US20070141803A1 - Methods for making substrates and substrates formed therefrom - Google Patents

Methods for making substrates and substrates formed therefrom Download PDF

Info

Publication number
US20070141803A1
US20070141803A1 US11/505,668 US50566806A US2007141803A1 US 20070141803 A1 US20070141803 A1 US 20070141803A1 US 50566806 A US50566806 A US 50566806A US 2007141803 A1 US2007141803 A1 US 2007141803A1
Authority
US
United States
Prior art keywords
substrate
seed layer
layer
thermal expansion
expansion coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/505,668
Other languages
English (en)
Inventor
Alice Boussagol
Bruce Faure
Bruno Ghyselen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Soitec SA
Original Assignee
Soitec SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Soitec SA filed Critical Soitec SA
Assigned to S.O.I.TEC SILICON ON INSULATOR TECHNOLOGIES S.A. reassignment S.O.I.TEC SILICON ON INSULATOR TECHNOLOGIES S.A. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FAURE, BRUCE, GHYSELEN, BRUNO, BOUSSAGOL, ALICE
Priority to KR1020087014900A priority Critical patent/KR20080078679A/ko
Priority to PCT/EP2006/070109 priority patent/WO2007071772A1/fr
Priority to TW095148275A priority patent/TWI324357B/zh
Priority to CN2006800478498A priority patent/CN101341580B/zh
Priority to EP06841567A priority patent/EP1979933A1/fr
Publication of US20070141803A1 publication Critical patent/US20070141803A1/en
Priority to US11/840,696 priority patent/US7615468B2/en
Priority to US12/536,082 priority patent/US7839001B2/en
Priority to US12/914,194 priority patent/US7939428B2/en
Assigned to SOITEC reassignment SOITEC CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: S.O.I.TEC SILICON ON INSULATOR TECHNOLOGIES
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76251Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques
    • H01L21/76254Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques with separation/delamination along an ion implanted layer, e.g. Smart-cut, Unibond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • H01L21/2003Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy characterised by the substrate
    • H01L21/2007Bonding of semiconductor wafers to insulating substrates or to semiconducting substrates using an intermediate insulating layer

