US20070161617A1 - Certain chemical entities, compositions and methods - Google Patents

Certain chemical entities, compositions and methods Download PDF

Info

Publication number
US20070161617A1
US20070161617A1 US11/640,438 US64043806A US2007161617A1 US 20070161617 A1 US20070161617 A1 US 20070161617A1 US 64043806 A US64043806 A US 64043806A US 2007161617 A1 US2007161617 A1 US 2007161617A1
Authority
US
United States
Prior art keywords
methyl
amino
pyridyl
phenyl
fluoro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/640,438
Other languages
English (en)
Inventor
Bradley Morgan
David Morgans
Alex Muci
Pu-Ping Lu
Erica Kraynack
Todd Tochimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cytokinetics Inc
Original Assignee
Cytokinetics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cytokinetics Inc filed Critical Cytokinetics Inc
Priority to US11/640,438 priority Critical patent/US20070161617A1/en
Assigned to CYTOKINETICS, INC. reassignment CYTOKINETICS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: TOCHIMOTO, TODD, KRAYNACK, ERICA A., LU, PU-PING, MORGAN, BRADLEY P., MORGANS, DAVID J., JR., MUCI, ALEX
Publication of US20070161617A1 publication Critical patent/US20070161617A1/en
Priority to US12/483,093 priority patent/US8445495B2/en
Priority to US13/897,086 priority patent/US8871768B2/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/72Nitrogen atoms
    • C07D213/75Amino or imino radicals, acylated by carboxylic or carbonic acids, or by sulfur or nitrogen analogues thereof, e.g. carbamates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/496Non-condensed piperazines containing further heterocyclic rings, e.g. rifampin, thiothixene or sparfloxacin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/4965Non-condensed pyrazines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/4965Non-condensed pyrazines
    • A61K31/497Non-condensed pyrazines containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/535Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
    • A61K31/53751,4-Oxazines, e.g. morpholine
    • A61K31/53771,4-Oxazines, e.g. morpholine not condensed and containing further heterocyclic rings, e.g. timolol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/04Inotropic agents, i.e. stimulants of cardiac contraction; Drugs for heart failure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis

Definitions

  • the invention relates to substituted urea derivatives, particularly to chemical entities that selectively modulate the cardiac sarcomere, and specifically to chemical entities, pharmaceutical compositions and methods of treatment for heart disease.
  • the “sarcomere” is an elegantly organized cellular structure found in cardiac and skeletal muscle made up of interdigitating thin and thick filaments; it comprises nearly 60% of cardiac cell volume.
  • the thick filaments are composed of “myosin,” the protein responsible for transducing chemical energy (ATP hydrolysis) into force and directed movement. Myosin and its functionally related cousins are called motor proteins.
  • the thin filaments are composed of a complex of proteins.
  • actin a filamentous polymer
  • Bound to actin are a set of regulatory proteins, the “troponin complex” and “tropomyosin,” which make the actin-myosin interaction dependent on changes in intracellular Ca 2+ levels. With each heartbeat, Ca 2+ levels rise and fall, initiating cardiac muscle contraction and then cardiac muscle relaxation Each of the components of the sarcomere contributes to its contractile response.
  • Myosin is the most extensively studied of all the motor proteins. Of the thirteen distinct classes of myosin in human cells, the myosin-II class is responsible for contraction of skeletal, cardiac, and smooth muscle. This class of myosin is significantly different in amino acid composition and in overall structure from myosin in the other twelve distinct classes.
  • Myosin-II consists of two globular head domains linked together by a long alpha-helical coiled-coiled tail that assembles with other myosin-IIs to form the core of the sarcomere's thick filament. The globular heads have a catalytic domain where the actin binding and ATP functions of myosin take place.
  • Mammalian heart muscle consists of two forms of cardiac myosin, alpha and beta, and they are well characterized.
  • the beta form is the predominant form (>90 percent) in adult human cardiac muscle. Both have been observed to be regulated in human heart failure conditions at both transcriptional and translational levels, with the alpha form being down-regulated in heart failure.
  • cardiac alpha and beta myosins are very similar (93% identity), they are both considerably different from human smooth muscle (42% identity) and more closely related to skeletal myosins (80% identity).
  • cardiac muscle myosins are incredibly conserved across mammalian species.
  • alpha and beta cardiac myosins are >96% conserved between humans and rats, and the available 250-residue sequence of porcine cardiac beta myosin is 100% conserved with the corresponding human cardiac beta myosin sequence.
  • sequence conservation contributes to the predictability of studying myosin based therapeutics in animal based models of heart failure.
  • the components of the cardiac sarcomere present targets for the treatment of heart failure, for example by increasing contractility or facilitating complete relaxation to modulate systolic and diastolic function, respectively.
  • CHF Congestive heart failure
  • systolic dysfunction an impairment of cardiac contractility (with a consequent reduction in the amount of blood ejected with each heartbeat).
  • systolic dysfunction with compensatory dilation of the ventricular cavities results in the most common form of heart failure, “dilated cardiomyopathy,” which is often considered to be one in the same as CHF.
  • the counterpoint to systolic dysfunction is diastolic dysfunction, an impairment of the ability to fill the ventricles with blood, which can also result in heart failure even with preserved left ventricular function.
  • Congestive heart failure is ultimately associated with improper function of the cardiac myocyte itself, involving a decrease in its ability to contract and relax.
  • systolic and/or diastolic dysfunction such as atherosclerosis, hypertension, viral infection, valvular dysfunction, and genetic disorders.
  • Patients with these conditions typically present with the same classical symptoms: shortness of breath, edema and overwhelming fatigue.
  • ischemic heart disease due to coronary atherosclerosis.
  • These patients have had either a single myocardial infarction or multiple myocardial infarctions; here, the consequent scarring and remodeling results in the development of a dilated and hypocontractile heart.
  • idiopathic dilated cardiomyopathy At times the causative agent cannot be identified, so the disease is referred to as “idiopathic dilated cardiomyopathy.” Irrespective of ischemic or other origin, patients with dilated cardiomyopathy share an abysmal prognosis, excessive morbidity and high mortality.
  • CHF chronic myelolism
  • Acute congestive heart failure (also known as acute “decompensated” heart failure) involves a precipitous drop in cardiac function resulting from a variety of causes. For example in a patient who already has congestive heart failure, a new myocardial infarction, discontinuation of medications, and dietary indiscretions may all lead to accumulation of edema fluid and metabolic insufficiency even in the resting state.
  • a therapeutic agent that increases cardiac function during such an acute episode could assist in relieving this metabolic insufficiency and speeding the removal of edema, facilitating the return to the more stable “compensated” congestive heart failure state.
  • Patients with very advanced congestive heart failure particularly those at the end stage of the disease also could benefit from a therapeutic agent that increases cardiac function, for example, for stabilization while waiting for a heart transplant.
  • Other potential benefits could be provided to patients coming off a bypass pump, for example, by administration of an agent that assists the stopped or slowed heart in resuming normal function.
  • Patients who have diastolic dysfunction could benefit from a therapeutic agent that modulates relaxation.
  • Inotropes are drugs that increase the contractile ability of the heart. As a group, all current inotropes have failed to meet the gold standard for heart failure therapy, i.e., to prolong patient survival. In addition, current agents are poorly selective for cardiac tissue, in part leading to recognized adverse effects that limit their use. Despite this fact, intravenous inotropes continue to be widely used in acute heart failure (e.g., to allow for reinstitution of oral medications or to bridge patients to heart transplantation) whereas in chronic heart failure, orally given digoxin is used as an inotrope to relieve patient symptoms, improve the quality of life, and reduce hospital admissions.
  • the selectivity of agents directed at the cardiac sarcomere has been identified as an important means to achieve this improved therapeutic index.
  • the present invention provides such agents (particularly sarcomere activating agents) and methods for their identification and use.
  • Another approach may be to directly activate cardiac myosin without changing the calcium transient to improving cardiac contractility.
  • the present invention provides such agents (particularly myosin activating agents) and methods for their identification and use.
  • a method of increasing extent but not velocity of cardiac contraction comprising administering at least one chemical entity described herein.
  • a method of treating heart disease in a mammal comprising administering to a mammal in need thereof, in an amount effective for increasing extent but not velocity of cardiac contraction, at least one chemical entity described herein.
  • a method of increasing extent of contraction but not ⁇ dP/dt comprising administering at least one chemical entity described herein.
  • a method of treating heart disease in a mammal comprising administering to a mammal in need thereof, in an amount effective for increasing extent of contraction but not ⁇ dP/dt, at least one chemical entity described herein.
  • a dash (“—”) that is not between two letters or symbols is used to indicate a point of attachment for a substituent. For example, —CONH 2 is attached through the carbon atom.
  • optionally substituted alkyl encompasses both “alkyl” and “substituted alkyl” as defined below. It will be understood by those skilled in the art, with respect to any group containing one or more substituents, that such groups are not intended to introduce any substitution or substitution patterns that are sterically impractical, synthetically non-feasible and/or inherently unstable.
  • Alkyl encompasses straight chain and branched chain having the indicated number of carbon atoms.
  • Alkyl groups generally are those of C 20 or below, such as C 13 or below, for example, C 6 or below.
  • C 1 -C 6 alkyl encompasses both straight and branched chain alkyl of from 1 to 6 carbon atoms.
  • alkyl groups include methyl, ethyl, propyl, isopropyl, n-butyl, sec-butyl, tert-butyl, pentyl, 2-pentyl, isopentyl, neopentyl, hexyl, 2-hexyl, 3-hexyl, 3-methylpentyl, and the like.
  • Alkylene is another subset of alkyl, referring to the same residues as alkyl, but having two points of attachment.
  • C 0 alkylene indicates a covalent bond
  • C 1 alkylene is a methylene group.
  • butyl is meant to include n-butyl, sec-butyl, isobutyl and t-butyl
  • propyl includes n-propyl and isopropyl.
  • “Lower alkyl” refers to alkyl groups having one to four carbons.
  • Cycloalkyl indicates a saturated hydrocarbon ring or fused bicyclic ring, having the specified number of carbon atoms, usually from 3 to 12 ring carbon atoms, more usually 3 to 10, or 3 to 7.
  • Examples of cycloalkyl groups include cyclopropyl, cyclobutyl, cyclopentyl, and cyclohexyl as well as bridged and caged saturated ring groups such as norbornane.
  • fused bicyclic rings examples include octahydro-1H-indene, octahydropentalene, 1,2,3,3a,4,5-hexahydropentalene, 1,2,4,5,6,7,7a-heptahydro-2H-indene, 4,5,6,7-tetrahydro-2H-indene and the like.
  • alkoxy is meant an alkyl group attached through an oxygen bridge such as, for example, methoxy, ethoxy, propoxy, isopropoxy, n-butoxy, sec-butoxy, tert-butoxy, pentoxy, 2-pentyloxy, isopentoxy, neopentoxy, hexoxy, 2-hexoxy, 3-hexoxy, 3-methylpentoxy, and the like.
  • the alkyl group of an alkoxy group generally is of C 20 or below, such as C 13 or below, for example, C 6 or below.
  • “Lower alkoxy” refers to alkoxy groups having one to four carbons.
  • cycloalkoxy is meant a cycloalkyl group attached through an oxygen bridge such as, for example, cyclopropoxy, cyclobutoxy, cyclopentoxy, cyclohexoxy, cycloheptoxy, and the like.
  • the cycloalkyl group of a cycloalkoxy group generally is of C 20 or below, such as C 13 or below, for example, C 6 or below.
  • Acyl refers to the groups (alkyl)-C(O)—; (cycloalkyl)-C(O)—; (aryl)-C(O)—; (heteroaryl)-C(O)—; and (heterocycloalkyl)-C(O)—, wherein the group is attached to the parent structure through the carbonyl functionality and wherein alkyl, cycloalkyl, aryl, heteroaryl, and heterocycloalkyl are as described herein.
  • Acyl groups have the indicated number of carbon atoms, with the carbon of the keto group being included in the numbered carbon atoms.
  • a C 2 acyl group is an acetyl group having the formula CH 3 (C ⁇ O)—.
  • alkoxycarbonyl is meant an ester group of the formula (alkoxy)(C ⁇ O)— attached through the carbonyl carbon wherein the alkoxy group has the indicated number of carbon atoms.
  • a C 1 -C 6 alkoxycarbonyl group is an alkoxy group having from 1 to 6 carbon atoms attached through its oxygen to a carbonyl linker.
  • amino is meant the group —NH 2 .
  • aminocarbonyl refers to the group —CONRbRC, where
  • R b is chosen from hydrogen, optionally substituted C 1 -C 6 alkyl, optionally substituted aryl, and optionally substituted heteroaryl;
  • R c is chosen from hydrogen and optionally substituted C 1 -C 4 alkyl; or
  • R b and R c taken together with the nitrogen to which they are bound, form an optionally substituted 5- to 7-membered nitrogen-containing heterocycloalkyl which optionally includes 1 or 2 additional heteroatoms selected from O, N, and S in the heterocycloalkyl ring;
  • each substituted group is independently substituted with one or more substituents independently selected from C 1 -C 4 alkyl, aryl, heteroaryl, aryl-C 1 -C 4 alkyl-, heteroaryl-C 1 -C 4 alkyl-, C 1 -C 4 haloalkyl, —OC 1 -C 4 alkyl, —OC 1 -C 4 alkylphenyl, —C 1 -C 4 alkyl-OH, —OC 1 -C 4 haloalkyl, halo, —OH, —NH 2 , —C 1 -C 4 alkyl-NH 2 , —N(C 1 -C 4 alkyl)(C 1 -C 4 alkyl), —NH(C 1 -C 4 alkyl), —N(C 1 -C 4 alkyl)(C 1 -C 4 alkylphenyl), —NH(C 1 -C 4 alkyl), —N(C 1 -
  • Aryl encompasses: 5- and 6-membered carbocyclic aromatic rings, for example, benzene; bicyclic ring systems wherein at least one ring is carbocyclic and aromatic, for example, naphthalene, indane, and tetralin; and tricyclic ring systems wherein at least one ring is carbocyclic and aromatic, for example, fluorene.
  • aryl includes 5- and 6-membered carbocyclic aromatic rings fused to a 5- to 7-membered heterocycloalkyl ring containing 1 or more heteroatoms chosen from N, O, and S.
  • bicyclic ring systems wherein only one of the rings is a carbocyclic aromatic ring, the point of attachment may be at the carbocyclic aromatic ring or the heterocycloalkyl ring.
  • Bivalent radicals formed from substituted benzene derivatives and having the free valences at ring atoms are named as substituted phenylene radicals.
  • Bivalent radicals derived from univalent polycyclic hydrocarbon radicals whose names end in “-yl” by removal of one hydrogen atom from the carbon atom with the free valence are named by adding “-idene” to the name of the corresponding univalent radical, e.g., a naphthyl group with two points of attachment is termed naphthylidene.
  • Aryl does not encompass or overlap in any way with heteroaryl, separately defined below. Hence, if one or more carbocyclic aromatic rings is fused with a heterocycloalkyl aromatic ring, the resulting ring system is heteroaryl, not aryl, as defined herein.
  • aryloxy refers to the group —O-aryl.
  • arylalkyl or “aralkyl”, aryl and alkyl are as defined herein, and the point of attachment is on the alkyl group. This term encompasses, but is not limited to, benzyl, phenethyl, phenylvinyl, phenylallyl and the like.
  • halo includes fluoro, chloro, bromo, and iodo
  • halogen includes fluorine, chlorine, bromine, and iodine
  • Haloalkyl indicates alkyl as defined above having the specified number of carbon atoms, substituted with 1 or more halogen atoms, generally up to the maximum allowable number of halogen atoms.
  • haloalkyl include, but are not limited to, trifluoromethyl, difluoromethyl, 2-fluoroethyl, and penta-fluoroethyl.
  • Heteroaryl encompasses: 5- to 7-membered aromatic, monocyclic rings containing one or more, for example, from 1 to 4, or in certain embodiments, from 1 to 3, heteroatoms chosen from N, O, and S, with the remaining ring atoms being carbon; and bicyclic heterocycloalkyl rings containing one or more, for example, from 1 to 4, or in certain embodiments, from 1 to 3, heteroatoms chosen from N, O, and S, with the remaining ring atoms being carbon and wherein at least one heteroatom is present in an aromatic ring.
  • heteroaryl includes a 5- to 7-membered heterocycloalkyl, aromatic ring fused to a 5- to 7-membered cycloalkyl ring.
  • bicyclic heteroaryl ring systems wherein only one of the rings contains one or more heteroatoms, the point of attachment may be at the heteroaromatic ring or the cycloalkyl ring.
  • the total number of S and O atoms in the heteroaryl group exceeds 1, those heteroatoms are not adjacent to one another.
  • the total number of S and O atoms in the heteroaryl group is not more than 2.
  • the total number of S and O atoms in the aromatic heterocycle is not more than 1.
  • heteroaryl examples include, but are not limited to, systems (as numbered from the linkage position assigned priority 1), such as 2-pyridyl, 3-pyridyl, 4-pyridyl, 2,3-pyrazinyl, 3,4-pyrazinyl, 2,4-pyrimidinyl, 3,5-pyrimidinyl, 2,3-pyrazolinyl, 2,4-imidazolinyl, isoxazolinyl, oxazolinyl, thiazolinyl, thiadiazolinyl, tetrazolyl, thienyl, benzothiophenyl, furanyl, benzofuranyl, benzoimidazolinyl, indolinyl, pyrid
  • Bivalent radicals derived from univalent heteroaryl radicals whose names end in “-yl” by removal of one hydrogen atom from the atom with the free valence are named by adding “-idene” to the name of the corresponding univalent radical, e.g., a pyridyl group with two points of attachment is a pyridylidene.
  • Heteroaryl does not encompass or overlap with aryl as defined above.
  • heteroarylalkyl or “heteroaralkyl”, heteroaryl and alkyl are as defined herein, and the point of attachment is on the alkyl group. This term encompasses, but is not limited to, pyridylmethyl, thiophenylmethyl, and (pyrrolyl)1-ethyl.
  • heterocycloalkyl is meant a cycloalkyl residue in which one to four of the carbon atoms are replaced by a heteroatom such as oxygen, nitrogen or sulfur.
  • Suitable heterocycloalkyl groups include, for example (as numbered from the linkage position assigned priority 1), 2-pyrrolinyl, 2,4-imidazolidinyl, 2,3-pyrazolidinyl, 2-piperidyl, 3-piperidyl, 4-piperidyl, and 2,5-piperzinyl.
  • Morpholinyl groups are also contemplated, including 2-morpholinyl and 3-morpholinyl (numbered wherein the oxygen is assigned priority 1).
  • modulation refers to a change in myosin or sarcomere activity as a direct or indirect response to the presence of at least one chemical entity described herein, relative to the activity of the myosin or sarcomere in the absence of the compound.
  • the change may be an increase in activity or a decrease in activity, and may be due to the direct interaction of the compound with myosin or the sarcomere, or due to the interaction of the compound with one or more other factors that in turn affect myosin or sarcomere activity.
  • sulfanyl includes the groups: —S-(optionally substituted alkyl), —S-(optionally substituted aryl), —S-(optionally substituted heteroaryl), and —S-(optionally substituted heterocycloalkyl).
  • sulfanyl includes the group C 1 -C 6 alkylsulfanyl.
  • sulfinyl includes the groups: —S(O)—H, —S(O)-(optionally substituted alkyl), —S(O)-optionally substituted aryl), —S(O)-optionally substituted heteroaryl), —S(O)-(optionally substituted heterocycloalkyl); and —S(O)-(optionally substituted amino).
  • sulfonyl includes the groups: —S(O 2 )—H, —S(O 2 )-(optionally substituted alkyl), —S(O 2 )-optionally substituted aryl), —S(O 2 )-optionally substituted heteroaryl), —S(O 2 )-(optionally substituted heterocycloalkyl), —S(O 2 )-(optionally substituted alkoxy), —S(O 2 )-optionally substituted aryloxy), —S(O 2 )-optionally substituted heteroaryloxy), —S(O 2 )-(optionally substituted heterocycloalkyloxy); and —S(O 2 )-(optionally substituted amino).
  • substituted means that any one or more hydrogens on the designated atom or group is replaced with a selection from the indicated group, provided that the designated atom's normal valence is not exceeded.
  • a substituent is oxo (i.e., ⁇ O) then 2 hydrogens on the atom are replaced.
  • Combinations of substituents and/or variables are permissible only if such combinations result in stable compounds or useful synthetic intermediates.
  • a stable compound or stable structure is meant to imply a compound that is sufficiently robust to survive isolation from a reaction mixture, and subsequent formulation as an agent having at least practical utility.
  • substituents are named into the core structure. For example, it is to be understood that when (cycloalkyl)alkyl is listed as a possible substituent, the point of attachment of this substituent to the core structure is in the alkyl portion.
  • substituted alkyl, cycloalkyl, aryl, heterocycloalkyl, and heteroaryl refer respectively to alkyl, cycloalkyl, aryl, heterocycloalkyl, and heteroaryl wherein one or more (up to 5, such as up to 3) hydrogen atoms are replaced by a substituent independently chosen from:
  • R a is chosen from optionally substituted C 1 -C 6 alkyl, optionally substituted aryl, and optionally substituted heteroaryl;
  • R b is chosen from hydrogen, optionally substituted C 1 -C 6 alkyl, optionally substituted aryl, and optionally substituted heteroaryl;
  • R c is chosen from hydrogen and optionally substituted C 1 -C 4 alkyl; or
  • R b and R c taken together with the nitrogen to which they are bound, form an optionally substituted 5- to 7-membered nitrogen-containing heterocycloalkyl which optionally includes 1 or 2 additional heteroatoms selected from O, N, and S in the heterocycloalkyl ring;
  • each optionally substituted group is unsubstituted or independently substituted with one or more, such as one, two, or three, substituents independently selected from C 1 -C 4 alkyl, aryl, heteroaryl, aryl-C 1 -C 4 alkyl-, heteroaryl-C 1 -C 4 alkyl-, C 1 -C 4 haloalkyl-, —OC 1 -C 4 alkyl, —OC 1 -C 4 alkylphenyl, —C 1 -C 4 alkyl-OH, —OC 1 -C 4 haloalkyl, halo, —OH, —NH 2 , —C 1 -C 4 alkyl-NH 2 , —N(C 1 -C 4 alkyl)(C 1 -C 4 alkyl), —NH(C 1 -C 4 alkyl), —N(C 1 -C 4 alkyl)(C 1 -C 4 alkylphenyl), —
  • substituted cycloalkyl, aryl, heterocycloalkyl, and heteroaryl also include oxo ( ⁇ O) and oxide (—O—) substituents, for example N-oxides of nitrogen containing aryl groups, such as pyridine-1-oxide, or >S(O) and >S(O) 2 derivatives of sulfur containing groups.
  • substituted acyl refers to the groups (substituted alkyl)-C(O)—; (substituted cycloalkyl)-C(O)—; (substituted aryl)-C(O)—; (substituted heteroaryl)-C(O)—; and (substituted heterocycloalkyl)-C(O)—, wherein the group is attached to the parent structure through the carbonyl functionality and wherein substituted alkyl, cycloalkyl, aryl, heteroaryl, and heterocycloalkyl, refer respectively to alkyl, cycloalkyl, aryl, heteroaryl, and heterocycloalkyl wherein one or more (up to 5, such as up to 3) hydrogen atoms are replaced by a substituent independently chosen from:
  • R a is chosen from optionally substituted C 1 -C 6 alkyl, optionally substituted aryl, and optionally substituted heteroaryl;
  • R b is chosen from H, optionally substituted C 1 -C 6 alkyl, optionally substituted aryl, and optionally substituted heteroaryl;
  • R c is chosen from hydrogen and optionally substituted C 1 -C 4 alkyl; or
  • R b and R c taken together with the nitrogen to which they are bound, form an optionally substituted 5- to 7-membered nitrogen-containing heterocycloalkyl which optionally includes 1 or 2 additional heteroatoms selected from O, N, and S in the heterocycloalkyl ring;
  • each optionally substituted group is unsubstituted or independently substituted with one or more, such as one, two, or three, substituents independently selected from C 1 -C 4 alkyl, aryl, heteroaryl, aryl-C 1 -C 4 alkyl-, heteroaryl-C 1 -C 4 alkyl-, C 1 -C 4 haloalkyl-, —OC 1 -C 4 alkyl, —OC 1 -C 4 alkylphenyl, —C 1 -C 4 alkyl-OH, —OC 1 -C 4 haloalkyl, halo, —OH, —NH 2 , —C 1 -C 4 alkyl-NH 2 , —N(C 1 -C 4 alkyl)(C 1 -C 4 alkyl), —NH(C 1 -C 4 alkyl), —N(C 1 -C 4 alkyl)(C 1 -C 4 alkylphenyl), —
  • substituted alkoxy refers to alkoxy wherein the alkyl constituent is substituted (i.e., —O-(substituted alkyl)) wherein “substituted alkyl” refers to alkyl wherein one or more (up to 5, such as up to 3) hydrogen atoms are replaced by a substituent independently chosen from:
  • R a is chosen from optionally substituted C 1 -C 6 alkyl, optionally substituted aryl, and optionally substituted heteroaryl;
  • R b is chosen from H, optionally substituted C 1 -C 6 alkyl, optionally substituted aryl, and optionally substituted heteroaryl; and R c is chosen from hydrogen and optionally substituted C 1 -C 4 alkyl; where each optionally substituted group is unsubstituted or independently substituted with one or more, such as one, two, or three, substituents independently selected from C 1 -C 4 alkyl, aryl, heteroaryl, aryl-C 1 -C 4 alkyl-, heteroaryl-C 1 -C 4 alkyl-, C 1 -C 4 haloalkyl-, —OC 1 -C 4 alkyl, —OC 1 -C 4 alkylphenyl, —C 1 -C 4 alkyl-OH, —OC 1 -C 4 haloalkyl, halo, —OH, —NH 2 , —C 1 -C 4 alkyl-NH 2 , —N(C 1
  • a substituted alkoxy group is “polyalkoxy” or —O-(optionally substituted alkylene)-(optionally substituted alkoxy), and includes groups such as —OCH 2 CH 2 OCH 3 , and residues of glycol ethers such as polyethyleneglycol, and —O(CH 2 CH 2 O) x CH 3 , where x is an integer of 2-20, such as 2-10, and for example, 2-5.
  • Another substituted alkoxy group is hydroxyalkoxy or —OCH 2 (CH 2 ) y OH, where y is an integer of 1-10, such as 1-4.
  • substituted alkoxycarbonyl refers to the group (substituted alkyl)-O—C(O)— wherein the group is attached to the parent structure through the carbonyl functionality and wherein substituted refers to alkyl wherein one or more (up to 5, such as up to 3) hydrogen atoms are replaced by a substituent independently chosen from:
  • R a is chosen from optionally substituted C 1 -C 6 alkyl, optionally substituted aryl, and optionally substituted heteroaryl;
  • R b is chosen from H, optionally substituted C 1 -C 6 alkyl, optionally substituted aryl, and optionally substituted heteroaryl;
  • R c is chosen from hydrogen and optionally substituted C 1 -C 4 alkyl; or
