、及びそれぞれの受胎産物の間の遺伝的関係を決定するためのシステム、コンピュータプログラム及び方法
FR3098405B1 (fr) 2019-07-12 2021-06-25 Expanscience Lab Composition comprenant des polyphénols de graines de passiflore, des peptides d’avocat et un extrait d’hamamélis et utilisation pour traiter et/ou prévenir les vergetures
US11287422B2 (en) 2019-09-23 2022-03-29 Element Biosciences, Inc. Multivalent binding composition for nucleic acid analysis
EP4025711A2 (de) 2019-11-08 2022-07-13 10X Genomics, Inc. Erhöhung der spezifität einer analytbindung
CA3163319A1 (en) 2019-12-02 2021-06-10 Caris Mpi, Inc. Pan-cancer platinum response predictor
WO2021133842A1 (en) 2019-12-23 2021-07-01 10X Genomics, Inc. Compositions and methods for using fixed biological samples in partition-based assays
JP2023508800A (ja) * 2019-12-23 2023-03-06 イルミナ インコーポレイテッド 鋳型ポリヌクレオチド結合のための単一部位を有するナノ粒子
EP4424843A3 (de) 2019-12-23 2024-09-25 10X Genomics, Inc. Verfahren zur räumlichen analyse unter verwendung von rna-template-ligation
US11732299B2 (en) 2020-01-21 2023-08-22 10X Genomics, Inc. Spatial assays with perturbed cells
US11702693B2 (en) 2020-01-21 2023-07-18 10X Genomics, Inc. Methods for printing cells and generating arrays of barcoded cells
WO2021152586A1 (en) 2020-01-30 2021-08-05 Yeda Research And Development Co. Ltd. Methods of analyzing microbiome, immunoglobulin profile and physiological state
US12076701B2 (en) 2020-01-31 2024-09-03 10X Genomics, Inc. Capturing oligonucleotides in spatial transcriptomics
US12110541B2 (en) 2020-02-03 2024-10-08 10X Genomics, Inc. Methods for preparing high-resolution spatial arrays
US12110548B2 (en) 2020-02-03 2024-10-08 10X Genomics, Inc. Bi-directional in situ analysis
US11898205B2 (en) 2020-02-03 2024-02-13 10X Genomics, Inc. Increasing capture efficiency of spatial assays
US11732300B2 (en) 2020-02-05 2023-08-22 10X Genomics, Inc. Increasing efficiency of spatial analysis in a biological sample
CN115349128A (zh) 2020-02-13 2022-11-15 齐默尔根公司 宏基因组文库和天然产物发现平台
US11891654B2 (en) 2020-02-24 2024-02-06 10X Genomics, Inc. Methods of making gene expression libraries
WO2021214766A1 (en) 2020-04-21 2021-10-28 Yeda Research And Development Co. Ltd. Methods of diagnosing viral infections and vaccines thereto
CN115916999A (zh) 2020-04-22 2023-04-04 10X基因组学有限公司 用于使用靶向rna耗竭进行空间分析的方法
US20230203592A1 (en) 2020-05-05 2023-06-29 Akershus Universitetssykehus Hf Compositions and methods for characterizing bowel cancer
AU2021275906A1 (en) 2020-05-22 2022-12-22 10X Genomics, Inc. Spatial analysis to detect sequence variants
EP4414459A3 (de) 2020-05-22 2024-09-18 10X Genomics, Inc. Simultane räumlich-zeitliche messung der genexpression und der zellaktivität
US12031177B1 (en) 2020-06-04 2024-07-09 10X Genomics, Inc. Methods of enhancing spatial resolution of transcripts
WO2021252499A1 (en) 2020-06-08 2021-12-16 10X Genomics, Inc. Methods of determining a surgical margin and methods of use thereof
EP3922641A1 (de) 2020-06-09 2021-12-15 Institut Gustave-Roussy Verfahren zum nachweis und zur behandlung von covid-patienten, die intensivpflege benötigen
EP4450639A2 (de) 2020-06-25 2024-10-23 10X Genomics, Inc. Räumliche analyse der dna-methylierung
WO2022006443A1 (en) 2020-07-02 2022-01-06 10X Genomics, Inc. Systems and methods for detecting cell-associated barcodes from single-cell partitions
WO2022006455A1 (en) 2020-07-02 2022-01-06 10X Genomics, Inc. Systems and methods for detection of low-abundance molecular barcodes from a sequencing library
US11761038B1 (en) 2020-07-06 2023-09-19 10X Genomics, Inc. Methods for identifying a location of an RNA in a biological sample
US11981960B1 (en) 2020-07-06 2024-05-14 10X Genomics, Inc. Spatial analysis utilizing degradable hydrogels
EP4186060A4 (de) 2020-07-23 2024-01-03 10X Genomics, Inc. Systeme und verfahren zur erkennung und entfernung von aggregaten zum abrufen von zellassoziierten strichcodes
US12116637B2 (en) 2020-07-24 2024-10-15 The Regents Of The University Of Michigan Compositions and methods for detecting and treating high grade subtypes of uterine cancer
CN116194777A (zh) 2020-07-24 2023-05-30 基因泰克公司 使用生物标志物确定骨髓抽吸物的血液稀释
US11981958B1 (en) 2020-08-20 2024-05-14 10X Genomics, Inc. Methods for spatial analysis using DNA capture
US11200446B1 (en) 2020-08-31 2021-12-14 Element Biosciences, Inc. Single-pass primary analysis
US20220076784A1 (en) 2020-09-04 2022-03-10 10X Genomics, Inc. Systems and methods for identifying feature linkages in multi-genomic feature data from single-cell partitions
US11926822B1 (en) 2020-09-23 2024-03-12 10X Genomics, Inc. Three-dimensional spatial analysis
US11834709B2 (en) 2020-10-15 2023-12-05 Genentech, Inc. Multiplexed target-binding candidate screening analysis
US12071667B2 (en) 2020-11-04 2024-08-27 10X Genomics, Inc. Sequence analysis using meta-stable nucleic acid molecules
US11827935B1 (en) 2020-11-19 2023-11-28 10X Genomics, Inc. Methods for spatial analysis using rolling circle amplification and detection probes
AU2021409136A1 (en) 2020-12-21 2023-06-29 10X Genomics, Inc. Methods, compositions, and systems for capturing probes and/or barcodes
US12060603B2 (en) 2021-01-19 2024-08-13 10X Genomics, Inc. Methods for internally controlled in situ assays using padlock probes
WO2022174054A1 (en) 2021-02-13 2022-08-18 The General Hospital Corporation Methods and compositions for in situ macromolecule detection and uses thereof
EP4347879A1 (de) 2021-06-03 2024-04-10 10X Genomics, Inc. Verfahren, zusammensetzungen, kits und systeme zur verbesserung der analyterfassung zur räumlichen analyse
US11220707B1 (en) 2021-06-17 2022-01-11 Element Biosciences, Inc. Compositions and methods for pairwise sequencing
US11859241B2 (en) 2021-06-17 2024-01-02 Element Biosciences, Inc. Compositions and methods for pairwise sequencing
CA3223112A1 (en) 2021-06-18 2022-12-22 Mark AMBROSO Engineered polymerases
AU2022305653A1 (en) 2021-06-30 2024-01-18 Dana-Farber Cancer Institute, Inc. Compositions and methods for enrichment of nucleic acids using light-mediated cross-linking
EP4196605A1 (de) 2021-09-01 2023-06-21 10X Genomics, Inc. Verfahren, zusammensetzungen und kits zur blockierung einer erfassungssonde auf einer räumlichen anordnung
AU2022409487A1 (en) 2021-12-16 2024-01-18 Illumina, Inc. Hybrid clustering
CN116266129A (zh) * 2021-12-17 2023-06-20 戴尔产品有限公司 分布式计算系统中的多领导者选举
WO2023135485A1 (en) 2022-01-13 2023-07-20 Oslo Universitetssykehus Hf Prostate cancer markers and uses thereof
WO2023152568A2 (en) 2022-02-10 2023-08-17 Oslo Universitetssykehus Hf Compositions and methods for characterizing lung cancer
FR3133198A1 (fr) 2022-03-04 2023-09-08 Pierre Fabre Dermo-Cosmetique Modele de peau reconstituee
EP4341435A1 (de) 2022-03-15 2024-03-27 Illumina, Inc. Verfahren für basenrufende nukleobasen
WO2023175040A2 (en) 2022-03-15 2023-09-21 Illumina, Inc. Concurrent sequencing of forward and reverse complement strands on concatenated polynucleotides for methylation detection
WO2023187061A1 (en) 2022-03-31 2023-10-05 Illumina Cambridge Limited Paired-end re-synthesis using blocked p5 primers
WO2024040060A1 (en) 2022-08-16 2024-02-22 10X Genomics, Inc. Ap50 polymerases and uses thereof
WO2024061799A1 (en) 2022-09-19 2024-03-28 Illumina, Inc. Deformable polymers comprising immobilised primers
US20240102067A1 (en) 2022-09-26 2024-03-28 Illumina, Inc. Resynthesis Kits and Methods
US20240110221A1 (en) 2022-09-30 2024-04-04 Illumina, Inc. Methods of modulating clustering kinetics
US20240110234A1 (en) 2022-09-30 2024-04-04 Illumina, Inc. Amplification Compositions and Methods
US20240124929A1 (en) 2022-09-30 2024-04-18 Illumina, Inc. Mesophilic compositions for nucleic acid amplification
US20240124914A1 (en) 2022-09-30 2024-04-18 Illumina, Inc. Thermophilic compositions for nucleic acid amplification
WO2024098046A1 (en) 2022-11-04 2024-05-10 10X Genomics, Inc. Systems and methods for determining antigen specificity of antigen binding molecules and visualizing adaptive immune cell clonotyping data
WO2024123917A1 (en) 2022-12-07 2024-06-13 Illumina, Inc. Monoclonal clustering using double stranded dna size exclusion with patterned seeding
WO2024129672A1 (en) 2022-12-12 2024-06-20 The Broad Institute, Inc. Trafficked rnas for assessment of cell-cell connectivity and neuroanatomy

Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4888750A (en) * 1986-03-07 1989-12-19 Kryder Mark H Method and system for erase before write magneto-optic recording
US4988617A (en) * 1988-03-25 1991-01-29 California Institute Of Technology Method of detecting a nucleotide change in nucleic acids
US5403708A (en) * 1992-07-06 1995-04-04 Brennan; Thomas M. Methods and compositions for determining the sequence of nucleic acids
US5503980A (en) * 1992-11-06 1996-04-02 Trustees Of Boston University Positional sequencing by hybridization
US5659025A (en) * 1990-12-11 1997-08-19 Hoechst Aktiengesellschaft 3'-(2')-amino or thiol-modified, fluorescent dye-coupled oligonucleotides and a process for the preparation and the use thereof
US5750341A (en) * 1995-04-17 1998-05-12 Lynx Therapeutics, Inc. DNA sequencing by parallel oligonucleotide extensions
US5798210A (en) * 1993-03-26 1998-08-25 Institut Pasteur Derivatives utilizable in nucleic acid sequencing
US5880994A (en) * 1993-03-31 1999-03-09 Kabushiki Kaisha Toshiba Non-volatile semiconductor memory device having verify function
US5888737A (en) * 1997-04-15 1999-03-30 Lynx Therapeutics, Inc. Adaptor-based sequence analysis
US6007987A (en) * 1993-08-23 1999-12-28 The Trustees Of Boston University Positional sequencing by hybridization
US6013445A (en) * 1996-06-06 2000-01-11 Lynx Therapeutics, Inc. Massively parallel signature sequencing by ligation of encoded adaptors
US6140489A (en) * 1994-10-13 2000-10-31 Lynx Therapeutics, Inc. Compositions for sorting polynucleotides
US6150516A (en) * 1994-10-13 2000-11-21 Lynx Therapeutics, Inc. Kits for sorting and identifying polynucleotides
US6348313B1 (en) * 1994-01-21 2002-02-19 Medical Research Council Sequencing of nucleic acids
US6406848B1 (en) * 1997-05-23 2002-06-18 Lynx Therapeutics, Inc. Planar arrays of microparticle-bound polynucleotides
US20030068609A1 (en) * 2001-08-29 2003-04-10 Krishan Chari Random array of microspheres
US20030170392A1 (en) * 2002-03-07 2003-09-11 Eastman Kodak Company Random array of microspheres
US6654505B2 (en) * 1994-10-13 2003-11-25 Lynx Therapeutics, Inc. System and apparatus for sequential processing of analytes
US20050019804A1 (en) * 2003-07-23 2005-01-27 Eastman Kodak Company Random array of microspheres
US7011971B2 (en) * 2002-06-03 2006-03-14 Eastman Kodak Company Method of making random array of microspheres using enzyme digestion
US7070927B2 (en) * 1993-09-27 2006-07-04 University Of Chicago Methods and compositions for efficient nucleic acid sequencing
US20060228720A1 (en) * 2005-04-12 2006-10-12 Eastman Kodak Company Method for imaging an array of microspheres
US20060229819A1 (en) * 2005-04-12 2006-10-12 Eastman Kodak Company Method for imaging an array of microspheres