Definitions

  • the present invention relates to methods for making substrates and substrates for use in optics, electronics or opto-electronics and, in particular, substrates which may be used for making solar cells, light-emitting diodes and lasers.
  • a thin layer taken from a donor substrate is transferred onto a receiving supporting substrate to obtain substrates including a thin useful layer.
  • Useful layer is the layer of the substrate on which electronic components such as, for example, light-emitting diodes or other components may be made.
  • the thin layer is deposited on a receiving supporting substrate by a deposition technique.
  • This deposition technique may notably consist of epitaxy or chemical vapor deposition.
  • Such removal of the receiving support results in loss of materials, thereby putting a strain on the manufacturing costs of such substrates.
  • a method for making substrates which includes a useful thin layer method in which the receiving supporting substrate is removed in order to be recycled.
  • a useful thin layer method in which the receiving supporting substrate is removed in order to be recycled.
  • This method includes a step for transferring a seed layer on a receiving support by molecular adhesion at a bonding interface, a step for epitaxy of a useful layer on the seed layer and a step for applying stresses in order to lead to removal of the assembly (i.e., removal of the seed layer and of the useful layer from the receiving support at the bonding interface).
  • Seed layer is the material layer which allows development of the epitaxied useful layer.
  • the invention relates to a method for making substrates for optics, electronics, or opto-electronics which includes providing a donor substrate and a receiving substrate, wherein the receiving substrate has a thermal expansion coefficient; operably connecting the donor substrate to the receiving substrate; forming a seed layer on the receiving substrate, wherein the seed layer has a surface and a thermal expansion coefficient; and epitaxy of a useful layer on the seed layer, wherein the useful layer has a thermal expansion coefficient.
  • the thermal expansion coefficient of the receiving substrate is equal to or greater than the thermal expansion coefficient of the useful layer
  • the thermal expansion coefficient of the seed layer is about the same as the thermal expansion coefficient of the receiving substrate so that the seed layer and the receiving support expand in substantially the same way to avoid stressing or deforming the seed layer.
  • the method for making substrates includes providing a donor substrate and a receiving support; forming a seed layer from the donor substrate; transferring the seed layer onto the receiving support; and forming a useful layer on the seed layer.
  • the thermal expansion coefficient of the receiving support is equal to or greater than the thermal expansion coefficient of the useful layer
  • the thermal expansion coefficient of the seed layer is about equal to the thermal expansion coefficient of the receiving support so that the seed layer and the receiving support expand in substantially the same way to avoid stressing or deforming the seed layer.
  • the seed layer and the receiving support may substantially expand in the same way.
  • the receiving support may expand slightly less than the seed layer so that the seed layer may be placed under slight compression avoiding any deterioration of the seed layer.
  • the seed layer may consist of a material for which the thermal expansion coefficient is equal to (1+ ⁇ ) times that of the receiving support, with ⁇ of the order of 0.2, and preferably ⁇ equals 0.1.
  • the useful layer may consist of a material for which the thermal expansion coefficient may be larger than or equal to (1 ⁇ ′) times that of the receiving support, with a typical value of 0.2 for ⁇ ′.
  • the seed layer and/or the receiving support may be made of, for example, silicon, germanium, silicon carbide, GaN or sapphire.
  • the chemical composition of the seed layer advantageously, may be identical to that of the receiving support.
  • a composite substrate may be created using the method described herein.
  • the composite substrate may be used for optics, electronics, or opto-electronics,
  • the substrate may have at least one seed layer on a receiving support, and an epitaxied useful layer on the seed layer.
  • the thermal expansion coefficient of the receiving support may be identical to or slightly larger than the thermal expansion coefficient of the useful layer, and the thermal expansion coefficient of the seed layer may be substantially equal to the thermal expansion coefficient of the receiving support so that the seed layer and the receiving support-expand in substantially the same way to avoid stressing or deforming the seed layer.
  • FIG. 1 is a schematic illustration of the steps of an exemplary embodiment of a method for making a substrate.
  • FIG. 2 is a schematic illustration of the steps of an alternative exemplary embodiment of a method for making a substrate.
  • the method according to the invention includes a step for implanting atomic species at a determined depth in a donor substrate 1 in order to form a weakened area 2 .
  • the donor substrate may be boned upon or otherwise adhered onto a receiving substrate 3 by any appropriate means known in the art.
  • bonding may mean intimate contact of the donor substrate 1 with the receiving substrate 3 in order to join the donor substrate 1 and the receiving substrate 3 by molecular adhesion.
  • Bonding may be obtained according to various methods such as, for example, (1) having a surface of the donor substrate 1 come into direct contact with a surface of the receiving substrate; (2) forming a bonding layer in order to make a connecting layer on the surface of the donor substrate 1 , forming a bonding layer in order to make a second connecting layer on the surface of the receiving supporting substrate 3 and having the surfaces of the respective connecting layers of the donor substrate 1 and the donor substrate 3 come into contact with each other; and (3) forming a bonding layer on only one of both substrates.
  • the bonding layer may consist of, for example, an insulating layer or a dielectric layer.
  • the donor substrate 1 may be bonded onto the receiving substrate 3 by means of a bonding layer 4 deposited on the surface of the donor substrate and/or the receiving substrate 3 .
  • an annealing step may be applied at this stage for strengthening the bonding interface between the bonding layer 4 and the surface of the donor substrate 1 and/or the receiving substrate 3 . Nonetheless, bonding may be achieved according to any of the methods known to one skilled in the art.
  • a seed layer 5 may be detached from the donor substrate 1 at the weakened area 2 .
  • a useful layer 6 may be deposited on the surface of the seed layer 5 .
  • the useful layer 6 may be obtained by epitaxy, which is well known to one skilled in the art, according to step 300 .
  • the step 200 for implanting atomic species and for detaching the seed layer 5 corresponds to a SMART-CUT® method, a general description of which is found in the publication Silicon-On-Insulator Technology: Materials to VLSI, 2nd Edition of Jean-Pierre Colinge, Kluwer Academic Publishers, p. 50 and 51.
  • detachment of the seed layer 5 and of the donor substrate 1 may be achieved by an operation such as, for example, heat treatment, application of mechanical stresses, chemical etching, or a combination of at least two of these operations.
  • the seed layer 5 may consist of a material for which the thermal expansion coefficient is equal to (1+ ⁇ ) times that of the receiving support 3 , with ⁇ of the order of 0.2, and preferably ⁇ equals 0.1. It will however be observed that thermal expansion may vary with temperature, with the deposition technique, with the defects present inside the layers and also with the measurement techniques. Thus, when the structure is undergoing heat treatments (e.g., during detachment of the seed layer 5 and the useful layer 6 of the receiving substrate 3 ) the seed layer 5 and the receiving support 3 will substantially expand in the same way. The receiving support 3 will expand slightly less than the seed layer 5 so that the latter may be placed under slight compression, thereby avoiding deterioration of the seed layer 5 .
  • the useful layer 6 may consist of a material which has a thermal expansion coefficient which is larger than or equal to (1 ⁇ ′) times that of the receiving support 3 , with the value of ⁇ ′ between 0 and 0.8 and, preferably, between 0.2 and 0.3. Expansions of the different layers 5 , 6 and the receiving support 3 of the same order of magnitude during heat treatments may be obtained because of the closeness of the thermal expansion coefficients of the useful layer 6 , the seed layer 5 and the receiving support 3 . In this way, any risk of deterioration of the substrate or occurrence of a residual deflection of the final substrate may be avoided.
  • the seed layer 5 and/or the receiving support 3 may comprise a material such as, for example, silicon (e.g., ⁇ 111 ⁇ silicon), germanium, polycrystalline or monocrystalline silicon carbide, GaN, polycrystalline or monocrystalline AlN, and sapphire. Further, the chemical composition of the seed layer 5 may be identical with that of the receiving support 3 .
  • the method may also include steps for preparing the surface of the seed layer 5 .
  • These preparation steps may include, for example, polishing, annealing, smooth annealing operations (e.g., under hydrogen), annealing operations for strengthening the bond, sacrificial oxidization interface operations (i.e., for oxidizing and then removing the oxidized material), etching operations, etc.
  • Step 400 may lead to detachment at the bonding layer 4 of the assembly, consisting of the seed layer 5 and the useful layer 6 , from the receiving support 3 . If a self-supported substrate is desired, the assembly formed by the seed layer 5 and the useful layer 6 may only be able to be detached from the receiving support 3 if the thickness of the assembly is greater than or equal to 50 ⁇ m.
  • detachment may be accomplished by application of mechanical, thermal, electrostatic stresses; application of any type of etching (wet, dry, gas, etching, plasma etching, etc.) and/or application of any type of etching by irradiation such as laser irradiation (e.g., by chemical etchings at the bonding layer 4 ), or the like.
  • the receiving substrate 3 which may either be destroyed or recycled in order to reuse it during the making of a new substrate, may then be obtained on the one hand, and a structure consisting of the seed layer 5 and the useful layer 6 may be obtained on the other hand.
  • the useful layer 6 may be transferred onto a final supporting substrate 7 .
  • the final support 7 may be made of a material such as, for example, semi-conducting or semi-conductive materials (e.g., silicon, germanium, etc.), metals (e.g., copper), plastic materials and glasses. Since the resultant structure no longer undergoes any heat treatment, the final supporting substrate 7 may be made with any material which has a thermal expansion coefficient and/or a lattice parameter different from those of the useful layer 6 .
  • the useful layer 6 may be transferred onto the final supporting substrate 7 by bonding.
  • the bond may be obtained by applying a bonding layer 8 on one of the surfaces of the useful layer 6 and/or the final supporting substrate 7 . Similar to selecting the final substrate 7 , the bonding techniques applied in this step are not limited by temperature resistance, contaminations, the thermal expansion coefficient and/or the lattice parameter of the useful layer 6 .
  • the layer 8 used may comprise, for example, organic layers (e.g., insulating layers of the SiO 2 , Si 3 N 4 , or polyimides), conductive metal interfaces and seals (e.g., palladium silicide Pd 2 Si, tungsten silicide WSi 2 , SiAu, or PdIn).
  • the conductive interfaces may then provide the contact on the rear face of the layer.
  • the buried structure may consist of a triple junction based on amorphous silicon of the n-i-p type.
  • This buried structure may have a lower layer (i.e., a rear contact layer) consisting of metallization, such as silver (Ag) or aluminium (Al), on which a conducting transparent oxide may be deposited.
  • the rear contact layer on the one hand, may provide an electrical contact with which the triple junction solar cell may be connected and a rear mirror, on the other hand, allowing reflection of light which has not been absorbed by the solar cell.
  • the latter may consist of three amorphous silicon layers (of type n, i and p, respectively) successively deposited on the rear contact layer. It will be appreciated by those skilled in that art that when making LEDs, mirrors may also be buried in the bonding layer 8 .
  • the useful layer 6 and the seed layer 5 may be transferred onto the final supporting substrate 7 with or without the bonding layer 8 prior to removing the seed layer 5 .
  • atomic species may be implanted in the same way as previously discussed—at a determined depth of a donor substrate 1 —in order to form a weakened area 2 .
  • the donor substrate 1 in step 100 may then be adhered on a receiving substrate 3 by any appropriate means.
  • a seed layer 5 may be detached from the donor substrate 1 at the weakened area 2 .
  • a useful layer 6 may be deposited on the surface of the seed layer 5 . Detachment of the seed layer 5 and the donor substrate 1 may be achieved by an operation such as, for example, heat treatment, application of mechanical stresses and chemical etching, or a combination of at least two of these operations.
  • the seed layer 5 may originate from the thinning of the donor substrate (for example according to a BESOI type method) before depositing the useful layer 6 .
  • the final supporting substrate 7 may then be transferred onto the useful layer 6 by means of a bonding layer 8 . Stresses may be applied in order detach the structure, which may consist of the seed layer 5 , the useful layer 6 , the bonding layer 8 and the final supporting substrate 7 , from the receiving support 3 at the bonding layer 4 .
  • a receiving substrate 3 ready to be recycled, may be obtained on the one hand and a structure consisting of the seed layer 5 , the useful layer 6 , the bonding layer 8 and the final supporting substrate 7 may be obtained on the other hand.
  • the seed layer 5 may then be removed by any appropriate means in order to obtain the final substrate.
  • the substrates are intended for making solar cells (Example 1) and light-emitting diodes (Example 2). It should be noted, however, that the examples are not intended to be limiting as to the fields of application of the invention.
  • a weakened area 2 may be made by implanting atomic species at a determined depth in the donor substrate 1 which may be made of, for example, germanium (Ge).
  • the receiving substrate 3 which may also be made of Ge, may be bonded to the donor substrate 1 by means of a bonding layer 4 .
  • the bonding layer 4 preferably made of nitride or oxide, may be formed on the face of at least one of the donor 1 or receiving 3 substrates.
  • a seed layer 5 of Ge may be detached from the donor substrate 1 at the weakened area 2 using the SMART-CUT® method as described herein.
  • the seed layer 5 of Ge may have a thermal expansion coefficient (which is also noted as CTE) which varies from 4.6 to 6.67 10 ⁇ 6 for temperatures ranging from 25° C. to 600° C.
  • Detachment of the seed layer 5 and the donor substrate 1 may be achieved by an operation such as, for example, heat treatment, application of mechanical stresses and chemical etching, or a combination of at least two of these operations.
  • a useful gallium arsenide layer 6 may then be deposited on the surface of the seed layer 5 .
  • the CTE of AsGa may be from 5.00 to 7.4 10 ⁇ 6 for temperatures ranging from 25° C. to 600° C.
  • Different layers such as, for example, InP, AsGa, GaInP, InGaAs, InGaAlP, or InGaAsN epitaxied layers, may be successively deposited by epitaxy on the deposit of the AsGa layer in order to form an epitaxial stack for making junctions (e.g., triple junctions, quadruple junctions, etc.).
  • the useful layer 6 may have a crystalline quality at least equal to the crystalline quality which may be obtained by epitaxy on a massive Ge substrate.
  • the useful layer 6 and the seed layer 5 may then be transferred onto a final supporting substrate 7 .
  • the final support 7 may also be contacted with the epitaxial stack if the latter is made beforehand.
  • the final support 7 may be made of a material such as, for example, semi-conductors (e.g., silicon, germanium), plastic materials and glasses. Transfer of the useful layer 6 and the seed layer 5 onto the final supporting substrate 7 may be performed by bonding.
  • the bond may be performed using a bonding layer 8 made of, for example, insulating layers (e.g., SiO 2 , Si 3 N 4 , etc.), organic layers (e.g., polyimides), metal layers (e.g., palladium silicide Pd 2 Si and tungsten silicide WSi 2 ), and seals (e.g., SiAu, PdIn, etc.)
  • insulating layers e.g., SiO 2 , Si 3 N 4 , etc.
  • organic layers e.g., polyimides
  • metal layers e.g., palladium silicide Pd 2 Si and tungsten silicide WSi 2
  • seals e.g., SiAu, PdIn, etc.
  • the final supporting substrate 7 , the seed layer 5 and the useful layer 6 may then be detached by any appropriate means, for example, at the bonding layer 4 from the receiving support 3 .
  • the receiving support 3 may thereafter be recycled advantageously. This detachment may be obtained by applying stresses at the bonding interface such as, for example, mechanical stresses, thermal stresses, electrostatic stresses and stresses from laser irradiation. Thereafter, the seed layer may be removed in order to obtain the final substrate