  • R b and R c taken together with the nitrogen to which they are bound, form an optionally substituted 5- to 7-membered nitrogen-containing heterocycloalkyl which optionally includes 1 or 2 additional heteroatoms selected from O, N, and S in the heterocycloalkyl ring;
  • each optionally substituted group is unsubstituted or independently substituted with one or more, such as one, two, or three, substituents independently selected from C 1 -C 4 alkyl, aryl, heteroaryl, aryl-C 1 -C 4 alkyl-, heteroaryl-C 1 -C 4 alkyl-, C 1 -C 4 haloalkyl-, —OC 1 -C 4 alkyl, —OC 1 -C 4 alkylphenyl, —C 1 -C 4 alkyl-OH, —OC 1 -C 4 haloalkyl, halo, —OH, —NH 2 , —C 1 -C 4 alkyl-NH 2 , —N(C 1 -C 4 alkyl)(C 1 -C 4 alkyl), —NH(C 1 -C 4 alkyl), —N(C 1 -C 4 alkyl)(C 1 -C 4 alkylphenyl), —
  • substituted amino refers to the group —NHR d or —NR d R d where each R d is independently chosen from: optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted acyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted heterocycloalkyl, alkoxycarbonyl, sulfinyl and sulfonyl, wherein substituted alkyl, cycloalkyl, aryl, heterocycloalkyl, and heteroaryl refer respectively to alkyl, cycloalkyl, aryl, heterocycloalkyl, and heteroaryl wherein one or more (up to 5, such as up to 3) hydrogen atoms are replaced by a substituent independently chosen from:
  • R a is chosen from optionally substituted C 1 -C 6 alkyl, optionally substituted aryl, and optionally substituted heteroaryl;
  • R b is chosen from H, optionally substituted C 1 -C 6 alkyl, optionally substituted aryl, and optionally substituted heteroaryl;
  • R c is chosen from hydrogen and optionally substituted C 1 -C 4 alkyl; or
  • R b and R c taken together with the nitrogen to which they are bound, form an optionally substituted 5- to 7-membered nitrogen-containing heterocycloalkyl which optionally includes 1 or 2 additional heteroatoms selected from O, N, and S in the heterocycloalkyl ring;
  • each optionally substituted group is unsubstituted or independently substituted with one or more, such as one, two, or three, substituents independently selected from C 1 -C 4 alkyl, aryl, heteroaryl, aryl-C 1 -C 4 alkyl-, heteroaryl-C 1 -C 4 alkyl-, C 1 -C 4 haloalkyl-, —OC 1 -C 4 alkyl, —OC 1 -C 4 alkylphenyl, —C 1 -C 4 alkyl-OH, —OC 1 -C 4 haloalkyl, halo, —OH, —NH 2 , —C 1 -C 4 alkyl-NH 2 , —N(C 1 -C 4 alkyl)(C 1 -C 4 alkyl), —NH(C 1 -C 4 alkyl), —N(C 1 -C 4 alkyl)(C 1 -C 4 alkylphenyl), —
  • Compounds of Formula I include, but are not limited to, optical isomers of compounds of Formula I, racemates, and other mixtures thereof.
  • compounds of Formula I include Z- and E-forms (or cis- and trans-forms) of compounds with carbon-carbon double bonds.
  • the single enantiomers or diastereomers, i.e., optically active forms can be obtained by asymmetric synthesis or by resolution of the racemates. Resolution of the racemates can be accomplished, for example, by conventional methods such as crystallization in the presence of a resolving agent, or chromatography, using, for example a chiral high-pressure liquid chromatography (HPLC) column.
  • HPLC high-pressure liquid chromatography
  • Compounds of Formula 1 also include crystalline and amorphous forms of the compounds, including, for example, polymorphs, pseudopolymorphs, solvates, hydrates, unsolvated polymorphs (including anhydrates), conformational polymorphs, and amorphous forms of the compounds, as well as mixtures thereof.
  • Crystal form “Crystalline form,” “polymorph,” and “novel form” may be used interchangeably herein, and are meant to include all crystalline and amorphous forms of the compound, including, for example, polymorphs, pseudopolymorphs, solvates, hydrates, unsolvated polymorphs (including anhydrates), conformational polymorphs, and amorphous forms, as well as mixtures thereof, unless a particular crystalline or amorphous form is referred to.
  • Chemical entities of the present invention include, but are not limited to compounds of Formula I and all pharmaceutically acceptable forms thereof.
  • Pharmaceutically acceptable forms of the compounds recited herein include pharmaceutically acceptable salts, chelates, non-covalent complexes, prodrugs, and mixtures thereof.
  • the compounds described herein are in the form of pharmaceutically acceptable salts.
  • the terms “chemical entity” and “chemical entities” also encompass pharmaceutically acceptable salts, chelates, non-covalent complexes, prodrugs, and mixtures.
  • “Pharmaceutically acceptable salts” include, but are not limited to salts with inorganic acids, such as hydrochlorate, phosphate, diphosphate, hydrobromate, sulfate, sulfinate, nitrate, and like salts; as well as salts with an organic acid, such as malate, maleate, fumarate, tartrate, succinate, citrate, acetate, lactate, methanesulfonate, p-toluenesulfonate, 2-hydroxyethylsulfonate, benzoate, salicylate, stearate, and alkanoate such as acetate, HOOC—(CH 2 ), —COOH where n is 0-4, and like salts.
  • pharmaceutically acceptable cations include, but are not limited to sodium, potassium, calcium, aluminum, lithium, and ammonium.
  • the free base can be obtained by basifying a solution of the acid salt.
  • an addition salt particularly a pharmaceutically acceptable addition salt, may be produced by dissolving the free base in a suitable organic solvent and treating the solution with an acid, in accordance with conventional procedures for preparing acid addition salts from base compounds.
  • Those skilled in the art will recognize various synthetic methodologies that may be used to prepare non-toxic pharmaceutically acceptable addition salts.
  • prodrugs also fall within the scope of chemical entities, for example ester or amide derivatives of the compounds of Formula I.
  • the term “prodrugs” includes any compounds that become compounds of Formula I when administered to a patient, e.g., upon metabolic processing of the prodrug.
  • Examples of prodrugs include, but are not limited to, acetate, formate, and benzoate and like derivatives of functional groups (such as alcohol or amine groups) in the compounds of Formula I.
  • solvate refers to the chemical entity formed by the interaction of a solvent and a compound. Suitable solvates are pharmaceutically acceptable solvates, such as hydrates, including, for example, hemi-hydrates, monohydrates, dihydrates, trihydrates, etc.
  • chelate refers to the chemical entity formed by the coordination of a compound to a metal ion at two (or more) points.
  • non-covalent complex refers to the chemical entity formed by the interaction of a compound and another molecule wherein a covalent bond is not formed between the compound and the molecule.
  • complexation can occur through van der Waals interactions, hydrogen bonding, and electrostatic interactions (also called ionic bonding).
  • an “active agent” is used to indicate a chemical entity which has biological activity.
  • an “active agent” is a compound having pharmaceutical utility.
  • a therapeutically effective amount of a chemical entity of this invention means an amount effective, when administered to a human or non-human patient, to treat a disease, e.g., a therapeutically effective amount may be an amount sufficient to treat a disease or disorder responsive to myosin activation.
  • the therapeutically effective amount may be ascertained experimentally, for example by assaying blood concentration of the chemical entity, or theoretically, by calculating bioavailability.
  • significant is meant any detectable change that is statistically significant in a standard parametric test of statistical significance such as Student's T-test, where p ⁇ 0.05.
  • Patient refers to an animal, such as a mammal, for example a human, that has been or will be the object of treatment, observation or experiment.
  • the methods of the invention can be useful in both human therapy and veterinary applications.
  • the patient is a mammal, and in some embodiments the patient is human.
  • Treatment or “treating” means any treatment of a disease in a patient, including:
  • the compounds of Formula I can be named and numbered (e.g., using NamExpertTM available from Cheminnovation or the automatic naming feature of ChemDraw Utlra version 9.0 from Cambridge Soft Corporation) as described below.
  • the compound i.e., the compound according to Formula I where W, X, Y and Z are —C ⁇ , n is one, R 1 is substituted piperazinyl, R 2 is 6-methyl-pyridin-3-yl, R 18 is hydrogen, R 19 is hydrogen, R 3 is hydrogen, R 4 is hydrogen, R 5 is hydrogen, R 6 is hydrogen, R 7 is hydrogen and R 13 is hydrogen can be named methyl 4-[(3- ⁇ [(6-methyl-3-pyridyl)amino]carbonylamino ⁇ phenyl)methyl]piperazinecarboxylate.
  • the compound i.e., the compound according to Formula I where W, X, Y and Z are —C ⁇ , n is one, R 1 is substituted piperazinyl, R 2 is 6-methyl-pyridin-3-yl, R 18 is hydrogen, R 19 is hydrogen, R 3 is hydrogen, R 4 is hydrogen, R 5 is hydrogen, R 6 is hydrogen, R 7 is hydrogen and R 13 is fluoro can be named N- ⁇ 3-[(1S)-1-(4-acetylpiperazinyl)ethyl]-2-fluorophenyl ⁇ [(6-methyl(3-pyridyl))amino]carboxamide.
  • the compound i.e., the compound according to Formula I where W, X, Y and Z are —C ⁇ , n is one, R 1 is substituted piperazinyl, R 2 is 6-methyl-pyridin-3-yl, R 18 is hydrogen, R 19 is hydrogen, R 3 is hydrogen, R 4 is hydrogen, R 5 is hydrogen, R 6 is hydrogen, R 7 is hydrogen and R 13 is fluoro can be named [3-fluoro-5-(3-pyridin-3-yl-ureido)-benzyl]-methyl-carbamic acid methyl ester or methyl 4-[(2-fluoro-3- ⁇ [(6-methyl(3-pyridyl))amino]carbonylamino ⁇ phenyl)methyl]piperazinecarboxylate.
  • reaction times and conditions are intended to be approximate, e.g., taking place at about atmospheric pressure within a temperature range of about ⁇ 10° C. to about 110° C. over a period of about 1 to about 24 hours; reactions left to run overnight average a period of about 16 hours.
  • solvent each mean a solvent inert under the conditions of the reaction being described in conjunction therewith [including, for example, benzene, toluene, acetonitrile, tetrahydrofuran (“THF”), dimethylformamide (“DMF”), chloroform, methylene chloride (or dichloromethane), diethyl ether, methanol, pyridine and the like].
  • solvents used in the reactions of the present invention are inert organic solvents.
  • Isolation and purification of the chemical entities and intermediates described herein can be effected, if desired, by any suitable separation or purification procedure such as, for example, filtration, extraction, crystallization, column chromatography, thin-layer chromatography or thick-layer chromatography, or a combination of these procedures.
  • suitable separation and isolation procedures can be had by reference to the examples hereinbelow. However, other equivalent separation or isolation procedures can also be used.
  • the (R)- and (S)-isomers may be resolved by methods known to those skilled in the art, for example by formation of diastereoisomeric salts or complexes which may be separated, for example, by crystallization; via formation of diastereoisomeric derivatives which may be separated, for example, by cyrstallization, gas-liquid or liquid chromatography; selective reaction of one enantiomer with an enantiomer-specific reagent, for example enzymatic oxidation or reduction, followed by separation of the modified and unmodified enantiomers; or gas-liquid or liquid chromatography in a chiral environment, for example on a chiral support, such as silica with a bound chiral ligand or in the presence of a chiral solvent.
  • a specific enantiomer may be synthesized by asymmetric synthesis using optically active reagents, substrates, catalysts or solvents, or by converting one enantiomer to the other by
  • Reaction Scheme 2 illustrates an alternative synthesis of compounds of Formula 105.
  • the isocyanate of Formula 201a can be formed and isolated independently from either corresponding amine (i.e., R b —NH 2 ) using phosgene or a phosgene equivalent or from the corresponding carboxylic acid (i.e., R b —COOH) using a Curtius or Hoffman rearrangement.
  • the compound in Formula 210b wherein X is equal to a leaving group such as p-nitrophenol can be made in situ (e.g., Synthesis reference here.).
  • a mixture of compounds of Formula 101 and 201 in an aprotic solvent such as dichloromethane or tetrahydrofuran from ⁇ 40° C. to 110° C. is allowed to stir from 1 to 15 hr.
  • the product, a compound of Formula 105 is isolated and purified.
  • the benzylic alcohol of Formula 301 is converted to a leaving group (“Lv” such as halo, mesylate or triflate) to form 302 using commonly employed synthetic methodology (for example see: “Comprehensive Organic Transformation” LaRock, Richard C., 1989, VCH publishers, Inc. p. 353-365, which is incorporated herein by reference).
  • a mixture of a compound of Formula 302 and amine of formula HNR 8 R 9 in an aprotic solvent such as dichloromethane or DMF from ⁇ 40° C. to 110° C. is allowed to stir from 1 to 15 hr.
  • the product, a compound of Formula 202, is isolated and purified.
  • the benzylic alcohol of Formula 301 is oxidized to the aldehyde of Formula 303 using commonly employed synthetic methodology (for example see: “Comprehensive Organic Transformation” LaRock, Richard C., 1989, VCH publishers, Inc. p. 604-615, which is incorporated herein by reference).
  • a mixture of a compound of Formula 303 and amine of formula HNR 8 R 9 in a solvent such as dichloromethane with a reducing agent such as triacetoxyborohidride with or without an acid such as acetic acid from ⁇ 40° C. to 110° C. is allowed to stir for between 1 to 36 hr.
  • the product, a compound of Formula 202, is isolated and purified.
  • the carboxylic acid of Formula 304 is coupled to an amine to using commonly employed synthetic methodology (for example see: “Comprehensive Organic Transformation” LaRock, Richard C., 1989, VCH publishers, Inc. pp. 972-76, which is incorporated herein by reference) to form amide 305.
  • Amide 305 is reduced to a compound of Formula 202 using commonly employed synthetic methodology such as treating 305 with borane-dimethylsulfide in THF from ⁇ 40° C. to reflux for 1 to 96 hr.
  • a compound of Formula 202 wherein Q is bromo, chloro, nitro, amino, or a protected amino can be conferred to a compound of Formula 101 using commonly employed synthetic methodology.
  • Q is cyano, —CR 6 R 7 -bromo, —CR 6 R 7 -chloro, —CR 6 R 7 -nitro, —CR 6 R 7 -cyano, —CR 6 R 7 -amino, or a protected —CR 6 R 7 -amino can be conferred to a compound of Formula 101 using commonly employed synthetic methodology.
  • Q when Q is nitro, it may be reduced to the corresponding amine using hydrogen with a Pd/C catalyst.
  • Step 1 to a solution of a compound of Formula 400 in NMP is added an excess (such as about at least 2 equivalents) of sodium cyanide and an excess (such as at least 1 equivalent, for example, 1.35 equivalents) of nickel(II) bromide. Additional NMP is added, and the solution is gently warmed to about 200° C. and stirred for about 4 days.
  • the product, a compound of Formula 401 is isolated and optionally purified.
  • Step 3 to a solution of a mixture of compounds of Formula 402A and 402B in an inert solvent such as THF is added an excess (such as about 1.05 equivalents) of a compound of formula R 1 —H wherein R 1 is optionally substituted amino or optionally substituted heterocycloalkyl and an excess (such as about 1.5 equivalents) of a reducing agent such as triacetoxyborohydride portionwise over ⁇ 40 min, maintaining an internal reaction temperature below about 45° C.
  • a compound of Formula 403 is isolated and optionally purified.
  • Step 4 to a solution of a compound of Formula 403 in a solvent such as acetone is added about an equivalent of a compound of formula R 2 —NCO dropwise. The reaction is stirred for about one hour and optionally, is warmed to reflux. The product, a compound of Formula 405, is isolated and optionally purified.
  • a racemic mixture is optionally placed on a chromatography column and separated into (R)- and (S)-enantiomers.
  • a compound of Formula I is optionally contacted with a pharmaceutically acceptable acid to form the corresponding acid addition salt.
  • a pharmaceutically acceptable acid addition salt of Formula I is optionally contacted with a base to form the corresponding free base of Formula I.
  • Certain embodiments of the invention include or employ the compounds of Formula I having the following combinations and permutations of substituent groups. These are presented to support other combinations and permutations of substituent groups, which for the sake of brevity have not been specifically described herein, but should be appreciated as encompassed within the teachings of the present disclosure.
  • the invention relates to at least one chemical entity chosen from compounds of Formula I
  • one of W, X, Y and Z is —N ⁇ .
  • W, X, Y and Z are —C ⁇ .
  • R 1 is —NR 8 R 9 wherein R 8 is lower alkyl and R 9 is optionally substituted alkyl, optionally substituted heterocycloalkyl, optionally substituted acyl or optionally substituted sulfonyl.
  • R 8 is methyl or ethyl.
  • R 9 is —(CO)OR 10 wherein R 10 is hydrogen or lower alkyl (such as methyl or ethyl). In certain embodiments, R 10 is hydrogen, methyl or ethyl.
  • R 9 is —(SO 2 )—R 17 wherein R 17 is lower alkyl or —NR 11 R 12 wherein R 11 and R 12 are independently hydrogen or lower alkyl (such as methyl or ethyl).
  • R 9 is alkyl optionally substituted with optionally substituted amino.
  • R 9 is optionally substituted heterocycloalkyl.
  • R 1 is selected from optionally substituted piperazinyl; optionally substituted 1,1-dioxo-1 ⁇ 6 -[1,2,5]thiadiazolidin-2-yl; optionally substituted 3-oxo-tetrahydro-pyrrolo[1,2-c]oxazol-6-yl, optionally substituted 2-oxo-imidazolidin-1-yl; optionally substituted morpholinyl; optionally substituted 1,1-dioxo-1 ⁇ 6 -thiomorpholin-4-yl; optionally substituted pyrrolidin-1-yl; optionally substituted piperidine-1-yl, optionally substituted azepanyl, optionally substituted 1,4-diazepanyl, optionally substituted 3-oxo-tetrahydro-1H-oxazolo[3,4-a]pyrazin-3(5H)-one, optionally substituted 5,6,7,8-tetrahydro-[1,2,4]triazolo
  • R 1 is substituted piperazinyl; optionally substituted piperidine-1-yl, optionally substituted pyrrolidin-1-yl, optionally substituted azepanyl or optionally substituted 1,4-diazepanyl In certain embodiments, R 1 is optionally substituted piperazinyl. In certain embodiments, R 1 is optionally substituted piperidinyl.
  • R 2 is optionally substituted aryl or optionally substituted heteroaryl.
  • R 2 is optionally substituted phenyl, optionally substituted naphthyl, optionally substituted pyrrolyl, optionally substituted thiazolyl, optionally substituted isooxazolyl, optionally substituted pyrazolyl, optionally substituted oxazolyl, optionally substituted 1,3,4-oxadiazolyl, optionally substituted pyridinyl, optionally substituted pyrazinyl, optionally substituted pyrimidinyl and optionally substituted pyridazinyl.
  • R 2 is chosen from pyridin-3-yl, pyridin-4-yl, pyridin-1-oxide, phenyl, pyrimidin-5-yl, and isoxazol-3-yl, wherein each pyridin-3-yl, pyridin-4-yl, pyridin-1-oxide, phenyl, pyrimidin-5-yl, and isoxazol-3-yl is optionally substituted with lower alkyl, lower alkoxy, halo (such as fluoro or chloro), cyano or acetyl.
  • R 2 is pyridin-3-yl, which is optionally substituted with lower alkyl; R 2 is pyridin-4-yl which is optionally substituted with lower alkyl; phenyl which is optionally substituted with halo; optionally substituted pyrimidin-5-yl; or optionally substituted isoxazol-3-yl.
  • R 2 is pyridin-3-yl; 6-methyl-pyridin-3-yl; 6-cyano-pyridin-3-yl; 6-acetyl-pyridin-3-yl; 6-trifluoromethyl-pyridin-3-yl; pyridin-4-yl; 2-methyl-pyridin-4-yl; phenyl; 4-fluorophenyl; 4-chlorophenyl; or 5-methyl-isoxazol-3-yl
  • n is one. In certain embodiments, n is two. In certain embodiments, n is three
  • R 6 and R 7 are independently hydrogen, aminocarbonyl, alkoxycarbonyl, optionally substituted alkyl or optionally substituted alkoxy, or R 6 and R 7 , taken together with the carbon to which they are attached, form an optionally substituted 3- to 7-membered ring which optionally incorporates one or two additional heteroatoms, selected from N, O, and S in the ring.
  • R 6 and R 7 are independently hydrogen or methyl. In certain embodiments, R 6 and R 7 are independently hydrogen. In certain embodiments, R 6 and R 7 are independently hydrogen or methyl. In certain embodiments, n is one and R 6 and R 7 are independently hydrogen or methyl. In certain embodiments, n is one and R 6 is methyl and R 7 is hydrogen. In certain embodiments, n is two and each R 6 and R 7 is hydrogen. In certain embodiments, n is three and each R 6 and R 7 is hydrogen.-methyl-isoxazol-3-yl.
  • R 18 and R 19 are independently selected from hydrogen, methyl and ethyl. In some embodiments, each of R 18 and R 19 are independently selected from hydrogen and methyl. In some embodiments, each of R 18 and R 19 are hydrogen. In some embodiments, at least one of R 18 and R 19 is not hydrogen.
  • R 3 is hydrogen, cyano, lower alkyl (such as methyl or ethyl) or halo (such as chloro or fluoro). In certain embodiments, R 3 is hydrogen or fluoro.
  • R4 is hydrogen, pyridinyl, halo or optionally substituted lower alkyl. In certain embodiments, R 4 is hydrogen, pyridinyl, trifluoromethyl, or fluoro.
  • R 5 is hydrogen, pyridinyl, halo or optionally substituted lower alky. In certain embodiments, R 5 is hydrogen, chloro, fluoro, methyl, or trifluoromethyl.
  • R 13 is hydrogen, lower alkyl (such as methyl or ethyl), hydroxyl, or halo. hydrogen, halogen, hydroxyl, or lower alkyl In certain embodiments, R 13 is hydrogen or fluoro.
  • R 3 , R 4 , R 5 , and R 13 are hydrogen. In certain embodiments, one of R 3 , R 4 , R 5 , and R 13 is not hydrogen.
  • one of R 3 , R 4 , R 5 , and R 13 is halo, optionally substituted lower alkyl, or cyano and the others are hydrogen. In certain embodiments one of R 3 , R 4 , R 5 , and R 13 is halo, methyl or cyano and the others are hydrogen. In certain embodiments two of R 3 , R 4 , R 5 , and R 13 are halo or cyano and the others are hydrogen.
  • one of R 3 , R 4 , R 5 , and R 13 is fluoro and the others are hydrogen. In certain embodiments, one of R 3 , R 4 , R 5 , and R 13 is cyano and the others are hydrogen. In certain embodiments, two of R 3 , R 4 , R 5 , and R 13 are not hydrogen. In certain embodiments, two of R 3 , R 4 , R 5 , and R 13 are halo and the others are hydrogen. In certain embodiments, two of R 3 , R 4 , R 5 , and R 13 are fluoro and the others are hydrogen.
  • the chemical entity of Formula I is chosen from a chemical entity of Formula Ib
  • R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R g , R 13 , and n are as described for compounds of Formula 1.
  • the chemical entity of Formula I is chosen from a chemical entity of Formula Ic wherein R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 13 , and n are as described for compounds of Formula 1 and wherein
  • T 1 is —CHR 14 —, —NR 15 CHR 14 —, —CHR 14 NR 5 —, or —CHR 14 CHR 14 —;
  • each R 14 and R 15 is independently selected from hydrogen, optionally substituted alkyl, optionally substituted acyl, carboxy, optionally substituted lower alkoxycarbonyl, optionally substituted aminocarbonyl, optionally substituted alkoxy, optionally substituted cycloalkoxy, optionally substituted sulfonyl, optionally substituted amino, optionally substituted cycloalkyl, and optionally substituted heterocycloalkyl.
  • T 1 is —NR 15 CHR 14 —, i.e., R 1 is a piperazinyl ring substituted with R 14 and R 15 . In certain embodiments, T 1 is —CHR 14 CHR 14 —.
  • R 14 and R 15 are independently selected from hydrogen, methyl, carboxy, methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, isopropoxycarbonyl, tert-butoxycarbonyl, benzyloxy carbonyl, N,N-dimethylcarbamoyl, acetyl, propionyl, isobutyryl, propoxy, methoxy, cyclohexylmethyloxy, methylsulfonyl, ethylsulfonyl, n-propylsulfonyl, isopropylsulfonyl, azetidin-1-ylsulfonyl, dimethylamino sulfonyl, methanesulfonamido, N-methyl-methanesulfonamido, ethanesulfonamido, N-methyl-ethanesulfonamido, N-methoxycarbonyl
  • R 14 is chosen from hydrogen, methyl, and methoxymethyl.
  • R 15 is chosen from optionally substituted acyl, optionally substituted lower alkoxycarbonyl, and optionally substituted sulfonyl. In certain embodiments, R 15 is chosen from lower alkoxycarbonyl, lower alkylsulfonyl, and optionally substituted aminosulfonyl.
  • the chemical entity of Formula I is a chemical entity of Formula Id: wherein T 1 , R 3 , R 4 , R 5 , R 6 , R 7 , R 13 , and n are as described for compounds of Formula 1c and wherein T 2 is —C ⁇ or —N ⁇ ; and R 16 is selected from hydrogen, halo, cyano, optionally substituted acyl, optionally substituted alkyl, and optionally substituted alkoxy.
  • T 2 is —C ⁇ .
  • T 2 is —N ⁇ .
  • R 16 is selected from hydrogen, methyl, fluoro, cyano, methoxy, and acetyl. In certain embodiments, R 16 is hydrogen or methyl.
  • the compound of Formula I is:
  • the compound of Formula I is chosen from