Family Cites Families (93)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US836A (en) 1838-07-12 Augustus a
US6309A (en) 1849-04-10 Planing-machine
US5430136A (en) 1984-10-16 1995-07-04 Chiron Corporation Oligonucleotides having selectably cleavable and/or abasic sites
US5118605A (en) * 1984-10-16 1992-06-02 Chiron Corporation Polynucleotide determination with selectable cleavage sites
US4883750A (en) * 1984-12-13 1989-11-28 Applied Biosystems, Inc. Detection of specific sequences in nucleic acids
US4683195A (en) 1986-01-30 1987-07-28 Cetus Corporation Process for amplifying, detecting, and/or-cloning nucleic acid sequences
US4965188A (en) 1986-08-22 1990-10-23 Cetus Corporation Process for amplifying, detecting, and/or cloning nucleic acid sequences using a thermostable enzyme
US4683202A (en) 1985-03-28 1987-07-28 Cetus Corporation Process for amplifying nucleic acid sequences
US4863849A (en) 1985-07-18 1989-09-05 New York Medical College Automatable process for sequencing nucleotide
US4613163A (en) 1985-11-04 1986-09-23 The Dow Chemical Company Joint for pipe
US5011769A (en) * 1985-12-05 1991-04-30 Meiogenics U.S. Limited Partnership Methods for detecting nucleic acid sequences
US4855225A (en) 1986-02-07 1989-08-08 Applied Biosystems, Inc. Method of detecting electrophoretically separated oligonucleotides
US5202231A (en) 1987-04-01 1993-04-13 Drmanac Radoje T Method of sequencing of genomes by hybridization of oligonucleotide probes
ATE108491T1 (de) * 1988-03-18 1994-07-15 Baylor College Medicine Mutationsnachweis durch kompetitiven oligonukleotid-priming.
US5002867A (en) * 1988-04-25 1991-03-26 Macevicz Stephen C Nucleic acid sequence determination by multiple mixed oligonucleotide probes
US5800992A (en) 1989-06-07 1998-09-01 Fodor; Stephen P.A. Method of detecting nucleic acids
US5143854A (en) * 1989-06-07 1992-09-01 Affymax Technologies N.V. Large scale photolithographic solid phase synthesis of polypeptides and receptor binding screening thereof
US5744101A (en) 1989-06-07 1998-04-28 Affymax Technologies N.V. Photolabile nucleoside protecting groups
US5547839A (en) 1989-06-07 1996-08-20 Affymax Technologies N.V. Sequencing of surface immobilized polymers utilizing microflourescence detection
US5302509A (en) 1989-08-14 1994-04-12 Beckman Instruments, Inc. Method for sequencing polynucleotides
CA2025645C (en) * 1989-09-19 1999-01-19 Keiji Fukuda Control channel terminating interface and its testing device for sending and receiving signal
GB2236852B (en) 1989-09-25 1994-04-06 Scotgen Ltd DNA probe based assays and intermediates useful in the synthesis of cleavable nucleic acids for use in such assays
US5366860A (en) 1989-09-29 1994-11-22 Applied Biosystems, Inc. Spectrally resolvable rhodamine dyes for nucleic acid sequence determination
CA2044616A1 (en) 1989-10-26 1991-04-27 Roger Y. Tsien Dna sequencing
US5188934A (en) 1989-11-14 1993-02-23 Applied Biosystems, Inc. 4,7-dichlorofluorescein dyes as molecular probes
US5627032A (en) * 1990-12-24 1997-05-06 Ulanovsky; Levy Composite primers for nucleic acids
ATE175997T1 (de) 1991-08-10 1999-02-15 Medical Res Council Behandlung von zellpopulationen
EP0543484B1 (de) 1991-08-30 2001-01-31 Research Development Corporation of Japan Verfahren zur Amplifikation von DNA
GB9208733D0 (en) 1992-04-22 1992-06-10 Medical Res Council Dna sequencing method
US5795714A (en) 1992-11-06 1998-08-18 Trustees Of Boston University Method for replicating an array of nucleic acid probes
EP0696775A1 (de) 1993-04-21 1996-02-14 Hitachi, Ltd. Rechnergestütztes Entwurfs- und Anfertigungssystem für Bauteilanordnung und Rohrverlegungsplanung
GB9315847D0 (en) * 1993-07-30 1993-09-15 Isis Innovation Tag reagent and assay method
WO1995009248A1 (en) 1993-09-27 1995-04-06 Arch Development Corp. Methods and compositions for efficient nucleic acid sequencing
US5714330A (en) * 1994-04-04 1998-02-03 Lynx Therapeutics, Inc. DNA sequencing by stepwise ligation and cleavage
US5552278A (en) * 1994-04-04 1996-09-03 Spectragen, Inc. DNA sequencing by stepwise ligation and cleavage
US5641658A (en) 1994-08-03 1997-06-24 Mosaic Technologies, Inc. Method for performing amplification of nucleic acid with two primers bound to a single solid support
US5705628A (en) 1994-09-20 1998-01-06 Whitehead Institute For Biomedical Research DNA purification and isolation using magnetic particles
US5604097A (en) 1994-10-13 1997-02-18 Spectragen, Inc. Methods for sorting polynucleotides using oligonucleotide tags
SE9500342D0 (sv) 1995-01-31 1995-01-31 Marek Kwiatkowski Novel chain terminators, the use thereof for nucleic acid sequencing and synthesis and a method of their preparation
DE19527155C2 (de) * 1995-07-25 1998-12-10 Deutsches Krebsforsch Verfahren zur Sequenzierung durch Oligomerhybridisierung
AU714486B2 (en) 1995-11-21 2000-01-06 Yale University Unimolecular segment amplification and detection
US6090549A (en) * 1996-01-16 2000-07-18 University Of Chicago Use of continuous/contiguous stacking hybridization as a diagnostic tool
JP4124377B2 (ja) 1996-06-06 2008-07-23 ソレクサ・インコーポレイテッド コードアダプターの連結による配列決定
GB9620209D0 (en) 1996-09-27 1996-11-13 Cemu Bioteknik Ab Method of sequencing DNA
GB9626815D0 (en) 1996-12-23 1997-02-12 Cemu Bioteknik Ab Method of sequencing DNA
IL130886A (en) 1997-01-15 2004-02-19 Xzillion Gmbh & Co Kg Nucleic acid sequencing
US20020042048A1 (en) * 1997-01-16 2002-04-11 Radoje Drmanac Methods and compositions for detection or quantification of nucleic acid species
JP3756313B2 (ja) 1997-03-07 2006-03-15 武 今西 新規ビシクロヌクレオシド及びオリゴヌクレオチド類縁体
US6023540A (en) 1997-03-14 2000-02-08 Trustees Of Tufts College Fiber optic sensor with encoded microspheres
US6406845B1 (en) 1997-05-05 2002-06-18 Trustees Of Tuft College Fiber optic biosensor for selectively detecting oligonucleotide species in a mixed fluid sample
EP1496120B1 (de) 1997-07-07 2007-03-28 Medical Research Council Ein in vitro Sortierverfahren
US6511803B1 (en) 1997-10-10 2003-01-28 President And Fellows Of Harvard College Replica amplification of nucleic acid arrays
US6235480B1 (en) * 1998-03-13 2001-05-22 Promega Corporation Detection of nucleic acid hybrids
WO1999058664A1 (en) 1998-05-14 1999-11-18 Whitehead Institute For Biomedical Research Solid phase technique for selectively isolating nucleic acids
AU4194899A (en) 1998-05-21 1999-12-06 Hyseq, Inc. Linear arrays of immobilized compounds and methods of using same
US6306643B1 (en) 1998-08-24 2001-10-23 Affymetrix, Inc. Methods of using an array of pooled probes in genetic analysis
AR021833A1 (es) 1998-09-30 2002-08-07 Applied Research Systems Metodos de amplificacion y secuenciacion de acido nucleico
US7612020B2 (en) 1998-12-28 2009-11-03 Illumina, Inc. Composite arrays utilizing microspheres with a hybridization chamber
US6429027B1 (en) 1998-12-28 2002-08-06 Illumina, Inc. Composite arrays utilizing microspheres
GB9900298D0 (en) 1999-01-07 1999-02-24 Medical Res Council Optical sorting method
DE60044490D1 (de) 1999-02-23 2010-07-15 Caliper Life Sciences Inc Manipulation von mikroteilchen in mikrofluiden systemen
WO2000056937A2 (en) 1999-03-25 2000-09-28 Hyseq, Inc. Solution-based methods and materials for sequence analysis by hybridization
US6355431B1 (en) * 1999-04-20 2002-03-12 Illumina, Inc. Detection of nucleic acid amplification reactions using bead arrays
US7244559B2 (en) 1999-09-16 2007-07-17 454 Life Sciences Corporation Method of sequencing a nucleic acid
US6309836B1 (en) 1999-10-05 2001-10-30 Marek Kwiatkowski Compounds for protecting hydroxyls and methods for their use
US7041445B2 (en) 1999-11-15 2006-05-09 Clontech Laboratories, Inc. Long oligonucleotide arrays
EP1240498B1 (de) 1999-12-23 2008-12-17 Illumina, Inc. Dekodierung von matrixsensoren mit mikrokugeln
JP3499795B2 (ja) * 2000-01-31 2004-02-23 浜松ホトニクス株式会社 遺伝子解析法
EP1337541B1 (de) 2000-10-06 2007-03-07 The Trustees of Columbia University in the City of New York Massives Parallelverfahren zur Dekodierung von DNA und RNA
US6844028B2 (en) 2001-06-26 2005-01-18 Accelr8 Technology Corporation Functional surface coating
US6744028B2 (en) * 2001-10-29 2004-06-01 Mars Incorporated Semi-rigid hand-held food package
WO2003040410A1 (en) 2001-11-02 2003-05-15 Nimblegen Systems, Inc. Detection of hybridization oligonucleotide microarray through covalently labeling microarray probe
GB0127564D0 (en) 2001-11-16 2002-01-09 Medical Res Council Emulsion compositions
US7057026B2 (en) 2001-12-04 2006-06-06 Solexa Limited Labelled nucleotides
US7037659B2 (en) 2002-01-31 2006-05-02 Nimblegen Systems Inc. Apparatus for constructing DNA probes having a prismatic and kaleidoscopic light homogenizer
SI3363809T1 (sl) 2002-08-23 2020-08-31 Illumina Cambridge Limited Modificirani nukleotidi za polinukleotidno sekvenciranje
EP1556506A1 (de) 2002-09-19 2005-07-27 The Chancellor, Masters And Scholars Of The University Of Oxford Molekulare arrays und einzelmolekülnachweis
AU2003270898A1 (en) 2002-09-27 2004-04-19 Nimblegen Systems, Inc. Microarray with hydrophobic barriers
EP2159285B1 (de) 2003-01-29 2012-09-26 454 Life Sciences Corporation Verfahren zur Verstärkung und Sequenzierung von Nukleinsäuren
EP1641809B2 (de) 2003-07-05 2018-10-03 The Johns Hopkins University Verfahren und zusammensetzungen zum nachweis und zur auflistung genetischer variationen
GB0320059D0 (en) 2003-08-27 2003-10-01 Solexa Ltd A method of sequencing
GB0324456D0 (en) * 2003-10-20 2003-11-19 Isis Innovation Parallel DNA sequencing methods
EP1682680B2 (de) 2003-10-31 2018-03-21 AB Advanced Genetic Analysis Corporation Verfahren zur herstellung eines gepaarten tag aus einer nukleinsäuresequenz sowie verfahren zur verwendung davon
US7981604B2 (en) * 2004-02-19 2011-07-19 California Institute Of Technology Methods and kits for analyzing polynucleotide sequences
AU2005216549A1 (en) 2004-02-27 2005-09-09 President And Fellows Of Harvard College Polony fluorescent in situ sequencing beads
WO2006073504A2 (en) 2004-08-04 2006-07-13 President And Fellows Of Harvard College Wobble sequencing
JP4379284B2 (ja) * 2004-09-29 2009-12-09 株式会社日立製作所 電子装置
EP2233582A1 (de) 2005-02-01 2010-09-29 AB Advanced Genetic Analysis Corporation Nukleinsäuresequenzierung durch schrittweise Duplexverlängerung
JP2008528040A (ja) 2005-02-01 2008-07-31 アジェンコート バイオサイエンス コーポレイション ビーズベースの配列決定のための試薬、方法およびライブラリー
JP2009538123A (ja) 2006-04-19 2009-11-05 アプライド バイオシステムズ, エルエルシー ゲル非含有ビーズベースの配列決定のための試薬、方法およびライブラリー
US9005565B2 (en) 2010-06-24 2015-04-14 Hamid-Reza Jahangiri-Famenini Method and apparatus for forming graphene
US9809163B2 (en) 2015-04-14 2017-11-07 Harman International Industries, Incorporation Techniques for transmitting an alert towards a target area
US9805025B2 (en) 2015-07-13 2017-10-31 Seal Software Limited Standard exact clause detection