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Recrystallisation Techniques (AREA)
US11/505,668 2000-11-27 2006-08-16 Methods for making substrates and substrates formed therefrom Abandoned US20070141803A1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
KR1020087014900A KR20080078679A (ko) 2005-12-21 2006-12-21 기판들의 제조 방법, 특히 광학, 전자공학 또는 광전자공학분야들에 대한, 및 상기 방법에 의해 구현되는 기판
PCT/EP2006/070109 WO2007071772A1 (fr) 2005-12-21 2006-12-21 Procede de fabrication de substrats, en particulier pour les domaines optique, electronique ou opto-electronique, et substrat obtenu par ce procede
TW095148275A TWI324357B (en) 2005-12-21 2006-12-21 Method for the manufacture of substrates, in particular for the optical, electronic or optoelectronic areas, and the substrate obtained in accordance with the said method
CN2006800478498A CN101341580B (zh) 2005-12-21 2006-12-21 特别是用于光学、电子或光电子领域的基片的制造方法和根据所述方法获得的基片
EP06841567A EP1979933A1 (fr) 2005-12-21 2006-12-21 Procede de fabrication de substrats, en particulier pour les domaines optique, electronique ou opto-electronique, et substrat obtenu par ce procede
US11/840,696 US7615468B2 (en) 2000-11-27 2007-08-17 Methods for making substrates and substrates formed therefrom
US12/536,082 US7839001B2 (en) 2000-11-27 2009-08-05 Methods for making substrates and substrates formed therefrom
US12/914,194 US7939428B2 (en) 2000-11-27 2010-10-28 Methods for making substrates and substrates formed therefrom

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR05/13045 2005-12-21
FR0513045A FR2894990B1 (fr) 2005-12-21 2005-12-21 Procede de fabrication de substrats, notamment pour l'optique,l'electronique ou l'optoelectronique et substrat obtenu selon ledit procede

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/883,437 Continuation-In-Part US7265029B2 (en) 2000-11-27 2004-07-01 Fabrication of substrates with a useful layer of monocrystalline semiconductor material

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US11/840,696 Continuation-In-Part US7615468B2 (en) 2000-11-27 2007-08-17 Methods for making substrates and substrates formed therefrom
US11/840,696 Continuation US7615468B2 (en) 2000-11-27 2007-08-17 Methods for making substrates and substrates formed therefrom

Publications (1)

Publication Number Publication Date
US20070141803A1 true US20070141803A1 (en) 2007-06-21

Family

ID=36648762

Family Applications (4)

Application Number Title Priority Date Filing Date
US11/505,668 Abandoned US20070141803A1 (en) 2000-11-27 2006-08-16 Methods for making substrates and substrates formed therefrom
US11/840,696 Expired - Lifetime US7615468B2 (en) 2000-11-27 2007-08-17 Methods for making substrates and substrates formed therefrom
US12/536,082 Expired - Lifetime US7839001B2 (en) 2000-11-27 2009-08-05 Methods for making substrates and substrates formed therefrom
US12/914,194 Active US7939428B2 (en) 2000-11-27 2010-10-28 Methods for making substrates and substrates formed therefrom

Family Applications After (3)

Application Number Title Priority Date Filing Date
US11/840,696 Expired - Lifetime US7615468B2 (en) 2000-11-27 2007-08-17 Methods for making substrates and substrates formed therefrom
US12/536,082 Expired - Lifetime US7839001B2 (en) 2000-11-27 2009-08-05 Methods for making substrates and substrates formed therefrom
US12/914,194 Active US7939428B2 (en) 2000-11-27 2010-10-28 Methods for making substrates and substrates formed therefrom

Country Status (7)