  • the chemical entities described herein are selective for and modulate the cardiac sarcomere, and are useful to bind to and/or potentiate the activity of cardiac myosin, increasing the rate at which myosin hydrolyzes ATP.
  • modulate means either increasing or decreasing myosin activity, whereas “potentiate” means to increase activity. It has also been determined in testing representative compounds of the invention, that their administration can also increase the contractile force in cardiac muscle fiber.
  • the chemical entities, pharmaceutical compositions and methods of the invention are used to treat heart disease, including but not limited to: acute (or decompensated) congestive heart failure, and chronic congestive heart failure; particularly diseases associated with systolic heart dysfunction. Additional therapeutic utilities include administration to stabilize cardiac function in patients awaiting a heart transplant, and to assist a stopped or slowed heart in resuming normal function following use of a bypass pump.
  • the chemical entities, pharmaceutical compositions, and methods can also be used to increase extent but not velocity of cardiac contraction, to increase extent of contraction but not ⁇ dP/dt, to modulate the cardiac sarcomere, or to potentiate cardiac myosin.
  • ATP hydrolysis is employed by myosin in the sarcomere to produce force. Therefore, an increase in ATP hydrolysis would correspond to an increase in the force or velocity of muscle contraction. In the presence of actin, myosin ATPase activity is stimulated >100 fold. Thus, ATP hydrolysis not only measures myosin enzymatic activity but also its interaction with the actin filament.
  • a compound that modulates the cardiac sarcomere can be identified by an increase or decrease in the rate of ATP hydrolysis by myosin, in certain embodiments, exhibiting a 1.4 fold increase at concentrations less than 10 ⁇ M (such as less than 1 ⁇ M). Assays for such activity can employ myosin from a human source, although myosin from other organisms is usually used. Systems that model the regulatory role of calcium in myosin binding to the decorated thin filament are also used.
  • a biochemically functional sarcomere preparation can be used to determine in vitro ATPase activity, for example, as described in U.S. Ser. No. 09/539,164, filed Mar. 29, 2000.
  • the functional biochemical behavior of the sarcomere including calcium sensitivity of ATPase hydrolysis, can be reconstituted by combining its purified individual components (particularly including its regulatory components and myosin).
  • Another functional preparation is the in vitro motility assay. It can be performed by adding test compound to a myosin-bound slide and observing the velocity of actin filaments sliding over the myosin covered glass surface (Kron S J. (1991) Methods Enzymol. 196:399-416).
  • the in vitro rate of ATP hydrolysis correlates to myosin potentiating activity, which can be determined by monitoring the production of either ADP or phosphate, for example as described in Ser. No. 09/314,464, filed May 18, 1999.
  • ADP production can also be monitored by coupling the ADP production to NADH oxidation (using the enzymes pyruvate kinase and lactate dehydrogenase) and monitoring the NADH level either by absorbance or fluorescence (Greengard, P., Nature 178 (Part 4534): 632-634 (1956); Mol Pharmacol 1970 January; 6(1):31-40).
  • Phosphate production can be monitored using purine nucleoside phosphorylase to couple phosphate production to the cleavage of a purine analog, which results in either a change in absorbance ( Proc Natl Acad Sci USA 1992 Jun. 1; 89(11):4884-7) or fluorescence ( Biochem J 1990 Mar. 1; 266(2):611-4). While a single measurement can be employed, generally multiple measurements of the same sample at different times will be taken to determine the absolute rate of the protein activity; such measurements have higher specificity particularly in the presence of test compounds that have similar absorbance or fluorescence properties with those of the enzymatic readout.
  • Test compounds can be assayed in a highly parallel fashion using multiwell plates by placing the compounds either individually in wells or testing them in mixtures. Assay components including the target protein complex, coupling enzymes and substrates, and ATP can then be added to the wells and the absorbance or fluorescence of each well of the plate can be measured with a plate reader.
  • a method uses a 384 well plate format and a 25 mL reaction volume.
  • a pyruvate kinase/lactate dehydrogenase coupled enzyme system (Huang T G and hackney D D. (1994) J Biol Chem 269(23):16493-16501) is used to measure the rate of ATP hydrolysis in each well.
  • the assay components are added in buffers and reagents. Since the methods outlined herein allow kinetic measurements, incubation periods are optimized to give adequate detection signals over the background. The assay is done in real time giving the kinetics of ATP hydrolysis, which increases the signal to noise ratio of the assay.
  • Modulation of cardiac muscle fiber ATPase and/or contractile force can also be measured using detergent permeabilized cardiac fibers (also referred to as skinned cardiac fibers) or myofibrils (subcellular muscle fragments), for example, as described by Haikala H, et al (1995) J Cardiovasc Pharmacol 25(5):794-801. Skinned cardiac fibers retain their intrinsic sarcomeric organization, but do not retain all aspects of cellular calcium cycling, this model offers two advantages: first, the cellular membrane is not a barrier to compound penetration, and second, calcium concentration is controlled. Therefore, any increase in ATPase or contractile force is a direct measure of the test compound's effect on sarcomeric proteins.
  • ATPase measurements are made using methods as described above. Tension measurements are made by mounting one end of the muscle fiber to a stationary post and the other end to a transducer that can measure force. After stretching the fiber to remove slack, the force transducer records increased tension as the fiber begins to contract. This measurement is called the isometric tension, since the fiber is not allowed to shorten.
  • Activation of the permeabilized muscle fiber is accomplished by placing it in a buffered calcium solution, followed by addition of test compound or control. When tested in this manner, chemical entities described herein caused an increase in force at calcium concentrations associated with physiologic contractile activity, but very little augmentation of force in relaxing buffer at low calcium concentrations or in the absence of calcium (the EGTA data point).
  • Selectivity for the cardiac sarcomere and cardiac myosin can be determined by substituting non-cardiac sarcomere components and myosin in one or more of the above-described assays and comparing the results obtained against those obtained using the cardiac equivalents.
  • a chemical entity's ability to increase observed ATPase rate in an in vitro reconstituted sarcomere assay or myofibril could result from the increased turnover rate of S1-myosin or, alternatively, increased sensitivity of a decorated actin filament to Ca ++ -activation.
  • the effect of the chemical entity on ATPase activity of S1 with undecorated actin filaments is initially measured. If an increase of activity is observed, the chemical entity's effect on the Ca-responsive regulatory apparatus could be disproved.
  • a second, more sensitive assay can be employed to identify chemical entities whose activating effect on S1-myosin is enhanced in the presence of a decorated actin (compared to pure actin filaments). In this second assay activities of cardiac-S1 and skeletal-S1 on cardiac and skeletal regulated actin filaments (in all 4 permutations) are compared.
  • Chemical entities with cellular activity can then be assessed in whole organ models, such as such as the Isolated Heart (Langendorff) model of cardiac function, in vivo using echocardiography or invasive hemodynamic measures, and in animal-based heart failure models, such as the Rat Left Coronary Artery Occlusion model.
  • whole organ models such as such as the Isolated Heart (Langendorff) model of cardiac function
  • echocardiography or invasive hemodynamic measures such as the Rat Left Coronary Artery Occlusion model.
  • Rat Left Coronary Artery Occlusion model such as the Rat Left Coronary Artery Occlusion model.
  • a daily dose is from about 0.05 to 100 mg/kg of body weight; in certain embodiments, about 0.10 to 10.0 mg/kg of body weight, and in certain embodiments, about 0.15 to 1.0 mg/kg of body weight.
  • the dosage range would be about 3.5 to 7000 mg per day; in certain embodiments, about 7.0 to 700.0 mg per day, and in certain embodiments, about 10.0 to 100.0 mg per day.
  • the amount of chemical entity administered will, of course, be dependent on the subject and disease state being treated, the severity of the affliction, the manner and schedule of administration and the judgment of the prescribing physician; for example, a likely dose range for oral administration would be about 70 to 700 mg per day, whereas for intravenous administration a likely dose range would be about 70 to 700 mg per day depending on compound pharmacokinetics.
  • Administration of the chemical entities described herein can be via any of the accepted modes of administration for agents that serve similar utilities including, but not limited to, orally, sublingually, subcutaneously, intravenously, intranasally, topically, transdermally, intraperitoneally, intramuscularly, intrapulmonarilly, vaginally, rectally, or intraocularly.
  • Oral and parenteral administration are customary in treating the indications that are the subject of the present invention.
  • compositions include solid, semi-solid, liquid and aerosol dosage forms, such as, e.g., tablets, capsules, powders, liquids, suspensions, suppositories, aerosols or the like.
  • the chemical entities can also be administered in sustained or controlled release dosage forms, including depot injections, osmotic pumps, pills, transdermal (including electrotransport) patches, and the like, for prolonged and/or timed, pulsed administration at a predetermined rate.
  • the compositions are provided in unit dosage forms suitable for single administration of a precise dose.
  • the chemical entities described herein can be administered either alone or more typically in combination with a conventional pharmaceutical carrier, excipient or the like (e.g., mannitol, lactose, starch, magnesium stearate, sodium saccharine, talcum, cellulose, sodium crosscarmellose, glucose, gelatin, sucrose, magnesium carbonate, and the like).
  • a conventional pharmaceutical carrier e.g., mannitol, lactose, starch, magnesium stearate, sodium saccharine, talcum, cellulose, sodium crosscarmellose, glucose, gelatin, sucrose, magnesium carbonate, and the like.
  • the pharmaceutical composition can also contain minor amounts of nontoxic auxiliary substances such as wetting agents, emulsifying agents, solubilizing agents, pH buffering agents and the like (e.g., sodium acetate, sodium citrate, cyclodextrine derivatives, sorbitan monolaurate, triethanolamine acetate, triethanolamine oleate, and the like).
  • the pharmaceutical composition will contain about 0.005% to 95%; in certain embodiments, about 0.5% to 50% by weight of a chemical entity.
  • Actual methods of preparing such dosage forms are known, or will be apparent, to those skilled in this art; for example, see Remington's Pharmaceutical Sciences, Mack Publishing Company, Easton, Pa.
  • Suitable additional active agents include, for example: therapies that retard the progression of heart failure by down-regulating neurohormonal stimulation of the heart and attempt to prevent cardiac remodeling (e.g., ACE inhibitors or O-blockers); therapies that improve cardiac function by stimulating cardiac contractility (e.g., positive inotropic agents, such as the O-adrenergic agonist dobutamine or the phosphodiesterase inhibitor milrinone); and therapies that reduce cardiac preload (e.g., diuretics, such as furosemide).
  • therapies that retard the progression of heart failure by down-regulating neurohormonal stimulation of the heart and attempt to prevent cardiac remodeling e.g., ACE inhibitors or O-blockers
  • therapies that improve cardiac function by stimulating cardiac contractility e.g., positive inotropic agents, such as the O-adrenergic agonist dobutamine or the phosphodiesterase inhibitor milrinone
  • therapies that reduce cardiac preload e.g., diuretics, such as furosemide
  • Suitable additional active agents include vasodilators, digitoxin, anticoagulants, mineralocorticoid antagonists, angiotensin receptor blockers, nitroglycerin, other inotropes, and any other therapy used in the treatment of heart failure.
  • the compositions will take the form of a pill or tablet and thus the composition will contain, along with the active ingredient, a diluent such as lactose, sucrose, dicalcium phosphate, or the like; a lubricant such as magnesium stearate or the like; and a binder such as starch, gum acacia, polyvinylpyrrolidine, gelatin, cellulose, cellulose derivatives or the like.
  • a powder, marume, solution or suspension e.g., in propylene carbonate, vegetable oils or triglycerides
  • a gelatin capsule e.g., in propylene carbonate, vegetable oils or triglycerides
  • Liquid pharmaceutically administrable compositions can, for example, be prepared by dissolving, dispersing, etc. at least one chemical entity and optional pharmaceutical adjuvants in a carrier (e.g., water, saline, aqueous dextrose, glycerol, glycols, ethanol or the like) to form a solution or suspension.
  • a carrier e.g., water, saline, aqueous dextrose, glycerol, glycols, ethanol or the like
  • injectables can be prepared in conventional forms, either as liquid solutions or suspensions, as emulsions, or in solid forms suitable for dissolution or suspension in liquid prior to injection.
  • the percentage of chemical entities contained in such parenteral compositions is highly dependent on the specific nature thereof, as well as the activity of the chemical entities and the needs of the subject.
  • composition will comprise 0.2-2% of the active agent in solution.
  • compositions of the chemical entities described herein may also be administered to the respiratory tract as an aerosol or solution for a nebulizer, or as a microfine powder for insufflation, alone or in combination with an inert carrier such as lactose.
  • the particles of the pharmaceutical composition have diameters of less than 50 microns, in certain embodiments, less than 10 microns.
  • myosin is bound to a support and a compound of the invention is added to the assay.
  • the chemical entities described herein can be bound to the support and the myosin added.
  • Classes of compounds among which novel binding agents may be sought include specific antibodies, non-natural binding agents identified in screens of chemical libraries, peptide analogs, etc. Of particular interest are screening assays for candidate agents that have a low toxicity for human cells.
  • assays may be used for this purpose, including labeled in vitro protein-protein binding assays, electrophoretic mobility shift assays, immunoassays for protein binding, functional assays (phosphorylation assays, etc.) and the like. See, e.g., U.S. Pat. No. 6,495,337, incorporated herein by reference.
  • a round bottom flask was charged with 1 eq of 3-chloro-2-fluoroaniline (3A), 1-methyl-2-pyrrolidinone (about 1.5 M 3A in NMP), 2.2 eq of sodium cyanide, and 1.35 eq of nickel(II) bromide at RT under N 2 .
  • the concentration was halved by the introduction of additional NMP under N 2 and the solution was gently warmed to 200 ⁇ 5° C. and stirred for 4 days under N 2 .
  • the reaction mixture was allowed to cool to room temperature.
  • the reaction mixture was diluted with 30 volumes of tert-butyl methyl ether (MTBE) and filtered through celite. The celite pad was then rinsed with 10 volumes of MTBE.
  • MTBE tert-butyl methyl ether
  • a 3-neck round bottom flask was purged with nitrogen for at least ten minutes.
  • the flask was charged with 1.0 eq of 4A, CH 2 Cl 2 (about 1.2 M 4A in DCM), and about 1.1 eq of DIPEA.
  • the flask was then cooled to 10 ⁇ 5° C. While the flask was cooling, 1.2 eq of methyl piperazine-1-carboxylate was taken up in CH 2 Cl 2 (about 5.3 M).
  • the material did not go into solution, so an additional 0.05 eq of DIPEA in DCM (about 0.3 M) was added.
  • the material did not go into solution, and the suspension was then added dropwise over 50 min, maintaining an internal reaction temperature ⁇ 30° C.
  • a high-pressure reactor was charged with a slurry of 25 wt % of Pt/C relative to 4B in 8 volumes of THF (relative to Pt/C) followed by a slurry of 1.5 eq K 2 CO 3 , in THF (about 0.67 M), then a solution of 1.0 eq of 4B in THF (about 0.47 M).
  • the reactor jacket was set to 10° C., and the reactor was charged with 50 psi H 2 while maintaining an internal reaction temperature ⁇ 30° C. The reaction was stirred for 9 hours, 45 min then stirred for another 3.5 hours. The reaction was filtered.
  • PdCl 2 (PPh 3 ) 2 (0.05 eq) was added to a mixture of 1.0 eq of 6A, 1.0 eq of tributyl(1-ethoxyvinyl)-tin in dioxane (about 0.4 M) under N 2 .
  • the mixture was heated at 95° C. for 4 hours under N 2 .
  • a mixture of 1:1 v/v EtOAc/(1M K) solution was added to the reaction mixture and the mixture was stirred for 1 hour. The precipitate was filtered off. The organic layer was dried and concentrated to give 6B that was used without further purification.
  • a Parr glass liner was charged with tert-butyl 4-(3-nitrophenethyl)piper-azine-1-carboxylate (7C, 1.0 eq) and methanol (about 0.2 M 7C in MeOH). To this solution was added a slurry of 12.5 wt eq of 10% Pd/C in methanol. The reaction mixture was sealed in a Parr hydrogenation vessel and subjected to 3 pressurization/venting cycles with H 2 . The reaction mixture was allowed to proceed at room temperature and 45 psi H 2 for 2.5 h. The reaction mixture was then charged with 12.5 wt eq of Pd(OH) 2 /C and the vessel was repressurized with hydrogen (45 psi).
  • reaction mixture was filtered through a pad of diatomaceous earth, the diatomaceous earth washed with MeOH, and the combine organic layers concentrated in vacuo to provide the desired tert-butyl 4-(3-aminophenethyl)piperazine-1-carboxylate (7D, 63%), which was used without further purification.
  • the resulting HCl salt from the preceding step was suspended in THF (about 0.05 M) and about 18 eq diisopropylethylamine was added.
  • the reaction mixture was cooled to 0° C., and about 1 eq ethanesulfonyl chloride was added dropwise.
  • the resultant mixture was stirred for 5 min at RT.
  • To the reaction mixture was added saturated aq. NaHCO 3 followed by EtOAc. The layers were separated, and the organic layer was washed once with saturated aq. NaHCO 3 , once with brine, dried over Na 2 SO 4 , filtered and concentrated in vacuo.
  • the aqueous layer was extracted with dichloromethane, and the combined organic layers were dried over sodium sulfate, filtered and concentrated in vacuo to provide 14.24 g (>100% mass recovery) of unpurified bromide, which was taken on to the next step without purification.
  • tert-Butyl 4-(2,4-difluoro-3-(methoxycarbonyl)benzyl)piperazine-1-carboxylate To a room temperature solution of methyl 3-(bromomethyl)-2,6-difluorobenzoate (14.24 g, nominally 51.2 mmol, 1.0 equiv) and tert-butyl piperazine-1-carboxylate (9.1 g, 50.24 mmol, 1.0 equiv) in DMF (50 mL) was added K 2 CO 3 (27.8 g, 201 mmol, 4.0 equiv) as a solid. The resulting mixture was allowed to stir overnight.
  • tert-Butyl 4-(3-(azidocarbonyl)-2,4-difluorobenzyl)piperazine-1-carboxylate To a room temperature solution of tert-butyl 4-(2,4-difluoro-3-(methoxycarbonyl)benzyl)piperazine-1-carboxylate (2.0 g, 5.4 mmol, 1.0 equiv) in THF (5.0 mL) was added a solution of LiOH (249 mg, 5.94 mmol, 1.1 equiv) in water (5 mL). The resulting mixture was stirred overnight. The resulting lithium carboxylate salt was concentrated in vacuo and used in the next step without purification.
  • the lithium salt was suspended in dioxane (50 mL), and N-hydroxysuccinimide (652 mg, 5.67 mmol, 1.05 equiv) and DCC (1.28 g, 6.21 mmol, 1.15 equiv) were added as solids. After the reaction mixture was stirred for 2 days, it was charged with sodium azide (340 mg, 5.4 mmol, 1.0 equiv) and then stirred overnight. The resulting solid was filtered and washed with DCM.
  • tert-Butyl 4-(2,4-difluoro-3-(3-(6-methylpyridin-3-yl)ureido)benzyl)piperazine-1-carboxylate A solution of tert-butyl 4-(3-(azidocarbonyl)-2,4-difluorobenzyl)piperazine-1-carboxylate (2.52 g, nominally 5.4 mmol, 1.0 equiv) and 6-methylpyridin-3-amine (389 mg, 3.6 mmol, 0.66 equiv) in 7 mL of DMF was stirred at room temperature over 72 h, after which, the reaction mixture was diluted with EtOAc and washed repeatedly with water.
  • tert-Butyl 4-(2-fluoro-3-(3-(2-methylpyridin-4-yl)ureido)benzyl)piperazine-1-carboxylate To a 0° C. solution of triphosgene (959 mg, 3.24 mmol, 0.35 equiv) in THF (45 mL) was slowly added via cannula a solution of tert-butyl 4-(3-amino-2-fluorobenzyl)piperazine-1-carboxylate (2.86 g, 9.25 mmol, 1.0 equiv) and DIPEA (3.2 mL, 18.5 mmol, 2.0 equiv) in THF (25 mL) over approximately 20 minutes.
  • (R)-Benzyl 4-(2-fluoro-3-(3-(6-methylpyridin-3-yl)ureido)benzyl)-2-methylpiperazine-1-carboxylate To a room temperature solution of (R)-benzyl 4-(3-amino-2-fluorobenzyl)-2-methylpiperazine-1-carboxylate (250 mg, 0.70 mmol, 1.0 equiv) in dry THF (3 mL) was added 5-isocyanato-2-methylpyridine (94 mg, 0.70 mmol, 1.0 equiv). After 1 h, the reaction was complete, as determined by LCMS. The reaction was washed with aq. satd.
  • Mass Spec data Compound Name 347 (M + H) N-[(3-fluoro-5- ⁇ [(6-methyl(3- pyridyl))amino]carbonylamino ⁇ phenyl)methyl]methoxy-N-methylcarboxamide 382 (M + H) N-[3-( ⁇ [(dimethylamino)sulfonyl]methylamino ⁇ methyl)-5-fluorophenyl](3- pyridylamino)carboxamide 396 (M + H) N-[3-( ⁇ [(dimethylamino)sulfonyl]methylamino ⁇ methyl)-5-fluorophenyl][(6- methyl(3-pyridyl))amino]carboxamide 381 (M + H) N-(3- ⁇ [(ethylsulfonyl)methylamino]methyl ⁇ -5-fluorophen
  • Specificity assays Specificity towards cardiac myosin is evaluated by comparing the effect of the chemical entity on actin-stimulated ATPase of a panel of myosin isoforms: cardiac, skeletal and smooth muscle, at a single 50 ⁇ M concentration or to multiple concentrations of the chemical entity.
  • Reconstituted Cardiac Sarcomere Assay Dose responses are measured using a calcium-buffered, pyruvate kinase and lactate dehydrogenase-coupled ATPase assay containing the following reagents (concentrations expressed are final assay concentrations): Potassium PIPES (12 mM), MgCl 2 (2 mM), ATP (1 mM), DTT (1 mM), BSA (0.1 mg/ml), NADH (0.5 mM), PEP (1.5 mM), pyruvate kinase (4 U/ml), lactate dehydrogenase (8 U/ml), and ANTIFOAM (90 ppm). The pH is adjusted to 6.80 at 22° C. by addition of potassium hydroxide. Calcium levels are controlled by a buffering system containing 0.6 mM EGTA and varying concentrations of calcium, to achieve a free calcium concentration of 1 ⁇ 10 ⁇ 4 M to 1 ⁇ 10 ⁇ 8 M.
  • bovine cardiac myosin subfragment-1 typically 0.5 ⁇ M
  • bovine cardiac actin 14 ⁇ M
  • bovine cardiac tropomyosin typically 3 ⁇ M
  • bovine cardiac troponin typically 3-8 ⁇ M
  • concentrations of tropomyosin and troponin are determined empirically, by titration to achieve maximal difference in ATPase activity when MEASURED in the presence of 2 mM EGTA versus that measured in the presence of 0.1 mM CaCl 2 .
  • concentration of myosin in the assay is also determined empirically, by titration to achieve a desired rate of ATP hydrolysis. This varies between protein preparations, due to variations in the fraction of active molecules in each preparation.
  • Dose responses are typically measured at the calcium concentration corresponding to 25% or 50% of maximal ATPase activity (pCa 25 or pCa 50 ), so a preliminary experiment is performed to test the response of the ATPase activity to free calcium concentrations in the range of 1 ⁇ 10 ⁇ 4 M to 1 ⁇ 10 ⁇ 8 M. Subsequently, the assay mixture is adjusted to the pCa 50 (typically 3 ⁇ 10 ⁇ 7 M).
  • Assays are performed by first preparing a dilution series of test compound, each with an assay mixture containing potassium Pipes, MgCl 2 , BSA, DTT, pyruvate kinase, lactate dehydrogenase, myosin subfragment-1, antifoam, EGTA, CaCl 2 , and water.
  • the assay is started by adding an equal volume of solution containing potassium Pipes, MgCl 2 , BSA, DTT, ATP, NADH, PEP, actin, tropomyosin, troponin, antifoam, and water.
  • ATP hydrolysis is monitored by absorbance at 340 nm.
  • the AC1.4 is defined as the concentration at which ATPase activity is 1.4-fold higher than the bottom of the dose curve.