Patent Citations (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4888750A (en) * 1986-03-07 1989-12-19 Kryder Mark H Method and system for erase before write magneto-optic recording
US4988617A (en) * 1988-03-25 1991-01-29 California Institute Of Technology Method of detecting a nucleotide change in nucleic acids
US5659025A (en) * 1990-12-11 1997-08-19 Hoechst Aktiengesellschaft 3'-(2')-amino or thiol-modified, fluorescent dye-coupled oligonucleotides and a process for the preparation and the use thereof
US5403708A (en) * 1992-07-06 1995-04-04 Brennan; Thomas M. Methods and compositions for determining the sequence of nucleic acids
US5503980A (en) * 1992-11-06 1996-04-02 Trustees Of Boston University Positional sequencing by hybridization
US5798210A (en) * 1993-03-26 1998-08-25 Institut Pasteur Derivatives utilizable in nucleic acid sequencing
US5880994A (en) * 1993-03-31 1999-03-09 Kabushiki Kaisha Toshiba Non-volatile semiconductor memory device having verify function
US6007987A (en) * 1993-08-23 1999-12-28 The Trustees Of Boston University Positional sequencing by hybridization
US7070927B2 (en) * 1993-09-27 2006-07-04 University Of Chicago Methods and compositions for efficient nucleic acid sequencing
US6348313B1 (en) * 1994-01-21 2002-02-19 Medical Research Council Sequencing of nucleic acids
US6172214B1 (en) * 1994-10-13 2001-01-09 Lynx Therapeutics, Inc. Oligonucleotide tags for sorting and identification
US6140489A (en) * 1994-10-13 2000-10-31 Lynx Therapeutics, Inc. Compositions for sorting polynucleotides
US6150516A (en) * 1994-10-13 2000-11-21 Lynx Therapeutics, Inc. Kits for sorting and identifying polynucleotides
US6172218B1 (en) * 1994-10-13 2001-01-09 Lynx Therapeutics, Inc. Oligonucleotide tags for sorting and identification
US6654505B2 (en) * 1994-10-13 2003-11-25 Lynx Therapeutics, Inc. System and apparatus for sequential processing of analytes
US6235475B1 (en) * 1994-10-13 2001-05-22 Lynx Therapeutics, Inc. Oligonucleotide tags for sorting and identification
US6352828B1 (en) * 1994-10-13 2002-03-05 Lynx Therapeutics, Inc. Oligonucleotide tags for sorting and identification
US5969119A (en) * 1995-04-17 1999-10-19 Lynx Therapeutics, Inc. DNA sequencing by parallel olgonucleotide extensions
US6306597B1 (en) * 1995-04-17 2001-10-23 Lynx Therapeutics, Inc. DNA sequencing by parallel oligonucleotide extensions
US5750341A (en) * 1995-04-17 1998-05-12 Lynx Therapeutics, Inc. DNA sequencing by parallel oligonucleotide extensions
US6013445A (en) * 1996-06-06 2000-01-11 Lynx Therapeutics, Inc. Massively parallel signature sequencing by ligation of encoded adaptors
US5888737A (en) * 1997-04-15 1999-03-30 Lynx Therapeutics, Inc. Adaptor-based sequence analysis
US6175002B1 (en) * 1997-04-15 2001-01-16 Lynx Therapeutics, Inc. Adaptor-based sequence analysis
US6406848B1 (en) * 1997-05-23 2002-06-18 Lynx Therapeutics, Inc. Planar arrays of microparticle-bound polynucleotides
US6806052B2 (en) * 1997-05-23 2004-10-19 Lynx Therapeutics, Inc. Planar arrays of microparticle-bound polynucleotides
US6831994B2 (en) * 1997-05-23 2004-12-14 Lynx Therapeutics, Inc. System and apparatus for sequential processing of analytes
US20030068609A1 (en) * 2001-08-29 2003-04-10 Krishan Chari Random array of microspheres
US20030170392A1 (en) * 2002-03-07 2003-09-11 Eastman Kodak Company Random array of microspheres
US7108891B2 (en) * 2002-03-07 2006-09-19 Eastman Kodak Company Random array of microspheres
US7011971B2 (en) * 2002-06-03 2006-03-14 Eastman Kodak Company Method of making random array of microspheres using enzyme digestion
US20050019804A1 (en) * 2003-07-23 2005-01-27 Eastman Kodak Company Random array of microspheres
US20050019745A1 (en) * 2003-07-23 2005-01-27 Eastman Kodak Company Random array of microspheres
US20060228720A1 (en) * 2005-04-12 2006-10-12 Eastman Kodak Company Method for imaging an array of microspheres
US20060229819A1 (en) * 2005-04-12 2006-10-12 Eastman Kodak Company Method for imaging an array of microspheres