Country Link
US (4) US20070141803A1 (fr)
EP (1) EP1979933A1 (fr)
KR (1) KR20080078679A (fr)
CN (1) CN101341580B (fr)
FR (1) FR2894990B1 (fr)
TW (1) TWI324357B (fr)
WO (1) WO2007071772A1 (fr)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080261376A1 (en) * 2007-04-20 2008-10-23 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing SOI substrate
US20080286952A1 (en) * 2007-05-18 2008-11-20 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of SOI substrate and manufacturing method of semiconductor device
US20090098739A1 (en) * 2007-10-10 2009-04-16 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing soi substrate
US20090111244A1 (en) * 2007-10-10 2009-04-30 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US20090117680A1 (en) * 2007-11-01 2009-05-07 Shunpei Yamazaki Method for manufacturing photoelectric conversion device
US20090194163A1 (en) * 2008-02-05 2009-08-06 Twin Creeks Technologies, Inc. Method to form a photovoltaic cell comprising a thin lamina
US20090194153A1 (en) * 2008-02-05 2009-08-06 Twin Creeks Technologies, Inc. Photovoltaic cell comprising a thin lamina having low base resistivity and method of making
US20100032010A1 (en) * 2008-08-10 2010-02-11 Twin Creeks Technologies, Inc. Method to mitigate shunt formation in a photovoltaic cell comprising a thin lamina
US20100031995A1 (en) * 2008-08-10 2010-02-11 Twin Creeks Technologies, Inc. Photovoltaic module comprising thin laminae configured to mitigate efficiency loss due to shunt formation
US20100032007A1 (en) * 2008-08-10 2010-02-11 Twin Creeks Technologies, Inc. Photovoltaic cell comprising a thin lamina having a rear junction and method of making
US20100087047A1 (en) * 2008-10-02 2010-04-08 Akihisa Shimomura Method for manufacturing soi substrate
US20100291756A1 (en) * 2008-01-30 2010-11-18 Siltronic Ag Method for the production of a semiconductor structure
US20100311250A1 (en) * 2009-06-09 2010-12-09 International Business Machines Corporation Thin substrate fabrication using stress-induced substrate spalling
US20100330777A1 (en) * 2009-06-24 2010-12-30 Semiconductor Energy Laboratory Co., Ltd. Method for reprocessing semiconductor substrate and method for manufacturing soi substrate
US20100330778A1 (en) * 2009-06-24 2010-12-30 Semiconductor Energy Laboratory Co., Ltd. Method for reprocessing semiconductor substrate and method for manufacturing soi substrate
US20110053345A1 (en) * 2009-08-25 2011-03-03 Semiconductor Energy Laboratory Co., Ltd. Method for reprocessing semiconductor substrate, method for manufacturing reprocessed semiconductor substrate, and method for manufacturing soi substrate
US20110049588A1 (en) * 2009-08-25 2011-03-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor Device and Manufacturing Method Thereof
US20110065263A1 (en) * 2009-08-25 2011-03-17 Semiconductor Energy Laboratory Co., Ltd. Method for reprocessing semiconductor substrate, method for manufacturing reprocessed semiconductor substrate, and method for manufacturing soi substrate
US20110086492A1 (en) * 2009-10-09 2011-04-14 Semiconductor Energy Laboratory Co., Ltd. Reprocessing method of semiconductor substrate, manufacturing method of reprocessed semiconductor substrate, and manufacturing method of soi substrate
US20110186958A1 (en) * 2010-02-03 2011-08-04 Semiconductor Energy Laboratory Co., Ltd. Soi substrate and manufacturing method thereof
US8324086B2 (en) 2008-01-16 2012-12-04 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a semiconductor substrate by laser irradiation
US20130143336A1 (en) * 2010-09-10 2013-06-06 VerLASE TECHNOLOGIES LLC Methods of Fabricating Optoelectronic Devices Using Layers Detached from Semiconductor Donors and Devices Made Thereby
US8530336B2 (en) 2010-11-12 2013-09-10 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor substrate
US8598013B2 (en) 2007-10-10 2013-12-03 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing SOI substrate and semiconductor device
US8823127B2 (en) 2009-06-09 2014-09-02 International Business Machines Corporation Multijunction photovoltaic cell fabrication
US9123529B2 (en) 2011-06-21 2015-09-01 Semiconductor Energy Laboratory Co., Ltd. Method for reprocessing semiconductor substrate, method for manufacturing reprocessed semiconductor substrate, and method for manufacturing SOI substrate
US10002763B2 (en) 2000-11-27 2018-06-19 Soitec Fabrication of substrates with a useful layer of monocrystalline semiconductor material
US20220393003A1 (en) * 2021-06-08 2022-12-08 Wafer Works Corporation Composite substrate and manufacturing method thereof
CN115863149A (zh) * 2022-12-12 2023-03-28 中国科学院上海微系统与信息技术研究所 氧化镓结构的制备方法

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008526010A (ja) * 2004-12-28 2008-07-17 エス. オー. アイ. テック シリコン オン インシュレーター テクノロジーズ 低いホール密度を有する薄層を得るための方法
US9117966B2 (en) * 2007-09-24 2015-08-25 Solaero Technologies Corp. Inverted metamorphic multijunction solar cell with two metamorphic layers and homojunction top cell
JP2009141093A (ja) * 2007-12-06 2009-06-25 Toshiba Corp 発光素子及び発光素子の製造方法
FR2926674B1 (fr) * 2008-01-21 2010-03-26 Soitec Silicon On Insulator Procede de fabrication d'une structure composite avec couche d'oxyde de collage stable
JP5250321B2 (ja) * 2008-07-04 2013-07-31 昭和電工株式会社 炭化珪素単結晶成長用種結晶の製造方法並びに炭化珪素単結晶の製造方法
TWI457984B (zh) * 2008-08-06 2014-10-21 Soitec Silicon On Insulator 應變層的鬆弛方法
EP2159836B1 (fr) * 2008-08-25 2017-05-31 Soitec Couches de durcissement pour le relâchement de couches contraintes
FR2942910B1 (fr) * 2009-03-06 2011-09-30 Soitec Silicon On Insulator Procede de fabrication d'une heterostructure visant a reduire l'etat de contrainte en tension du substrat donneur
KR101119009B1 (ko) * 2009-03-09 2012-03-14 한국과학기술연구원 이온주입에 의한 분리를 이용한 발광소자 제조 방법
FR2943174B1 (fr) * 2009-03-12 2011-04-15 Soitec Silicon On Insulator Adaptation du parametre de maille d'une couche de materiau contraint
US8633097B2 (en) * 2009-06-09 2014-01-21 International Business Machines Corporation Single-junction photovoltaic cell
US8580593B2 (en) * 2009-09-10 2013-11-12 Micron Technology, Inc. Epitaxial formation structures and associated methods of manufacturing solid state lighting devices
US9012253B2 (en) * 2009-12-16 2015-04-21 Micron Technology, Inc. Gallium nitride wafer substrate for solid state lighting devices, and associated systems and methods
US8647962B2 (en) 2010-03-23 2014-02-11 Taiwan Semiconductor Manufacturing Company, Ltd. Wafer level packaging bond
FR2961948B1 (fr) * 2010-06-23 2012-08-03 Soitec Silicon On Insulator Procede de traitement d'une piece en materiau compose
SG177816A1 (en) * 2010-07-15 2012-02-28 Soitec Silicon On Insulator Methods of forming bonded semiconductor structures, and semiconductor structures formed by such methods
US8629426B2 (en) * 2010-12-03 2014-01-14 Taiwan Semiconductor Manufacturing Company, Ltd. Source/drain stressor having enhanced carrier mobility manufacturing same
JP5696543B2 (ja) * 2011-03-17 2015-04-08 セイコーエプソン株式会社 半導体基板の製造方法
JP2012230969A (ja) * 2011-04-25 2012-11-22 Sumitomo Electric Ind Ltd GaN系半導体デバイスの製造方法
FR2977069B1 (fr) 2011-06-23 2014-02-07 Soitec Silicon On Insulator Procede de fabrication d'une structure semi-conductrice mettant en oeuvre un collage temporaire
RU2469433C1 (ru) * 2011-07-13 2012-12-10 Юрий Георгиевич Шретер Способ лазерного отделения эпитаксиальной пленки или слоя эпитаксиальной пленки от ростовой подложки эпитаксиальной полупроводниковой структуры (варианты)
KR101847941B1 (ko) * 2012-02-08 2018-04-11 삼성전자주식회사 반도체 발광소자 및 그 제조방법
WO2013129572A1 (fr) * 2012-02-29 2013-09-06 京セラ株式会社 Substrat composite
US9105561B2 (en) * 2012-05-14 2015-08-11 The Boeing Company Layered bonded structures formed from reactive bonding of zinc metal and zinc peroxide
FR3007891B1 (fr) * 2013-06-28 2016-11-25 Soitec Silicon On Insulator Procede de fabrication d'une structure composite
CN107750400A (zh) * 2015-06-19 2018-03-02 Qmat股份有限公司 接合和释放层转移工艺
US9444019B1 (en) * 2015-09-21 2016-09-13 Epistar Corporation Method for reusing a substrate for making light-emitting device
CN106783998A (zh) * 2016-12-16 2017-05-31 中国电子科技集团公司第五十五研究所 一种基于金刚石衬底的氮化镓高电子迁移率晶体管及其制备方法
CN110349843B (zh) * 2019-07-26 2021-12-21 京东方科技集团股份有限公司 薄膜晶体管及其制备方法、生物识别器件、显示装置
CN110600435A (zh) * 2019-09-05 2019-12-20 方天琦 多层复合基板结构及其制备方法

Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5229305A (en) * 1992-02-03 1993-07-20 Motorola, Inc. Method for making intrinsic gettering sites in bonded substrates
US5374564A (en) * 1991-09-18 1994-12-20 Commissariat A L'energie Atomique Process for the production of thin semiconductor material films
US5759908A (en) * 1995-05-16 1998-06-02 University Of Cincinnati Method for forming SiC-SOI structures
US5869387A (en) * 1992-01-30 1999-02-09 Canon Kabushiki Kaisha Process for producing semiconductor substrate by heating to flatten an unpolished surface
US5877070A (en) * 1997-05-31 1999-03-02 Max-Planck Society Method for the transfer of thin layers of monocrystalline material to a desirable substrate
US5880491A (en) * 1997-01-31 1999-03-09 The United States Of America As Represented By The Secretary Of The Air Force SiC/111-V-nitride heterostructures on SiC/SiO2 /Si for optoelectronic devices
US5953662A (en) * 1996-04-30 1999-09-14 Ericsson, Inc. Dual home location registers in a mobile radio system
US5985687A (en) * 1996-04-12 1999-11-16 The Regents Of The University Of California Method for making cleaved facets for lasers fabricated with gallium nitride and other noncubic materials
US6020252A (en) * 1996-05-15 2000-02-01 Commissariat A L'energie Atomique Method of producing a thin layer of semiconductor material
US6103597A (en) * 1996-04-11 2000-08-15 Commissariat A L'energie Atomique Method of obtaining a thin film of semiconductor material
US6114188A (en) * 1996-04-12 2000-09-05 Northeastern University Method of fabricating an integrated complex-transition metal oxide device
US6190998B1 (en) * 1996-05-15 2001-02-20 Commissariat A L'energie Atomique Method for achieving a thin film of solid material and applications of this method
US6251754B1 (en) * 1997-05-09 2001-06-26 Denso Corporation Semiconductor substrate manufacturing method
US6303468B1 (en) * 1997-08-12 2001-10-16 Commissariat A L'energie Atomique Method for making a thin film of solid material
US6328796B1 (en) * 1999-02-01 2001-12-11 The United States Of America As Represented By The Secretary Of The Navy Single-crystal material on non-single-crystalline substrate
US6426270B1 (en) * 1999-02-02 2002-07-30 Canon Kabushiki Kaisha Substrate processing method and method of manufacturing semiconductor substrate
US6534382B1 (en) * 1996-12-18 2003-03-18 Canon Kabushiki Kaisha Process for producing semiconductor article
US20030143772A1 (en) * 2002-01-30 2003-07-31 United Epitaxy Co., Ltd. High efficiency light emitting diode and method of making the same
US20030219959A1 (en) * 2000-11-27 2003-11-27 Bruno Ghyselen Methods for fabricating final substrates
US20030232487A1 (en) * 2002-06-11 2003-12-18 Fabrice Letertre Fabrication of substrates with a useful layer of monocrystalline semiconductor material
US20040029359A1 (en) * 2000-11-27 2004-02-12 Fabrice Letertre Methods for fabricating a substrate
US6756286B1 (en) * 1997-12-30 2004-06-29 Commissariat A L'energie Atomique Method for transferring a thin film comprising a step of generating inclusions
US20040219959A1 (en) * 2003-05-01 2004-11-04 Ali Khayrallah Multiple antenna receiver
US6946317B2 (en) * 2003-05-27 2005-09-20 S.O.I.Tec Silicon On Insulator Technologies S.A. Method of fabricating heteroepitaxial microstructures
US7029993B1 (en) * 1999-08-20 2006-04-18 S.O.I.Tec Silicon On Insulator Technologies S.A. Method for treating substrates for microelectronics and substrates obtained according to said method
US20070072324A1 (en) * 2005-09-27 2007-03-29 Lumileds Lighting U.S., Llc Substrate for growing a III-V light emitting device