  • Cardiac Myofibril Assay To evaluate the effect of chemical entities on the ATPase activity of full-length cardiac myosin in the context of native sarcomere, skinned myofibril assays are performed. Cardiac myofibrils are obtained by homogenizing cardiac tissue in the presence of a non-ionic detergent. Such treatment removes membranes and majority of soluble cytoplasmic proteins but leaves intact cardiac sarcomeric acto-myosin apparatus. Myofibril preparations retain the ability to hydrolyze ATP in a Ca ++ controlled manner. ATPase activities of such myofibril preparations in the presence and absence of chemical ENTITIES are assayed at Ca ++ concentrations across the entire calcium response range but with preferred calcium concentrations giving, 25%, 50% and 100% of a maximal rate.
  • Myofibrils can be prepared from either fresh or flash frozen tissue that has been rapidly thawed. Tissue is minced finely and resuspended in a relaxing buffer containing the following reagents (concentrations expressed are final solution concentrations): Tris-HCl (10 mM), MgCl 2 (2 mM), KCl (75 mM), EGTA (2 mM), NaN3 (1 mM), ATP (1 mM), phosphocreatine (4 mM), BDM (50 mM), DTT (1 mM), benzamidine (1 mM), PMSF (0.1 mM), leupeptin (1 ug/ml), pepstatin (1 ug/ml), and triton X-100 (1%).
  • Tris-HCl (10 mM), MgCl 2 (2 mM), KCl (75 mM), EGTA (2 mM), NaN3 (1 mM), ATP (1 mM), phosphocreatine (4
  • the pH is adjusted to 7.2 at 4° C. by addition of HCl.
  • EDTA EDTA to 10 mM
  • the tissue is minced by hand at 4° C., in a cold room and homogenized using a large rotor-stator homogenizer (Omni Mixer). After blending for 10 s, the material is pelleted by centrifugation (5 minutes, 2000 ⁇ g max, 4° C.).
  • the myofibrils are then resuspended in a Standard Buffer containing the following reagents (concentrations expressed are final solution concentrations): Tris-HCl (10 mM) pH 7.2 at 4° C., MgCl 2 (2 mM), KCl (75 mM), EGTA (2 mM), NaN3 (1 mM), Triton X-100 (1%), using a glass-glass tissue grinder (Kontes) until smooth, usually 4-5 strokes. The myofibril pellets are washed several times by brief homogenization, using the rotor-stator homogenizer in 10 volumes of standard buffer, followed by centrifugation.
  • the myofibrils are washed several more times with standard buffer lacking Triton X-100. The myofibrils are then subjected to three rounds of gravity filtration using 600, 300, and finally 100 ⁇ m nylon mesh (Spectrum Lab Products) to generate homogenous mixtures and pelleted down. Finally, the myofibrils are resuspended in a storage buffer containing the following reagents (concentrations expressed are final solution concentrations): Potassium PIPES (12 mM), MgCl 2 (2 mM), and DTT (1 mM). Solid sucrose is added while stirring to 10% (w/v) before drop-freezing in liquid nitrogen and storage at ⁇ 80° C.
  • Dose responses are measured using a calcium-buffered, pyruvate kinase and lactate dehydrogenase-coupled ATPase assay containing the following reagents (concentrations expressed are final assay concentrations): Potassium PIPES (12 mM), MgCl 2 (2 mM), ATP (0.05 mM), DTT (1 mM), BSA (0.1 mg/ml), NADH (0.5 mM), PEP (1.5 mM), pyruvate kinase (4 U/ml), lactate dehydrogenase (8 U/ml), and antifoam (90 ppm). The pH is adjusted to 6.80 at 22° C. by addition OF potassium hydroxide.
  • Calcium levels are controlled by a buffering system containing 0.6 mM EGTA and varying concentrations of calcium, to achieve a free calcium concentration of 1 ⁇ 10 ⁇ 4 M to 1 ⁇ 10 ⁇ 8 M.
  • the myofibril concentration in the final assay is typically 0.2 to 1 mg/ml.
  • Dose responses are typically measured at the calcium concentration corresponding to 25%, 50%, or 100% of maximal ATPase activity (pCa 25 , pCa 50 , pCa 100 ), so a preliminary experiment is performed to test the response of the ATPase activity to free calcium concentrations in the range of 1 ⁇ 10 ⁇ 4 M to 1 ⁇ 10 ⁇ 8 M. Subsequently, the assay mixture is adjusted to the pCa 50 (typically 3 ⁇ 10 ⁇ 7 M).
  • Assays are performed by first preparing a dilution series of test compound, each with an assay mixture containing potassium Pipes, MgCl 2 , BSA, DTT, pyruvate kinase, lactate dehydrogenase, cardiac myofibrils, antifoam, EGTA, CaCl 2 , and water.
  • the assay is started by adding AN equal volume of solution containing potassium Pipes, MgCl 2 , BSA, DTT, ATP, NADH, PEP, antifoam, and water.
  • ATP hydrolysis is monitored by absorbance at 340 nm.
  • the AC1.4 is defined as the concentration at which ATPase activity is 1.4-fold higher than the bottom of the dose curve.
  • Hearts are first perfused with a nominally Ca 2+ free modified Krebs solution of the following composition: 110 mM NaCl, 2.6 mM KCL, 1.2 mM KH 2 PO 4 7H 2 0, 1.2 mM MgSO 4 , 2.1 mM NaHCO 3 , 11 mM glucose and 4 mM Hepes (all Sigma). This medium is not recirculated and is continually gassed with O 2 . After approximately 3 minutes the heart is perfused with modified Krebs buffer supplemented with 3.3% collagenase (169 ⁇ /mg activity, Class II, Worthington Biochemical Corp., Freehold, N.J.) and 25 ⁇ M final calcium concentration until the heart becomes sufficiently blanched and soft.
  • modified Krebs buffer supplemented with 3.3% collagenase (169 ⁇ /mg activity, Class II, Worthington Biochemical Corp., Freehold, N.J.) and 25 ⁇ M final calcium concentration until the heart becomes sufficiently blanched and soft.
  • the heart is removed from the cannulae, the atria and vessels discarded and the ventricles are cut into small pieces.
  • the myocytes are dispersed by gentle agitation of the ventricular tissue in fresh collagenase containing Krebs prior to being gently forced through a 200 ⁇ m nylon mesh in a 50 cc tube.
  • the resulting myocytes are resuspended in modified Krebs solution containing 25 ⁇ m calcium.
  • Myocytes are made calcium tolerant by addition of a calcium solution (100 mM stock) at 10 minute intervals until 100 ⁇ M calcium is achieved.
  • a DULT VENTRICULAR MYOCYTE CONTRACTILITY EXPERIMENTS Aliquots of Tyrode buffer containing myocytes are placed in perfusion chambers (series 20 RC-27NE; Warner Instruments) complete with heating platforms. Myocytes are allowed to attach, the chambers heated to 37° C., and the cells then perfused with 37° C. Tyrode buffer. Myocytes are field stimulated at 1 Hz in with platinum electrodes (20% above threshold). Only cells that have clear striations, and are quiescent prior to pacing are used for contractility experiments.
  • myocytes are imaged through a 40 ⁇ objective and using a variable frame rate (60-240 Hz) charge-coupled device camera, the images are digitized and displayed on a computer screen at a sampling speed of 240 Hz.
  • a variable frame rate 60-240 Hz
  • test compounds (0.01-15 ⁇ M) are perfused on the myocytes for 5 minutes. After this time, fresh Tyrode buffer is perfused to determine compound washout characteristics.
  • edge detection strategy contractility of the myocytes and contraction and relaxation velocities are continuously recorded.
  • C ONTRACTILITY ANALYSIS Three or more individual myocytes are tested per chemical entity, using two or more different myocyte preparations. For each cell, twenty or more contractility transients at basal (defined as 1 min prior to infusion of the chemical entity) and after addition of the chemical entity, are averaged and compared. These average transients are analyzed to determine changes in diastolic length, and using the Ionwizard analysis program (IonOptix), fractional shortening (% decrease in the diastolic length), and maximum contraction and relaxation velocities (un/sec) are determined. Analysis of individual cells are combined. Increase in fractional shortening over basal indicates potentiation of myocyte contractility.
  • Fura loading Cell permeable Fura-2 (Molecular Probes) is dissolved in equal amounts of pluronic (Mol Probes) and FBS for 10 min at RT. A 1 ⁇ M Fura stock solution is made in Tyrode buffer containing 500 mM probenecid (Sigma). To load cells, this solution is added to myocytes at RT. After 10 min. the buffer is removed, the cells washed with Tyrode containing probenecid and incubated at RT for 10 min. This wash and incubation is repeated. Simultaneous contractility and calcium measurements are determined within 40 min. of loading.
  • a test compound is perfused on cells. Simultaneous contractility and calcium transient ratios are determined at baseline and after addition of the compound. Cells are digitally imaged and contractility determined as described above, using that a red filter in the light path to avoid interference with fluorescent calcium measurements. Acquisition, analysis software and hardware for calcium transient analysis are obtained from IonOptix.
  • the instrumentation for fluorescence measurement includes a xenon arc lamp and a Hyperswitch dual excitation light source that alternates between 340 and 380 wavelengths at 100 Hz by a galvo-driven mirror.
  • a liquid filled light guide delivers the dual excitation light to the microscope and the emission fluorescence is determined using a photomultiplier tube (PMT).
  • the fluorescence system interface routes the PMT signal and the ratios are recorded using the IonWizard acquisition program.
  • contractility and calcium ratio transients For each cell, ten or more contractility and calcium ratio transients at basal and after compound addition, where averaged and compared. Contractility average transients are analyzed using the Ionwizard analysis program to determine changes in diastolic length, and fractional shortening (% decrease in the diastolic length). The averaged calcium ratio transients are analyzed using the Ionwizard analysis program to determine changes in diastolic and systolic ratios and the 75% time to baseline (T 75 ).
  • D URABLITY To determine the durability of response, myocytes are challenged with a test compound for 25 minutes followed by a 2 min. washout period. Contractility response is compared at 5 and 25 min. following compound infusion.
  • T HRESHOLD POTENTIAL Myocytes are field stimulated at a voltage approximately 20% above threshold.
  • the threshold voltage minimum voltage to pace cell
  • the cell paced at that threshold and then the test compound is infused.
  • the voltage is decreased for 20 seconds and then restarted. Alteration of ion channels corresponds to increasing or lowering the threshold action potential.
  • H z FREQUENCY Contractility of myocytes is determined at 3 Hz as follows: a 1 min. basal time point followed by perfusion of the test compound for 5 min. followed by a 2 min. washout. After the cell contractility has returned completely to baseline the Hz frequency is decreased to 1. After an initial acclimation period the cell is challenged by the same compound. As this species, rat, exhibits a negative force frequency at 1 Hz, at 3 Hz the FS of the cell should be lower, but the cell should still respond by increasing its fractional shortening in the presence of the compound.
  • a DDITIVE WITH I SOPROTERENOL To demonstrate that a compound act via a different mechanism than the adrenergic stimulant isoproterenol, cells are loaded with fura-2 and simultaneous measurement of contractility and calcium ratios are determined. The myocytes are sequentially challenged with 5 ⁇ m or less of a test compound, buffer, 2 nM isoproterenol, buffer, and a combination of a test compound and isoproterenol.
  • Bovine and rat cardiac myosins are purified from the respective cardiac tissues. Skeletal and smooth muscle myosins used in the specificity studies are purified from rabbit skeletal muscle and chicken gizzards, respectively. All myosins used in the assays are converted to a single-headed soluble form (S1) by a limited proteolysis with chymotrypsin. Other sarcomeric components: troponin complex, tropomyosin and actin are purified from bovine hearts (cardiac sarcomere) or chicken pectoral muscle (skeletal sarcomere).
  • Myosin ATPase is very significantly activated by actin filaments. ATP turnover is detected in a coupled enzymatic assay using pyruvate kinase (PK) and lactate dehydrogenase (LDH). In this assay each ADP produced as a result of ATP hydrolysis is recycled to ATP by PK with a simultaneous oxidation of NADH molecule by LDH. NADH oxidation can be conveniently monitored by decrease in absorbance at 340 nm wavelength.
  • PK pyruvate kinase
  • LDH lactate dehydrogenase
  • Dose responses are measured using a calcium-buffered, pyruvate kinase and lactate dehydrogenase-coupled ATPase assay containing the following reagents (concentrations expressed are final assay concentrations): Potassium PIPES (12 mM), MgCl 2 (2 mM), ATP (1 mM), DTT (1 mM), BSA (0.1 mg/ml), NADH (0.5 mM), PEP (1.5 mM), pyruvate kinase (4 U/ml), lactate dehydrogenase (8 U/ml), and antifoam (90 ppm). The pH is adjusted to 6.80 at 22° C. by addition of potassium hydroxide. Calcium levels are controlled by a buffering system containing 0.6 mM EGTA and varying concentrations of calcium, to achieve a free calcium concentration of 1 ⁇ 10 ⁇ 4 M to 1 ⁇ 10 ⁇ 8 M.
  • bovine cardiac myosin subfragment-1 typically 0.5 ⁇ M
  • bovine cardiac actin 14 ⁇ M
  • bovine cardiac tropomyosin typically 3 ⁇ M
  • bovine cardiac troponin typically 3-8 ⁇ M
  • concentrations of tropomyosin and troponin are determined empirically, by titration to achieve maximal difference in ATPase activity when measured in the presence of 1 mM EGTA versus that measured in the presence of 0.2 mM CaCl 2 .
  • concentration of myosin in the assay is also determined empirically, by titration to achieve a desired rate of ATP hydrolysis. This varies between protein preparations, due to variations in the fraction of active molecules in each preparation.
  • Compound dose responses are typically measured at the calcium concentration corresponding to 50% of maximal ATPase activity (pCa 50 ), so a preliminary experiment is performed to test the response of the ATPase activity to free calcium concentrations in the range of 1 ⁇ 10 ⁇ 4 M to 1 ⁇ 10 ⁇ 8 M. Subsequently, the assay mixture is adjusted to the pCa 50 (typically 3 ⁇ 10 ⁇ 7 M).
  • Assays are performed by first preparing a dilution series of test compound, each with an assay mixture containing potassium Pipes, MgCl 2 , BSA, DTT, pyruvate kinase, lactate dehydrogenase, myosin subfragment-1, antifoam, EGTA, CaCl 2 , and water.
  • the assay is started by adding an equal volume of solution containing potassium Pipes, MgCl 2 , BSA, DTT, ATP, NADH, PEP, actin, tropomyosin, troponin, antifoam, and water.
  • ATP hydrolysis is monitored by absorbance at 340 nm.
  • the AC1.4 is defined as the concentration at which ATPase activity is 1.4-fold higher than the bottom of the dose curve.
  • E CHOCARDIOGRAPHY Animals are anesthetized with isoflurane and maintained within a surgical plane throughout the procedure. Core body temperature is maintained at 37° C. by using a heating pad. Once anesthetized, animals are shaven and hair remover is applied to remove all traces of fur from the chest area. The chest area is further prepped with 70% ETOH and ultrasound gel is applied. Using a GE System Vingmed ultrasound system (General Electric Medical Systems), a 10 MHz probe is placed on the chest wall and images are acquired in the short axis view at the level of the papillary muscles. 2-D M-mode images of the left ventricle are taken prior to, and after, compound bolus injection or infusion. In vivo fractional shortening ((end diastolic diameter ⁇ end systolic diameter)/end diastolic diameter ⁇ 100) is determined by analysis of the M-mode images using the GE EchoPak software program.
  • fractional shortening is determined using echocardiography as described above.
  • M-Mode images are taken at 30 second intervals prior to bolus injection or infusion of compounds. After injection, M-mode images are taken at 1 min and at five minute intervals thereafter up to 30 min.
  • Bolus injection (0.5-5 mg/kg) or infusion is via a tail vein catheter.
  • Infusion parameters are determined from pharmacokinetic profiles of the compounds.
  • animals received a 1 minute loading dose immediately followed by a 29 minute infusion dose via a tail vein catheter. The loading dose is calculated by determining the target concentration ⁇ the steady state volume of distribution. The maintenance dose concentration is determined by taking the target concentration ⁇ the clearance.
  • Compounds are formulated in 25% cavitron vehicle for bolus and infusion protocols. Blood samples are taken to determine the plasma concentration of the compounds.
  • Animals are anesthetized with isoflurane, maintained within a surgical plane, and then shaven in preparation for catheterization. An incision is made in the neck region and the right carotid artery cleared and isolated. A 2 French Millar Micro-tip Pressure Catheter (Millar Instruments, Houston, Tex.) is cannulated into the right carotid artery and threaded past the aorta and into the left ventricle. End diastolic pressure readings, max+/ ⁇ dp/dt, systolic pressures and heart rate are determined continuously while compound or vehicle is infused. Measurements are recorded and analyzed using a PowerLab and the Chart 4 software program (ADInstruments, Mountain View, Calif.). Hemodynamics measurements are performed at a select infusion concentration. Blood samples are taken to determine the plasma concentration of the compounds.
  • ADInstruments Mountain View, Calif.
  • a NIMALS Male Sprague-Dawley CD (220-225 g; Charles River) rats are used in this experiment. Animals are allowed free access to water and commercial rodent diet under standard laboratory conditions. Room temperature is maintained at 20-23° C. and room illumination is on a 12/12-hour light/dark cycle. Animals are acclimatized to the laboratory environment 5 to 7 days prior to the study. The animals are fasted overnight prior to surgery.
  • the underlying muscles are dissected with care to avoid the lateral thoracic vein, to expose the intercostal muscles.
  • the chest cavity is entered through 4 th -5 th intercostal space, and the incision expanded to allow visualization of the heart.
  • the pericardium is opened to expose the heart.
  • a 6-0 silk suture with a taper needle is passed around the left coronary artery near its origin, which lies in contact with the left margin of the pulmonary cone, at about 1 mm from the insertion of the left auricular appendage.
  • the left coronary artery is ligated by tying the suture around the artery (“LCL”). Sham animals are treated the same, except that the suture is not tied.
  • the incision is closed in three layers.
  • the rat is ventilated until able to ventilate on its own.
  • the rats are extubated and allowed to recover on a heating pad.
  • Animals receive buprenorphine (0.01-0.05 mg/kg SQ) for post operative analgesia. Once awake, they are returned to their cage. Animals are monitored daily for signs of infection or distress. Infected or moribund animals are euthanized. Animals are weighed once a week.
  • E FFICACY ANALYSIS Approximately eight weeks after infarction surgery, rats are scanned for signs of myocardial infarction using echocardiography. Only those animals with decreased fractional shortening compared to sham rats are utilized further in efficacy experiments. In all experiments, there are four groups, sham+vehicle, sham+compound, LCL+vehicle and LCL+compound. At 10-12 weeks post LCL, rats are infused at a select infusion concentration. As before, five pre-dose M-Mode images are taken at 30 second intervals prior to infusion of compounds and M-mode images are taken at 30 second intervals up to 10 minutes and every minute or at five minute intervals thereafter. Fractional shortening is determined from the M-mode images.
  • a myofibril assay is used to identify compounds (myosin activators) that directly activate the cardiac myosin ATPase.
  • the cellular mechanism of action, in vivo cardiac function in Sprague Dawley (SD) rats, and efficacy in SD rats with defined heart failure to active compound is then determined.
  • Cellular contractility was quantified using an edge detection strategy and calcium transient measured using fura-2 loaded adult rat cardiac myocytes. Cellular contractility increased over baseline within 5 minutes of exposure to an active compound (0.2 ⁇ M) without altering the calcium transient.
  • Combination of active compound with isoproterenol should result only in an additive increase in contractility with no further change in the calcium transient demonstrating the active compound was not inhibiting the PDE pathway.
  • In vivo contractile function in anesthetized SD rats is quantified using echocardiography (M-mode) and simultaneous pressure measurements.
  • SD rats are infused with vehicle or active compound at 0.25-2.5 mg/kg/hr.
  • the active compound should increase fractional shortening (FS) and ejection fraction (EF) in a dose-dependent manner with no significant change in peripheral blood pressures or heart rate except at the highest dose.
  • Rats with defined heart failure induced by left coronary ligation, or sham treated rats may have similar and significant increases in FS and EF when treated with 0.7-1.2 mg/kg/hr active compound.
  • the active compound increased cardiac contractility without increasing the calcium transient and was efficacious in a rat model of heart failure, indicating the active compound may be a useful therapeutic in the treatment of human heart failure.
  • the clinical trial was designed as a double-blind, randomized, placebo-controlled, dose-escalation trial conducted to investigate the safety, tolerability, pharmacokinetics, and pharmacodynamic profile of a six-hour infusion of that chemical entityin healthy volunteers.
  • the maximum tolerated dose was determined to be 0.5 mg/kg/hr for the six-hour infusion in healthy volunteers.
  • the six-hour infusion produced a statistically significant and clinically relevant increase in ejection fraction and fractional shortening as measured from baseline to the end of the infusion in comparison to placebo; these clinically relevant increases in cardiac function were associated with a statistically significant prolongation of systolic ejection time.
  • the chemical entity was well-tolerated when compared to placebo. Across the dosing levels evaluated in this clinical trial, infusions of the chemical entity were characterized by linear, dose-proportional pharmacokinetics and produced dose-dependent pharmacodynamic effects.
  • the pharmacology of at least one chemical entity described herein is investigated in isolated adult rat cardiac myocytes, anesthetized rats, and in a chronically instrumented canine model of heart failure induced by myocardial infarction combined with rapid ventricular pacing.
  • the active compound (30 ⁇ M) does not inhibit phosphodiesterase type 3.
  • the active compound In conscious dogs with heart failure, the active compound (0.5 mg/kg bolus, then 0.5 mg/kg/hr i.v. for 6-8 hours) increases fractional shortening by 74 ⁇ 7%, cardiac output by 45 ⁇ 9%, and stroke volume by 101 ⁇ 19%. Heart rate decreases by 27 ⁇ 4% and left atrial pressure falls from 22 ⁇ 2 mmHg to 10 ⁇ 2 mmHg (p ⁇ 0.05 for all). In addition, neither mean arterial pressure nor coronary blood flow changes significantly. Diastolic function is not impaired at this dose. There are no significant changes in a vehicle treated group. The active compound improved cardiac function in a manner that suggests that compounds of this class may be beneficial in patients with heart failure.
  • a pharmaceutical composition for intravenous administration is prepared in the following manner.
  • a suitable compounding vessel is filled with WFI to approximately 5% of the bulk solution volume.
  • the citric acid (10.51 g) is weighed, added to the compounding vessel and stirred to produce 1 M citric acid.
  • the active agent (1.00 g) is weighed and dissolved in the 1 M citric acid solution.
  • the resulting solution is transferred to a larger suitable compounding vessel and WFT is added to approximately 85% of the bulk solution volume.
  • the pH of the bulk solution is measured and adjusted to 5.0 with 1 N NaOH.
  • the solution is brought to its final volume (1 liter) with WFI.
  • the active agent is a selective, small molecule, cardiac myosin activator, which increases contractility in cardiac myocytes without affecting the Ca +2 transient. In dogs with heart failure, the active agent increases systolic function but not myocardial oxygen demand. Uniquely, the extent of contraction increases but not ⁇ dp/dt.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Organic Chemistry (AREA)
  • Epidemiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Cardiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Urology & Nephrology (AREA)
  • Vascular Medicine (AREA)
  • Hospice & Palliative Care (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Pyridine Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)
  • Medicinal Preparation (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Steroid Compounds (AREA)
US11/640,438 2005-12-15 2006-12-14 Certain chemical entities, compositions and methods Abandoned US20070161617A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/640,438 US20070161617A1 (en) 2005-12-15 2006-12-14 Certain chemical entities, compositions and methods
US12/483,093 US8445495B2 (en) 2005-12-15 2009-06-11 Certain Chemical entities, compositions and methods
US13/897,086 US8871768B2 (en) 2005-12-15 2013-05-17 Certain chemical entities, compositions and methods