Cited By (248)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10000788B2 (en) 2001-09-06 2018-06-19 First Light Biosciences, Inc. Rapid and sensitive detection of molecules
US8021848B2 (en) 2001-09-06 2011-09-20 Straus Holdings Inc. Rapid and sensitive detection of cells and viruses
US20100248281A1 (en) * 2001-09-06 2010-09-30 Rapid Micro Biosystems, Inc. Rapid detection of replicating cells
US9290382B2 (en) 2001-09-06 2016-03-22 Rapid Micro Biosystems Rapid detection of replicating cells
US11499176B2 (en) 2001-09-06 2022-11-15 Rapid Micro Biosystems, Inc. Rapid detection of replicating cells
US9090462B2 (en) 2001-09-06 2015-07-28 Rapid Micro Biosystems, Inc. Rapid detection of replicating cells
US11187702B2 (en) 2003-03-14 2021-11-30 Bio-Rad Laboratories, Inc. Enzyme quantification
US11786872B2 (en) 2004-10-08 2023-10-17 United Kingdom Research And Innovation Vitro evolution in microfluidic systems
US8329404B2 (en) 2005-02-01 2012-12-11 Applied Biosystems Llc Reagents, methods, and libraries for bead-based sequencing
US8431691B2 (en) 2005-02-01 2013-04-30 Applied Biosystems Llc Reagents, methods, and libraries for bead-based sequencing
US9217177B2 (en) 2005-02-01 2015-12-22 Applied Biosystems, Llc Methods for bead-based sequencing
US10323277B2 (en) 2005-02-01 2019-06-18 Applied Biosystems, Llc Reagents, methods, and libraries for bead-based sequencing
US20110077169A1 (en) * 2005-02-01 2011-03-31 Life Technologies Corporation Reagents, Methods, and Libraries for Bead-Based Sequencing
US20100297626A1 (en) * 2005-02-01 2010-11-25 Life Technologies Corporation Reagents, Methods, and Libraries for Bead-Based Sequencing
US20090181385A1 (en) * 2005-02-01 2009-07-16 Applied Biosystems Inc. Reagents, methods, and libraries for bead-based sequencing
US9493830B2 (en) 2005-02-01 2016-11-15 Applied Biosystems, Llc Reagents, methods, and libraries for bead-based sequencing
US9057046B2 (en) 2005-09-26 2015-06-16 Rapid Micro Biosystems, Inc. Cassette containing growth medium
US20070212747A1 (en) * 2005-09-26 2007-09-13 Rapid Micro Biosystems Cassette containing growth medium
US9410151B2 (en) * 2006-01-11 2016-08-09 Raindance Technologies, Inc. Microfluidic devices and methods of use in the formation and control of nanoreactors
US20140256595A1 (en) * 2006-01-11 2014-09-11 Raindance Technologies, Inc. Microfluidic devices and methods of use in the formation and control of nanoreactors
US9534216B2 (en) 2006-01-11 2017-01-03 Raindance Technologies, Inc. Microfluidic devices and methods of use in the formation and control of nanoreactors
US20090062129A1 (en) * 2006-04-19 2009-03-05 Agencourt Personal Genomics, Inc. Reagents, methods, and libraries for gel-free bead-based sequencing
US12091710B2 (en) 2006-05-11 2024-09-17 Bio-Rad Laboratories, Inc. Systems and methods for handling microfluidic droplets
US10639597B2 (en) * 2006-05-11 2020-05-05 Bio-Rad Laboratories, Inc. Microfluidic devices
US10927407B2 (en) 2006-05-11 2021-02-23 Bio-Rad Laboratories, Inc. Systems and methods for handling microfluidic droplets
US11351510B2 (en) 2006-05-11 2022-06-07 Bio-Rad Laboratories, Inc. Microfluidic devices
US20180178174A1 (en) * 2006-05-11 2018-06-28 Raindance Technologies, Inc. Microfluidic devices
US10202608B2 (en) 2006-08-31 2019-02-12 Gen9, Inc. Iterative nucleic acid assembly using activation of vector-encoded traits
US20120004126A1 (en) * 2006-10-27 2012-01-05 Complete Genomics, Inc. Efficient Arrays of Amplified Polynucleotides
US9228228B2 (en) * 2006-10-27 2016-01-05 Complete Genomics, Inc. Efficient arrays of amplified polynucleotides
US20110009278A1 (en) * 2007-01-26 2011-01-13 Illumina, Inc. Nucleic acid sequencing system and method
US8315817B2 (en) 2007-01-26 2012-11-20 Illumina, Inc. Independently removable nucleic acid sequencing system and method
US20110009296A1 (en) * 2007-01-26 2011-01-13 Illumina, Inc. Nucleic acid sequencing system and method
US8725425B2 (en) * 2007-01-26 2014-05-13 Illumina, Inc. Image data efficient genetic sequencing method and system
US9797012B2 (en) 2007-01-26 2017-10-24 Illumina, Inc. Nucleic acid sequencing system and method
US20100138162A1 (en) * 2007-01-26 2010-06-03 Illumina, Inc. Nucleic acid sequencing system and method using a subset of sites of a substrate
US20100137166A1 (en) * 2007-01-26 2010-06-03 Illumina, Inc. Independently removable nucleic acid sequencing system and method
US8914241B2 (en) 2007-01-26 2014-12-16 Illumina, Inc. Nucleic acid sequencing system and method
US10053730B2 (en) 2007-01-26 2018-08-21 Illumina, Inc. Independently removable nucleic acid sequencing system and method
US20080182757A1 (en) * 2007-01-26 2008-07-31 Illumina, Inc. Image data efficient genetic sequencing method and system
US8412467B2 (en) 2007-01-26 2013-04-02 Illumina, Inc. Nucleic acid sequencing system and method
US9121063B2 (en) 2007-01-26 2015-09-01 Illumina, Inc. Independently removable nucleic acid sequencing system and method
US11499191B2 (en) 2007-01-26 2022-11-15 Illumina, Inc. Independently removable nucleic acid sequencing system and method
US8244479B2 (en) 2007-01-26 2012-08-14 Illumina, Inc. Nucleic acid sequencing system and method using a subset of sites of a substrate
US11819849B2 (en) 2007-02-06 2023-11-21 Brandeis University Manipulation of fluids and reactions in microfluidic systems
US11618024B2 (en) 2007-04-19 2023-04-04 President And Fellows Of Harvard College Manipulation of fluids, fluid components and reactions in microfluidic systems
US11224876B2 (en) 2007-04-19 2022-01-18 Brandeis University Manipulation of fluids, fluid components and reactions in microfluidic systems
US10960397B2 (en) 2007-04-19 2021-03-30 President And Fellows Of Harvard College Manipulation of fluids, fluid components and reactions in microfluidic systems
US20100092988A1 (en) * 2007-06-04 2010-04-15 President And Fellows Of Harvard College Methods and Compounds For Chemical Ligation
US8481258B2 (en) * 2007-06-04 2013-07-09 President And Fellows Of Harvard College Methods and compounds for chemical ligation
US11092548B2 (en) 2008-04-04 2021-08-17 Life Technologies Corporation Scanning system and method for imaging and sequencing
US8834797B2 (en) 2008-04-04 2014-09-16 Life Technologies Corporation Scanning system and method for imaging and sequencing
US20090250615A1 (en) * 2008-04-04 2009-10-08 Life Technologies Corporation Scanning system and method for imaging and sequencing
US10107758B2 (en) 2008-04-04 2018-10-23 Life Technologies Corporation Scanning system and method for imaging and sequencing
US20090269771A1 (en) * 2008-04-24 2009-10-29 Life Technologies Corporation Method of sequencing and mapping target nucleic acids
US20090269759A1 (en) * 2008-04-29 2009-10-29 Life Technologies Unnatural polymerase substrates that can sustain enzymatic synthesis of double stranded nucleic acids from a nucleic acid template and methods of use
US8058414B2 (en) 2008-04-29 2011-11-15 Life Technologies Corporation Unnatural polymerase substrates that can sustain enzymatic synthesis of double stranded nucleic acids from a nucleic acid template and methods of use
EP2644710A1 (de) 2008-04-30 2013-10-02 Integrated Dna Technologies, Inc. RNase-H-basierte Assays unter verwendung von modifizierten RNA Monomeren
US9644198B2 (en) 2008-04-30 2017-05-09 Integrated Dna Technologies, Inc. RNase H-based assays utilizing modified RNA monomers
EP2644707A1 (de) 2008-04-30 2013-10-02 Integrated Dna Technologies, Inc. RNase-H basierte Assays unter Verwendung von RNA Monomeren
EP2644709A1 (de) 2008-04-30 2013-10-02 Integrated Dna Technologies, Inc. RNase-H-basierte Assays unter verwendung von modifizierten RNA Monomeren
EP2644708A1 (de) 2008-04-30 2013-10-02 Integrated Dna Technologies, Inc. RNASE-H-basierte Assays unter verwendung von modifizierten RNA Monomeren
US20100167353A1 (en) * 2008-04-30 2010-07-01 Integrated Dna Technologies, Inc. Rnase h-based assays utilizing modified rna monomers
US9434988B2 (en) 2008-04-30 2016-09-06 Integrated Dna Technologies, Inc. RNase H-based assays utilizing modified RNA monomers
EP3150727A1 (de) 2008-04-30 2017-04-05 Integrated DNA Technologies Inc. Rnase-h-basierte assays unter verwendung von modifizierten rna monomeren
US8911948B2 (en) 2008-04-30 2014-12-16 Integrated Dna Technologies, Inc. RNase H-based assays utilizing modified RNA monomers
WO2009137366A2 (en) * 2008-05-06 2009-11-12 Kollmorgen Corporation Genetic sequencer incorporating fluorescence microscopy
WO2009137366A3 (en) * 2008-05-06 2009-12-30 Kollmorgen Corporation Genetic sequencer incorporating fluorescence microscopy
US20090280559A1 (en) * 2008-05-06 2009-11-12 Kollmorgen Corporation Genetic sequencer incorporating fluorescence microscopy
US8741571B2 (en) 2008-07-02 2014-06-03 Illumina Cambridge Limited Using populations of beads for the fabrication of arrays on surfaces
US20100022412A1 (en) * 2008-07-02 2010-01-28 Roberto Rigatti Using populations of beads for the fabrication of arrays on surfaces
US9677069B2 (en) 2008-07-02 2017-06-13 Illumina Cambridge Limited Nucleic acid arrays of spatially discrete features on a surface
US8198028B2 (en) 2008-07-02 2012-06-12 Illumina Cambridge Limited Using populations of beads for the fabrication of arrays on surfaces
US10287577B2 (en) 2008-07-02 2019-05-14 Illumina Cambridge Ltd. Nucleic acid arrays of spatially discrete features on a surface
US9079148B2 (en) 2008-07-02 2015-07-14 Illumina Cambridge Limited Using populations of beads for the fabrication of arrays on surfaces
WO2010003132A1 (en) * 2008-07-02 2010-01-07 Illumina Cambridge Ltd. Using populations of beads for the fabrication of arrays on surfaces
US8399192B2 (en) 2008-07-02 2013-03-19 Illumina Cambridge Limited Using populations of beads for the fabrication of arrays on surfaces
US11511242B2 (en) 2008-07-18 2022-11-29 Bio-Rad Laboratories, Inc. Droplet libraries
US12038438B2 (en) 2008-07-18 2024-07-16 Bio-Rad Laboratories, Inc. Enzyme quantification
US11534727B2 (en) 2008-07-18 2022-12-27 Bio-Rad Laboratories, Inc. Droplet libraries
US11596908B2 (en) 2008-07-18 2023-03-07 Bio-Rad Laboratories, Inc. Droplet libraries
US20100227327A1 (en) * 2008-08-08 2010-09-09 Xiaoliang Sunney Xie Methods and compositions for continuous single-molecule nucleic acid sequencing by synthesis with fluorogenic nucleotides
US8530156B2 (en) * 2008-08-08 2013-09-10 President And Fellows Of Harvard College Chemically cleavable phosphoramidite linkers for sequencing by ligation
US20100036110A1 (en) * 2008-08-08 2010-02-11 Xiaoliang Sunney Xie Methods and compositions for continuous single-molecule nucleic acid sequencing by synthesis with fluorogenic nucleotides