Family Cites Families (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4001864A (en) 1976-01-30 1977-01-04 Gibbons James F Semiconductor p-n junction solar cell and method of manufacture
US4255211A (en) 1979-12-31 1981-03-10 Chevron Research Company Multilayer photovoltaic solar cell with semiconductor layer at shorting junction interface
EP0506146A2 (fr) 1980-04-10 1992-09-30 Massachusetts Institute Of Technology Méthode de fabrication de feuilles en matériau cristallin
US4338480A (en) 1980-12-29 1982-07-06 Varian Associates, Inc. Stacked multijunction photovoltaic converters
US4612408A (en) 1984-10-22 1986-09-16 Sera Solar Corporation Electrically isolated semiconductor integrated photodiode circuits and method
IL79735A0 (en) 1985-09-09 1986-11-30 Hughes Aircraft Co Thin semiconductor structures
US4686323A (en) 1986-06-30 1987-08-11 The Standard Oil Company Multiple cell, two terminal photovoltaic device employing conductively adhered cells
US5217539A (en) 1991-09-05 1993-06-08 The Boeing Company III-V solar cells and doping processes
US5053083A (en) 1989-05-08 1991-10-01 The Board Of Trustees Of The Leland Stanford Junior University Bilevel contact solar cells
US5019177A (en) 1989-11-03 1991-05-28 The United States Of America As Represented By The United States Department Of Energy Monolithic tandem solar cell
US5322572A (en) 1989-11-03 1994-06-21 The United States Of America As Represented By The United States Department Of Energy Monolithic tandem solar cell
FR2690278A1 (fr) 1992-04-15 1993-10-22 Picogiga Sa Composant photovoltaïque multispectral à empilement de cellules, et procédé de réalisation.
FR2690279B1 (fr) 1992-04-15 1997-10-03 Picogiga Sa Composant photovoltauique multispectral.
US5342453A (en) 1992-11-13 1994-08-30 Midwest Research Institute Heterojunction solar cell
US5376185A (en) 1993-05-12 1994-12-27 Midwest Research Institute Single-junction solar cells with the optimum band gap for terrestrial concentrator applications
EP0658944B1 (fr) 1993-12-14 2009-04-15 Spectrolab, Inc. Dispositif semi-conducteur mince et méthode de fabrication
US5479032A (en) 1994-07-21 1995-12-26 Trustees Of Princeton University Multiwavelength infrared focal plane array detector
SG65697A1 (en) * 1996-11-15 1999-06-22 Canon Kk Process for producing semiconductor article
KR100232886B1 (ko) * 1996-11-23 1999-12-01 김영환 Soi 웨이퍼 제조방법
US6548382B1 (en) * 1997-07-18 2003-04-15 Silicon Genesis Corporation Gettering technique for wafers made using a controlled cleaving process
US6281426B1 (en) 1997-10-01 2001-08-28 Midwest Research Institute Multi-junction, monolithic solar cell using low-band-gap materials lattice matched to GaAs or Ge
US6482672B1 (en) 1997-11-06 2002-11-19 Essential Research, Inc. Using a critical composition grading technique to deposit InGaAs epitaxial layers on InP substrates
US5944913A (en) 1997-11-26 1999-08-31 Sandia Corporation High-efficiency solar cell and method for fabrication
FR2774214B1 (fr) 1998-01-28 2002-02-08 Commissariat Energie Atomique PROCEDE DE REALISATION D'UNE STRUCTURE DE TYPE SEMI-CONDUCTEUR SUR ISOLANT ET EN PARTICULIER SiCOI
US6166318A (en) 1998-03-03 2000-12-26 Interface Studies, Inc. Single absorber layer radiated energy conversion device
FR2777116A1 (fr) 1998-04-03 1999-10-01 Picogiga Sa Structure a semiconducteurs de composant photovoltaique
US6239354B1 (en) 1998-10-09 2001-05-29 Midwest Research Institute Electrical isolation of component cells in monolithically interconnected modules
US6300557B1 (en) 1998-10-09 2001-10-09 Midwest Research Institute Low-bandgap double-heterostructure InAsP/GaInAs photovoltaic converters
FR2787919B1 (fr) 1998-12-23 2001-03-09 Thomson Csf Procede de realisation d'un substrat destine a faire croitre un compose nitrure
US6881644B2 (en) * 1999-04-21 2005-04-19 Silicon Genesis Corporation Smoothing method for cleaved films made using a release layer
JP3657143B2 (ja) 1999-04-27 2005-06-08 シャープ株式会社 太陽電池及びその製造方法
US6252287B1 (en) 1999-05-19 2001-06-26 Sandia Corporation InGaAsN/GaAs heterojunction for multi-junction solar cells
US6340788B1 (en) 1999-12-02 2002-01-22 Hughes Electronics Corporation Multijunction photovoltaic cells and panels using a silicon or silicon-germanium active substrate cell for space and terrestrial applications
FR2816445B1 (fr) 2000-11-06 2003-07-25 Commissariat Energie Atomique Procede de fabrication d'une structure empilee comprenant une couche mince adherant a un substrat cible
FR2840730B1 (fr) * 2002-06-11 2005-05-27 Soitec Silicon On Insulator Procede de fabrication d'un substrat comportant une couche utile en materiau semi-conducteur monocristallin de proprietes ameliorees
US6815736B2 (en) 2001-02-09 2004-11-09 Midwest Research Institute Isoelectronic co-doping
US7019339B2 (en) 2001-04-17 2006-03-28 California Institute Of Technology Method of using a germanium layer transfer to Si for photovoltaic applications and heterostructure made thereby
US20050026432A1 (en) 2001-04-17 2005-02-03 Atwater Harry A. Wafer bonded epitaxial templates for silicon heterostructures
US7238622B2 (en) 2001-04-17 2007-07-03 California Institute Of Technology Wafer bonded virtual substrate and method for forming the same
FR2837625B1 (fr) 2002-03-19 2004-09-17 Commissariat Energie Atomique Dispositif photovoltaique multi-jonctions a cellules independantes sans effet d'ombrage et procede de realisation d'un tel dispositif
US6660928B1 (en) 2002-04-02 2003-12-09 Essential Research, Inc. Multi-junction photovoltaic cell
US20060162768A1 (en) 2002-05-21 2006-07-27 Wanlass Mark W Low bandgap, monolithic, multi-bandgap, optoelectronic devices
US8067687B2 (en) 2002-05-21 2011-11-29 Alliance For Sustainable Energy, Llc High-efficiency, monolithic, multi-bandgap, tandem photovoltaic energy converters
US7071407B2 (en) 2002-10-31 2006-07-04 Emcore Corporation Method and apparatus of multiplejunction solar cell structure with high band gap heterojunction middle cell
AU2003297649A1 (en) 2002-12-05 2004-06-30 Blue Photonics, Inc. High efficiency, monolithic multijunction solar cells containing lattice-mismatched materials and methods of forming same
US7812249B2 (en) 2003-04-14 2010-10-12 The Boeing Company Multijunction photovoltaic cell grown on high-miscut-angle substrate
MXPA06000789A (es) 2003-07-22 2006-04-18 Akzo Nobel Nv Procedimiento para fabricar una lamina delgada de celda solar utilizando un substrato temporal.
US20050161078A1 (en) 2004-01-27 2005-07-28 Daniel Aiken Solar cell mechanical interconnection using direct wafer bonding
WO2005104192A2 (fr) 2004-04-21 2005-11-03 California Institute Of Technology Procede de fabrication de substrats virtuels lies a une plaquette de gaas/si et de substrats virtuels associes
WO2006015185A2 (fr) 2004-07-30 2006-02-09 Aonex Technologies, Inc. Cellule solaire a triple jonction gainp/gaas/si obtenue par liaison de tranches et transfert de couches
US7846759B2 (en) 2004-10-21 2010-12-07 Aonex Technologies, Inc. Multi-junction solar cells and methods of making same using layer transfer and bonding techniques
FR2878076B1 (fr) 2004-11-17 2007-02-23 St Microelectronics Sa Amincissement d'une plaquette semiconductrice
US10374120B2 (en) 2005-02-18 2019-08-06 Koninklijke Philips N.V. High efficiency solar cells utilizing wafer bonding and layer transfer to integrate non-lattice matched materials
WO2007019277A2 (fr) 2005-08-03 2007-02-15 California Institute Of Technology Procede de formation de couches semiconductrices sur des substrats de manipulation
US11211510B2 (en) 2005-12-13 2021-12-28 The Boeing Company Multijunction solar cell with bonded transparent conductive interlayer
US20070277874A1 (en) 2006-05-31 2007-12-06 David Francis Dawson-Elli Thin film photovoltaic structure
US8536445B2 (en) 2006-06-02 2013-09-17 Emcore Solar Power, Inc. Inverted metamorphic multijunction solar cells
US20080245409A1 (en) 2006-12-27 2008-10-09 Emcore Corporation Inverted Metamorphic Solar Cell Mounted on Flexible Film
US20080185038A1 (en) 2007-02-02 2008-08-07 Emcore Corporation Inverted metamorphic solar cell with via for backside contacts
WO2009005825A1 (fr) 2007-07-03 2009-01-08 Microlink Devices, Inc. Procédés de fabrication d'une cellule solaire à composé iii-v en couche mince
US8916769B2 (en) 2008-10-01 2014-12-23 International Business Machines Corporation Tandem nanofilm interconnected semiconductor wafer solar cells
US8993873B2 (en) 2008-11-26 2015-03-31 Microlink Devices, Inc. Solar cell with a backside via to contact the emitter layer
US7785989B2 (en) 2008-12-17 2010-08-31 Emcore Solar Power, Inc. Growth substrates for inverted metamorphic multijunction solar cells
US9356162B2 (en) 2009-01-28 2016-05-31 Microlink Devices, Inc. High efficiency group III-V compound semiconductor solar cell with oxidized window layer