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US75140005P 2005-12-15 2005-12-15
US75635606P 2006-01-04 2006-01-04
US81797506P 2006-06-29 2006-06-29
US11/640,438 US20070161617A1 (en) 2005-12-15 2006-12-14 Certain chemical entities, compositions and methods

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/483,093 Continuation US8445495B2 (en) 2005-12-15 2009-06-11 Certain Chemical entities, compositions and methods

Publications (1)

Publication Number Publication Date
US20070161617A1 true US20070161617A1 (en) 2007-07-12

Family

ID=38163546

Family Applications (3)

Application Number Title Priority Date Filing Date
US11/640,438 Abandoned US20070161617A1 (en) 2005-12-15 2006-12-14 Certain chemical entities, compositions and methods
US12/483,093 Active 2028-02-22 US8445495B2 (en) 2005-12-15 2009-06-11 Certain Chemical entities, compositions and methods
US13/897,086 Active US8871768B2 (en) 2005-12-15 2013-05-17 Certain chemical entities, compositions and methods

Family Applications After (2)

Application Number Title Priority Date Filing Date
US12/483,093 Active 2028-02-22 US8445495B2 (en) 2005-12-15 2009-06-11 Certain Chemical entities, compositions and methods
US13/897,086 Active US8871768B2 (en) 2005-12-15 2013-05-17 Certain chemical entities, compositions and methods

Country Status (8)

Country Link
US (3) US20070161617A1 (ja)
EP (1) EP1959960B1 (ja)
JP (1) JP5301284B2 (ja)
AR (1) AR058347A1 (ja)
ES (1) ES2419007T3 (ja)
PE (1) PE20071161A1 (ja)
TW (1) TW200808321A (ja)
WO (1) WO2007070683A2 (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070197504A1 (en) * 2005-12-15 2007-08-23 Morgan Bradley P Certain chemical entities, compositions and methods
US20070197497A1 (en) * 2005-12-19 2007-08-23 Morgan Bradley P Compounds, compositions and methods
US20070197507A1 (en) * 2005-12-16 2007-08-23 Morgan Bradley P Certain chemical entities, compositions and methods
US20070208000A1 (en) * 2005-12-15 2007-09-06 Morgan Bradley P Certain chemical entities, compositions and methods
US20090036447A1 (en) * 2004-06-17 2009-02-05 Cytokinetics, Inc. Compounds, Compositions and Methods
US20090176307A1 (en) * 2003-01-14 2009-07-09 Cytokinetics, Inc. Compounds, Compositions and Methods
US20090247544A1 (en) * 2005-12-15 2009-10-01 Cytokinetics, Inc. Certain Chemical Entities, Compositions and Methods
US20100029680A1 (en) * 2005-12-15 2010-02-04 Cytokinetics, Inc. Certain Chemical Entities, Compositions and Methods
WO2014152198A1 (en) * 2013-03-14 2014-09-25 Amgen Inc. Heterocyclic compounds and their uses
WO2014152236A1 (en) * 2013-03-14 2014-09-25 Amgen Inc. Heterocyclic compounds and their uses
US11465969B2 (en) 2018-08-17 2022-10-11 Cytokinetics, Inc. Salts and crystal forms of omecamtiv mecarbil
CN115279349A (zh) * 2020-02-10 2022-11-01 安进股份有限公司 奥美卡替莫卡必尔片剂
US11576910B2 (en) 2017-06-30 2023-02-14 Amgen Inc. Methods of treating heart failure with cardiac sarcomere activators
US11702380B2 (en) 2021-03-10 2023-07-18 Amgen Inc. Synthesis of omecamtiv mecarbil
US11753394B2 (en) 2017-06-30 2023-09-12 Amgen Inc. Synthesis of omecamtiv mecarbil
US11986474B1 (en) 2023-06-27 2024-05-21 Cytokinetics, Incorporated Methods for treating heart failure by administering cardiac sarcomere activators