US20100081140A1 (en) * 2008-08-08 2010-04-01 President And Fellows Of Harvard College Chemically cleavable phosphoramidite linkers for sequencing by ligation
WO2010028366A3 (en) * 2008-09-05 2010-06-03 Life Technologies Corporation Methods and systems for nucleic acid sequencing validation, calibration and normalization
US11865534B2 (en) 2008-09-24 2024-01-09 First Light Diagnostics, Inc. Imaging analyzer for testing analytes
WO2010036827A1 (en) * 2008-09-24 2010-04-01 Straus Holdings Inc. Method for detecting analytes
US11583853B2 (en) 2008-09-24 2023-02-21 First Light Diagnostics, Inc. Kits and devices for detecting analytes
US9643180B2 (en) 2008-09-24 2017-05-09 First Light Biosciences, Inc. Method for detecting analytes
US10384203B2 (en) 2008-09-24 2019-08-20 First Light Biosciences, Inc. Kits and devices for detecting analytes
US20100092985A1 (en) * 2008-10-15 2010-04-15 Samsung Electronics Co., Ltd. Solid support with enhanced density of signal material, kit containing the same and method of detecting target material using the same
US20100112588A1 (en) * 2008-11-04 2010-05-06 Caerus Molecular Diagnostics, Inc. Methods for sanger sequencing using particle associated clonal amplicons and highly parallel electrophoretic size-based separation
US20150063666A1 (en) * 2009-03-27 2015-03-05 Life Technologies Corporation Systems and Methods for Assessing Images
US20100246977A1 (en) * 2009-03-27 2010-09-30 Life Technologies Corporation Systems and methods for assessing images
WO2010111656A2 (en) * 2009-03-27 2010-09-30 Life Technologies Corporation Systems and methods for assessing images
US9940707B2 (en) * 2009-03-27 2018-04-10 Life Technologies Corporation Systems and methods for assessing images
US8929630B2 (en) * 2009-03-27 2015-01-06 Life Technologies Corporation Systems and methods for assessing images
WO2010111656A3 (en) * 2009-03-27 2011-03-31 Life Technologies Corporation Systems and methods for assessing images
US20100291558A1 (en) * 2009-05-12 2010-11-18 Samsung Electronics Co., Ltd. Magnetic particles for nucleic acid sequencing and method of sequencing nucleic acid using the same
US8361717B2 (en) * 2009-05-12 2013-01-29 Samsung Electronics Co., Ltd. Magnetic particles for nucleic acid sequencing and method of sequencing nucleic acid using the same
US20200239877A1 (en) * 2009-05-29 2020-07-30 Life Technologies Corporation Scaffolded nucleic acid polymer particles and methods of making and using
US10036063B2 (en) 2009-07-24 2018-07-31 Illumina, Inc. Method for sequencing a polynucleotide template
EP2456892A2 (de) * 2009-07-24 2012-05-30 Illumina, Inc. Verfahren zur sequenzierung einer polynukleotidmatrize
EP2456892A4 (de) * 2009-07-24 2012-12-19 Illumina Inc Verfahren zur sequenzierung einer polynukleotidmatrize
US20120270740A1 (en) * 2009-10-09 2012-10-25 Stc. Umn Polony sequencing methods
US9982296B2 (en) 2009-10-09 2018-05-29 Stc.Unm Polony sequencing methods
US9243290B2 (en) * 2009-10-09 2016-01-26 Stc.Unm Polony sequencing methods
US8524450B2 (en) * 2009-10-30 2013-09-03 Illumina, Inc. Microvessels, microparticles, and methods of manufacturing and using the same
US20110105361A1 (en) * 2009-10-30 2011-05-05 Illumina, Inc. Microvessels, microparticles, and methods of manufacturing and using the same
US9023638B2 (en) 2009-10-30 2015-05-05 Illumina, Inc. Microvessels, microparticles, and methods of manufacturing and using the same
US20110117559A1 (en) * 2009-11-13 2011-05-19 Integrated Dna Technologies, Inc. Small rna detection assays
US10351905B2 (en) 2010-02-12 2019-07-16 Bio-Rad Laboratories, Inc. Digital analyte analysis
US11390917B2 (en) 2010-02-12 2022-07-19 Bio-Rad Laboratories, Inc. Digital analyte analysis
US9366632B2 (en) 2010-02-12 2016-06-14 Raindance Technologies, Inc. Digital analyte analysis
US11254968B2 (en) 2010-02-12 2022-02-22 Bio-Rad Laboratories, Inc. Digital analyte analysis
US10808279B2 (en) 2010-02-12 2020-10-20 Bio-Rad Laboratories, Inc. Digital analyte analysis
US9169515B2 (en) 2010-02-19 2015-10-27 Life Technologies Corporation Methods and systems for nucleic acid sequencing validation, calibration and normalization
US20110207624A1 (en) * 2010-02-19 2011-08-25 Life Technologies Corporation Methods and systems for nucleic acid sequencing validation, calibration and normalization
US10337058B2 (en) 2010-02-19 2019-07-02 Life Tech Nologies Corporation Methods and systems for nucleic acid sequencing validation, calibration and normalization
US10337057B2 (en) 2010-02-19 2019-07-02 Life Technologies Corporation Methods and systems for nucleic acid sequencing validation, calibration and normalization
US8603303B2 (en) 2010-03-15 2013-12-10 International Business Machines Corporation Nanopore based device for cutting long DNA molecules into fragments
US20110224098A1 (en) * 2010-03-15 2011-09-15 International Business Machines Corporation Nanopore Based Device for Cutting Long DNA Molecules into Fragments
US8641877B2 (en) 2010-03-15 2014-02-04 International Business Machines Corporation Nanopore based device for cutting long DNA molecules into fragments
US9268903B2 (en) 2010-07-06 2016-02-23 Life Technologies Corporation Systems and methods for sequence data alignment quality assessment
US11635427B2 (en) 2010-09-30 2023-04-25 Bio-Rad Laboratories, Inc. Sandwich assays in droplets
US11845054B2 (en) 2010-11-12 2023-12-19 Gen9, Inc. Methods and devices for nucleic acids synthesis
US10982208B2 (en) 2010-11-12 2021-04-20 Gen9, Inc. Protein arrays and methods of using and making the same
US10457935B2 (en) 2010-11-12 2019-10-29 Gen9, Inc. Protein arrays and methods of using and making the same
US11084014B2 (en) 2010-11-12 2021-08-10 Gen9, Inc. Methods and devices for nucleic acids synthesis
WO2012071434A2 (en) 2010-11-22 2012-05-31 Life Technologies Corporation Model-based residual correction of intensities
US11135699B2 (en) 2010-12-14 2021-10-05 Life Technologies Corporation Systems and methods for run-time sequencing run quality monitoring
US9727032B2 (en) 2010-12-14 2017-08-08 Life Technologies Corporation Systems and methods for run-time sequencing run quality monitoring
WO2012082464A2 (en) 2010-12-14 2012-06-21 Life Technologies Corporation Systems and methods for run-time sequencing run quality monitoring
EP3709303A1 (de) 2010-12-14 2020-09-16 Life Technologies Corporation Systeme und verfahren zur qualitätsüberwachung von laufzeitsequenzierungsläufen
US10472671B2 (en) 2011-01-17 2019-11-12 Life Technologies Corporation Workflow for detection of ligands using nucleic acids
US11661629B2 (en) * 2011-01-17 2023-05-30 Life Technologies Corporation Enzymatic ligation of nucleic acids
US10494671B2 (en) 2011-01-17 2019-12-03 Life Technologies Corporation Enzymatic ligation of nucleic acids
US11072824B2 (en) 2011-01-17 2021-07-27 Life Technologies Corporation Workflow for detection of ligands using nucleic acids
US9513277B2 (en) 2011-01-28 2016-12-06 International Business Machines Corporation DNA sequencing using multiple metal layer structure with different organic coatings forming different transient bondings to DNA
US10267784B2 (en) 2011-01-28 2019-04-23 International Business Machines Corporation DNA sequencing using multiple metal layer structure with different organic coatings forming different transient bondings to DNA
US8986524B2 (en) 2011-01-28 2015-03-24 International Business Machines Corporation DNA sequence using multiple metal layer structure with different organic coatings forming different transient bondings to DNA
US9285339B2 (en) 2011-01-28 2016-03-15 International Business Machines Corporation DNA sequencing using multiple metal layer structure with different organic coatings forming different transient bondings to DNA
US8764968B2 (en) 2011-01-28 2014-07-01 International Business Machines Corporation DNA sequencing using multiple metal layer structure with organic coatings forming transient bonding to DNA bases
US8858764B2 (en) 2011-01-28 2014-10-14 International Business Machines Corporation Electron beam sculpting of tunneling junction for nanopore DNA sequencing
US8852407B2 (en) 2011-01-28 2014-10-07 International Business Machines Corporation Electron beam sculpting of tunneling junction for nanopore DNA sequencing
US11077415B2 (en) 2011-02-11 2021-08-03 Bio-Rad Laboratories, Inc. Methods for forming mixed droplets
US11168353B2 (en) 2011-02-18 2021-11-09 Bio-Rad Laboratories, Inc. Compositions and methods for molecular labeling
US11768198B2 (en) 2011-02-18 2023-09-26 Bio-Rad Laboratories, Inc. Compositions and methods for molecular labeling
US11747327B2 (en) 2011-02-18 2023-09-05 Bio-Rad Laboratories, Inc. Compositions and methods for molecular labeling
US9121047B2 (en) 2011-04-07 2015-09-01 Life Technologies Corporation System and methods for making and processing emulsions
US9901887B2 (en) 2011-04-07 2018-02-27 Life Technologies Corporation Systems and methods for making and processing emulsions
US9458485B2 (en) 2011-04-07 2016-10-04 Life Technologies Corporation System and methods for making and processing emulsions
US9017993B2 (en) 2011-04-07 2015-04-28 Life Technologies Corporation System and methods for making and processing emulsions
WO2012139125A2 (en) 2011-04-07 2012-10-11 Life Technologies Corporation System and methods for making and processing emulsions
US9776146B2 (en) 2011-04-07 2017-10-03 Life Technologies Corporation System and methods for making and processing emulsions
US11754499B2 (en) 2011-06-02 2023-09-12 Bio-Rad Laboratories, Inc. Enzyme quantification
US9752176B2 (en) 2011-06-15 2017-09-05 Ginkgo Bioworks, Inc. Methods for preparative in vitro cloning
WO2012177774A2 (en) 2011-06-21 2012-12-27 Life Technologies Corporation Systems and methods for hybrid assembly of nucleic acid sequences
US10401372B2 (en) 2011-07-08 2019-09-03 Life Technologies Corporation Method and apparatus for automated sample manipulation
US11899029B2 (en) 2011-07-08 2024-02-13 Life Technologies Corporation Method and apparatus for automated sample preparation
WO2013009654A1 (en) 2011-07-08 2013-01-17 Life Technologies Corporation Method and apparatus for automated sample manipulation
US8920751B2 (en) 2011-07-08 2014-12-30 Life Technologies Corporation Automated enrichment for nucleic acid sequencing
US9535080B2 (en) 2011-07-08 2017-01-03 Life Technologies Corporation Method and apparatus for automated sample manipulation
US11513133B2 (en) 2011-07-08 2022-11-29 Life Technologies Corporation Method and apparatus for automated sample preparation
US11898193B2 (en) 2011-07-20 2024-02-13 Bio-Rad Laboratories, Inc. Manipulating droplet size