Patent Citations (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5374564A (en) * 1991-09-18 1994-12-20 Commissariat A L'energie Atomique Process for the production of thin semiconductor material films
US5869387A (en) * 1992-01-30 1999-02-09 Canon Kabushiki Kaisha Process for producing semiconductor substrate by heating to flatten an unpolished surface
US5229305A (en) * 1992-02-03 1993-07-20 Motorola, Inc. Method for making intrinsic gettering sites in bonded substrates
US5759908A (en) * 1995-05-16 1998-06-02 University Of Cincinnati Method for forming SiC-SOI structures
US6103597A (en) * 1996-04-11 2000-08-15 Commissariat A L'energie Atomique Method of obtaining a thin film of semiconductor material
US6114188A (en) * 1996-04-12 2000-09-05 Northeastern University Method of fabricating an integrated complex-transition metal oxide device
US5985687A (en) * 1996-04-12 1999-11-16 The Regents Of The University Of California Method for making cleaved facets for lasers fabricated with gallium nitride and other noncubic materials
US5953662A (en) * 1996-04-30 1999-09-14 Ericsson, Inc. Dual home location registers in a mobile radio system
US6225192B1 (en) * 1996-05-15 2001-05-01 Commissariat A L'energie Atomique Method of producing a thin layer of semiconductor material
US6020252A (en) * 1996-05-15 2000-02-01 Commissariat A L'energie Atomique Method of producing a thin layer of semiconductor material
US6190998B1 (en) * 1996-05-15 2001-02-20 Commissariat A L'energie Atomique Method for achieving a thin film of solid material and applications of this method
US6534382B1 (en) * 1996-12-18 2003-03-18 Canon Kabushiki Kaisha Process for producing semiconductor article
US5880491A (en) * 1997-01-31 1999-03-09 The United States Of America As Represented By The Secretary Of The Air Force SiC/111-V-nitride heterostructures on SiC/SiO2 /Si for optoelectronic devices
US6251754B1 (en) * 1997-05-09 2001-06-26 Denso Corporation Semiconductor substrate manufacturing method
US5877070A (en) * 1997-05-31 1999-03-02 Max-Planck Society Method for the transfer of thin layers of monocrystalline material to a desirable substrate
US6303468B1 (en) * 1997-08-12 2001-10-16 Commissariat A L'energie Atomique Method for making a thin film of solid material
US6756286B1 (en) * 1997-12-30 2004-06-29 Commissariat A L'energie Atomique Method for transferring a thin film comprising a step of generating inclusions
US6328796B1 (en) * 1999-02-01 2001-12-11 The United States Of America As Represented By The Secretary Of The Navy Single-crystal material on non-single-crystalline substrate
US6426270B1 (en) * 1999-02-02 2002-07-30 Canon Kabushiki Kaisha Substrate processing method and method of manufacturing semiconductor substrate
US7029993B1 (en) * 1999-08-20 2006-04-18 S.O.I.Tec Silicon On Insulator Technologies S.A. Method for treating substrates for microelectronics and substrates obtained according to said method
US6867067B2 (en) * 2000-11-27 2005-03-15 S.O.I. Tec Silicon On Insulator Technologies S.A. Methods for fabricating final substrates
US20040029359A1 (en) * 2000-11-27 2004-02-12 Fabrice Letertre Methods for fabricating a substrate
US20030219959A1 (en) * 2000-11-27 2003-11-27 Bruno Ghyselen Methods for fabricating final substrates
US6794276B2 (en) * 2000-11-27 2004-09-21 S.O.I.Tec Silicon On Insulator Technologies S.A. Methods for fabricating a substrate
US20050266626A1 (en) * 2000-11-27 2005-12-01 Bruce Faure Method of fabricating heteroepitaxial microstructures
US20040235268A1 (en) * 2000-11-27 2004-11-25 Fabrice Letertre Fabrication of substrates with a useful layer of monocrystalline semiconductor material
US20050026394A1 (en) * 2000-11-27 2005-02-03 S.O.I.Tec Silicon On Insulator Technologies S.A., Methods for fabricating a substrate
US20030143772A1 (en) * 2002-01-30 2003-07-31 United Epitaxy Co., Ltd. High efficiency light emitting diode and method of making the same
US20030232487A1 (en) * 2002-06-11 2003-12-18 Fabrice Letertre Fabrication of substrates with a useful layer of monocrystalline semiconductor material
US20040219959A1 (en) * 2003-05-01 2004-11-04 Ali Khayrallah Multiple antenna receiver
US6946317B2 (en) * 2003-05-27 2005-09-20 S.O.I.Tec Silicon On Insulator Technologies S.A. Method of fabricating heteroepitaxial microstructures
US20070072324A1 (en) * 2005-09-27 2007-03-29 Lumileds Lighting U.S., Llc Substrate for growing a III-V light emitting device

Cited By (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10002763B2 (en) 2000-11-27 2018-06-19 Soitec Fabrication of substrates with a useful layer of monocrystalline semiconductor material
US8193068B2 (en) 2007-04-20 2012-06-05 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing SOI substrate
US20110136320A1 (en) * 2007-04-20 2011-06-09 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing soi substrate
US7897476B2 (en) * 2007-04-20 2011-03-01 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing SOI substrate
US20080261376A1 (en) * 2007-04-20 2008-10-23 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing SOI substrate
US20110076837A1 (en) * 2007-05-18 2011-03-31 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of soi substrate and manufacturing method of semiconductor device
US7820524B2 (en) * 2007-05-18 2010-10-26 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of SOI substrate and manufacturing method of semiconductor device
US20080286952A1 (en) * 2007-05-18 2008-11-20 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of SOI substrate and manufacturing method of semiconductor device
US8895407B2 (en) 2007-05-18 2014-11-25 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of SOI substrate and manufacturing method of semiconductor device
US8236668B2 (en) 2007-10-10 2012-08-07 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing SOI substrate
US20090111244A1 (en) * 2007-10-10 2009-04-30 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US20090098739A1 (en) * 2007-10-10 2009-04-16 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing soi substrate
US8598013B2 (en) 2007-10-10 2013-12-03 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing SOI substrate and semiconductor device
US8772128B2 (en) 2007-10-10 2014-07-08 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US20090117680A1 (en) * 2007-11-01 2009-05-07 Shunpei Yamazaki Method for manufacturing photoelectric conversion device
US7964429B2 (en) 2007-11-01 2011-06-21 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing photoelectric conversion device
US8324086B2 (en) 2008-01-16 2012-12-04 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a semiconductor substrate by laser irradiation
US20100291756A1 (en) * 2008-01-30 2010-11-18 Siltronic Ag Method for the production of a semiconductor structure
US8492243B2 (en) * 2008-01-30 2013-07-23 Siltronic Ag Method for the production of a semiconductor structure
US20090194163A1 (en) * 2008-02-05 2009-08-06 Twin Creeks Technologies, Inc. Method to form a photovoltaic cell comprising a thin lamina
US20090194153A1 (en) * 2008-02-05 2009-08-06 Twin Creeks Technologies, Inc. Photovoltaic cell comprising a thin lamina having low base resistivity and method of making
US8129613B2 (en) 2008-02-05 2012-03-06 Twin Creeks Technologies, Inc. Photovoltaic cell comprising a thin lamina having low base resistivity and method of making
US20100031995A1 (en) * 2008-08-10 2010-02-11 Twin Creeks Technologies, Inc. Photovoltaic module comprising thin laminae configured to mitigate efficiency loss due to shunt formation
US8338209B2 (en) * 2008-08-10 2012-12-25 Twin Creeks Technologies, Inc. Photovoltaic cell comprising a thin lamina having a rear junction and method of making
US20100032007A1 (en) * 2008-08-10 2010-02-11 Twin Creeks Technologies, Inc. Photovoltaic cell comprising a thin lamina having a rear junction and method of making
US20100032010A1 (en) * 2008-08-10 2010-02-11 Twin Creeks Technologies, Inc. Method to mitigate shunt formation in a photovoltaic cell comprising a thin lamina
US20100087047A1 (en) * 2008-10-02 2010-04-08 Akihisa Shimomura Method for manufacturing soi substrate
US8871610B2 (en) * 2008-10-02 2014-10-28 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing SOI substrate
US20100307572A1 (en) * 2009-06-09 2010-12-09 International Business Machines Corporation Heterojunction III-V Photovoltaic Cell Fabrication
US8450184B2 (en) * 2009-06-09 2013-05-28 International Business Machines Corporation Thin substrate fabrication using stress-induced spalling
US20100311250A1 (en) * 2009-06-09 2010-12-09 International Business Machines Corporation Thin substrate fabrication using stress-induced substrate spalling
US8823127B2 (en) 2009-06-09 2014-09-02 International Business Machines Corporation Multijunction photovoltaic cell fabrication
US8247261B2 (en) * 2009-06-09 2012-08-21 International Business Machines Corporation Thin substrate fabrication using stress-induced substrate spalling
US8278187B2 (en) 2009-06-24 2012-10-02 Semiconductor Energy Laboratory Co., Ltd. Method for reprocessing semiconductor substrate by stepwise etching with at least two etching treatments
US20100330777A1 (en) * 2009-06-24 2010-12-30 Semiconductor Energy Laboratory Co., Ltd. Method for reprocessing semiconductor substrate and method for manufacturing soi substrate
US20100330778A1 (en) * 2009-06-24 2010-12-30 Semiconductor Energy Laboratory Co., Ltd. Method for reprocessing semiconductor substrate and method for manufacturing soi substrate
US8404563B2 (en) 2009-06-24 2013-03-26 Semiconductor Energy Laboratory Co., Ltd. Method for reprocessing semiconductor substrate and method for manufacturing SOI substrate
US8354348B2 (en) 2009-08-25 2013-01-15 Semiconductor Energy Laboratory Co., Ltd. Method for reprocessing semiconductor substrate, method for manufacturing reprocessed semiconductor substrate, and method for manufacturing SOI substrate
US20110065263A1 (en) * 2009-08-25 2011-03-17 Semiconductor Energy Laboratory Co., Ltd. Method for reprocessing semiconductor substrate, method for manufacturing reprocessed semiconductor substrate, and method for manufacturing soi substrate
US8426231B2 (en) 2009-08-25 2013-04-23 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device including a photoelectric conversion element
US8318588B2 (en) 2009-08-25 2012-11-27 Semiconductor Energy Laboratory Co., Ltd. Method for reprocessing semiconductor substrate, method for manufacturing reprocessed semiconductor substrate, and method for manufacturing SOI substrate
US20110049588A1 (en) * 2009-08-25 2011-03-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor Device and Manufacturing Method Thereof
US20110053345A1 (en) * 2009-08-25 2011-03-03 Semiconductor Energy Laboratory Co., Ltd. Method for reprocessing semiconductor substrate, method for manufacturing reprocessed semiconductor substrate, and method for manufacturing soi substrate
US8288245B2 (en) 2009-10-09 2012-10-16 Semiconductor Energy Laboratory Co., Ltd. Reprocessing method of semiconductor substrate, manufacturing method of reprocessed semiconductor substrate, and manufacturing method of SOI substrate
US20110086492A1 (en) * 2009-10-09 2011-04-14 Semiconductor Energy Laboratory Co., Ltd. Reprocessing method of semiconductor substrate, manufacturing method of reprocessed semiconductor substrate, and manufacturing method of soi substrate
US20110186958A1 (en) * 2010-02-03 2011-08-04 Semiconductor Energy Laboratory Co., Ltd. Soi substrate and manufacturing method thereof
US8476147B2 (en) 2010-02-03 2013-07-02 Semiconductor Energy Laboratory Co., Ltd. SOI substrate and manufacturing method thereof
US9269854B2 (en) * 2010-09-10 2016-02-23 VerLASE TECHNOLOGIES LLC Methods of fabricating optoelectronic devices using layers detached from semiconductor donors and devices made thereby
JP2013542589A (ja) * 2010-09-10 2013-11-21 バーレイス テクノロジーズ エルエルシー 半導体ドナーから分離された層を使用するオプトエレクトロニクスデバイスの製造方法、およびそれによって製造されたデバイス
US9525150B2 (en) 2010-09-10 2016-12-20 VerLASE TECHNOLOGIES LLC Optoelectronic devices made using layers detached from inherently lamellar semiconductor donors
US20130143336A1 (en) * 2010-09-10 2013-06-06 VerLASE TECHNOLOGIES LLC Methods of Fabricating Optoelectronic Devices Using Layers Detached from Semiconductor Donors and Devices Made Thereby
US8530336B2 (en) 2010-11-12 2013-09-10 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor substrate
US9123529B2 (en) 2011-06-21 2015-09-01 Semiconductor Energy Laboratory Co., Ltd. Method for reprocessing semiconductor substrate, method for manufacturing reprocessed semiconductor substrate, and method for manufacturing SOI substrate
US20220393003A1 (en) * 2021-06-08 2022-12-08 Wafer Works Corporation Composite substrate and manufacturing method thereof
US11600706B2 (en) * 2021-06-08 2023-03-07 Wafer Works Corporation Composite substrate and manufacturing method thereof
CN115863149A (zh) * 2022-12-12 2023-03-28 中国科学院上海微系统与信息技术研究所 氧化镓结构的制备方法

Also Published As

Publication number Publication date
TWI324357B (en) 2010-05-01
US7939428B2 (en) 2011-05-10
CN101341580B (zh) 2010-09-01
US7615468B2 (en) 2009-11-10
US20110039368A1 (en) 2011-02-17
CN101341580A (zh) 2009-01-07
EP1979933A1 (fr) 2008-10-15
FR2894990A1 (fr) 2007-06-22
WO2007071772A1 (fr) 2007-06-28
US20070287273A1 (en) 2007-12-13
KR20080078679A (ko) 2008-08-27
TW200733194A (en) 2007-09-01
US20090289332A1 (en) 2009-11-26
FR2894990B1 (fr) 2008-02-22
US7839001B2 (en) 2010-11-23

Similar Documents

Publication Publication Date Title
US20070141803A1 (en) Methods for making substrates and substrates formed therefrom
JP6650463B2 (ja) 電荷トラップ層を備えた高抵抗率の半導体・オン・インシュレーターウェハーの製造方法
US6350702B2 (en) Fabrication process of semiconductor substrate
US8481409B2 (en) Manufacturing process for a stacked structure comprising a thin layer bonding to a target substrate
KR100448423B1 (ko) 반도체부재의 제조방법
US20090311477A1 (en) Compliant Substrate In Particular For Hetero-Epitaxial Depositing
JP3900741B2 (ja) Soiウェーハの製造方法
US20130294038A1 (en) Electronic device for radiofrequency or power applications and process for manufacturing such a device
US20030087503A1 (en) Process for production of semiconductor substrate
AU745315B2 (en) Method for manufacturing semiconductor article
JP2000349264A (ja) 半導体ウエハの製造方法、使用方法および利用方法
JP2009516929A (ja) ガラス絶縁体上の大面積半導体
US8951887B2 (en) Process for fabricating a semiconductor structure employing a temporary bond
US20080102601A1 (en) Method for producing a semiconductor substrate
CN115023802A (zh) 包含在SiC制载体衬底上的单晶SiC制薄层的复合结构的制造方法
CN115088063A (zh) 用于制造包括位于由SiC制成的载体衬底上的由单晶SiC制成的薄层的复合结构的方法
WO2008031809A1 (fr) PROCÉDÉ DE FABRICATION D'UN SUBSTRAT DE GaN
JP3293767B2 (ja) 半導体部材の製造方法
JP2023502571A (ja) SiCでできたキャリア基材上に単結晶SiCの薄層を備える複合構造を作成するプロセス
US20240030061A1 (en) Donor substrate for the transfer of a thin layer and associated transfer method
JP2023528784A (ja) 非常に高い温度に対応する剥離可能な仮基板、及び前記基板から加工層を移動させるプロセス
TW202301554A (zh) 用於製作碳化矽基半導體結構及中間複合結構之方法

Legal Events

Date Code Title Description
AS Assignment

Owner name: S.O.I.TEC SILICON ON INSULATOR TECHNOLOGIES S.A.,

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BOUSSAGOL, ALICE;FAURE, BRUCE;GHYSELEN, BRUNO;REEL/FRAME:018377/0713;SIGNING DATES FROM 20060816 TO 20060901

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: SOITEC, FRANCE

Free format text: CHANGE OF NAME;ASSIGNOR:S.O.I.TEC SILICON ON INSULATOR TECHNOLOGIES;REEL/FRAME:027800/0911

Effective date: 20110906