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200054237A (ko) 2017-09-13 2020-05-19 암젠 인크 비스아미드 근육원섬유마디 활성화 화합물 및 이의 용도
CN110124046B (zh) * 2019-06-11 2023-04-07 辽宁大学 一种氧化石墨烯负载双氯芬酸二乙胺及其制备方法

Citations (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3907782A (en) * 1971-03-29 1975-09-23 Ici Ltd Fumaramido bis(pyridinium salts)
US3939169A (en) * 1971-03-29 1976-02-17 Imperial Chemical Industries Limited Alkylene bis(pyridiniumareylene quaternary salts)
US5162360A (en) * 1991-06-24 1992-11-10 Warner-Lambert Company 2-heteroatom containing urea and thiourea ACAT inhibitors
US5547966A (en) * 1993-10-07 1996-08-20 Bristol-Myers Squibb Company Aryl urea and related compounds
US5624937A (en) * 1995-03-02 1997-04-29 Eli Lilly And Company Chemical compounds as inhibitors of amyloid beta protein production
US5919811A (en) * 1995-03-04 1999-07-06 Glaxo Wellcome S.P.A. 3-Substituted-indole-2-carboxylic acid derivatives as excitatory amino acid antagonists
US5962483A (en) * 1993-03-10 1999-10-05 Celltech Therapeutics, Limited Trisubstituted phenyl derivatives and processes for their preparation
US5972975A (en) * 1995-12-08 1999-10-26 Merck & Co., Inc. Substituted 2-aminopyridines as inhibitors of nitric oxide synthase
US6001860A (en) * 1992-05-28 1999-12-14 Pfizer Inc. N-aryl and N-heteroarylurea derivatives as inhibitors of acyl coenzyme A: Cholesterol acyl transferase (ACAT)
US6174905B1 (en) * 1996-09-30 2001-01-16 Mitsui Chemicals, Inc. Cell differentiation inducer
US6207809B1 (en) * 1999-05-08 2001-03-27 Clariant Gmbh Process for the preparation of aqueous diazonium salt solutions
US6262083B1 (en) * 1997-11-05 2001-07-17 Choongwae Pharma Corporation Genipin derivative having liver protection activity
US6329395B1 (en) * 1998-06-08 2001-12-11 Schering Corporation Neuropeptide Y5 receptor antagonists
US20020165394A1 (en) * 1999-01-13 2002-11-07 Bayer Corporation Inhibition of RAF kinase using quinolyl, isoquinolyl or pyridyl ureas
US20030045552A1 (en) * 2000-12-27 2003-03-06 Robarge Michael J. Isoindole-imide compounds, compositions, and uses thereof
US6573264B1 (en) * 2000-10-23 2003-06-03 Cv Therapeutics, Inc. Heteroaryl alkyl piperazine derivatives
US20030207872A1 (en) * 2002-01-11 2003-11-06 Bayer Corporation Omega-carboxyaryl substituted diphenyl ureas as raf kinase inhibitors
US6645990B2 (en) * 2000-08-15 2003-11-11 Amgen Inc. Thiazolyl urea compounds and methods of uses
US6656971B2 (en) * 2001-01-25 2003-12-02 Guilford Pharmaceuticals Inc. Trisubstituted carbocyclic cyclophilin binding compounds and their use
US6670376B1 (en) * 2001-11-13 2003-12-30 Theravance, Inc. Aryl aniline β2 adrenergic receptor agonists
US6693576B2 (en) * 2002-05-23 2004-02-17 Tektronix, Inc. Methods and apparatus providing multiple concurrent acquisition modes in a digitizing measurement instrument
US20040229937A1 (en) * 2003-02-28 2004-11-18 Jacques Dumas Substituted pyridine derivatives useful in the treatment of cancer and other disorders
US20050059703A1 (en) * 2003-05-20 2005-03-17 Scott Wilhelm Diaryl ureas for diseases mediated by PDGFR
US20050159416A1 (en) * 2003-01-14 2005-07-21 Morgan Bradley P. Compounds, compositions and methods
US20060014761A1 (en) * 2004-06-17 2006-01-19 Morgan Bradley P Compounds, compositions and methods
US20060025470A1 (en) * 2004-07-27 2006-02-02 Morgan Bradley P Syntheses of ureas
US20070066626A1 (en) * 2005-08-04 2007-03-22 Morgan Bradley P Compounds, compositions and methods
US20070197497A1 (en) * 2005-12-19 2007-08-23 Morgan Bradley P Compounds, compositions and methods
US20070195704A1 (en) * 2006-02-23 2007-08-23 Gonzalez Ron E Method of evaluating data processing system health using an I/O device
US20070197505A1 (en) * 2005-12-15 2007-08-23 Morgan Bradley P Certain chemical entities, compositions and methods

Family Cites Families (93)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL254871A (ja) 1959-08-14
DE2942930A1 (de) 1979-10-24 1981-05-27 Basf Ag, 6700 Ludwigshafen Substituierte harnstoffe, deren herstellung und verwendung als herbizide
DE3147879A1 (de) 1981-12-03 1983-06-16 Basf Ag, 6700 Ludwigshafen 1,3,5-triazinone, verfahren zu ihrer herstellung und ihre verwendung zur bekaempfung unerwuenschten pflanzenwuchses
CA1185974A (en) 1981-12-03 1985-04-23 Adolf Parg 1,3,5-triazinones and their use for controlling undesirable plant growth
HU193575B (en) 1983-03-29 1987-10-28 Fmp Corp Plant growth controlling preparations containing n-phenyl-n'-/pyridinile-n-oxyde/-urea-derivatives
US4787931A (en) 1984-03-06 1988-11-29 Fmc Corporation N-phenyl-N'-(pyridinyl-N-oxide)urea plant regulators
US4672066A (en) 1985-04-22 1987-06-09 Hoffmann-La Roche Inc. Derivatives of 4-acetyl-3-hydroxy-2-alkyl-phenoxycarboxylic acids
GB9027023D0 (en) 1990-12-12 1991-01-30 Wellcome Found Anti-atherosclerotic aryl compounds
GEP20001968B (en) 1992-01-21 2000-03-05 Glaxo Spa Arilthio Compounds as Antibacterial and Antiviral Agents
EP0634402A1 (en) 1993-07-14 1995-01-18 Takeda Chemical Industries, Ltd. Isochinolinone derivatives, their production and use
WO1996010559A1 (en) 1994-10-04 1996-04-11 Fujisawa Pharmaceutical Co., Ltd. Urea derivatives and their use as acat-inhibitors
KR970707098A (ko) 1994-10-27 1997-12-01 후지야마 아키라 브라디키닌 길항제로서 피리도피리미돈, 퀴놀린 및 융합된 N-헤테로사이클(Pyridopyrimidones, quinolines and fused N-heterocycles as bradykinin antagonists)
US6010026A (en) 1994-11-22 2000-01-04 Aluminum Company Of America Assembly of aluminum can and threaded sleeve
US5556969A (en) 1994-12-07 1996-09-17 Merck Sharp & Dohme Ltd. Benzodiazepine derivatives
GB9511355D0 (en) 1995-06-06 1995-08-02 Fujisawa Pharmaceutical Co Urea derivatives
US6005008A (en) 1996-02-16 1999-12-21 Smithkline Beecham Corporation IL-8 receptor antagonists
CA2261031A1 (en) 1996-07-23 1998-01-29 Charles A. Blum Certain substituted benzylamine derivatives; a new class of neuropeptide y1 specific ligands
AUPO390996A0 (en) 1996-11-29 1996-12-19 Fujisawa Pharmaceutical Co., Ltd. Urea derivatives
JP2002241368A (ja) 1997-02-18 2002-08-28 Shionogi & Co Ltd 新規ベンゾラクタム誘導体およびそれを含有する医薬組成物
WO1998041510A1 (fr) 1997-03-14 1998-09-24 Shionogi & Co., Ltd. Nouveaux derives du benzolactame et compositions medicamenteuses les contenant
AU7526798A (en) 1997-04-18 1998-11-27 Smithkline Beecham Plc Acetamide and urea derivatives, process for their preparation and their use in the treatment of cns disorders
JP4344960B2 (ja) 1997-05-23 2009-10-14 バイエル、コーポレイション アリール尿素によるp38キナーゼ活性の阻害
WO1998052559A1 (en) 1997-05-23 1998-11-26 Bayer Corporation Raf kinase inhibitors
UA71904C2 (en) 1997-12-22 2005-01-17 Compounds and methods of treating by inhibiting raf kinase using heterocyclic substituted urea derivatives
JP4403482B2 (ja) 1997-12-22 2010-01-27 バイエル コーポレイション 置換複素環尿素合成のための中間体およびその製造方法
SK286564B6 (sk) 1997-12-22 2009-01-07 Bayer Corporation Substituované arylmočoviny ako inhibítory rafkinázy a farmaceutický prípravok s ich obsahom
DK1042305T3 (da) 1997-12-22 2005-09-19 Bayer Pharmaceuticals Corp Inhibering af p38-kinase ved anvendelse af symmetriske og asymmetriske diphenylurinstoffer
JP4405602B2 (ja) 1998-04-16 2010-01-27 バイエル・シエーリング・ファーマ アクチエンゲゼルシャフト ヒストン脱アセチル化酵素阻害剤
PE20000564A1 (es) 1998-06-08 2000-07-05 Schering Corp Antagonistas receptores y5 de neuropeptidos
US6407124B1 (en) 1998-06-18 2002-06-18 Bristol-Myers Squibb Company Carbon substituted aminothiazole inhibitors of cyclin dependent kinases
JP3594317B2 (ja) 1998-08-11 2004-11-24 住友製薬株式会社 ナフチリジン誘導体
JP2000256194A (ja) 1999-01-06 2000-09-19 Mitsui Chemicals Inc 核内レセプタ作動薬およびその効果増強剤
ES2377847T3 (es) 1999-01-13 2012-04-02 Bayer Healthcare Llc Difenil ureas sustituidas con omega-carboxi arilo como agentes inhibidores de la cinasa p38
US6402960B1 (en) 1999-03-01 2002-06-11 The Regents Of The University Of California Thiacrown polymers for removal of mercury from waste streams
ATE312823T1 (de) 1999-07-09 2005-12-15 Boehringer Ingelheim Pharma Verfahren zur herstellung heteroarylsubstituierter ureaverbindungen
CA2380389A1 (en) 1999-07-26 2001-02-01 Banyu Pharmaceutical Co., Ltd. Biarylurea derivatives
EP1229010A1 (en) 1999-10-01 2002-08-07 Japan Energy Corporation Novel diarylamide derivatives and use thereof as medicines
DE60036726T2 (de) 1999-11-16 2008-02-07 Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield Harnstoff derivate als entzündungshemmende mittel
HN2001000008A (es) 2000-01-21 2003-12-11 Inc Agouron Pharmaceuticals Compuesto de amida y composiciones farmaceuticas para inhibir proteinquinasas, y su modo de empleo
JP2004517803A (ja) 2000-06-21 2004-06-17 ブリストル−マイヤーズ・スクイブ・ファーマ・カンパニー ケモカイン受容体活性調節剤としてのn−ウレイドアルキル−ピペリジン
GB0015601D0 (en) 2000-06-26 2000-08-16 Ferring Bv Novel antidiuretic agents
GB0015904D0 (en) 2000-06-28 2000-08-23 Hoffmann La Roche Inhibitors of HPV E1 helicase enzyme
ES2291329T3 (es) 2000-07-18 2008-03-01 Dainippon Sumitomo Pharma Co., Ltd. Inhibidores de la recaptacion de serotonina.
GB0017676D0 (en) 2000-07-19 2000-09-06 Angeletti P Ist Richerche Bio Inhibitors of viral polymerase
US20020173507A1 (en) 2000-08-15 2002-11-21 Vincent Santora Urea compounds and methods of uses
US7091353B2 (en) 2000-12-27 2006-08-15 Celgene Corporation Isoindole-imide compounds, compositions, and uses thereof
JP2002220338A (ja) 2001-01-26 2002-08-09 Banyu Pharmaceut Co Ltd ビアリールウレア化合物又はその塩を有効成分として含有するCdk4及び/又はCdk6阻害剤
GB0117950D0 (en) 2001-02-16 2001-09-19 Aventis Pharma Inc Novel heterocyclic urea derivatives andd their use as dopamine D3 receptor ligands
DE10110749A1 (de) 2001-03-07 2002-09-12 Bayer Ag Substituierte Aminodicarbonsäurederivate
ES2283543T3 (es) 2001-04-20 2007-11-01 Bayer Pharmaceuticals Corporation Inhibicion de raf kinasa usando quinolil-, isoquinolil- o piridil ureas.
JP2004530690A (ja) * 2001-05-16 2004-10-07 ベーリンガー インゲルハイム ファーマシューティカルズ インコーポレイテッド 抗炎症性薬剤として有用なジアリールウレア誘導体
JP2004531571A (ja) 2001-05-25 2004-10-14 ベーリンガー インゲルハイム ファーマシューティカルズ インコーポレイテッド サイトカイン生産のインヒビターとしてのカルバメート及びオキサミド化合物
WO2002099388A2 (en) 2001-06-07 2002-12-12 Merck & Co., Inc. Benzodiazepine bradykinin antagonists
EP1408950B1 (en) * 2001-07-11 2007-04-25 Boehringer Ingelheim Pharmaceuticals Inc. Methods of treating cytokine mediated diseases
DE10134482A1 (de) 2001-07-16 2003-01-30 Bayer Ag Substituierte Isoindole und ihre Verwendung
AUPR688101A0 (en) 2001-08-08 2001-08-30 Luminis Pty Limited Protein domains and their ligands
WO2003022820A1 (en) 2001-09-06 2003-03-20 Bristol-Myers Squibb Pharma Company. Heteroaromatic substituted cyclopropane as corticotropin releasing hormone
US7361679B2 (en) 2001-09-12 2008-04-22 Kaken Pharmaceutical Co., Ltd. 2-phenyl-3-heteroarylpropionic acid derivative or salt thereof and medicine containing the same
US6908923B2 (en) 2001-12-21 2005-06-21 Cytokinetics, Inc. Compositions and methods for treating heart failure
WO2003062235A1 (en) 2002-01-17 2003-07-31 Eli Lilly And Company Modulators of acetylcholine receptors
EP1467986A1 (en) 2002-01-17 2004-10-20 Eli Lilly And Company Aza-cyclic compounds as modulators of acetylcholine receptors
SI1478358T1 (sl) * 2002-02-11 2013-09-30 Bayer Healthcare Llc Sorafenib tozilat za zdravljenje bolezni, značilnih po abnormalni angiogenezi
DE10208986A1 (de) 2002-02-28 2003-09-11 Aventis Pharma Gmbh Verwendung substituierter 3-Phenyl-5-alkoxi-1,3,4-oxdiazol-2-one zur Herstellung von Arzneimitteln mit hemmender Wirkung an der pankreatischen Lipase
WO2003074501A1 (fr) 2002-03-07 2003-09-12 Sds Biotech K.K. Derive d'isoxazole alkylamine substitue et fongicide a usage dans l'agriculture et l'horticulture
KR20040095311A (ko) 2002-03-28 2004-11-12 어플라이드 리서치 시스템스 에이알에스 홀딩 엔.브이. 프로스타글란딘 f 수용체의 모듈레이터로서의 티아졸리딘카르복사미드 유도체
TW200400035A (en) 2002-03-28 2004-01-01 Glaxo Group Ltd Novel compounds
WO2003082808A1 (fr) 2002-04-03 2003-10-09 Sumitomo Pharmaceuticals Company, Limited. Derives de benzamide
US7105505B2 (en) 2002-04-18 2006-09-12 Schering Corporation Benzimidazole derivatives useful as histamine H3 antagonists
RU2323935C2 (ru) 2002-04-18 2008-05-10 Шеринг Корпорейшн Производные бензимидазола, их применение и фармацевтическая композиция на их основе, обладающая свойствами антагониста рецептора гистамина h3
DE60325469D1 (de) 2002-04-23 2009-02-05 Bristol Myers Squibb Co Als kinase inhibitoren geeignete arylketonpyrrolotriazin-verbindungen
US20030236287A1 (en) 2002-05-03 2003-12-25 Piotrowski David W. Positive allosteric modulators of the nicotinic acetylcholine receptor
AU2003229538A1 (en) 2002-05-17 2003-12-02 Lica Pharmaceuticals A/S Aminoalkoxy-functional chalcones
PE20040522A1 (es) 2002-05-29 2004-09-28 Novartis Ag Derivados de diarilurea dependientes de la cinasa de proteina
CN100497334C (zh) 2002-06-24 2009-06-10 先灵公司 用作组胺h3拮抗剂的吲哚衍生物
CA2744893A1 (en) 2002-06-27 2004-01-08 Novo Nordisk A/S Aryl carbonyl derivatives as glucokinase activators
MXPA04012948A (es) 2002-07-31 2005-09-12 Schering Ag Inhibidores antranilamidopiridinas vegfr-2 y vegfr-3.
GB0218147D0 (en) 2002-08-05 2002-09-11 Oxford Glycosciences Uk Ltd Novel compounds
AU2003262262A1 (en) 2002-08-27 2004-03-19 Kissei Pharmaceutical Co., Ltd. Pyrazole derivatives, medicinal composition containing the same, and medicinal use thereof
NZ539165A (en) 2002-09-04 2008-03-28 Schering Corp Pyrazolopyrimidines as cyclin-dependent kinase inhibitors
BR0314201A (pt) 2002-09-10 2005-07-12 Pfizer Prod Inc Compostos diazabicìclicos úteis no tratamento de doenças do cns e outros distúrbios
WO2004039306A2 (fr) 2002-10-29 2004-05-13 L'oreal Composition capillaire contenant un compose styryl-pyrazole
AU2003902073A0 (en) 2003-05-01 2003-05-15 Kevin Raymond Deguara A lighting substrate
EP1620091B1 (en) 2003-05-05 2010-03-31 Probiodrug AG Inhibitors of glutaminyl cyclase
WO2004101529A1 (ja) 2003-05-19 2004-11-25 Ono Pharmaceutical Co., Ltd. 含窒素複素環化合物およびその医薬用途
US7235353B2 (en) 2003-07-18 2007-06-26 Cytokinetics, Inc. Predicting hepatotoxicity using cell based assays
AU2004292773A1 (en) * 2003-11-28 2005-06-09 Novartis Ag Diaryl urea derivatives in the treatment of protein kinase dependent diseases
TW200530236A (en) 2004-02-23 2005-09-16 Chugai Pharmaceutical Co Ltd Heteroaryl phenylurea
EP1751136B1 (en) 2004-05-07 2014-07-02 Amgen Inc. Nitrogenated heterocyclic derivatives as protein kinase modulators and use for the treatment of angiogenesis and cancer
WO2006089871A2 (en) * 2005-02-23 2006-08-31 Neurosearch A/S Diphenylurea derivatives useful as erg channel openers for the treatment of cardiac arrhythmias
US20070208000A1 (en) 2005-12-15 2007-09-06 Morgan Bradley P Certain chemical entities, compositions and methods
AR058347A1 (es) 2005-12-15 2008-01-30 Cytokinetics Inc Entidades quimias composiciones y metodos
US7825120B2 (en) 2005-12-15 2010-11-02 Cytokinetics, Inc. Certain substituted ((piperazin-1-ylmethyl)benzyl)ureas
US7718657B2 (en) 2005-12-16 2010-05-18 Cytokinetics, Inc. Certain indanyl urea modulators of the cardiac sarcomere