US11702662B2 (en) 2011-08-26 2023-07-18 Gen9, Inc. Compositions and methods for high fidelity assembly of nucleic acids
WO2013043909A1 (en) 2011-09-20 2013-03-28 Life Technologies Corporation Systems and methods for identifying sequence variation
US11788046B2 (en) 2011-11-07 2023-10-17 Rapid Micro Biosystems, Inc. Cassette for sterility testing
US9745546B2 (en) 2011-11-07 2017-08-29 Rapid Micro Biosystems, Inc. Cassette for sterility testing
US10801004B2 (en) 2011-11-07 2020-10-13 Rapid Micro Biosystems, Inc. Cassette for sterility testing
US9422592B2 (en) 2012-01-06 2016-08-23 Viomics, Inc. System and method of detecting RNAS altered by cancer in peripheral blood
US10308931B2 (en) 2012-03-21 2019-06-04 Gen9, Inc. Methods for screening proteins using DNA encoded chemical libraries as templates for enzyme catalysis
US10029915B2 (en) 2012-04-04 2018-07-24 International Business Machines Corporation Functionally switchable self-assembled coating compound for controlling translocation of molecule through nanopores
US10040682B2 (en) 2012-04-04 2018-08-07 International Business Machines Corporation Functionally switchable self-assembled coating compound for controlling translocation of molecule through nanopores
US10407707B2 (en) 2012-04-16 2019-09-10 Rapid Micro Biosystems, Inc. Cell culturing device
US11643677B2 (en) 2012-04-16 2023-05-09 Rapid Micro Biosystems, Inc. Cell culturing device
US20130281308A1 (en) * 2012-04-24 2013-10-24 Gen9, Inc. Methods for sorting nucleic acids and preparative in vitro cloning
US10927369B2 (en) 2012-04-24 2021-02-23 Gen9, Inc. Methods for sorting nucleic acids and multiplexed preparative in vitro cloning
US10081807B2 (en) 2012-04-24 2018-09-25 Gen9, Inc. Methods for sorting nucleic acids and multiplexed preparative in vitro cloning
US11072789B2 (en) 2012-06-25 2021-07-27 Gen9, Inc. Methods for nucleic acid assembly and high throughput sequencing
US9791453B2 (en) 2012-12-26 2017-10-17 International Business Machines Corporation Methods for determining binding capability of target ligands with G protein-coupled receptors using translocation through nanochannels
US8835362B2 (en) 2012-12-26 2014-09-16 International Business Machines Corporation Modifying single proteins (GPCR), ligands, and nanopore surfaces to create binding-induced molecular changes of protein-ligand complexes detected in nanochannel translocation
WO2014113815A1 (en) 2013-01-21 2014-07-24 Life Technologies Corporation Systems and methods for gene expression analysis
US9222930B2 (en) 2013-04-18 2015-12-29 Globalfoundries Inc. Fabrication of tunneling junction for nanopore DNA sequencing
US9046511B2 (en) 2013-04-18 2015-06-02 International Business Machines Corporation Fabrication of tunneling junction for nanopore DNA sequencing
EP3800268A1 (de) * 2013-05-13 2021-04-07 QIAGEN Sciences, LLC Analytanreicherungsverfahren und -zusammensetzungen
US10626446B2 (en) 2013-05-13 2020-04-21 Qiagen Sciences, Llc Analyte enrichment methods and compositions
WO2014186152A1 (en) * 2013-05-13 2014-11-20 Intelligent Bio-Systems, Inc. Analyte enrichment methods and compositions
US9188578B2 (en) 2013-06-19 2015-11-17 Globalfoundries Inc. Nanogap device with capped nanowire structures
US9097698B2 (en) 2013-06-19 2015-08-04 International Business Machines Corporation Nanogap device with capped nanowire structures
US9182369B2 (en) 2013-06-19 2015-11-10 Globalfoundries Inc. Manufacturable sub-3 nanometer palladium gap devices for fixed electrode tunneling recognition
US9128078B2 (en) 2013-06-19 2015-09-08 International Business Machines Corporation Manufacturable sub-3 nanometer palladium gap devices for fixed electrode tunneling recognition
US9898575B2 (en) 2013-08-21 2018-02-20 Seven Bridges Genomics Inc. Methods and systems for aligning sequences
US9904763B2 (en) 2013-08-21 2018-02-27 Seven Bridges Genomics Inc. Methods and systems for detecting sequence variants
US11901041B2 (en) 2013-10-04 2024-02-13 Bio-Rad Laboratories, Inc. Digital analysis of nucleic acid modification
US9303310B2 (en) 2013-10-15 2016-04-05 International Business Machines Corporation Nanofluidic sensor comprising spatially separated functional sensing components
US9255321B2 (en) 2013-10-15 2016-02-09 Globalfoundries Inc. Directed surface functionalization on selected surface areas of topographical features with nanometer resolution
US10047431B2 (en) 2013-10-15 2018-08-14 Globalfoundries Inc. Directed surface functionalization on selected surface areas of topographical features with nanometer resolution
US10024851B2 (en) 2013-10-15 2018-07-17 International Business Machines Corporation Use of disulfide bonds to form a reversible and reusable coating for nanofluidic devices
US10024852B2 (en) 2013-10-15 2018-07-17 International Business Machines Corporation Use of disulfide bonds to form a reversible and reusable coating for nanofluidic devices
US9309590B2 (en) 2013-10-15 2016-04-12 International Business Machines Corporation Nanofluidic sensor comprising spatially separated functional sensing components
US9297062B2 (en) 2013-10-15 2016-03-29 Globalfoundries Inc. Directed surface functionalization on selected surface areas of topographical features with nanometer resolution
US11447828B2 (en) 2013-10-18 2022-09-20 Seven Bridges Genomics Inc. Methods and systems for detecting sequence variants
US12040051B2 (en) 2013-10-18 2024-07-16 Seven Bridges Genomics Inc. Methods and systems for genotyping genetic samples
US10832797B2 (en) 2013-10-18 2020-11-10 Seven Bridges Genomics Inc. Method and system for quantifying sequence alignment
US10078724B2 (en) 2013-10-18 2018-09-18 Seven Bridges Genomics Inc. Methods and systems for genotyping genetic samples
US10053736B2 (en) 2013-10-18 2018-08-21 Seven Bridges Genomics Inc. Methods and systems for identifying disease-induced mutations
WO2015058093A1 (en) * 2013-10-18 2015-04-23 Seven Bridges Genomics Inc. Methods and systems for genotyping genetic samples
US11049587B2 (en) 2013-10-18 2021-06-29 Seven Bridges Genomics Inc. Methods and systems for aligning sequences in the presence of repeating elements
US10204207B2 (en) 2013-10-21 2019-02-12 Seven Bridges Genomics Inc. Systems and methods for transcriptome analysis
US10055539B2 (en) 2013-10-21 2018-08-21 Seven Bridges Genomics Inc. Systems and methods for using paired-end data in directed acyclic structure
US11833450B2 (en) 2013-11-12 2023-12-05 Life Technologies Corporation System and method for emulsion breaking
US11229859B2 (en) 2013-11-12 2022-01-25 Life Technologies Corporation System and method for emulsion breaking
US10576396B2 (en) 2013-11-12 2020-03-03 Life Technologies Corporation System and method for emulsion breaking
US9533240B2 (en) 2013-11-12 2017-01-03 Life Technologies Corporation System and method for emulsion breaking
US11174509B2 (en) 2013-12-12 2021-11-16 Bio-Rad Laboratories, Inc. Distinguishing rare variations in a nucleic acid sequence from a sample
US9534215B2 (en) 2014-06-11 2017-01-03 Life Technologies Corporation Systems and methods for substrate enrichment
US10184146B2 (en) 2014-06-11 2019-01-22 Life Technologies Corporation Systems and methods for substrate enrichment
US9921181B2 (en) 2014-06-26 2018-03-20 International Business Machines Corporation Detection of translocation events using graphene-based nanopore assemblies
US10227647B2 (en) 2015-02-17 2019-03-12 Complete Genomics, Inc. DNA sequencing using controlled strand displacement
US11319588B2 (en) 2015-02-17 2022-05-03 Mgi Tech Co., Ltd. DNA sequencing using controlled strand displacement
US10275567B2 (en) 2015-05-22 2019-04-30 Seven Bridges Genomics Inc. Systems and methods for haplotyping
US11359237B2 (en) 2015-07-22 2022-06-14 Qiagen Sciences, Llc Modular flow cells and methods of sequencing
US11697835B2 (en) 2015-08-24 2023-07-11 Seven Bridges Genomics Inc. Systems and methods for epigenetic analysis
US10793895B2 (en) 2015-08-24 2020-10-06 Seven Bridges Genomics Inc. Systems and methods for epigenetic analysis
US10584380B2 (en) 2015-09-01 2020-03-10 Seven Bridges Genomics Inc. Systems and methods for mitochondrial analysis
US11702708B2 (en) 2015-09-01 2023-07-18 Seven Bridges Genomics Inc. Systems and methods for analyzing viral nucleic acids
US11649495B2 (en) 2015-09-01 2023-05-16 Seven Bridges Genomics Inc. Systems and methods for mitochondrial analysis
US10724110B2 (en) 2015-09-01 2020-07-28 Seven Bridges Genomics Inc. Systems and methods for analyzing viral nucleic acids
US10647981B1 (en) 2015-09-08 2020-05-12 Bio-Rad Laboratories, Inc. Nucleic acid library generation methods and compositions
US11347704B2 (en) 2015-10-16 2022-05-31 Seven Bridges Genomics Inc. Biological graph or sequence serialization
US11674168B2 (en) 2015-10-30 2023-06-13 Exact Sciences Corporation Isolation and detection of DNA from plasma
US10364468B2 (en) 2016-01-13 2019-07-30 Seven Bridges Genomics Inc. Systems and methods for analyzing circulating tumor DNA
US11560598B2 (en) 2016-01-13 2023-01-24 Seven Bridges Genomics Inc. Systems and methods for analyzing circulating tumor DNA
US10460829B2 (en) 2016-01-26 2019-10-29 Seven Bridges Genomics Inc. Systems and methods for encoding genetic variation for a population
US10262102B2 (en) 2016-02-24 2019-04-16 Seven Bridges Genomics Inc. Systems and methods for genotyping with graph reference
US10378010B2 (en) * 2016-04-07 2019-08-13 Illumina, Inc. Methods and systems for construction of normalized nucleic acid libraries
US11250931B2 (en) 2016-09-01 2022-02-15 Seven Bridges Genomics Inc. Systems and methods for detecting recombination
US12049671B2 (en) 2017-01-27 2024-07-30 Exact Sciences Corporation Detection of colon neoplasia by analysis of methylated DNA
US11091791B2 (en) 2017-02-24 2021-08-17 Mgi Tech Co., Ltd. Methods for hybridization based hook ligation
CN108373971A (zh) * 2017-03-11 2018-08-07 南京科维思生物科技股份有限公司 用于进行实时数字pcr的方法和装置
US20210146364A1 (en) * 2017-06-21 2021-05-20 Base4 Innovation Ltd Method for investigating molecules such as nucleic acids
WO2019018561A1 (en) * 2017-07-19 2019-01-24 The Scripps Research Institute GENOMIC LIBRARY GENERATION IN SOLID PHASE FOR HIGH FLOW SEQUENCING
US20200277673A1 (en) * 2017-08-31 2020-09-03 Mgi Tech Co., Ltd. Nucleic acid probe and nucleic acid sequencing method
US11993813B2 (en) * 2017-08-31 2024-05-28 Mgi Tech Co., Ltd. Nucleic acid probe and nucleic acid sequencing method
US12031985B2 (en) 2018-04-19 2024-07-09 First Light Diagnostics, Inc. Detection of targets
US11111340B2 (en) 2018-06-26 2021-09-07 Kookmin University Industry Academy Cooperation Foundation Method for preparing biocompatible poly-γ-glutamic acid hydrogel by using ultraviolet rays

Also Published As

Publication number Publication date
EP2230315A1 (de) 2010-09-22
US9217177B2 (en) 2015-12-22
EP2003214A3 (de) 2009-06-17
KR20070112785A (ko) 2007-11-27
US20090181860A1 (en) 2009-07-16
CA2596496A1 (en) 2006-08-10
EP2003214A2 (de) 2008-12-17
WO2006084132A3 (en) 2007-07-05
JP2008528040A (ja) 2008-07-31
US20140342353A1 (en) 2014-11-20
US8329404B2 (en) 2012-12-11
EP1844162B1 (de) 2014-10-15
EP2230316A1 (de) 2010-09-22
EP2857523A1 (de) 2015-04-08
US20110077169A1 (en) 2011-03-31
US10323277B2 (en) 2019-06-18
US20090181385A1 (en) 2009-07-16
WO2006084132A2 (en) 2006-08-10
EP2272983A1 (de) 2011-01-12
EP2316977A1 (de) 2011-05-04
US20100297626A1 (en) 2010-11-25
EP1844162A2 (de) 2007-10-17
US8431691B2 (en) 2013-04-30
EP2239342A2 (de) 2010-10-13
EP2239342A3 (de) 2010-11-03
US20190323078A1 (en) 2019-10-24
US20140248610A1 (en) 2014-09-04
EP2003214B1 (de) 2013-04-10
US9493830B2 (en) 2016-11-15
US20120191363A1 (en) 2012-07-26
EP2233581A1 (de) 2010-09-29
AU2006210553A1 (en) 2006-08-10
US20170081717A1 (en) 2017-03-23

Similar Documents

Publication Publication Date Title
US10323277B2 (en) Reagents, methods, and libraries for bead-based sequencing
US20090062129A1 (en) Reagents, methods, and libraries for gel-free bead-based sequencing
US20090191553A1 (en) Chase Ligation Sequencing
CN107735497B (zh) 用于单分子检测的测定及其应用
CN101189345A (zh) 珠基测序的试剂、方法和文库
EP2233582A1 (de) Nukleinsäuresequenzierung durch schrittweise Duplexverlängerung

Legal Events

Date Code Title Description
AS Assignment

Owner name: AGENCOURT BIOSCIENCE CORPORATION, MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MCKERNAN, KEVIN;BLANCHARD, ALAN;KOTLER, LEV;AND OTHERS;REEL/FRAME:017559/0870

Effective date: 20060412

AS Assignment

Owner name: AGENCOURT PERSONAL GENOMICS, INC., MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:AGENCOURT BIOSCIENCE CORPORATION;REEL/FRAME:017580/0253

Effective date: 20060412

AS Assignment

Owner name: APPLERA CORPORATION, CALIFORNIA

Free format text: AGREEMENT AND PLAN OF MERGER DOCUMENT (REDACTED);ASSIGNOR:AGENCOURT PERSONAL GENOMICS, INC.;REEL/FRAME:020037/0588

Effective date: 20060526

AS Assignment

Owner name: BANK OF AMERICA, N.A, AS COLLATERAL AGENT, WASHING

Free format text: SECURITY AGREEMENT;ASSIGNOR:APPLIED BIOSYSTEMS, LLC;REEL/FRAME:021976/0001

Effective date: 20081121

Owner name: BANK OF AMERICA, N.A, AS COLLATERAL AGENT,WASHINGT

Free format text: SECURITY AGREEMENT;ASSIGNOR:APPLIED BIOSYSTEMS, LLC;REEL/FRAME:021976/0001

Effective date: 20081121

AS Assignment

Owner name: APPLERA CORPORATION, CALIFORNIA

Free format text: MERGER;ASSIGNOR:AGENCOURT PERSONAL GENOMICS, INC.;REEL/FRAME:022350/0827

Effective date: 20060526

AS Assignment

Owner name: APPLIED BIOSYSTEMS INC., CALIFORNIA

Free format text: CHANGE OF NAME;ASSIGNOR:APPLERA CORPORATION;REEL/FRAME:023517/0921

Effective date: 20080630

Owner name: APPLIED BIOSYSTEMS INC., CALIFORNIA

Free format text: MERGER;ASSIGNOR:ATOM ACQUISITION CORPORATION;REEL/FRAME:023517/0927

Effective date: 20081121

Owner name: APPLIED BIOSYSTEMS, LLC, CALIFORNIA

Free format text: MERGER;ASSIGNOR:ATOM ACQUISITION, LLC & APPLIED BIOSYSTEMS INC.;REEL/FRAME:023517/0942

Effective date: 20081121

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: APPLIED BIOSYSTEMS INC.,CALIFORNIA

Free format text: CHANGE OF NAME;ASSIGNOR:APPLERA CORPORATION;REEL/FRAME:023994/0538

Effective date: 20080701

Owner name: APPLIED BIOSYSTEMS, LLC,CALIFORNIA

Free format text: MERGER;ASSIGNOR:APPLIED BIOSYSTEMS INC.;REEL/FRAME:023994/0587

Effective date: 20081121

Owner name: APPLIED BIOSYSTEMS INC., CALIFORNIA

Free format text: CHANGE OF NAME;ASSIGNOR:APPLERA CORPORATION;REEL/FRAME:023994/0538

Effective date: 20080701

Owner name: APPLIED BIOSYSTEMS, LLC, CALIFORNIA

Free format text: MERGER;ASSIGNOR:APPLIED BIOSYSTEMS INC.;REEL/FRAME:023994/0587

Effective date: 20081121

AS Assignment

Owner name: APPLIED BIOSYSTEMS, INC., CALIFORNIA

Free format text: LIEN RELEASE;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:030182/0677

Effective date: 20100528

AS Assignment

Owner name: APPLIED BIOSYSTEMS, LLC, CALIFORNIA

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE RECEIVING PARTY NAME PREVIOUSLY RECORDED AT REEL: 030182 FRAME: 0705. ASSIGNOR(S) HEREBY CONFIRMS THE RELEASE THE SECURITY INTEREST;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:038007/0001

Effective date: 20100528