Patent Citations (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3939169A (en) * 1971-03-29 1976-02-17 Imperial Chemical Industries Limited Alkylene bis(pyridiniumareylene quaternary salts)
US3907782A (en) * 1971-03-29 1975-09-23 Ici Ltd Fumaramido bis(pyridinium salts)
US5162360A (en) * 1991-06-24 1992-11-10 Warner-Lambert Company 2-heteroatom containing urea and thiourea ACAT inhibitors
US6001860A (en) * 1992-05-28 1999-12-14 Pfizer Inc. N-aryl and N-heteroarylurea derivatives as inhibitors of acyl coenzyme A: Cholesterol acyl transferase (ACAT)
US5962483A (en) * 1993-03-10 1999-10-05 Celltech Therapeutics, Limited Trisubstituted phenyl derivatives and processes for their preparation
US5547966A (en) * 1993-10-07 1996-08-20 Bristol-Myers Squibb Company Aryl urea and related compounds
US5624937A (en) * 1995-03-02 1997-04-29 Eli Lilly And Company Chemical compounds as inhibitors of amyloid beta protein production
US5919811A (en) * 1995-03-04 1999-07-06 Glaxo Wellcome S.P.A. 3-Substituted-indole-2-carboxylic acid derivatives as excitatory amino acid antagonists
US5972975A (en) * 1995-12-08 1999-10-26 Merck & Co., Inc. Substituted 2-aminopyridines as inhibitors of nitric oxide synthase
US6174905B1 (en) * 1996-09-30 2001-01-16 Mitsui Chemicals, Inc. Cell differentiation inducer
US6262083B1 (en) * 1997-11-05 2001-07-17 Choongwae Pharma Corporation Genipin derivative having liver protection activity
US6329395B1 (en) * 1998-06-08 2001-12-11 Schering Corporation Neuropeptide Y5 receptor antagonists
US20020165394A1 (en) * 1999-01-13 2002-11-07 Bayer Corporation Inhibition of RAF kinase using quinolyl, isoquinolyl or pyridyl ureas
US6207809B1 (en) * 1999-05-08 2001-03-27 Clariant Gmbh Process for the preparation of aqueous diazonium salt solutions
US6645990B2 (en) * 2000-08-15 2003-11-11 Amgen Inc. Thiazolyl urea compounds and methods of uses
US6573264B1 (en) * 2000-10-23 2003-06-03 Cv Therapeutics, Inc. Heteroaryl alkyl piperazine derivatives
US20030045552A1 (en) * 2000-12-27 2003-03-06 Robarge Michael J. Isoindole-imide compounds, compositions, and uses thereof
US6656971B2 (en) * 2001-01-25 2003-12-02 Guilford Pharmaceuticals Inc. Trisubstituted carbocyclic cyclophilin binding compounds and their use
US6670376B1 (en) * 2001-11-13 2003-12-30 Theravance, Inc. Aryl aniline β2 adrenergic receptor agonists
US20030207872A1 (en) * 2002-01-11 2003-11-06 Bayer Corporation Omega-carboxyaryl substituted diphenyl ureas as raf kinase inhibitors
US6693576B2 (en) * 2002-05-23 2004-02-17 Tektronix, Inc. Methods and apparatus providing multiple concurrent acquisition modes in a digitizing measurement instrument
US20060241110A1 (en) * 2003-01-14 2006-10-26 Morgan Bradley P Compounds, compositions, and methods
US20050159416A1 (en) * 2003-01-14 2005-07-21 Morgan Bradley P. Compounds, compositions and methods
US20040229937A1 (en) * 2003-02-28 2004-11-18 Jacques Dumas Substituted pyridine derivatives useful in the treatment of cancer and other disorders
US20050032798A1 (en) * 2003-02-28 2005-02-10 Stephen Boyer 2-Oxo-1,3,5-perhydrotriazapine derivatives useful in the treatment of hyper-proliferative, angiogenesis, and inflammatory disorders
US20050038031A1 (en) * 2003-02-28 2005-02-17 Jacques Dumas Novel bicyclic urea derivatives useful in the treatment of cancer and other disorders
US20040235829A1 (en) * 2003-02-28 2004-11-25 Scott William J. Novel cyanopyridine derivatives useful in the treatment of cancer and other disorders
US20050059703A1 (en) * 2003-05-20 2005-03-17 Scott Wilhelm Diaryl ureas for diseases mediated by PDGFR
US20060014761A1 (en) * 2004-06-17 2006-01-19 Morgan Bradley P Compounds, compositions and methods
US20060025470A1 (en) * 2004-07-27 2006-02-02 Morgan Bradley P Syntheses of ureas
US7176222B2 (en) * 2004-07-27 2007-02-13 Cytokinetics, Inc. Syntheses of ureas
US20070066626A1 (en) * 2005-08-04 2007-03-22 Morgan Bradley P Compounds, compositions and methods
US20070197505A1 (en) * 2005-12-15 2007-08-23 Morgan Bradley P Certain chemical entities, compositions and methods
US20070197497A1 (en) * 2005-12-19 2007-08-23 Morgan Bradley P Compounds, compositions and methods
US20070195704A1 (en) * 2006-02-23 2007-08-23 Gonzalez Ron E Method of evaluating data processing system health using an I/O device

Cited By (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090176307A1 (en) * 2003-01-14 2009-07-09 Cytokinetics, Inc. Compounds, Compositions and Methods
US8101617B2 (en) 2004-06-17 2012-01-24 Amgen, Inc. Disubstituted ureas and uses thereof in treating heart failure
US20090036447A1 (en) * 2004-06-17 2009-02-05 Cytokinetics, Inc. Compounds, Compositions and Methods
US20090099198A1 (en) * 2004-06-17 2009-04-16 Cytokinetics, Inc. Compounds, Compositions and Methods
US9643925B2 (en) 2004-06-17 2017-05-09 Cytokinetics, Incorporated Compounds, compositions and methods
US10975034B2 (en) 2004-06-17 2021-04-13 Cytokinetics, Inc. Compounds, compositions and methods
US8513257B2 (en) 2004-06-17 2013-08-20 Cytokinetics, Incorporated Ureas and their use in the treatment of heart failure
US10385023B2 (en) 2004-06-17 2019-08-20 Cytokinetics, Inc. Compounds, compositions and methods
US10035770B2 (en) 2004-06-17 2018-07-31 Cytokinetics, Incorporated Compounds, compositions and methods
US9150564B2 (en) 2004-06-17 2015-10-06 Cytokinetics, Inc. Compounds, compositions and methods
US8110595B2 (en) 2004-06-17 2012-02-07 Cytokinetics, Inc. Ureas and their use in the treatment of heart failure
US8871769B2 (en) 2004-06-17 2014-10-28 Cytokinetics, Inc. Ureas and their use in the treatment of heart failure
US20070208000A1 (en) * 2005-12-15 2007-09-06 Morgan Bradley P Certain chemical entities, compositions and methods
US8871768B2 (en) 2005-12-15 2014-10-28 Cytokinetics, Inc. Certain chemical entities, compositions and methods
US7825120B2 (en) 2005-12-15 2010-11-02 Cytokinetics, Inc. Certain substituted ((piperazin-1-ylmethyl)benzyl)ureas
US20100029680A1 (en) * 2005-12-15 2010-02-04 Cytokinetics, Inc. Certain Chemical Entities, Compositions and Methods
US8445495B2 (en) 2005-12-15 2013-05-21 Cytokinetics, Inc. Certain Chemical entities, compositions and methods
US20090247544A1 (en) * 2005-12-15 2009-10-01 Cytokinetics, Inc. Certain Chemical Entities, Compositions and Methods
US20070197504A1 (en) * 2005-12-15 2007-08-23 Morgan Bradley P Certain chemical entities, compositions and methods
US8653081B2 (en) 2005-12-16 2014-02-18 Cytokinetics, Inc. Certain chemical entities, compositions, and methods
US8410108B2 (en) 2005-12-16 2013-04-02 Cytokinetics, Inc. Certain chemical entities, compositions and methods
US20100210634A1 (en) * 2005-12-16 2010-08-19 Cytokinetics, Inc. Certain Chemical Entities, Compositions and Methods
US7718657B2 (en) 2005-12-16 2010-05-18 Cytokinetics, Inc. Certain indanyl urea modulators of the cardiac sarcomere
US20070197507A1 (en) * 2005-12-16 2007-08-23 Morgan Bradley P Certain chemical entities, compositions and methods
US7989455B2 (en) 2005-12-19 2011-08-02 Cytokinetics, Inc. Compounds, compositions and methods
US20070197497A1 (en) * 2005-12-19 2007-08-23 Morgan Bradley P Compounds, compositions and methods
US9895308B2 (en) * 2013-03-14 2018-02-20 Amgen Inc. Heterocyclic compounds and their uses
KR102374159B1 (ko) * 2013-03-14 2022-03-15 암젠 인크 복소환식 화합물 및 그들의 용도
KR20150136063A (ko) * 2013-03-14 2015-12-04 암젠 인크 복소환식 화합물 및 그들의 용도
US9951015B2 (en) * 2013-03-14 2018-04-24 Amgen Inc. Heterocyclic compounds and their uses
US9988354B2 (en) 2013-03-14 2018-06-05 Amgen Inc. Salt of omecamtiv mecarbil and process for preparing salt
AU2014240049B2 (en) * 2013-03-14 2018-07-19 Amgen Inc. Heterocyclic compounds and their uses
CN105120844A (zh) * 2013-03-14 2015-12-02 美国安进公司 杂环化合物和其用途
AU2014240104B2 (en) * 2013-03-14 2018-11-08 Amgen Inc. Heterocyclic compounds and their uses
CN108785265A (zh) * 2013-03-14 2018-11-13 美国安进公司 杂环化合物和其用途
EA031185B1 (ru) * 2013-03-14 2018-11-30 Эмджен Инк. Гетероциклические соединения и способы их применения
AU2014240049C1 (en) * 2013-03-14 2019-03-07 Amgen Inc. Heterocyclic compounds and their uses
TWI667026B (zh) * 2013-03-14 2019-08-01 美商安美基公司 雜環化合物及其用途
WO2014152236A1 (en) * 2013-03-14 2014-09-25 Amgen Inc. Heterocyclic compounds and their uses
US10421726B2 (en) 2013-03-14 2019-09-24 Amgen Inc. Heterocyclic compounds and their uses
WO2014152198A1 (en) * 2013-03-14 2014-09-25 Amgen Inc. Heterocyclic compounds and their uses
US20160015628A1 (en) * 2013-03-14 2016-01-21 Amgen Inc. Heterocyclic compounds and their uses
KR20220045014A (ko) * 2013-03-14 2022-04-12 암젠 인크 복소환식 화합물 및 그들의 용도
US11384053B2 (en) * 2013-03-14 2022-07-12 Cytokinetics, Inc. Heterocyclic compounds and their uses
US20220298114A1 (en) * 2013-03-14 2022-09-22 Cytokinetics, Inc. Heterocyclic compounds and their uses
US20240217933A1 (en) * 2013-03-14 2024-07-04 Cytokinetics, Inc. Heterocyclic compounds and their uses
US11472773B2 (en) 2013-03-14 2022-10-18 Cytokinetics, Inc. Salt of omecamtiv mecarbil and process for preparing salt
US11958809B2 (en) 2013-03-14 2024-04-16 Cytokinetics, Inc. Salt of omecamtiv mecarbil and process for preparing salt
KR102474467B1 (ko) * 2013-03-14 2022-12-05 암젠 인크 복소환식 화합물 및 그들의 용도
US11884630B2 (en) * 2013-03-14 2024-01-30 Cytokinetics, Inc. Heterocyclic compounds and their uses
US11753394B2 (en) 2017-06-30 2023-09-12 Amgen Inc. Synthesis of omecamtiv mecarbil
US11576910B2 (en) 2017-06-30 2023-02-14 Amgen Inc. Methods of treating heart failure with cardiac sarcomere activators
US11931358B2 (en) 2017-06-30 2024-03-19 Amgen Inc. Methods of treating heart failure with cardiac sarcomere activators
US11926592B2 (en) 2018-08-17 2024-03-12 Amgen Inc. Salts and crystal forms of omecamtiv mecarbil
US11465969B2 (en) 2018-08-17 2022-10-11 Cytokinetics, Inc. Salts and crystal forms of omecamtiv mecarbil
CN115279349A (zh) * 2020-02-10 2022-11-01 安进股份有限公司 奥美卡替莫卡必尔片剂
US11702380B2 (en) 2021-03-10 2023-07-18 Amgen Inc. Synthesis of omecamtiv mecarbil
US11986474B1 (en) 2023-06-27 2024-05-21 Cytokinetics, Incorporated Methods for treating heart failure by administering cardiac sarcomere activators

Also Published As

Publication number Publication date
ES2419007T3 (es) 2013-08-19
EP1959960B1 (en) 2013-04-10
EP1959960A2 (en) 2008-08-27
US20130324549A1 (en) 2013-12-05
EP1959960A4 (en) 2010-08-04
AR058347A1 (es) 2008-01-30
JP2009519951A (ja) 2009-05-21
JP5301284B2 (ja) 2013-09-25
WO2007070683A3 (en) 2008-11-20
TW200808321A (en) 2008-02-16
US8445495B2 (en) 2013-05-21
WO2007070683A2 (en) 2007-06-21
US8871768B2 (en) 2014-10-28
US20100029680A1 (en) 2010-02-04
PE20071161A1 (es) 2008-02-03

Similar Documents

Publication Publication Date Title
US10975034B2 (en) Compounds, compositions and methods
US8871768B2 (en) Certain chemical entities, compositions and methods
US7989455B2 (en) Compounds, compositions and methods
US20090192168A1 (en) Compounds, Compositions and Methods
US20070208000A1 (en) Certain chemical entities, compositions and methods
AU2011253934C1 (en) Substituted urea derivatives for treating cardiac diseases

Legal Events

Date Code Title Description
AS Assignment

Owner name: CYTOKINETICS, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MORGAN, BRADLEY P.;MORGANS, DAVID J., JR.;MUCI, ALEX;AND OTHERS;REEL/FRAME:019025/0214;SIGNING DATES FROM 20070211 TO 20070222

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION