US20070100356A1 - Delivery device, systems and methods of use - Google Patents
Delivery device, systems and methods of use Download PDFInfo
- Publication number
- US20070100356A1 US20070100356A1 US11/559,247 US55924706A US2007100356A1 US 20070100356 A1 US20070100356 A1 US 20070100356A1 US 55924706 A US55924706 A US 55924706A US 2007100356 A1 US2007100356 A1 US 2007100356A1
- Authority
- US
- United States
- Prior art keywords
- proximal
- shaft
- distal
- elements
- catheter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/12—Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
- A61B17/122—Clamps or clips, e.g. for the umbilical cord
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/00234—Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/04—Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/04—Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
- A61B17/0401—Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/04—Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
- A61B17/0469—Suturing instruments for use in minimally invasive surgery, e.g. endoscopic surgery
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/04—Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
- A61B17/0482—Needle or suture guides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/04—Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
- A61B17/0487—Suture clamps, clips or locks, e.g. for replacing suture knots; Instruments for applying or removing suture clamps, clips or locks
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/04—Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
- A61B17/06—Needles ; Sutures; Needle-suture combinations; Holders or packages for needles or suture materials
- A61B17/062—Needle manipulators
- A61B17/0625—Needle manipulators the needle being specially adapted to interact with the manipulator, e.g. being ridged to snap fit in a hole of the manipulator
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/064—Surgical staples, i.e. penetrating the tissue
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/064—Surgical staples, i.e. penetrating the tissue
- A61B17/0643—Surgical staples, i.e. penetrating the tissue with separate closing member, e.g. for interlocking with staple
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/064—Surgical staples, i.e. penetrating the tissue
- A61B17/0644—Surgical staples, i.e. penetrating the tissue penetrating the tissue, deformable to closed position
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/068—Surgical staplers, e.g. containing multiple staples or clamps
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/08—Wound clamps or clips, i.e. not or only partly penetrating the tissue ; Devices for bringing together the edges of a wound
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/10—Surgical instruments, devices or methods, e.g. tourniquets for applying or removing wound clamps, e.g. containing only one clamp or staple; Wound clamp magazines
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/12—Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
- A61B17/122—Clamps or clips, e.g. for the umbilical cord
- A61B17/1227—Spring clips
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/12—Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
- A61B17/128—Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord for applying or removing clamps or clips
- A61B17/1285—Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord for applying or removing clamps or clips for minimally invasive surgery
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
- A61B18/1492—Probes or electrodes therefor having a flexible, catheter-like structure, e.g. for heart ablation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B50/00—Containers, covers, furniture or holders specially adapted for surgical or diagnostic appliances or instruments, e.g. sterile covers
- A61B50/30—Containers specially adapted for packaging, protecting, dispensing, collecting or disposing of surgical or diagnostic appliances or instruments
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/24—Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
- A61F2/2442—Annuloplasty rings or inserts for correcting the valve shape; Implants for improving the function of a native heart valve
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/24—Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
- A61F2/2442—Annuloplasty rings or inserts for correcting the valve shape; Implants for improving the function of a native heart valve
- A61F2/2445—Annuloplasty rings in direct contact with the valve annulus
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/24—Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
- A61F2/2442—Annuloplasty rings or inserts for correcting the valve shape; Implants for improving the function of a native heart valve
- A61F2/246—Devices for obstructing a leak through a native valve in a closed condition
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/24—Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
- A61F2/2442—Annuloplasty rings or inserts for correcting the valve shape; Implants for improving the function of a native heart valve
- A61F2/2463—Implants forming part of the valve leaflets
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/24—Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
- A61F2/2442—Annuloplasty rings or inserts for correcting the valve shape; Implants for improving the function of a native heart valve
- A61F2/2466—Delivery devices therefor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/01—Introducing, guiding, advancing, emplacing or holding catheters
- A61M25/0105—Steering means as part of the catheter or advancing means; Markers for positioning
- A61M25/0133—Tip steering devices
- A61M25/0136—Handles therefor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/01—Introducing, guiding, advancing, emplacing or holding catheters
- A61M25/0105—Steering means as part of the catheter or advancing means; Markers for positioning
- A61M25/0133—Tip steering devices
- A61M25/0138—Tip steering devices having flexible regions as a result of weakened outer material, e.g. slots, slits, cuts, joints or coils
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/01—Introducing, guiding, advancing, emplacing or holding catheters
- A61M25/0105—Steering means as part of the catheter or advancing means; Markers for positioning
- A61M25/0133—Tip steering devices
- A61M25/0147—Tip steering devices with movable mechanical means, e.g. pull wires
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/068—Surgical staplers, e.g. containing multiple staples or clamps
- A61B17/072—Surgical staplers, e.g. containing multiple staples or clamps for applying a row of staples in a single action, e.g. the staples being applied simultaneously
- A61B17/07207—Surgical staplers, e.g. containing multiple staples or clamps for applying a row of staples in a single action, e.g. the staples being applied simultaneously the staples being applied sequentially
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/28—Surgical forceps
- A61B17/29—Forceps for use in minimally invasive surgery
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/18—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/18—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
- A61B18/20—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/00234—Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
- A61B2017/00238—Type of minimally invasive operation
- A61B2017/00243—Type of minimally invasive operation cardiac
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/0057—Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect
- A61B2017/00575—Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect for closure at remote site, e.g. closing atrial septum defects
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/0057—Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect
- A61B2017/00575—Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect for closure at remote site, e.g. closing atrial septum defects
- A61B2017/00579—Barbed implements
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/0057—Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect
- A61B2017/00575—Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect for closure at remote site, e.g. closing atrial septum defects
- A61B2017/00588—Rigid or stiff implements, e.g. made of several rigid parts linked by hinges
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/0057—Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect
- A61B2017/00575—Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect for closure at remote site, e.g. closing atrial septum defects
- A61B2017/00592—Elastic or resilient implements
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/0057—Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect
- A61B2017/00575—Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect for closure at remote site, e.g. closing atrial septum defects
- A61B2017/00606—Implements H-shaped in cross-section, i.e. with occluders on both sides of the opening
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/0057—Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect
- A61B2017/00575—Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect for closure at remote site, e.g. closing atrial septum defects
- A61B2017/00615—Implements with an occluder on one side of the opening and holding means therefor on the other
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/0057—Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect
- A61B2017/00575—Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect for closure at remote site, e.g. closing atrial septum defects
- A61B2017/00619—Locking means for locking the implement in expanded state
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/0057—Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect
- A61B2017/00575—Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect for closure at remote site, e.g. closing atrial septum defects
- A61B2017/00623—Introducing or retrieving devices therefor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B2017/00743—Type of operation; Specification of treatment sites
- A61B2017/00778—Operations on blood vessels
- A61B2017/00783—Valvuloplasty
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B2017/00831—Material properties
- A61B2017/00867—Material properties shape memory effect
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/04—Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
- A61B17/0401—Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors
- A61B2017/0406—Pledgets
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/04—Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
- A61B17/0401—Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors
- A61B2017/0409—Instruments for applying suture anchors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/04—Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
- A61B17/0401—Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors
- A61B2017/0417—T-fasteners
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/04—Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
- A61B17/0401—Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors
- A61B2017/0419—H-fasteners
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/04—Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
- A61B17/0401—Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors
- A61B2017/0427—Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors having anchoring barbs or pins extending outwardly from the anchor body
- A61B2017/0429—Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors having anchoring barbs or pins extending outwardly from the anchor body the barbs being expanded by a mechanical mechanism which also locks them in the expanded state
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/04—Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
- A61B17/0401—Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors
- A61B2017/0427—Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors having anchoring barbs or pins extending outwardly from the anchor body
- A61B2017/0435—Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors having anchoring barbs or pins extending outwardly from the anchor body the barbs being separate elements mechanically linked to the anchor, e.g. by pivots
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/04—Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
- A61B17/0401—Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors
- A61B2017/0446—Means for attaching and blocking the suture in the suture anchor
- A61B2017/0458—Longitudinal through hole, e.g. suture blocked by a distal suture knot
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/04—Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
- A61B17/0401—Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors
- A61B2017/0464—Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors for soft tissue
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/04—Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
- A61B17/0469—Suturing instruments for use in minimally invasive surgery, e.g. endoscopic surgery
- A61B2017/047—Suturing instruments for use in minimally invasive surgery, e.g. endoscopic surgery having at least one proximally pointing needle located at the distal end of the instrument, e.g. for suturing trocar puncture wounds starting from inside the body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/04—Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
- A61B17/0469—Suturing instruments for use in minimally invasive surgery, e.g. endoscopic surgery
- A61B2017/0472—Multiple-needled, e.g. double-needled, instruments
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/04—Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
- A61B17/0469—Suturing instruments for use in minimally invasive surgery, e.g. endoscopic surgery
- A61B2017/0474—Knot pushers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/04—Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
- A61B17/0487—Suture clamps, clips or locks, e.g. for replacing suture knots; Instruments for applying or removing suture clamps, clips or locks
- A61B2017/0488—Instruments for applying suture clamps, clips or locks
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/04—Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
- A61B2017/0496—Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials for tensioning sutures
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/04—Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
- A61B17/06—Needles ; Sutures; Needle-suture combinations; Holders or packages for needles or suture materials
- A61B2017/06052—Needle-suture combinations in which a suture is extending inside a hollow tubular needle, e.g. over the entire length of the needle
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/04—Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
- A61B17/06—Needles ; Sutures; Needle-suture combinations; Holders or packages for needles or suture materials
- A61B2017/06057—Double-armed sutures, i.e. sutures having a needle attached to each end
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/04—Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
- A61B17/06—Needles ; Sutures; Needle-suture combinations; Holders or packages for needles or suture materials
- A61B17/06066—Needles, e.g. needle tip configurations
- A61B2017/06076—Needles, e.g. needle tip configurations helically or spirally coiled
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/04—Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
- A61B17/06—Needles ; Sutures; Needle-suture combinations; Holders or packages for needles or suture materials
- A61B17/06066—Needles, e.g. needle tip configurations
- A61B2017/061—Needles, e.g. needle tip configurations hollow or tubular
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/04—Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
- A61B17/06—Needles ; Sutures; Needle-suture combinations; Holders or packages for needles or suture materials
- A61B17/06166—Sutures
- A61B2017/06171—Sutures helically or spirally coiled
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/064—Surgical staples, i.e. penetrating the tissue
- A61B2017/0641—Surgical staples, i.e. penetrating the tissue having at least three legs as part of one single body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/08—Wound clamps or clips, i.e. not or only partly penetrating the tissue ; Devices for bringing together the edges of a wound
- A61B2017/088—Sliding fasteners
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/28—Surgical forceps
- A61B17/29—Forceps for use in minimally invasive surgery
- A61B2017/2901—Details of shaft
- A61B2017/2908—Multiple segments connected by articulations
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/28—Surgical forceps
- A61B17/29—Forceps for use in minimally invasive surgery
- A61B2017/2926—Details of heads or jaws
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/10—Eye inspection
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/24—Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/01—Introducing, guiding, advancing, emplacing or holding catheters
- A61M25/0105—Steering means as part of the catheter or advancing means; Markers for positioning
- A61M25/0133—Tip steering devices
- A61M2025/0161—Tip steering devices wherein the distal tips have two or more deflection regions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/01—Introducing, guiding, advancing, emplacing or holding catheters
- A61M25/02—Holding devices, e.g. on the body
- A61M25/04—Holding devices, e.g. on the body in the body, e.g. expansible
Definitions
- the present invention relates generally to medical methods, devices, and systems.
- the present invention relates to methods, devices, and systems for the endovascular, percutaneous or minimally invasive surgical treatment of bodily tissues, such as tissue approximation or valve repair.
- the present invention relates to repair of valves of the heart and venous valves.
- tissue approximation includes coapting the leaflets of the valves in a therapeutic arrangement which may then be maintained by fastening or fixing the leaflets.
- Such coaptation can be used to treat regurgitation which commonly occurs in the mitral valve.
- Mitral valve regurgitation is characterized by retrograde flow from the left ventricle of a heart through an incompetent mitral valve into the left atrium.
- the mitral valve acts as a check valve to prevent flow of oxygenated blood back into the left atrium. In this way, the oxygenated blood is pumped into the aorta through the aortic valve.
- Regurgitation of the valve can significantly decrease the pumping efficiency of the heart, placing the patient at risk of severe, progressive heart failure.
- Mitral valve regurgitation can result from a number of different mechanical defects in the mitral valve or the left ventricular wall.
- the valve leaflets, the valve chordae which connect the leaflets to the papillary muscles, the papillary muscles or the left ventricular wall may be damaged or otherwise dysfunctional.
- the valve annulus may be damaged, dilated, or weakened limiting the ability of the mitral valve to close adequately against the high pressures of the left ventricle.
- valve replacement or repair including leaflet and annulus remodeling, the latter generally referred to as valve annuloplasty.
- a recent technique for mitral valve repair which relies on suturing adjacent segments of the opposed valve leaflets together is referred to as the “bow-tie” or “edge-to-edge” technique. While all these techniques can be very effective, they rely on open heart surgery where the patient's chest is opened, typically via a sternotomy, and the patient placed on cardiopulmonary bypass. The need to both open the chest and place the patient on bypass is traumatic and has associated high mortality and morbidity.
- Such methods, devices, and systems should preferably not require open chest access and be capable of being performed either endovascularly, i.e., using devices which are advanced to the heart from a point in the patient's vasculature remote from the heart or by a minimally invasive approach. Further, such devices and systems should provide features which allow repositioning and optional removal of a fixation device prior to fixation to ensure optimal placement. Still more preferably, the methods, devices, and systems would be useful for repair of tissues in the body other than heart valves. At least some of these objectives will be met by the inventions described hereinbelow.
- Mitral valve annuloplasty is described in the following publications. Bach and Bolling (1996) Am. J. Cardiol. 78:966-969; Kameda et al. (1996) Ann. Thorac. Surg. 61:1829-1832; Bach and Bolling (1995) Am. Heart J. 129:1165-1170; and Bolling et al. (1995) 109:676-683.
- Linear segmental annuloplasty for mitral valve repair is described in Ricchi et al. (1997) Ann. Thorac. Surg. 63:1805-1806.
- Tricuspid valve annuloplasty is described in McCarthy and Cosgrove (1997) Ann. Thorac. Surg. 64:267-268; Tager et al. (1998) Am. J. Cardiol. 81:1013-1016; and Abe et al. (1989) Ann. Thorac. Surg. 48:670-676.
- the invention provides devices, systems and methods for tissue approximation and repair at treatment sites.
- the devices, systems and methods of the invention will find use in a variety of therapeutic procedures, including endovascular, minimally-invasive, and open surgical procedures, and can be used in various anatomical regions, including the abdomen, thorax, cardiovascular system, heart, intestinal tract, stomach, urinary tract, bladder, lung, and other organs, vessels, and tissues.
- the invention is particularly useful in those procedures requiring minimally-invasive or endovascular access to remote tissue locations, particularly those in which the instruments utilized must negotiate long, narrow, and tortuous pathways to the treatment site.
- many of the devices and systems of the invention are adapted to be reversible and removable from the patient at any point without interference with or trauma to internal tissues.
- the devices, systems and methods of the invention are adapted for fixation of tissue at a treatment site.
- tissue fixation applications include cardiac valve repair, septal defect repair, vascular ligation and clamping, laceration repair and wound closure, but the invention may find use in a wide variety of tissue approximation and repair procedures.
- the devices, systems and methods of the invention are adapted for repair of cardiac valves, and particularly the mitral valve, as a therapy for regurgitation.
- the invention enables two or more valve leaflets to be coapted using an “edge-to-edge” or “bow-tie” technique to reduce regurgitation, yet does not require open surgery through the chest and heart wall as in conventional approaches.
- the mitral valve can be accessed from a remote surgical or vascular access point and the two valve leaflets may be coapted using endovascular or minimally invasive approaches. While less preferred, in some circumstances the invention may also find application in open surgical approaches as well. According to the invention, the mitral valve may be approached either from the atrial side (antegrade approach) or the ventricular side (retrograde approach), and either through blood vessels or through the heart wall.
- the devices, systems and methods of the invention are centered on variety of devices which may be used individually or in a variety of combinations to form interventional systems.
- the interventional system includes a multi-catheter guiding system, a delivery catheter and an interventional device. Each of these components will be discussed herein.
- the invention provides a fixation device having a pair of distal elements (or fixation elements), each distal element having a free end and an engagement surface for engaging the tissue, wherein the distal elements are moveable between a first position for capturing the tissue and a second position for fixing the tissue.
- the engagement surfaces are spaced apart in the first position and are closer together and generally face toward each other in the second position.
- the fixation device is preferably delivered to a target location in a patient's body by a delivery catheter having an elongated shaft, a proximal end and a distal end, the delivery catheter being configured to be positioned at the target location from a remote access point such as a vascular puncture or cut-down or a surgical penetration.
- the target location is a valve in the heart. Additional aspects of fixation devices usable in the system of the invention are described in copending patent application Ser. No. 10/441,531 filed May 19, 2003, which has been incorporated herein by reference.
- a particular advantage of the present invention is its ability to coapt the leaflets of the mitral valve (or any other tissue with which it is used) in a parallel or vertical relationship.
- the leaflets may be captured, drawn together and fixed such that their proximal upstream surfaces are disposed parallel to each other and generally aligned with the direction of flow through the valve at the point of coaptation.
- the fixation device the use of sufficiently rigid distal elements, highly frictional and compressive proximal elements and an active closure mechanism enables the leaflets to be grasped in a spaced-apart relationship and then drawn together in a coapted relationship while keeping the leaflets vertical (aligned with blood flow) to achieve the optimal coapted configuration.
- the fixation device is preferably delivered with the distal elements in a delivery position configured to minimize the profile of the device.
- some embodiments of the fixation device allow the device to be delivered with the free ends of the distal elements pointing in a generally proximal direction forming an angle of less than about 90°, preferably less than about 20°, relative to the longitudinal axis of the delivery device shaft.
- the engagement surfaces are facing generally toward each other, being disposed at an angle of less than about 180°, and preferably less than about 40°, relative to each other.
- the free ends of the distal elements are pointing in a generally distal direction and form an angle of less than about 90°, preferably less than about 20° relative to the longitudinal axis of the delivery device shaft.
- the engagement surfaces are facing generally toward each other, usually being disposed at an angle of less than about 180°, and preferably less than about 90°, relative to each other.
- the distal elements preferably are movable to an inverted position that minimizes entanglement and interferences with surrounding tissues should the device be desired to be withdrawn. In mitral repair applications, this is particularly important due to the presence of chordae tendonae, valve leaflets and other tissues with which devices may become entangled.
- the free ends will be pointing in a generally distal direction relative to the catheter shaft and the engagement surfaces will be facing generally away from each other, usually being disposed at an angle of more than about 180°, and preferably more than 270°, relative to each other.
- the free ends will be pointing in a distal direction relative to the catheter shaft and the engagement surfaces will be facing generally toward each other, usually being disposed at an angle of less than about 180°, and preferably less than 90°, relative to each other.
- the engagement surfaces of the distal elements preferably form an angle of up to 180° relative to each other so as to maximize the area in which to capture the valve leaflets or other target tissue.
- the distal elements are preferably movable to a closed position in which the engagement surfaces engage each other or form an angle as small as 0° relative to each other.
- the distal elements are configured to be adjusted to and left permanently in any of various positions between the open and closed positions to allow for fixation of tissues of various thickness, geometry, and spacing.
- the fixation device of the invention will further include at least one proximal element (or gripping element).
- proximal element and distal element will be movable relative to each other and configured to capture tissue between the proximal element and the engagement surface of the distal element.
- the distal elements and proximal elements are independently movable but in some embodiments may be movable with the same mechanism.
- the proximal element may be preferably biased toward the engagement surface of the fixation element to provide a compressive force against tissue captured therebetween.
- the invention provides a fixation device for engaging tissue comprising a coupling member configured for coupling to a catheter and a pair of distal elements connected to the coupling member, each distal element having an engagement surface for engaging the tissue.
- the distal elements are moveable between an open position wherein the distal elements extend radially outwardly facing the engagement surfaces toward a first direction, and an inverted position wherein the distal elements have rotated away from the first direction facing the engagement surfaces radially outwardly.
- the distal elements of the invention are adapted to receive a suture passed through the target tissue.
- implant pledgets may be detachably mounted to the distal elements so as to be positionable against a surface of tissue engaged by the distal elements.
- a suture may then be passed through the tissue and implant pledget, which are supported by the distal element.
- the implant pledgets are then detached from the distal elements, which may be withdrawn from the site, and the suture is tensioned and secured to the target tissue.
- the delivery catheter in this embodiment, will further include a movable fixation tool or penetration element for penetrating the target tissue and the implant pledget.
- a suture is coupled to the penetration element and preferably an anchor is attached to the suture.
- the penetration element is movable relative to the catheter to penetrate the target tissue and the implant pledget, bringing with it the suture and anchor.
- the anchor is configured to deploy into an expanded configuration so as to securely engage the implant pledget opposite the target tissue, retaining the suture therein.
- one or more implant pledgets and sutures may be similarly deployed in both leaflets, and the sutures secured to one another to coapt the leaflets.
- the distal elements are used to deliver implant pledgets and secure them to the target tissue, but are not themselves deployed at the site as in other embodiments. However, following deployment of the implant pledgets and associated sutures, the distal elements must be withdrawn from the body.
- the distal elements are movable to an inverted position like the embodiments described above to facilitate withdrawing the device without interference or injury to surrounding tissues.
- the fixation device is adapted to be detached from the delivery catheter and left permanently in the patient.
- some or all of the components of the fixation device are preferably covered with a covering or coating to promote tissue growth.
- a biocompatible fabric cover is positioned over the distal elements and/or the proximal elements.
- the cover may optionally be impregnated or coated with various therapeutic agents, including tissue growth promoters, antibiotics, anti-clotting, blood thinning, and other agents.
- some or all of the fixation element and/or covering may be comprised of a bioerodable, biodegradable, or bioabsorbable material so that it may degrade or be absorbed by the body after the repaired tissues have grown together.
- the distal elements and proximal elements will be configured to provide high retention force so that the fixation device remains securely fastened to the target tissue throughout the cardiac cycle.
- the distal and proximal elements will be configured to minimize trauma to the tissue engaged by them. This allows the fixation device to be removed from the tissue after initial application without creating clinically significant injury to the tissue.
- the proximal elements and/or the distal elements may have friction-enhancing features on their surfaces that engage the target tissue. Such friction-enhancing features may include barbs, bumps, grooves, openings, channels, surface roughening, coverings, and coatings, among others.
- magnets may be present in the proximal and/or distal elements.
- the friction-enhancing features and the magnets will be configured to increase the retention force of the distal and proximal elements on the tissue, while not leaving significant injury or scarring if the device is removed.
- the distal and proximal elements may further have a shape and flexibility to maximize retention force and minimize trauma to the target tissue.
- the engagement surfaces of the distal elements have a concave shape configured to allow the proximal elements, along with the target tissue, to be nested or recessed within the distal elements. This increases the surface area of the tissue engaged by the distal elements and creates a geometry of tissue engagement that has a higher retention force than a planar engagement surface.
- the longitudinal edges as well as the free ends of the distal elements are preferably curved outwardly away from the engagement surface so that these edges present a rounded surface against the target tissue.
- the distal elements and/or the proximal elements may also be flexible so that they deflect to some degree in response to forces against the tissue engaged thereby, reducing the chances that the tissue will tear or be damaged in response to such forces.
- the fixation device will include an actuation mechanism for moving the distal elements between the open, closed, and inverted positions.
- actuation mechanisms may be used.
- a coupling member connects the fixation device to the delivery catheter, and a stud is slidably coupled to the coupling member.
- the distal elements are pivotably coupled to the stud and the actuation mechanism comprises a pair of link members connected between the distal elements and the coupling member, whereby sliding the stud relative to the coupling member pivots the distal elements inwardly or outwardly into the various positions.
- the distal elements are pivotably coupled to the coupling member and the links connected between the distal elements and the stud.
- the fixation device of the invention preferably includes a coupling member that is detachably connectable to the delivery catheter.
- the coupling member may have various constructions, but in an exemplary embodiment comprises an outer member having an axial channel, the outer member being coupled to one of either the distal elements or the actuation mechanism.
- An inner member extends slidably through the axial channel and is coupled to the other of either the distal elements or the actuation mechanism.
- the delivery catheter will be configured to detachably connect to both the inner member and the outer member.
- the delivery catheter has a tubular shaft and an actuator rod slidably disposed in the tubular shaft.
- the junction of the outer member with the tubular shaft comprises a mating surface which may have a variety of shapes including sigmoid curves or angular or planar surfaces.
- the actuator rod extends from the delivery catheter through the axial channel in the outer member to maintain its connection with the tubular shaft.
- the actuator rod may be connected to the inner member by various connection structures, including threaded connections.
- the fixation device further includes a locking mechanism that maintains the distal elements in a selected position relative to each other. Because the ideal degree of closure of the fixation device may not be known until it is actually applied to the target tissue, the locking mechanism is configured to retain the distal elements in position regardless of how open or closed they may be. While a variety of locking mechanisms may be used, in an exemplary embodiment the locking mechanism comprises a wedging element that is movable into frictional engagement with a movable component of the fixation device to prevent further movement of the distal elements. In embodiments utilizing the actuation mechanism described above, the component with which the wedging element engages may be the coupling member or the stud slidably coupled thereto. In one embodiment the stud passes through an aperture in the coupling member that has a sloping sidewall, and the wedging element comprises a barbell disposed between the sidewall and the stud.
- the fixation device preferably also includes an unlocking mechanism for releasing the locking mechanism, allowing the distal elements and proximal elements to move.
- the unlocking mechanism comprises a harness coupled to the wedging element of the locking mechanism to reduce frictional engagement with the movable component of the fixation device.
- the harness is slidably coupled to the coupling member and extends around the wedging element of the locking mechanism, whereby the harness can be retracted relative to the coupling member to disengage the wedging element from the stud.
- the delivery device of the present invention delivers interventional devices to a target location with a body.
- interventional devices particularly include fixation devices or any devices which approximate tissue, such as valve leaflets.
- the delivery devices and systems direct the interventional device to the target location through a minimally invasive approach, such as through the patient's vasculature, and provide for manipulation of the interventional device at the target location, such as to approximate tissue.
- the delivery devices and systems may provide for decoupling of the interventional device, allowing the interventional device to be left behind as an implant.
- a delivery device comprising an elongated flexible shaft preferably suitable for introduction through tortuous passageways in the body.
- the elongated shaft has a proximal end, a distal end and a main lumen therebetween.
- the delivery device is at least one elongated body, particularly at least one flexible tubular guide, extending through the main lumen.
- the tubular guide is fixed to the shaft near the proximal end and near the distal end and is unconstrained relative to the shaft therebetween so as to be laterally moveable within the main lumen.
- the tubular guide may be unconstrained in only a distal portion of the shaft so as to provide greater flexibility of that portion.
- two flexible tubular guides are present, however, three, four, five, six or more flexible guides may alternatively be present.
- the tubular guides may be comprised of any suitable material which provides lateral flexibility while providing column strength under compression, such as a metallic or polymeric coil.
- other elongated bodies may be present, such a cylindrical rods to provide additional tensile strength.
- the main lumen is occupied by fluid so that the elongated bodies are surrounded by such fluid.
- the delivery device includes an actuation element movably disposed in one of the at least one flexible tubular guides and extending between the proximal and distal ends.
- the actuation element is adapted for coupling with a movable component of an interventional element so that movement of the actuation element moves the movable element.
- Such an interventional element is typically removably coupled to the distal end of the shaft.
- the moveable component may have any of a variety of functions, including grasping, approximating, cutting, ablating, stapling or otherwise engaging tissue.
- the moveable component provides for approximation of tissue, such as coaptation of valve leaflets.
- the interventional element has first and second tissue engaging elements adapted for engaging tissue therebetween.
- the actuation element is used to move the tissue engaging elements to engage the tissue.
- the shaft and interventional element are adapted for positioning through a blood vessel.
- a system for approximating tissue at a treatment site.
- the system comprises an elongated flexible shaft having a proximal end, a distal end, and a main lumen therebetween, and at least one flexible tubular guide extending through the main lumen.
- the tubular guide is fixed to the shaft near the proximal end and near the distal end and is unconstrained in at least a portion of the main lumen therebetween so as to be laterally movable within the main lumen.
- the system also includes an actuation element movably disposed in the tubular guide, and an approximation device coupled to the distal end of the shaft, the approximation device having first and second engaging elements for engaging tissue therebetween, at least one of the engaging elements being movable and coupled to the actuation element.
- the delivery device of the invention is adapted to allow the user to deliver the fixation device to the target site from a remote access point, whether through endovascular or surgical approaches, align the device with the target tissue, and to selectively close, open, invert, lock or unlock the distal element.
- the delivery device will preferably have a highly flexible, kink resistant, torsionally stiff shaft with minimal elongation and high compressive strength.
- the delivery device will also have the movable components and associated actuators used to move the distal elements between the closed, open, and inverted positions, to move the proximal elements into engagement with the target tissue, to unlock the locking mechanism, and to detach the distal element from the delivery catheter.
- the delivery device comprises an elongated shaft having an inner lumen.
- the distal end of the shaft is configured for detachable connection to the coupling member of the fixation device.
- An actuator rod is slidably disposed in the inner lumen and is adapted for detachable coupling to the stud or other component of the fixation device that moves the distal elements.
- a plurality of tubular guides preferably in the form of metallic coils, extend through the inner lumen of the shaft and are fixed to the shaft near its proximal and distal ends but are unrestrained therebetween, providing a highly flexible and kink-resistant construction. Lines for actuating the proximal elements and the unlocking mechanism of the fixation device extend through these tubular guides and are detachably coupled to the proximal element and unlocking mechanisms.
- the delivery catheter may additionally include a tether that is detachably coupled to a portion of the fixation device for purposes of retrieval of the device following detachment from the delivery catheter.
- the tether may be a separate flexible filament extending from the delivery catheter to the fixation device, but alternatively may be a line coupled to either the unlocking mechanism or the proximal element and used also for actuating those components. In either case, the tether will be detachable from the fixation device so that it may be detached once the device has been deployed successfully.
- the delivery device further includes an actuation element movably disposed in one of the at least one flexible tubular guide, and a fixation device coupled to the distal end of the shaft and adapted for positioning in the chamber of the heart.
- the fixation device is releasably coupled to the shaft.
- the fixation device has at least one proximal element and at least one distal element adapted to engage a valve leaflet therebetween, wherein at least one of the proximal and distal elements is movable and coupled to the actuation element.
- the at least one proximal element and the at least one distal element comprise a pair of proximal elements and a pair of distal elements.
- the actuation element comprises a rod, such as an actuator rod.
- the actuation element comprises a flexible line, such as a lock line or a proximal element line.
- the delivery device further comprises a second actuation element disposed in a second tubular guide, wherein the other of the proximal and distal elements is coupled to the second actuation element.
- the second actuation element may comprises a flexible line.
- the delivery device further comprising a lock release line disposed in the second tubular guide, the fixation element having a locking mechanism, the lock release line being coupled to the locking mechanism.
- a system for approximating tissue at a treatment site comprising an elongated flexible shaft having a proximal end, a distal end, and a main lumen therebetween, and first, second and third movable elements extending through the main lumen from the proximal to the distal end and being movable relative to the shaft.
- the system further includes an approximation device or fixation device coupled to the distal end of the shaft, the fixation device having first and second movable engaging elements for engaging tissue therebetween and a locking mechanism, the first engaging element being coupled to the first movable element, the second engaging element being coupled to the second movable element, and the locking mechanism being coupled to the third movable element.
- the first moveable element comprises an actuator rod.
- the second movable element comprises a flexible line.
- the system may further comprise first and second flexible tubular guides extending from the proximal end to the distal end through the main lumen.
- the first and second tubular guides are preferably fixed to the shaft near the proximal end and near the distal end and are unconstrained in at least a portion of the main lumen therebetween so as to be laterally movable within the main lumen.
- the first movable element extends through the first tubular guide and the second movable element is movably disposed in the second tubular guide.
- the system may also further comprise an actuator handle connected to the proximal end of the shaft, the actuator handle having a body and first, second and third actuation elements movably coupled thereto, the first, second and third actuation elements being coupled to the first, second and third movable elements.
- a system for approximating tissue at a treatment site comprising an elongated flexible shaft having a proximal end, a distal end, and a main lumen therebetween, and an actuator rod extending from the proximal to the distal end through the main lumen and being movable relative to the shaft.
- the system further includes first and second flexible tubular guides extending from the proximal end to the distal end through the main lumen, the first and second tubular guides being fixed to the shaft near the proximal end and near the distal end and being unconstrained therebetween so as to be laterally movable within the main lumen.
- first movable element movably disposed in the first tubular guide and a second movable element movably disposed in the second tubular guide.
- an approximation device or fixation device is included coupled to the distal end of the shaft, the approximation device having first and second movable engaging elements for engaging tissue therebetween and a locking mechanism, the first engaging element being coupled to the first movable element, the second engaging element being coupled to the second movable element, and the locking mechanism being coupled to the third movable element.
- Systems of the invention may additionally include a guide that facilitates introduction and navigation of the delivery catheter and fixation device to the target location.
- the guide is preferably tubular with a channel extending between its proximal and distal ends in which the delivery catheter and fixation device may be slidably positioned.
- the distal end of the guide is steerable, usually being deflectable about at least one axis, and preferably about two axes.
- the guide will have a size, material, flexibility and other characteristics suitable for the application in which it is being used.
- the guide is preferably configured to be introduced in a femoral vein and advanced through the inferior vena cava into the heart, across a penetration in the interatrial septum, and into alignment with the mitral valve in the left atrium.
- the guide may be configured for introduction in a femoral, axillary, or brachiocephalic artery and advancement through the aorta and aortic valve into the ventricle where it is steered into alignment with the mitral valve.
- the guide may be configured for introduction through a puncture or incision in the chest wall and through an incision in the wall of the heart to approach the mitral valve.
- the guide comprises a multi-catheter guiding system which has two components, including an inner tubular member or inner guide catheter and an outer tubular member or outer guide catheter.
- the outer tubular member has a distal end deflectable about an axis.
- the inner tubular member has a distal end deflectable about an additional axis. Further, the distal end of inner tubular member may be angularly deflectable. Mobility in additional directions and about additional axes may optionally be provided. Additional aspects of guides usable in the system of the invention are described in copending patent application Ser. No. 10/441,508 filed on May 19, 2003, which has been incorporated herein by reference.
- the invention further provides methods of performing therapeutic interventions at a tissue site.
- the method includes the steps of advancing an interventional tool having a proximal end, a distal end and a fixation device near the distal end to a location within a patient's body, wherein the fixation device includes a pair of distal elements each having a free end and an engagement surface; moving the distal elements to an open position wherein the free ends are spaced apart; positioning the distal elements such that the engagement surfaces engage tissue at the tissue site; and detaching the fixation device from the interventional tool.
- the method further includes the step of inverting the distal elements to an inverted position wherein the free ends point generally in a distal direction.
- the engagement surfaces will face generally away from each other in the inverted position, while in other embodiments, the engagement surfaces will face generally toward each other in the inverted position.
- the tissue site comprises first and second leaflets
- the step of moving the distal elements comprises coapting the leaflets.
- the leaflets may be part of a variety of tissue structures, but are preferably part of a cardiac valve such as the mitral valve.
- the step of advancing will usually include inserting the fixation device through a valve annulus, e.g. from an atrium of the heart to a ventricle of the heart.
- the method may further include a step of withdrawing the fixation device through the valve annulus with the fixation device in the inverted position.
- Retrograde approaches are also provided, in which the step of advancing will include the step of passing the fixation device through a ventricle of the heart into an atrium of the heart.
- the step of advancing may further comprise transluminally positioning the fixation device through a blood vessel into the heart, and may include inserting the fixation device through an interatrial septum of the heart.
- the step of advancing may comprise inserting the device through a surgical penetration in a body wall.
- the method may further include moving the distal elements to a closed position after the step of positioning, the free ends of the distal element being closer together in the closed position with the engagement surfaces facing generally toward each other.
- the method may include a step of deploying a proximal element on the fixation device toward each engagement surface so as to capture tissue therebetween. Before the step of inverting, the proximal elements are retracted away from the engagement surfaces.
- the method optionally includes a step of locking the distal elements in a desired position, and may further include a step of unlocking the distal elements so that they are movable again.
- a method according to the invention comprises advancing a catheter having a proximal end, a distal end and a fixation device near the distal end to a location within a body, wherein the fixation device includes a pair of distal elements each having an engagement surface; moving the distal elements to an open position wherein the distal elements extend radially outwardly facing the engagement surfaces toward a direction other than radially outwardly; and moving the distal elements to an inverted position wherein the engagement surfaces face radially outwardly.
- the invention provides a method for fixing tissues together comprising advancing a catheter having a proximal end, a distal end and a fixation device disposed near the distal end to a location near the tissues, wherein the fixation device includes a pair of distal elements each having a removable implant pledget; moving the distal elements so that each implant pledget engages one of the tissues; penetrating each tissue and engaged implant pledget and passing a tie therethrough; fastening the ties to fix the tissues together; and removing the fixation device leaving the implant pledget in place.
- kits for performing an intervention at a tissue site in a patient's body include a fixation device and Instructions for Use setting forth the steps of using the fixation device according to the methods of the invention.
- the fixation device may be as described in any of the various examples set forth herein.
- the kits may further include a delivery tool or catheter for delivering the fixation device to the tissue site, as well as a tubular guide through which the delivery tool or catheter may be positioned.
- FIG. 1 illustrates the left ventricle and left atrium of the heart during systole.
- FIG. 2A illustrates free edges of leaflets in normal coaptation
- FIG. 2B illustrates the free edges in regurgitative coaptation.
- FIG. 3A-3C illustrate grasping of the leaflets with a fixation device, inversion of the distal elements of the fixation device and removal of the fixation device, respectively.
- FIG. 4 illustrates the position of the fixation device in a desired orientation relative to the leaflets.
- FIGS. 5A-5B , 6 A- 6 B illustrate exemplary embodiments of coupling mechanisms of the instant application.
- FIGS. 7A-7D illustrate an embodiment of a fixation device in various positions.
- FIGS. 8A-8B illustrate an embodiment of the fixation device wherein some or all of the components are molded as one part.
- FIG. 9 illustrates another embodiment of the fixation device of the present invention.
- FIGS. 10A-10B , 11 A- 11 B, 12 A- 12 B, 13 A- 13 B, 14 - 16 illustrate embodiments of a fixation device in various possible positions during introduction and placement of the device within the body to perform a therapeutic procedure.
- FIGS. 17A-17C illustrate a covering on the fixation device wherein the device is in various positions.
- FIG. 18 illustrates an embodiment of the fixation device including proximal elements and a locking mechanism.
- FIG. 19 provides a cross-sectional view of the locking mechanism of FIG. 18 .
- FIGS. 20-21 provide a cross-sectional view of the locking mechanism in the unlocked and locked positions respectively.
- FIGS. 22A-22B illustrate a variation of the fixation device to facilitate capture of more widely-separated leaflets or other tissue flaps.
- FIGS. 23 , 24 A- 24 B illustrate another embodiment of a locking mechanism.
- FIGS. 25 , 26 A- 26 B illustrate yet another embodiment of a locking mechanism.
- FIGS. 27-28 illustrate an additional embodiment of the fixation device wherein separation of couplers rotate the distal elements around pins.
- FIGS. 29-30 illustrate the fixation device of FIGS. 27-28 with additional features such as barbs and bumpers.
- FIG. 31 illustrates an embodiment of the fixation device having engagement surfaces with a serrated edge and wherein the fixation device is mounted for a ventricular approach to a mitral valve.
- FIGS. 32-34 illustrate an additional embodiment of the fixation device which allows tissue to be grasped between the distal elements and the proximal elements while in an arrangement wherein the distal elements are parallel to each other.
- FIGS. 35-39 , 40 A- 40 D, 41 - 42 , 43 A- 43 C illustrate another embodiment of the fixation device wherein the fixation device includes distal elements having implant pledgets.
- FIGS. 44A-44B , 45 - 46 illustrate another embodiment of the fixation device wherein the distal elements are comprised of a semi-rigid material having a folded shape.
- FIG. 47 is a perspective view of an embodiment of a delivery catheter for a fixation device.
- FIG. 48 illustrates an embodiment of a fixation device coupled to the distal end of a delivery catheter.
- FIG. 49 illustrates a portion of the shaft of a delivery catheter and a fixation device which is coupleable with the catheter.
- FIGS. 50-52 are cross-sectional views of embodiments of the shaft of the delivery catheter.
- FIGS. 52A-52B illustrate embodiments of the nose of the shaft of the delivery catheter.
- FIG. 53A-53C illustrate various arrangements of lock lines engaging release harnesses of a locking mechanism.
- FIGS. 54A-54B illustrate various arrangements of proximal element lines engaging proximal elements of a fixation device.
- FIG. 55 illustrates an embodiment of the handle of the delivery catheter.
- FIG. 56 is a cross-sectional view of the main body of the handle.
- FIG. 57 illustrates an embodiment of a lock line handle.
- FIG. 57A illustrates the lock line handle of FIG. 57 positioned within a semi-tube which is disposed within the sealed chamber.
- FIGS. 58A-58B illustrate a mechanism for applying tension to lock lines.
- FIGS. 59 , 59 A- 59 B illustrate features of the actuator rod control and handle.
- FIG. 60 is a perspective view of an embodiment of a multi-catheter guiding system of the present invention, and an interventional catheter positioned therethrough.
- FIG. 61A illustrates a primary curvature in an outer guide catheter.
- FIG. 61B illustrates a secondary curvature in an inner guide catheter.
- FIGS. 61C-61D illustrate example movement of an inner guide catheter through angle theta.
- FIG. 62A is a perspective side view of a multi-catheter guiding system having an additional curve in the outer guide catheter.
- FIG. 62B illustrates lifting of the outer guide catheter due to the additional curve of FIG. 62A .
- FIGS. 63A-63D illustrate a method of using the multi-catheter guiding system for accessing the mitral valve.
- FIGS. 64A-64D illustrate curvature of a guide catheter of the present invention by the actuation of one or more pullwires.
- FIG. 64E illustrates attachment of a pullwire to a tip ring.
- FIGS. 65A-65I illustrate embodiments of the present invention comprising sections constructed with the inclusion of braiding or coil.
- FIGS. 66A-66C illustrate a keying feature of the present invention.
- FIGS. 67A-67B are perspective views of a guide catheter including a series of articulating members.
- FIG. 68 illustrates embodiments of the handles.
- FIG. 69 illustrates the handles of FIG. 68 with a portion of the housing removed.
- FIG. 70 illustrates steering mechanisms within a handle.
- FIG. 71 illustrates attachment of a pullwire to a disk.
- FIGS. 72A-72B illustrate a hard stop peg restricting rotation of a disk.
- FIGS. 73A-73C illustrates a portion of a hard stop gear assembly.
- FIGS. 74A-74F illustrate a ball restricting rotation of a disk.
- FIG. 75 illustrates an embodiment of a friction assembly.
- FIG. 76 illustrates an embodiment of an interventional system of the present invention.
- FIG. 76A illustrates an embodiment of a hemostatic valve for use with the present invention.
- FIG. 76B illustrates an embodiment of a fixation device introducer.
- FIG. 77 illustrates another embodiment of an interventional system of the present invention.
- FIGS. 78-80 illustrate an embodiment of a stabilizer base for use with the present invention.
- FIG. 81 illustrates a kit constructed in accordance with the principles of the present invention
- the left ventricle LV of a normal heart H in systole is illustrated in FIG. 1 .
- the left ventricle LV is contracting and blood flows outwardly through the tricuspid (aortic) valve AV in the direction of the arrows.
- Back flow of blood or “regurgitation” through the mitral valve MV is prevented since the mitral valve is configured as a “check valve” which prevents back flow when pressure in the left ventricle is higher than that in the left atrium LA.
- the mitral valve MV comprises a pair of leaflets having free edges FE which meet evenly to close, as illustrated in FIG. 1 .
- the opposite ends of the leaflets LF are attached to the surrounding heart structure along an annular region referred to as the annulus AN.
- chordae tendinae CT (referred to hereinafter as the chordae) which include plurality of branching tendons secured over the lower surfaces of each of the valve leaflets LF.
- the chordae CT in turn, are attached to the papillary muscles PM which extend upwardly from the lower portions of the left ventricle and intraventricular septum IVS.
- a number of structural defects in the heart can cause mitral valve regurgitation. Regurgitation occurs when the valve leaflets do not close properly allowing leakage from the ventricle into the atrium. As shown in FIG. 2A , the free edges of the anterior and posterior leaflets normally meet along a line of coaptation C. An example of a defect causing regurgitation is shown in FIG. 2B . Here an enlargement of the heart causes the mitral annulus to become enlarged, making it impossible for the free edges FE to meet during systole. This results in a gap G which allows blood to leak through the valve during ventricular systole.
- Ruptured or elongated chordae can also cause a valve leaflet to prolapse since inadequate tension is transmitted to the leaflet via the chordae. While the other leaflet maintains a normal profile, the two valve leaflets do not properly meet and leakage from the left ventricle into the left atrium will occur. Such regurgitation can also occur in patients who have suffered ischemic heart disease where the left ventricle does not contract sufficiently to effect proper closure.
- the present invention provides methods and devices for grasping, approximating and fixating tissues such as valve leaflets to treat cardiac valve regurgitation, particularly mitral valve regurgitation.
- the present invention also provides features that allow repositioning and removal of the device if so desired, particularly in areas where removal may be hindered by anatomical features such as chordae CT. Such removal would allow the surgeon to reapproach the valve in a new manner if so desired.
- Grasping will preferably be atraumatic providing a number of benefits.
- atraumatic it is meant that the devices and methods of the invention may be applied to the valve leaflets and then removed without causing any significant clinical impairment of leaflet structure or function.
- the leaflets and valve continue to function substantially the same as before the invention was applied.
- some minor penetration or denting of the leaflets may occur using the invention while still meeting the definition of “atraumatic”.
- This enables the devices of the invention to be applied to a diseased valve and, if desired, removed or repositioned without having negatively affected valve function.
- grasping and fixation may be accomplished by a single device.
- the devices and methods of the invention rely upon the use of an interventional tool that is positioned near a desired treatment site and used to grasp the target tissue.
- the interventional tool is typically an interventional catheter.
- the interventional tool is typically an interventional instrument.
- fixation of the grasped tissue is accomplished by maintaining grasping with a portion of the interventional tool which is left behind as an implant.
- the invention may have a variety of applications for tissue approximation and fixation throughout the body, it is particularly well adapted for the repair of valves, especially cardiac valves such as the mitral valve. Referring to FIG.
- an interventional tool 10 having a delivery device, such as a shaft 12 , and a fixation device 14 , is illustrated having approached the mitral valve MV from the atrial side and grasped the leaflets LF.
- the mitral valve may be accessed either surgically or by using endovascular techniques, and either by a retrograde approach through the ventricle or by an antegrade approach through the atrium, as described above. For illustration purposes, an antegrade approach is described.
- proximal shall mean the direction toward the end of the device to be manipulated by the user outside the patient's body
- distal shall mean the direction toward the working end of the device that is positioned at the treatment site and away from the user.
- proximal shall refer to the atrial or upstream side of the valve leaflets and distal shall refer to the ventricular or downstream side of the valve leaflets.
- the fixation device 14 typically comprises proximal elements 16 (or gripping elements) and distal elements 18 (or fixation elements) which protrude radially outward and are positionable on opposite sides of the leaflets LF as shown so as to capture or retain the leaflets therebetween.
- the proximal elements 16 are preferably comprised of cobalt chromium, nitinol or stainless steel
- the distal elements 18 are preferably comprised of cobalt chromium or stainless steel, however any suitable materials may be used.
- the fixation device 14 is coupleable to the shaft 12 by a coupling mechanism 17 .
- the coupling mechanism 17 allows the fixation device 14 to detach and be left behind as an implant to hold the leaflets together in the coapted position.
- fixation device 14 it may be desired to reposition or remove the fixation device 14 after the proximal elements 16 , distal elements 18 , or both have been deployed to capture the leaflets LF.
- Such repositioning or removal may be desired for a variety of reasons, such as to reapproach the valve in an attempt to achieve better valve function, more optimal positioning of the device 14 on the leaflets, better purchase on the leaflets, to detangle the device 14 from surrounding tissue such as chordae, to exchange the device 14 with one having a different design, or to abort the fixation procedure, to name a few.
- the distal elements 18 are releasable and optionally invertible to a configuration suitable for withdrawal of the device 14 from the valve without tangling or interfering with or damaging the chordae, leaflets or other tissue.
- FIG. 3B illustrates inversion wherein the distal elements 18 are moveable in the direction of arrows 40 to an inverted position.
- the proximal elements 16 may be raised, if desired.
- the device 14 In the inverted position, the device 14 may be repositioned to a desired orientation wherein the distal elements may then be reverted to a grasping position against the leaflets as in FIG. 3A .
- fixation device 14 may be withdrawn (indicated by arrow 42 ) from the leaflets as shown in FIG. 3C .
- Such inversion reduces trauma to the leaflets and minimizes any entanglement of the device with surrounding tissues.
- the proximal and distal elements may be moved to a closed position or configuration suitable for removal from the body or for reinsertion through the mitral valve.
- FIG. 4 illustrates the position of the fixation device 14 in a desired orientation in relation to the leaflets LF.
- This is a short-axis view of the mitral valve MV from the atrial side, therefore, the proximal elements 16 are shown in solid line and the distal elements 18 are shown in dashed line.
- the proximal and distal elements 16 , 18 are positioned to be substantially perpendicular to the line of coaptation C.
- the device 14 may be moved roughly along the line of coaptation to the location of regurgitation.
- the leaflets LF are held in place so that during diastole, as shown in FIG. 4 , the leaflets LF remain in position between the elements 16 , 18 surrounded by openings 0 which result from the diastolic pressure gradient.
- leaflets LF are coapted such that their proximal or upstream surfaces are facing each other in a vertical orientation, parallel to the direction of blood flow through mitral valve MV.
- the upstream surfaces may be brought together so as to be in contact with one another or may be held slightly apart, but will preferably be maintained in the vertical orientation in which the upstream surfaces face each other at the point of coaptation.
- Color Doppler echo will show if the regurgitation of the valve has been reduced. If the resulting mitral flow pattern is satisfactory, the leaflets may be fixed together in this orientation. If the resulting color Doppler image shows insufficient improvement in mitral regurgitation, the interventional tool 10 may be repositioned. This may be repeated until an optimal result is produced wherein the leaflets LF are held in place.
- FIGS. 5A-5B , 6 A- 6 B illustrate exemplary embodiments of such coupling mechanisms.
- FIG. 5A shows an upper shaft 20 and a detachable lower shaft 22 which are interlocked at a joining line or mating surface 24 .
- the mating surface 24 may have any shape or curvature which will allow or facilitate interlocking and later detachment.
- a snuggly fitting outer sheath 26 is positioned over the shafts 20 , 22 to cover the mating surface 24 as shown.
- FIG. 5B illustrates detachment of the lower shaft 22 from the upper shaft 20 . This is achieved by retracting the outer sheath 26 , so that the mating surface 24 is exposed, which allows the shafts 20 , 22 to separate.
- FIG. 6A illustrates a tubular upper shaft 28 and a detachable tubular lower shaft 30 which are interlocked at a mating surface 32 .
- the mating surface 32 may have any shape or curvature which will allow or facilitate interlocking and later detachment.
- the tubular upper shaft 28 and tubular lower shaft 30 form an outer member having an axial channel.
- a snuggly fitting rod 34 or inner member is inserted through the tubular shafts 28 , 30 to bridge the mating surface 32 as shown.
- FIG. 6B illustrates detachment of the lower shaft 30 from the upper shaft 28 . This is achieved by retracting the rod 34 to a position above the mating surface 32 which in turn allows the shafts 28 , 30 to separate.
- Other examples of coupling mechanisms are described and illustrated in copending U.S. patent application Ser. No. 09/894,493 (Attorney Docket No. 020489-000400), incorporated herein by reference for all purposes.
- mating surface 24 is a sigmoid curve defining a male element and female element on upper shaft 20 (or upper shaft 28 ) which interlock respectively with corresponding female and male elements on lower shaft 22 (or lower shaft 30 ).
- the lower shaft is the coupling mechanism 17 of the fixation device 14 . Therefore, the shape of the mating surface selected will preferably provide at least some mating surfaces transverse to the axial axis of the a mechanism 19 to facilitate application of compressive and tensile forces through the coupling mechanism 17 to the fixation device 14 , yet causing minimal interference when the fixation device 14 is to be released from the upper shaft.
- the fixation device 14 is delivered to the valve or the desired tissues with the use of a delivery device.
- the delivery device may be rigid or flexible depending on the application.
- the delivery device comprises a flexible delivery catheter which will be described in later sections.
- a catheter comprises a shaft, having a proximal end and a distal end, and a fixation device releasably attached to its distal end.
- the shaft is usually elongate and flexible, suitable for intravascular introduction.
- the delivery device may comprise a shorter and less flexible interventional instrument which may be used for trans-thoracic surgical introduction through the wall of the heart, although some flexibility and a minimal profile will generally be desirable.
- a fixation device is releasably coupleable with the delivery device as illustrated in FIG. 3A .
- the fixation device may have a variety of forms, a few embodiments of which will be described herein.
- FIGS. 7A-7D illustrate an embodiment of a fixation device 14 in various positions or configurations.
- FIG. 7A illustrates the fixation device 14 in a closed configuration for delivery through the patient's vasculature and, in this example, through the mitral valve.
- the fixation device 14 includes a coupling member 19 which allows detachment of the fixation device 14 for implantation.
- the coupling member 19 is shown to include the lower shaft 22 and mating surface 24 of FIGS. 5A-5B , and therefore the coupling member 19 would function similarly as described above.
- the fixation device 14 also includes a pair of opposed distal elements 18 , each distal element 18 having an engagement surface 50 facing inwardly toward the opposed distal element 18 in the closed configuration.
- Distal elements 18 preferably comprise elongate arms 53 , each arm having a proximal end 52 rotatably connected to the coupling member 19 and a free end 54 .
- Suitable connections for arms 53 to coupling member 19 include pins, living hinges, or other known rotational connection mechanisms.
- free ends 54 point in a first direction such that the arms 53 and engagement surfaces 50 are nearly parallel to each other and to an axis 21 , and preferably are angled slightly inwardly toward each other.
- the arms 53 when tissue is not present between arms 53 , the arms 53 may be closed until free ends 54 either touch each other or engage shaft 12 when fixation device 14 is attached thereto, thereby minimizing the profile of the fixation device 14 for passage through a delivery device.
- FIGS. 7B-7C illustrate the fixation device 14 in an open position wherein the engagement surfaces 50 are disposed at a separation angle 56 apart, wherein the separation angle 56 is typically up to approximately 180 degrees, preferably up to 90-180 degrees, and arms 53 are disposed generally symmetrically relative to axis 21 .
- the arms 53 may be moveable to the open position by a variety of actuation mechanisms.
- a plunger or actuator rod may be advanced through the coupling member 19 , as indicated by arrow 62 , so as to engage a spring or spring loaded actuation mechanism 58 which is attached to the distal elements 18 .
- the distal elements 18 are rotated relative to coupling member 19 .
- the distal elements 18 may be held in this open position by the actuator rod against the resistance provided by the spring of the actuation mechanism 58 which biases the distal elements 18 toward the closed position of FIG. 7A when the distal elements 18 are less than 180 degrees apart.
- the spring loading of the actuation mechanism 58 resists outward movement of the actuation mechanism 58 and urges the device 14 towards the closed position.
- proximal elements 16 comprise resilient loop-shaped wire forms biased outwardly and attached to the coupling member 19 so as to be biased to an open position shown in FIG. 7C but moveable rotationally inwardly when arms 53 are closed.
- the wire forms may be flexible enough to be rigidly attached to coupling member 19 and resiliently deflectable inwardly, or they may be attached by a rotational coupling such as a pin or living hinge.
- leaflets LF are positioned between the proximal elements 16 and distal elements 18 . Once, the leaflets LF are positioned between the proximal and distal elements 16 , 18 , the distal elements 18 may be closed, compressing the leaflets between engagement surfaces 50 and proximal elements 18 .
- the arms 53 may be maintained in the open position of FIG. 7B , moved to the fully closed position of FIG. 7A , or placed in any of various positions in between so as to coapt the leaflets LF and hold them in the desired position with the desired degree of force. In any case, the fixation device 14 will remain in place as an implant following detachment from the delivery catheter.
- the actuator rod may be readvanced or reinserted through the coupling member 19 and readvanced to press against the actuation mechanism 58 , as previously indicated by arrow 62 in FIG. 7B . Again, such advancement applies a force against the actuation mechanism 58 in the manner described above thus moving arms 53 outwardly to release force against leaflets and move engagement surfaces 50 away from proximal elements 16 . The leaflets are then free to move relative to fixation device 14 . The fixation device 14 may then be repositioned as desired and the actuator rod retracted to reclose the distal elements 18 to coapt the leaflets.
- the fixation element 14 is preferably adapted for inversion of arms 53 so that free ends 54 point in a second direction, opposite to the first direction in which the free ends 54 pointed in the closed position, each arm 53 forming an obtuse angle relative to axis 21 as illustrated in FIG. 7D .
- the arms 53 may be rotated so that the engagement surfaces 50 are disposed at a separation angle 56 of up to 360 degrees, and preferably at least up to 270 degrees. This may be accomplished by exerting a force against actuation mechanism 58 with a push rod or plunger extending through coupling member 19 as described above.
- the spring loading of the actuation mechanism 58 biases the distal elements 18 toward the inverted position.
- the spring loading of the actuation mechanism 58 resists outward movement of the actuation mechanism 58 and urges the device 14 towards the inverted position.
- engagement surfaces 50 provide an atraumatic surface deflect tissues as the fixation device is withdrawn. This allows the device to be retracted back through the valve annulus without risk of injury to valvular and other tissues. In some cases, once the fixation device 14 has been pulled back through the valve, it will be desirable to return the device to the closed position for withdrawal of the device from the body (either through the vasculature or through a surgical opening).
- FIGS. 7A-7D is assembled from separate components composed of biocompatible materials.
- the components may be formed from the same or different materials, including but not limited to stainless steel or other metals, Elgiloy®, nitinol, titanium, tantalum, metal alloys or polymers. Additionally, some or all of these components may be made of bioabsorbable materials that will be absorbed by surrounding tissues or will dissolve into the bloodstream following implantation. It has been found that in mitral valve repair applications the fixation devices of the invention are completely surrounded by tissue within a few months of implantation, after which the devices could dissolve or be absorbed without negative impact to the repair.
- FIGS. 8A-8B some or all of the components may be molded as one part, as illustrated in FIGS. 8A-8B .
- the coupling member 19 , distal elements 18 and actuation mechanism 58 of the fixation device 14 are all molded from a polymer material as one moveable piece.
- FIG. 8A shows the fixation device 14 in the open position. Advancement of an actuator rod 64 rotates the distal elements 18 relative to the coupling member 19 by a living hinge or by elastic deformation of the plastic at the point of connection between the elements 18 and the coupling member 19 . Typically, this point of connection comprises a thinner segment of polymer to facilitate such bending.
- the actuation mechanism 58 coupled to the distal elements 18 in the same manner.
- FIG. 8B shows the fixation device 14 in the inverted position.
- FIG. 9 illustrates another embodiment of a fixation device 14 .
- the fixation device 14 is shown coupled to a shaft 12 to form an interventional tool 10 .
- the fixation device 14 includes a coupling member 19 and a pair of opposed distal elements 18 .
- the distal elements 18 comprise elongate arms 53 , each arm having a proximal end 52 rotatably connected to the coupling member 19 and a free end 54 .
- the free ends 54 have a rounded shape to minimize interference with and trauma to surrounding tissue structures.
- each free end 54 defines a curvature about two axes, one being an axis 66 perpendicular to longitudinal axis of arms 53 .
- the engagement surfaces 50 have a cupped or concave shape to surface area in contact with tissue and to assist in grasping and holding the valve leaflets. This further allows arms 53 to nest around the shaft 12 in the closed position to minimize the profile of the device.
- arms 53 are at least partially cupped or curved inwardly about their longitudinal axes 66 .
- each free end 54 defines a curvature about an axis 67 perpendicular to axis 66 or the longitudinal axis of arms 53 . This curvature is a reverse curvature along the most distal portion of the free end 54 .
- the longitudinal edges of the free ends 54 may flare outwardly. Both the reverse curvature and flaring minimize trauma to the tissue engaged therewith.
- the transverse width across engagement surfaces 50 (which determines the width of tissue engaged) is at least about 2 mm, usually 3-10 mm, and preferably about 4-6 mm. In some situations, a wider engagement is desired wherein the engagement surfaces 50 are larger, for example about 2 cm, or multiple fixation devices are used adjacent to each other.
- Arms 53 and engagement surfaces 50 are configured to engage a length of tissue of about 4-10 mm, and preferably about 6-8 mm along the longitudinal axis of arms 53 . Arms 53 further include a plurality of openings to enhance grip and to promote tissue ingrowth following implantation.
- the valve leaflets are grasped between the distal elements 18 and proximal elements 16 .
- the proximal elements 16 are flexible, resilient, and cantilevered from coupling member 19 .
- the proximal elements are preferably resiliently biased toward the distal elements.
- Each proximal element 16 is shaped and positioned to be at least partially recessed within the concavity of the distal element 18 when no tissue is present.
- the proximal elements 16 are shaped such that each proximal element 16 is separated from the engagement surface 50 near the proximal end 52 of arm 53 and slopes toward the engagement surface 50 near the free end 54 with the free end of the proximal element contacting engagement surface 50 , as illustrated in FIG. 9 .
- This shape of the proximal elements 16 accommodates valve leaflets or other tissues of varying thicknesses.
- Proximal elements 16 include a plurality of openings 63 and scalloped side edges 61 to increase grip on tissue.
- the proximal elements 16 optionally include frictional accessories, frictional features or grip-enhancing elements to assist in grasping and/or holding the leaflets.
- the frictional accessories comprise barbs 60 having tapering pointed tips extending toward engagement surfaces 50 . It may be appreciated that any suitable frictional accessories may be used, such as prongs, windings, bands, barbs, grooves, channels, bumps, surface roughening, sintering, high-friction pads, coverings, coatings or a combination of these.
- magnets may be present in the proximal and/or distal elements.
- the mating surfaces will be made from or will include material of opposite magnetic charge to cause attraction by magnetic force.
- the proximal elements and distal elements may each include magnetic material of opposite charge so that tissue is held under constant compression between the proximal and distal elements to facilitate faster healing and ingrowth of tissue.
- the magnetic force may be used to draw the proximal elements 16 toward the distal elements 18 , in addition to or alternatively to biasing of the proximal elements toward the distal elements. This may assist in deployment of the proximal elements 16 .
- the distal elements 18 each include magnetic material of opposite charge so that tissue positioned between the distal elements 18 is held therebetween by magnetic force.
- proximal elements 16 may be covered with a fabric or other flexible material as described below to enhance grip and tissue ingrowth following implantation.
- fabrics or coverings are used in combination with barbs or other frictional features, such features will protrude through such fabric or other covering so as to contact any tissue engaged by proximal elements 16 .
- proximal elements 16 are formed from metallic sheet of a spring-like material using a stamping operation which creates openings 63 , scalloped edges 61 and barbs 60 .
- proximal elements 16 could be comprised of a spring-like material or molded from a biocompatible polymer. It should be noted that while some types of frictional accessories that can be used in the present invention may permanently alter or cause some trauma to the tissue engaged thereby, in a preferred embodiment, the frictional accessories will be atraumatic and will not injure or otherwise affect the tissue in a clinically significant way.
- barbs 60 it has been demonstrated that following engagement of mitral valve leaflets by fixation device 14 , should the device later be removed during the procedure barbs 60 leave no significant permanent scarring or other impairment of the leaflet tissue and are thus considered atraumatic.
- the fixation device 14 also includes an actuation mechanism 58 .
- the actuation mechanism 58 comprises two link members or legs 68 , each leg 68 having a first end 70 which is rotatably joined with one of the distal elements 18 at a riveted joint 76 and a second end 72 which is rotatably joined with a stud 74 .
- the legs 68 are preferably comprised of a rigid or semi-rigid metal or polymer such as Elgiloy®, cobalt chromium or stainless steel, however any suitable material may be used.
- each leg 68 may be individually attached to the stud 74 by a separate rivet or pin.
- the stud 74 is joinable with an actuator rod 64 (not shown) which extends through the shaft 12 and is axially extendable and retractable to move the stud 74 and therefore the legs 68 which rotate the distal elements 18 between closed, open and inverted positions.
- immobilization of the stud 74 holds the legs 68 in place and therefore holds the distal elements 18 in a desired position.
- the stud 74 may also be locked in place by a locking feature which will be further described in later sections.
- fixation device 14 it may be desirable to provide some mobility or flexibility in distal elements 18 and/or proximal elements 16 in the closed position to enable these elements to move or flex with the opening or closing of the valve leaflets. This provides shock absorption and thereby reduces force on the leaflets and minimizes the possibility for tearing or other trauma to the leaflets.
- Such mobility or flexibility may be provided by using a flexible, resilient metal or polymer of appropriate thickness to construct the distal elements 18 .
- the locking mechanism of the fixation device (described below) may be constructed of flexible materials to allow some slight movement of the proximal and distal elements even when locked.
- distal elements 18 can be connected to the coupling mechanism 19 or to actuation mechanism 58 by a mechanism that biases the distal element into the closed position (inwardly) but permits the arms to open slightly in response to forces exerted by the leaflets.
- these components may be pinned through a slot that allowed a small amount of translation of the pin in response to forces against the arms.
- a spring is used to bias the pinned component toward one end of the slot.
- FIGS. 10A-10B , 11 A- 11 B, 12 A- 12 B, 13 A- 13 B, and FIGS. 14-16 illustrate embodiments of the fixation device 14 of FIG. 9 in various possible positions during introduction and placement of the device 14 within the body to perform a therapeutic procedure.
- FIG. 10A illustrates an embodiment of an interventional tool 10 delivered through a catheter 86 . It may be appreciated that the interventional tool 10 may take the form of a catheter, and likewise, the catheter 86 may take the form of a guide catheter or sheath. However, in this example the terms interventional tool 10 and catheter 86 will be used.
- the interventional tool 10 comprises a fixation device 14 coupled to a shaft 12 and the fixation device 14 is shown in the closed position.
- FIG. 10B illustrates a similar embodiment of the fixation device of FIG. 10A in a larger view.
- the opposed pair of distal elements 18 are positioned so that the engagement surfaces 50 face each other.
- Each distal element 18 comprises an elongate arm 53 having a cupped or concave shape so that together the arms 53 surround the shaft 12 and optionally contact each other on opposite sides of the shaft.
- FIG. 10B further includes an actuation mechanism 58 .
- the actuation mechanism 58 comprises two legs 68 which are each movably coupled to a base 69 .
- the base 69 is joined with an actuator rod 64 which extends through the shaft 12 and is used to manipulate the fixation device 14 .
- the actuator rod 64 attaches directly to the actuation mechanism 58 , particularly the base 69 .
- the actuator rod 64 may alternatively attach to a stud 74 which in turn is attached to the base 69 .
- the stud 74 is threaded so that the actuator rod 64 attaches to the stud 74 by a screw-type action.
- the rod 64 and stud 74 may be joined by any mechanism which is releasable to allow the fixation device 14 to be detached from shaft 12 .
- FIGS. 11A-11B illustrate the fixation device 14 in the open position.
- the distal elements 18 are rotated so that the engagement surfaces 50 face a first direction.
- Distal advancement of the stud 74 relative to coupling member 19 by action of the actuator rod 64 applies force to the distal elements 18 which begin to rotate around joints 76 due to freedom of movement in this direction.
- Such rotation and movement of the distal elements 18 radially outward causes rotation of the legs 68 about joints 80 so that the legs 68 are directly slightly outwards.
- the stud 74 may be advanced to any desired distance correlating to a desired separation of the distal elements 18 .
- engagement surfaces 50 are disposed at an acute angle relative to shaft 12 , and are preferably at an angle of between 90 and 180 degrees relative to each other.
- the free ends 54 of arms 53 have a span therebetween of about 10-20 mm, usually about 12-18 mm, and preferably about 14-16 mm.
- Proximal elements 16 are typically biased outwardly toward arms 53 .
- the proximal elements 16 may be moved inwardly toward the shaft 12 and held against the shaft 12 with the aid of proximal element lines 90 which can be in the form of sutures, wires, nitinol wire, rods, cables, polymeric lines, or other suitable structures.
- the proximal element lines 90 may be connected with the proximal elements 16 by threading the lines 90 in a variety of ways. When the proximal elements 16 have a loop shape, as shown in FIG. 11A , the line 90 may pass through the loop and double back. When the proximal elements 16 have an elongate solid shape, as shown in FIG.
- the line 90 may pass through one or more of the openings 63 in the element 16 .
- a line loop 48 may be present on a proximal element 16 , also illustrated in FIG. 11B , through which a proximal element line 90 may pass and double back.
- Such a line loop 48 may be useful to reduce friction on proximal element line 90 or when the proximal elements 16 are solid or devoid of other loops or openings through which the proximal element lines 90 may attach.
- a proximal element line 90 may attach to the proximal elements 16 by detachable means which would allow a single line 90 to be attached to a proximal element 16 without doubling back and would allow the single line 90 to be detached directly from the proximal element 16 when desired.
- detachable means include hooks, snares, clips or breakable couplings, to name a few.
- the detachable means may be detached from the proximal element 16 such as by breakage of the coupling. Other mechanisms for detachment may also be used.
- a lock line 92 may be attached and detached from a locking mechanism by similar detachable means.
- the fixation device 14 can engage the tissue which is to be approximated or treated.
- the embodiment illustrated in FIGS. 9-11 is adapted for repair of the mitral valve using an antegrade approach from the left atrium.
- the interventional tool 10 is advanced through the mitral valve from the left atrium to the left ventricle.
- the distal elements 18 are oriented to be perpendicular to the line of coaptation and then positioned so that the engagement surfaces 50 contact the ventricular surface of the valve leaflets, thereby grasping the leaflets.
- the proximal elements 16 remain on the atrial side of the valve leaflets so that the leaflets lie between the proximal and distal elements.
- the proximal elements 16 have frictional accessories, such as barbs 60 which are directed toward the distal elements 18 . However, neither the proximal elements 16 nor the barbs 60 contact the leaflets at this time.
- the interventional tool 10 may be repeatedly manipulated to reposition the fixation device 14 so that the leaflets are properly contacted or grasped at a desired location. Repositioning is achieved with the fixation device in the open position. In some instances, regurgitation may also be checked while the device 14 is in the open position. If regurgitation is not satisfactorily reduced, the device may be repositioned and regurgitation checked again until the desired results are achieved.
- FIGS. 12A-12B illustrate the fixation device 14 in the inverted position.
- the distal elements 18 are further rotated so that the engagement surfaces 50 face outwardly and free ends 54 point distally, with each arm 53 forming an obtuse angle relative to shaft 12 .
- the angle between arms 53 is preferably in the range of about 270 to 360 degrees. Further advancement of the stud 74 further rotates the distal elements 18 around joints 76 .
- the stud 74 may be advanced to any desired distance correlating to a desired inversion of the distal elements 18 .
- the span between free ends 54 is no more than about 20 mm, usually less than about 16 mm, and preferably about 12-14 mm.
- the proximal elements 16 remain positioned against the shaft 12 by exerting tension on the proximal element lines 90 .
- a relatively large space may be created between the elements 16 , 18 for repositioning.
- the inverted position allows withdrawal of the fixation device 14 through the valve while minimizing trauma to the leaflets.
- Engagement surfaces 50 provide an atraumatic surface for deflecting tissue as the fixation device is retracted proximally. It should be further noted that barbs 60 are angled slightly in the distal direction (away from the free ends of the proximal elements 16 ), reducing the risk that the barbs will catch on or lacerate tissue as the fixation device is withdrawn.
- FIGS. 13A-13B illustrate the fixation device 14 in such a position.
- the proximal elements 16 are lowered toward the engagement surfaces 50 so that the leaflets are held therebetween.
- the proximal elements 16 are shown to include barbs 60 which may be used to provide atraumatic gripping of the leaflets. Alternatively, larger, more sharply pointed barbs or other penetration structures may be used to pierce the leaflets to more actively assist in holding them in place. This position is similar to the open position of FIGS.
- proximal elements 16 are now lowered toward arms 53 by releasing tension on proximal element lines 90 to compress the leaflet tissue therebetween.
- the proximal elements 16 may be raised and the distal elements 18 adjusted or inverted to reposition the fixation device 14 , if regurgitation is not sufficiently reduced.
- FIG. 14 illustrates the fixation device 14 in the closed position wherein the leaflets (not shown) are captured and coapted. This is achieved by retraction of the stud 74 proximally relative to coupling member 19 so that the legs 68 of the actuation mechanism 58 apply an upwards force to the distal elements 18 which in turn rotate the distal elements 18 so that the engagement surfaces 50 again face one another.
- the released proximal elements 16 which are biased outwardly toward distal elements 18 are concurrently urged inwardly by the distal elements 18 .
- the fixation device 14 may then be locked to hold the leaflets in this closed position as described below.
- the fixation device 14 may then be released from the shaft 12 .
- the fixation device 14 is releasably coupleable to the shaft 12 by coupling member 19 .
- FIG. 15 illustrates the coupling structure, a portion of the shaft 12 to which the coupling member 19 of the fixation device 14 attaches.
- the proximal element lines 90 may remain attached to the proximal elements 16 following detachment from shaft 12 to function as a tether to keep the fixation device 14 connected with the catheter 86 .
- a separate tether coupled between shaft 12 and fixation device 14 may be used expressly for this purpose while the proximal element lines 90 are removed.
- the repair of the leaflets or tissue may be observed by non-invasive visualization techniques, such as echocardiography, to ensure the desired outcome. If the repair is not desired, the fixation device 14 may be retrieved with the use of the tether or proximal element lines 90 so as to reconnect coupling member 19 with shaft 12 .
- proximal element lines 90 are elongated flexible threads, wire, cable, sutures or lines extending through shaft 12 , looped through proximal elements 16 , and extending back through shaft 12 to its proximal end. When detachment is desired, one end of each line may be released at the proximal end of the shaft 12 and the other end pulled to draw the free end of the line distally through shaft 12 and through proximal element 16 thereby releasing the fixation device.
- FIG. 16 illustrates a released fixation device 14 in a closed position. As shown, the coupling member 19 remains separated from the shaft 12 of the interventional tool 10 and the proximal elements 16 are deployed so that tissue (not shown) may reside between the proximal elements 16 and distal elements 18 .
- distal elements 18 may be coupled at their proximal ends to stud 74 rather than to coupling member 19
- legs 68 may be coupled at their proximal ends to coupling member 19 rather than to stud 74 .
- distal elements 18 when stud 74 is pushed distally relative to coupling member 19 , distal elements 18 would close, while pulling on stud 74 proximally toward coupling member 19 would open distal elements 18 .
- the fixation device 14 may optionally include a covering.
- the covering may assist in grasping the tissue and may later provide a surface for tissue ingrowth. Ingrowth of the surrounding tissues, such as the valve leaflets, provides stability to the device 14 as it is further anchored in place and may cover the device with native tissue thus reducing the possibility of immunologic reactions.
- the covering may be comprised of any biocompatible material, such as polyethylene terepthalate, polyester, cotton, polyurethane, expanded polytetrafluoroethylene (ePTFE), silicon, or various polymers or fibers and have any suitable form, such as a fabric, mesh, textured weave, felt, looped or porous structure. Generally, the covering has a low profile so as not to interfere with delivery through an introducer sheath or with grasping and coapting of leaflets or tissue.
- FIGS. 17A-17C illustrate a covering 100 on the fixation device 14 wherein the device 14 is in various positions.
- FIG. 17A shows the covering 100 encapsulating the distal elements 18 and the actuation mechanism 58 while the device 14 is in the open position.
- the engagement surfaces 50 are covered by the covering 100 which helps to minimize trauma on tissues and provides additional friction to assist in grasping and retaining tissues.
- FIG. 17B shows the device 14 of FIG. 17A in the inverted position.
- the covering 100 is loosely fitted and/or is flexible or elastic such that the device 14 can freely move to various positions and the covering 100 conforms to the contours of the device 14 and remains securely attached in all positions.
- FIG. 17C shows the device 14 in the closed position.
- the covering 100 may cover specific parts of the fixation device 14 while leaving other parts exposed.
- the covering 100 may comprise sleeves that fit over the distal elements 18 and not the actuation mechanism 58 , caps that fit over the distal ends 54 of the distal elements 18 or pads that cover the engagement surfaces 50 , to name a few.
- the covering 100 may allow any frictional accessories, such as barbs, to be exposed.
- the covering 100 may cover the proximal elements 16 and/or any other surfaces of the fixation device 14 .
- the covering 100 should be durable to withstand multiple introduction cycles and, when implanted within a heart, a lifetime of cardiac cycles.
- the covering 100 may alternatively be comprised of a polymer or other suitable materials dipped, sprayed, coated or otherwise adhered to the surfaces of the fixation device 14 .
- the polymer coating may include pores or contours to assist in grasping the tissue and/or to promote tissue ingrowth.
- any of the coverings 100 may optionally include drugs, antibiotics, anti-thrombosis agents, or anti-platelet agents such as heparin, COUMADIN® (Warfarin Sodium), to name a few. These agents may, for example, be impregnated in or coated on the coverings 100 . These agents may then be delivered to the grasped tissues surrounding tissues and/or bloodstream for therapeutic effects.
- the fixation device 14 optionally includes a locking mechanism for locking the device 14 in a particular position, such as an open, closed or inverted position or any position therebetween. It may be appreciated that the locking mechanism includes an unlocking mechanism which allows the device to be both locked and unlocked.
- FIGS. 18-21 illustrate an embodiment of a locking mechanism 106 .
- the locking mechanism 106 is disposed between the coupling member 19 and the base 69 of the actuation mechanism 58 .
- the base 69 is fixedly attached to the stud 74 which extends through the locking mechanism 106 .
- the stud 74 is releasably attached to the actuator rod 64 which passes through the coupling member 19 and the shaft 12 of the interventional tool 10 .
- the base 69 is also connected to the legs 68 of the actuation mechanism 58 which are in turn connected to the distal elements 18 .
- FIG. 18 also illustrates the proximal elements 16 , which in this embodiment straddle the locking mechanism and join beneath the locking mechanism 106 .
- the proximal elements 16 are shown supported by proximal element lines 90 .
- the proximal elements 16 are raised and lowered by manipulation of the proximal element lines 90 .
- lock lines 92 are shown connected with a release harness 108 of the locking mechanism 106 .
- the lock lines 92 are used to lock and unlock the locking mechanism 106 as will be described below.
- the proximal element lines 90 and lock lines 92 may be comprised of any suitable material, typically wire, nitinol wire, cable, suture or thread, to name a few.
- proximal element lines 90 and/or lock lines 92 may include a coating, such as parylene.
- Parylene is a vapor deposited pinhole free protective film which is conformal and biocompatible. It is inert and protects against moisture, chemicals, and electrical charge.
- FIG. 19 provides a front view of the locking mechanism 106 of FIG. 18 .
- the proximal elements 16 are supported by a single proximal element line 90 which is through both of the proximal elements 16 .
- both of the elements are raised and lowered simultaneously by action of a single proximal element line 90 .
- the proximal element lines 90 may extend directly through openings in the proximal elements and/or through a layer or portion of a covering 100 on the proximal elements, or through a suture loop above or below a covering 100 .
- FIGS. 20-21 illustrate the locking mechanism 106 showing the locking mechanism 106 in the unlocked and locked positions respectively.
- the locking mechanism 106 includes one or more wedging elements, such as rolling elements.
- the rolling elements comprise a pair of barbells 110 disposed on opposite sides of the stud 74 , each barbell having a pair of generally cylindrical caps and a shaft therebetween.
- the barbells 110 and the stud 74 are preferably comprised of cobalt chromium or stainless steel, however any suitable material may be used.
- the barbells 110 are manipulated by hooked ends 112 of the release harness 108 . When an upwards force is applied to the harness 108 by the lock line 92 (illustrated in FIG.
- the hooked ends 112 raise the barbells 110 against a spring 114 , as shown in FIG. 20 .
- This draws the barbells 110 up along a sidewall or sloping surface 116 which unwedges the barbells 110 from against the stud 74 .
- the stud 74 is free to move.
- the locking mechanism 106 is in an unlocked position wherein the stud 74 is free to move the actuation mechanism 58 and therefore the distal elements 18 to any desired position. Release of the harness 108 by the lock line 92 transitions the locking mechanism 106 to a locked position, illustrated in FIG. 21 .
- the spring 114 forces the barbells 110 downwards and wedges the barbells 110 between the sloping surface 116 and the stud 74 .
- This restricts motion of the stud 74 which in turn locks the actuation mechanism 58 and therefore distal elements 18 in place.
- the stud 74 may include one or more grooves 82 or indentations which receive the barbells 110 . This may provide more rapid and positive locking by causing the barbells 110 to settle in a definite position, increase the stability of the locking feature by further preventing movement of the barbells 110 , as well as tangible indication to the user that the barbell has reached a locking position.
- each groove 82 may be used to indicate the relative position of the distal elements 18 , particularly the distance between the distal elements 18 .
- each groove 82 may be positioned to correspond with a 0.5 or 1.0 mm decrease in distance between the distal elements 18 .
- the barbells 110 will contact the grooves 82 ; by counting the number of grooves 82 that are felt as the stud 74 is moved, the user can determine the distance between the distal elements 18 and can provide the desired degree of coaptation based upon leaflet thickness, geometry, spacing, blood flow dynamics and other factors.
- the grooves 82 may provide tactile feedback to the user.
- the locking mechanism 106 allows the fixation device 14 to remain in an unlocked position when attached to the interventional tool 10 during grasping and repositioning and then maintain a locked position when left behind as an implant. It may be appreciated, however, that the locking mechanism 106 may be repeatedly locked and unlocked throughout the placement of the fixation device 14 if desired. Once the final placement is determined, the lock line 92 and proximal element lines 90 are removed and the fixation device is left behind.
- FIGS. 23 , 24 A- 24 B illustrate another embodiment of a locking mechanism 106 .
- the locking mechanism 106 is again disposed between the coupling member 19 and the base 69 of the actuation mechanism 58 .
- the base 69 is connected to the stud 74 which extends through the locking mechanism 106 , and connects to an actuator rod which extends through the coupling member 19 and the shaft 12 of the interventional tool 10 .
- the base 69 is also connected to the legs 68 of the actuation mechanism 58 which are in turn connected to the distal elements 18 .
- FIG. 23 also illustrates the proximal elements 16 which manipulate the locking mechanism 106 in this embodiment.
- the locking mechanism 106 comprises folded leaf structures 124 having overlapping portions 124 a , 124 b , each folded structure 124 being attached to a proximal element 16 .
- the folded structures 124 are shown without the remainder of the locking mechanism 106 for clarity.
- Proximal elements 16 are flexible and resilient and are biased outwardly.
- the folded leaf structures 124 include holes 125 ( FIG. 24B ) in each overlapping portion 124 a , 124 b so that the stud 74 passes through the holes 125 of the portions 124 a , 124 b as shown.
- the locking mechanism includes slots into which ends 123 of the folded leaf structures 124 are fixed.
- the folded leaf structures 124 lie substantially perpendicular to the stud 74 so that the holes 125 in each overlapping portion are vertically aligned. This allows the stud 74 to pass freely through the holes and the locking mechanism 106 is considered to be in an unlocked position.
- FIG. 24A Deployment of the proximal elements 16 , as shown in FIG. 24A , tilts the folded leaf structures 124 so as to be disposed in a non-perpendicular orientation relative to the stud 74 and the holes 125 are no longer vertically aligned with one another. In this arrangement, the stud 74 is not free to move due to friction against the holes of the folded leaf structure 124 .
- FIG. 24B provides a larger perspective view of the folded structures 124 in this position.
- the locking mechanism 106 is considered to be in a locked position. This arrangement allows the fixation device 14 to maintain an unlocked position during grasping and repositioning and then maintain a locked position when the proximal elements 16 are deployed and the fixation device 14 is left behind as an implant. It may be appreciated, however, that the locking mechanism 106 may be repeatedly locked and unlocked throughout the placement of the fixation device 14 if desired.
- FIGS. 25 , 26 A- 26 B illustrate another embodiment of a locking mechanism 106 .
- the locking mechanism 106 is again disposed between the coupling member 19 and the base 69 of the actuation mechanism 58 .
- the base 69 is connected to the stud 74 which extends through the locking mechanism 106 and connects to an actuator rod which extends through the coupling member 19 and the shaft of the interventional tool 10 .
- FIG. 25 illustrates the proximal elements 16 which manipulate the locking mechanism 106 in this embodiment.
- the locking mechanism 106 comprises C-shaped structures 128 , each C-shaped structure 128 attached to a proximal element 16 .
- the C-shaped structures 128 hook around the stud 74 so that the stud 74 passes through the “C” of each structure 128 as shown in FIGS. 26A-26B . As shown, the structures 128 cross each other and the “C” of each structure 128 faces each other. A spring 130 biases the C-shaped structures into engagement with one another. When the proximal elements are in an undeployed position, as in FIG. 26A , the C-shaped structures 128 are urged into an orientation more orthogonal to the axial direction defined by stud 74 , thus bringing the “C” of each structure 128 into closer axial alignment. This allows the stud 74 to pass freely through the “C” of each structure 128 .
- proximal elements 16 outwardly urges the C-shaped structures into a more angular, non-orthogonal orientation relative to stud 74 causing the sidewalls of the “C” of each structure 128 to engage stud 74 more forcefully.
- the stud 74 is not free to move due to friction against the “C” shaped structures 128 .
- FIGS. 22A-22B illustrate a variation of the fixation device 14 described above in which the distal and proximal elements 16 , 18 on each side of the fixation device are movable laterally toward and away from each other to facilitate capture of more widely-separated leaflets or other tissue flaps.
- the coupling member 19 is bifurcated into two resilient and flexible branches 19 A, 19 B which are biased outwardly into the position shown in FIG. 22A , but which are movable to the position shown in FIG. 22B .
- branches 19 A, 19 B may be more rigid members connected to coupling member 19 by pins or hinges so as to be pivotable toward and away from each other.
- proximal elements 16 and distal elements 18 are coupled at their proximal ends to one branch 19 A or 19 B of the coupling member 19 .
- Legs 68 are coupled at their proximal ends to base 69 , and therefore stud 74 , and at their distal ends to distal elements 18 , as described above.
- Translation of stud 74 distally or proximally relative to coupling member 19 opens or closes distal elements 18 as in formerly described embodiments.
- a collar 131 is slidably disposed over coupling member 19 and has an annular groove 133 on its inner wall configured to slide over and frictionally engage detents 135 on branches 19 A, 19 B.
- a sheath 137 is positioned coaxially over shaft 12 and is slideable relative thereto to facilitate pushing collar 131 distally over coupling member 19 .
- FIGS. 22A-22B In use, the embodiment of FIGS. 22A-22B is introduced with distal and proximal elements 16 , 18 in the closed position. Collar 131 is pushed distally against, but not over, detents 135 so that branches 19 A, 19 B are disposed together and fixation device 14 has a minimal profile.
- the target tissue e.g. valve leaflets
- sheath 137 is retracted so that collar 131 slides proximally over coupling member 19 . This allows branches 19 A, 19 B to separate into the position of FIG. 22A .
- Actuator 64 is pushed distally so as to open distal elements 18 . Tension is maintained on proximal element lines 90 (not shown in FIGS.
- FIGS. 22A-22B preferably includes a locking mechanism as described above, which has been omitted from the figures for clarity.
- fixation device 14 may be configured to allow for independent actuation of each of the lateral branches 19 A, 19 B and/or distal elements 18 .
- shaft 12 and coupling member 19 may be longitudinally split into two identical halves such that a first branch 19 A may be drawn into collar 131 independently of a second branch 19 B.
- actuator shaft 64 may be longitudinally split so that each half can slide independently of the other half, thus allowing one of distal elements 18 to be closed independently of the other distal element 18 . This configuration permits the user to capture one of the valve leaflets between one of the distal and proximal elements 16 , 18 , then draw the corresponding branch 19 A into the collar 131 .
- the fixation device 14 may then be repositioned to capture a second of the valve leaflets between the other proximal and distal elements 16 , 18 , after which the second branch 19 B may be drawn into collar 131 to complete the coaptation.
- the closure of distal elements 18 may occur either before or after branches 19 A, 19 B are drawn into collar 131 .
- FIGS. 27-28 illustrate an additional embodiment of the fixation device 14 .
- the fixation device 14 includes a coupling member 19 which couples the device 14 to the shaft 12 of the interventional tool 10 .
- the device 14 also includes a top coupler 150 attached to coupling member 19 and a bottom coupler 152 attached to the stud 74 so that the two couplers are axially moveable relative to one another.
- the distal elements 18 are rotatably attached to the top coupler 150 by upper pins 156 and rotatably attached to the bottom coupler 152 by lower pins 160 .
- the pins 156 , 160 are drawn apart.
- the upper pins 156 are disposed within slots 158 as shown.
- FIG. 28 illustrates the fixation device 14 in the closed position.
- the device 14 has a low profile (width in the range of approximately 0.140-0.160 inches orthogonal to the axial direction defined by shaft 12 /stud 74 ) so that the device 14 may be easily passed through a catheter and through any tissue structures.
- the bottom coupler 152 is then retracted or the couplers 150 , 152 brought toward one another to rotate the distal elements 18 outward.
- the components of the fixation device 14 may be formed from stainless steel or other suitable metal, such as by machining, or formed from a polymer, such as by injection molding.
- portions of the fixation device 14 may be covered with a covering such as described above, to promote tissue ingrowth, reduce trauma, enhance friction and/or release pharmacological agents.
- the device 14 may have a smooth surface which prevents cellular adhesion thereby reducing the accumulation of cells having potential to form an emboli.
- the fixation device 14 may include tissue retention features such as barbs 170 and/or bumpers 172 , illustrated in FIGS. 29-30 .
- the barbs 170 may extend from the engagement surfaces 50 of the distal elements 18 , as shown, and may be present in any number and any arrangement. Thus, the barbs 170 will engage the leaflets or tissue during grasping to assist in holding the tissue either by frictional engagement, minor surface penetration or by complete piercing of the tissue, depending on the length and shape of the barbs 170 selected.
- bumpers 172 may extend from the distal elements 18 . As shown in FIG. 29 , each bumpers 172 may extend from the proximal end 52 of the distal element 18 and curve toward the free end 54 of the distal element 18 .
- each bumper 172 may extend from the free end 54 and curve toward the proximal end 52 .
- Bumpers 172 are preferably constructed of a resilient metal or polymer and may have any of various geometries, including a solid thin sheet or a loop-shaped wire form. The bumpers 172 may help to actively engage and disengage tissue from the barbs 170 during opening and closing of the fixation device 14 .
- the engagement surfaces 50 may have any texture or form to increase friction against the grasped tissue.
- the surfaces 50 may include serrations, scales, felt, barbs, polymeric frictional elements, knurling or grooves, to name a few.
- FIG. 31 illustrates the engagement surface 50 having a serrated edge 174 to improve grip on tissue engaged.
- FIG. 31 also illustrates an embodiment of the fixation device 14 mounted on an interventional tool 10 or delivery catheter for ventricular approach to the mitral valve.
- the device 14 is mounted on the shaft 12 with the engagement surfaces 50 facing distally relative to shaft 12 (and facing upstream relative to the mitral valve).
- the engagement surfaces 50 can be pressed against the downstream surfaces of the valve without passing through the valve.
- any of the embodiments of the fixation device 14 described herein may be mounted on shaft 12 in this orientation for approach to any valve or tissue, including embodiments that include both proximal and distal elements.
- the fixation device 14 when the fixation device 14 is mounted on the shaft 12 in orientation illustrated in FIG. 31 , the position of the distal elements and the proximal elements are reversed. In such instances it is useful to keep in mind that the distal elements contact the distal surface or downstream surface of the leaflets and the proximal elements contact the proximal surface or upstream surface of the leaflets. Thus, regardless of the approach to the valve and the relative position of the proximal and distal elements on the fixation device, the proximal and distal elements remain consistent in relation to the valve.
- FIGS. 32-34 illustrate an additional embodiment of the fixation device 14 .
- the fixation device 14 includes a coupling member 19 , proximal elements 16 and distal elements 18 which are each connected to a set of base components 186 .
- the distal elements 18 are connected to the base components 186 (top base component 186 a and a bottom base component 186 b ) by extension arms 188 .
- each distal element 18 is connected by two extension arms 188 in a crossed arrangement so that one extension arm 188 connects the distal element 18 to the top base component 186 a and the other extension arm 188 ′ connects the distal element 18 to the bottom base component 186 b .
- the top base component 186 a can be separated from the bottom base component 186 b by any suitable method which may be torque driven, spring driven or push/pull. Increasing the separation distance between the base components 186 draws the distal elements 18 inward toward the base components 186 , as shown in FIG. 33 . This allows the tissue to be grasped between the distal elements 18 and proximal elements 16 while in an arrangement wherein the distal elements 18 are parallel to each other. This may prevent inconsistent compression of the tissue and may better accommodate tissues or leaflets of varying thicknesses. As shown in FIG. 34 , the distal elements 18 may be drawn together and the proximal elements 16 may be retracted to form a low profile fixation device 14 .
- FIGS. 35-39 , 40 A- 40 D, 41 - 42 , 43 A- 43 C illustrate another embodiment of the fixation device 14 .
- the device 14 is deliverable in the inverted position and moveable to the open position for grasping of the tissue.
- FIG. 35 illustrates the fixation device 14 in the inverted position.
- the fixation device 14 includes a shaft 198 , proximal elements 16 and distal elements 18 . Each distal element 18 has a proximal end 52 rotatably connected to the shaft 198 and a free end 54 .
- the fixation device 14 also includes an actuator rod 204 , a base 202 and a pair of deployment arms 200 attached to the base 202 as shown.
- the extender 204 is extended and deployment arms 200 are disposed between the actuator rod 204 and the distal elements 18 .
- the actuator rod 204 may be retracted so that the deployment arms 200 press against the distal elements 18 , rotating the distal elements 18 from the inverted position to the open position.
- the angle of the distal elements 18 may be adjusted by retracting or extending the actuator rod 204 various distances. As shown in FIG. 37 , further retraction of the actuator rod 204 raises the distal elements 18 further.
- each distal element 18 includes an implant pledget 210 , typically press-fit or nested within each distal element 18 .
- the implant pledgets 210 will be attached to the leaflets by ties, such as sutures or wires, and will be used to hold the leaflets in desired coaptation.
- the implant pledgets 210 will then be separated from the fixation device 14 and will remain as an implant.
- the leaflets and implant pledgets 210 are punctured by fixation tools 220 , as shown in FIG. 39 .
- the fixation tools 220 extend from the catheter 86 , pass through the leaflets and puncture the implant pledgets 210 .
- the pledgets 210 are comprised of a puncturable material, such as structural mesh.
- the fixation tools 220 are used to deliver an anchor 222 as illustrated in larger view in FIGS. 40A-40D .
- FIG. 40A shows the fixation tool 220 including a sleeve 224 surrounding the fixation tool 220 and an anchor 222 loaded therebetween.
- the anchor includes one or more flaps 228 which are held within the sleeve 224 .
- the anchor 222 may have any suitable form. Additional exemplary embodiments of anchors are provided in commonly assigned U.S. patent application Ser. No. 09/894,463 (Attorney Docket No. 020489-000400US) incorporated herein for all purposes.
- a suture 226 is attached to the anchor 222 and extends through the sleeve 224 or on the outside of the sleeve 224 , as shown, to the catheter 86 .
- the fixation tools 220 are advanced so that the anchor 222 passes through the leaflet (not shown) and the pledget 210 , as shown in FIG. 41 .
- the sleeve 224 is then retracted to expose the flaps 228 which releases the anchor 222 from the confines of the sleeve 224 .
- the flaps 228 extend radially outwardly, illustrated in FIG. 40C , by spring loading, shape memory or other self-expanding mechanism.
- the flaps 228 are positioned against the distal side of the pledget 210 , the suture 226 passing through the pledget 210 and the leaflet, as shown in FIG. 41 .
- the pledgets 210 can be removed from the distal elements 18 .
- the base 202 draws the deployment arms 200 distally which returns the distal elements 18 to the inverted position, as shown in FIG. 42 . Since the pledgets 210 have been pierced by the fixation tools 220 and the anchors 222 have been deployed, the pledgets 210 and the leaflets disengage from distal elements 18 and remain in position. The proximal elements 16 may also be returned to their initial position as shown, using any of various mechanisms as have been described above in connection with other embodiments. Referring now to FIG. 40D , the fixation tool 220 is then removed while the anchor 222 remains in place with suture 226 attached.
- FIGS. 43A-43C illustrate the implant pledgets 210 from various perspective views.
- FIG. 43A provides a perspective top view showing that the pledgets 210 are connected by a link 230 that allows the pledgets 210 to be released from one side of the fixation device 14 .
- the sutures 226 are fixed together, either by knot tying or placement of a suture fastener 232 as shown. It may be appreciated that the suture fastener 232 may have any suitable form. Additional exemplary embodiments of suture fasteners 232 are provided in commonly-assigned U.S. patent application Ser. No.
- FIG. 43B provides a perspective bottom view showing the anchor 222 positioned against the bottom side of the pledget 210 .
- FIG. 43C provides a perspective side view also showing the anchor 222 positioned against the bottom side of the pledget 210 .
- FIGS. 44A-44B , 45 - 46 illustrate another embodiment of the fixation device 14 .
- the fixation device 14 is mounted on the shaft 12 and is comprised of distal elements 18 and a retention clip 36 comprised of a semi-rigid material having a folded shape.
- the material may be any suitable material providing rigidity with recoiling properties such as various metals or plastics.
- the folded shape is such that a fold 252 is directed distally and free ends 254 are directed proximally toward the distal elements 18 .
- Penetration elements 256 are disposed near the free ends 254 and directed toward the shaft 12 .
- an opening 258 is located near the fold 252 , as illustrated in FIG.
- the fold 252 is attached to an actuator rod 74 which passes through the shaft 12 and an arrow-shaped structure 260 is disposed on the shaft 12 between the free ends 254 , proximal to the opening 258 , as shown.
- the fixation device 14 is advanced through the valve so that the distal elements 18 are disposed below the leaflets. The device may then be retracted proximally to capture the leaflets within the distal elements 18 . As shown in FIG.
- actuator rod 74 draws the retention clip 36 toward the distal elements 18 so that the sloping sides of the arrow-shaped structure 260 force the free ends 254 outward, away from the shaft 12 . Further retraction of actuator rod 74 results in the sloping sides of arrow shaped structure 260 falling into the opening 258 in retention clip 36 , causing retention clip 36 to recoil back to the closed position as shown in FIG. 46 , with the free ends 254 extending through the distal elements 18 . This allows the penetration elements 256 to penetrate the leaflets (not shown) to secure engagement therewith. The actuator rod 74 is then detached from the retention clip 36 and shaft 12 is detached from distal elements 18 which are left in place to hold the leaflets in a coapted arrangement.
- proximal elements 16 configured to be positioned on the upstream side of the valve leaflets to assist in the capture and fixation.
- proximal elements may be mounted to shaft 12 so as to be removed following fixation of the leaflets, or the proximal elements may be connected to distal elements 18 and/or retention clip 36 to be implanted therewith.
- the proximal elements may be manipulated to enhance gripping. For example, the proximal elements may be lowered to grasp leaflets or tissue between the proximal and distal elements, and then the proximal elements may be moved to drag the leaflets or tissue into the fixation device. In another example, the proximal elements may be independently lowered to grasp the leaflets or tissue. This may be useful for sequential grasping. In sequential grasping, one proximal element is lowered to capture a leaflet or tissue portion between the proximal and distal elements. The fixation device is then moved, adjusted or maneuvered to a position for grasping another leaflet or tissue portion between another set of proximal and distal elements. In this position, the second proximal element is then lowered to grasp this other leaflet or tissue portion.
- FIG. 47 provides a perspective view of an embodiment of a delivery device or delivery catheter 300 which may be used to introduce and position a fixation device as described above.
- the delivery catheter 300 includes a shaft 302 , having a proximal end 322 and a distal end 324 , and a handle 304 attached to the proximal end 322 .
- a fixation device (not shown) is removably coupleable to the distal end 324 for delivery to a site within the body, typically for endovascular delivery to the mitral valve.
- a coupling structure 320 for coupling with a fixation device.
- an actuator rod 64 is also extending from the distal end 324 .
- the actuator rod 64 is connectable with the fixation device and acts to manipulate the fixation device, typically opening and closing the distal elements. Such coupling to a fixation device is illustrated in FIG. 48 .
- FIG. 48 illustrates an embodiment of a fixation device 14 coupled to the distal end 324 of the delivery catheter 300 .
- the shaft 302 is shown having a nose 318 near its distal end 324 .
- the nose 318 has a flanged shape. Such a flanged shape prevents the nose 318 from being retracted into a guiding catheter or introducer as will be discussed in later sections.
- the nose 318 may have any shape including bullet, rounded, blunt or pointed, to name a few.
- Extending from the nose 318 is a compression coil 326 through which the coupling structure 320 and actuator rod 64 pass.
- the actuator rod 64 is coupleable, as shown, with the stud 74 of the fixation device 14 . Such coupling is illustrated in FIG. 49 .
- FIG. 49 illustrates a portion of the shaft 302 of the delivery catheter 300 and a fixation device 14 which is coupleable with the catheter 300 .
- the actuator rod 64 Passing through the shaft 302 is the actuator rod 64 .
- the actuator rod 64 comprises a proximal extremity 303 and a distal extremity 328 , the distal extremity 328 of which is surrounded by a coil 330 .
- the proximal extremity 303 is typically comprised of stainless steel, nitinol, or Elgiloy®, to name a few, and may have a diameter in the range of 0.010 in. to 0.040 in., preferably 0.020 in.
- the distal extremity 328 may be tapered, is typically comprised of stainless steel, nitinol, or Elgiloy®, to name a few, and may have a diameter in the range of 0.011 to 0.025 in and a length in the range of 4 to 12 in. Such narrowing increases flexibility of the distal end 324 of the actuator rod 64 .
- the actuator rod 64 further comprises a joiner 332 which is attached to the distal extremity 328 .
- the joiner 332 is removably attachable with stud 74 of the fixation device 14 .
- the joiner 332 has internal threads which mate with external threads on the stud 74 of the fixation device 14 .
- the stud 74 is connected with the distal elements 18 so that advancement and retraction of the stud 74 , by means of the actuator rod 64 , manipulates the distal elements.
- the coupling member 19 of the fixation device 14 mates with the coupling structure 320 of the catheter 300 .
- the coupling member 19 and coupling structure 320 function as previously described in relation to FIGS. 6A-6B .
- the fixation device 14 may also include a locking mechanism which includes a release harness 108 , as previously described in relation to FIGS. 18-21 .
- Lock lines 92 are connected with the release harness 108 to lock and unlock the locking mechanism 106 as previously described.
- the lock lines 92 extend through the shaft 302 of the delivery catheter 300 and may connect with the release harness 108 in various arrangements as will be illustrated in later sections.
- proximal element lines 90 extend through the shaft 302 of the delivery catheter 300 and connect with the proximal elements 16 .
- the proximal elements 16 are raised and lowered by manipulation of the proximal element lines 90 as previously described.
- the proximal element lines 90 may connect with the proximal elements 16 in various arrangements as will be illustrated in later sections.
- the handle 304 attached to the proximal end 322 of the shaft 302 is used to manipulate the coupled fixation device 14 and to optionally decouple the fixation device 14 for permanent implantation.
- the fixation device 14 is primarily manipulated by the actuator rod 64 , proximal element lines 90 and lock lines 92 .
- the actuator rod 64 manipulates the distal elements 18
- the proximal element lines 90 manipulate the proximal elements 16
- the lock lines 92 manipulate the locking mechanism.
- the actuator rod 64 may be translated (extended or retracted) to manipulate the distal elements 18 . This is achieved with the use of the actuator rod control 314 which will be described in later sections.
- the actuator rod 64 may also be rotated to engage or disengage the threaded joiner with the threaded stud 74 . This is achieved with the use of the actuator rod handle 316 which will also be described in later sections.
- the proximal element lines 90 may be extended, retracted, loaded with various amounts of tension or removed with the use of the proximal element line handle 312 .
- the lock lines 92 may be may be extended, retracted, loaded with various amounts of tension or removed with the use of the lock line handle 310 . Both of these handles 310 , 312 will be described in more detail in later sections.
- the actuator rod handle 316 , actuator rod control 314 , proximal element line handle 312 and lock line handle 310 are all joined with a main body 308 within which the actuator rod 64 , proximal element lines 90 and lock lines 92 are guided into the shaft 302 .
- the handle 304 further includes a support base 306 connected with the main body 308 .
- the main body 308 is slideable along the support base 306 to provide translation of the shaft 302 . Further, the main body 308 is rotateable around the support base 306 to rotate the shaft.
- FIG. 50 illustrates a cross-sectional view of the delivery catheter shaft 302 of FIG. 47 .
- the shaft 302 has a tubular shape with inner lumen 348 and is comprised of a material which provides hoop strength while maintaining flexibility and kink resistance, such as a braided laminated material.
- a material which provides hoop strength while maintaining flexibility and kink resistance such as a braided laminated material.
- Such material may include stainless steel braided or coiled wire embedded in a polymer such as polyurethane, polyester, Pebax, Grilamid TR55, and AESNO to name a few.
- a support coil 346 is disposed within the lumen 348 of shaft 302 as illustrated in FIG. 50 .
- the support coil 346 Passing through the support coil 346 are a variety of elongated bodies, including tubular guides and cylindrical rods.
- one type of tubular guide is a compression coil 326 extending through lumen 348 from the proximal end 322 to the distal end 324 of the shaft 302 , and the actuator rod 64 extends through the compression coil 326 .
- the compression coil typically has a length in the range of 48 to 60 in. and an inner diameter in the range of 0.020 to 0.035 in. to allow passage of the actuator rod 64 therethrough.
- the actuator rod 64 is manipulable to rotate and translate within and relative to the compression coil 326 .
- the compression coil 326 allows lateral flexibility of the actuator rod 64 and therefore the shaft 302 while resisting buckling and providing column strength under compression.
- the compression coil may be comprised of 304V stainless steel to provide these properties.
- a tension cable 344 may also pass through the support coil 346 .
- the tension cable 344 extends through lumen 348 from the proximal end 322 to the distal end 324 of the shaft 302 . Therefore, the tension cable 344 typically has a diameter in the range of 0.005 in. to 0.010 in. and a length in the range of 48 to 60 in.
- the tension cable 344 is comprised of 304V stainless steel.
- At least one lock line shaft 341 having a tubular shape may be present having a lock line lumen 340 through which lock lines 92 pass between the lock line handle 310 and the locking mechanism 106 .
- the lock line shaft 341 extends through lumen 348 from the proximal end 322 to the distal end 324 of the shaft 302 . Therefore, the lock line shaft 341 typically has a length in the range of 48 to 60 in., an inner diameter in the range of 0.016 to 0.030 in., and an outer diameter in the range of 0.018 to 0.034 in.
- the lock line shaft 341 is comprised of a 304V stainless steel coil however other structures or materials may be used which provide kink resistance and compression strength.
- proximal element line shaft 343 having a tubular shape may be present having a proximal element line lumen 342 .
- Proximal element lines 90 pass through this lumen 342 between the proximal element line handle 312 and the proximal elements 16 .
- the proximal element line shaft 343 extends through lumen 348 from the proximal end 322 to the distal end 324 of the shaft 302 . Therefore, the proximal element line shaft 343 typically has a length in the range of 48 to 60 in., an inner diameter in the range of 0.016 to 0.030 in., and an outer diameter in the range of 0.018 to 0.034 in.
- the proximal element line shaft 343 is comprised of a 304V stainless steel coil however other structures or materials may be used which provide kink resistance and compression strength.
- the elongated bodies each “float” freely in inner lumen 348 within the support coil 346 and are fixed only at the proximal end 322 and distal end 324 of shaft 302 .
- the lumen 348 is typically filled and flushed with heparinized saline during use.
- the lumen 348 may be filled with one or more fillers, such as flexible rods, beads, extruded sections, gels or other fluids.
- the fillers allow for some lateral movement or deflection of the elongated bodies within lumen 348 but in some cases may restrict such movement.
- the elongated bodies are fixed at the proximal and distal ends of the shaft and are free to move laterally and rotationally therebetween. Such freedom of movement of the elongated bodies provides the shaft 302 with an increased flexibility as the elongated bodies self-adjust and reposition during bending and/or torqueing of the shaft 302 . It may be appreciated that the elongated bodies may not be fixed at the proximal and distal ends.
- the elongated bodies are simply unconstrained relative to the shaft 302 in at least one location so as to be laterally moveable within the lumen 348 .
- the elongated bodies are unrestrained in at least a distal portion of the catheter, e.g. 5-15 cm from the distal end 324 , so as to provide maximum flexibility in the distal portion.
- the shaft 302 again has a tubular shape with an inner lumen 348 and a support coil 346 disposed within the lumen 348 of shaft 302 .
- Filling the inner lumen 348 within the support coil 346 is an extrusion 334 having lumens through which pass a variety of elongated bodies, including the compression coil 326 enclosed actuator rod 64 , tension cable 344 , lock line shafts 342 , and proximal element line shafts 343 , as shown.
- the support coil 346 and elongated bodies may have the same geometries and be comprised of the same materials as described above in relation to FIG. 50 .
- the shaft 302 may include an internal partition 350 to create multiple lumens within the shaft 302 .
- the partition 350 may have a central lumen 352 for passage of the actuator rod 64 , optionally surrounded by the compression coil 326 .
- the partition 350 may also create at least one lock line lumen 340 for passage of a lock line 92 and at least one proximal element line lumen 341 for passage of a proximal element line 90 .
- each of the lumens defined by partition 350 may be lined with a kink-resistant element, such as a coil as in previous embodiments.
- FIGS. 52A-52C illustrate embodiments of the nose 318 of the shaft 302 .
- the nose 318 comprises a tip ring 280 and a lock ring 282 .
- Epoxy and PEBAX are deposited between the tip ring 280 and the lock ring 282 to bond them together.
- the lock ring 282 has a geometry to mate with the tip ring 280 to maintain relative alignment between the two.
- FIG. 52B illustrates another embodiment of the nose 318 of the shaft 302 .
- the tip ring 280 is covered by a soft tip 284 to provide a more atraumatic tip and a smoother transition to the shaft.
- the lines 92 pass through at least one lock line lumen 340 between the lock line handle 310 and the locking mechanism 106 .
- the lock lines 92 engage the release harnesses 108 of the locking mechanism 106 to lock and unlock the locking mechanism 106 as previously described.
- the lock lines 92 may engage the release harnesses 108 in various arrangements, examples of which are illustrated in FIGS. 53A-53C .
- two lock line lumens 340 are present within the shaft 302 of the delivery catheter 300 terminating at the nose 318 .
- the lumens 340 are disposed on alternate sides of the actuator rod 64 so that each lumen 340 is directed toward a release harness 108 .
- FIG. 53A illustrates an embodiment wherein two lock lines 92 , 92 ′ pass through a single lock line lumen 340 and are threaded through a release harness 108 on one side of the actuator rod 64 (the actuator rod 64 is shown without surrounding housing such as coupling structure, for clarity).
- the lock lines 92 , 92 ′ are then separated so that each lock line passes on an opposite side of the actuator rod 64 .
- the lock lines 92 , 92 ′ then pass through the release harness 108 ′ on the opposite side of the actuator rod 64 and continue together passing through a another single lock line lumen 340 ′.
- This lock line arrangement is the same arrangement illustrated in FIG. 48 .
- FIG. 53B illustrates an embodiment wherein one lock line 92 passes through a single lock line lumen 340 , is threaded through a release harness 108 on one side of the actuator rod 64 , and is returned to the lock line lumen 340 .
- another lock line 92 ′ passes through another single lock line lumen 340 ′, is threaded through a different release harness 108 ′ located on the opposite side of the actuator rod 64 , and is returned to the another single lock line lumen 340 ′.
- FIG. 53C illustrates an embodiment wherein both lock lines 92 , 92 ′ pass through a single lock line lumen 340 .
- One lock line 92 is threaded through a release harness 108 on one side of the actuator rod 64 and is then passed through another lock line lumen 340 ′ on the opposite side of the actuator rod 64 .
- the other lock line 92 ′ is threaded through another release harness 108 ′ on the other side of the actuator rod 64 ′ and is then passed through the another lock line lumen 340 ′ with the previous lock line 92 .
- lock line arrangements may be used and are not limited to the arrangements illustrated and described above.
- the various arrangements allow the harnesses 108 to be manipulated independently or jointly, allow various amounts of tension to be applied and vary the force required for removal of the lock lines when the fixation device is to be left behind.
- a single lock line passing through one or two lumens may be connected to both release harnesses for simultaneous application of tension.
- proximal element lines 90 when proximal element lines 90 are present, the lines 90 pass through at least one proximal element line lumen 342 between the proximal element line handle 312 and at least one proximal element 16 .
- the proximal element lines 90 engage the proximal elements 16 to raise or lower the element 16 as previously described.
- the proximal element lines 90 may engage the proximal elements 16 in various arrangements, examples of which are illustrated in FIGS. 54A-54B .
- two proximal element line lumens 342 are present within the shaft 302 of the delivery catheter 300 terminating at the nose 318 .
- the lumens 342 are disposed on alternate sides of the actuator rod 64 (the actuator rod 64 is shown without surrounding housing such as coupling structure, for clarity) so that each lumen 342 is directed toward a proximal element 16 .
- FIG. 54A illustrates an embodiment wherein one proximal element line 90 passes through a single proximal element line lumen 342 .
- the proximal element line 90 is threaded through an eyelet 360 of a proximal element 16 on one side of the actuator rod 64 , passes over the actuator rod 64 and is threaded through an eyelet 360 ′ of another proximal element 16 ′ on the other side of the actuator rod 64 .
- the proximal element line 90 then passes through another single proximal element line lumen 342 ′.
- This proximal element line arrangement is the same arrangement illustrated in FIG. 48 .
- FIG. 54B illustrates an embodiment wherein one proximal element line 90 passes through a single proximal element line lumen 342 , is threaded through an eyelet 360 of a proximal element 16 on one side of the actuator rod 64 , and is returned to the proximal element line lumen 342 .
- another proximal element line 90 ′ passes through another single proximal element line lumen 342 ′ on the opposite side of the actuator rod 64 , and is returned to the another single proximal element line lumen 342 ′.
- proximal element line arrangements may be used and are not limited to the arrangements illustrated and described above.
- the various arrangements allow the proximal elements to be manipulated independently or jointly, allow various amounts of tension to be applied and vary the force required for removal of the proximal element lines when the fixation device is to be left behind.
- a single proximal element line passing through one or two lumens in shaft 302 may be used for simultaneous actuation of both proximal elements.
- snares or hooks may be mounted within delivery catheter 300 so as to be movable distally to engage proximal elements 16 and draw them away from distal elements 18 .
- FIG. 55 illustrates an embodiment of the handle 304 of the delivery catheter 300 .
- the actuator rod handle 316 , actuator rod control 314 , proximal element line handle 312 and lock line handle 310 are all joined with the main body 318 .
- the handle 304 further includes a support base 306 connected with the main body 308 .
- the main body 308 is slideable along the support base 306 to provide translation of the shaft 302 and the main body 308 is rotateable around the support base 306 to rotate the shaft.
- FIG. 56 provides a partial cross-sectional view of the main body 308 of the handle 304 depicted in FIG. 55 .
- the main body 308 includes a sealed chamber 370 within which the actuator rod 64 , proximal element lines 90 and lock lines 92 are guided into the shaft 302 .
- the sealed chamber 370 is in fluid communication with the inner lumen 348 of shaft 302 and is typically filled with saline and flushed with heparin or heparinized saline.
- the sealed chamber 370 has a seal 372 along its perimeter to prevent leakage and the introduction of air to the chamber 370 .
- any air in the chamber 370 may be bled from the chamber 370 by one or more luers 374 which pass through the main body 308 into the chamber 370 as illustrated in FIG. 55 .
- the handle 304 includes two such luers 374 , one on each side of the main body 308 (second luer symmetrically positioned on backside of main body 308 in FIG. 55 , hidden from view).
- the sealed chamber 370 also has various additional seals, such as an actuator rod seal 376 which surrounds the actuator rod 64 where the actuator rod 64 enters the sealed chamber 370 , and a shaft seal 378 which surrounds the shaft 302 where the shaft 302 enters the sealed chamber 370 .
- the lock lines 92 may be may be extended, retracted, loaded with various amounts of tension or removed using the lock line handle 310 .
- the proximal element lines 90 may be extended, retracted, loaded with various amounts of tension or removed using the proximal element line handle 312 . Both of these handles 310 , 312 may be similarly designed to manipulate the appropriate lines 90 , 92 passing therethrough.
- FIG. 57 illustrates an embodiment of a lock line handle 310 having lock lines 92 passing therethrough.
- the lock line handle 310 has a distal end 384 , a proximal end 382 and an elongate shaft 383 therebetween.
- the distal end 382 is positionable within the sealed chamber 370 so that the proximal end 382 extends out of the chamber 370 , beyond the main body 308 .
- the free ends of the lock lines 92 are disposed near the proximal end 382 , passing through the wall of the handle 310 near a threaded nub 390 .
- the handle 310 further includes a cap 388 which is positionable on the nub 309 .
- the lock lines 92 pass through a central lumen (not shown) of the elongate shaft 383 , extend through the sealed chamber 370 (as shown in FIG. 56 ) and extend through the shaft 302 to the locking mechanism 106 .
- wing 392 Disposed near the distal end 384 of the handle 310 is at least one wing 392 .
- two wings 392 are present, each wing 392 disposed on opposite sides of the elongate shaft 383 .
- the wings 392 extend radially outwardly and curve proximally so that a portion is parallel to the elongate shaft 383 , as shown. It may be appreciated that the wings 392 may alternatively have the shape of solid or continuous protrusions which extend radially and have a portion which is parallel to the elongate shaft 383 .
- the wings 392 are used to hold the lock line handle 310 in a desired position which in turn holds the lock under a desired load of tension, as will be described further below.
- the handle 310 also includes a finger grip 386 near the proximal end 382 which extends radially outwardly in alignment with the radial extension of the at least one wing 392 .
- the user may determine the orientation of the wings 392 within the sealed chamber 370 from the orientation of the finger grip 386 outside of the main body 308 .
- the finger grip 386 may also serve an ergonomic purpose to assist in manipulating the handle 310 .
- the portion of the wings 392 parallel to the elongate shaft 383 have grooves or serrations 394 .
- the serrations 394 are used to apply tension to the lock lines 92 .
- the lock line handle 310 is positioned within a semi-tube 400 which is disposed within the sealed chamber 370 .
- the semi-tube 400 comprises a top half 402 and a bottom half 404 , each half 402 , 404 having grooves or serrations 406 which mate with the serrations 394 of the wings 392 .
- the wings 392 are rotated to mate the serrations 394 , 406 , as shown in FIG. 58A , the elongate shaft 383 is held in place.
- the wings 392 may be rotated, as shown in FIG. 58B , so that the wings 392 are disposed between the halves 402 , 404 and the serrations 394 , 406 are disengaged.
- the shaft 383 may be translated to apply or release tension in the lock lines 92 .
- tension in the lines 92 may be adjusted by rotating the shaft 383 to disengage the serrations 394 , 406 , translating the shaft 383 and then rotating the shaft 383 back to reengage the serrations 394 , 406 .
- the finger grip 386 may be pulled to apply tension to the lock lines 92 . Pulling the finger grip 386 translates the lock line handle 310 within the semi-tube 400 .
- Such translation is achievable due to angling of the serrations 394 , 406 and flexibility of wings 382 .
- the angling of the serrations 394 , 406 prevents translation in the opposite direction, i.e. by pushing the finger grip 386 . Therefore, to release tension from the lock lines 92 , the shaft 383 is rotated to disengage the serrations 394 , 406 , allowing translation of the shaft 383 , and then the shaft 383 is rotated back to reengage the serrations 394 , 406 .
- the cap 388 is removed from the threaded nub 390 exposing the free ends of the lock lines 92 . If one lock line 92 is present having two free ends, continuous pulling on one of the free ends draws the entire length of lock line 92 out of the catheter 300 . If more than one lock line 92 is present, each lock line 92 will have two free ends. Continuous pulling on one of the free ends of each lock line 92 draws the entire length of each lock line 92 out of the catheter 300 .
- proximal element line handle 312 has corresponding features to the lock line handle 310 and operates in the same manner as illustrated in FIGS. 57 A, 58 A- 58 B. It may also be appreciated that other mechanisms may be used for manipulating the lock lines 92 and proximal element lines 90 , such as including buttons, springs, levers and knobs.
- the actuator rod 64 may be manipulated using the actuator rod control 314 and the actuator rod handle 316 .
- FIG. 59 provides a cross-sectional view of a portion of the handle 304 which includes the actuator rod control 314 and the actuator rod handle 316 .
- the actuator rod handle 316 is located at the proximal end of the handle 314 .
- the actuator rod handle 316 is fixedly attached to the proximal end of the actuator rod 64 .
- the actuator rod 64 is inserted through a collet 426 which is disposed within a holder 428 as shown.
- the holder 428 has external threads 434 which mate with internal threads 432 of the actuator rod control 314 .
- the actuator rod control 314 causes the holder 428 to translate along the actuator rod control 314 by action of the threading, as will be described in more detail below.
- the actuator rod control 314 is rotatably coupled with the main body 308 of the handle 304 and is held in place by a lip 430 .
- the actuator rod control 314 may be manually rotated in a clockwise or counter clockwise direction, as indicated by arrow 436 .
- Rotation of the actuator rod control 314 translates (extends or retracts) the actuator rod 64 to manipulate the distal elements 18 of the fixation device 14 .
- rotation of the actuator rod control 314 causes the external threads 434 of the adjacent holder 428 to translate along the mated internal threads 432 of the actuator rod control 314 .
- Rotation of the holder 428 itself is prevented by holding pins 424 which protrude from the holder 428 and nest into grooves 438 in the main body 308 of the handle 304 .
- each holding pin 424 translates along its corresponding groove 438 . Since the collet 426 is attached to the holder 428 , the collet 426 translates along with the holder 428 .
- the actuator rod 64 is removably attached to the collet 426 by a pin 422 .
- the pin 422 may have any suitable form, including a clip-shape which partially wraps around the collet 426 as illustrated in FIG. 59 .
- rotation of the actuator rod control 314 provides fine control of translation of the actuator rod 64 and therefore fine control of positioning the distal elements 18 .
- the actuator rod 64 may be rotated, as indicated by arrow 440 , by manually rotating the actuator rod handle 316 . As described previously, rotation of the actuator rod 64 engages or disengages the threaded joiner 332 of the delivery catheter 300 from the threaded stud 74 of the fixation device 14 . This is used to attach or detach the fixation device 14 from the delivery catheter 300 .
- the actuator rod 64 may optionally be retracted and optionally removed from the catheter 300 by pulling the actuator rod handle 316 and withdrawing the actuator rod 64 from the handle 304 .
- the devices of the invention may be modified in ways well known to those of skill in the art or used in conjunction with other devices that are known in the art.
- the delivery catheter may be modified in length, stiffness, shape and steerability for a desired application.
- the orientation of the fixation device relative to the delivery catheter may be reversed or otherwise changed.
- the actuation mechanisms may be changed to be driven in alternate directions (push to open, pull to close, or pull to open, push to close). Materials and designs may be changed to be, for example, more flexible or more rigid.
- the fixation device components may be altered to those of different size or shape.
- the delivery catheter of the present invention may be used to deliver other types of devices, particularly endovascular and minimally invasive surgical devices used in angioplasty, atherectomy, stent-delivery, embolic filtration and removal, septal defect repair, tissue approximation and repair, vascular clamping and ligation, suturing, aneurysm repair, vascular occlusion, and electrophysiological mapping and ablation, to name a few.
- the delivery catheter of the present invention may be used for applications in which a highly flexible, kink-resistant device is desirable with high compressive, tensile and torsional strength.
- the system 1 comprises an outer guide catheter 1000 , having a proximal end 1014 , a distal end 1016 , and a central lumen 1018 therethrough, and an inner guide catheter 1020 , having a proximal end 1024 , distal end 1026 and central lumen 1028 therethrough, wherein the inner guide catheter 1020 is positioned coaxially within the central lumen 1018 of the outer guide catheter 1000 , as shown.
- the distal ends 1016 , 1026 of catheters 1000 , 1020 are sized to be passable to a body cavity, typically through a body lumen such as a vascular lumen.
- the distal end 1016 preferably has an outer diameter in the range of approximately 0.040 in. to 0.500 in., more preferably in the range of 0.130 in. to 0.320 in.
- the central lumen 1018 is sized for the passage of the inner guide catheter 1020 ;
- the distal end 1026 preferably has an outer diameter in the range of approximately 0.035 in. to 0.280 in., more preferably 0.120 in to 0.200 in.
- the central lumen 1028 is sized for the passage of a variety of devices therethrough. Therefore, the central lumen 1028 preferably has an inner diameter in the range of approximately 0.026 in. to 0.450 in., more preferably in the range of 0.100 in. to 0.180 in.
- FIG. 60 illustrates an interventional catheter 1030 positioned within the inner guide catheter 1020 which may optionally be included in system 1 , however other interventional devices may be used.
- the interventional catheter 1030 has a proximal end 1034 and a distal end 1036 , wherein an interventional tool 1040 is positioned at the distal end 1036 .
- the interventional tool 1040 comprises a detachable fixation device or clip.
- the interventional catheter 1030 may also include a nosepiece 1042 having a stop 1043 , as shown. The stop 1043 prevents the interventional tool 1040 from entering the central lumen 1028 of the inner guide catheter 1020 .
- the interventional catheter 1030 may be advanced and retracted until the stop 1043 contacts the distal end 1026 of the inner guiding catheter 1020 preventing further retraction.
- This may provide certain advantages during some procedures. It may be appreciated that in embodiments which include such a stop 1043 , the interventional catheter 1030 would be pre-loaded within the inner guide catheter 1020 for advancement through the outer guiding catheter 1000 or both the interventional catheter 1030 and the inner guiding catheter 1020 would be pre-loaded into the outer guiding catheter 1000 for advancement to the target tissue. This is because the stop 1043 prevents advancement of the interventional catheter 1030 through the inner guiding catheter 1020 .
- the outer guide catheter 1000 and/or the inner guide catheter 1020 are precurved and/or have steering mechanisms, embodiments of which will be described later in detail, to position the distal ends 1016 , 1026 in desired directions.
- Precurvature or steering of the outer guide catheter 1000 directs the distal end 1016 in a first direction to create a primary curve while precurvature and/or steering of the inner guide catheter 1020 directs distal end 1026 in a second direction, differing from the first, to create a secondary curve.
- the primary and secondary curves form a compound curve.
- Advancement of the interventional catheter 1030 through the coaxial guide catheters 1000 , 1020 guides the interventional catheter 1030 through the compound curve toward a desired direction, usually in a direction which will allow the interventional catheter 1030 to reach its target.
- Steering of the outer guide catheter 1000 and inner guide catheter 1020 may be achieved by actuation of one or more steering mechanisms. Actuation of the steering mechanisms is achieved with the use of actuators which are typically located on handles connected with each of the catheters 1000 , 1020 . As illustrated in FIG. 60 , handle 1056 is connected to the proximal end 1014 of the outer guide catheter 1000 and remains outside of the patient's body during use. Handle 1056 includes steering actuator 1050 which may be used to bend, arc or reshape the outer guide catheter 1000 , such as to form a primary curve. Handle 1057 is connected to the proximal end (not shown) of the inner guide catheter 1020 and may optionally join with handle 1056 to form one larger handle, as shown.
- Handle 1057 includes steering actuator 1052 which may be used to bend, arc or reshape the inner guide catheter 1020 , such as to form a secondary curve and move the distal end 1026 of the inner guide catheter 1020 through an angle theta, as will be described in a later section.
- steering actuator 1052 may be used to bend, arc or reshape the inner guide catheter 1020 , such as to form a secondary curve and move the distal end 1026 of the inner guide catheter 1020 through an angle theta, as will be described in a later section.
- locking actuators 1058 , 1060 may be used to actuate locking mechanisms to lock the catheters 1000 , 1020 in a particular position.
- Actuators 1050 , 1052 , 1058 , 1060 are illustrated as buttons, however it may be appreciated that these and any additional actuators located on the handles 1056 , 1057 may have any suitable form including knobs, thumbwheels, levers, switches, toggles, sensors or other devices. Other embodiments of the handles will be described in detail in a later section.
- the handle 1056 may include a numerical or graphical display 1061 of information such as data indicating the position the catheters 1000 , 1020 , or force on actuators. It may also be appreciated that actuators 1050 , 1052 , 1058 , 1060 and any other buttons or screens may be disposed on a single handle which connects with both the catheters 1000 , 1020 .
- FIGS. 61A-61D illustrate examples of positions that the catheters 1000 , 1020 may hold.
- the outer guide catheter 1000 may be precurved and/or steered into a position which includes a primary curve 1100 .
- the primary curve 1100 typically has a radius of curvature 1102 in the range of approximately 0.125 in. to 1.000 in., preferably in the range of approximately 0.250 in. to 0.500 in. or forms a curve in the range of approximately 0° to 120°.
- the distal end 16 lies in a single plane X.
- An axis x, transversing through the center of the central lumen 18 at the distal end 16 lies within plane X.
- the inner guide catheter 1020 extends through the central lumen 1018 of the outer guide catheter 1000 .
- the inner guide catheter 1020 may be precurved and/or steered into a position which includes a secondary curve 1104 .
- the secondary curve 1104 typically has a radius of curvature 1106 in the range of approximately 0.050 in. to 0.750 in., preferably in the range of approximately 0.125 in. to 0.250 in. or forms a curve in the range of approximately 0° to 180°.
- the secondary curve 1104 can lie in the same plane as the primary curve 1100 , plane X, or it can lie in a different plane, such as plane Z as shown. In this example, plane Z is substantially orthogonal to plane X.
- Axis z transversing through the center of the central lumen 1028 of the inner guide catheter 1020 at the distal end 1026 , lies within plane Z.
- axis x and axis z are at substantially 90 degree angles to each other; however, it may be appreciated that axis x and axis z may be at any angle in relation to each other.
- the primary curve 1100 and the secondary curve 1104 lie in different planes, particularly in substantially orthogonal planes, the curves 1100 , 1104 may alternatively lie in the same plane.
- the inner guide catheter 1020 may be further manipulated to allow the distal end 1026 to move through an angle theta 1070 .
- the angle theta 1070 is in the range of approximately ⁇ 180° to +180°, typically in the range of ⁇ 90° to +90°, possibly in the range of ⁇ 60° to +60°, ⁇ 45° to +45°, ⁇ 30° to +30° or less.
- the angle theta 1070 lies within a plane Y.
- axis y which runs through the center of the central lumen 1028 at the distal end 1026 , forms the angle theta 1070 with axis z.
- plane Y is orthogonal to both plane X and plane Z. Axes x, y, z all intercept at a point within the central lumen 1028 which also coincides with the intersection of planes X, Y, Z.
- FIG. 61D illustrates movement of the distal end 1026 through an angle theta 1070 on the opposite side of axis z.
- the angle theta 1070 is measured from the axis z to the axis y, which runs through the center of the central lumen 1016 at the distal end 1026 .
- the angle theta 1070 lies in plane Y.
- the primary curve 1100 , secondary curve 1104 , and angle theta 1070 can all lie in different planes, and optionally in orthogonal planes.
- the planes within which the primary curve 1100 , secondary curve 1104 and angle theta 1070 lie may be mutually dependent and therefore would allow the possibility that some of these lie within the same plane.
- the outer guide catheter 1000 may be pre-formed and/or steerable to provide additional curves or shapes.
- an additional curve 1110 may be formed by the outer guide catheter 1000 proximal to the primary curve 1100 .
- the curve 1110 provides lift or raises the distal end 1016 of the outer guide catheter 1000 , which in turn raises the distal end 1026 of the inner guide catheter 1020 .
- FIG. 62B Such lifting is illustrated in FIG. 62B .
- the system 1 is shown prior to lifting in dashed line wherein the axis y′ passes through the intersection of axis z and axis x′.
- FIGS. 63A-63D illustrate a method of using the system 1 for accessing the mitral valve MV.
- the outer guide catheter 1000 may be tracked over a dilator and guidewire from a puncture in the femoral vein, through the inferior vena cava and into the right atrium. As shown in FIG. 63A , the outer guide catheter 1000 may be punctured through a fossa F in the interatrial septum S.
- the outer guide catheter 1000 is then advanced through the fossa F and curved by the primary curve 1100 so that the distal end 1016 is directed over the mitral valve MV.
- this approach serves merely as an example and other approaches may be used, such as through the jugular vein, femoral artery, port access or direct access, to name a few.
- Positioning of the distal end 1016 over the mitral valve MV may be accomplished by precurvature of the outer guide catheter 1000 , wherein the catheter 1000 assumes this position when the dilator and guidewire are retracted, and/or by steering of the outer guide catheter 1000 to the desired position.
- formation of the primary curve 1100 moves the distal end 1016 within a primary plane, corresponding to previous plane X, substantially parallel to the valve surface. This moves the distal end 1016 laterally along the short axis of the mitral valve MV, and allows the distal end 1016 to be centered over the opening 0 between the leaflets LF.
- the inner guide catheter 1020 is advanced through the central lumen 1018 of the outer guide catheter 1000 and the distal end 1026 is positioned so that the central lumen 1028 is directed toward the target tissue, the mitral valve MV.
- the central lumen 1028 is to be directed toward a specific area of the mitral valve MV, such as toward the opening 0 between the valve leaflets LF, so that a particular interventional procedure may be performed.
- the inner guide catheter 1020 is shown in a position which includes a secondary curve 1104 in a secondary plane, corresponding to previous plane Z.
- Formation of the secondary curve 1104 moves the distal end 1026 vertically and angularly between the commissures C, directing the central lumen 1028 toward the mitral valve MV. In this position an interventional device or catheter 1030 which is passed through the central lumen 1028 would be directed toward and/or through the opening O.
- the primary curve 1100 and the secondary curve 1104 may be varied to accommodate different anatomical variations of the valve MV and different surgical procedures, further adjustment may be desired beyond these two curvatures for proper positioning of the system 1 .
- the distal end 1026 of the inner guide catheter 1020 may be positioned through an angle theta 1070 .
- Such movement can be achieved by precurvature and/or by steering of the catheter 1020 . Consequently, the central lumen 1028 can be directed toward the mitral valve MV within a plane which differs from the secondary plane.
- the inner guide catheter 1020 will be in a position so that the opening of the central lumen 1028 at the end 1016 faces the desired direction. In this case, the desired direction is toward the center of and orthogonal to the mitral valve.
- the steering mechanisms may be locked in place by a locking feature. Locking can provide additional stiffness and stability in the guiding system 1 for the passage of interventional devices or catheters 1030 therethrough, as illustrated in FIG. 60 .
- the interventional catheter 1030 can be passed through the central lumen 1028 toward the target tissue, in this case the mitral valve MV. Positioning of the distal end 1026 over the opening 0 , as described above, allows the catheter 1030 to pass through the opening 0 between the leaflets LF if desired, as shown in FIG. 63D . At this point, any desired procedure may be applied to the mitral valve for correction of regurgitation or any other disorder.
- the curvatures may be formed in the catheters 1000 , 1020 by precurving, steering or any suitable means. Precurving involves setting a specific curvature in the catheter prior to usage, such as by heat setting a polymer or by utilizing a shape-memory alloy. Since the catheters are generally flexible, loading of the catheter on a guidewire, dilator obturator or other introductory device straightens the catheter throughout the curved region. Once the catheter is positioned in the anatomy, the introductory device is removed and the catheter is allowed to relax back into the precurved setting.
- steering mechanisms may be used to create the curvatures and position the catheters.
- the steering mechanisms comprise cables or pullwires within the wall of the catheter.
- the outer guide catheter 1000 may include a pullwire 1120 slidably disposed in lumens within the wall of the catheter 1000 extending to the distal end 1016 .
- the distal end 1016 curves in the direction of the pullwire 1120 as illustrated by arrow 1122 .
- FIG. 64A the outer guide catheter 1000 may include a pullwire 1120 slidably disposed in lumens within the wall of the catheter 1000 extending to the distal end 1016 .
- FIG. 64A placement of the pullwire 1120 along the opposite side of the catheter 1000 will allow the distal end 1016 to curve in the opposite direction, as illustrated by arrow 1124 , when tension is applied to the pullwire 1120 .
- FIG. 64C diametrically opposing placement of pullwires 1120 within the walls of the catheter 1000 allows the distal end 1016 to be steered in opposite directions. This provides a means of correcting or adjusting a curvature. For example, if tension is applied to one pullwire to create a curvature, the curvature may be lessened by applying tension to the diametrically opposite pullwire. Referring now to FIG.
- an additional set of opposing pullwires 1120 ′ may extend within the wall of the catheter 1000 as shown.
- This combination of pullwires 1120 , 1120 ′ allows curvature of the distal end in at least four directions illustrated by arrows 1122 , 1124 , 1126 , 1128 .
- pullwires 1120 create the primary curve 1100 of the outer guide catheter 1000 and the pullwires 1120 ′ create the lift.
- FIGS. 64A-64D also pertain to the inner guide catheter 1020 .
- pullwires 1120 may create the secondary curve 1104 of the inner guide catheter 1020 and the pullwires 1120 ′ create the angle theta 1070 .
- Such pullwires 1120 and/or pullwires 1120 ′ and associated lumens may be placed in any arrangement, singly or in pairs, symmetrically or nonsymmetrically and any number of pullwires may be present. This may allow curvature in any direction and about various axes.
- the pullwires 1120 , 1120 ′ may be fixed at any location along the length of the catheter by any suitable method, such as gluing, tying, soldering, or potting, to name a few. When tension is applied to the pullwire, the curvature forms from the point of attachment of the pullwire toward the proximal direction. Therefore, curvatures may be formed throughout the length of the catheter depending upon the locations of the points of attachment of the pullwires.
- the pullwires will be attached near the distal end of the catheter, optionally to an embedded tip ring 280 , illustrated in FIG. 64E .
- the pullwire 1120 passes through an orifice 286 in the tip ring 280 , forms a loop shape and then passes back through the orifice 286 and travels back up through the catheter wall (not shown).
- the lumens which house the pullwires may be straight, as shown in FIGS. 64A-64D , or may be curved.
- the outer guide catheter 1000 and inner guide catheter 1020 may have the same or different construction which may include any suitable material or combination of materials to create the above described curvatures.
- the examples provided will be in reference to the outer guide catheter 1000 , however it may be appreciated that such examples may also apply to the inner guide catheter 1020 .
- the catheter 1000 may be comprised of a polymer or copolymer which is able to be set in a desired curvature, such as by heat setting.
- the catheter 1000 may be comprised of a shape-memory alloy.
- the catheter 1000 may be comprised of one or more of a variety of materials, either along the length of the catheter 1000 or in various segments.
- Example materials include polyurethane, Pebax, nylon, polyester, polyethylene, polyimide, polyethylenetelephthalate (PET), polyetheretherketone (PEEK).
- the walls of the catheter 1000 may be reinforced with a variety of structures, such as metal braids or coils. Such reinforcements may be along the length of the catheter 1000 or in various segments.
- the catheter 1000 may have a proximal braided segment 1150 , a coiled segment 1152 and distal braided segment 1154 .
- the proximal braided segment 1150 provides increased column strength and torque transmission.
- the coiled segment 1152 provides increased steerability.
- the distal braided segment 1154 provides a blend of steerability and torque/column strength.
- the outer guiding catheter 1000 has a proximal double-layer braided segment 1151 and a distal braided segment 1154 .
- the proximal double-layer segment 1151 comprises a multi-lumen tube 1160 (having steering lumens 1162 for pullwires, distal ends of the steering lumens 1162 optionally embedded with stainless steel coils for reinforcement, and a central lumen 1163 ), an inner braided layer 1164 , and an outer braided layer 1166 , as illustrated in the cross-sectional view of FIG. 65C .
- FIG. 65D provides a cross-sectional view of the distal braided segment 1154 comprising the multi-lumen tube 1160 and a single braided layer 1168 .
- FIG. 65D provides a cross-sectional view of the distal braided segment 1154 comprising the multi-lumen tube 1160 and a single braided layer 1168 .
- the inner guiding catheter 1020 comprises a multi-lumen tube 1160 without reinforcement at its proximal end, a single braided layer middle segment 1170 and a single braided layer distal segment 1171 .
- Each of the single braided layer segments 1170 , 1171 have a multi-lumen tube 1160 and a single layer of braiding 1168 , as illustrated in cross-sectional view FIG. 65F .
- the segments 1170 , 1171 are comprised of polymers of differing durometers, typically decreasing toward the distal end.
- FIG. 65G illustrates an other example of a cross-section of a distal section of an outer guiding catheter 1000 .
- layer 1130 comprises 55D Pebax and has a thickness of approximately 0.0125 in.
- Layer 1131 comprises a 30 ppi braid and has a thickness of approximately 0.002 in. by 0.0065 in.
- Layer 1132 comprises 55D Pebax and has a thickness of approximately 0.006 in.
- Layer 1133 comprises 30 ppi braid and has a thickness of approximately 0.002 in by 0.0065 in.
- layer 1134 comprises Nylon 11 and includes steering lumens for approximately 0.0105 in. diameter pullwires 1120 .
- Central lumen 1163 is of sufficient size for passage of devices.
- FIGS. 65H-65I illustrate additional examples of cross-sections of an inner guiding catheter 1020 , FIG. 65I illustrating a cross-section of a portion of the distal end and FIG. 65I illustrating a cross-section of a more distal portion of the distal end.
- layer 1135 comprises 40D polymer and has a thickness of approximately 0.0125 in.
- Layer 1136 comprises a 30 ppi braid and has a thickness of approximately 0.002 in. by 0.0065 in.
- Layer 1137 comprises 40D polymer and has a thickness of approximately 0.006 in.
- Layer 1138 comprises a 40D polymer layer and has a thickness of approximately 0.0035 in.
- layer 1139 comprises a 55D liner.
- coiled steering lumens are included for approximately 0.0105 in. diameter pullwires 1120 .
- central lumen 1163 is of sufficient size for passage of devices.
- layer 1140 comprises a 40D polymer
- layer 1141 comprises a 35D polymer
- layer 1142 comprises a braid
- layer 1143 comprises a liner.
- coiled steering lumens 1144 are included for pullwires.
- central lumen 1163 is of sufficient size for passage of devices.
- FIGS. 66A-66C illustrate an embodiment of a keying feature which may be incorporated into the catheter shafts.
- the keying feature is used to maintain relationship between the inner and outer guide catheters to assist in steering capabilities.
- the inner guide catheter 1020 includes one or more protrusions 1400 which extend radially outwardly. In this example, four protrusions 1400 are present, equally spaced around the exterior of the catheter 1020 .
- the outer guide catheter 1000 includes corresponding notches 1402 which align with the protrusions 1400 .
- the catheter 1000 includes four notches equally spaced around its central lumen 1018 .
- the inner guide catheter 1020 is able to be translated within the outer guide catheter 1000 , however rotation of the inner guide catheter 1020 within the outer guide catheter 1000 is prevented by the keying feature, i.e. the interlocking protrusions 1400 and notches 1402 .
- Such keying helps maintain a known correlation of position between the inner guide catheter 1020 and outer guide catheter 1000 . Since the inner and outer guide catheters 1020 , 1000 form curvatures in different directions, such keying is beneficial to ensure that the compound curvature formed by the separate curvatures in the inner and outer guide catheters 1020 , 1000 is the compound curvature that is anticipated. Keying may also increase stability wherein the curvatures remain in position reducing the possibility of compensating for each other.
- FIG. 66B illustrates a cross-sectional view of the outer guiding catheter 1000 of FIG. 66A .
- the catheter 1000 includes a notched layer 1404 along the inner surface of central lumen 1018 .
- the notched layer 1404 includes notches 1402 in any size, shape, arrangement and number.
- the notched layer 1404 may include lumens 1406 , typically for passage of pullwires 1120 .
- the lumens 1406 may alternatively or in addition be used for other uses.
- the notched layer 1404 may be incorporated into the wall of the catheter 1000 , such as by extrusion, or may be a separate layer positioned within the catheter 1000 .
- the notched layer 1404 may extend the entire length of the catheter 1000 or one or more portions of the length of the catheter 1000 , including simply a small strip at a designated location along the length of the catheter 1000 .
- FIG. 66C illustrates a cross-sectional view of the inner guiding catheter 1020 of FIG. 66A .
- the catheter 1020 includes protrusions 1400 along the outer surface of the catheter 1020 .
- the protrusions 1400 may be of any size, shape, arrangement and number. It may be appreciated that the protrusions 1400 may be incorporated into the wall of the catheter 1020 , such as by extrusion, may be included in a separate cylindrical layer on the outer surface of the catheter 1020 , or the protrusions 1400 may be individually adhered to the outer surface of the catheter 1020 . Further, it may be appreciated that the protrusions 1400 may extend the entire length of the catheter 1000 or one or more portions of the length of the catheter 1020 , including simply a small strip at a designated location along the length of the catheter 1020 .
- the keying feature may be present along one or more specific portions of the catheters 1000 , 1020 or may extend along the entire length of the catheters 1000 , 1020 .
- the notches 1402 may extend along the entire length of the outer guiding catheter 1020 while the protrusions 1400 extend along discrete portions of the inner guiding catheter 1000 and vice versa.
- the protrusions 1400 may be present on the inner surface of the outer guiding catheter 1000 while the notches 1402 are present along the outer surface of the inner guiding catheter 1020 .
- one or more steerable portions of the catheter 1000 may comprise a series of articulating members 1180 as illustrated in FIG. 67A .
- Exemplary embodiments of steerable portions of catheters comprising such articulating members 1180 are described in U.S. patent application Ser. No. 10,441,753 incorporated herein by reference for all purposes.
- FIG. 67B illustrates the outer guide catheter 1000 having a steerable portion comprising articulating members 1180 at its distal end 1016 .
- each articulating member 1180 may have any shape, particularly a shape which allows interfitting or nesting as shown. In addition, it is desired that each member 1180 have the capability of independently rotating against an adjacent articulating member 1180 .
- the articulating members 1180 comprise interfitting domed rings 1184 .
- the domed rings 1184 each include a base 1188 and a dome 1186 .
- the base 1188 and dome 1186 have a hollow interior which, when the domed rings 1184 are interfit in a series, forms a central lumen 1190 .
- the dome 1186 allows each articulating member 1180 to mate against an inner surface of an adjacent domed ring 1184 .
- the interfitting domed rings 1184 are connected by at least one pullwire 1120 .
- Such pullwires typically extend through the length of the catheter 1000 and at least one of the interfitting domed rings 1184 to a fixation point where the pullwire 1120 is fixedly attached.
- the pullwire 1120 By applying tension to the pullwire 1120 , the pullwire 1120 arcs the series of interfitting domed rings 1184 proximal to the attachment point to form a curve.
- pulling or applying tension on at least one pullwire steers or deflects the catheter 1000 in the direction of that pullwire 1120 .
- the catheter 1000 may be directed in any number of directions.
- each interfitting domed ring 1184 may comprise one or more pullwire lumens 1182 through which the pullwires 1120 are threaded.
- the pullwires 1120 may be threaded through the central lumen 1190 .
- the pullwires are attached to the catheter 1000 at a position where a desired curve is to be formed.
- the pullwires 1120 may be fixed in place by any suitable method, such as soldering, gluing, tying, welding or potting, to name a few. Such fixation method is typically dependent upon the materials used.
- the articulating members 1180 may be comprised of any suitable material including stainless steel, various metals, various polymers or co-polymers.
- the pullwires 1120 may be comprised of any suitable material such as fibers, sutures, metal wires, metal braids, or polymer braids.
- FIG. 68 illustrates a preferred embodiment of handles 1056 , 1057 .
- handle 1056 is attached to the proximal end 1014 of outer guide catheter 1000 and handle 1057 is attached to the proximal end 1024 of inner guide catheter 1020 .
- Inner guide catheter 1020 is inserted through handle 1056 and is positioned coaxially within outer guide catheter 1000 .
- the handles 1056 , 1057 are not linked together as shown in the embodiment illustrated in FIG. 60 .
- handles 1056 , 1057 may alternatively be connected by external connecting rods, bars or plates or by an additional external stabilizing base. An embodiment of a stabilizing base will be described in a later section. Referring back to FIG. 68 , interventional catheter is inserted through handle 1057 and is positioned coaxially within inner guide catheter 1020 and outer guide catheter 1000 .
- Each handle 1056 , 1057 includes two steering knobs 1300 a , 1300 b emerging from a handle housing 1302 for manipulation by a user.
- Steering knobs 1300 a are disposed on a side of the housing 1302 and steering knobs 1300 b are disposed on a face of the housing 1302 .
- such placement may vary based on a variety of factors including type of steering mechanism, size and shape of handle, type and arrangement of parts within handle, and ergonomics to name a few.
- FIG. 69 illustrates the handles 1056 , 1057 of FIG. 68 with a portion of the housing 1302 removed to reveal the assemblies of the handles.
- Each knob 1300 a , 1300 b controls a steering mechanism which is used to form a curvature in the attached catheter.
- Each steering mechanism includes a hard stop gear assembly 1304 and a friction assembly 1306 . Tension is applied to one or more pullwires by action of the hard stop gear assembly to form a curve in a catheter. Tension is maintained by the friction assembly. When tension is released from the one or more pullwires the catheter returns to a straightened position.
- FIG. 70 illustrates steering mechanisms within a handle wherein the housing 1302 is removed for clarity.
- steering knob 1300 a is attached to a hard stop gear assembly 1304 and a friction assembly (not in view) and steering knob 1300 b is attached to a separate hard stop gear assembly 1304 and friction assembly 1306 .
- Steering knob 1300 a is attached to a knob post 1318 which passes through a base 1308 , terminating in a knob gear wheel 1310 .
- the knob gear wheel 1310 actuates the hard stop gear assembly 1304 , thereby applying tension to one or more pullwires 1120 .
- the knob gear wheel 1310 is a toothed wheel that engages a disk gear wheel 1312 .
- Rotation of the steering knob 1300 a rotates the knob post 1318 and knob gear wheel 1310 which in turn rotates the disk gear wheel 1312 .
- Rotation of the disk gear wheel 1312 applies tension to one or more pullwires extending through the attached catheter, in this example the outer guiding catheter 1000 .
- the outer guiding catheter 1000 passes through the base 1308 , wherein one or more pullwires 1120 extending through the catheter 1000 are attached to the disk 1314 .
- Such attachment is schematically illustrated in FIG. 71 .
- Catheter 1000 is shown passing through base 1308 .
- Rotation of the disk 1314 (indicated by arrow 1328 ) around disk post 1315 by action of the disk gear wheel 1312 applies tension to the pullwire 1120 by drawing the pullwire 1120 through the aperture 1320 and wrapping the pullwire 1120 around the disk 1314 as it rotates. Additional rotation of the disk 1314 applies increasing tension to the pullwire 1120 .
- the rotation of the disk 1314 may be restricted by hard stop peg 1322 which is attached to the disk 1314 and extends into the base 1308 .
- FIGS. 72A-72B illustrate how the hard stop peg 1322 is used to restrict rotation of disk 1314 .
- FIGS. 72A-72B provide a top view, wherein the disk 1314 is disposed on the base 1308 .
- the anchor peg 1316 is shown with the pullwire 1120 there attached.
- a groove 1326 is formed in the base 1308 beneath the disk 1314 and forms an arc shape.
- the hard stop peg 1322 extends from the disk 1314 into the groove 1326 in the base 1308 .
- rotation of the disk 1314 around knob post 1318 indicated by arrow 1330 , draws the pullwire 1120 through the aperture 1320 as previously described, wrapping the pullwire 1120 around the disk 1314 .
- disk 1314 rotation may be restricted to any degree of rotation less than or equal to 360 degrees by positioning of the hard stop 1324 .
- FIG. 73A illustrates the base 1308 and the disk post 1315 positioned therethrough. Also shown in the base 1308 is an aperture 1334 through which the knob post 1318 , knob gear wheel 1310 and friction assembly 1306 pass, and a passageway 1336 through which the catheter 1000 passes.
- a groove 1326 is also present in an arc shape around the disk post 1315 , however a ball 1332 is positioned in the groove 1326 rather than a hard stop peg 1322 .
- Disk 1314 is positioned over the groove 1326 and the ball 1332 as shown in FIG. 73B .
- the disk 1314 illustrated in FIG. 73C , has a groove 1356 in its surface which is positioned adjacent to the base 1308 , the groove 1356 having an arc shape similar to the groove 1326 in the base 1308 .
- the ball 1332 is not fixedly attached to the base 1308 or the disk 1314 and is therefore free to move along the channel formed by the groove 1326 in the base 1308 and the groove in the disk 1314 .
- FIGS. 74A-74F illustrate how rotation of the disk 1314 may be restricted by the ball 1332 to a degree of rotation which is more than 360 degrees.
- FIGS. 74A-74F illustrate the groove 1326 in the base 1308 wherein the groove 1326 has an arc shape around disk post 1315 .
- the groove 1326 does not form a complete circle; a first groove end 1350 a and a second groove end 1350 b form a wall which prevent passage of the ball 1332 .
- the groove ends 1350 a , 1350 b may be any distance apart, shortening the length of the groove 1326 by any amount, and allowing the ball 1332 movement, and hence catheter deflection, to be adjusted to any desired amount. To begin, referring to FIG.
- the ball 1332 is positioned within the groove 1326 near the first groove end 1350 a .
- the disk 1314 has a matching groove 1352 (shape illustrated in dashed line) including a first groove end 1354 a and a second groove end 1354 b .
- the disk 1314 is positioned over the ball 1332 so that the ball 1332 is near the second groove end 1354 b.
- the disk 1314 may be rotated while the ball 1332 remains in place.
- the disk 1314 has rotated 90 degrees, as indicated by arrow 1360 and the position of the groove ends 1354 a , 1354 b .
- the disk 1314 may be further rotated while the ball 1332 remains in place.
- the disk 1314 has rotated 270 degrees, as indicated by arrow 1360 and the position of the groove ends 1354 a , 1354 b .
- the disk 1314 may continue rotating to 360 degrees, as shown in FIG. 74D , indicated by arrow 36000 .
- the first groove end 1354 a in the disk 1314 has contacted the ball 1332 and pushes the ball 1332 along groove 1326 in the base.
- the disk 1314 may be further rotated while the ball 1332 is pushed along the groove 1326 in the base 1308 by the first groove end 1354 a in the disk 1314 .
- the disk 1314 is shown to have rotated 540 degrees.
- the disk 1314 rotates until the ball 1332 reaches the second groove end 1350 b of the base 1308 , providing a hard stop.
- the ball 1332 is held between the first groove end 1354 a of the disk 1314 and the second groove end 1350 b of the base 1308 and further rotation of the disk 1314 is prevented.
- the disk 1314 was rotated approximately 660 degrees in this example. Any maximum degree of rotation may be set by positioning of groove ends 1350 a , 1350 b and/or groove ends 1354 a , 1354 b . Additionally, in some embodiments, rotation can be limited by adding more than one ball 1332 to the groove 1326 , for example, two, three, four, five, six, seven, eight, nine, ten or more balls may be used to limit travel and hence curvature.
- one or more pullwires 1120 are attached to the disk 1314 in a manner similar to that illustrated in FIG. 71 . Therefore, as the disk 1314 rotates, around disk post 1315 by action of the disk gear wheel 1312 , tension is applied to the pullwire 1120 by drawing the pullwire 1120 through the aperture 1320 and wrapping the pullwire 1120 around the disk 1314 as it rotates. Additional rotation of the disk 1314 applies increasing tension to the pullwire 1120 . Restriction of rotation as described above limits the amount of tension applied to the pullwire 1120 , to limit curvature of the catheter and/or to avoid possible breakage of the pullwire 1120 .
- each steering mechanism includes at least a hard stop gear assembly 1304 and a friction assembly 1306 .
- tension is applied to one or more pullwires by action of the hard stop gear assembly to form a curve in a catheter. Tension is maintained by the friction assembly.
- FIG. 75 illustrates an embodiment of a friction assembly 1306 .
- the friction assembly 1306 essentially holds a steering knob, in this example steering knob 1300 b , and the associated knob post 1318 in a rotated position.
- rotation of the knob 1300 b and post 1318 rotates attached knob gear wheel 1310 .
- the knob gear wheel 1310 actuates the hard stop gear assembly 1304 , thereby applying tension to one or more pullwires 1120 .
- the knob gear wheel 1310 is a toothed wheel that engages a disk gear wheel 1312 .
- Rotation of the steering knob 1300 b rotates the knob post 1318 and knob gear wheel 1310 which in turn rotates the disk gear wheel 1312 .
- Rotation of the disk gear wheel 1312 applies tension to one or more pullwires extending through the attached catheter, in this example the outer guiding catheter 1000 .
- the steering knob 1300 b and knob post 1318 are held in a rotated position by friction provided by a frictional pad 1370 .
- the frictional pad 1370 is positioned between ring 1372 attached to the knob post 1318 and a plate 1374 attached to the base 1308 .
- the knob post 1318 extends from the knob 1300 b through the ring 1372 , the frictional pad 1370 and then the plate 1374 .
- the plate 1374 has internal threads which mate with threads on the knob post 1318 . As the knob post 1318 rotates, the threads on the post 1318 advance through the threads on the plate 1374 . This draws the ring 1372 closer to the plate 1374 , compressing the frictional pad 1370 therebetween.
- Frictional pad 1370 may be comprised of any O-ring or sheet material with desirable frictional and compressibility characteristics, such as silicone rubber, natural rubber or synthetic rubbers, to name a few. In preferred embodiments, an EPDM rubber O-ring is used. Reverse rotation of the knob post 1318 is resisted by friction of the frictional pad 1370 against the ring 1372 . The higher the compression of the frictional pad 1370 the stronger the frictional hold. Therefore, as the steering knob 1300 b is rotated and increasing amounts of tension are applied to the pullwires 1120 , increasing amounts of friction are applied to the ring 1372 to hold the knob 1300 b in place.
- each handle 1056 , 1057 includes a steering mechanism for each curve to be formed in the attached catheter.
- handle 1056 includes a steering mechanism to form the primary curve 1100 in outer guiding catheter 1000 and a steering mechanism to form the additional curve 1110 .
- handle 1057 includes a steering mechanism to form the secondary curve 1104 in inner guiding catheter 1020 and a steering mechanism to form the angle theta 1070 .
- Some curves each typically vary in curvature between a straight configuration and a curved configuration in a single direction. Such movement may be achieved with single set of a hard stop gear assembly 1304 and a friction assembly 1306 . However, other curves, such as the angle theta 1070 , may be formed in two directions as shown in FIGS. 61C-61D . Such movement is achieved with two sets of the hard stop gear assembly 1304 and the friction assembly 1306 , each set controlling curvature in a single direction.
- FIG. 75 illustrates the presence of an additional set of the friction assembly 1306 ′.
- One or more pullwires 1120 ′ such as an opposing set as illustrated in FIG. 64D , extending within the wall of the catheter 1000 are attached to the disk 1314 ′ in the same manner as pullwires 1120 are attached to disk 1314 .
- the disks 1314 , 1314 ′ are arranged so that rotation of steering knob 1300 b in one direction applies tension to the pullwires 1120 via disk 1314 and rotation of steering knob 1300 b in the opposite direction applies tension to the pullwires 1120 ′ via disk 1314 ′.
- the additional friction assembly 1306 ′ is shown having a ring 1372 ′ attached to the knob post 1318 and a frictional pad 1370 ′ disposed between the ring 1372 ′ and the opposite side of the plate 1374 . Therefore, as rotation of the steering knob 1300 b in the opposite direction applies tension to the pullwires 1120 ′ via disk 1314 ′, the frictional pad 1370 ′ applies tension to the ring 1372 ′ holding the knob post 1318 ′ in place.
- Example mechanisms may be used for tensioning and holding pullwires 1120 in place.
- Example mechanisms include clutches, ratchets, levers, knobs, rack and pinions, and deformable handles, to name a few.
- FIG. 76 illustrates an embodiment of an interventional system 3 of the present invention.
- An embodiment of the multi-catheter guiding system 1 of the present invention is shown comprising an outer guide catheter 1000 , having a proximal end 1014 and a distal end 1016 , and an inner guide catheter 1020 , having a proximal end 1024 and a distal end 1026 , wherein the inner guide catheter 1020 is positioned coaxially within the outer guide catheter 1000 , as shown.
- a hemostatic valve 1090 is disposed within handle 1056 or external to handle 1056 as shown to provide leak-free sealing with or without the inner guide catheter 1020 in place.
- the valve 1090 also prevents back bleeding and reduces the possibility of air introduction when inserting the inner guide catheter 1020 through the outer guide catheter 1000 .
- An example of a hemostatic valve 1090 is illustrated in FIG. 76A , however any suitable valve or hemostatic valve may be used to provide similar functions.
- the valve 1090 has a first end 1091 , a second end 1092 and a lumen 1093 therethrough.
- the inner wall of lumen 1093 is preferably tapered toward end 1091 and may further include a plurality of tapered axial channels configured to receive the protrusions 1400 on the inner guide catheter 1020 .
- the first end 1091 is attached to the outer guide catheter 1000 and the second end 1092 is free.
- the distal ends 1016 , 1026 of catheters 1000 , 1020 are sized to be passable to a body cavity, typically through a body lumen such as a vascular lumen.
- a fixation device introducer may be used.
- insertion of the fixation device 14 , delivery catheter 300 and inner guide catheter 1020 through an outer guide catheter 1000 involves passing the fixation device 14 through a hemostatic valve 1090 on the outer guide catheter 1000 .
- a fixation device introducer may be used.
- An embodiment of a fixation device introducer 1420 is illustrated in FIG. 76B .
- the introducer 1420 includes a loading body 1422 and an insertion endpiece 1424 .
- the fixation device 14 is loaded into the loading body 1422 and into the insertion endpiece 1424 to approximately the dashed line 1428 .
- the insertion endpiece 1424 has a split end creating individual split sections 1430 , in this embodiment, four split sections 1430 . By compressing the split sections 1430 , the endpiece 1424 forms a taper. Such a taper is then inserted through a hemostatic valve 1090 , so that the insertion endpiece 1424 creates a smooth passageway through the valve for the fixation device 14 . Once the insertion endpiece 1424 is inserted through the valve 1090 , the fixation device 14 , and attached delivery catheter 300 and inner guide catheter 1020 , may then be advanced through the fixation device introducer 1420 .
- the fixation device introducer 1420 also includes a hemostatic valve within the loading body 1422 to prevent any backbleeding or leakage through the introducer 1420 .
- Manipulation of the guide catheters 1000 , 1020 is achieved with the use of handles 1056 , 1057 attached to the proximal ends of the catheters 1000 , 1020 .
- handle 1056 is attached to the proximal end 1014 of outer guide catheter 1000 and handle 1057 is attached to the proximal end 1024 of inner guide catheter 1020 .
- Inner guide catheter 1020 is inserted through handle 1056 and is positioned coaxially within outer guide catheter 1000 .
- An embodiment of the delivery catheter 300 of the present invention is inserted through handle 1057 and is positioned coaxially within inner guide catheter 1020 and outer guide catheter 1000 . Therefore, a hemostatic valve 1090 is disposed within handle 1057 or external to handle 1057 as shown to provide leak-free sealing with or without the delivery catheter 300 in place.
- the valve 1090 functions as described above.
- the delivery catheter 300 includes a shaft 302 , having a proximal end 322 and a distal end 324 , and a handle 304 attached to the proximal end 322 .
- a fixation device 14 is removably coupled to the distal end 324 for delivery to a site within the body.
- the outer guide catheter 1000 and/or the inner guide catheter 1020 are precurved and/or have steering mechanisms to position the distal ends 1016 , 1026 in desired directions.
- Precurvature or steering of the outer guide catheter 1000 directs the distal end 1016 in a first direction to create a primary curve while precurvature and/or steering of the inner guide catheter 1020 directs distal end 1026 in a second direction, differing from the first, to create a secondary curve.
- the primary and secondary curves form a compound curve.
- Advancement of the delivery catheter 300 through the coaxial guide catheters 1000 , 1020 guides the delivery catheter 300 through the compound curve toward a desired direction, usually in a direction which will position the fixation device 14 in a desired location within the body.
- FIG. 77 illustrates portions of another embodiment of an interventional system 3 of the present invention.
- Handles 1056 , 1057 of the multi-catheter guiding system 1 of the present invention are shown.
- Each handle 1056 , 1057 includes a set of steering knobs 1300 a , 1300 b , as shown.
- Manipulation of the guide catheters 1000 , 1020 is achieved with the use of the steering knobs 1300 a , 1300 b attached to the proximal ends of the catheters 1000 , 1020 .
- Handle 304 of the delivery catheter 300 is also shown, including the proximal element line handle 312 , the lock line handle 310 , the actuator rod control 314 and the actuator rod handle 316 , among other features.
- the handle 304 is supported by the support base 306 which is connected to the handle 1057 .
- the above described systems 3 are not intended to limit the scope of the present invention.
- the systems 3 may include any or all of the components of the described invention.
- the multi-catheter guiding system 1 of the present invention may be used to introduce other delivery catheters, interventional catheters or other devices.
- the delivery catheter 300 may be introduced through other introducers or guiding systems.
- the delivery catheter 300 may be used to deliver other types of devices to a target location within the body, including endoscopic staplers, devices for electrophysiology mapping or ablation, septal defect repair devices, heart valves, annuloplasty rings and others.
- many of the components of the system 3 may include one or more hydrophilic coatings. Hydrophilic coatings become slippery when wet, eliminate the need for separate lubricants. Thus, such coatings may be present on the multi-catheter guiding system, delivery catheter, and fixation device, including the proximal elements and distal elements, to name a few.
- the system 3 may be supported by an external stabilizer base 1440 , an embodiment of which is illustrated in FIG. 78 .
- Stabilizer base 1440 maintains the relative positions of the outer guide, inner guide and delivery catheter during a procedure.
- the base 1440 comprises a platform 1442 having a planar shape for positioning on or against a flat surface, such as a table or benchtop.
- the base 1440 further includes a pair of handle holders 1444 , 1448 , each attached to the platform 1442 and extending upwardly from the platform 1442 , either angularly or perpendicularly.
- Handle holder 1444 includes a notch 1446 for holding the outer guiding catheter 1000 , as illustrated in FIG. 79 , thereby supporting the handle 1056 .
- handle holder 1448 includes an elongate portion 1452 having a trough 1450 and a hooked end 1454 .
- handle 1057 rests on the elongate portion 1452 and the handle 304 rests on hooked end 1454 so that the inner guiding catheter 1020 extends from the handle 1057 to the handle 1056 and continues on within outer guiding catheter 1000 .
- the handle 304 is additionally supported by support base 306 , as shown.
- the stabilizer base 1440 may take a variety of forms and may include differences in structural design to accommodate various types, shapes, arrangements and numbers of handles.
- kits 1500 comprise any of the components described in relation to the present invention.
- the kits 1500 may include any of the components described above, such as the outer guide catheter 1000 including handle 1056 , the inner guide catheter 1020 including handle 1057 , the delivery catheter 300 and the fixation device 14 and instructions for use IFU.
- any of the kits may further include any other system components described above, such as various interventional tools 1040 , or components associated with positioning a device in a body lumen, such as a guidewire 1202 , dilator 1206 or needle 1204 .
- the instructions for use IFU will set forth any of the methods as described above, and all kit components will usually be packaged together in a pouch 1505 or other conventional medical device packaging.
- kit components which will be used in performing the procedure on the patient will be sterilized and maintained within the kit.
- separate pouches, bags, trays or other packaging may be provided within a larger package, where the smaller packs may be opened separately to separately maintain the components in a sterile fashion.
- the invention may be used in the treatment of a variety of other tissue structures besides heart valves, and will find usefulness in a variety of tissue approximation, attachment, closure, clamping and ligation applications, some endovascular, some endoscopic, and some open surgical.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Surgery (AREA)
- Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Molecular Biology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Medical Informatics (AREA)
- Cardiology (AREA)
- Vascular Medicine (AREA)
- Reproductive Health (AREA)
- Transplantation (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Anesthesiology (AREA)
- Biophysics (AREA)
- Pulmonology (AREA)
- Hematology (AREA)
- Rheumatology (AREA)
- Otolaryngology (AREA)
- Plasma & Fusion (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Surgical Instruments (AREA)
- Prostheses (AREA)
- Media Introduction/Drainage Providing Device (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Medicinal Preparation (AREA)
Abstract
Devices, systems, methods and kits are provided for delivering interventional devices to a target location with a body. Such interventional devices particularly include fixation devices or any devices which approximate tissue, such as valve leaflets. The delivery devices and systems direct the interventional device to the target location through a minimally invasive approach, such as through the patient's vasculature, and provide for manipulation of the interventional device at the target location, such as to approximate tissue. Optionally, the delivery devices and systems may provide for decoupling of the interventional device, allowing the interventional device to be left behind as an implant.
Description
- This application is a continuation of, and claims the benefit of priority from co-pending U.S. patent application Ser. No. 10/441,687 (Attorney Docket No. 020489-001700US), filed May 19, 2003, which is a continuation-in-part of U.S. patent application Ser. No. 09/894,463 (Attorney Docket No. 020489-000400US), filed Jun. 27, 2001, which is a continuation-in-part of co-pending U.S. patent application Ser. No. 09/544,930 (Attorney Docket No. 020489-000110US), filed Apr. 7, 2000, which claims the benefit of prior Provisional Application No. 60/128,690 (Attorney Docket No. 019196-00600US), filed on Apr. 9, 1999 under 37 CFR § 1.78(a), the full disclosures of which are hereby incorporated herein by reference. This application is related to U.S. patent application Ser. No. 10/441,753 (Attorney Docket No. 020489-001200US), U.S. patent application Ser. No. 10/441,531 (Attorney Docket No. 020489-001400US), and U.S. patent application Ser. No. 10/441,508 (Attorney Docket No. 020489-001500US), all of which were filed on May 19, 2003, the full disclosures of which are incorporated herein by reference.
- 1. Field of the Invention
- The present invention relates generally to medical methods, devices, and systems. In particular, the present invention relates to methods, devices, and systems for the endovascular, percutaneous or minimally invasive surgical treatment of bodily tissues, such as tissue approximation or valve repair. More particularly, the present invention relates to repair of valves of the heart and venous valves.
- Surgical repair of bodily tissues often involves tissue approximation and fastening of such tissues in the approximated arrangement. When repairing valves, tissue approximation includes coapting the leaflets of the valves in a therapeutic arrangement which may then be maintained by fastening or fixing the leaflets. Such coaptation can be used to treat regurgitation which commonly occurs in the mitral valve.
- Mitral valve regurgitation is characterized by retrograde flow from the left ventricle of a heart through an incompetent mitral valve into the left atrium. During a normal cycle of heart contraction (systole), the mitral valve acts as a check valve to prevent flow of oxygenated blood back into the left atrium. In this way, the oxygenated blood is pumped into the aorta through the aortic valve. Regurgitation of the valve can significantly decrease the pumping efficiency of the heart, placing the patient at risk of severe, progressive heart failure.
- Mitral valve regurgitation can result from a number of different mechanical defects in the mitral valve or the left ventricular wall. The valve leaflets, the valve chordae which connect the leaflets to the papillary muscles, the papillary muscles or the left ventricular wall may be damaged or otherwise dysfunctional. Commonly, the valve annulus may be damaged, dilated, or weakened limiting the ability of the mitral valve to close adequately against the high pressures of the left ventricle.
- The most common treatments for mitral valve regurgitation rely on valve replacement or repair including leaflet and annulus remodeling, the latter generally referred to as valve annuloplasty. A recent technique for mitral valve repair which relies on suturing adjacent segments of the opposed valve leaflets together is referred to as the “bow-tie” or “edge-to-edge” technique. While all these techniques can be very effective, they rely on open heart surgery where the patient's chest is opened, typically via a sternotomy, and the patient placed on cardiopulmonary bypass. The need to both open the chest and place the patient on bypass is traumatic and has associated high mortality and morbidity.
- For these reasons, it would be desirable to provide alternative and additional methods, devices, and systems for performing the repair of mitral and other cardiac valves. Such methods, devices, and systems should preferably not require open chest access and be capable of being performed either endovascularly, i.e., using devices which are advanced to the heart from a point in the patient's vasculature remote from the heart or by a minimally invasive approach. Further, such devices and systems should provide features which allow repositioning and optional removal of a fixation device prior to fixation to ensure optimal placement. Still more preferably, the methods, devices, and systems would be useful for repair of tissues in the body other than heart valves. At least some of these objectives will be met by the inventions described hereinbelow.
- 2. Description of the Background Art
- Minimally invasive and percutaneous techniques for coapting and modifying mitral valve leaflets to treat mitral valve regurgitation are described in PCT Publication Nos. WO 98/35638; WO 99/00059; WO 99/01377; and
WO 00/03759. - Maisano et al. (1998) Eur. J. Cardiothorac. Surg. 13:240-246; Fucci et al. (1995) Eur. J. Cardiothorac. Surg. 9:621-627; and Umana et al. (1998) Ann. Thorac. Surg. 66:1640-1646, describe open surgical procedures for performing “edge-to-edge” or “bow-tie” mitral valve repair where edges of the opposed valve leaflets are sutured together to lessen regurgitation. Dec and Fuster (1994) N. Engl. J. Med. 331:1564-1575 and Alvarez et al. (1996) J. Thorac. Cardiovasc. Surg. 112:238-247 are review articles discussing the nature of and treatments for dilated cardiomyopathy.
- Mitral valve annuloplasty is described in the following publications. Bach and Bolling (1996) Am. J. Cardiol. 78:966-969; Kameda et al. (1996) Ann. Thorac. Surg. 61:1829-1832; Bach and Bolling (1995) Am. Heart J. 129:1165-1170; and Bolling et al. (1995) 109:676-683. Linear segmental annuloplasty for mitral valve repair is described in Ricchi et al. (1997) Ann. Thorac. Surg. 63:1805-1806. Tricuspid valve annuloplasty is described in McCarthy and Cosgrove (1997) Ann. Thorac. Surg. 64:267-268; Tager et al. (1998) Am. J. Cardiol. 81:1013-1016; and Abe et al. (1989) Ann. Thorac. Surg. 48:670-676.
- Percutaneous transluminal cardiac repair procedures are described in Park et al. (1978) Circulation 58:600-608; Uchida et al. (1991) Am. Heart J. 121: 1221-1224; and Ali Khan et al. (1991) Cathet. Cardiovasc. Diagn. 23:257-262.
- Endovascular cardiac valve replacement is described in U.S. Pat. Nos. 5,840,081; 5,411,552; 5,554,185; 5,332,402; 4,994,077; and 4,056,854. See also U.S. Pat. No. 3,671,979 which describes a catheter for temporary placement of an artificial heart valve.
- Other percutaneous and endovascular cardiac repair procedures are described in U.S. Pat. Nos. 4,917,089; 4,484,579; and 3,874,338; and PCT Publication No. WO 91/01689.
- Thoracoscopic and other minimally invasive heart valve repair and replacement procedures are described in U.S. Pat. Nos. 5,855,614; 5,829,447; 5,823,956; 5,797,960; 5,769,812; and 5,718,725.
- The invention provides devices, systems and methods for tissue approximation and repair at treatment sites. The devices, systems and methods of the invention will find use in a variety of therapeutic procedures, including endovascular, minimally-invasive, and open surgical procedures, and can be used in various anatomical regions, including the abdomen, thorax, cardiovascular system, heart, intestinal tract, stomach, urinary tract, bladder, lung, and other organs, vessels, and tissues. The invention is particularly useful in those procedures requiring minimally-invasive or endovascular access to remote tissue locations, particularly those in which the instruments utilized must negotiate long, narrow, and tortuous pathways to the treatment site. In addition, many of the devices and systems of the invention are adapted to be reversible and removable from the patient at any point without interference with or trauma to internal tissues.
- In preferred embodiments, the devices, systems and methods of the invention are adapted for fixation of tissue at a treatment site. Exemplary tissue fixation applications include cardiac valve repair, septal defect repair, vascular ligation and clamping, laceration repair and wound closure, but the invention may find use in a wide variety of tissue approximation and repair procedures. In a particularly preferred embodiment, the devices, systems and methods of the invention are adapted for repair of cardiac valves, and particularly the mitral valve, as a therapy for regurgitation. The invention enables two or more valve leaflets to be coapted using an “edge-to-edge” or “bow-tie” technique to reduce regurgitation, yet does not require open surgery through the chest and heart wall as in conventional approaches. Using the devices, systems and methods of the invention, the mitral valve can be accessed from a remote surgical or vascular access point and the two valve leaflets may be coapted using endovascular or minimally invasive approaches. While less preferred, in some circumstances the invention may also find application in open surgical approaches as well. According to the invention, the mitral valve may be approached either from the atrial side (antegrade approach) or the ventricular side (retrograde approach), and either through blood vessels or through the heart wall.
- The devices, systems and methods of the invention are centered on variety of devices which may be used individually or in a variety of combinations to form interventional systems. In preferred embodiments, the interventional system includes a multi-catheter guiding system, a delivery catheter and an interventional device. Each of these components will be discussed herein.
- In an exemplary embodiment, the invention provides a fixation device having a pair of distal elements (or fixation elements), each distal element having a free end and an engagement surface for engaging the tissue, wherein the distal elements are moveable between a first position for capturing the tissue and a second position for fixing the tissue. Preferably, the engagement surfaces are spaced apart in the first position and are closer together and generally face toward each other in the second position. The fixation device is preferably delivered to a target location in a patient's body by a delivery catheter having an elongated shaft, a proximal end and a distal end, the delivery catheter being configured to be positioned at the target location from a remote access point such as a vascular puncture or cut-down or a surgical penetration. In a preferred embodiment, the target location is a valve in the heart. Additional aspects of fixation devices usable in the system of the invention are described in copending patent application Ser. No. 10/441,531 filed May 19, 2003, which has been incorporated herein by reference.
- A particular advantage of the present invention is its ability to coapt the leaflets of the mitral valve (or any other tissue with which it is used) in a parallel or vertical relationship. In other words, the leaflets may be captured, drawn together and fixed such that their proximal upstream surfaces are disposed parallel to each other and generally aligned with the direction of flow through the valve at the point of coaptation. In some embodiments of the fixation device, the use of sufficiently rigid distal elements, highly frictional and compressive proximal elements and an active closure mechanism enables the leaflets to be grasped in a spaced-apart relationship and then drawn together in a coapted relationship while keeping the leaflets vertical (aligned with blood flow) to achieve the optimal coapted configuration.
- The fixation device is preferably delivered with the distal elements in a delivery position configured to minimize the profile of the device. When approaching the mitral valve from the atrial side, some embodiments of the fixation device allow the device to be delivered with the free ends of the distal elements pointing in a generally proximal direction forming an angle of less than about 90°, preferably less than about 20°, relative to the longitudinal axis of the delivery device shaft. In this position the engagement surfaces are facing generally toward each other, being disposed at an angle of less than about 180°, and preferably less than about 40°, relative to each other. For ventricular approaches, in the delivery position the free ends of the distal elements are pointing in a generally distal direction and form an angle of less than about 90°, preferably less than about 20° relative to the longitudinal axis of the delivery device shaft. In this position, the engagement surfaces are facing generally toward each other, usually being disposed at an angle of less than about 180°, and preferably less than about 90°, relative to each other. Alternatively, in some ventricular approaches, it may be preferred to have the free ends of the fixation elements pointing in a generally proximal direction and the engagement surfaces facing away from each other in the delivery position.
- In order to provide for the reversibility and removability of the devices and systems of the invention, the distal elements preferably are movable to an inverted position that minimizes entanglement and interferences with surrounding tissues should the device be desired to be withdrawn. In mitral repair applications, this is particularly important due to the presence of chordae tendonae, valve leaflets and other tissues with which devices may become entangled. For approaches from the atrial side of the mitral valve, in the inverted position, the free ends will be pointing in a generally distal direction relative to the catheter shaft and the engagement surfaces will be facing generally away from each other, usually being disposed at an angle of more than about 180°, and preferably more than 270°, relative to each other. For ventricular approaches to the valve, in the inverted position the free ends will be pointing in a distal direction relative to the catheter shaft and the engagement surfaces will be facing generally toward each other, usually being disposed at an angle of less than about 180°, and preferably less than 90°, relative to each other.
- In the open position the engagement surfaces of the distal elements preferably form an angle of up to 180° relative to each other so as to maximize the area in which to capture the valve leaflets or other target tissue. The distal elements are preferably movable to a closed position in which the engagement surfaces engage each other or form an angle as small as 0° relative to each other. The distal elements are configured to be adjusted to and left permanently in any of various positions between the open and closed positions to allow for fixation of tissues of various thickness, geometry, and spacing.
- In a preferred embodiment, the fixation device of the invention will further include at least one proximal element (or gripping element). Each proximal element and distal element will be movable relative to each other and configured to capture tissue between the proximal element and the engagement surface of the distal element. Preferably, the distal elements and proximal elements are independently movable but in some embodiments may be movable with the same mechanism. The proximal element may be preferably biased toward the engagement surface of the fixation element to provide a compressive force against tissue captured therebetween.
- In another aspect, the invention provides a fixation device for engaging tissue comprising a coupling member configured for coupling to a catheter and a pair of distal elements connected to the coupling member, each distal element having an engagement surface for engaging the tissue. The distal elements are moveable between an open position wherein the distal elements extend radially outwardly facing the engagement surfaces toward a first direction, and an inverted position wherein the distal elements have rotated away from the first direction facing the engagement surfaces radially outwardly.
- In a further aspect, the distal elements of the invention are adapted to receive a suture passed through the target tissue. For example, implant pledgets may be detachably mounted to the distal elements so as to be positionable against a surface of tissue engaged by the distal elements. A suture may then be passed through the tissue and implant pledget, which are supported by the distal element. The implant pledgets are then detached from the distal elements, which may be withdrawn from the site, and the suture is tensioned and secured to the target tissue. The delivery catheter, in this embodiment, will further include a movable fixation tool or penetration element for penetrating the target tissue and the implant pledget. A suture is coupled to the penetration element and preferably an anchor is attached to the suture. The penetration element is movable relative to the catheter to penetrate the target tissue and the implant pledget, bringing with it the suture and anchor. The anchor is configured to deploy into an expanded configuration so as to securely engage the implant pledget opposite the target tissue, retaining the suture therein. For the mitral valve, one or more implant pledgets and sutures may be similarly deployed in both leaflets, and the sutures secured to one another to coapt the leaflets. Thus, in this embodiment, the distal elements are used to deliver implant pledgets and secure them to the target tissue, but are not themselves deployed at the site as in other embodiments. However, following deployment of the implant pledgets and associated sutures, the distal elements must be withdrawn from the body. For this purpose, the distal elements are movable to an inverted position like the embodiments described above to facilitate withdrawing the device without interference or injury to surrounding tissues.
- In some applications such as the repair of the mitral valve, the fixation device is adapted to be detached from the delivery catheter and left permanently in the patient. In such applications, it is often desirable to promote tissue growth around the fixation device. For this purpose, some or all of the components of the fixation device are preferably covered with a covering or coating to promote tissue growth. In one embodiment, a biocompatible fabric cover is positioned over the distal elements and/or the proximal elements. The cover may optionally be impregnated or coated with various therapeutic agents, including tissue growth promoters, antibiotics, anti-clotting, blood thinning, and other agents. Alternatively or in addition, some or all of the fixation element and/or covering may be comprised of a bioerodable, biodegradable, or bioabsorbable material so that it may degrade or be absorbed by the body after the repaired tissues have grown together.
- The distal elements and proximal elements will be configured to provide high retention force so that the fixation device remains securely fastened to the target tissue throughout the cardiac cycle. At the same time, the distal and proximal elements will be configured to minimize trauma to the tissue engaged by them. This allows the fixation device to be removed from the tissue after initial application without creating clinically significant injury to the tissue. In order to enhance retention without creating significant trauma, the proximal elements and/or the distal elements may have friction-enhancing features on their surfaces that engage the target tissue. Such friction-enhancing features may include barbs, bumps, grooves, openings, channels, surface roughening, coverings, and coatings, among others. Optionally, magnets may be present in the proximal and/or distal elements. Preferably the friction-enhancing features and the magnets will be configured to increase the retention force of the distal and proximal elements on the tissue, while not leaving significant injury or scarring if the device is removed.
- The distal and proximal elements may further have a shape and flexibility to maximize retention force and minimize trauma to the target tissue. In a preferred embodiment, the engagement surfaces of the distal elements have a concave shape configured to allow the proximal elements, along with the target tissue, to be nested or recessed within the distal elements. This increases the surface area of the tissue engaged by the distal elements and creates a geometry of tissue engagement that has a higher retention force than a planar engagement surface. To minimize trauma, the longitudinal edges as well as the free ends of the distal elements are preferably curved outwardly away from the engagement surface so that these edges present a rounded surface against the target tissue. The distal elements and/or the proximal elements may also be flexible so that they deflect to some degree in response to forces against the tissue engaged thereby, reducing the chances that the tissue will tear or be damaged in response to such forces.
- The fixation device will include an actuation mechanism for moving the distal elements between the open, closed, and inverted positions. A variety of actuation mechanisms may be used. In an exemplary embodiment, a coupling member connects the fixation device to the delivery catheter, and a stud is slidably coupled to the coupling member. In a “push to close/pull to open” embodiment, the distal elements are pivotably coupled to the stud and the actuation mechanism comprises a pair of link members connected between the distal elements and the coupling member, whereby sliding the stud relative to the coupling member pivots the distal elements inwardly or outwardly into the various positions. Alternatively, in a “push to open/pull to close” embodiment, the distal elements are pivotably coupled to the coupling member and the links connected between the distal elements and the stud.
- The fixation device of the invention preferably includes a coupling member that is detachably connectable to the delivery catheter. The coupling member may have various constructions, but in an exemplary embodiment comprises an outer member having an axial channel, the outer member being coupled to one of either the distal elements or the actuation mechanism. An inner member extends slidably through the axial channel and is coupled to the other of either the distal elements or the actuation mechanism. The delivery catheter will be configured to detachably connect to both the inner member and the outer member. In one embodiment, the delivery catheter has a tubular shaft and an actuator rod slidably disposed in the tubular shaft. The junction of the outer member with the tubular shaft comprises a mating surface which may have a variety of shapes including sigmoid curves or angular or planar surfaces. The actuator rod extends from the delivery catheter through the axial channel in the outer member to maintain its connection with the tubular shaft. The actuator rod may be connected to the inner member by various connection structures, including threaded connections. By detachment of the actuator rod from the inner member and retraction of the actuator rod back into the tubular shaft, the outer member is released from the tubular shaft to allow deployment of the fixation device.
- In a preferred embodiment, the fixation device further includes a locking mechanism that maintains the distal elements in a selected position relative to each other. Because the ideal degree of closure of the fixation device may not be known until it is actually applied to the target tissue, the locking mechanism is configured to retain the distal elements in position regardless of how open or closed they may be. While a variety of locking mechanisms may be used, in an exemplary embodiment the locking mechanism comprises a wedging element that is movable into frictional engagement with a movable component of the fixation device to prevent further movement of the distal elements. In embodiments utilizing the actuation mechanism described above, the component with which the wedging element engages may be the coupling member or the stud slidably coupled thereto. In one embodiment the stud passes through an aperture in the coupling member that has a sloping sidewall, and the wedging element comprises a barbell disposed between the sidewall and the stud.
- The fixation device preferably also includes an unlocking mechanism for releasing the locking mechanism, allowing the distal elements and proximal elements to move. In one embodiment, the unlocking mechanism comprises a harness coupled to the wedging element of the locking mechanism to reduce frictional engagement with the movable component of the fixation device. In an exemplary embodiment, the harness is slidably coupled to the coupling member and extends around the wedging element of the locking mechanism, whereby the harness can be retracted relative to the coupling member to disengage the wedging element from the stud.
- The delivery device of the present invention delivers interventional devices to a target location with a body. Such interventional devices particularly include fixation devices or any devices which approximate tissue, such as valve leaflets. The delivery devices and systems direct the interventional device to the target location through a minimally invasive approach, such as through the patient's vasculature, and provide for manipulation of the interventional device at the target location, such as to approximate tissue. Optionally, the delivery devices and systems may provide for decoupling of the interventional device, allowing the interventional device to be left behind as an implant.
- In an aspect of the present invention, a delivery device is provided comprising an elongated flexible shaft preferably suitable for introduction through tortuous passageways in the body. The elongated shaft has a proximal end, a distal end and a main lumen therebetween. Included in the delivery device is at least one elongated body, particularly at least one flexible tubular guide, extending through the main lumen. In some embodiments, the tubular guide is fixed to the shaft near the proximal end and near the distal end and is unconstrained relative to the shaft therebetween so as to be laterally moveable within the main lumen. Alternatively, the tubular guide may be unconstrained in only a distal portion of the shaft so as to provide greater flexibility of that portion. In some embodiments, two flexible tubular guides are present, however, three, four, five, six or more flexible guides may alternatively be present. The tubular guides may be comprised of any suitable material which provides lateral flexibility while providing column strength under compression, such as a metallic or polymeric coil. In addition, other elongated bodies may be present, such a cylindrical rods to provide additional tensile strength. In some embodiments, the main lumen is occupied by fluid so that the elongated bodies are surrounded by such fluid.
- In an aspect of the present invention, the delivery device includes an actuation element movably disposed in one of the at least one flexible tubular guides and extending between the proximal and distal ends. The actuation element is adapted for coupling with a movable component of an interventional element so that movement of the actuation element moves the movable element. Such an interventional element is typically removably coupled to the distal end of the shaft. The moveable component may have any of a variety of functions, including grasping, approximating, cutting, ablating, stapling or otherwise engaging tissue. In one embodiment, the moveable component provides for approximation of tissue, such as coaptation of valve leaflets. In preferred embodiments, the interventional element has first and second tissue engaging elements adapted for engaging tissue therebetween. Thus, in these embodiments, the actuation element is used to move the tissue engaging elements to engage the tissue. Further, in some embodiments, the shaft and interventional element are adapted for positioning through a blood vessel.
- In an aspect of the present invention, a system is provided for approximating tissue at a treatment site. In some embodiments, the system comprises an elongated flexible shaft having a proximal end, a distal end, and a main lumen therebetween, and at least one flexible tubular guide extending through the main lumen. Again, in preferred embodiments the tubular guide is fixed to the shaft near the proximal end and near the distal end and is unconstrained in at least a portion of the main lumen therebetween so as to be laterally movable within the main lumen. In some embodiments, the system also includes an actuation element movably disposed in the tubular guide, and an approximation device coupled to the distal end of the shaft, the approximation device having first and second engaging elements for engaging tissue therebetween, at least one of the engaging elements being movable and coupled to the actuation element.
- The delivery device of the invention is adapted to allow the user to deliver the fixation device to the target site from a remote access point, whether through endovascular or surgical approaches, align the device with the target tissue, and to selectively close, open, invert, lock or unlock the distal element. The delivery device will preferably have a highly flexible, kink resistant, torsionally stiff shaft with minimal elongation and high compressive strength. The delivery device will also have the movable components and associated actuators used to move the distal elements between the closed, open, and inverted positions, to move the proximal elements into engagement with the target tissue, to unlock the locking mechanism, and to detach the distal element from the delivery catheter. In a preferred embodiment, the delivery device comprises an elongated shaft having an inner lumen. The distal end of the shaft is configured for detachable connection to the coupling member of the fixation device. An actuator rod is slidably disposed in the inner lumen and is adapted for detachable coupling to the stud or other component of the fixation device that moves the distal elements. A plurality of tubular guides, preferably in the form of metallic coils, extend through the inner lumen of the shaft and are fixed to the shaft near its proximal and distal ends but are unrestrained therebetween, providing a highly flexible and kink-resistant construction. Lines for actuating the proximal elements and the unlocking mechanism of the fixation device extend through these tubular guides and are detachably coupled to the proximal element and unlocking mechanisms.
- The delivery catheter may additionally include a tether that is detachably coupled to a portion of the fixation device for purposes of retrieval of the device following detachment from the delivery catheter. The tether may be a separate flexible filament extending from the delivery catheter to the fixation device, but alternatively may be a line coupled to either the unlocking mechanism or the proximal element and used also for actuating those components. In either case, the tether will be detachable from the fixation device so that it may be detached once the device has been deployed successfully.
- In some embodiments, the delivery device further includes an actuation element movably disposed in one of the at least one flexible tubular guide, and a fixation device coupled to the distal end of the shaft and adapted for positioning in the chamber of the heart. Typically, the fixation device is releasably coupled to the shaft. In some embodiments, the fixation device has at least one proximal element and at least one distal element adapted to engage a valve leaflet therebetween, wherein at least one of the proximal and distal elements is movable and coupled to the actuation element.
- Preferably, the at least one proximal element and the at least one distal element comprise a pair of proximal elements and a pair of distal elements. In some embodiments, the actuation element comprises a rod, such as an actuator rod. Alternatively or in addition, the actuation element comprises a flexible line, such as a lock line or a proximal element line.
- In some embodiments, the delivery device further comprises a second actuation element disposed in a second tubular guide, wherein the other of the proximal and distal elements is coupled to the second actuation element. Thus, the second actuation element may comprises a flexible line.
- Also, in some embodiments, the delivery device further comprising a lock release line disposed in the second tubular guide, the fixation element having a locking mechanism, the lock release line being coupled to the locking mechanism.
- In an additional aspect of the present invention, a system is provided for approximating tissue at a treatment site comprising an elongated flexible shaft having a proximal end, a distal end, and a main lumen therebetween, and first, second and third movable elements extending through the main lumen from the proximal to the distal end and being movable relative to the shaft. The system further includes an approximation device or fixation device coupled to the distal end of the shaft, the fixation device having first and second movable engaging elements for engaging tissue therebetween and a locking mechanism, the first engaging element being coupled to the first movable element, the second engaging element being coupled to the second movable element, and the locking mechanism being coupled to the third movable element. In some embodiments, the first moveable element comprises an actuator rod. And, in some embodiments, the second movable element comprises a flexible line.
- The system may further comprise first and second flexible tubular guides extending from the proximal end to the distal end through the main lumen. The first and second tubular guides are preferably fixed to the shaft near the proximal end and near the distal end and are unconstrained in at least a portion of the main lumen therebetween so as to be laterally movable within the main lumen. Further, the first movable element extends through the first tubular guide and the second movable element is movably disposed in the second tubular guide.
- The system may also further comprise an actuator handle connected to the proximal end of the shaft, the actuator handle having a body and first, second and third actuation elements movably coupled thereto, the first, second and third actuation elements being coupled to the first, second and third movable elements.
- In a further aspect of the present invention, a system is provided for approximating tissue at a treatment site comprising an elongated flexible shaft having a proximal end, a distal end, and a main lumen therebetween, and an actuator rod extending from the proximal to the distal end through the main lumen and being movable relative to the shaft. The system further includes first and second flexible tubular guides extending from the proximal end to the distal end through the main lumen, the first and second tubular guides being fixed to the shaft near the proximal end and near the distal end and being unconstrained therebetween so as to be laterally movable within the main lumen. Further included is a first movable element movably disposed in the first tubular guide and a second movable element movably disposed in the second tubular guide. And finally, an approximation device or fixation device is included coupled to the distal end of the shaft, the approximation device having first and second movable engaging elements for engaging tissue therebetween and a locking mechanism, the first engaging element being coupled to the first movable element, the second engaging element being coupled to the second movable element, and the locking mechanism being coupled to the third movable element.
- Systems of the invention may additionally include a guide that facilitates introduction and navigation of the delivery catheter and fixation device to the target location. The guide is preferably tubular with a channel extending between its proximal and distal ends in which the delivery catheter and fixation device may be slidably positioned. The distal end of the guide is steerable, usually being deflectable about at least one axis, and preferably about two axes. The guide will have a size, material, flexibility and other characteristics suitable for the application in which it is being used. For mitral valve repair, the guide is preferably configured to be introduced in a femoral vein and advanced through the inferior vena cava into the heart, across a penetration in the interatrial septum, and into alignment with the mitral valve in the left atrium. Alternatively, the guide may be configured for introduction in a femoral, axillary, or brachiocephalic artery and advancement through the aorta and aortic valve into the ventricle where it is steered into alignment with the mitral valve. In a further alternative, the guide may be configured for introduction through a puncture or incision in the chest wall and through an incision in the wall of the heart to approach the mitral valve.
- In an exemplary embodiment, the guide comprises a multi-catheter guiding system which has two components, including an inner tubular member or inner guide catheter and an outer tubular member or outer guide catheter. The outer tubular member has a distal end deflectable about an axis. The inner tubular member has a distal end deflectable about an additional axis. Further, the distal end of inner tubular member may be angularly deflectable. Mobility in additional directions and about additional axes may optionally be provided. Additional aspects of guides usable in the system of the invention are described in copending patent application Ser. No. 10/441,508 filed on May 19, 2003, which has been incorporated herein by reference.
- The invention further provides methods of performing therapeutic interventions at a tissue site. In one embodiment, the method includes the steps of advancing an interventional tool having a proximal end, a distal end and a fixation device near the distal end to a location within a patient's body, wherein the fixation device includes a pair of distal elements each having a free end and an engagement surface; moving the distal elements to an open position wherein the free ends are spaced apart; positioning the distal elements such that the engagement surfaces engage tissue at the tissue site; and detaching the fixation device from the interventional tool. Preferably, the method further includes the step of inverting the distal elements to an inverted position wherein the free ends point generally in a distal direction. In some embodiments, the engagement surfaces will face generally away from each other in the inverted position, while in other embodiments, the engagement surfaces will face generally toward each other in the inverted position.
- In an exemplary embodiment, the tissue site comprises first and second leaflets, and the step of moving the distal elements comprises coapting the leaflets. The leaflets may be part of a variety of tissue structures, but are preferably part of a cardiac valve such as the mitral valve. In antegrade approaches, the step of advancing will usually include inserting the fixation device through a valve annulus, e.g. from an atrium of the heart to a ventricle of the heart. In such approaches, the method may further include a step of withdrawing the fixation device through the valve annulus with the fixation device in the inverted position. Retrograde approaches are also provided, in which the step of advancing will include the step of passing the fixation device through a ventricle of the heart into an atrium of the heart. The step of advancing may further comprise transluminally positioning the fixation device through a blood vessel into the heart, and may include inserting the fixation device through an interatrial septum of the heart. Alternatively, the step of advancing may comprise inserting the device through a surgical penetration in a body wall.
- The method may further include moving the distal elements to a closed position after the step of positioning, the free ends of the distal element being closer together in the closed position with the engagement surfaces facing generally toward each other. In addition, the method may include a step of deploying a proximal element on the fixation device toward each engagement surface so as to capture tissue therebetween. Before the step of inverting, the proximal elements are retracted away from the engagement surfaces. The method optionally includes a step of locking the distal elements in a desired position, and may further include a step of unlocking the distal elements so that they are movable again.
- In a further aspect, a method according to the invention comprises advancing a catheter having a proximal end, a distal end and a fixation device near the distal end to a location within a body, wherein the fixation device includes a pair of distal elements each having an engagement surface; moving the distal elements to an open position wherein the distal elements extend radially outwardly facing the engagement surfaces toward a direction other than radially outwardly; and moving the distal elements to an inverted position wherein the engagement surfaces face radially outwardly.
- In still another aspect, the invention provides a method for fixing tissues together comprising advancing a catheter having a proximal end, a distal end and a fixation device disposed near the distal end to a location near the tissues, wherein the fixation device includes a pair of distal elements each having a removable implant pledget; moving the distal elements so that each implant pledget engages one of the tissues; penetrating each tissue and engaged implant pledget and passing a tie therethrough; fastening the ties to fix the tissues together; and removing the fixation device leaving the implant pledget in place.
- In an additional aspect of the invention, kits for performing an intervention at a tissue site in a patient's body include a fixation device and Instructions for Use setting forth the steps of using the fixation device according to the methods of the invention. The fixation device may be as described in any of the various examples set forth herein. The kits may further include a delivery tool or catheter for delivering the fixation device to the tissue site, as well as a tubular guide through which the delivery tool or catheter may be positioned.
- Other objects and advantages of the present invention will become apparent from the detailed description to follow, together with the accompanying drawings.
-
FIG. 1 illustrates the left ventricle and left atrium of the heart during systole. -
FIG. 2A illustrates free edges of leaflets in normal coaptation, andFIG. 2B illustrates the free edges in regurgitative coaptation. -
FIG. 3A-3C illustrate grasping of the leaflets with a fixation device, inversion of the distal elements of the fixation device and removal of the fixation device, respectively. -
FIG. 4 illustrates the position of the fixation device in a desired orientation relative to the leaflets. -
FIGS. 5A-5B , 6A-6B illustrate exemplary embodiments of coupling mechanisms of the instant application. -
FIGS. 7A-7D illustrate an embodiment of a fixation device in various positions. -
FIGS. 8A-8B illustrate an embodiment of the fixation device wherein some or all of the components are molded as one part. -
FIG. 9 illustrates another embodiment of the fixation device of the present invention. -
FIGS. 10A-10B , 11A-11B, 12A-12B, 13A-13B, 14-16 illustrate embodiments of a fixation device in various possible positions during introduction and placement of the device within the body to perform a therapeutic procedure. -
FIGS. 17A-17C illustrate a covering on the fixation device wherein the device is in various positions. -
FIG. 18 illustrates an embodiment of the fixation device including proximal elements and a locking mechanism. -
FIG. 19 provides a cross-sectional view of the locking mechanism ofFIG. 18 . -
FIGS. 20-21 provide a cross-sectional view of the locking mechanism in the unlocked and locked positions respectively. -
FIGS. 22A-22B illustrate a variation of the fixation device to facilitate capture of more widely-separated leaflets or other tissue flaps. - FIGS. 23, 24A-24B illustrate another embodiment of a locking mechanism.
- FIGS. 25, 26A-26B illustrate yet another embodiment of a locking mechanism.
-
FIGS. 27-28 illustrate an additional embodiment of the fixation device wherein separation of couplers rotate the distal elements around pins. -
FIGS. 29-30 illustrate the fixation device ofFIGS. 27-28 with additional features such as barbs and bumpers. -
FIG. 31 illustrates an embodiment of the fixation device having engagement surfaces with a serrated edge and wherein the fixation device is mounted for a ventricular approach to a mitral valve. -
FIGS. 32-34 illustrate an additional embodiment of the fixation device which allows tissue to be grasped between the distal elements and the proximal elements while in an arrangement wherein the distal elements are parallel to each other. -
FIGS. 35-39 , 40A-40D, 41-42, 43A-43C illustrate another embodiment of the fixation device wherein the fixation device includes distal elements having implant pledgets. -
FIGS. 44A-44B , 45-46 illustrate another embodiment of the fixation device wherein the distal elements are comprised of a semi-rigid material having a folded shape. -
FIG. 47 is a perspective view of an embodiment of a delivery catheter for a fixation device. -
FIG. 48 illustrates an embodiment of a fixation device coupled to the distal end of a delivery catheter. -
FIG. 49 illustrates a portion of the shaft of a delivery catheter and a fixation device which is coupleable with the catheter. -
FIGS. 50-52 are cross-sectional views of embodiments of the shaft of the delivery catheter. -
FIGS. 52A-52B illustrate embodiments of the nose of the shaft of the delivery catheter. -
FIG. 53A-53C illustrate various arrangements of lock lines engaging release harnesses of a locking mechanism. -
FIGS. 54A-54B illustrate various arrangements of proximal element lines engaging proximal elements of a fixation device. -
FIG. 55 illustrates an embodiment of the handle of the delivery catheter. -
FIG. 56 is a cross-sectional view of the main body of the handle. -
FIG. 57 illustrates an embodiment of a lock line handle. -
FIG. 57A illustrates the lock line handle ofFIG. 57 positioned within a semi-tube which is disposed within the sealed chamber. -
FIGS. 58A-58B illustrate a mechanism for applying tension to lock lines. - FIGS. 59, 59A-59B illustrate features of the actuator rod control and handle.
-
FIG. 60 is a perspective view of an embodiment of a multi-catheter guiding system of the present invention, and an interventional catheter positioned therethrough. -
FIG. 61A illustrates a primary curvature in an outer guide catheter. -
FIG. 61B illustrates a secondary curvature in an inner guide catheter. -
FIGS. 61C-61D illustrate example movement of an inner guide catheter through angle theta. -
FIG. 62A is a perspective side view of a multi-catheter guiding system having an additional curve in the outer guide catheter. -
FIG. 62B illustrates lifting of the outer guide catheter due to the additional curve ofFIG. 62A . -
FIGS. 63A-63D illustrate a method of using the multi-catheter guiding system for accessing the mitral valve. -
FIGS. 64A-64D illustrate curvature of a guide catheter of the present invention by the actuation of one or more pullwires. -
FIG. 64E illustrates attachment of a pullwire to a tip ring. -
FIGS. 65A-65I illustrate embodiments of the present invention comprising sections constructed with the inclusion of braiding or coil. -
FIGS. 66A-66C illustrate a keying feature of the present invention. -
FIGS. 67A-67B are perspective views of a guide catheter including a series of articulating members. -
FIG. 68 illustrates embodiments of the handles. -
FIG. 69 illustrates the handles ofFIG. 68 with a portion of the housing removed. -
FIG. 70 illustrates steering mechanisms within a handle. -
FIG. 71 illustrates attachment of a pullwire to a disk. -
FIGS. 72A-72B illustrate a hard stop peg restricting rotation of a disk. -
FIGS. 73A-73C illustrates a portion of a hard stop gear assembly. -
FIGS. 74A-74F illustrate a ball restricting rotation of a disk. -
FIG. 75 illustrates an embodiment of a friction assembly. -
FIG. 76 illustrates an embodiment of an interventional system of the present invention. -
FIG. 76A illustrates an embodiment of a hemostatic valve for use with the present invention. -
FIG. 76B illustrates an embodiment of a fixation device introducer. -
FIG. 77 illustrates another embodiment of an interventional system of the present invention. -
FIGS. 78-80 illustrate an embodiment of a stabilizer base for use with the present invention. -
FIG. 81 illustrates a kit constructed in accordance with the principles of the present invention - I. Cardiac Physiology
- The left ventricle LV of a normal heart H in systole is illustrated in
FIG. 1 . The left ventricle LV is contracting and blood flows outwardly through the tricuspid (aortic) valve AV in the direction of the arrows. Back flow of blood or “regurgitation” through the mitral valve MV is prevented since the mitral valve is configured as a “check valve” which prevents back flow when pressure in the left ventricle is higher than that in the left atrium LA. The mitral valve MV comprises a pair of leaflets having free edges FE which meet evenly to close, as illustrated inFIG. 1 . The opposite ends of the leaflets LF are attached to the surrounding heart structure along an annular region referred to as the annulus AN. The free edges FE of the leaflets LF are secured to the lower portions of the left ventricle LV through chordae tendinae CT (referred to hereinafter as the chordae) which include plurality of branching tendons secured over the lower surfaces of each of the valve leaflets LF. The chordae CT in turn, are attached to the papillary muscles PM which extend upwardly from the lower portions of the left ventricle and intraventricular septum IVS. - A number of structural defects in the heart can cause mitral valve regurgitation. Regurgitation occurs when the valve leaflets do not close properly allowing leakage from the ventricle into the atrium. As shown in
FIG. 2A , the free edges of the anterior and posterior leaflets normally meet along a line of coaptation C. An example of a defect causing regurgitation is shown inFIG. 2B . Here an enlargement of the heart causes the mitral annulus to become enlarged, making it impossible for the free edges FE to meet during systole. This results in a gap G which allows blood to leak through the valve during ventricular systole. Ruptured or elongated chordae can also cause a valve leaflet to prolapse since inadequate tension is transmitted to the leaflet via the chordae. While the other leaflet maintains a normal profile, the two valve leaflets do not properly meet and leakage from the left ventricle into the left atrium will occur. Such regurgitation can also occur in patients who have suffered ischemic heart disease where the left ventricle does not contract sufficiently to effect proper closure. - II. General Overview
- The present invention provides methods and devices for grasping, approximating and fixating tissues such as valve leaflets to treat cardiac valve regurgitation, particularly mitral valve regurgitation. The present invention also provides features that allow repositioning and removal of the device if so desired, particularly in areas where removal may be hindered by anatomical features such as chordae CT. Such removal would allow the surgeon to reapproach the valve in a new manner if so desired.
- Grasping will preferably be atraumatic providing a number of benefits. By atraumatic, it is meant that the devices and methods of the invention may be applied to the valve leaflets and then removed without causing any significant clinical impairment of leaflet structure or function. The leaflets and valve continue to function substantially the same as before the invention was applied. Thus, some minor penetration or denting of the leaflets may occur using the invention while still meeting the definition of “atraumatic”. This enables the devices of the invention to be applied to a diseased valve and, if desired, removed or repositioned without having negatively affected valve function. In addition, it will be understood that in some cases it may be necessary or desirable to pierce or otherwise permanently affect the leaflets during either grasping, fixing or both. In some of these cases, grasping and fixation may be accomplished by a single device. Although a number of embodiments are provided to achieve these results, a general overview of the basic features will be presented herein. Such features are not intended to limit the scope of the invention and are presented with the aim of providing a basis for descriptions of individual embodiments presented later in the application.
- The devices and methods of the invention rely upon the use of an interventional tool that is positioned near a desired treatment site and used to grasp the target tissue. In endovascular applications, the interventional tool is typically an interventional catheter. In surgical applications, the interventional tool is typically an interventional instrument. In preferred embodiments, fixation of the grasped tissue is accomplished by maintaining grasping with a portion of the interventional tool which is left behind as an implant. While the invention may have a variety of applications for tissue approximation and fixation throughout the body, it is particularly well adapted for the repair of valves, especially cardiac valves such as the mitral valve. Referring to
FIG. 3A , aninterventional tool 10, having a delivery device, such as ashaft 12, and afixation device 14, is illustrated having approached the mitral valve MV from the atrial side and grasped the leaflets LF. The mitral valve may be accessed either surgically or by using endovascular techniques, and either by a retrograde approach through the ventricle or by an antegrade approach through the atrium, as described above. For illustration purposes, an antegrade approach is described. - The
fixation device 14 is releasably attached to theshaft 12 of theinterventional tool 10 at its distal end. When describing the devices of the invention herein, “proximal” shall mean the direction toward the end of the device to be manipulated by the user outside the patient's body, and “distal” shall mean the direction toward the working end of the device that is positioned at the treatment site and away from the user. With respect to the mitral valve, proximal shall refer to the atrial or upstream side of the valve leaflets and distal shall refer to the ventricular or downstream side of the valve leaflets. - The
fixation device 14 typically comprises proximal elements 16 (or gripping elements) and distal elements 18 (or fixation elements) which protrude radially outward and are positionable on opposite sides of the leaflets LF as shown so as to capture or retain the leaflets therebetween. Theproximal elements 16 are preferably comprised of cobalt chromium, nitinol or stainless steel, and thedistal elements 18 are preferably comprised of cobalt chromium or stainless steel, however any suitable materials may be used. Thefixation device 14 is coupleable to theshaft 12 by acoupling mechanism 17. Thecoupling mechanism 17 allows thefixation device 14 to detach and be left behind as an implant to hold the leaflets together in the coapted position. - In some situations, it may be desired to reposition or remove the
fixation device 14 after theproximal elements 16,distal elements 18, or both have been deployed to capture the leaflets LF. Such repositioning or removal may be desired for a variety of reasons, such as to reapproach the valve in an attempt to achieve better valve function, more optimal positioning of thedevice 14 on the leaflets, better purchase on the leaflets, to detangle thedevice 14 from surrounding tissue such as chordae, to exchange thedevice 14 with one having a different design, or to abort the fixation procedure, to name a few. To facilitate repositioning or removal of thefixation device 14 thedistal elements 18 are releasable and optionally invertible to a configuration suitable for withdrawal of thedevice 14 from the valve without tangling or interfering with or damaging the chordae, leaflets or other tissue.FIG. 3B illustrates inversion wherein thedistal elements 18 are moveable in the direction ofarrows 40 to an inverted position. Likewise, theproximal elements 16 may be raised, if desired. In the inverted position, thedevice 14 may be repositioned to a desired orientation wherein the distal elements may then be reverted to a grasping position against the leaflets as inFIG. 3A . Alternatively, thefixation device 14 may be withdrawn (indicated by arrow 42) from the leaflets as shown inFIG. 3C . Such inversion reduces trauma to the leaflets and minimizes any entanglement of the device with surrounding tissues. Once thedevice 14 has been withdrawn through the valve leaflets, the proximal and distal elements may be moved to a closed position or configuration suitable for removal from the body or for reinsertion through the mitral valve. -
FIG. 4 illustrates the position of thefixation device 14 in a desired orientation in relation to the leaflets LF. This is a short-axis view of the mitral valve MV from the atrial side, therefore, theproximal elements 16 are shown in solid line and thedistal elements 18 are shown in dashed line. The proximal anddistal elements device 14 may be moved roughly along the line of coaptation to the location of regurgitation. The leaflets LF are held in place so that during diastole, as shown inFIG. 4 , the leaflets LF remain in position between theelements openings 0 which result from the diastolic pressure gradient. Advantageously, leaflets LF are coapted such that their proximal or upstream surfaces are facing each other in a vertical orientation, parallel to the direction of blood flow through mitral valve MV. The upstream surfaces may be brought together so as to be in contact with one another or may be held slightly apart, but will preferably be maintained in the vertical orientation in which the upstream surfaces face each other at the point of coaptation. This simulates the double orifice geometry of a standard surgical bow-tie repair. Color Doppler echo will show if the regurgitation of the valve has been reduced. If the resulting mitral flow pattern is satisfactory, the leaflets may be fixed together in this orientation. If the resulting color Doppler image shows insufficient improvement in mitral regurgitation, theinterventional tool 10 may be repositioned. This may be repeated until an optimal result is produced wherein the leaflets LF are held in place. - Once the leaflets are coapted in the desired arrangement, the
fixation device 14 is then detached from theshaft 12 and left behind as an implant to hold the leaflets together in the coapted position. As mentioned previously, thefixation device 14 is coupled to theshaft 12 by acoupling mechanism 17.FIGS. 5A-5B , 6A-6B illustrate exemplary embodiments of such coupling mechanisms.FIG. 5A shows anupper shaft 20 and a detachablelower shaft 22 which are interlocked at a joining line ormating surface 24. Themating surface 24 may have any shape or curvature which will allow or facilitate interlocking and later detachment. A snuggly fittingouter sheath 26 is positioned over theshafts mating surface 24 as shown.FIG. 5B illustrates detachment of thelower shaft 22 from theupper shaft 20. This is achieved by retracting theouter sheath 26, so that themating surface 24 is exposed, which allows theshafts - Similarly,
FIG. 6A illustrates a tubularupper shaft 28 and a detachable tubularlower shaft 30 which are interlocked at amating surface 32. Again, themating surface 32 may have any shape or curvature which will allow or facilitate interlocking and later detachment. The tubularupper shaft 28 and tubularlower shaft 30 form an outer member having an axial channel. A snugglyfitting rod 34 or inner member is inserted through thetubular shafts mating surface 32 as shown.FIG. 6B illustrates detachment of thelower shaft 30 from theupper shaft 28. This is achieved by retracting therod 34 to a position above themating surface 32 which in turn allows theshafts - In a preferred embodiment, mating surface 24 (or mating surface 32) is a sigmoid curve defining a male element and female element on upper shaft 20 (or upper shaft 28) which interlock respectively with corresponding female and male elements on lower shaft 22 (or lower shaft 30). Typically, the lower shaft is the
coupling mechanism 17 of thefixation device 14. Therefore, the shape of the mating surface selected will preferably provide at least some mating surfaces transverse to the axial axis of the amechanism 19 to facilitate application of compressive and tensile forces through thecoupling mechanism 17 to thefixation device 14, yet causing minimal interference when thefixation device 14 is to be released from the upper shaft. - III. Fixation Device
- A. Introduction and Placement of Fixation Device
- The
fixation device 14 is delivered to the valve or the desired tissues with the use of a delivery device. The delivery device may be rigid or flexible depending on the application. For endovascular applications, the delivery device comprises a flexible delivery catheter which will be described in later sections. Typically, however, such a catheter comprises a shaft, having a proximal end and a distal end, and a fixation device releasably attached to its distal end. The shaft is usually elongate and flexible, suitable for intravascular introduction. Alternatively, the delivery device may comprise a shorter and less flexible interventional instrument which may be used for trans-thoracic surgical introduction through the wall of the heart, although some flexibility and a minimal profile will generally be desirable. A fixation device is releasably coupleable with the delivery device as illustrated inFIG. 3A . The fixation device may have a variety of forms, a few embodiments of which will be described herein. -
FIGS. 7A-7D illustrate an embodiment of afixation device 14 in various positions or configurations.FIG. 7A illustrates thefixation device 14 in a closed configuration for delivery through the patient's vasculature and, in this example, through the mitral valve. Thefixation device 14 includes acoupling member 19 which allows detachment of thefixation device 14 for implantation. In this example, thecoupling member 19 is shown to include thelower shaft 22 andmating surface 24 ofFIGS. 5A-5B , and therefore thecoupling member 19 would function similarly as described above. Thefixation device 14 also includes a pair of opposeddistal elements 18, eachdistal element 18 having anengagement surface 50 facing inwardly toward the opposeddistal element 18 in the closed configuration.Distal elements 18 preferably compriseelongate arms 53, each arm having aproximal end 52 rotatably connected to thecoupling member 19 and afree end 54. Suitable connections forarms 53 tocoupling member 19 include pins, living hinges, or other known rotational connection mechanisms. In the closed configuration ofFIG. 7A , free ends 54 point in a first direction such that thearms 53 andengagement surfaces 50 are nearly parallel to each other and to anaxis 21, and preferably are angled slightly inwardly toward each other. In a preferred embodiment, when tissue is not present betweenarms 53, thearms 53 may be closed until free ends 54 either touch each other or engageshaft 12 whenfixation device 14 is attached thereto, thereby minimizing the profile of thefixation device 14 for passage through a delivery device. -
FIGS. 7B-7C illustrate thefixation device 14 in an open position wherein the engagement surfaces 50 are disposed at aseparation angle 56 apart, wherein theseparation angle 56 is typically up to approximately 180 degrees, preferably up to 90-180 degrees, andarms 53 are disposed generally symmetrically relative toaxis 21. Thearms 53 may be moveable to the open position by a variety of actuation mechanisms. For example, a plunger or actuator rod may be advanced through thecoupling member 19, as indicated byarrow 62, so as to engage a spring or spring loadedactuation mechanism 58 which is attached to thedistal elements 18. By exerting a force against theactuation mechanism 58, thedistal elements 18 are rotated relative to couplingmember 19. Thedistal elements 18 may be held in this open position by the actuator rod against the resistance provided by the spring of theactuation mechanism 58 which biases thedistal elements 18 toward the closed position ofFIG. 7A when thedistal elements 18 are less than 180 degrees apart. The spring loading of theactuation mechanism 58 resists outward movement of theactuation mechanism 58 and urges thedevice 14 towards the closed position. - In this embodiment,
proximal elements 16 comprise resilient loop-shaped wire forms biased outwardly and attached to thecoupling member 19 so as to be biased to an open position shown inFIG. 7C but moveable rotationally inwardly whenarms 53 are closed. The wire forms may be flexible enough to be rigidly attached to couplingmember 19 and resiliently deflectable inwardly, or they may be attached by a rotational coupling such as a pin or living hinge. In use, leaflets LF are positioned between theproximal elements 16 anddistal elements 18. Once, the leaflets LF are positioned between the proximal anddistal elements distal elements 18 may be closed, compressing the leaflets between engagement surfaces 50 andproximal elements 18. Depending upon the thickness of the leaflets, the arrangements of the leaflets, the position of the fixation device on the leaflets and other factors, thearms 53 may be maintained in the open position ofFIG. 7B , moved to the fully closed position ofFIG. 7A , or placed in any of various positions in between so as to coapt the leaflets LF and hold them in the desired position with the desired degree of force. In any case, thefixation device 14 will remain in place as an implant following detachment from the delivery catheter. - In some situations, as previously mentioned, it may be desirable to reopen the
fixation device 14 following initial placement. To reopen thedevice 14, the actuator rod may be readvanced or reinserted through thecoupling member 19 and readvanced to press against theactuation mechanism 58, as previously indicated byarrow 62 inFIG. 7B . Again, such advancement applies a force against theactuation mechanism 58 in the manner described above thus movingarms 53 outwardly to release force against leaflets and move engagement surfaces 50 away fromproximal elements 16. The leaflets are then free to move relative tofixation device 14. Thefixation device 14 may then be repositioned as desired and the actuator rod retracted to reclose thedistal elements 18 to coapt the leaflets. - Under some circumstances, it may be further desirable to withdraw the
fixation device 14 back through the valve or completely from the patient following initial insertion through the valve. Should this be attempted with the clip in the closed or open positions illustrated inFIGS. 7A-7C , there may be a risk thatarms 53 could interfere or become entangled with the chordae, leaflets or other tissues. To avoid this, thefixation element 14 is preferably adapted for inversion ofarms 53 so that free ends 54 point in a second direction, opposite to the first direction in which the free ends 54 pointed in the closed position, eacharm 53 forming an obtuse angle relative toaxis 21 as illustrated inFIG. 7D . Thearms 53 may be rotated so that the engagement surfaces 50 are disposed at aseparation angle 56 of up to 360 degrees, and preferably at least up to 270 degrees. This may be accomplished by exerting a force againstactuation mechanism 58 with a push rod or plunger extending throughcoupling member 19 as described above. In this embodiment, once thedistal elements 18 have rotated beyond 180 degrees apart, the spring loading of theactuation mechanism 58 biases thedistal elements 18 toward the inverted position. The spring loading of theactuation mechanism 58 resists outward movement of theactuation mechanism 58 and urges thedevice 14 towards the inverted position. - With
arms 53 in the inverted position, engagement surfaces 50 provide an atraumatic surface deflect tissues as the fixation device is withdrawn. This allows the device to be retracted back through the valve annulus without risk of injury to valvular and other tissues. In some cases, once thefixation device 14 has been pulled back through the valve, it will be desirable to return the device to the closed position for withdrawal of the device from the body (either through the vasculature or through a surgical opening). - The embodiment illustrated in
FIGS. 7A-7D is assembled from separate components composed of biocompatible materials. The components may be formed from the same or different materials, including but not limited to stainless steel or other metals, Elgiloy®, nitinol, titanium, tantalum, metal alloys or polymers. Additionally, some or all of these components may be made of bioabsorbable materials that will be absorbed by surrounding tissues or will dissolve into the bloodstream following implantation. It has been found that in mitral valve repair applications the fixation devices of the invention are completely surrounded by tissue within a few months of implantation, after which the devices could dissolve or be absorbed without negative impact to the repair. - In a further embodiment, some or all of the components may be molded as one part, as illustrated in
FIGS. 8A-8B . Here, thecoupling member 19,distal elements 18 andactuation mechanism 58 of thefixation device 14 are all molded from a polymer material as one moveable piece.FIG. 8A shows thefixation device 14 in the open position. Advancement of anactuator rod 64 rotates thedistal elements 18 relative to thecoupling member 19 by a living hinge or by elastic deformation of the plastic at the point of connection between theelements 18 and thecoupling member 19. Typically, this point of connection comprises a thinner segment of polymer to facilitate such bending. Likewise, theactuation mechanism 58 coupled to thedistal elements 18 in the same manner.FIG. 8B shows thefixation device 14 in the inverted position. -
FIG. 9 illustrates another embodiment of afixation device 14. Here, thefixation device 14 is shown coupled to ashaft 12 to form aninterventional tool 10. Thefixation device 14 includes acoupling member 19 and a pair of opposeddistal elements 18. Thedistal elements 18 compriseelongate arms 53, each arm having aproximal end 52 rotatably connected to thecoupling member 19 and afree end 54. The free ends 54 have a rounded shape to minimize interference with and trauma to surrounding tissue structures. Preferably, eachfree end 54 defines a curvature about two axes, one being anaxis 66 perpendicular to longitudinal axis ofarms 53. Thus, the engagement surfaces 50 have a cupped or concave shape to surface area in contact with tissue and to assist in grasping and holding the valve leaflets. This further allowsarms 53 to nest around theshaft 12 in the closed position to minimize the profile of the device. Preferably,arms 53 are at least partially cupped or curved inwardly about theirlongitudinal axes 66. Also, preferably, eachfree end 54 defines a curvature about anaxis 67 perpendicular toaxis 66 or the longitudinal axis ofarms 53. This curvature is a reverse curvature along the most distal portion of thefree end 54. Likewise, the longitudinal edges of the free ends 54 may flare outwardly. Both the reverse curvature and flaring minimize trauma to the tissue engaged therewith. - In a preferred embodiment suitable for mitral valve repair, the transverse width across engagement surfaces 50 (which determines the width of tissue engaged) is at least about 2 mm, usually 3-10 mm, and preferably about 4-6 mm. In some situations, a wider engagement is desired wherein the engagement surfaces 50 are larger, for example about 2 cm, or multiple fixation devices are used adjacent to each other.
Arms 53 andengagement surfaces 50 are configured to engage a length of tissue of about 4-10 mm, and preferably about 6-8 mm along the longitudinal axis ofarms 53.Arms 53 further include a plurality of openings to enhance grip and to promote tissue ingrowth following implantation. - The valve leaflets are grasped between the
distal elements 18 andproximal elements 16. In some embodiments, theproximal elements 16 are flexible, resilient, and cantilevered from couplingmember 19. The proximal elements are preferably resiliently biased toward the distal elements. Eachproximal element 16 is shaped and positioned to be at least partially recessed within the concavity of thedistal element 18 when no tissue is present. When thefixation device 14 is in the open position, theproximal elements 16 are shaped such that eachproximal element 16 is separated from theengagement surface 50 near theproximal end 52 ofarm 53 and slopes toward theengagement surface 50 near thefree end 54 with the free end of the proximal element contactingengagement surface 50, as illustrated inFIG. 9 . This shape of theproximal elements 16 accommodates valve leaflets or other tissues of varying thicknesses. -
Proximal elements 16 include a plurality ofopenings 63 and scalloped side edges 61 to increase grip on tissue. Theproximal elements 16 optionally include frictional accessories, frictional features or grip-enhancing elements to assist in grasping and/or holding the leaflets. In preferred embodiments, the frictional accessories comprisebarbs 60 having tapering pointed tips extending toward engagement surfaces 50. It may be appreciated that any suitable frictional accessories may be used, such as prongs, windings, bands, barbs, grooves, channels, bumps, surface roughening, sintering, high-friction pads, coverings, coatings or a combination of these. Optionally, magnets may be present in the proximal and/or distal elements. It may be appreciated that the mating surfaces will be made from or will include material of opposite magnetic charge to cause attraction by magnetic force. For example, the proximal elements and distal elements may each include magnetic material of opposite charge so that tissue is held under constant compression between the proximal and distal elements to facilitate faster healing and ingrowth of tissue. Also, the magnetic force may be used to draw theproximal elements 16 toward thedistal elements 18, in addition to or alternatively to biasing of the proximal elements toward the distal elements. This may assist in deployment of theproximal elements 16. In another example, thedistal elements 18 each include magnetic material of opposite charge so that tissue positioned between thedistal elements 18 is held therebetween by magnetic force. - The
proximal elements 16 may be covered with a fabric or other flexible material as described below to enhance grip and tissue ingrowth following implantation. Preferably, when fabrics or coverings are used in combination with barbs or other frictional features, such features will protrude through such fabric or other covering so as to contact any tissue engaged byproximal elements 16. - In an exemplary embodiment,
proximal elements 16 are formed from metallic sheet of a spring-like material using a stamping operation which createsopenings 63, scalloped edges 61 andbarbs 60. Alternatively,proximal elements 16 could be comprised of a spring-like material or molded from a biocompatible polymer. It should be noted that while some types of frictional accessories that can be used in the present invention may permanently alter or cause some trauma to the tissue engaged thereby, in a preferred embodiment, the frictional accessories will be atraumatic and will not injure or otherwise affect the tissue in a clinically significant way. For example, in the case ofbarbs 60, it has been demonstrated that following engagement of mitral valve leaflets byfixation device 14, should the device later be removed during theprocedure barbs 60 leave no significant permanent scarring or other impairment of the leaflet tissue and are thus considered atraumatic. - The
fixation device 14 also includes anactuation mechanism 58. In this embodiment, theactuation mechanism 58 comprises two link members orlegs 68, eachleg 68 having afirst end 70 which is rotatably joined with one of thedistal elements 18 at a riveted joint 76 and asecond end 72 which is rotatably joined with astud 74. Thelegs 68 are preferably comprised of a rigid or semi-rigid metal or polymer such as Elgiloy®, cobalt chromium or stainless steel, however any suitable material may be used. While in the embodiment illustrated bothlegs 68 are pinned tostud 74 by asingle rivet 78, it may be appreciated, however, that eachleg 68 may be individually attached to thestud 74 by a separate rivet or pin. Thestud 74 is joinable with an actuator rod 64 (not shown) which extends through theshaft 12 and is axially extendable and retractable to move thestud 74 and therefore thelegs 68 which rotate thedistal elements 18 between closed, open and inverted positions. Likewise, immobilization of thestud 74 holds thelegs 68 in place and therefore holds thedistal elements 18 in a desired position. Thestud 74 may also be locked in place by a locking feature which will be further described in later sections. - In any of the embodiments of
fixation device 14 disclosed herein, it may be desirable to provide some mobility or flexibility indistal elements 18 and/orproximal elements 16 in the closed position to enable these elements to move or flex with the opening or closing of the valve leaflets. This provides shock absorption and thereby reduces force on the leaflets and minimizes the possibility for tearing or other trauma to the leaflets. Such mobility or flexibility may be provided by using a flexible, resilient metal or polymer of appropriate thickness to construct thedistal elements 18. Also, the locking mechanism of the fixation device (described below) may be constructed of flexible materials to allow some slight movement of the proximal and distal elements even when locked. Further, thedistal elements 18 can be connected to thecoupling mechanism 19 or toactuation mechanism 58 by a mechanism that biases the distal element into the closed position (inwardly) but permits the arms to open slightly in response to forces exerted by the leaflets. For example, rather than being pinned at a single point, these components may be pinned through a slot that allowed a small amount of translation of the pin in response to forces against the arms. A spring is used to bias the pinned component toward one end of the slot. -
FIGS. 10A-10B , 11A-11B, 12A-12B, 13A-13B, andFIGS. 14-16 illustrate embodiments of thefixation device 14 ofFIG. 9 in various possible positions during introduction and placement of thedevice 14 within the body to perform a therapeutic procedure.FIG. 10A illustrates an embodiment of aninterventional tool 10 delivered through acatheter 86. It may be appreciated that theinterventional tool 10 may take the form of a catheter, and likewise, thecatheter 86 may take the form of a guide catheter or sheath. However, in this example the termsinterventional tool 10 andcatheter 86 will be used. Theinterventional tool 10 comprises afixation device 14 coupled to ashaft 12 and thefixation device 14 is shown in the closed position.FIG. 10B illustrates a similar embodiment of the fixation device ofFIG. 10A in a larger view. In the closed position, the opposed pair ofdistal elements 18 are positioned so that the engagement surfaces 50 face each other. Eachdistal element 18 comprises anelongate arm 53 having a cupped or concave shape so that together thearms 53 surround theshaft 12 and optionally contact each other on opposite sides of the shaft. This provides a low profile for thefixation device 14 which is readily passable through thecatheter 86 and through any anatomical structures, such as the mitral valve. In addition,FIG. 10B further includes anactuation mechanism 58. In this embodiment, theactuation mechanism 58 comprises twolegs 68 which are each movably coupled to abase 69. Thebase 69 is joined with anactuator rod 64 which extends through theshaft 12 and is used to manipulate thefixation device 14. In some embodiments, theactuator rod 64 attaches directly to theactuation mechanism 58, particularly thebase 69. However, theactuator rod 64 may alternatively attach to astud 74 which in turn is attached to thebase 69. In some embodiments, thestud 74 is threaded so that theactuator rod 64 attaches to thestud 74 by a screw-type action. However, therod 64 andstud 74 may be joined by any mechanism which is releasable to allow thefixation device 14 to be detached fromshaft 12. -
FIGS. 11A-11B illustrate thefixation device 14 in the open position. In the open position, thedistal elements 18 are rotated so that the engagement surfaces 50 face a first direction. Distal advancement of thestud 74 relative to couplingmember 19 by action of theactuator rod 64 applies force to thedistal elements 18 which begin to rotate aroundjoints 76 due to freedom of movement in this direction. Such rotation and movement of thedistal elements 18 radially outward causes rotation of thelegs 68 aboutjoints 80 so that thelegs 68 are directly slightly outwards. Thestud 74 may be advanced to any desired distance correlating to a desired separation of thedistal elements 18. In the open position, engagement surfaces 50 are disposed at an acute angle relative toshaft 12, and are preferably at an angle of between 90 and 180 degrees relative to each other. In one embodiment, in the open position the free ends 54 ofarms 53 have a span therebetween of about 10-20 mm, usually about 12-18 mm, and preferably about 14-16 mm. -
Proximal elements 16 are typically biased outwardly towardarms 53. Theproximal elements 16 may be moved inwardly toward theshaft 12 and held against theshaft 12 with the aid ofproximal element lines 90 which can be in the form of sutures, wires, nitinol wire, rods, cables, polymeric lines, or other suitable structures. The proximal element lines 90 may be connected with theproximal elements 16 by threading thelines 90 in a variety of ways. When theproximal elements 16 have a loop shape, as shown inFIG. 11A , theline 90 may pass through the loop and double back. When theproximal elements 16 have an elongate solid shape, as shown inFIG. 11B , theline 90 may pass through one or more of theopenings 63 in theelement 16. Further, aline loop 48 may be present on aproximal element 16, also illustrated inFIG. 11B , through which aproximal element line 90 may pass and double back. Such aline loop 48 may be useful to reduce friction onproximal element line 90 or when theproximal elements 16 are solid or devoid of other loops or openings through which the proximal element lines 90 may attach. Aproximal element line 90 may attach to theproximal elements 16 by detachable means which would allow asingle line 90 to be attached to aproximal element 16 without doubling back and would allow thesingle line 90 to be detached directly from theproximal element 16 when desired. Examples of such detachable means include hooks, snares, clips or breakable couplings, to name a few. By applying sufficient tension to theproximal element line 90, the detachable means may be detached from theproximal element 16 such as by breakage of the coupling. Other mechanisms for detachment may also be used. Similarly, alock line 92 may be attached and detached from a locking mechanism by similar detachable means. - In the open position, the
fixation device 14 can engage the tissue which is to be approximated or treated. The embodiment illustrated inFIGS. 9-11 is adapted for repair of the mitral valve using an antegrade approach from the left atrium. Theinterventional tool 10 is advanced through the mitral valve from the left atrium to the left ventricle. Thedistal elements 18 are oriented to be perpendicular to the line of coaptation and then positioned so that the engagement surfaces 50 contact the ventricular surface of the valve leaflets, thereby grasping the leaflets. Theproximal elements 16 remain on the atrial side of the valve leaflets so that the leaflets lie between the proximal and distal elements. In this embodiment, theproximal elements 16 have frictional accessories, such asbarbs 60 which are directed toward thedistal elements 18. However, neither theproximal elements 16 nor thebarbs 60 contact the leaflets at this time. - The
interventional tool 10 may be repeatedly manipulated to reposition thefixation device 14 so that the leaflets are properly contacted or grasped at a desired location. Repositioning is achieved with the fixation device in the open position. In some instances, regurgitation may also be checked while thedevice 14 is in the open position. If regurgitation is not satisfactorily reduced, the device may be repositioned and regurgitation checked again until the desired results are achieved. - It may also be desired to invert the
fixation device 14 to aid in repositioning or removal of thefixation device 14.FIGS. 12A-12B illustrate thefixation device 14 in the inverted position. By further advancement ofstud 74 relative to couplingmember 19, thedistal elements 18 are further rotated so that the engagement surfaces 50 face outwardly and free ends 54 point distally, with eacharm 53 forming an obtuse angle relative toshaft 12. The angle betweenarms 53 is preferably in the range of about 270 to 360 degrees. Further advancement of thestud 74 further rotates thedistal elements 18 around joints 76. This rotation and movement of thedistal elements 18 radially outward causes rotation of thelegs 68 aboutjoints 80 so that thelegs 68 are returned toward their initial position, generally parallel to each other. Thestud 74 may be advanced to any desired distance correlating to a desired inversion of thedistal elements 18. Preferably, in the fully inverted position, the span between free ends 54 is no more than about 20 mm, usually less than about 16 mm, and preferably about 12-14 mm. In this illustration, theproximal elements 16 remain positioned against theshaft 12 by exerting tension on the proximal element lines 90. Thus, a relatively large space may be created between theelements fixation device 14 through the valve while minimizing trauma to the leaflets. Engagement surfaces 50 provide an atraumatic surface for deflecting tissue as the fixation device is retracted proximally. It should be further noted thatbarbs 60 are angled slightly in the distal direction (away from the free ends of the proximal elements 16), reducing the risk that the barbs will catch on or lacerate tissue as the fixation device is withdrawn. - Once the
fixation device 14 has been positioned in a desired location against the valve leaflets, the leaflets may then be captured between theproximal elements 16 and thedistal elements 18.FIGS. 13A-13B illustrate thefixation device 14 in such a position. Here, theproximal elements 16 are lowered toward the engagement surfaces 50 so that the leaflets are held therebetween. InFIG. 13B , theproximal elements 16 are shown to includebarbs 60 which may be used to provide atraumatic gripping of the leaflets. Alternatively, larger, more sharply pointed barbs or other penetration structures may be used to pierce the leaflets to more actively assist in holding them in place. This position is similar to the open position ofFIGS. 11A-11B , however theproximal elements 16 are now lowered towardarms 53 by releasing tension onproximal element lines 90 to compress the leaflet tissue therebetween. At any time, theproximal elements 16 may be raised and thedistal elements 18 adjusted or inverted to reposition thefixation device 14, if regurgitation is not sufficiently reduced. - After the leaflets have been captured between the proximal and
distal elements distal elements 18 may be locked to hold the leaflets in this position or thefixation device 14 may be returned to or toward a closed position. Such locking will be described in a later section.FIG. 14 illustrates thefixation device 14 in the closed position wherein the leaflets (not shown) are captured and coapted. This is achieved by retraction of thestud 74 proximally relative to couplingmember 19 so that thelegs 68 of theactuation mechanism 58 apply an upwards force to thedistal elements 18 which in turn rotate thedistal elements 18 so that the engagement surfaces 50 again face one another. The releasedproximal elements 16 which are biased outwardly towarddistal elements 18 are concurrently urged inwardly by thedistal elements 18. Thefixation device 14 may then be locked to hold the leaflets in this closed position as described below. - As shown in
FIG. 15 , thefixation device 14 may then be released from theshaft 12. As mentioned, thefixation device 14 is releasably coupleable to theshaft 12 by couplingmember 19.FIG. 15 illustrates the coupling structure, a portion of theshaft 12 to which thecoupling member 19 of thefixation device 14 attaches. As shown, the proximal element lines 90 may remain attached to theproximal elements 16 following detachment fromshaft 12 to function as a tether to keep thefixation device 14 connected with thecatheter 86. Optionally, a separate tether coupled betweenshaft 12 andfixation device 14 may be used expressly for this purpose while the proximal element lines 90 are removed. In any case, the repair of the leaflets or tissue may be observed by non-invasive visualization techniques, such as echocardiography, to ensure the desired outcome. If the repair is not desired, thefixation device 14 may be retrieved with the use of the tether orproximal element lines 90 so as to reconnectcoupling member 19 withshaft 12. - In an exemplary embodiments, proximal element lines 90 are elongated flexible threads, wire, cable, sutures or lines extending through
shaft 12, looped throughproximal elements 16, and extending back throughshaft 12 to its proximal end. When detachment is desired, one end of each line may be released at the proximal end of theshaft 12 and the other end pulled to draw the free end of the line distally throughshaft 12 and throughproximal element 16 thereby releasing the fixation device. -
FIG. 16 illustrates a releasedfixation device 14 in a closed position. As shown, thecoupling member 19 remains separated from theshaft 12 of theinterventional tool 10 and theproximal elements 16 are deployed so that tissue (not shown) may reside between theproximal elements 16 anddistal elements 18. - While the above described embodiments of the invention utilize a push-to-open, pull-to-close mechanism for opening and closing
distal elements 18, it should be understood that a pull-to-open, push-to-close mechanism is equally possible. For example,distal elements 18 may be coupled at their proximal ends tostud 74 rather than to couplingmember 19, andlegs 68 may be coupled at their proximal ends to couplingmember 19 rather than tostud 74. In this example, whenstud 74 is pushed distally relative to couplingmember 19,distal elements 18 would close, while pulling onstud 74 proximally towardcoupling member 19 would opendistal elements 18. - B. Covering on Fixation Device
- The
fixation device 14 may optionally include a covering. The covering may assist in grasping the tissue and may later provide a surface for tissue ingrowth. Ingrowth of the surrounding tissues, such as the valve leaflets, provides stability to thedevice 14 as it is further anchored in place and may cover the device with native tissue thus reducing the possibility of immunologic reactions. The covering may be comprised of any biocompatible material, such as polyethylene terepthalate, polyester, cotton, polyurethane, expanded polytetrafluoroethylene (ePTFE), silicon, or various polymers or fibers and have any suitable form, such as a fabric, mesh, textured weave, felt, looped or porous structure. Generally, the covering has a low profile so as not to interfere with delivery through an introducer sheath or with grasping and coapting of leaflets or tissue. -
FIGS. 17A-17C illustrate a covering 100 on thefixation device 14 wherein thedevice 14 is in various positions.FIG. 17A shows the covering 100 encapsulating thedistal elements 18 and theactuation mechanism 58 while thedevice 14 is in the open position. Thus, the engagement surfaces 50 are covered by the covering 100 which helps to minimize trauma on tissues and provides additional friction to assist in grasping and retaining tissues.FIG. 17B shows thedevice 14 ofFIG. 17A in the inverted position. The covering 100 is loosely fitted and/or is flexible or elastic such that thedevice 14 can freely move to various positions and the covering 100 conforms to the contours of thedevice 14 and remains securely attached in all positions.FIG. 17C shows thedevice 14 in the closed position. Thus, when thefixation device 14 is left behind as an implant in the closed position, the exposed surfaces of thedevice 14 are substantially covered by the covering 100. It may be appreciated that the covering 100 may cover specific parts of thefixation device 14 while leaving other parts exposed. For example, the covering 100 may comprise sleeves that fit over thedistal elements 18 and not theactuation mechanism 58, caps that fit over the distal ends 54 of thedistal elements 18 or pads that cover the engagement surfaces 50, to name a few. It may be appreciated that, the covering 100 may allow any frictional accessories, such as barbs, to be exposed. Also, the covering 100 may cover theproximal elements 16 and/or any other surfaces of thefixation device 14. In any case, the covering 100 should be durable to withstand multiple introduction cycles and, when implanted within a heart, a lifetime of cardiac cycles. - The covering 100 may alternatively be comprised of a polymer or other suitable materials dipped, sprayed, coated or otherwise adhered to the surfaces of the
fixation device 14. Optionally, the polymer coating may include pores or contours to assist in grasping the tissue and/or to promote tissue ingrowth. - Any of the
coverings 100 may optionally include drugs, antibiotics, anti-thrombosis agents, or anti-platelet agents such as heparin, COUMADIN® (Warfarin Sodium), to name a few. These agents may, for example, be impregnated in or coated on thecoverings 100. These agents may then be delivered to the grasped tissues surrounding tissues and/or bloodstream for therapeutic effects. - C. Fixation Device Locking Mechanisms
- As mentioned previously, the
fixation device 14 optionally includes a locking mechanism for locking thedevice 14 in a particular position, such as an open, closed or inverted position or any position therebetween. It may be appreciated that the locking mechanism includes an unlocking mechanism which allows the device to be both locked and unlocked.FIGS. 18-21 illustrate an embodiment of alocking mechanism 106. Referring toFIG. 18 , in this embodiment, thelocking mechanism 106 is disposed between the couplingmember 19 and thebase 69 of theactuation mechanism 58. Thebase 69 is fixedly attached to thestud 74 which extends through thelocking mechanism 106. Thestud 74 is releasably attached to theactuator rod 64 which passes through thecoupling member 19 and theshaft 12 of theinterventional tool 10. Thebase 69 is also connected to thelegs 68 of theactuation mechanism 58 which are in turn connected to thedistal elements 18. -
FIG. 18 also illustrates theproximal elements 16, which in this embodiment straddle the locking mechanism and join beneath thelocking mechanism 106. Theproximal elements 16 are shown supported by proximal element lines 90. Theproximal elements 16 are raised and lowered by manipulation of the proximal element lines 90. In addition,lock lines 92 are shown connected with arelease harness 108 of thelocking mechanism 106. The lock lines 92 are used to lock and unlock thelocking mechanism 106 as will be described below. Theproximal element lines 90 andlock lines 92 may be comprised of any suitable material, typically wire, nitinol wire, cable, suture or thread, to name a few. In addition, theproximal element lines 90 and/orlock lines 92 may include a coating, such as parylene. Parylene is a vapor deposited pinhole free protective film which is conformal and biocompatible. It is inert and protects against moisture, chemicals, and electrical charge. -
FIG. 19 provides a front view of thelocking mechanism 106 ofFIG. 18 . However, here theproximal elements 16 are supported by a singleproximal element line 90 which is through both of theproximal elements 16. In this arrangement both of the elements are raised and lowered simultaneously by action of a singleproximal element line 90. Whether theproximal elements 16 are manipulated individually by separate proximal element lines 90 or jointly by a singleproximal element line 90, the proximal element lines 90 may extend directly through openings in the proximal elements and/or through a layer or portion of a covering 100 on the proximal elements, or through a suture loop above or below acovering 100. -
FIGS. 20-21 illustrate thelocking mechanism 106 showing thelocking mechanism 106 in the unlocked and locked positions respectively. Referring toFIG. 20 , thelocking mechanism 106 includes one or more wedging elements, such as rolling elements. In this embodiment, the rolling elements comprise a pair ofbarbells 110 disposed on opposite sides of thestud 74, each barbell having a pair of generally cylindrical caps and a shaft therebetween. Thebarbells 110 and thestud 74 are preferably comprised of cobalt chromium or stainless steel, however any suitable material may be used. Thebarbells 110 are manipulated by hooked ends 112 of therelease harness 108. When an upwards force is applied to theharness 108 by the lock line 92 (illustrated inFIG. 18 ), the hooked ends 112 raise thebarbells 110 against aspring 114, as shown inFIG. 20 . This draws thebarbells 110 up along a sidewall or slopingsurface 116 which unwedges thebarbells 110 from against thestud 74. In this position, thestud 74 is free to move. Thus, when thelock line 92 raises or lifts theharness 108, thelocking mechanism 106 is in an unlocked position wherein thestud 74 is free to move theactuation mechanism 58 and therefore thedistal elements 18 to any desired position. Release of theharness 108 by thelock line 92 transitions thelocking mechanism 106 to a locked position, illustrated inFIG. 21 . By releasing the upwards force on thebarbells 110 by the hooked ends 112, thespring 114 forces thebarbells 110 downwards and wedges thebarbells 110 between thesloping surface 116 and thestud 74. This restricts motion of thestud 74, which in turn locks theactuation mechanism 58 and thereforedistal elements 18 in place. In addition, thestud 74 may include one ormore grooves 82 or indentations which receive thebarbells 110. This may provide more rapid and positive locking by causing thebarbells 110 to settle in a definite position, increase the stability of the locking feature by further preventing movement of thebarbells 110, as well as tangible indication to the user that the barbell has reached a locking position. In addition, thegrooves 82 may be used to indicate the relative position of thedistal elements 18, particularly the distance between thedistal elements 18. For example, eachgroove 82 may be positioned to correspond with a 0.5 or 1.0 mm decrease in distance between thedistal elements 18. As thestud 74 is moved, thebarbells 110 will contact thegrooves 82; by counting the number ofgrooves 82 that are felt as thestud 74 is moved, the user can determine the distance between thedistal elements 18 and can provide the desired degree of coaptation based upon leaflet thickness, geometry, spacing, blood flow dynamics and other factors. Thus, thegrooves 82 may provide tactile feedback to the user. - The
locking mechanism 106 allows thefixation device 14 to remain in an unlocked position when attached to theinterventional tool 10 during grasping and repositioning and then maintain a locked position when left behind as an implant. It may be appreciated, however, that thelocking mechanism 106 may be repeatedly locked and unlocked throughout the placement of thefixation device 14 if desired. Once the final placement is determined, thelock line 92 and proximal element lines 90 are removed and the fixation device is left behind. - FIGS. 23, 24A-24B illustrate another embodiment of a
locking mechanism 106. Referring toFIG. 23 , in this embodiment, thelocking mechanism 106 is again disposed between the couplingmember 19 and thebase 69 of theactuation mechanism 58. Thebase 69 is connected to thestud 74 which extends through thelocking mechanism 106, and connects to an actuator rod which extends through thecoupling member 19 and theshaft 12 of theinterventional tool 10. Thebase 69 is also connected to thelegs 68 of theactuation mechanism 58 which are in turn connected to thedistal elements 18.FIG. 23 also illustrates theproximal elements 16 which manipulate thelocking mechanism 106 in this embodiment. Thelocking mechanism 106 comprises foldedleaf structures 124 having overlappingportions structure 124 being attached to aproximal element 16. InFIG. 23 andFIG. 24A , the foldedstructures 124 are shown without the remainder of thelocking mechanism 106 for clarity.Proximal elements 16 are flexible and resilient and are biased outwardly. The foldedleaf structures 124 include holes 125 (FIG. 24B ) in each overlappingportion stud 74 passes through theholes 125 of theportions leaf structures 124 are fixed. When theproximal elements 16 are in an undeployed position, as inFIG. 23 , the foldedleaf structures 124 lie substantially perpendicular to thestud 74 so that theholes 125 in each overlapping portion are vertically aligned. This allows thestud 74 to pass freely through the holes and thelocking mechanism 106 is considered to be in an unlocked position. - Deployment of the
proximal elements 16, as shown inFIG. 24A , tilts the foldedleaf structures 124 so as to be disposed in a non-perpendicular orientation relative to thestud 74 and theholes 125 are no longer vertically aligned with one another. In this arrangement, thestud 74 is not free to move due to friction against the holes of the foldedleaf structure 124.FIG. 24B provides a larger perspective view of the foldedstructures 124 in this position. Thus, thelocking mechanism 106 is considered to be in a locked position. This arrangement allows thefixation device 14 to maintain an unlocked position during grasping and repositioning and then maintain a locked position when theproximal elements 16 are deployed and thefixation device 14 is left behind as an implant. It may be appreciated, however, that thelocking mechanism 106 may be repeatedly locked and unlocked throughout the placement of thefixation device 14 if desired. - FIGS. 25, 26A-26B illustrate another embodiment of a
locking mechanism 106. Referring toFIG. 25 , in this embodiment, thelocking mechanism 106 is again disposed between the couplingmember 19 and thebase 69 of theactuation mechanism 58. And, thebase 69 is connected to thestud 74 which extends through thelocking mechanism 106 and connects to an actuator rod which extends through thecoupling member 19 and the shaft of theinterventional tool 10.FIG. 25 illustrates theproximal elements 16 which manipulate thelocking mechanism 106 in this embodiment. Thelocking mechanism 106 comprises C-shapedstructures 128, each C-shapedstructure 128 attached to aproximal element 16. The C-shapedstructures 128 hook around thestud 74 so that thestud 74 passes through the “C” of eachstructure 128 as shown inFIGS. 26A-26B . As shown, thestructures 128 cross each other and the “C” of eachstructure 128 faces each other. Aspring 130 biases the C-shaped structures into engagement with one another. When the proximal elements are in an undeployed position, as inFIG. 26A , the C-shapedstructures 128 are urged into an orientation more orthogonal to the axial direction defined bystud 74, thus bringing the “C” of eachstructure 128 into closer axial alignment. This allows thestud 74 to pass freely through the “C” of eachstructure 128. Deployment of theproximal elements 16 outwardly urges the C-shaped structures into a more angular, non-orthogonal orientation relative tostud 74 causing the sidewalls of the “C” of eachstructure 128 to engagestud 74 more forcefully. In this arrangement, thestud 74 is not free to move due to friction against the “C” shapedstructures 128. - D. Additional Embodiments of Fixation Devices
-
FIGS. 22A-22B illustrate a variation of thefixation device 14 described above in which the distal andproximal elements coupling member 19 is bifurcated into two resilient andflexible branches FIG. 22A , but which are movable to the position shown inFIG. 22B . As an alternative,branches member 19 by pins or hinges so as to be pivotable toward and away from each other. Each ofproximal elements 16 anddistal elements 18 are coupled at their proximal ends to onebranch coupling member 19.Legs 68 are coupled at their proximal ends tobase 69, and thereforestud 74, and at their distal ends todistal elements 18, as described above. Translation ofstud 74 distally or proximally relative to couplingmember 19 opens or closesdistal elements 18 as in formerly described embodiments. Acollar 131 is slidably disposed overcoupling member 19 and has anannular groove 133 on its inner wall configured to slide over and frictionally engagedetents 135 onbranches sheath 137 is positioned coaxially overshaft 12 and is slideable relative thereto to facilitate pushingcollar 131 distally overcoupling member 19. - In use, the embodiment of
FIGS. 22A-22B is introduced with distal andproximal elements Collar 131 is pushed distally against, but not over,detents 135 so thatbranches fixation device 14 has a minimal profile. When the user is ready to capture the target tissue (e.g. valve leaflets),sheath 137 is retracted so thatcollar 131 slides proximally overcoupling member 19. This allowsbranches FIG. 22A .Actuator 64 is pushed distally so as to opendistal elements 18. Tension is maintained on proximal element lines 90 (not shown inFIGS. 22A-22B ) so thatproximal elements 16 remain separated fromdistal elements 18. When tissue is positioned between the proximal and distal elements, tension is released onproximal element lines 90 allowing the tissue to be captured between the proximal and distal elements.Sheath 137 may then be advanced distally so thatcollar 131 urgesbranches Sheath 137 is advanced untilgroove 133 incollar 131 slides overdetents 135 and is frictionally maintained thereon as shown inFIG. 22B .Sheath 137 may then be retracted fromcollar 131.Distal elements 18 may be closed, opened or inverted by advancing or retractingstud 74 viaactuator 64, as in the embodiments described above. It should be understood that the embodiment ofFIGS. 22A-22B preferably includes a locking mechanism as described above, which has been omitted from the figures for clarity. - In a further alternative of the embodiment of
FIGS. 22A-22B ,fixation device 14 may be configured to allow for independent actuation of each of thelateral branches distal elements 18. In an exemplary embodiment,shaft 12 andcoupling member 19 may be longitudinally split into two identical halves such that afirst branch 19A may be drawn intocollar 131 independently of asecond branch 19B. Similarly,actuator shaft 64 may be longitudinally split so that each half can slide independently of the other half, thus allowing one ofdistal elements 18 to be closed independently of the otherdistal element 18. This configuration permits the user to capture one of the valve leaflets between one of the distal andproximal elements corresponding branch 19A into thecollar 131. Thefixation device 14 may then be repositioned to capture a second of the valve leaflets between the other proximal anddistal elements second branch 19B may be drawn intocollar 131 to complete the coaptation. Of course, the closure ofdistal elements 18 may occur either before or afterbranches collar 131. -
FIGS. 27-28 illustrate an additional embodiment of thefixation device 14. As shown inFIG. 27 , thefixation device 14 includes acoupling member 19 which couples thedevice 14 to theshaft 12 of theinterventional tool 10. Here, thedevice 14 also includes atop coupler 150 attached to couplingmember 19 and abottom coupler 152 attached to thestud 74 so that the two couplers are axially moveable relative to one another. Thedistal elements 18 are rotatably attached to thetop coupler 150 byupper pins 156 and rotatably attached to thebottom coupler 152 bylower pins 160. When thebottom coupler 152 is advanced, thepins upper pins 156 are disposed withinslots 158 as shown. When thebottom coupler 152 is advanced distally relative totop coupler 150, pins 156, 160 are drawn apart. Angling of theslots 158 causes thedistal elements 18 to rotate toward thecoupling member 19 as thepins couplers -
FIG. 28 illustrates thefixation device 14 in the closed position. Here, thedevice 14 has a low profile (width in the range of approximately 0.140-0.160 inches orthogonal to the axial direction defined byshaft 12/stud 74) so that thedevice 14 may be easily passed through a catheter and through any tissue structures. To open thedevice 14 thebottom coupler 152 is then retracted or thecouplers distal elements 18 outward. The components of thefixation device 14 may be formed from stainless steel or other suitable metal, such as by machining, or formed from a polymer, such as by injection molding. In addition, portions of thefixation device 14, particularly thedistal elements 18, may be covered with a covering such as described above, to promote tissue ingrowth, reduce trauma, enhance friction and/or release pharmacological agents. Alternatively, thedevice 14 may have a smooth surface which prevents cellular adhesion thereby reducing the accumulation of cells having potential to form an emboli. - Optionally, the
fixation device 14 may include tissue retention features such asbarbs 170 and/orbumpers 172, illustrated inFIGS. 29-30 . Thebarbs 170 may extend from the engagement surfaces 50 of thedistal elements 18, as shown, and may be present in any number and any arrangement. Thus, thebarbs 170 will engage the leaflets or tissue during grasping to assist in holding the tissue either by frictional engagement, minor surface penetration or by complete piercing of the tissue, depending on the length and shape of thebarbs 170 selected. Alternatively or in addition,bumpers 172 may extend from thedistal elements 18. As shown inFIG. 29 , eachbumpers 172 may extend from theproximal end 52 of thedistal element 18 and curve toward thefree end 54 of thedistal element 18. Or, as shown inFIG. 30 , eachbumper 172 may extend from thefree end 54 and curve toward theproximal end 52.Bumpers 172 are preferably constructed of a resilient metal or polymer and may have any of various geometries, including a solid thin sheet or a loop-shaped wire form. Thebumpers 172 may help to actively engage and disengage tissue from thebarbs 170 during opening and closing of thefixation device 14. Further, to assist in grasping a tissue, the engagement surfaces 50 may have any texture or form to increase friction against the grasped tissue. For example, thesurfaces 50 may include serrations, scales, felt, barbs, polymeric frictional elements, knurling or grooves, to name a few. -
FIG. 31 illustrates theengagement surface 50 having aserrated edge 174 to improve grip on tissue engaged.FIG. 31 also illustrates an embodiment of thefixation device 14 mounted on aninterventional tool 10 or delivery catheter for ventricular approach to the mitral valve. Here thedevice 14 is mounted on theshaft 12 with the engagement surfaces 50 facing distally relative to shaft 12 (and facing upstream relative to the mitral valve). Thus, when the mitral valve is approached from the ventricular side, the engagement surfaces 50 can be pressed against the downstream surfaces of the valve without passing through the valve. It may be appreciated that any of the embodiments of thefixation device 14 described herein may be mounted onshaft 12 in this orientation for approach to any valve or tissue, including embodiments that include both proximal and distal elements. - It may be appreciated that when the
fixation device 14 is mounted on theshaft 12 in orientation illustrated inFIG. 31 , the position of the distal elements and the proximal elements are reversed. In such instances it is useful to keep in mind that the distal elements contact the distal surface or downstream surface of the leaflets and the proximal elements contact the proximal surface or upstream surface of the leaflets. Thus, regardless of the approach to the valve and the relative position of the proximal and distal elements on the fixation device, the proximal and distal elements remain consistent in relation to the valve. -
FIGS. 32-34 illustrate an additional embodiment of thefixation device 14. As shown inFIG. 32 , thefixation device 14 includes acoupling member 19,proximal elements 16 anddistal elements 18 which are each connected to a set of base components 186. Thedistal elements 18 are connected to the base components 186 (top base component 186 a and abottom base component 186 b) byextension arms 188. In this embodiment, eachdistal element 18 is connected by twoextension arms 188 in a crossed arrangement so that oneextension arm 188 connects thedistal element 18 to thetop base component 186 a and theother extension arm 188′ connects thedistal element 18 to thebottom base component 186 b. Thetop base component 186 a can be separated from thebottom base component 186 b by any suitable method which may be torque driven, spring driven or push/pull. Increasing the separation distance between the base components 186 draws thedistal elements 18 inward toward the base components 186, as shown inFIG. 33 . This allows the tissue to be grasped between thedistal elements 18 andproximal elements 16 while in an arrangement wherein thedistal elements 18 are parallel to each other. This may prevent inconsistent compression of the tissue and may better accommodate tissues or leaflets of varying thicknesses. As shown inFIG. 34 , thedistal elements 18 may be drawn together and theproximal elements 16 may be retracted to form a lowprofile fixation device 14. -
FIGS. 35-39 , 40A-40D, 41-42, 43A-43C illustrate another embodiment of thefixation device 14. In this embodiment, thedevice 14 is deliverable in the inverted position and moveable to the open position for grasping of the tissue.FIG. 35 illustrates thefixation device 14 in the inverted position. Thefixation device 14 includes ashaft 198,proximal elements 16 anddistal elements 18. Eachdistal element 18 has aproximal end 52 rotatably connected to theshaft 198 and afree end 54. Thefixation device 14 also includes anactuator rod 204, abase 202 and a pair ofdeployment arms 200 attached to the base 202 as shown. In the inverted position, theextender 204 is extended anddeployment arms 200 are disposed between theactuator rod 204 and thedistal elements 18. As shown inFIG. 36 , theactuator rod 204 may be retracted so that thedeployment arms 200 press against thedistal elements 18, rotating thedistal elements 18 from the inverted position to the open position. The angle of thedistal elements 18 may be adjusted by retracting or extending theactuator rod 204 various distances. As shown inFIG. 37 , further retraction of theactuator rod 204 raises thedistal elements 18 further. - In the open position, tissue or leaflets may be grasped between the
distal elements 18 andproximal elements 16.FIG. 38 illustrates theproximal elements 16 in their released position wherein the tissue or leaflet would be present therebetween. Hereinafter, the tissue will be referred to as leaflets. In this embodiment, eachdistal element 18 includes animplant pledget 210, typically press-fit or nested within eachdistal element 18. The implant pledgets 210 will be attached to the leaflets by ties, such as sutures or wires, and will be used to hold the leaflets in desired coaptation. The implant pledgets 210 will then be separated from thefixation device 14 and will remain as an implant. - To attach the
implant pledgets 210 to the leaflets, the leaflets and implantpledgets 210 are punctured byfixation tools 220, as shown inFIG. 39 . Thefixation tools 220 extend from thecatheter 86, pass through the leaflets and puncture theimplant pledgets 210. Thus, thepledgets 210 are comprised of a puncturable material, such as structural mesh. Thefixation tools 220 are used to deliver ananchor 222 as illustrated in larger view inFIGS. 40A-40D .FIG. 40A shows thefixation tool 220 including asleeve 224 surrounding thefixation tool 220 and ananchor 222 loaded therebetween. In this embodiment, the anchor includes one ormore flaps 228 which are held within thesleeve 224. It may be appreciated that theanchor 222 may have any suitable form. Additional exemplary embodiments of anchors are provided in commonly assigned U.S. patent application Ser. No. 09/894,463 (Attorney Docket No. 020489-000400US) incorporated herein for all purposes. Asuture 226 is attached to theanchor 222 and extends through thesleeve 224 or on the outside of thesleeve 224, as shown, to thecatheter 86. Thefixation tools 220 are advanced so that theanchor 222 passes through the leaflet (not shown) and thepledget 210, as shown inFIG. 41 . - Referring now to
FIG. 40B , thesleeve 224 is then retracted to expose theflaps 228 which releases theanchor 222 from the confines of thesleeve 224. Theflaps 228 extend radially outwardly, illustrated inFIG. 40C , by spring loading, shape memory or other self-expanding mechanism. Thus, theflaps 228 are positioned against the distal side of thepledget 210, thesuture 226 passing through thepledget 210 and the leaflet, as shown inFIG. 41 . At this point, thepledgets 210 can be removed from thedistal elements 18. By extending theactuator rod 204 distally, the base 202 draws thedeployment arms 200 distally which returns thedistal elements 18 to the inverted position, as shown inFIG. 42 . Since thepledgets 210 have been pierced by thefixation tools 220 and theanchors 222 have been deployed, thepledgets 210 and the leaflets disengage fromdistal elements 18 and remain in position. Theproximal elements 16 may also be returned to their initial position as shown, using any of various mechanisms as have been described above in connection with other embodiments. Referring now toFIG. 40D , thefixation tool 220 is then removed while theanchor 222 remains in place withsuture 226 attached. - The implant pledgets 210 are then separated from the
fixation device 14 and left behind to maintain coaptation of the leaflets in the desired position.FIGS. 43A-43C illustrate theimplant pledgets 210 from various perspective views.FIG. 43A provides a perspective top view showing that thepledgets 210 are connected by alink 230 that allows thepledgets 210 to be released from one side of thefixation device 14. In addition, thesutures 226 are fixed together, either by knot tying or placement of asuture fastener 232 as shown. It may be appreciated that thesuture fastener 232 may have any suitable form. Additional exemplary embodiments ofsuture fasteners 232 are provided in commonly-assigned U.S. patent application Ser. No. 10/087,004 filed Mar. 1, 2002 which is incorporated herein by reference for all purposes.FIG. 43B provides a perspective bottom view showing theanchor 222 positioned against the bottom side of thepledget 210. Likewise,FIG. 43C provides a perspective side view also showing theanchor 222 positioned against the bottom side of thepledget 210. -
FIGS. 44A-44B , 45-46 illustrate another embodiment of thefixation device 14. As shown inFIG. 44A , thefixation device 14 is mounted on theshaft 12 and is comprised ofdistal elements 18 and aretention clip 36 comprised of a semi-rigid material having a folded shape. The material may be any suitable material providing rigidity with recoiling properties such as various metals or plastics. The folded shape is such that afold 252 is directed distally andfree ends 254 are directed proximally toward thedistal elements 18.Penetration elements 256 are disposed near the free ends 254 and directed toward theshaft 12. In addition, anopening 258 is located near thefold 252, as illustrated inFIG. 44B which provides a perspectives view of thedevice 14. Referring back toFIG. 44A , thefold 252 is attached to anactuator rod 74 which passes through theshaft 12 and an arrow-shapedstructure 260 is disposed on theshaft 12 between the free ends 254, proximal to theopening 258, as shown. In this arrangement, thefixation device 14 is advanced through the valve so that thedistal elements 18 are disposed below the leaflets. The device may then be retracted proximally to capture the leaflets within thedistal elements 18. As shown inFIG. 45 , retraction of theactuator rod 74 draws theretention clip 36 toward thedistal elements 18 so that the sloping sides of the arrow-shapedstructure 260 force the free ends 254 outward, away from theshaft 12. Further retraction ofactuator rod 74 results in the sloping sides of arrow shapedstructure 260 falling into theopening 258 inretention clip 36, causingretention clip 36 to recoil back to the closed position as shown inFIG. 46 , with the free ends 254 extending through thedistal elements 18. This allows thepenetration elements 256 to penetrate the leaflets (not shown) to secure engagement therewith. Theactuator rod 74 is then detached from theretention clip 36 andshaft 12 is detached fromdistal elements 18 which are left in place to hold the leaflets in a coapted arrangement. - It may be appreciated that the foregoing embodiment may also include
proximal elements 16 configured to be positioned on the upstream side of the valve leaflets to assist in the capture and fixation. Such proximal elements may be mounted toshaft 12 so as to be removed following fixation of the leaflets, or the proximal elements may be connected todistal elements 18 and/orretention clip 36 to be implanted therewith. - In further embodiments, the proximal elements may be manipulated to enhance gripping. For example, the proximal elements may be lowered to grasp leaflets or tissue between the proximal and distal elements, and then the proximal elements may be moved to drag the leaflets or tissue into the fixation device. In another example, the proximal elements may be independently lowered to grasp the leaflets or tissue. This may be useful for sequential grasping. In sequential grasping, one proximal element is lowered to capture a leaflet or tissue portion between the proximal and distal elements. The fixation device is then moved, adjusted or maneuvered to a position for grasping another leaflet or tissue portion between another set of proximal and distal elements. In this position, the second proximal element is then lowered to grasp this other leaflet or tissue portion.
- IV. Delivery Device
- A. Overview of Delivery Device
-
FIG. 47 provides a perspective view of an embodiment of a delivery device ordelivery catheter 300 which may be used to introduce and position a fixation device as described above. Thedelivery catheter 300 includes ashaft 302, having aproximal end 322 and adistal end 324, and ahandle 304 attached to theproximal end 322. A fixation device (not shown) is removably coupleable to thedistal end 324 for delivery to a site within the body, typically for endovascular delivery to the mitral valve. Thus, extending from thedistal end 324 is acoupling structure 320 for coupling with a fixation device. Also extending from thedistal end 324 is anactuator rod 64. Theactuator rod 64 is connectable with the fixation device and acts to manipulate the fixation device, typically opening and closing the distal elements. Such coupling to a fixation device is illustrated inFIG. 48 . -
FIG. 48 illustrates an embodiment of afixation device 14 coupled to thedistal end 324 of thedelivery catheter 300. Theshaft 302 is shown having anose 318 near itsdistal end 324. In this embodiment, thenose 318 has a flanged shape. Such a flanged shape prevents thenose 318 from being retracted into a guiding catheter or introducer as will be discussed in later sections. However, it may be appreciated that thenose 318 may have any shape including bullet, rounded, blunt or pointed, to name a few. Extending from thenose 318 is acompression coil 326 through which thecoupling structure 320 andactuator rod 64 pass. Theactuator rod 64 is coupleable, as shown, with thestud 74 of thefixation device 14. Such coupling is illustrated inFIG. 49 . -
FIG. 49 illustrates a portion of theshaft 302 of thedelivery catheter 300 and afixation device 14 which is coupleable with thecatheter 300. Passing through theshaft 302 is theactuator rod 64. In this embodiment, theactuator rod 64 comprises aproximal extremity 303 and adistal extremity 328, thedistal extremity 328 of which is surrounded by acoil 330. Theproximal extremity 303 is typically comprised of stainless steel, nitinol, or Elgiloy®, to name a few, and may have a diameter in the range of 0.010 in. to 0.040 in., preferably 0.020 in. to 0.030 in., more preferably 0.025 in., and a length in the range of 48 to 72 in. Thedistal extremity 328 may be tapered, is typically comprised of stainless steel, nitinol, or Elgiloy®, to name a few, and may have a diameter in the range of 0.011 to 0.025 in and a length in the range of 4 to 12 in. Such narrowing increases flexibility of thedistal end 324 of theactuator rod 64. Theactuator rod 64 further comprises ajoiner 332 which is attached to thedistal extremity 328. Thejoiner 332 is removably attachable withstud 74 of thefixation device 14. In this embodiment, thejoiner 332 has internal threads which mate with external threads on thestud 74 of thefixation device 14. As described previously, thestud 74 is connected with thedistal elements 18 so that advancement and retraction of thestud 74, by means of theactuator rod 64, manipulates the distal elements. Likewise, thecoupling member 19 of thefixation device 14 mates with thecoupling structure 320 of thecatheter 300. Thus, thecoupling member 19 andcoupling structure 320 function as previously described in relation toFIGS. 6A-6B . - Referring back to
FIG. 48 , thefixation device 14 may also include a locking mechanism which includes arelease harness 108, as previously described in relation toFIGS. 18-21 .Lock lines 92 are connected with therelease harness 108 to lock and unlock thelocking mechanism 106 as previously described. The lock lines 92 extend through theshaft 302 of thedelivery catheter 300 and may connect with therelease harness 108 in various arrangements as will be illustrated in later sections. Similarly,proximal element lines 90 extend through theshaft 302 of thedelivery catheter 300 and connect with theproximal elements 16. Theproximal elements 16 are raised and lowered by manipulation of theproximal element lines 90 as previously described. The proximal element lines 90 may connect with theproximal elements 16 in various arrangements as will be illustrated in later sections. - Referring back to
FIG. 47 , thehandle 304 attached to theproximal end 322 of theshaft 302 is used to manipulate the coupledfixation device 14 and to optionally decouple thefixation device 14 for permanent implantation. As described, thefixation device 14 is primarily manipulated by theactuator rod 64,proximal element lines 90 and lock lines 92. Theactuator rod 64 manipulates thedistal elements 18, theproximal element lines 90 manipulate theproximal elements 16 and the lock lines 92 manipulate the locking mechanism. In this embodiment, theactuator rod 64 may be translated (extended or retracted) to manipulate thedistal elements 18. This is achieved with the use of theactuator rod control 314 which will be described in later sections. Theactuator rod 64 may also be rotated to engage or disengage the threaded joiner with the threadedstud 74. This is achieved with the use of the actuator rod handle 316 which will also be described in later sections. Further, the proximal element lines 90 may be extended, retracted, loaded with various amounts of tension or removed with the use of the proximalelement line handle 312. And, the lock lines 92 may be may be extended, retracted, loaded with various amounts of tension or removed with the use of thelock line handle 310. Both of thesehandles actuator rod handle 316,actuator rod control 314, proximalelement line handle 312 and lock line handle 310 are all joined with amain body 308 within which theactuator rod 64,proximal element lines 90 andlock lines 92 are guided into theshaft 302. Thehandle 304 further includes asupport base 306 connected with themain body 308. Themain body 308 is slideable along thesupport base 306 to provide translation of theshaft 302. Further, themain body 308 is rotateable around thesupport base 306 to rotate the shaft. - B. Delivery Catheter Shaft
-
FIG. 50 illustrates a cross-sectional view of thedelivery catheter shaft 302 ofFIG. 47 . In this embodiment, theshaft 302 has a tubular shape withinner lumen 348 and is comprised of a material which provides hoop strength while maintaining flexibility and kink resistance, such as a braided laminated material. Such material may include stainless steel braided or coiled wire embedded in a polymer such as polyurethane, polyester, Pebax, Grilamid TR55, and AESNO to name a few. To provide further support and hoop strength, asupport coil 346 is disposed within thelumen 348 ofshaft 302 as illustrated inFIG. 50 . - Passing through the
support coil 346 are a variety of elongated bodies, including tubular guides and cylindrical rods. For example, one type of tubular guide is acompression coil 326 extending throughlumen 348 from theproximal end 322 to thedistal end 324 of theshaft 302, and theactuator rod 64 extends through thecompression coil 326. Therefore, the compression coil typically has a length in the range of 48 to 60 in. and an inner diameter in the range of 0.020 to 0.035 in. to allow passage of theactuator rod 64 therethrough. Theactuator rod 64 is manipulable to rotate and translate within and relative to thecompression coil 326. Thecompression coil 326 allows lateral flexibility of theactuator rod 64 and therefore theshaft 302 while resisting buckling and providing column strength under compression. The compression coil may be comprised of 304V stainless steel to provide these properties. - To provide additional tensile strength for the
shaft 302 and to minimize elongation, atension cable 344 may also pass through thesupport coil 346. Thetension cable 344 extends throughlumen 348 from theproximal end 322 to thedistal end 324 of theshaft 302. Therefore, thetension cable 344 typically has a diameter in the range of 0.005 in. to 0.010 in. and a length in the range of 48 to 60 in. In preferred embodiments, thetension cable 344 is comprised of 304V stainless steel. - In addition, at least one
lock line shaft 341 having a tubular shape may be present having alock line lumen 340 through which locklines 92 pass between thelock line handle 310 and thelocking mechanism 106. Thelock line shaft 341 extends throughlumen 348 from theproximal end 322 to thedistal end 324 of theshaft 302. Therefore, thelock line shaft 341 typically has a length in the range of 48 to 60 in., an inner diameter in the range of 0.016 to 0.030 in., and an outer diameter in the range of 0.018 to 0.034 in. In preferred embodiments, thelock line shaft 341 is comprised of a 304V stainless steel coil however other structures or materials may be used which provide kink resistance and compression strength. - Similarly, at least one proximal
element line shaft 343 having a tubular shape may be present having a proximalelement line lumen 342. Proximal element lines 90 pass through thislumen 342 between the proximalelement line handle 312 and theproximal elements 16. Thus, the proximalelement line shaft 343 extends throughlumen 348 from theproximal end 322 to thedistal end 324 of theshaft 302. Therefore, the proximalelement line shaft 343 typically has a length in the range of 48 to 60 in., an inner diameter in the range of 0.016 to 0.030 in., and an outer diameter in the range of 0.018 to 0.034 in. In preferred embodiments, the proximalelement line shaft 343 is comprised of a 304V stainless steel coil however other structures or materials may be used which provide kink resistance and compression strength. - In this embodiment, the elongated bodies (
compression coil 326enclosed actuator rod 64,tension cable 344,lock line shaft 342, proximal element line shaft 343) each “float” freely ininner lumen 348 within thesupport coil 346 and are fixed only at theproximal end 322 anddistal end 324 ofshaft 302. Thelumen 348 is typically filled and flushed with heparinized saline during use. Alternatively or in addition, thelumen 348 may be filled with one or more fillers, such as flexible rods, beads, extruded sections, gels or other fluids. Preferably the fillers allow for some lateral movement or deflection of the elongated bodies withinlumen 348 but in some cases may restrict such movement. Typically, the elongated bodies are fixed at the proximal and distal ends of the shaft and are free to move laterally and rotationally therebetween. Such freedom of movement of the elongated bodies provides theshaft 302 with an increased flexibility as the elongated bodies self-adjust and reposition during bending and/or torqueing of theshaft 302. It may be appreciated that the elongated bodies may not be fixed at the proximal and distal ends. The elongated bodies are simply unconstrained relative to theshaft 302 in at least one location so as to be laterally moveable within thelumen 348. Preferably the elongated bodies are unrestrained in at least a distal portion of the catheter, e.g. 5-15 cm from thedistal end 324, so as to provide maximum flexibility in the distal portion. - It may be appreciated, however, that
alternate shaft 302 designs may also be used. For example, referring toFIG. 51 , in this embodiment theshaft 302 again has a tubular shape with aninner lumen 348 and asupport coil 346 disposed within thelumen 348 ofshaft 302. Filling theinner lumen 348 within thesupport coil 346 is anextrusion 334 having lumens through which pass a variety of elongated bodies, including thecompression coil 326enclosed actuator rod 64,tension cable 344,lock line shafts 342, and proximalelement line shafts 343, as shown. Thesupport coil 346 and elongated bodies may have the same geometries and be comprised of the same materials as described above in relation toFIG. 50 . - Alternatively, as shown in
FIG. 52 , theshaft 302 may include aninternal partition 350 to create multiple lumens within theshaft 302. For example, thepartition 350 may have acentral lumen 352 for passage of theactuator rod 64, optionally surrounded by thecompression coil 326. In addition, thepartition 350 may also create at least onelock line lumen 340 for passage of alock line 92 and at least one proximalelement line lumen 341 for passage of aproximal element line 90. Optionally, each of the lumens defined bypartition 350 may be lined with a kink-resistant element, such as a coil as in previous embodiments. -
FIGS. 52A-52C illustrate embodiments of thenose 318 of theshaft 302. InFIG. 52A , thenose 318 comprises atip ring 280 and alock ring 282. In preferred embodiments, Epoxy and PEBAX are deposited between thetip ring 280 and thelock ring 282 to bond them together. Thelock ring 282 has a geometry to mate with thetip ring 280 to maintain relative alignment between the two.FIG. 52B illustrates another embodiment of thenose 318 of theshaft 302. Here, thetip ring 280 is covered by asoft tip 284 to provide a more atraumatic tip and a smoother transition to the shaft. - C. Lock Line Arrangements
- As mentioned previously, when lock lines 92 are present, the
lines 92 pass through at least onelock line lumen 340 between thelock line handle 310 and thelocking mechanism 106. The lock lines 92 engage the release harnesses 108 of thelocking mechanism 106 to lock and unlock thelocking mechanism 106 as previously described. The lock lines 92 may engage the release harnesses 108 in various arrangements, examples of which are illustrated inFIGS. 53A-53C . In each embodiment, twolock line lumens 340 are present within theshaft 302 of thedelivery catheter 300 terminating at thenose 318. Thelumens 340 are disposed on alternate sides of theactuator rod 64 so that eachlumen 340 is directed toward arelease harness 108. -
FIG. 53A illustrates an embodiment wherein twolock lines lock line lumen 340 and are threaded through arelease harness 108 on one side of the actuator rod 64 (theactuator rod 64 is shown without surrounding housing such as coupling structure, for clarity). The lock lines 92, 92′ are then separated so that each lock line passes on an opposite side of theactuator rod 64. The lock lines 92, 92′ then pass through therelease harness 108′ on the opposite side of theactuator rod 64 and continue together passing through a another singlelock line lumen 340′. This lock line arrangement is the same arrangement illustrated inFIG. 48 . -
FIG. 53B illustrates an embodiment wherein onelock line 92 passes through a singlelock line lumen 340, is threaded through arelease harness 108 on one side of theactuator rod 64, and is returned to thelock line lumen 340. Similarly, anotherlock line 92′ passes through another singlelock line lumen 340′, is threaded through adifferent release harness 108′ located on the opposite side of theactuator rod 64, and is returned to the another singlelock line lumen 340′. -
FIG. 53C illustrates an embodiment wherein bothlock lines lock line lumen 340. Onelock line 92 is threaded through arelease harness 108 on one side of theactuator rod 64 and is then passed through anotherlock line lumen 340′ on the opposite side of theactuator rod 64. Theother lock line 92′ is threaded through anotherrelease harness 108′ on the other side of theactuator rod 64′ and is then passed through the anotherlock line lumen 340′ with theprevious lock line 92. - It may be appreciated that a variety of lock line arrangements may be used and are not limited to the arrangements illustrated and described above. The various arrangements allow the
harnesses 108 to be manipulated independently or jointly, allow various amounts of tension to be applied and vary the force required for removal of the lock lines when the fixation device is to be left behind. For example, a single lock line passing through one or two lumens may be connected to both release harnesses for simultaneous application of tension. - D. Proximal Element Line Arrangements
- As mentioned previously, when proximal element lines 90 are present, the
lines 90 pass through at least one proximalelement line lumen 342 between the proximalelement line handle 312 and at least oneproximal element 16. Theproximal element lines 90 engage theproximal elements 16 to raise or lower theelement 16 as previously described. The proximal element lines 90 may engage theproximal elements 16 in various arrangements, examples of which are illustrated inFIGS. 54A-54B . In each embodiment, two proximalelement line lumens 342 are present within theshaft 302 of thedelivery catheter 300 terminating at thenose 318. Thelumens 342 are disposed on alternate sides of the actuator rod 64 (theactuator rod 64 is shown without surrounding housing such as coupling structure, for clarity) so that eachlumen 342 is directed toward aproximal element 16. -
FIG. 54A illustrates an embodiment wherein oneproximal element line 90 passes through a single proximalelement line lumen 342. Theproximal element line 90 is threaded through aneyelet 360 of aproximal element 16 on one side of theactuator rod 64, passes over theactuator rod 64 and is threaded through aneyelet 360′ of anotherproximal element 16′ on the other side of theactuator rod 64. Theproximal element line 90 then passes through another single proximalelement line lumen 342′. This proximal element line arrangement is the same arrangement illustrated inFIG. 48 . -
FIG. 54B illustrates an embodiment wherein oneproximal element line 90 passes through a single proximalelement line lumen 342, is threaded through aneyelet 360 of aproximal element 16 on one side of theactuator rod 64, and is returned to the proximalelement line lumen 342. Similarly, anotherproximal element line 90′ passes through another single proximalelement line lumen 342′ on the opposite side of theactuator rod 64, and is returned to the another single proximalelement line lumen 342′. - It may be appreciated that a variety of proximal element line arrangements may be used and are not limited to the arrangements illustrated and described above. The various arrangements allow the proximal elements to be manipulated independently or jointly, allow various amounts of tension to be applied and vary the force required for removal of the proximal element lines when the fixation device is to be left behind. For example, a single proximal element line passing through one or two lumens in
shaft 302 may be used for simultaneous actuation of both proximal elements. In addition, snares or hooks may be mounted withindelivery catheter 300 so as to be movable distally to engageproximal elements 16 and draw them away fromdistal elements 18. - E. Main Body of Handle
-
FIG. 55 illustrates an embodiment of thehandle 304 of thedelivery catheter 300. As mentioned previously, theactuator rod handle 316,actuator rod control 314, proximalelement line handle 312 and lock line handle 310 are all joined with themain body 318. Thehandle 304 further includes asupport base 306 connected with themain body 308. Themain body 308 is slideable along thesupport base 306 to provide translation of theshaft 302 and themain body 308 is rotateable around thesupport base 306 to rotate the shaft. -
FIG. 56 provides a partial cross-sectional view of themain body 308 of thehandle 304 depicted inFIG. 55 . As shown, themain body 308 includes a sealedchamber 370 within which theactuator rod 64,proximal element lines 90 andlock lines 92 are guided into theshaft 302. The sealedchamber 370 is in fluid communication with theinner lumen 348 ofshaft 302 and is typically filled with saline and flushed with heparin or heparinized saline. The sealedchamber 370 has aseal 372 along its perimeter to prevent leakage and the introduction of air to thechamber 370. Any air in thechamber 370 may be bled from thechamber 370 by one or more luers 374 which pass through themain body 308 into thechamber 370 as illustrated inFIG. 55 . In this embodiment, thehandle 304 includes twosuch luers 374, one on each side of the main body 308 (second luer symmetrically positioned on backside ofmain body 308 inFIG. 55 , hidden from view). Referring now toFIG. 56 , the sealedchamber 370 also has various additional seals, such as anactuator rod seal 376 which surrounds theactuator rod 64 where theactuator rod 64 enters the sealedchamber 370, and ashaft seal 378 which surrounds theshaft 302 where theshaft 302 enters the sealedchamber 370. - F. Lock Line Handle and Proximal Element Line Handle
- As mentioned previously, the lock lines 92 may be may be extended, retracted, loaded with various amounts of tension or removed using the
lock line handle 310. Likewise, the proximal element lines 90 may be extended, retracted, loaded with various amounts of tension or removed using the proximalelement line handle 312. Both of thesehandles appropriate lines -
FIG. 57 illustrates an embodiment of a lock line handle 310 havinglock lines 92 passing therethrough. The lock line handle 310 has adistal end 384, aproximal end 382 and anelongate shaft 383 therebetween. Thedistal end 382 is positionable within the sealedchamber 370 so that theproximal end 382 extends out of thechamber 370, beyond themain body 308. The free ends of the lock lines 92 are disposed near theproximal end 382, passing through the wall of thehandle 310 near a threadednub 390. Thehandle 310 further includes acap 388 which is positionable on the nub 309. Internal threading with thecap 388 mates with the threading on the threadednub 390 so that thecap 388 holds the free ends of the lock lines 92 between thecap 388 and thenub 390 and/or other portions of thehandle 310 by friction. The lock lines 92 pass through a central lumen (not shown) of theelongate shaft 383, extend through the sealed chamber 370 (as shown inFIG. 56 ) and extend through theshaft 302 to thelocking mechanism 106. - Disposed near the
distal end 384 of thehandle 310 is at least onewing 392. In the embodiment ofFIG. 57 , twowings 392 are present, eachwing 392 disposed on opposite sides of theelongate shaft 383. Thewings 392 extend radially outwardly and curve proximally so that a portion is parallel to theelongate shaft 383, as shown. It may be appreciated that thewings 392 may alternatively have the shape of solid or continuous protrusions which extend radially and have a portion which is parallel to theelongate shaft 383. Thewings 392 are used to hold the lock line handle 310 in a desired position which in turn holds the lock under a desired load of tension, as will be described further below. Thehandle 310 also includes afinger grip 386 near theproximal end 382 which extends radially outwardly in alignment with the radial extension of the at least onewing 392. Thus, the user may determine the orientation of thewings 392 within the sealedchamber 370 from the orientation of thefinger grip 386 outside of themain body 308. Thefinger grip 386 may also serve an ergonomic purpose to assist in manipulating thehandle 310. - The portion of the
wings 392 parallel to theelongate shaft 383 have grooves orserrations 394. Theserrations 394 are used to apply tension to the lock lines 92. As shown inFIG. 57A , the lock line handle 310 is positioned within a semi-tube 400 which is disposed within the sealedchamber 370. The semi-tube 400 comprises atop half 402 and abottom half 404, eachhalf serrations 406 which mate with theserrations 394 of thewings 392. Thus, when thewings 392 are rotated to mate theserrations FIG. 58A , theelongate shaft 383 is held in place. Likewise, thewings 392 may be rotated, as shown inFIG. 58B , so that thewings 392 are disposed between thehalves serrations shaft 383 may be translated to apply or release tension in the lock lines 92. Thus, tension in thelines 92 may be adjusted by rotating theshaft 383 to disengage theserrations shaft 383 and then rotating theshaft 383 back to reengage theserrations finger grip 386 may be pulled to apply tension to the lock lines 92. Pulling thefinger grip 386 translates the lock line handle 310 within thesemi-tube 400. Such translation is achievable due to angling of theserrations wings 382. However, the angling of theserrations finger grip 386. Therefore, to release tension from the lock lines 92, theshaft 383 is rotated to disengage theserrations shaft 383, and then theshaft 383 is rotated back to reengage theserrations - To remove the lock lines 92, the
cap 388 is removed from the threadednub 390 exposing the free ends of the lock lines 92. If onelock line 92 is present having two free ends, continuous pulling on one of the free ends draws the entire length oflock line 92 out of thecatheter 300. If more than onelock line 92 is present, eachlock line 92 will have two free ends. Continuous pulling on one of the free ends of eachlock line 92 draws the entire length of eachlock line 92 out of thecatheter 300. - It may be appreciated that the proximal element line handle 312 has corresponding features to the
lock line handle 310 and operates in the same manner as illustrated in FIGS. 57A, 58A-58B. It may also be appreciated that other mechanisms may be used for manipulating the lock lines 92 and proximal element lines 90, such as including buttons, springs, levers and knobs. - G. Actuator Rod Control and Handle
- The
actuator rod 64 may be manipulated using theactuator rod control 314 and theactuator rod handle 316.FIG. 59 provides a cross-sectional view of a portion of thehandle 304 which includes theactuator rod control 314 and theactuator rod handle 316. The actuator rod handle 316 is located at the proximal end of thehandle 314. The actuator rod handle 316 is fixedly attached to the proximal end of theactuator rod 64. Theactuator rod 64 is inserted through acollet 426 which is disposed within aholder 428 as shown. Theholder 428 hasexternal threads 434 which mate withinternal threads 432 of theactuator rod control 314. Thus, rotation of theactuator rod control 314 causes theholder 428 to translate along theactuator rod control 314 by action of the threading, as will be described in more detail below. Theactuator rod control 314 is rotatably coupled with themain body 308 of thehandle 304 and is held in place by alip 430. - Referring to
FIG. 59A , theactuator rod control 314 may be manually rotated in a clockwise or counter clockwise direction, as indicated byarrow 436. Rotation of theactuator rod control 314 translates (extends or retracts) theactuator rod 64 to manipulate thedistal elements 18 of thefixation device 14. Specifically, rotation of theactuator rod control 314 causes theexternal threads 434 of theadjacent holder 428 to translate along the matedinternal threads 432 of theactuator rod control 314. Rotation of theholder 428 itself is prevented by holdingpins 424 which protrude from theholder 428 and nest intogrooves 438 in themain body 308 of thehandle 304. As theholder 428 translates, each holdingpin 424 translates along itscorresponding groove 438. Since thecollet 426 is attached to theholder 428, thecollet 426 translates along with theholder 428. To simultaneously translate theactuator rod 64, theactuator rod 64 is removably attached to thecollet 426 by apin 422. Thepin 422 may have any suitable form, including a clip-shape which partially wraps around thecollet 426 as illustrated inFIG. 59 . Thus, rotation of theactuator rod control 314 provides fine control of translation of theactuator rod 64 and therefore fine control of positioning thedistal elements 18. - Referring to
FIG. 59B , removal of thepin 422, as shown, allows disengagement of the actuator rod handle 316 and fixedly attachedactuator rod 64 from thecollet 426. Once disengaged, theactuator rod 64 may be rotated, as indicated byarrow 440, by manually rotating theactuator rod handle 316. As described previously, rotation of theactuator rod 64 engages or disengages the threadedjoiner 332 of thedelivery catheter 300 from the threadedstud 74 of thefixation device 14. This is used to attach or detach thefixation device 14 from thedelivery catheter 300. In addition, when theactuator rod 64 is in the disengaged state, theactuator rod 64 may optionally be retracted and optionally removed from thecatheter 300 by pulling the actuator rod handle 316 and withdrawing theactuator rod 64 from thehandle 304. - Depending on the application, the location of the target site, and the approach selected, the devices of the invention may be modified in ways well known to those of skill in the art or used in conjunction with other devices that are known in the art. For example, the delivery catheter may be modified in length, stiffness, shape and steerability for a desired application. Likewise, the orientation of the fixation device relative to the delivery catheter may be reversed or otherwise changed. The actuation mechanisms may be changed to be driven in alternate directions (push to open, pull to close, or pull to open, push to close). Materials and designs may be changed to be, for example, more flexible or more rigid. And the fixation device components may be altered to those of different size or shape. Further, the delivery catheter of the present invention may be used to deliver other types of devices, particularly endovascular and minimally invasive surgical devices used in angioplasty, atherectomy, stent-delivery, embolic filtration and removal, septal defect repair, tissue approximation and repair, vascular clamping and ligation, suturing, aneurysm repair, vascular occlusion, and electrophysiological mapping and ablation, to name a few. Thus, the delivery catheter of the present invention may be used for applications in which a highly flexible, kink-resistant device is desirable with high compressive, tensile and torsional strength.
- V. Multi-Catheter Guiding System
- A. Overview of Guiding System
- Referring to
FIG. 60 , an embodiment of amulti-catheter guiding system 1 of the present invention is illustrated. Thesystem 1 comprises anouter guide catheter 1000, having aproximal end 1014, adistal end 1016, and acentral lumen 1018 therethrough, and aninner guide catheter 1020, having aproximal end 1024,distal end 1026 andcentral lumen 1028 therethrough, wherein theinner guide catheter 1020 is positioned coaxially within thecentral lumen 1018 of theouter guide catheter 1000, as shown. The distal ends 1016, 1026 ofcatheters distal end 1016 preferably has an outer diameter in the range of approximately 0.040 in. to 0.500 in., more preferably in the range of 0.130 in. to 0.320 in. Thecentral lumen 1018 is sized for the passage of theinner guide catheter 1020; thedistal end 1026 preferably has an outer diameter in the range of approximately 0.035 in. to 0.280 in., more preferably 0.120 in to 0.200 in. Thecentral lumen 1028 is sized for the passage of a variety of devices therethrough. Therefore, thecentral lumen 1028 preferably has an inner diameter in the range of approximately 0.026 in. to 0.450 in., more preferably in the range of 0.100 in. to 0.180 in. -
FIG. 60 illustrates aninterventional catheter 1030 positioned within theinner guide catheter 1020 which may optionally be included insystem 1, however other interventional devices may be used. Theinterventional catheter 1030 has aproximal end 1034 and adistal end 1036, wherein aninterventional tool 1040 is positioned at thedistal end 1036. In this embodiment, theinterventional tool 1040 comprises a detachable fixation device or clip. Optionally, theinterventional catheter 1030 may also include anosepiece 1042 having astop 1043, as shown. Thestop 1043 prevents theinterventional tool 1040 from entering thecentral lumen 1028 of theinner guide catheter 1020. Thus, theinterventional catheter 1030 may be advanced and retracted until thestop 1043 contacts thedistal end 1026 of theinner guiding catheter 1020 preventing further retraction. This may provide certain advantages during some procedures. It may be appreciated that in embodiments which include such astop 1043, theinterventional catheter 1030 would be pre-loaded within theinner guide catheter 1020 for advancement through theouter guiding catheter 1000 or both theinterventional catheter 1030 and theinner guiding catheter 1020 would be pre-loaded into theouter guiding catheter 1000 for advancement to the target tissue. This is because thestop 1043 prevents advancement of theinterventional catheter 1030 through theinner guiding catheter 1020. - The
outer guide catheter 1000 and/or theinner guide catheter 1020 are precurved and/or have steering mechanisms, embodiments of which will be described later in detail, to position the distal ends 1016, 1026 in desired directions. Precurvature or steering of theouter guide catheter 1000 directs thedistal end 1016 in a first direction to create a primary curve while precurvature and/or steering of theinner guide catheter 1020 directsdistal end 1026 in a second direction, differing from the first, to create a secondary curve. Together, the primary and secondary curves form a compound curve. Advancement of theinterventional catheter 1030 through thecoaxial guide catheters interventional catheter 1030 through the compound curve toward a desired direction, usually in a direction which will allow theinterventional catheter 1030 to reach its target. - Steering of the
outer guide catheter 1000 andinner guide catheter 1020 may be achieved by actuation of one or more steering mechanisms. Actuation of the steering mechanisms is achieved with the use of actuators which are typically located on handles connected with each of thecatheters FIG. 60 , handle 1056 is connected to theproximal end 1014 of theouter guide catheter 1000 and remains outside of the patient's body during use.Handle 1056 includessteering actuator 1050 which may be used to bend, arc or reshape theouter guide catheter 1000, such as to form a primary curve.Handle 1057 is connected to the proximal end (not shown) of theinner guide catheter 1020 and may optionally join withhandle 1056 to form one larger handle, as shown.Handle 1057 includessteering actuator 1052 which may be used to bend, arc or reshape theinner guide catheter 1020, such as to form a secondary curve and move thedistal end 1026 of theinner guide catheter 1020 through an angle theta, as will be described in a later section. - In addition, locking
actuators catheters handles - In addition, the
handle 1056 may include a numerical orgraphical display 1061 of information such as data indicating the position thecatheters actuators catheters - B. Example Positions
-
FIGS. 61A-61D illustrate examples of positions that thecatheters FIG. 61A , theouter guide catheter 1000 may be precurved and/or steered into a position which includes aprimary curve 1100. Theprimary curve 1100 typically has a radius ofcurvature 1102 in the range of approximately 0.125 in. to 1.000 in., preferably in the range of approximately 0.250 in. to 0.500 in. or forms a curve in the range of approximately 0° to 120°. As shown, when the position includes only aprimary curve 1100, thedistal end 16 lies in a single plane X. An axis x, transversing through the center of thecentral lumen 18 at thedistal end 16, lies within plane X. - Referring to
FIG. 61B , theinner guide catheter 1020 extends through thecentral lumen 1018 of theouter guide catheter 1000. Theinner guide catheter 1020 may be precurved and/or steered into a position which includes asecondary curve 1104. Thesecondary curve 1104 typically has a radius ofcurvature 1106 in the range of approximately 0.050 in. to 0.750 in., preferably in the range of approximately 0.125 in. to 0.250 in. or forms a curve in the range of approximately 0° to 180°. Thesecondary curve 1104 can lie in the same plane as theprimary curve 1100, plane X, or it can lie in a different plane, such as plane Z as shown. In this example, plane Z is substantially orthogonal to plane X. Axis z, transversing through the center of thecentral lumen 1028 of theinner guide catheter 1020 at thedistal end 1026, lies within plane Z. In this example, axis x and axis z are at substantially 90 degree angles to each other; however, it may be appreciated that axis x and axis z may be at any angle in relation to each other. Also, although in this example theprimary curve 1100 and thesecondary curve 1104 lie in different planes, particularly in substantially orthogonal planes, thecurves - Referring now to
FIG. 61C , theinner guide catheter 1020 may be further manipulated to allow thedistal end 1026 to move through anangle theta 1070. Theangle theta 1070 is in the range of approximately −180° to +180°, typically in the range of −90° to +90°, possibly in the range of −60° to +60°, −45° to +45°, −30° to +30° or less. As shown, theangle theta 1070 lies within a plane Y. In particular, axis y, which runs through the center of thecentral lumen 1028 at thedistal end 1026, forms theangle theta 1070 with axis z. In this example, plane Y is orthogonal to both plane X and plane Z. Axes x, y, z all intercept at a point within thecentral lumen 1028 which also coincides with the intersection of planes X, Y, Z. - Similarly,
FIG. 61D illustrates movement of thedistal end 1026 through anangle theta 1070 on the opposite side of axis z. Again, theangle theta 1070 is measured from the axis z to the axis y, which runs through the center of thecentral lumen 1016 at thedistal end 1026. As shown, theangle theta 1070 lies in plane Y. Thus, theprimary curve 1100,secondary curve 1104, andangle theta 1070 can all lie in different planes, and optionally in orthogonal planes. However, it may be appreciated that the planes within which theprimary curve 1100,secondary curve 1104 andangle theta 1070 lie may be mutually dependent and therefore would allow the possibility that some of these lie within the same plane. - In addition, the
outer guide catheter 1000 may be pre-formed and/or steerable to provide additional curves or shapes. For example, as illustrated inFIG. 62A , anadditional curve 1110 may be formed by theouter guide catheter 1000 proximal to theprimary curve 1100. In this example, thecurve 1110 provides lift or raises thedistal end 1016 of theouter guide catheter 1000, which in turn raises thedistal end 1026 of theinner guide catheter 1020. Such lifting is illustrated inFIG. 62B . Here, thesystem 1 is shown prior to lifting in dashed line wherein the axis y′ passes through the intersection of axis z and axis x′. After application ofcurve 1110, the distal portion of thesystem 1 is lifted in the direction of axis z so that axis x′ is raised to axis x″ and axis y′ is raised to axis y″. This raisesdistal end 1026 to a desired height. - The articulated position of the
multi-catheter guiding system 1 illustrated inFIGS. 61A-61D andFIGS. 62A-62B is particularly useful for accessing the mitral valve.FIGS. 63A-63D illustrate a method of using thesystem 1 for accessing the mitral valve MV. To gain access to the mitral valve, theouter guide catheter 1000 may be tracked over a dilator and guidewire from a puncture in the femoral vein, through the inferior vena cava and into the right atrium. As shown inFIG. 63A , theouter guide catheter 1000 may be punctured through a fossa F in the interatrial septum S. Theouter guide catheter 1000 is then advanced through the fossa F and curved by theprimary curve 1100 so that thedistal end 1016 is directed over the mitral valve MV. Again, it may be appreciated that this approach serves merely as an example and other approaches may be used, such as through the jugular vein, femoral artery, port access or direct access, to name a few. Positioning of thedistal end 1016 over the mitral valve MV may be accomplished by precurvature of theouter guide catheter 1000, wherein thecatheter 1000 assumes this position when the dilator and guidewire are retracted, and/or by steering of theouter guide catheter 1000 to the desired position. In this example, formation of theprimary curve 1100 moves thedistal end 1016 within a primary plane, corresponding to previous plane X, substantially parallel to the valve surface. This moves thedistal end 1016 laterally along the short axis of the mitral valve MV, and allows thedistal end 1016 to be centered over theopening 0 between the leaflets LF. - Referring to
FIG. 63B , theinner guide catheter 1020 is advanced through thecentral lumen 1018 of theouter guide catheter 1000 and thedistal end 1026 is positioned so that thecentral lumen 1028 is directed toward the target tissue, the mitral valve MV. In particular, thecentral lumen 1028 is to be directed toward a specific area of the mitral valve MV, such as toward theopening 0 between the valve leaflets LF, so that a particular interventional procedure may be performed. InFIG. 63B , theinner guide catheter 1020 is shown in a position which includes asecondary curve 1104 in a secondary plane, corresponding to previous plane Z. Formation of thesecondary curve 1104 moves thedistal end 1026 vertically and angularly between the commissures C, directing thecentral lumen 1028 toward the mitral valve MV. In this position an interventional device orcatheter 1030 which is passed through thecentral lumen 1028 would be directed toward and/or through the opening O. Although theprimary curve 1100 and thesecondary curve 1104 may be varied to accommodate different anatomical variations of the valve MV and different surgical procedures, further adjustment may be desired beyond these two curvatures for proper positioning of thesystem 1. - Referring to
FIG. 63C , thedistal end 1026 of theinner guide catheter 1020 may be positioned through anangle theta 1070. This moves thedistal end 1026 vertically and angularly through a theta plane, corresponding to previous plane Y. Movement of thedistal end 1026 through theangle theta 1070 in either direction is shown in dashed line inFIG. 63B . Such movement can be achieved by precurvature and/or by steering of thecatheter 1020. Consequently, thecentral lumen 1028 can be directed toward the mitral valve MV within a plane which differs from the secondary plane. After such movements, theinner guide catheter 1020 will be in a position so that the opening of thecentral lumen 1028 at theend 1016 faces the desired direction. In this case, the desired direction is toward the center of and orthogonal to the mitral valve. - In some instances, it is desired to raise or lower the
distal end 1026 so that it is at a desired height in relation to the mitral valve MV. This may be accomplished by precurvature and/or by steering of theouter guide catheter 1000 to formadditional curve 1110. Generally this is used to lift thedistal end 1026 above the mitral MV wherein such lifting was illustrated inFIG. 62B . - When the curvatures in the
catheters guiding system 1 for the passage of interventional devices orcatheters 1030 therethrough, as illustrated inFIG. 60 . Theinterventional catheter 1030 can be passed through thecentral lumen 1028 toward the target tissue, in this case the mitral valve MV. Positioning of thedistal end 1026 over theopening 0, as described above, allows thecatheter 1030 to pass through theopening 0 between the leaflets LF if desired, as shown inFIG. 63D . At this point, any desired procedure may be applied to the mitral valve for correction of regurgitation or any other disorder. - C. Steering Mechanisms
- As described previously, the curvatures may be formed in the
catheters - To provide a higher degree of control and variety of possible curvatures, steering mechanisms may be used to create the curvatures and position the catheters. In some embodiments, the steering mechanisms comprise cables or pullwires within the wall of the catheter. As shown in
FIG. 64A , theouter guide catheter 1000 may include apullwire 1120 slidably disposed in lumens within the wall of thecatheter 1000 extending to thedistal end 1016. By applying tension to thepullwire 1120 in the proximal direction, thedistal end 1016 curves in the direction of thepullwire 1120 as illustrated byarrow 1122. Likewise, as shown inFIG. 64A , placement of thepullwire 1120 along the opposite side of thecatheter 1000 will allow thedistal end 1016 to curve in the opposite direction, as illustrated byarrow 1124, when tension is applied to thepullwire 1120. Thus, referring toFIG. 64C , diametrically opposing placement ofpullwires 1120 within the walls of thecatheter 1000 allows thedistal end 1016 to be steered in opposite directions. This provides a means of correcting or adjusting a curvature. For example, if tension is applied to one pullwire to create a curvature, the curvature may be lessened by applying tension to the diametrically opposite pullwire. Referring now toFIG. 64D , an additional set of opposingpullwires 1120′ may extend within the wall of thecatheter 1000 as shown. This combination ofpullwires arrows primary curve 1100 of theouter guide catheter 1000 and thepullwires 1120′ create the lift. It may be appreciated thatFIGS. 64A-64D also pertain to theinner guide catheter 1020. For example, inFIG. 64D , pullwires 1120 may create thesecondary curve 1104 of theinner guide catheter 1020 and thepullwires 1120′ create theangle theta 1070. -
Such pullwires 1120 and/orpullwires 1120′ and associated lumens may be placed in any arrangement, singly or in pairs, symmetrically or nonsymmetrically and any number of pullwires may be present. This may allow curvature in any direction and about various axes. Thepullwires tip ring 280, illustrated inFIG. 64E . As shown, thepullwire 1120 passes through anorifice 286 in thetip ring 280, forms a loop shape and then passes back through theorifice 286 and travels back up through the catheter wall (not shown). In addition, the lumens which house the pullwires may be straight, as shown inFIGS. 64A-64D , or may be curved. - D. Catheter Construction
- The
outer guide catheter 1000 andinner guide catheter 1020 may have the same or different construction which may include any suitable material or combination of materials to create the above described curvatures. For clarity, the examples provided will be in reference to theouter guide catheter 1000, however it may be appreciated that such examples may also apply to theinner guide catheter 1020. - In embodiments in which the catheter is precurved rather than steerable or in addition to being steerable, the
catheter 1000 may be comprised of a polymer or copolymer which is able to be set in a desired curvature, such as by heat setting. Likewise, thecatheter 1000 may be comprised of a shape-memory alloy. - In embodiments in which the catheter is steerable, the
catheter 1000 may be comprised of one or more of a variety of materials, either along the length of thecatheter 1000 or in various segments. Example materials include polyurethane, Pebax, nylon, polyester, polyethylene, polyimide, polyethylenetelephthalate (PET), polyetheretherketone (PEEK). In addition, the walls of thecatheter 1000 may be reinforced with a variety of structures, such as metal braids or coils. Such reinforcements may be along the length of thecatheter 1000 or in various segments. - For example, referring to
FIG. 65A , thecatheter 1000 may have aproximal braided segment 1150, acoiled segment 1152 anddistal braided segment 1154. Theproximal braided segment 1150 provides increased column strength and torque transmission. Thecoiled segment 1152 provides increased steerability. Thedistal braided segment 1154 provides a blend of steerability and torque/column strength. In another example, referring toFIG. 65B , theouter guiding catheter 1000 has a proximal double-layer braided segment 1151 and adistal braided segment 1154. Thus, the proximal double-layer segment 1151 comprises a multi-lumen tube 1160 (havingsteering lumens 1162 for pullwires, distal ends of thesteering lumens 1162 optionally embedded with stainless steel coils for reinforcement, and a central lumen 1163), aninner braided layer 1164, and anouter braided layer 1166, as illustrated in the cross-sectional view ofFIG. 65C . Similarly,FIG. 65D provides a cross-sectional view of thedistal braided segment 1154 comprising themulti-lumen tube 1160 and asingle braided layer 1168. In a further example, referring toFIG. 65E , theinner guiding catheter 1020 comprises amulti-lumen tube 1160 without reinforcement at its proximal end, a single braidedlayer middle segment 1170 and a single braided layerdistal segment 1171. Each of the singlebraided layer segments multi-lumen tube 1160 and a single layer ofbraiding 1168, as illustrated in cross-sectional viewFIG. 65F . However, thesegments -
FIG. 65G illustrates an other example of a cross-section of a distal section of anouter guiding catheter 1000. Here,layer 1130 comprises 55D Pebax and has a thickness of approximately 0.0125 in.Layer 1131 comprises a 30 ppi braid and has a thickness of approximately 0.002 in. by 0.0065 in.Layer 1132 comprises 55D Pebax and has a thickness of approximately 0.006 in.Layer 1133 comprises 30 ppi braid and has a thickness of approximately 0.002 in by 0.0065 in. And finally,layer 1134 comprisesNylon 11 and includes steering lumens for approximately 0.0105 in.diameter pullwires 1120.Central lumen 1163 is of sufficient size for passage of devices. -
FIGS. 65H-65I illustrate additional examples of cross-sections of aninner guiding catheter 1020,FIG. 65I illustrating a cross-section of a portion of the distal end andFIG. 65I illustrating a cross-section of a more distal portion of the distal end. Referring toFIG. 65H ,layer 1135 comprises 40D polymer and has a thickness of approximately 0.0125 in.Layer 1136 comprises a 30 ppi braid and has a thickness of approximately 0.002 in. by 0.0065 in.Layer 1137 comprises 40D polymer and has a thickness of approximately 0.006 in. Layer 1138 comprises a 40D polymer layer and has a thickness of approximately 0.0035 in. And finally,layer 1139 comprises a 55D liner. In addition, coiled steering lumens are included for approximately 0.0105 in.diameter pullwires 1120. And,central lumen 1163 is of sufficient size for passage of devices. Referring toFIG. 651 ,layer 1140 comprises a 40D polymer,layer 1141 comprises a 35D polymer,layer 1142 comprises a braid andlayer 1143 comprises a liner. In addition, coiledsteering lumens 1144 are included for pullwires. And,central lumen 1163 is of sufficient size for passage of devices. -
FIGS. 66A-66C illustrate an embodiment of a keying feature which may be incorporated into the catheter shafts. The keying feature is used to maintain relationship between the inner and outer guide catheters to assist in steering capabilities. As shown inFIG. 66A , theinner guide catheter 1020 includes one ormore protrusions 1400 which extend radially outwardly. In this example, fourprotrusions 1400 are present, equally spaced around the exterior of thecatheter 1020. Likewise, theouter guide catheter 1000 includes correspondingnotches 1402 which align with theprotrusions 1400. Thus, in this example, thecatheter 1000 includes four notches equally spaced around itscentral lumen 1018. Thus, theinner guide catheter 1020 is able to be translated within theouter guide catheter 1000, however rotation of theinner guide catheter 1020 within theouter guide catheter 1000 is prevented by the keying feature, i.e. the interlockingprotrusions 1400 andnotches 1402. Such keying helps maintain a known correlation of position between theinner guide catheter 1020 andouter guide catheter 1000. Since the inner andouter guide catheters outer guide catheters -
FIG. 66B illustrates a cross-sectional view of theouter guiding catheter 1000 ofFIG. 66A . Here, thecatheter 1000 includes a notchedlayer 1404 along the inner surface ofcentral lumen 1018. The notchedlayer 1404 includesnotches 1402 in any size, shape, arrangement and number. Optionally, the notchedlayer 1404 may includelumens 1406, typically for passage ofpullwires 1120. However, thelumens 1406 may alternatively or in addition be used for other uses. It may also be appreciated that the notchedlayer 1404 may be incorporated into the wall of thecatheter 1000, such as by extrusion, or may be a separate layer positioned within thecatheter 1000. Further, it may be appreciated that the notchedlayer 1404 may extend the entire length of thecatheter 1000 or one or more portions of the length of thecatheter 1000, including simply a small strip at a designated location along the length of thecatheter 1000. -
FIG. 66C illustrates a cross-sectional view of theinner guiding catheter 1020 ofFIG. 66A . Here, thecatheter 1020 includesprotrusions 1400 along the outer surface of thecatheter 1020. Theprotrusions 1400 may be of any size, shape, arrangement and number. It may be appreciated that theprotrusions 1400 may be incorporated into the wall of thecatheter 1020, such as by extrusion, may be included in a separate cylindrical layer on the outer surface of thecatheter 1020, or theprotrusions 1400 may be individually adhered to the outer surface of thecatheter 1020. Further, it may be appreciated that theprotrusions 1400 may extend the entire length of thecatheter 1000 or one or more portions of the length of thecatheter 1020, including simply a small strip at a designated location along the length of thecatheter 1020. - Thus, the keying feature may be present along one or more specific portions of the
catheters catheters notches 1402 may extend along the entire length of theouter guiding catheter 1020 while theprotrusions 1400 extend along discrete portions of theinner guiding catheter 1000 and vice versa. It may further be appreciated that theprotrusions 1400 may be present on the inner surface of theouter guiding catheter 1000 while thenotches 1402 are present along the outer surface of theinner guiding catheter 1020. - Alternatively or in addition, one or more steerable portions of the
catheter 1000 may comprise a series of articulatingmembers 1180 as illustrated inFIG. 67A . Exemplary embodiments of steerable portions of catheters comprising such articulatingmembers 1180 are described in U.S. patent application Ser. No. 10,441,753 incorporated herein by reference for all purposes.FIG. 67B illustrates theouter guide catheter 1000 having a steerable portion comprising articulatingmembers 1180 at itsdistal end 1016. - Briefly, referring to
FIG. 67A , each articulatingmember 1180 may have any shape, particularly a shape which allows interfitting or nesting as shown. In addition, it is desired that eachmember 1180 have the capability of independently rotating against an adjacent articulatingmember 1180. In this embodiment, the articulatingmembers 1180 comprise interfittingdomed rings 1184. Thedomed rings 1184 each include abase 1188 and adome 1186. Thebase 1188 anddome 1186 have a hollow interior which, when thedomed rings 1184 are interfit in a series, forms a central lumen 1190. In addition, thedome 1186 allows each articulatingmember 1180 to mate against an inner surface of an adjacentdomed ring 1184. - The interfitting
domed rings 1184 are connected by at least onepullwire 1120. Such pullwires typically extend through the length of thecatheter 1000 and at least one of the interfittingdomed rings 1184 to a fixation point where thepullwire 1120 is fixedly attached. By applying tension to thepullwire 1120, thepullwire 1120 arcs the series of interfittingdomed rings 1184 proximal to the attachment point to form a curve. Thus, pulling or applying tension on at least one pullwire, steers or deflects thecatheter 1000 in the direction of thatpullwire 1120. By positioningvarious pullwires 1120 throughout the circumference of thedomed rings 1184, thecatheter 1000 may be directed in any number of directions. - Also shown in
FIG. 67A , each interfittingdomed ring 1184 may comprise one or morepullwire lumens 1182 through which thepullwires 1120 are threaded. Alternatively, thepullwires 1120 may be threaded through the central lumen 1190. In any case, the pullwires are attached to thecatheter 1000 at a position where a desired curve is to be formed. Thepullwires 1120 may be fixed in place by any suitable method, such as soldering, gluing, tying, welding or potting, to name a few. Such fixation method is typically dependent upon the materials used. The articulatingmembers 1180 may be comprised of any suitable material including stainless steel, various metals, various polymers or co-polymers. Likewise thepullwires 1120 may be comprised of any suitable material such as fibers, sutures, metal wires, metal braids, or polymer braids. - E. Handles
- As mentioned previously, manipulation of the
guide catheters handles catheters FIG. 68 illustrates a preferred embodiment ofhandles proximal end 1014 ofouter guide catheter 1000 and handle 1057 is attached to theproximal end 1024 ofinner guide catheter 1020.Inner guide catheter 1020 is inserted throughhandle 1056 and is positioned coaxially withinouter guide catheter 1000. In this embodiment, thehandles FIG. 60 . It may be appreciated thatsuch handles FIG. 68 , interventional catheter is inserted throughhandle 1057 and is positioned coaxially withininner guide catheter 1020 andouter guide catheter 1000. - Each
handle steering knobs handle housing 1302 for manipulation by a user.Steering knobs 1300 a are disposed on a side of thehousing 1302 andsteering knobs 1300 b are disposed on a face of thehousing 1302. However, it may be appreciated that such placement may vary based on a variety of factors including type of steering mechanism, size and shape of handle, type and arrangement of parts within handle, and ergonomics to name a few. -
FIG. 69 illustrates thehandles FIG. 68 with a portion of thehousing 1302 removed to reveal the assemblies of the handles. Eachknob stop gear assembly 1304 and afriction assembly 1306. Tension is applied to one or more pullwires by action of the hard stop gear assembly to form a curve in a catheter. Tension is maintained by the friction assembly. When tension is released from the one or more pullwires the catheter returns to a straightened position. -
FIG. 70 illustrates steering mechanisms within a handle wherein thehousing 1302 is removed for clarity. Here, steeringknob 1300 a is attached to a hardstop gear assembly 1304 and a friction assembly (not in view) andsteering knob 1300 b is attached to a separate hardstop gear assembly 1304 andfriction assembly 1306.Steering knob 1300 a is attached to aknob post 1318 which passes through abase 1308, terminating in aknob gear wheel 1310. Theknob gear wheel 1310 actuates the hardstop gear assembly 1304, thereby applying tension to one or more pullwires 1120. - The
knob gear wheel 1310 is a toothed wheel that engages adisk gear wheel 1312. Rotation of thesteering knob 1300 a rotates theknob post 1318 andknob gear wheel 1310 which in turn rotates thedisk gear wheel 1312. Rotation of thedisk gear wheel 1312 applies tension to one or more pullwires extending through the attached catheter, in this example theouter guiding catheter 1000. As shown, theouter guiding catheter 1000 passes through thebase 1308, wherein one or more pullwires 1120 extending through thecatheter 1000 are attached to thedisk 1314. Such attachment is schematically illustrated inFIG. 71 .Catheter 1000 is shown passing throughbase 1308. Apullwire 1120 passing through asteering lumen 1162 in thecatheter 1000 emerges from the wall of thecatheter 1000, passes through anaperture 1320 in thedisk 1314 and is attached to ananchor peg 1316 on thedisk 1314. Rotation of the disk 1314 (indicated by arrow 1328) arounddisk post 1315 by action of thedisk gear wheel 1312, applies tension to thepullwire 1120 by drawing thepullwire 1120 through theaperture 1320 and wrapping thepullwire 1120 around thedisk 1314 as it rotates. Additional rotation of thedisk 1314 applies increasing tension to thepullwire 1120. To limit the amount of tension applied to thepullwire 1120, to limit curvature of the catheter and/or to avoid possible breakage of thepullwire 1120, the rotation of thedisk 1314 may be restricted byhard stop peg 1322 which is attached to thedisk 1314 and extends into thebase 1308. -
FIGS. 72A-72B illustrate how thehard stop peg 1322 is used to restrict rotation ofdisk 1314.FIGS. 72A-72B provide a top view, wherein thedisk 1314 is disposed on thebase 1308. Theanchor peg 1316 is shown with thepullwire 1120 there attached. Agroove 1326 is formed in thebase 1308 beneath thedisk 1314 and forms an arc shape. Thehard stop peg 1322 extends from thedisk 1314 into thegroove 1326 in thebase 1308. Referring now toFIG. 72B , rotation of thedisk 1314 aroundknob post 1318, indicated byarrow 1330, draws thepullwire 1120 through theaperture 1320 as previously described, wrapping thepullwire 1120 around thedisk 1314. As thedisk 1314 rotates, thehard stop peg 1322 follows along thegroove 1326, as shown. Thedisk 1314 continues rotating until thehard stop peg 1322 reaches ahard stop 1324. Thehard stop 1324 is positioned in thegroove 1326 and prevents further passage of thehard stop peg 1322. Thus,disk 1314 rotation may be restricted to any degree of rotation less than or equal to 360 degrees by positioning of thehard stop 1324. - In some instances, it is desired to restrict rotation of the
disk 1314 to a degree of rotation which is more than 360 degrees. This may be achieved with another embodiment of the hardstop gear assembly 1304. Referring now toFIGS. 73A-73B , a portion of such a hardstop gear assembly 1304 is shown.FIG. 73A illustrates thebase 1308 and thedisk post 1315 positioned therethrough. Also shown in thebase 1308 is anaperture 1334 through which theknob post 1318,knob gear wheel 1310 andfriction assembly 1306 pass, and apassageway 1336 through which thecatheter 1000 passes. In this embodiment of the hardstop gear assembly 1304, agroove 1326 is also present in an arc shape around thedisk post 1315, however aball 1332 is positioned in thegroove 1326 rather than ahard stop peg 1322.Disk 1314 is positioned over thegroove 1326 and theball 1332 as shown inFIG. 73B . Thedisk 1314, illustrated inFIG. 73C , has agroove 1356 in its surface which is positioned adjacent to thebase 1308, thegroove 1356 having an arc shape similar to thegroove 1326 in thebase 1308. Theball 1332 is not fixedly attached to thebase 1308 or thedisk 1314 and is therefore free to move along the channel formed by thegroove 1326 in thebase 1308 and the groove in thedisk 1314. -
FIGS. 74A-74F illustrate how rotation of thedisk 1314 may be restricted by theball 1332 to a degree of rotation which is more than 360 degrees.FIGS. 74A-74F illustrate thegroove 1326 in thebase 1308 wherein thegroove 1326 has an arc shape arounddisk post 1315. Thegroove 1326 does not form a complete circle; afirst groove end 1350 a and asecond groove end 1350 b form a wall which prevent passage of theball 1332. It may be appreciated that the groove ends 1350 a, 1350 b may be any distance apart, shortening the length of thegroove 1326 by any amount, and allowing theball 1332 movement, and hence catheter deflection, to be adjusted to any desired amount. To begin, referring toFIG. 74A , theball 1332 is positioned within thegroove 1326 near thefirst groove end 1350 a. Thedisk 1314 has a matching groove 1352 (shape illustrated in dashed line) including afirst groove end 1354 a and asecond groove end 1354 b. Thedisk 1314 is positioned over theball 1332 so that theball 1332 is near thesecond groove end 1354 b. - Referring now to
FIG. 74B , thedisk 1314 may be rotated while theball 1332 remains in place. Here, thedisk 1314 has rotated 90 degrees, as indicated byarrow 1360 and the position of the groove ends 1354 a, 1354 b. Referring now toFIG. 74C , thedisk 1314 may be further rotated while theball 1332 remains in place. Here, thedisk 1314 has rotated 270 degrees, as indicated byarrow 1360 and the position of the groove ends 1354 a, 1354 b. Thedisk 1314 may continue rotating to 360 degrees, as shown inFIG. 74D , indicated by arrow 36000. Here, thefirst groove end 1354 a in thedisk 1314 has contacted theball 1332 and pushes theball 1332 alonggroove 1326 in the base. Referring now toFIG. 74E , thedisk 1314 may be further rotated while theball 1332 is pushed along thegroove 1326 in thebase 1308 by thefirst groove end 1354 a in thedisk 1314. Here, thedisk 1314 is shown to have rotated 540 degrees. Referring toFIG. 74F , thedisk 1314 rotates until theball 1332 reaches thesecond groove end 1350 b of thebase 1308, providing a hard stop. In this position, theball 1332 is held between thefirst groove end 1354 a of thedisk 1314 and thesecond groove end 1350 b of thebase 1308 and further rotation of thedisk 1314 is prevented. Thus, thedisk 1314 was rotated approximately 660 degrees in this example. Any maximum degree of rotation may be set by positioning of groove ends 1350 a, 1350 b and/or groove ends 1354 a, 1354 b. Additionally, in some embodiments, rotation can be limited by adding more than oneball 1332 to thegroove 1326, for example, two, three, four, five, six, seven, eight, nine, ten or more balls may be used to limit travel and hence curvature. - It may be appreciated that one or more pullwires 1120 are attached to the
disk 1314 in a manner similar to that illustrated inFIG. 71 . Therefore, as thedisk 1314 rotates, arounddisk post 1315 by action of thedisk gear wheel 1312, tension is applied to thepullwire 1120 by drawing thepullwire 1120 through theaperture 1320 and wrapping thepullwire 1120 around thedisk 1314 as it rotates. Additional rotation of thedisk 1314 applies increasing tension to thepullwire 1120. Restriction of rotation as described above limits the amount of tension applied to thepullwire 1120, to limit curvature of the catheter and/or to avoid possible breakage of thepullwire 1120. - As mentioned, each steering mechanism includes at least a hard
stop gear assembly 1304 and afriction assembly 1306. As described above, tension is applied to one or more pullwires by action of the hard stop gear assembly to form a curve in a catheter. Tension is maintained by the friction assembly.FIG. 75 illustrates an embodiment of afriction assembly 1306. Thefriction assembly 1306 essentially holds a steering knob, in thisexample steering knob 1300 b, and the associatedknob post 1318 in a rotated position. Here, rotation of theknob 1300 b andpost 1318 rotates attachedknob gear wheel 1310. Theknob gear wheel 1310 actuates the hardstop gear assembly 1304, thereby applying tension to one or more pullwires 1120. Theknob gear wheel 1310 is a toothed wheel that engages adisk gear wheel 1312. Rotation of thesteering knob 1300 b rotates theknob post 1318 andknob gear wheel 1310 which in turn rotates thedisk gear wheel 1312. Rotation of thedisk gear wheel 1312 applies tension to one or more pullwires extending through the attached catheter, in this example theouter guiding catheter 1000. - The
steering knob 1300 b andknob post 1318 are held in a rotated position by friction provided by africtional pad 1370. Thefrictional pad 1370 is positioned betweenring 1372 attached to theknob post 1318 and aplate 1374 attached to thebase 1308. Theknob post 1318 extends from theknob 1300 b through thering 1372, thefrictional pad 1370 and then theplate 1374. Theplate 1374 has internal threads which mate with threads on theknob post 1318. As theknob post 1318 rotates, the threads on thepost 1318 advance through the threads on theplate 1374. This draws thering 1372 closer to theplate 1374, compressing thefrictional pad 1370 therebetween.Frictional pad 1370 may be comprised of any O-ring or sheet material with desirable frictional and compressibility characteristics, such as silicone rubber, natural rubber or synthetic rubbers, to name a few. In preferred embodiments, an EPDM rubber O-ring is used. Reverse rotation of theknob post 1318 is resisted by friction of thefrictional pad 1370 against thering 1372. The higher the compression of thefrictional pad 1370 the stronger the frictional hold. Therefore, as thesteering knob 1300 b is rotated and increasing amounts of tension are applied to thepullwires 1120, increasing amounts of friction are applied to thering 1372 to hold theknob 1300 b in place. - Manual reverse rotation of the
steering knob 1300 b releases tension on thepullwires 1120 and draws thering 1372 away from theplate 1374 thereby reducing the frictional load. When tension is released from thepullwires 1120 thecatheter 1000 returns toward a straightened position. - It may be appreciated that each
handle FIG. 69 , handle 1056 includes a steering mechanism to form theprimary curve 1100 inouter guiding catheter 1000 and a steering mechanism to form theadditional curve 1110. Likewise, handle 1057 includes a steering mechanism to form thesecondary curve 1104 ininner guiding catheter 1020 and a steering mechanism to form theangle theta 1070. - Some curves, such as the
primary curve 1100,secondary curve 1104 andadditional curve 1110 each typically vary in curvature between a straight configuration and a curved configuration in a single direction. Such movement may be achieved with single set of a hardstop gear assembly 1304 and afriction assembly 1306. However, other curves, such as theangle theta 1070, may be formed in two directions as shown inFIGS. 61C-61D . Such movement is achieved with two sets of the hardstop gear assembly 1304 and thefriction assembly 1306, each set controlling curvature in a single direction. -
FIG. 75 illustrates the presence of an additional set of thefriction assembly 1306′. One or more pullwires 1120′, such as an opposing set as illustrated inFIG. 64D , extending within the wall of thecatheter 1000 are attached to thedisk 1314′ in the same manner as pullwires 1120 are attached todisk 1314. Thedisks steering knob 1300 b in one direction applies tension to thepullwires 1120 viadisk 1314 and rotation ofsteering knob 1300 b in the opposite direction applies tension to thepullwires 1120′ viadisk 1314′. Likewise, theadditional friction assembly 1306′ is shown having aring 1372′ attached to theknob post 1318 and africtional pad 1370′ disposed between thering 1372′ and the opposite side of theplate 1374. Therefore, as rotation of thesteering knob 1300 b in the opposite direction applies tension to thepullwires 1120′ viadisk 1314′, thefrictional pad 1370′ applies tension to thering 1372′ holding theknob post 1318′ in place. - It may be appreciated that various other mechanisms may be used for tensioning and holding
pullwires 1120 in place. Example mechanisms that may alternatively be used include clutches, ratchets, levers, knobs, rack and pinions, and deformable handles, to name a few. - F. Interventional System
-
FIG. 76 illustrates an embodiment of aninterventional system 3 of the present invention. An embodiment of themulti-catheter guiding system 1 of the present invention is shown comprising anouter guide catheter 1000, having aproximal end 1014 and adistal end 1016, and aninner guide catheter 1020, having aproximal end 1024 and adistal end 1026, wherein theinner guide catheter 1020 is positioned coaxially within theouter guide catheter 1000, as shown. In addition, ahemostatic valve 1090 is disposed withinhandle 1056 or external to handle 1056 as shown to provide leak-free sealing with or without theinner guide catheter 1020 in place. Thevalve 1090 also prevents back bleeding and reduces the possibility of air introduction when inserting theinner guide catheter 1020 through theouter guide catheter 1000. An example of ahemostatic valve 1090 is illustrated inFIG. 76A , however any suitable valve or hemostatic valve may be used to provide similar functions. InFIG. 76A , thevalve 1090 has afirst end 1091, asecond end 1092 and alumen 1093 therethrough. The inner wall oflumen 1093 is preferably tapered towardend 1091 and may further include a plurality of tapered axial channels configured to receive theprotrusions 1400 on theinner guide catheter 1020. Thefirst end 1091 is attached to theouter guide catheter 1000 and thesecond end 1092 is free. Referring now back toFIG. 76 , the distal ends 1016, 1026 ofcatheters - To assist in inserting the
fixation device 14 through ahemostatic valve 1090, a fixation device introducer may be used. For example, when thefixation device 14 is loaded on adelivery catheter 300 and aninner guide catheter 1020, insertion of thefixation device 14,delivery catheter 300 andinner guide catheter 1020 through anouter guide catheter 1000 involves passing thefixation device 14 through ahemostatic valve 1090 on theouter guide catheter 1000. To reduce any trauma to thefixation device 14 by thehemostatic valve 1090, a fixation device introducer may be used. An embodiment of afixation device introducer 1420 is illustrated inFIG. 76B . Theintroducer 1420 includes aloading body 1422 and aninsertion endpiece 1424. Thefixation device 14 is loaded into theloading body 1422 and into theinsertion endpiece 1424 to approximately the dashedline 1428. Theinsertion endpiece 1424 has a split end creatingindividual split sections 1430, in this embodiment, foursplit sections 1430. By compressing thesplit sections 1430, theendpiece 1424 forms a taper. Such a taper is then inserted through ahemostatic valve 1090, so that theinsertion endpiece 1424 creates a smooth passageway through the valve for thefixation device 14. Once theinsertion endpiece 1424 is inserted through thevalve 1090, thefixation device 14, and attacheddelivery catheter 300 andinner guide catheter 1020, may then be advanced through thefixation device introducer 1420. Thefixation device introducer 1420 also includes a hemostatic valve within theloading body 1422 to prevent any backbleeding or leakage through theintroducer 1420. - Manipulation of the
guide catheters handles catheters proximal end 1014 ofouter guide catheter 1000 and handle 1057 is attached to theproximal end 1024 ofinner guide catheter 1020.Inner guide catheter 1020 is inserted throughhandle 1056 and is positioned coaxially withinouter guide catheter 1000. - An embodiment of the
delivery catheter 300 of the present invention is inserted throughhandle 1057 and is positioned coaxially withininner guide catheter 1020 andouter guide catheter 1000. Therefore, ahemostatic valve 1090 is disposed withinhandle 1057 or external to handle 1057 as shown to provide leak-free sealing with or without thedelivery catheter 300 in place. Thevalve 1090 functions as described above. Thedelivery catheter 300 includes ashaft 302, having aproximal end 322 and adistal end 324, and ahandle 304 attached to theproximal end 322. Afixation device 14 is removably coupled to thedistal end 324 for delivery to a site within the body. - The
outer guide catheter 1000 and/or theinner guide catheter 1020 are precurved and/or have steering mechanisms to position the distal ends 1016, 1026 in desired directions. Precurvature or steering of theouter guide catheter 1000 directs thedistal end 1016 in a first direction to create a primary curve while precurvature and/or steering of theinner guide catheter 1020 directsdistal end 1026 in a second direction, differing from the first, to create a secondary curve. Together, the primary and secondary curves form a compound curve. Advancement of thedelivery catheter 300 through thecoaxial guide catheters delivery catheter 300 through the compound curve toward a desired direction, usually in a direction which will position thefixation device 14 in a desired location within the body. -
FIG. 77 illustrates portions of another embodiment of aninterventional system 3 of the present invention.Handles multi-catheter guiding system 1 of the present invention are shown. Eachhandle steering knobs guide catheters steering knobs catheters delivery catheter 300 is also shown, including the proximalelement line handle 312, thelock line handle 310, theactuator rod control 314 and theactuator rod handle 316, among other features. Thehandle 304 is supported by thesupport base 306 which is connected to thehandle 1057. - It may be appreciated the above described
systems 3 are not intended to limit the scope of the present invention. Thesystems 3 may include any or all of the components of the described invention. In addition, themulti-catheter guiding system 1 of the present invention may be used to introduce other delivery catheters, interventional catheters or other devices. Likewise, thedelivery catheter 300 may be introduced through other introducers or guiding systems. Also, thedelivery catheter 300 may be used to deliver other types of devices to a target location within the body, including endoscopic staplers, devices for electrophysiology mapping or ablation, septal defect repair devices, heart valves, annuloplasty rings and others. - In addition, many of the components of the
system 3 may include one or more hydrophilic coatings. Hydrophilic coatings become slippery when wet, eliminate the need for separate lubricants. Thus, such coatings may be present on the multi-catheter guiding system, delivery catheter, and fixation device, including the proximal elements and distal elements, to name a few. - Further, the
system 3 may be supported by anexternal stabilizer base 1440, an embodiment of which is illustrated inFIG. 78 .Stabilizer base 1440 maintains the relative positions of the outer guide, inner guide and delivery catheter during a procedure. In this embodiment, thebase 1440 comprises aplatform 1442 having a planar shape for positioning on or against a flat surface, such as a table or benchtop. Thebase 1440 further includes a pair ofhandle holders platform 1442 and extending upwardly from theplatform 1442, either angularly or perpendicularly.Handle holder 1444 includes anotch 1446 for holding theouter guiding catheter 1000, as illustrated inFIG. 79 , thereby supporting thehandle 1056.FIG. 79 shows thehandle 1056 attached to theouter guiding catheter 1000 positioned so that theproximal end 1014 of theouter guiding catheter 1000 rests in thenotch 1446. Referring back toFIG. 78 ,handle holder 1448 includes anelongate portion 1452 having atrough 1450 and ahooked end 1454. As shown inFIG. 80 , handle 1057 rests on theelongate portion 1452 and thehandle 304 rests onhooked end 1454 so that theinner guiding catheter 1020 extends from thehandle 1057 to thehandle 1056 and continues on withinouter guiding catheter 1000. Thehandle 304 is additionally supported bysupport base 306, as shown. - It may be appreciated that the
stabilizer base 1440 may take a variety of forms and may include differences in structural design to accommodate various types, shapes, arrangements and numbers of handles. - G. Kits
- Referring now to
FIG. 81 ,kits 1500 according to the present invention comprise any of the components described in relation to the present invention. Thekits 1500 may include any of the components described above, such as theouter guide catheter 1000 includinghandle 1056, theinner guide catheter 1020 includinghandle 1057, thedelivery catheter 300 and thefixation device 14 and instructions for use IFU. Optionally, any of the kits may further include any other system components described above, such as variousinterventional tools 1040, or components associated with positioning a device in a body lumen, such as aguidewire 1202,dilator 1206 orneedle 1204. The instructions for use IFU will set forth any of the methods as described above, and all kit components will usually be packaged together in apouch 1505 or other conventional medical device packaging. Usually, those kit components which will be used in performing the procedure on the patient will be sterilized and maintained within the kit. Optionally, separate pouches, bags, trays or other packaging may be provided within a larger package, where the smaller packs may be opened separately to separately maintain the components in a sterile fashion. - While the foregoing is a complete description of the preferred embodiments of the invention, various alternatives, substitutions, additions, modifications, and equivalents are possible without departing from the scope of the invention. For example, in many of the above-described embodiments, the invention is described in the context of approaching a valve structure from the upstream side—that is, the atrial side in the case of a mitral valve. It should be understood that any of the foregoing embodiments may be utilized in other approaches as well, including from the ventricular or downstream side of the valve, as well as using surgical approaches through a wall of the heart. Moreover, the invention may be used in the treatment of a variety of other tissue structures besides heart valves, and will find usefulness in a variety of tissue approximation, attachment, closure, clamping and ligation applications, some endovascular, some endoscopic, and some open surgical.
- Again, although the foregoing invention has been described in some detail by way of illustration and example, for purposes of clarity of understanding, it will be obvious that various alternatives, modifications and equivalents may be used and the above description should not be taken as limiting in scope of the invention which is defined by the appended claims.
Claims (35)
1. A delivery device comprising:
an elongated flexible shaft having a proximal end, a distal end, and a main lumen therebetween; and
at least one flexible tubular guide extending through the main lumen, the at least one flexible tubular guide having a first end constrained within the shaft, at or near the distal end of the shaft and a second end constrained, at or near the proximal end of the shaft, the at least one flexible tubular guide unconstrained relative to the shaft in at least one location between the first and second ends so as to be laterally moveable within the main lumen, at least a portion of the at least one flexible tubular guide being both flexible and tubular.
2. A delivery device as in claim 1 , wherein the main lumen is occupied by fluid.
3. A delivery device as in claim 1 , wherein the at least one flexible tubular guide comprises at least two flexible tubular guides.
4. A delivery device as in claim 3 , wherein the at least one flexible tubular guide comprises at least three flexible tubular guides.
5. A delivery device as in claim 4 , wherein the at least one flexible tubular guide comprises at least four flexible tubular guides.
6. A delivery device as in claim 1 , wherein the at least one flexible tubular guide comprises a coil.
7. A delivery device as in claim 1 , further comprising an interventional element coupled to the distal end of the shaft.
8. A delivery device as in claim 7 , wherein the interventional element is removably coupled.
9. A delivery device as in claim 7 , wherein the interventional element is adapted for tissue approximation.
10. A delivery device as in claim 7 , wherein the interventional element is adapted for coaptation of valve leaflets.
11. A delivery device as in claim 7 , wherein the interventional element has first and second tissue engaging elements adapted for engaging tissue therebetween.
12. A delivery device as in claim 1 , wherein the shaft and the interventional element are adapted for positioning through a blood vessel.
13. A delivery device as in claim 1 , further comprising an actuation element movably disposed in one of the at least one flexible tubular guide, the actuation element adapted for coupling with at least one movable element of an interventional element so that movement of the actuation element causes movement of the at least one movable element.
14. A delivery device as in claim 13 , wherein the at least one movable element comprises first and second tissue engaging elements and wherein the actuation element comprises an actuator rod adapted so that movement of the actuator rod moves the first and second tissue engaging elements.
15. A delivery device as in claim 13 , wherein the actuation element comprises a flexible line.
16. A delivery device as in claim 15 , wherein the at least one movable element comprises a proximal element and wherein the flexible line comprises a proximal element line adapted so that movement of the proximal element line actuates the proximal element.
17. A system for approximating tissue at a treatment site comprising:
an elongated flexible shaft having a proximal end, a distal end, and a main lumen therebetween;
at least one flexible tubular guide extending through the main lumen, the at least one flexible tubular guide having a first end constrained, at or near the distal end of the shaft and a second end constrained within the shaft, at or near the proximal end of the shaft and being unconstrained in at least one location between the first and second ends so as to be laterally movable within the main lumen;
an actuation element movably disposed in the tubular guide; and
an approximation device coupled to the distal end of the shaft, the approximation device having first and second engaging elements for engaging tissue therebetween, at least one of the engaging elements being movable and coupled to the actuation element.
18. An endovascular heart valve repair device comprising:
an elongated flexible shaft having a proximal end, a distal end, and a main lumen therebetween, the elongated flexible shaft being adapted for positioning through a blood vessel into a chamber of the heart;
at least one flexible tubular guide extending from the proximal end to the distal end through the main lumen;
an actuation element movably disposed in one of the at least one flexible tubular guide; and
a fixation device releasably coupled to the distal end of the shaft and adapted for positioning in the chamber of the heart, the fixation device having at least one proximal element and at least one distal element adapted to engage a valve leaflet therebetween, at least one of the proximal and distal elements being coupled to the actuation element so that movement of the actuation element in relation to the at least one flexible tubular guide moves the at least one of the proximal and distal elements coupled thereto.
19. An endovascular heart valve repair device as in claim 18 , wherein the at least one proximal element and the at least one distal element comprise a pair of proximal elements and a pair of distal elements.
20. An endovascular heart valve repair device as in claim 18 , wherein the at least one flexible tubular guide comprises a coil.
21. An endovascular heart valve repair device as in claim 18 , wherein the actuation element comprises a rod.
22. An endovascular heart valve repair device as in claim 18 , wherein the actuation element comprises a flexible line.
23. An endovascular heart valve repair device as in claim 18 , wherein the at least one tubular guide comprises a second tubular guide.
24. An endovascular heart valve repair device as in claim 23 , further comprising a second actuation element disposed in the second tubular guide, wherein the other of the proximal and distal elements is coupled to the second actuation element.
25. An endovascular heart valve repair device as in claim 24 , wherein the second actuation element comprises a flexible line.
26. A system as in claim 18 , wherein the at least one flexible tubular guide is fixed to the shaft near the proximal end or near the distal end and is unconstrained therebetween so as to be laterally movable within the main lumen.
27. A system for approximating tissue at a treatment site comprising:
an elongated flexible shaft having a proximal end, a distal end, and a main lumen therebetween;
first and second movable elements extending through the main lumen from the proximal to the distal end and being movable relative to the shaft; and
an approximation device releasably coupled to the distal end of the shaft, the approximation device having first and second engaging elements for engaging and holding a tissue portion therebetween in approximation with another tissue portion, the first engaging element being coupled to the first movable element so that manipulation of the first engaging element moves the first movable element and the second engaging element being coupled to the second movable element so that manipulation of the second engaging element moves the second movable element.
28. A system as in claim 27 , further comprising first and second flexible tubular guides extending from the proximal end to the distal end through the main lumen, the first and second tubular guides being fixed to the shaft near the proximal end or near the distal end and being unconstrained therebetween so as to be laterally movable within the main lumen, the first movable element extending through the first tubular guide and the second movable element movably disposed in the second tubular guide.
29. A system as in claim 27 , wherein the first moveable element comprises an actuator rod.
30. A system as in claim 27 , wherein the second movable element comprises a flexible line.
31. A system as in claim 27 , further comprising an actuator handle connected to the proximal end of the shaft, the actuator handle having a body and a first actuation element movably coupled thereto, the first actuation element being coupled to the first movable element.
32. A system as in claim 31 , wherein the actuator handle has a second actuation element moveably coupled thereto, the second actuation element being coupled to the second moveable element.
33. A system for approximating tissue at a treatment site comprising:
an elongated flexible shaft having a proximal end, a distal end, and a main lumen therebetween;
first and second flexible tubular guides extending from the proximal end to the distal end through the main lumen, the first and second tubular guides being fixed to the shaft at a location within the shaft, near the proximal end or near the distal end and being unconstrained therebetween so as to be laterally movable within the main lumen;
a first movable element movably disposed in the first tubular guide;
a second movable element movably disposed in the second tubular guide; and
an approximation device coupled to the distal end of the shaft, the approximation device having first and second movable engaging elements for engaging therebetween, the first engaging element being coupled to the first movable element, the second engaging element being coupled to the second movable element.
34. A system as in claim 33 , further comprising an actuator rod extending from the proximal to the distal end through the main lumen and being movable relative to the shaft.
35. A system as in claim 33 , wherein the approximation device further comprises a locking mechanism.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/559,247 US20070100356A1 (en) | 1999-04-09 | 2006-11-13 | Delivery device, systems and methods of use |
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12869099P | 1999-04-09 | 1999-04-09 | |
US09/544,930 US6629534B1 (en) | 1999-04-09 | 2000-04-07 | Methods and apparatus for cardiac valve repair |
US09/894,463 US6752813B2 (en) | 1999-04-09 | 2001-06-27 | Methods and devices for capturing and fixing leaflets in valve repair |
US10/441,531 US7563267B2 (en) | 1999-04-09 | 2003-05-19 | Fixation device and methods for engaging tissue |
US10/441,508 US7666204B2 (en) | 1999-04-09 | 2003-05-19 | Multi-catheter steerable guiding system and methods of use |
US10/441,687 US7226467B2 (en) | 1999-04-09 | 2003-05-19 | Fixation device delivery catheter, systems and methods of use |
US11/559,247 US20070100356A1 (en) | 1999-04-09 | 2006-11-13 | Delivery device, systems and methods of use |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/441,687 Continuation US7226467B2 (en) | 1999-04-09 | 2003-05-19 | Fixation device delivery catheter, systems and methods of use |
Publications (1)
Publication Number | Publication Date |
---|---|
US20070100356A1 true US20070100356A1 (en) | 2007-05-03 |
Family
ID=59101661
Family Applications (15)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/441,687 Expired - Lifetime US7226467B2 (en) | 1999-04-09 | 2003-05-19 | Fixation device delivery catheter, systems and methods of use |
US10/441,531 Expired - Lifetime US7563267B2 (en) | 1999-04-09 | 2003-05-19 | Fixation device and methods for engaging tissue |
US10/441,508 Expired - Fee Related US7666204B2 (en) | 1999-04-09 | 2003-05-19 | Multi-catheter steerable guiding system and methods of use |
US11/559,247 Abandoned US20070100356A1 (en) | 1999-04-09 | 2006-11-13 | Delivery device, systems and methods of use |
US11/623,585 Abandoned US20070129737A1 (en) | 1999-04-09 | 2007-01-16 | Fixation devices, systems and methods for engaging tissue |
US11/623,590 Expired - Lifetime US7736388B2 (en) | 1999-04-09 | 2007-01-16 | Fixation devices, systems and methods for engaging tissue |
US11/928,298 Expired - Lifetime US8409273B2 (en) | 1999-04-09 | 2007-10-30 | Multi-catheter steerable guiding system and methods of use |
US11/962,654 Expired - Lifetime US7655015B2 (en) | 1999-04-09 | 2007-12-21 | Fixation devices, systems and methods for engaging tissue |
US12/636,471 Expired - Lifetime US8500761B2 (en) | 1999-04-09 | 2009-12-11 | Fixation devices, systems and methods for engaging tissue |
US12/642,630 Expired - Fee Related US8057493B2 (en) | 1999-04-09 | 2009-12-18 | Fixation devices, systems and methods for engaging tissue |
US13/899,901 Expired - Fee Related US8740920B2 (en) | 1999-04-09 | 2013-05-22 | Fixation devices, systems and methods for engaging tissue |
US14/259,826 Expired - Lifetime US9510829B2 (en) | 1999-04-09 | 2014-04-23 | Fixation devices, systems and methods for engaging tissue |
US15/334,992 Abandoned US20170042546A1 (en) | 1999-04-09 | 2016-10-26 | Fixation devices, systems and methods for engaging tissue |
US15/483,523 Abandoned US20170239048A1 (en) | 1999-04-09 | 2017-04-10 | Fixation devices, systems and methods for engaging tissue |
US16/276,357 Abandoned US20190175182A1 (en) | 1999-04-09 | 2019-02-14 | Fixation devices, systems and methods for engaging tissue |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/441,687 Expired - Lifetime US7226467B2 (en) | 1999-04-09 | 2003-05-19 | Fixation device delivery catheter, systems and methods of use |
US10/441,531 Expired - Lifetime US7563267B2 (en) | 1999-04-09 | 2003-05-19 | Fixation device and methods for engaging tissue |
US10/441,508 Expired - Fee Related US7666204B2 (en) | 1999-04-09 | 2003-05-19 | Multi-catheter steerable guiding system and methods of use |
Family Applications After (11)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/623,585 Abandoned US20070129737A1 (en) | 1999-04-09 | 2007-01-16 | Fixation devices, systems and methods for engaging tissue |
US11/623,590 Expired - Lifetime US7736388B2 (en) | 1999-04-09 | 2007-01-16 | Fixation devices, systems and methods for engaging tissue |
US11/928,298 Expired - Lifetime US8409273B2 (en) | 1999-04-09 | 2007-10-30 | Multi-catheter steerable guiding system and methods of use |
US11/962,654 Expired - Lifetime US7655015B2 (en) | 1999-04-09 | 2007-12-21 | Fixation devices, systems and methods for engaging tissue |
US12/636,471 Expired - Lifetime US8500761B2 (en) | 1999-04-09 | 2009-12-11 | Fixation devices, systems and methods for engaging tissue |
US12/642,630 Expired - Fee Related US8057493B2 (en) | 1999-04-09 | 2009-12-18 | Fixation devices, systems and methods for engaging tissue |
US13/899,901 Expired - Fee Related US8740920B2 (en) | 1999-04-09 | 2013-05-22 | Fixation devices, systems and methods for engaging tissue |
US14/259,826 Expired - Lifetime US9510829B2 (en) | 1999-04-09 | 2014-04-23 | Fixation devices, systems and methods for engaging tissue |
US15/334,992 Abandoned US20170042546A1 (en) | 1999-04-09 | 2016-10-26 | Fixation devices, systems and methods for engaging tissue |
US15/483,523 Abandoned US20170239048A1 (en) | 1999-04-09 | 2017-04-10 | Fixation devices, systems and methods for engaging tissue |
US16/276,357 Abandoned US20190175182A1 (en) | 1999-04-09 | 2019-02-14 | Fixation devices, systems and methods for engaging tissue |
Country Status (4)
Country | Link |
---|---|
US (15) | US7226467B2 (en) |
EP (5) | EP3643249A1 (en) |
JP (1) | JP4611991B2 (en) |
WO (1) | WO2004103162A2 (en) |
Cited By (120)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080039743A1 (en) * | 2006-08-09 | 2008-02-14 | Coherex Medical, Inc. | Methods for determining characteristics of an internal tissue opening |
US20080147182A1 (en) * | 2006-12-19 | 2008-06-19 | Sorin Biomedica Cardio S.R.L. | Instrument and method for in situ deployment of cardiac valve prostheses |
US20080147180A1 (en) * | 2006-12-19 | 2008-06-19 | Sorin Biomedica Cardio S.R.L. | Device for in situ positioning of cardiac valve prostheses |
US20080262603A1 (en) * | 2007-04-23 | 2008-10-23 | Sorin Biomedica Cardio | Prosthetic heart valve holder |
US20090005776A1 (en) * | 2007-06-25 | 2009-01-01 | Terumo Kabushiki Kaisha | Medical device |
US20090018570A1 (en) * | 2007-07-12 | 2009-01-15 | Sorin Biomedica Cardio S.R.L. | Expandable prosthetic valve crimping device |
US20090069886A1 (en) * | 2007-09-07 | 2009-03-12 | Sorin Biomedica Cardio S.R.L. | Prosthetic valve delivery system including retrograde/antegrade approach |
US20090069809A1 (en) * | 2007-08-28 | 2009-03-12 | Terumo Kabushiki Kaisha | Pfo closing device |
US20090069810A1 (en) * | 2007-08-28 | 2009-03-12 | Terumo Kabushiki Kaisha | Biological tissue closing device |
US20090076525A1 (en) * | 2007-08-28 | 2009-03-19 | Terumo Kabushiki Kaisha | Pfo closing device |
US20090264719A1 (en) * | 2008-04-17 | 2009-10-22 | Glumetrics, Inc. | Sensor for percutaneous intravascular deployment without an indwelling cannula |
US7736388B2 (en) | 1999-04-09 | 2010-06-15 | Evalve, Inc. | Fixation devices, systems and methods for engaging tissue |
US20100174297A1 (en) * | 2005-01-21 | 2010-07-08 | Giovanni Speziali | Thorascopic Heart Valve Repair Method and Apparatus |
US7753923B2 (en) | 1999-04-09 | 2010-07-13 | Evalve, Inc. | Leaflet suturing |
US20100249661A1 (en) * | 2009-03-19 | 2010-09-30 | Sorin Biomedica Cardio S.r.I | Universal Valve Annulus Sizing Device |
US7811296B2 (en) | 1999-04-09 | 2010-10-12 | Evalve, Inc. | Fixation devices for variation in engagement of tissue |
US20100262043A1 (en) * | 2009-03-26 | 2010-10-14 | Sorin Group Usa, Inc. | Annuloplasty sizers for minimally invasive procedures |
US20100292782A1 (en) * | 2009-05-13 | 2010-11-18 | Sorin Biomedica Cardio S.R.L. | Device for the in situ delivery of heart valves |
US20100292784A1 (en) * | 2009-05-13 | 2010-11-18 | Sorin Biomedica Cardio S.r. I. | Device for the in situ delivery of heart valves |
US20100324595A1 (en) * | 2006-08-09 | 2010-12-23 | Coherex Medical, Inc. | Devices for reducing the size of an internal tissue opening |
US7981123B2 (en) * | 1997-09-12 | 2011-07-19 | Evalve, Inc. | Surgical device for connecting soft tissue |
US7981139B2 (en) | 2002-03-01 | 2011-07-19 | Evalve, Inc | Suture anchors and methods of use |
US8029518B2 (en) | 1999-04-09 | 2011-10-04 | Evalve, Inc. | Methods and devices for capturing and fixing leaflets in valve repair |
US8052592B2 (en) | 2005-09-27 | 2011-11-08 | Evalve, Inc. | Methods and devices for tissue grasping and assessment |
US8114154B2 (en) | 2007-09-07 | 2012-02-14 | Sorin Biomedica Cardio S.R.L. | Fluid-filled delivery system for in situ deployment of cardiac valve prostheses |
US8123703B2 (en) | 1999-04-09 | 2012-02-28 | Evalve, Inc. | Steerable access sheath and methods of use |
US8172839B2 (en) | 2006-02-24 | 2012-05-08 | Terumo Kabushiki Kaisha | PFO closing device |
US8216256B2 (en) | 1999-04-09 | 2012-07-10 | Evalve, Inc. | Detachment mechanism for implantable fixation devices |
US8343174B2 (en) | 1999-04-09 | 2013-01-01 | Evalve, Inc. | Locking mechanisms for fixation devices and methods of engaging tissue |
US8388680B2 (en) | 2006-10-18 | 2013-03-05 | Guided Delivery Systems, Inc. | Methods and devices for catheter advancement and delivery of substances therethrough |
US8467843B2 (en) | 2009-11-04 | 2013-06-18 | Glumetrics, Inc. | Optical sensor configuration for ratiometric correction of blood glucose measurement |
US8535262B2 (en) | 2007-11-21 | 2013-09-17 | Glumetrics, Inc. | Use of an equilibrium intravascular sensor to achieve tight glycemic control |
US8715589B2 (en) | 2009-09-30 | 2014-05-06 | Medtronic Minimed, Inc. | Sensors with thromboresistant coating |
US8738107B2 (en) | 2007-05-10 | 2014-05-27 | Medtronic Minimed, Inc. | Equilibrium non-consuming fluorescence sensor for real time intravascular glucose measurement |
US8758393B2 (en) | 2007-10-18 | 2014-06-24 | Neochord, Inc. | Minimally invasive repair of a valve leaflet in a beating heart |
US8838195B2 (en) | 2007-02-06 | 2014-09-16 | Medtronic Minimed, Inc. | Optical systems and methods for ratiometric measurement of blood glucose concentration |
US8979941B2 (en) | 2006-08-09 | 2015-03-17 | Coherex Medical, Inc. | Devices for reducing the size of an internal tissue opening |
US9044221B2 (en) | 2010-12-29 | 2015-06-02 | Neochord, Inc. | Exchangeable system for minimally invasive beating heart repair of heart valve leaflets |
US9161836B2 (en) | 2011-02-14 | 2015-10-20 | Sorin Group Italia S.R.L. | Sutureless anchoring device for cardiac valve prostheses |
US9168105B2 (en) | 2009-05-13 | 2015-10-27 | Sorin Group Italia S.R.L. | Device for surgical interventions |
US9173646B2 (en) | 2009-01-20 | 2015-11-03 | Guided Delivery Systems Inc. | Diagnostic catheters, guide catheters, visualization devices and chord manipulation devices, and related kits and methods |
US9248017B2 (en) | 2010-05-21 | 2016-02-02 | Sorin Group Italia S.R.L. | Support device for valve prostheses and corresponding kit |
US9289289B2 (en) | 2011-02-14 | 2016-03-22 | Sorin Group Italia S.R.L. | Sutureless anchoring device for cardiac valve prostheses |
US9364326B2 (en) | 2011-06-29 | 2016-06-14 | Mitralix Ltd. | Heart valve repair devices and methods |
US9486313B2 (en) | 2005-02-10 | 2016-11-08 | Sorin Group Italia S.R.L. | Cardiac valve prosthesis |
US9700412B2 (en) | 2014-06-26 | 2017-07-11 | Mitralix Ltd. | Heart valve repair devices for placement in ventricle and delivery systems for implanting heart valve repair devices |
US9848981B2 (en) | 2007-10-12 | 2017-12-26 | Mayo Foundation For Medical Education And Research | Expandable valve prosthesis with sealing mechanism |
US9867695B2 (en) | 2004-03-03 | 2018-01-16 | Sorin Group Italia S.R.L. | Minimally-invasive cardiac-valve prosthesis |
US10058321B2 (en) | 2015-03-05 | 2018-08-28 | Ancora Heart, Inc. | Devices and methods of visualizing and determining depth of penetration in cardiac tissue |
US10058313B2 (en) | 2011-05-24 | 2018-08-28 | Sorin Group Italia S.R.L. | Transapical valve replacement |
US10076415B1 (en) | 2018-01-09 | 2018-09-18 | Edwards Lifesciences Corporation | Native valve repair devices and procedures |
US10098733B2 (en) | 2008-12-23 | 2018-10-16 | Sorin Group Italia S.R.L. | Expandable prosthetic valve having anchoring appendages |
US10105222B1 (en) | 2018-01-09 | 2018-10-23 | Edwards Lifesciences Corporation | Native valve repair devices and procedures |
US10111751B1 (en) | 2018-01-09 | 2018-10-30 | Edwards Lifesciences Corporation | Native valve repair devices and procedures |
US10123873B1 (en) | 2018-01-09 | 2018-11-13 | Edwards Lifesciences Corporation | Native valve repair devices and procedures |
US10130475B1 (en) | 2018-01-09 | 2018-11-20 | Edwards Lifesciences Corporation | Native valve repair devices and procedures |
US10136993B1 (en) | 2018-01-09 | 2018-11-27 | Edwards Lifesciences Corporation | Native valve repair devices and procedures |
US10159570B1 (en) | 2018-01-09 | 2018-12-25 | Edwards Lifesciences Corporation | Native valve repair devices and procedures |
US10188392B2 (en) | 2014-12-19 | 2019-01-29 | Abbott Cardiovascular Systems, Inc. | Grasping for tissue repair |
US10231837B1 (en) | 2018-01-09 | 2019-03-19 | Edwards Lifesciences Corporation | Native valve repair devices and procedures |
US10238493B1 (en) * | 2018-01-09 | 2019-03-26 | Edwards Lifesciences Corporation | Native valve repair devices and procedures |
US10238494B2 (en) | 2015-06-29 | 2019-03-26 | Evalve, Inc. | Self-aligning radiopaque ring |
US10238495B2 (en) | 2015-10-09 | 2019-03-26 | Evalve, Inc. | Delivery catheter handle and methods of use |
US10245144B1 (en) | 2018-01-09 | 2019-04-02 | Edwards Lifesciences Corporation | Native valve repair devices and procedures |
US10314586B2 (en) | 2016-12-13 | 2019-06-11 | Evalve, Inc. | Rotatable device and method for fixing tricuspid valve tissue |
US10363138B2 (en) | 2016-11-09 | 2019-07-30 | Evalve, Inc. | Devices for adjusting the curvature of cardiac valve structures |
US10363392B2 (en) | 2008-05-07 | 2019-07-30 | Ancora Heart, Inc. | Deflectable guide |
US10376673B2 (en) | 2015-06-19 | 2019-08-13 | Evalve, Inc. | Catheter guiding system and methods |
US10390943B2 (en) | 2014-03-17 | 2019-08-27 | Evalve, Inc. | Double orifice device for transcatheter mitral valve replacement |
US10398553B2 (en) | 2016-11-11 | 2019-09-03 | Evalve, Inc. | Opposing disk device for grasping cardiac valve tissue |
US10413408B2 (en) | 2015-08-06 | 2019-09-17 | Evalve, Inc. | Delivery catheter systems, methods, and devices |
US10426616B2 (en) | 2016-11-17 | 2019-10-01 | Evalve, Inc. | Cardiac implant delivery system |
US10507109B2 (en) | 2018-01-09 | 2019-12-17 | Edwards Lifesciences Corporation | Native valve repair devices and procedures |
US10507108B2 (en) | 2017-04-18 | 2019-12-17 | Edwards Lifesciences Corporation | Heart valve sealing devices and delivery devices therefor |
US10517726B2 (en) | 2015-05-14 | 2019-12-31 | Edwards Lifesciences Corporation | Heart valve sealing devices and delivery devices therefor |
US10524912B2 (en) | 2015-04-02 | 2020-01-07 | Abbott Cardiovascular Systems, Inc. | Tissue fixation devices and methods |
US10524792B2 (en) | 2014-12-04 | 2020-01-07 | Edwards Lifesciences Corporation | Percutaneous clip for repairing a heart valve |
EP3242609B1 (en) | 2015-01-05 | 2020-02-12 | Strait Access Technologies Holdings (PTY) LTD | Heart valve leaflet capture device |
US10588620B2 (en) | 2018-03-23 | 2020-03-17 | Neochord, Inc. | Device for suture attachment for minimally invasive heart valve repair |
US10631871B2 (en) | 2003-05-19 | 2020-04-28 | Evalve, Inc. | Fixation devices, systems and methods for engaging tissue |
US10660625B2 (en) | 2014-11-04 | 2020-05-26 | Abbott Cardiovascular Systems, Inc. | One-way actuator knob |
US10667815B2 (en) | 2015-07-21 | 2020-06-02 | Evalve, Inc. | Tissue grasping devices and related methods |
US10667804B2 (en) | 2014-03-17 | 2020-06-02 | Evalve, Inc. | Mitral valve fixation device removal devices and methods |
US10667912B2 (en) | 2017-04-18 | 2020-06-02 | Edwards Lifesciences Corporation | Heart valve sealing devices and delivery devices therefor |
US10695178B2 (en) | 2011-06-01 | 2020-06-30 | Neochord, Inc. | Minimally invasive repair of heart valve leaflets |
US10736632B2 (en) | 2016-07-06 | 2020-08-11 | Evalve, Inc. | Methods and devices for valve clip excision |
US10743876B2 (en) | 2011-09-13 | 2020-08-18 | Abbott Cardiovascular Systems Inc. | System for fixation of leaflets of a heart valve |
US10765517B2 (en) | 2015-10-01 | 2020-09-08 | Neochord, Inc. | Ringless web for repair of heart valves |
US10779837B2 (en) | 2016-12-08 | 2020-09-22 | Evalve, Inc. | Adjustable arm device for grasping tissues |
US20200337842A1 (en) * | 2018-01-09 | 2020-10-29 | Edwards Lifesciences Corporation | Native valve repair devices and procedures |
US10945844B2 (en) | 2018-10-10 | 2021-03-16 | Edwards Lifesciences Corporation | Heart valve sealing devices and delivery devices therefor |
US10959846B2 (en) | 2017-05-10 | 2021-03-30 | Edwards Lifesciences Corporation | Mitral valve spacer device |
US10966709B2 (en) | 2018-09-07 | 2021-04-06 | Neochord, Inc. | Device for suture attachment for minimally invasive heart valve repair |
US10973639B2 (en) | 2018-01-09 | 2021-04-13 | Edwards Lifesciences Corporation | Native valve repair devices and procedures |
US20210145582A1 (en) * | 2017-01-05 | 2021-05-20 | Edwards Lifesciences Corporation | Heart valve coaptation device |
US11026791B2 (en) | 2018-03-20 | 2021-06-08 | Medtronic Vascular, Inc. | Flexible canopy valve repair systems and methods of use |
US11051940B2 (en) | 2017-09-07 | 2021-07-06 | Edwards Lifesciences Corporation | Prosthetic spacer device for heart valve |
US11065119B2 (en) | 2017-05-12 | 2021-07-20 | Evalve, Inc. | Long arm valve repair clip |
US11071564B2 (en) | 2016-10-05 | 2021-07-27 | Evalve, Inc. | Cardiac valve cutting device |
US11173030B2 (en) | 2018-05-09 | 2021-11-16 | Neochord, Inc. | Suture length adjustment for minimally invasive heart valve repair |
US11207181B2 (en) | 2018-04-18 | 2021-12-28 | Edwards Lifesciences Corporation | Heart valve sealing devices and delivery devices therefor |
US11253360B2 (en) | 2018-05-09 | 2022-02-22 | Neochord, Inc. | Low profile tissue anchor for minimally invasive heart valve repair |
US11285003B2 (en) | 2018-03-20 | 2022-03-29 | Medtronic Vascular, Inc. | Prolapse prevention device and methods of use thereof |
US11304715B2 (en) | 2004-09-27 | 2022-04-19 | Evalve, Inc. | Methods and devices for tissue grasping and assessment |
US11376126B2 (en) | 2019-04-16 | 2022-07-05 | Neochord, Inc. | Transverse helical cardiac anchor for minimally invasive heart valve repair |
US11389297B2 (en) | 2018-04-12 | 2022-07-19 | Edwards Lifesciences Corporation | Mitral valve spacer device |
US11504231B2 (en) | 2018-05-23 | 2022-11-22 | Corcym S.R.L. | Cardiac valve prosthesis |
US11504064B2 (en) * | 2016-07-28 | 2022-11-22 | Evalve, Inc. | Systems and methods for intra-procedural cardiac pressure monitoring |
US11589989B2 (en) | 2017-03-31 | 2023-02-28 | Neochord, Inc. | Minimally invasive heart valve repair in a beating heart |
US11672524B2 (en) | 2019-07-15 | 2023-06-13 | Ancora Heart, Inc. | Devices and methods for tether cutting |
US11806231B2 (en) | 2020-08-24 | 2023-11-07 | Edwards Lifesciences Corporation | Commissure marker for a prosthetic heart valve |
US11819406B2 (en) | 2018-05-23 | 2023-11-21 | Corcym S.R.L. | Loading system for an implantable prosthesis and related loading method |
US11944559B2 (en) | 2020-08-31 | 2024-04-02 | Edwards Lifesciences Corporation | Systems and methods for crimping and device preparation |
US11969347B2 (en) | 2020-05-13 | 2024-04-30 | Evalve, Inc. | Methods, systems, and devices for deploying an implant |
US11992397B2 (en) | 2018-05-23 | 2024-05-28 | Corcym S.R.L. | Holder for heart valve prosthesis, a storage arrangement for a heart valve prosthesis, and a crimping kit and method |
US12048448B2 (en) | 2020-05-06 | 2024-07-30 | Evalve, Inc. | Leaflet grasping and cutting device |
US12048624B2 (en) | 2019-07-15 | 2024-07-30 | Evalve, Inc. | Independent proximal element actuation methods |
US12083013B2 (en) | 2017-10-07 | 2024-09-10 | Corcym S.R.L. | Bendable cardiac surgery instruments |
US12102531B2 (en) | 2018-10-22 | 2024-10-01 | Evalve, Inc. | Tissue cutting systems, devices and methods |
US12121672B2 (en) | 2020-10-23 | 2024-10-22 | Edwards Lifesciences Corporation | Advanced sheath patterns |
Families Citing this family (1292)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6050936A (en) | 1997-01-02 | 2000-04-18 | Myocor, Inc. | Heart wall tension reduction apparatus |
US7883539B2 (en) | 1997-01-02 | 2011-02-08 | Edwards Lifesciences Llc | Heart wall tension reduction apparatus and method |
US6332893B1 (en) * | 1997-12-17 | 2001-12-25 | Myocor, Inc. | Valve to myocardium tension members device and method |
US7491232B2 (en) | 1998-09-18 | 2009-02-17 | Aptus Endosystems, Inc. | Catheter-based fastener implantation apparatus and methods with implantation force resolution |
US6260552B1 (en) | 1998-07-29 | 2001-07-17 | Myocor, Inc. | Transventricular implant tools and devices |
US10327743B2 (en) * | 1999-04-09 | 2019-06-25 | Evalve, Inc. | Device and methods for endoscopic annuloplasty |
US6488689B1 (en) | 1999-05-20 | 2002-12-03 | Aaron V. Kaplan | Methods and apparatus for transpericardial left atrial appendage closure |
US7662161B2 (en) | 1999-09-13 | 2010-02-16 | Rex Medical, L.P | Vascular hole closure device |
US9579091B2 (en) | 2000-01-05 | 2017-02-28 | Integrated Vascular Systems, Inc. | Closure system and methods of use |
US8758400B2 (en) | 2000-01-05 | 2014-06-24 | Integrated Vascular Systems, Inc. | Closure system and methods of use |
US6461364B1 (en) | 2000-01-05 | 2002-10-08 | Integrated Vascular Systems, Inc. | Vascular sheath with bioabsorbable puncture site closure apparatus and methods of use |
US7842068B2 (en) | 2000-12-07 | 2010-11-30 | Integrated Vascular Systems, Inc. | Apparatus and methods for providing tactile feedback while delivering a closure device |
US6391048B1 (en) | 2000-01-05 | 2002-05-21 | Integrated Vascular Systems, Inc. | Integrated vascular device with puncture site closure component and sealant and methods of use |
US9522217B2 (en) | 2000-03-15 | 2016-12-20 | Orbusneich Medical, Inc. | Medical device with coating for capturing genetically-altered cells and methods for using same |
US8088060B2 (en) | 2000-03-15 | 2012-01-03 | Orbusneich Medical, Inc. | Progenitor endothelial cell capturing with a drug eluting implantable medical device |
WO2002001999A2 (en) * | 2000-06-30 | 2002-01-10 | Viacor, Incorporated | Method and apparatus for performing a procedure on a cardiac valve |
JP2004506469A (en) | 2000-08-18 | 2004-03-04 | アトリテック, インコーポレイテッド | Expandable implantable device for filtering blood flow from the atrial appendage |
DE60144328D1 (en) | 2000-09-08 | 2011-05-12 | Abbott Vascular Inc | Surgical clamp |
US6626918B1 (en) | 2000-10-06 | 2003-09-30 | Medical Technology Group | Apparatus and methods for positioning a vascular sheath |
US6723038B1 (en) | 2000-10-06 | 2004-04-20 | Myocor, Inc. | Methods and devices for improving mitral valve function |
US6602286B1 (en) * | 2000-10-26 | 2003-08-05 | Ernst Peter Strecker | Implantable valve system |
US7905900B2 (en) | 2003-01-30 | 2011-03-15 | Integrated Vascular Systems, Inc. | Clip applier and methods of use |
US6623510B2 (en) | 2000-12-07 | 2003-09-23 | Integrated Vascular Systems, Inc. | Closure device and methods for making and using them |
US7211101B2 (en) | 2000-12-07 | 2007-05-01 | Abbott Vascular Devices | Methods for manufacturing a clip and clip |
US6695867B2 (en) | 2002-02-21 | 2004-02-24 | Integrated Vascular Systems, Inc. | Plunger apparatus and methods for delivering a closure device |
US8690910B2 (en) | 2000-12-07 | 2014-04-08 | Integrated Vascular Systems, Inc. | Closure device and methods for making and using them |
US8202315B2 (en) | 2001-04-24 | 2012-06-19 | Mitralign, Inc. | Catheter-based annuloplasty using ventricularly positioned catheter |
IES20010547A2 (en) | 2001-06-07 | 2002-12-11 | Christy Cummins | Surgical Staple |
US6575971B2 (en) * | 2001-11-15 | 2003-06-10 | Quantum Cor, Inc. | Cardiac valve leaflet stapler device and methods thereof |
US8231639B2 (en) | 2001-11-28 | 2012-07-31 | Aptus Endosystems, Inc. | Systems and methods for attaching a prosthesis within a body lumen or hollow organ |
CA2464048C (en) * | 2001-11-28 | 2010-06-15 | Lee Bolduc | Endovascular aneurysm repair system |
US20070073389A1 (en) * | 2001-11-28 | 2007-03-29 | Aptus Endosystems, Inc. | Endovascular aneurysm devices, systems, and methods |
US20050070992A1 (en) | 2001-11-28 | 2005-03-31 | Aptus Endosystems, Inc. | Prosthesis systems and methods sized and configured for the receipt and retention of fasteners |
US20090138072A1 (en) * | 2001-11-28 | 2009-05-28 | Michael William Gendreau | Devices, systems, and methods for endovascular staple and/or prosthesis delivery and implantation |
US9320503B2 (en) * | 2001-11-28 | 2016-04-26 | Medtronic Vascular, Inc. | Devices, system, and methods for guiding an operative tool into an interior body region |
US20050177180A1 (en) | 2001-11-28 | 2005-08-11 | Aptus Endosystems, Inc. | Devices, systems, and methods for supporting tissue and/or structures within a hollow body organ |
US7147657B2 (en) | 2003-10-23 | 2006-12-12 | Aptus Endosystems, Inc. | Prosthesis delivery systems and methods |
US20110087320A1 (en) * | 2001-11-28 | 2011-04-14 | Aptus Endosystems, Inc. | Devices, Systems, and Methods for Prosthesis Delivery and Implantation, Including a Prosthesis Assembly |
US20090112302A1 (en) * | 2001-11-28 | 2009-04-30 | Josh Stafford | Devices, systems, and methods for endovascular staple and/or prosthesis delivery and implantation |
US20030120341A1 (en) * | 2001-12-21 | 2003-06-26 | Hani Shennib | Devices and methods of repairing cardiac valves |
US6764510B2 (en) | 2002-01-09 | 2004-07-20 | Myocor, Inc. | Devices and methods for heart valve treatment |
WO2003105670A2 (en) | 2002-01-10 | 2003-12-24 | Guided Delivery Systems, Inc. | Devices and methods for heart valve repair |
US6752828B2 (en) * | 2002-04-03 | 2004-06-22 | Scimed Life Systems, Inc. | Artificial valve |
US7007698B2 (en) * | 2002-04-03 | 2006-03-07 | Boston Scientific Corporation | Body lumen closure |
WO2003101310A1 (en) | 2002-06-04 | 2003-12-11 | Christy Cummins | Blood vessel closure clip and delivery device |
US20060122633A1 (en) | 2002-06-13 | 2006-06-08 | John To | Methods and devices for termination |
US7666193B2 (en) | 2002-06-13 | 2010-02-23 | Guided Delivery Sytems, Inc. | Delivery devices and methods for heart valve repair |
US20040243227A1 (en) * | 2002-06-13 | 2004-12-02 | Guided Delivery Systems, Inc. | Delivery devices and methods for heart valve repair |
US8287555B2 (en) | 2003-02-06 | 2012-10-16 | Guided Delivery Systems, Inc. | Devices and methods for heart valve repair |
US7753924B2 (en) * | 2003-09-04 | 2010-07-13 | Guided Delivery Systems, Inc. | Delivery devices and methods for heart valve repair |
US7883538B2 (en) | 2002-06-13 | 2011-02-08 | Guided Delivery Systems Inc. | Methods and devices for termination |
US8641727B2 (en) | 2002-06-13 | 2014-02-04 | Guided Delivery Systems, Inc. | Devices and methods for heart valve repair |
US7753922B2 (en) * | 2003-09-04 | 2010-07-13 | Guided Delivery Systems, Inc. | Devices and methods for cardiac annulus stabilization and treatment |
US9949829B2 (en) | 2002-06-13 | 2018-04-24 | Ancora Heart, Inc. | Delivery devices and methods for heart valve repair |
US7758637B2 (en) | 2003-02-06 | 2010-07-20 | Guided Delivery Systems, Inc. | Delivery devices and methods for heart valve repair |
US8016881B2 (en) * | 2002-07-31 | 2011-09-13 | Icon Interventional Systems, Inc. | Sutures and surgical staples for anastamoses, wound closures, and surgical closures |
US8172856B2 (en) | 2002-08-02 | 2012-05-08 | Cedars-Sinai Medical Center | Methods and apparatus for atrioventricular valve repair |
ATE464028T1 (en) | 2002-08-29 | 2010-04-15 | St Jude Medical Cardiology Div | IMPLANTABLE DEVICES FOR CONTROLLING THE INNER DIAMETER OF AN OPENING IN THE BODY |
US8758372B2 (en) | 2002-08-29 | 2014-06-24 | St. Jude Medical, Cardiology Division, Inc. | Implantable devices for controlling the size and shape of an anatomical structure or lumen |
US7087064B1 (en) * | 2002-10-15 | 2006-08-08 | Advanced Cardiovascular Systems, Inc. | Apparatuses and methods for heart valve repair |
US8979923B2 (en) | 2002-10-21 | 2015-03-17 | Mitralign, Inc. | Tissue fastening systems and methods utilizing magnetic guidance |
US8460371B2 (en) | 2002-10-21 | 2013-06-11 | Mitralign, Inc. | Method and apparatus for performing catheter-based annuloplasty using local plications |
CA2502967A1 (en) * | 2002-10-24 | 2004-05-06 | Boston Scientific Limited | Venous valve apparatus and method |
US8317821B1 (en) * | 2002-11-04 | 2012-11-27 | Boston Scientific Scimed, Inc. | Release mechanism |
US7112219B2 (en) | 2002-11-12 | 2006-09-26 | Myocor, Inc. | Devices and methods for heart valve treatment |
US7404824B1 (en) * | 2002-11-15 | 2008-07-29 | Advanced Cardiovascular Systems, Inc. | Valve aptation assist device |
US9149602B2 (en) | 2005-04-22 | 2015-10-06 | Advanced Cardiovascular Systems, Inc. | Dual needle delivery system |
US7335213B1 (en) | 2002-11-15 | 2008-02-26 | Abbott Cardiovascular Systems Inc. | Apparatus and methods for heart valve repair |
US7485143B2 (en) * | 2002-11-15 | 2009-02-03 | Abbott Cardiovascular Systems Inc. | Apparatuses and methods for heart valve repair |
US7981152B1 (en) | 2004-12-10 | 2011-07-19 | Advanced Cardiovascular Systems, Inc. | Vascular delivery system for accessing and delivering devices into coronary sinus and other vascular sites |
US8187324B2 (en) | 2002-11-15 | 2012-05-29 | Advanced Cardiovascular Systems, Inc. | Telescoping apparatus for delivering and adjusting a medical device in a vessel |
US6945957B2 (en) * | 2002-12-30 | 2005-09-20 | Scimed Life Systems, Inc. | Valve treatment catheter and methods |
US8905937B2 (en) | 2009-02-26 | 2014-12-09 | Integrated Vascular Systems, Inc. | Methods and apparatus for locating a surface of a body lumen |
US8202293B2 (en) | 2003-01-30 | 2012-06-19 | Integrated Vascular Systems, Inc. | Clip applier and methods of use |
US8758398B2 (en) | 2006-09-08 | 2014-06-24 | Integrated Vascular Systems, Inc. | Apparatus and method for delivering a closure element |
US8398656B2 (en) | 2003-01-30 | 2013-03-19 | Integrated Vascular Systems, Inc. | Clip applier and methods of use |
US8821534B2 (en) | 2010-12-06 | 2014-09-02 | Integrated Vascular Systems, Inc. | Clip applier having improved hemostasis and methods of use |
WO2004089253A1 (en) * | 2003-04-01 | 2004-10-21 | Cook Incorporated | Percutaneously deployed vascular valves |
US20070084897A1 (en) | 2003-05-20 | 2007-04-19 | Shelton Frederick E Iv | Articulating surgical stapling instrument incorporating a two-piece e-beam firing mechanism |
US9060770B2 (en) | 2003-05-20 | 2015-06-23 | Ethicon Endo-Surgery, Inc. | Robotically-driven surgical instrument with E-beam driver |
US7998112B2 (en) | 2003-09-30 | 2011-08-16 | Abbott Cardiovascular Systems Inc. | Deflectable catheter assembly and method of making same |
JP5074765B2 (en) * | 2003-10-09 | 2012-11-14 | センターハート・インコーポレイテッド | Apparatus and method for tissue ligation |
US20050273138A1 (en) * | 2003-12-19 | 2005-12-08 | Guided Delivery Systems, Inc. | Devices and methods for anchoring tissue |
US8128681B2 (en) | 2003-12-19 | 2012-03-06 | Boston Scientific Scimed, Inc. | Venous valve apparatus, system, and method |
US7854761B2 (en) | 2003-12-19 | 2010-12-21 | Boston Scientific Scimed, Inc. | Methods for venous valve replacement with a catheter |
US20050137694A1 (en) | 2003-12-23 | 2005-06-23 | Haug Ulrich R. | Methods and apparatus for endovascularly replacing a patient's heart valve |
US8864822B2 (en) | 2003-12-23 | 2014-10-21 | Mitralign, Inc. | Devices and methods for introducing elements into tissue |
US7780725B2 (en) | 2004-06-16 | 2010-08-24 | Sadra Medical, Inc. | Everting heart valve |
US8328868B2 (en) | 2004-11-05 | 2012-12-11 | Sadra Medical, Inc. | Medical devices and delivery systems for delivering medical devices |
US7381219B2 (en) | 2003-12-23 | 2008-06-03 | Sadra Medical, Inc. | Low profile heart valve and delivery system |
US8182528B2 (en) | 2003-12-23 | 2012-05-22 | Sadra Medical, Inc. | Locking heart valve anchor |
US8840663B2 (en) | 2003-12-23 | 2014-09-23 | Sadra Medical, Inc. | Repositionable heart valve method |
US20120041550A1 (en) | 2003-12-23 | 2012-02-16 | Sadra Medical, Inc. | Methods and Apparatus for Endovascular Heart Valve Replacement Comprising Tissue Grasping Elements |
US8343213B2 (en) | 2003-12-23 | 2013-01-01 | Sadra Medical, Inc. | Leaflet engagement elements and methods for use thereof |
US20050137687A1 (en) | 2003-12-23 | 2005-06-23 | Sadra Medical | Heart valve anchor and method |
US8603160B2 (en) | 2003-12-23 | 2013-12-10 | Sadra Medical, Inc. | Method of using a retrievable heart valve anchor with a sheath |
US8579962B2 (en) | 2003-12-23 | 2013-11-12 | Sadra Medical, Inc. | Methods and apparatus for performing valvuloplasty |
US7959666B2 (en) | 2003-12-23 | 2011-06-14 | Sadra Medical, Inc. | Methods and apparatus for endovascularly replacing a heart valve |
US11278398B2 (en) | 2003-12-23 | 2022-03-22 | Boston Scientific Scimed, Inc. | Methods and apparatus for endovascular heart valve replacement comprising tissue grasping elements |
US9005273B2 (en) | 2003-12-23 | 2015-04-14 | Sadra Medical, Inc. | Assessing the location and performance of replacement heart valves |
US7445631B2 (en) | 2003-12-23 | 2008-11-04 | Sadra Medical, Inc. | Methods and apparatus for endovascularly replacing a patient's heart valve |
US8828078B2 (en) | 2003-12-23 | 2014-09-09 | Sadra Medical, Inc. | Methods and apparatus for endovascular heart valve replacement comprising tissue grasping elements |
US7431726B2 (en) * | 2003-12-23 | 2008-10-07 | Mitralign, Inc. | Tissue fastening systems and methods utilizing magnetic guidance |
US9526609B2 (en) | 2003-12-23 | 2016-12-27 | Boston Scientific Scimed, Inc. | Methods and apparatus for endovascularly replacing a patient's heart valve |
EP1734903B2 (en) | 2004-03-11 | 2022-01-19 | Percutaneous Cardiovascular Solutions Pty Limited | Percutaneous heart valve prosthesis |
US20050240202A1 (en) * | 2004-04-21 | 2005-10-27 | Hani Shennib | Devices and methods of repairing cardiac valves |
US7641686B2 (en) * | 2004-04-23 | 2010-01-05 | Direct Flow Medical, Inc. | Percutaneous heart valve with stentless support |
CA2828619C (en) | 2004-05-05 | 2018-09-25 | Direct Flow Medical, Inc. | Prosthetic valve with an elastic stent and a sealing structure |
US20050267520A1 (en) * | 2004-05-12 | 2005-12-01 | Modesitt D B | Access and closure device and method |
IES20040368A2 (en) | 2004-05-25 | 2005-11-30 | James E Coleman | Surgical stapler |
US8215531B2 (en) | 2004-07-28 | 2012-07-10 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument having a medical substance dispenser |
US9072535B2 (en) | 2011-05-27 | 2015-07-07 | Ethicon Endo-Surgery, Inc. | Surgical stapling instruments with rotatable staple deployment arrangements |
US11998198B2 (en) | 2004-07-28 | 2024-06-04 | Cilag Gmbh International | Surgical stapling instrument incorporating a two-piece E-beam firing mechanism |
US11896225B2 (en) | 2004-07-28 | 2024-02-13 | Cilag Gmbh International | Staple cartridge comprising a pan |
US7566343B2 (en) | 2004-09-02 | 2009-07-28 | Boston Scientific Scimed, Inc. | Cardiac valve, system, and method |
WO2006028898A2 (en) * | 2004-09-07 | 2006-03-16 | Kenneth Binmoeller | Endoscopic device with independently actuated legs |
US7261725B2 (en) * | 2005-01-13 | 2007-08-28 | Binmoeller Kenneth F | Endoscopic device with independently actuated legs |
EP1796597B1 (en) * | 2004-09-14 | 2013-01-09 | Edwards Lifesciences AG | Device for treatment of heart valve regurgitation |
US7819886B2 (en) | 2004-10-08 | 2010-10-26 | Tyco Healthcare Group Lp | Endoscopic surgical clip applier |
US8409222B2 (en) | 2004-10-08 | 2013-04-02 | Covidien Lp | Endoscopic surgical clip applier |
EP2875786B1 (en) | 2004-10-08 | 2017-02-01 | Covidien LP | Apparatus for applying surgical clips |
US9763668B2 (en) | 2004-10-08 | 2017-09-19 | Covidien Lp | Endoscopic surgical clip applier |
ES2547214T3 (en) | 2004-10-08 | 2015-10-02 | Covidien Lp | An endoscopic clip or surgical clip applicator |
US9271766B2 (en) | 2004-10-26 | 2016-03-01 | P Tech, Llc | Devices and methods for stabilizing tissue and implants |
US9173647B2 (en) | 2004-10-26 | 2015-11-03 | P Tech, Llc | Tissue fixation system |
US9463012B2 (en) | 2004-10-26 | 2016-10-11 | P Tech, Llc | Apparatus for guiding and positioning an implant |
DE102004057366B4 (en) * | 2004-11-27 | 2009-04-09 | Erbe Elektromedizin Gmbh | Device for a water jet surgical device |
JP5219518B2 (en) | 2004-12-09 | 2013-06-26 | ザ ファウンドリー, エルエルシー | Aortic valve repair |
DE102005003632A1 (en) | 2005-01-20 | 2006-08-17 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Catheter for the transvascular implantation of heart valve prostheses |
US20060173490A1 (en) | 2005-02-01 | 2006-08-03 | Boston Scientific Scimed, Inc. | Filter system and method |
US7854755B2 (en) | 2005-02-01 | 2010-12-21 | Boston Scientific Scimed, Inc. | Vascular catheter, system, and method |
US7771439B2 (en) * | 2005-02-04 | 2010-08-10 | Symmetry Medical New Bedford Inc | Gastric band insertion instrument |
US7878966B2 (en) | 2005-02-04 | 2011-02-01 | Boston Scientific Scimed, Inc. | Ventricular assist and support device |
EP3967269A3 (en) * | 2005-02-07 | 2022-07-13 | Evalve, Inc. | Systems and devices for cardiac valve repair |
US7670368B2 (en) | 2005-02-07 | 2010-03-02 | Boston Scientific Scimed, Inc. | Venous valve apparatus, system, and method |
WO2011034628A1 (en) | 2005-02-07 | 2011-03-24 | Evalve, Inc. | Methods, systems and devices for cardiac valve repair |
US7780722B2 (en) | 2005-02-07 | 2010-08-24 | Boston Scientific Scimed, Inc. | Venous valve apparatus, system, and method |
US7867274B2 (en) | 2005-02-23 | 2011-01-11 | Boston Scientific Scimed, Inc. | Valve apparatus, system and method |
US9107899B2 (en) | 2005-03-03 | 2015-08-18 | Icon Medical Corporation | Metal alloys for medical devices |
US7540995B2 (en) | 2005-03-03 | 2009-06-02 | Icon Medical Corp. | Process for forming an improved metal alloy stent |
WO2006097931A2 (en) | 2005-03-17 | 2006-09-21 | Valtech Cardio, Ltd. | Mitral valve treatment techniques |
EP1861045B1 (en) * | 2005-03-25 | 2015-03-04 | St. Jude Medical, Cardiology Division, Inc. | Apparatus for controlling the internal circumference of an anatomic orifice or lumen |
US7918865B2 (en) | 2005-04-07 | 2011-04-05 | Sentreheart, Inc. | Apparatus and method for the ligation of tissue |
US7722666B2 (en) | 2005-04-15 | 2010-05-25 | Boston Scientific Scimed, Inc. | Valve apparatus, system and method |
SE531468C2 (en) | 2005-04-21 | 2009-04-14 | Edwards Lifesciences Ag | An apparatus for controlling blood flow |
US8333777B2 (en) | 2005-04-22 | 2012-12-18 | Benvenue Medical, Inc. | Catheter-based tissue remodeling devices and methods |
US7962208B2 (en) | 2005-04-25 | 2011-06-14 | Cardiac Pacemakers, Inc. | Method and apparatus for pacing during revascularization |
US20060247672A1 (en) * | 2005-04-27 | 2006-11-02 | Vidlund Robert M | Devices and methods for pericardial access |
US8241325B2 (en) | 2005-05-12 | 2012-08-14 | Arstasis, Inc. | Access and closure device and method |
CA2610669A1 (en) | 2005-06-07 | 2006-12-14 | Direct Flow Medical, Inc. | Stentless aortic valve replacement with high radial strength |
US8012198B2 (en) | 2005-06-10 | 2011-09-06 | Boston Scientific Scimed, Inc. | Venous valve, system, and method |
US7780723B2 (en) | 2005-06-13 | 2010-08-24 | Edwards Lifesciences Corporation | Heart valve delivery system |
US8926633B2 (en) | 2005-06-24 | 2015-01-06 | Abbott Laboratories | Apparatus and method for delivering a closure element |
US8313497B2 (en) | 2005-07-01 | 2012-11-20 | Abbott Laboratories | Clip applier and methods of use |
US8951285B2 (en) | 2005-07-05 | 2015-02-10 | Mitralign, Inc. | Tissue anchor, anchoring system and methods of using the same |
WO2007016166A2 (en) * | 2005-07-27 | 2007-02-08 | Cook Critical Care Incorporated | Stent/graft device and method for open surgical placement |
US8784336B2 (en) | 2005-08-24 | 2014-07-22 | C. R. Bard, Inc. | Stylet apparatuses and methods of manufacture |
US9237891B2 (en) | 2005-08-31 | 2016-01-19 | Ethicon Endo-Surgery, Inc. | Robotically-controlled surgical stapling devices that produce formed staples having different lengths |
US7934630B2 (en) | 2005-08-31 | 2011-05-03 | Ethicon Endo-Surgery, Inc. | Staple cartridges for forming staples having differing formed staple heights |
US7669746B2 (en) | 2005-08-31 | 2010-03-02 | Ethicon Endo-Surgery, Inc. | Staple cartridges for forming staples having differing formed staple heights |
US10159482B2 (en) | 2005-08-31 | 2018-12-25 | Ethicon Llc | Fastener cartridge assembly comprising a fixed anvil and different staple heights |
US11484312B2 (en) | 2005-08-31 | 2022-11-01 | Cilag Gmbh International | Staple cartridge comprising a staple driver arrangement |
US11246590B2 (en) | 2005-08-31 | 2022-02-15 | Cilag Gmbh International | Staple cartridge including staple drivers having different unfired heights |
US8968379B2 (en) * | 2005-09-02 | 2015-03-03 | Medtronic Vascular, Inc. | Stent delivery system with multiple evenly spaced pullwires |
US9259267B2 (en) | 2005-09-06 | 2016-02-16 | W.L. Gore & Associates, Inc. | Devices and methods for treating cardiac tissue |
US20070060951A1 (en) * | 2005-09-15 | 2007-03-15 | Shannon Francis L | Atrial tissue fixation device |
US7569071B2 (en) | 2005-09-21 | 2009-08-04 | Boston Scientific Scimed, Inc. | Venous valve, system, and method with sinus pocket |
US20070123934A1 (en) * | 2005-09-26 | 2007-05-31 | Whisenant Brian K | Delivery system for patent foramen ovale closure device |
CN101466316B (en) | 2005-10-20 | 2012-06-27 | 阿普特斯内系统公司 | Devices systems and methods for prosthesis delivery and implantation including the use of a fastener tool |
JP4976408B2 (en) * | 2005-11-02 | 2012-07-18 | アイ.ビー.アイ イスラエル バイオメディカル イノベーションズ リミテッド | Surgical fastener extraction device |
US20070106317A1 (en) | 2005-11-09 | 2007-05-10 | Shelton Frederick E Iv | Hydraulically and electrically actuated articulation joints for surgical instruments |
US10362959B2 (en) | 2005-12-06 | 2019-07-30 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and method for assessing the proximity of an electrode to tissue in a body |
US8728077B2 (en) * | 2005-12-06 | 2014-05-20 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Handle set for ablation catheter with indicators of catheter and tissue parameters |
US8406866B2 (en) | 2005-12-06 | 2013-03-26 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and method for assessing coupling between an electrode and tissue |
US8403925B2 (en) | 2006-12-06 | 2013-03-26 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and method for assessing lesions in tissue |
WO2007070361A2 (en) | 2005-12-06 | 2007-06-21 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Assessment of electrode coupling for tissue ablation |
US20090177111A1 (en) * | 2006-12-06 | 2009-07-09 | Miller Stephan P | System and method for displaying contact between a catheter and tissue |
US9254163B2 (en) | 2005-12-06 | 2016-02-09 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Assessment of electrode coupling for tissue ablation |
US9492226B2 (en) | 2005-12-06 | 2016-11-15 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Graphical user interface for real-time RF lesion depth display |
US8603084B2 (en) | 2005-12-06 | 2013-12-10 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and method for assessing the formation of a lesion in tissue |
US20070135551A1 (en) * | 2005-12-12 | 2007-06-14 | Nissin Chemical Industry Co., Ltd. | Coating composition and vehicle interior material |
US20070213813A1 (en) | 2005-12-22 | 2007-09-13 | Symetis Sa | Stent-valves for valve replacement and associated methods and systems for surgery |
WO2007081753A2 (en) * | 2006-01-09 | 2007-07-19 | Medical Components, Inc. | Pivoting dilator |
US7803130B2 (en) | 2006-01-09 | 2010-09-28 | Vance Products Inc. | Deflectable tip access sheath |
US7799038B2 (en) | 2006-01-20 | 2010-09-21 | Boston Scientific Scimed, Inc. | Translumenal apparatus, system, and method |
WO2007086073A2 (en) * | 2006-01-30 | 2007-08-02 | Vision - Sciences Inc. | Controllable endoscope |
US8186555B2 (en) | 2006-01-31 | 2012-05-29 | Ethicon Endo-Surgery, Inc. | Motor-driven surgical cutting and fastening instrument with mechanical closure system |
US11793518B2 (en) | 2006-01-31 | 2023-10-24 | Cilag Gmbh International | Powered surgical instruments with firing system lockout arrangements |
US7753904B2 (en) | 2006-01-31 | 2010-07-13 | Ethicon Endo-Surgery, Inc. | Endoscopic surgical instrument with a handle that can articulate with respect to the shaft |
US8708213B2 (en) | 2006-01-31 | 2014-04-29 | Ethicon Endo-Surgery, Inc. | Surgical instrument having a feedback system |
US20110295295A1 (en) | 2006-01-31 | 2011-12-01 | Ethicon Endo-Surgery, Inc. | Robotically-controlled surgical instrument having recording capabilities |
US8820603B2 (en) | 2006-01-31 | 2014-09-02 | Ethicon Endo-Surgery, Inc. | Accessing data stored in a memory of a surgical instrument |
US7845537B2 (en) | 2006-01-31 | 2010-12-07 | Ethicon Endo-Surgery, Inc. | Surgical instrument having recording capabilities |
US11224427B2 (en) | 2006-01-31 | 2022-01-18 | Cilag Gmbh International | Surgical stapling system including a console and retraction assembly |
US11278279B2 (en) | 2006-01-31 | 2022-03-22 | Cilag Gmbh International | Surgical instrument assembly |
US20120292367A1 (en) | 2006-01-31 | 2012-11-22 | Ethicon Endo-Surgery, Inc. | Robotically-controlled end effector |
WO2007097983A2 (en) | 2006-02-14 | 2007-08-30 | Sadra Medical, Inc. | Systems and methods for delivering a medical implant |
US7749249B2 (en) | 2006-02-21 | 2010-07-06 | Kardium Inc. | Method and device for closing holes in tissue |
US20070219617A1 (en) * | 2006-03-17 | 2007-09-20 | Sean Saint | Handle for Long Self Expanding Stent |
US20070225734A1 (en) * | 2006-03-22 | 2007-09-27 | Minos Medical | Systems and methods for less invasive resolution of maladies of tissue including the appendix, gall bladder, and hemorrhoids |
US8992422B2 (en) | 2006-03-23 | 2015-03-31 | Ethicon Endo-Surgery, Inc. | Robotically-controlled endoscopic accessory channel |
US8808310B2 (en) | 2006-04-20 | 2014-08-19 | Integrated Vascular Systems, Inc. | Resettable clip applier and reset tools |
JP5148598B2 (en) | 2006-05-03 | 2013-02-20 | ラプトール リッジ, エルエルシー | Tissue closure system and method |
US8932348B2 (en) | 2006-05-18 | 2015-01-13 | Edwards Lifesciences Corporation | Device and method for improving heart valve function |
CN102283721B (en) | 2006-06-01 | 2015-08-26 | 爱德华兹生命科学公司 | For improving the prosthetic insert of heart valve function |
US8322455B2 (en) | 2006-06-27 | 2012-12-04 | Ethicon Endo-Surgery, Inc. | Manually driven surgical cutting and fastening instrument |
US11389232B2 (en) | 2006-06-28 | 2022-07-19 | Kardium Inc. | Apparatus and method for intra-cardiac mapping and ablation |
US8920411B2 (en) | 2006-06-28 | 2014-12-30 | Kardium Inc. | Apparatus and method for intra-cardiac mapping and ablation |
US8449605B2 (en) | 2006-06-28 | 2013-05-28 | Kardium Inc. | Method for anchoring a mitral valve |
US9119633B2 (en) | 2006-06-28 | 2015-09-01 | Kardium Inc. | Apparatus and method for intra-cardiac mapping and ablation |
US10028783B2 (en) | 2006-06-28 | 2018-07-24 | Kardium Inc. | Apparatus and method for intra-cardiac mapping and ablation |
US8556930B2 (en) * | 2006-06-28 | 2013-10-15 | Abbott Laboratories | Vessel closure device |
US7837610B2 (en) | 2006-08-02 | 2010-11-23 | Kardium Inc. | System for improving diastolic dysfunction |
US9867530B2 (en) | 2006-08-14 | 2018-01-16 | Volcano Corporation | Telescopic side port catheter device with imaging system and method for accessing side branch occlusions |
EP1978895B1 (en) * | 2006-09-08 | 2010-06-09 | Edwards Lifesciences Corporation | Integrated heart valve delivery system |
US8834564B2 (en) | 2006-09-19 | 2014-09-16 | Medtronic, Inc. | Sinus-engaging valve fixation member |
US11304800B2 (en) | 2006-09-19 | 2022-04-19 | Medtronic Ventor Technologies Ltd. | Sinus-engaging valve fixation member |
US8876895B2 (en) | 2006-09-19 | 2014-11-04 | Medtronic Ventor Technologies Ltd. | Valve fixation member having engagement arms |
US7780730B2 (en) | 2006-09-25 | 2010-08-24 | Iyad Saidi | Nasal implant introduced through a non-surgical injection technique |
US10568652B2 (en) | 2006-09-29 | 2020-02-25 | Ethicon Llc | Surgical staples having attached drivers of different heights and stapling instruments for deploying the same |
US11980366B2 (en) | 2006-10-03 | 2024-05-14 | Cilag Gmbh International | Surgical instrument |
EP1913881B1 (en) * | 2006-10-17 | 2014-06-11 | Covidien LP | Apparatus for applying surgical clips |
US8133213B2 (en) * | 2006-10-19 | 2012-03-13 | Direct Flow Medical, Inc. | Catheter guidance through a calcified aortic valve |
US7935144B2 (en) | 2006-10-19 | 2011-05-03 | Direct Flow Medical, Inc. | Profile reduction of valve implant |
US8906044B2 (en) * | 2006-10-20 | 2014-12-09 | St. Jude Medical, Cardiology Division, Inc. | Knot pusher device |
US8080035B2 (en) * | 2006-10-20 | 2011-12-20 | St. Jude Medical, Cardiology Division, Inc. | Suture attachment device |
US8834494B2 (en) * | 2006-10-20 | 2014-09-16 | St. Jude Medical, Cardiology Division, Inc. | Method and device for automated needle deployment |
US8834493B2 (en) * | 2006-10-20 | 2014-09-16 | St. Jude Medical, Cardiology Division, Inc. | Device and method for vascular closure |
US9107656B2 (en) * | 2006-10-20 | 2015-08-18 | St. Jude Medical, Cardiovascular Division, Inc. | Internal suturing device leg suspension system and method of use |
US8388546B2 (en) | 2006-10-23 | 2013-03-05 | Bard Access Systems, Inc. | Method of locating the tip of a central venous catheter |
US7794407B2 (en) | 2006-10-23 | 2010-09-14 | Bard Access Systems, Inc. | Method of locating the tip of a central venous catheter |
US7828854B2 (en) * | 2006-10-31 | 2010-11-09 | Ethicon, Inc. | Implantable repair device |
EP2094167B1 (en) | 2006-11-30 | 2011-06-29 | Wilson-Cook Medical, Inc. | Visceral anchors for purse-string closure of perforations |
US9883943B2 (en) | 2006-12-05 | 2018-02-06 | Valtech Cardio, Ltd. | Implantation of repair devices in the heart |
EP2088965B1 (en) | 2006-12-05 | 2012-11-28 | Valtech Cardio, Ltd. | Segmented ring placement |
US11259924B2 (en) | 2006-12-05 | 2022-03-01 | Valtech Cardio Ltd. | Implantation of repair devices in the heart |
US9107750B2 (en) | 2007-01-03 | 2015-08-18 | St. Jude Medical, Cardiology Division, Inc. | Implantable devices for controlling the size and shape of an anatomical structure or lumen |
US8133270B2 (en) | 2007-01-08 | 2012-03-13 | California Institute Of Technology | In-situ formation of a valve |
US11291441B2 (en) | 2007-01-10 | 2022-04-05 | Cilag Gmbh International | Surgical instrument with wireless communication between control unit and remote sensor |
US8684253B2 (en) | 2007-01-10 | 2014-04-01 | Ethicon Endo-Surgery, Inc. | Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor |
US8840603B2 (en) | 2007-01-10 | 2014-09-23 | Ethicon Endo-Surgery, Inc. | Surgical instrument with wireless communication between control unit and sensor transponders |
US8827133B2 (en) | 2007-01-11 | 2014-09-09 | Ethicon Endo-Surgery, Inc. | Surgical stapling device having supports for a flexible drive mechanism |
WO2008097589A1 (en) | 2007-02-05 | 2008-08-14 | Boston Scientific Limited | Percutaneous valve, system, and method |
US8617185B2 (en) | 2007-02-13 | 2013-12-31 | P Tech, Llc. | Fixation device |
US7753949B2 (en) * | 2007-02-23 | 2010-07-13 | The Trustees Of The University Of Pennsylvania | Valve prosthesis systems and methods |
US8845723B2 (en) | 2007-03-13 | 2014-09-30 | Mitralign, Inc. | Systems and methods for introducing elements into tissue |
US8911461B2 (en) | 2007-03-13 | 2014-12-16 | Mitralign, Inc. | Suture cutter and method of cutting suture |
US11660190B2 (en) | 2007-03-13 | 2023-05-30 | Edwards Lifesciences Corporation | Tissue anchors, systems and methods, and devices |
US8590762B2 (en) | 2007-03-15 | 2013-11-26 | Ethicon Endo-Surgery, Inc. | Staple cartridge cavity configurations |
AU2008230841B2 (en) | 2007-03-26 | 2013-09-12 | Covidien Lp | Endoscopic surgical clip applier |
ES2538992T3 (en) | 2007-03-30 | 2015-06-25 | Sentreheart, Inc. | Devices to close the left atrial appendage |
WO2008124728A1 (en) | 2007-04-09 | 2008-10-16 | Ev3 Peripheral, Inc. | Stretchable stent and delivery system |
WO2008127968A2 (en) * | 2007-04-11 | 2008-10-23 | Tyco Healthcare Group Lp | Surgical clip applier |
US7896915B2 (en) | 2007-04-13 | 2011-03-01 | Jenavalve Technology, Inc. | Medical device for treating a heart valve insufficiency |
EP2150210B1 (en) | 2007-05-15 | 2016-10-12 | JenaValve Technology, Inc. | Handle for manipulating a catheter tip, catheter system and medical insertion system for inserting a self-expandable heart valve stent |
WO2008147875A1 (en) * | 2007-05-31 | 2008-12-04 | Wilson-Cook Medical, Inc. | Suture lock |
US11672531B2 (en) | 2007-06-04 | 2023-06-13 | Cilag Gmbh International | Rotary drive systems for surgical instruments |
US8931682B2 (en) | 2007-06-04 | 2015-01-13 | Ethicon Endo-Surgery, Inc. | Robotically-controlled shaft based rotary drive systems for surgical instruments |
WO2008153841A2 (en) | 2007-06-08 | 2008-12-18 | Thomas Hsu | Devices and methods for removal of debris from the objective lens of an endoscope |
US10307041B2 (en) | 2007-06-08 | 2019-06-04 | Medeon Biodesign, Inc. | Lens cover modification |
US7753245B2 (en) | 2007-06-22 | 2010-07-13 | Ethicon Endo-Surgery, Inc. | Surgical stapling instruments |
US11849941B2 (en) | 2007-06-29 | 2023-12-26 | Cilag Gmbh International | Staple cartridge having staple cavities extending at a transverse angle relative to a longitudinal cartridge axis |
US8500809B2 (en) | 2011-01-10 | 2013-08-06 | Ceterix Orthopaedics, Inc. | Implant and method for repair of the anterior cruciate ligament |
US8465505B2 (en) | 2011-05-06 | 2013-06-18 | Ceterix Orthopaedics, Inc. | Suture passer devices and methods |
US9211119B2 (en) | 2007-07-03 | 2015-12-15 | Ceterix Orthopaedics, Inc. | Suture passers and methods of passing suture |
US10441273B2 (en) | 2007-07-03 | 2019-10-15 | Ceterix Orthopaedics, Inc. | Pre-tied surgical knots for use with suture passers |
US9861354B2 (en) | 2011-05-06 | 2018-01-09 | Ceterix Orthopaedics, Inc. | Meniscus repair |
US8911456B2 (en) | 2007-07-03 | 2014-12-16 | Ceterix Orthopaedics, Inc. | Methods and devices for preventing tissue bridging while suturing |
US8663253B2 (en) * | 2007-07-03 | 2014-03-04 | Ceterix Orthopaedics, Inc. | Methods of meniscus repair |
US8702731B2 (en) | 2007-07-03 | 2014-04-22 | Ceterix Orthopaedics, Inc. | Suturing and repairing tissue using in vivo suture loading |
US20100130990A1 (en) * | 2007-07-03 | 2010-05-27 | Saliman Justin D | Methods of suturing and repairing tissue using a continuous suture passer device |
US9314234B2 (en) | 2007-07-03 | 2016-04-19 | Ceterix Orthopaedics, Inc. | Pre-tied surgical knots for use with suture passers |
US9596993B2 (en) | 2007-07-12 | 2017-03-21 | Volcano Corporation | Automatic calibration systems and methods of use |
WO2009009802A1 (en) | 2007-07-12 | 2009-01-15 | Volcano Corporation | Oct-ivus catheter for concurrent luminal imaging |
JP5524835B2 (en) | 2007-07-12 | 2014-06-18 | ヴォルカノ コーポレイション | In vivo imaging catheter |
US8828079B2 (en) | 2007-07-26 | 2014-09-09 | Boston Scientific Scimed, Inc. | Circulatory valve, system and method |
EP2190379B1 (en) | 2007-08-23 | 2016-06-15 | Direct Flow Medical, Inc. | Translumenally implantable heart valve with formed in place support |
AU2008302329B2 (en) | 2007-09-20 | 2014-05-08 | Atricure, Inc. | Devices and methods for remote suture management |
US7866524B2 (en) * | 2007-09-24 | 2011-01-11 | Tyco Healthcare Group Lp | Stapler powered auxiliary device for injecting material between stapler jaws |
US8500759B2 (en) | 2007-09-26 | 2013-08-06 | Ethicon, Inc. | Hernia mesh support device |
US8197464B2 (en) * | 2007-10-19 | 2012-06-12 | Cordis Corporation | Deflecting guide catheter for use in a minimally invasive medical procedure for the treatment of mitral valve regurgitation |
US8226709B2 (en) * | 2007-10-19 | 2012-07-24 | Cordis Corporation | Method and system for plicating tissue in a minimally invasive medical procedure for the treatment of mitral valve regurgitation |
EP2211725A4 (en) * | 2007-11-05 | 2015-04-01 | Ceterix Orthopedics Inc | Suture passing instrument and method |
US8906011B2 (en) | 2007-11-16 | 2014-12-09 | Kardium Inc. | Medical device for use in bodily lumens, for example an atrium |
US8849382B2 (en) | 2007-11-26 | 2014-09-30 | C. R. Bard, Inc. | Apparatus and display methods relating to intravascular placement of a catheter |
AU2008329807B2 (en) | 2007-11-26 | 2014-02-27 | C. R. Bard, Inc. | Integrated system for intravascular placement of a catheter |
US10751509B2 (en) | 2007-11-26 | 2020-08-25 | C. R. Bard, Inc. | Iconic representations for guidance of an indwelling medical device |
US9649048B2 (en) | 2007-11-26 | 2017-05-16 | C. R. Bard, Inc. | Systems and methods for breaching a sterile field for intravascular placement of a catheter |
US10524691B2 (en) | 2007-11-26 | 2020-01-07 | C. R. Bard, Inc. | Needle assembly including an aligned magnetic element |
US9456766B2 (en) | 2007-11-26 | 2016-10-04 | C. R. Bard, Inc. | Apparatus for use with needle insertion guidance system |
US8781555B2 (en) | 2007-11-26 | 2014-07-15 | C. R. Bard, Inc. | System for placement of a catheter including a signal-generating stylet |
US10449330B2 (en) | 2007-11-26 | 2019-10-22 | C. R. Bard, Inc. | Magnetic element-equipped needle assemblies |
US9521961B2 (en) | 2007-11-26 | 2016-12-20 | C. R. Bard, Inc. | Systems and methods for guiding a medical instrument |
US8893947B2 (en) | 2007-12-17 | 2014-11-25 | Abbott Laboratories | Clip applier and methods of use |
US20090157101A1 (en) * | 2007-12-17 | 2009-06-18 | Abbott Laboratories | Tissue closure system and methods of use |
US7841502B2 (en) | 2007-12-18 | 2010-11-30 | Abbott Laboratories | Modular clip applier |
US7892276B2 (en) | 2007-12-21 | 2011-02-22 | Boston Scientific Scimed, Inc. | Valve with delayed leaflet deployment |
US10660690B2 (en) | 2007-12-28 | 2020-05-26 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and method for measurement of an impedance using a catheter such as an ablation catheter |
US9204927B2 (en) | 2009-05-13 | 2015-12-08 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and method for presenting information representative of lesion formation in tissue during an ablation procedure |
US8290578B2 (en) | 2007-12-28 | 2012-10-16 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Method and apparatus for complex impedance compensation |
US8490851B2 (en) * | 2008-01-15 | 2013-07-23 | Covidien Lp | Surgical stapling apparatus |
US7972378B2 (en) | 2008-01-24 | 2011-07-05 | Medtronic, Inc. | Stents for prosthetic heart valves |
US8157852B2 (en) | 2008-01-24 | 2012-04-17 | Medtronic, Inc. | Delivery systems and methods of implantation for prosthetic heart valves |
WO2009100242A2 (en) | 2008-02-06 | 2009-08-13 | Guided Delivery Systems, Inc. | Multi-window guide tunnel |
RU2493788C2 (en) | 2008-02-14 | 2013-09-27 | Этикон Эндо-Серджери, Инк. | Surgical cutting and fixing instrument, which has radio-frequency electrodes |
US11986183B2 (en) | 2008-02-14 | 2024-05-21 | Cilag Gmbh International | Surgical cutting and fastening instrument comprising a plurality of sensors to measure an electrical parameter |
US7866527B2 (en) | 2008-02-14 | 2011-01-11 | Ethicon Endo-Surgery, Inc. | Surgical stapling apparatus with interlockable firing system |
US8636736B2 (en) | 2008-02-14 | 2014-01-28 | Ethicon Endo-Surgery, Inc. | Motorized surgical cutting and fastening instrument |
US9179912B2 (en) | 2008-02-14 | 2015-11-10 | Ethicon Endo-Surgery, Inc. | Robotically-controlled motorized surgical cutting and fastening instrument |
US8573465B2 (en) | 2008-02-14 | 2013-11-05 | Ethicon Endo-Surgery, Inc. | Robotically-controlled surgical end effector system with rotary actuated closure systems |
US7819298B2 (en) | 2008-02-14 | 2010-10-26 | Ethicon Endo-Surgery, Inc. | Surgical stapling apparatus with control features operable with one hand |
US9226738B2 (en) | 2008-02-15 | 2016-01-05 | Rex Medical, L.P. | Vascular hole closure delivery device |
US8070772B2 (en) | 2008-02-15 | 2011-12-06 | Rex Medical, L.P. | Vascular hole closure device |
US8920462B2 (en) | 2008-02-15 | 2014-12-30 | Rex Medical, L.P. | Vascular hole closure device |
US9585657B2 (en) | 2008-02-15 | 2017-03-07 | Ethicon Endo-Surgery, Llc | Actuator for releasing a layer of material from a surgical end effector |
US20110029013A1 (en) | 2008-02-15 | 2011-02-03 | Mcguckin James F | Vascular Hole Closure Device |
US8491629B2 (en) | 2008-02-15 | 2013-07-23 | Rex Medical | Vascular hole closure delivery device |
US8920463B2 (en) | 2008-02-15 | 2014-12-30 | Rex Medical, L.P. | Vascular hole closure device |
ES2903231T3 (en) | 2008-02-26 | 2022-03-31 | Jenavalve Tech Inc | Stent for positioning and anchoring a valve prosthesis at an implantation site in a patient's heart |
US9044318B2 (en) | 2008-02-26 | 2015-06-02 | Jenavalve Technology Gmbh | Stent for the positioning and anchoring of a valvular prosthesis |
US8246538B2 (en) | 2008-02-28 | 2012-08-21 | K2M, Inc. | Minimally invasive retractor with separable blades and methods of use |
US8382829B1 (en) | 2008-03-10 | 2013-02-26 | Mitralign, Inc. | Method to reduce mitral regurgitation by cinching the commissure of the mitral valve |
WO2009132111A1 (en) * | 2008-04-23 | 2009-10-29 | Wilson-Cook Medical Inc. | Tacking device |
US20090276040A1 (en) | 2008-05-01 | 2009-11-05 | Edwards Lifesciences Corporation | Device and method for replacing mitral valve |
US20090287304A1 (en) | 2008-05-13 | 2009-11-19 | Kardium Inc. | Medical Device for Constricting Tissue or a Bodily Orifice, for example a mitral valve |
US9011412B2 (en) | 2008-05-16 | 2015-04-21 | Ford Albritton, IV | Apparatus, system and method for manipulating a surgical catheter and working device with a single hand |
US9282965B2 (en) | 2008-05-16 | 2016-03-15 | Abbott Laboratories | Apparatus and methods for engaging tissue |
US8591460B2 (en) * | 2008-06-13 | 2013-11-26 | Cardiosolutions, Inc. | Steerable catheter and dilator and system and method for implanting a heart implant |
CA2728078A1 (en) | 2008-06-16 | 2010-01-14 | Valtech Cardio, Ltd. | Annuloplasty devices and methods of delivery therefor |
US20090318873A1 (en) * | 2008-06-24 | 2009-12-24 | Cook Incorporated | Medical malecot with magnets |
CN102159126A (en) | 2008-07-21 | 2011-08-17 | 阿尔斯塔西斯公司 | Devices, methods, and kits for forming tracts in tissue |
US8900250B2 (en) | 2008-08-19 | 2014-12-02 | Cook Medical Technologies, LLC | Apparatus and methods for removing lymph nodes or anchoring into tissue during a translumenal procedure |
EP2313143B1 (en) | 2008-08-22 | 2014-09-24 | C.R. Bard, Inc. | Catheter assembly including ecg sensor and magnetic assemblies |
US8652202B2 (en) | 2008-08-22 | 2014-02-18 | Edwards Lifesciences Corporation | Prosthetic heart valve and delivery apparatus |
US8056565B2 (en) | 2008-08-25 | 2011-11-15 | Tyco Healthcare Group Lp | Surgical clip applier and method of assembly |
US20110208212A1 (en) * | 2010-02-19 | 2011-08-25 | Zergiebel Earl M | Surgical clip applier |
US8465502B2 (en) | 2008-08-25 | 2013-06-18 | Covidien Lp | Surgical clip applier and method of assembly |
US9358015B2 (en) | 2008-08-29 | 2016-06-07 | Covidien Lp | Endoscopic surgical clip applier with wedge plate |
US8409223B2 (en) | 2008-08-29 | 2013-04-02 | Covidien Lp | Endoscopic surgical clip applier with clip retention |
US8764768B2 (en) * | 2008-08-29 | 2014-07-01 | Cook Medical Technologies Llc | Stapling device for closing perforations |
US8267944B2 (en) | 2008-08-29 | 2012-09-18 | Tyco Healthcare Group Lp | Endoscopic surgical clip applier with lock out |
US8585717B2 (en) * | 2008-08-29 | 2013-11-19 | Covidien Lp | Single stroke endoscopic surgical clip applier |
US8192461B2 (en) | 2008-09-11 | 2012-06-05 | Cook Medical Technologies Llc | Methods for facilitating closure of a bodily opening using one or more tacking devices |
US9679499B2 (en) * | 2008-09-15 | 2017-06-13 | Immersion Medical, Inc. | Systems and methods for sensing hand motion by measuring remote displacement |
US9386983B2 (en) | 2008-09-23 | 2016-07-12 | Ethicon Endo-Surgery, Llc | Robotically-controlled motorized surgical instrument |
US9005230B2 (en) | 2008-09-23 | 2015-04-14 | Ethicon Endo-Surgery, Inc. | Motorized surgical instrument |
US8210411B2 (en) | 2008-09-23 | 2012-07-03 | Ethicon Endo-Surgery, Inc. | Motor-driven surgical cutting instrument |
US11648005B2 (en) | 2008-09-23 | 2023-05-16 | Cilag Gmbh International | Robotically-controlled motorized surgical instrument with an end effector |
US8437833B2 (en) | 2008-10-07 | 2013-05-07 | Bard Access Systems, Inc. | Percutaneous magnetic gastrostomy |
US8608045B2 (en) | 2008-10-10 | 2013-12-17 | Ethicon Endo-Sugery, Inc. | Powered surgical cutting and stapling apparatus with manually retractable firing system |
CN102245110A (en) | 2008-10-10 | 2011-11-16 | 导向传输系统股份有限公司 | Tether tensioning devices and related methods |
AU2009302169B2 (en) | 2008-10-10 | 2016-01-14 | Ancora Heart, Inc. | Termination devices and related methods |
CA2740867C (en) * | 2008-10-16 | 2018-06-12 | Aptus Endosystems, Inc. | Devices, systems, and methods for endovascular staple and/or prosthesis delivery and implantation |
DE102008053809A1 (en) * | 2008-10-29 | 2010-05-12 | Medi-Globe Gmbh | Surgical thread positioning system for closing an opening within a tissue wall |
US9241696B2 (en) | 2008-10-30 | 2016-01-26 | Abbott Vascular Inc. | Closure device |
WO2010059586A1 (en) | 2008-11-19 | 2010-05-27 | Entrigue Surgical, Inc. | Apparatus and methods for correcting nasal valve collapse |
EP2358297B1 (en) | 2008-11-21 | 2019-09-11 | Percutaneous Cardiovascular Solutions Pty Limited | Heart valve prosthesis |
US20100145362A1 (en) * | 2008-12-09 | 2010-06-10 | Wilson-Cook Medical Inc. | Apparatus and methods for controlled release of tacking devices |
EP2373230B1 (en) | 2008-12-09 | 2012-11-28 | Cook Medical Technologies LLC | Retractable tacking device |
US20100160931A1 (en) * | 2008-12-19 | 2010-06-24 | Wilson-Cook Medical Inc. | Variable thickness tacking devices and methods of delivery and deployment |
AU2009335901B2 (en) | 2008-12-19 | 2013-09-19 | Cook Medical Technologies Llc | Clip devices and methods of delivery and deployment |
US9011530B2 (en) | 2008-12-22 | 2015-04-21 | Valtech Cardio, Ltd. | Partially-adjustable annuloplasty structure |
US10517719B2 (en) | 2008-12-22 | 2019-12-31 | Valtech Cardio, Ltd. | Implantation of repair devices in the heart |
US8940044B2 (en) | 2011-06-23 | 2015-01-27 | Valtech Cardio, Ltd. | Closure element for use with an annuloplasty structure |
US8926697B2 (en) | 2011-06-23 | 2015-01-06 | Valtech Cardio, Ltd. | Closed band for percutaneous annuloplasty |
US8808368B2 (en) | 2008-12-22 | 2014-08-19 | Valtech Cardio, Ltd. | Implantation of repair chords in the heart |
US8858594B2 (en) | 2008-12-22 | 2014-10-14 | Abbott Laboratories | Curved closure device |
US8545553B2 (en) * | 2009-05-04 | 2013-10-01 | Valtech Cardio, Ltd. | Over-wire rotation tool |
US8715342B2 (en) | 2009-05-07 | 2014-05-06 | Valtech Cardio, Ltd. | Annuloplasty ring with intra-ring anchoring |
US8323312B2 (en) | 2008-12-22 | 2012-12-04 | Abbott Laboratories | Closure device |
US8926696B2 (en) | 2008-12-22 | 2015-01-06 | Valtech Cardio, Ltd. | Adjustable annuloplasty devices and adjustment mechanisms therefor |
US8147542B2 (en) | 2008-12-22 | 2012-04-03 | Valtech Cardio, Ltd. | Adjustable repair chords and spool mechanism therefor |
US8241351B2 (en) | 2008-12-22 | 2012-08-14 | Valtech Cardio, Ltd. | Adjustable partial annuloplasty ring and mechanism therefor |
US9339331B2 (en) | 2008-12-29 | 2016-05-17 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Non-contact electrode basket catheters with irrigation |
US10046141B2 (en) * | 2008-12-30 | 2018-08-14 | Biosense Webster, Inc. | Deflectable sheath introducer |
US8808345B2 (en) * | 2008-12-31 | 2014-08-19 | Medtronic Ardian Luxembourg S.A.R.L. | Handle assemblies for intravascular treatment devices and associated systems and methods |
US9414820B2 (en) | 2009-01-09 | 2016-08-16 | Abbott Vascular Inc. | Closure devices, systems, and methods |
US9089311B2 (en) | 2009-01-09 | 2015-07-28 | Abbott Vascular Inc. | Vessel closure devices and methods |
US20100179589A1 (en) | 2009-01-09 | 2010-07-15 | Abbott Vascular Inc. | Rapidly eroding anchor |
US20110218568A1 (en) * | 2009-01-09 | 2011-09-08 | Voss Laveille K | Vessel closure devices, systems, and methods |
US9173644B2 (en) | 2009-01-09 | 2015-11-03 | Abbott Vascular Inc. | Closure devices, systems, and methods |
US9486191B2 (en) | 2009-01-09 | 2016-11-08 | Abbott Vascular, Inc. | Closure devices |
US20100185234A1 (en) | 2009-01-16 | 2010-07-22 | Abbott Vascular Inc. | Closure devices, systems, and methods |
EP2389218A4 (en) * | 2009-01-20 | 2012-06-13 | Guided Delivery Systems Inc | Diagnostic catheters, guide catheters, visualization devices and chord manipulation devices, and related kits and methods |
WO2010085649A1 (en) | 2009-01-22 | 2010-07-29 | St. Jude Medical | Post-operative adjustment tool, minimally invasive attachment apparatus, and adjustable tricuspid ring |
US8821485B2 (en) * | 2009-01-29 | 2014-09-02 | Boston Scientific Scimed, Inc. | Employing a secondary sheath with an ablation catheter |
US8517239B2 (en) | 2009-02-05 | 2013-08-27 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument comprising a magnetic element driver |
JP2012517287A (en) | 2009-02-06 | 2012-08-02 | エシコン・エンド−サージェリィ・インコーポレイテッド | Improvement of driven surgical stapler |
US8353956B2 (en) | 2009-02-17 | 2013-01-15 | Valtech Cardio, Ltd. | Actively-engageable movement-restriction mechanism for use with an annuloplasty structure |
AU2010232589B2 (en) * | 2009-04-01 | 2014-11-27 | Atricure, Inc. | Tissue ligation devices and controls therefor |
JP5619137B2 (en) | 2009-04-03 | 2014-11-05 | クック メディカル テクノロジーズ エルエルシーCook Medical Technologies Llc | Tissue anchor and medical device for rapid deployment of tissue anchor |
US8444549B2 (en) * | 2009-04-16 | 2013-05-21 | Covidien Lp | Self-steering endoscopic device |
DE102009018723A1 (en) * | 2009-04-27 | 2010-10-28 | Karl Storz Gmbh & Co. Kg | Medical dilatation instrument |
US9968452B2 (en) | 2009-05-04 | 2018-05-15 | Valtech Cardio, Ltd. | Annuloplasty ring delivery cathethers |
US8523881B2 (en) * | 2010-07-26 | 2013-09-03 | Valtech Cardio, Ltd. | Multiple anchor delivery tool |
US8758231B2 (en) | 2009-05-14 | 2014-06-24 | Cook Medical Technologies Llc | Access sheath with active deflection |
WO2010138579A1 (en) | 2009-05-28 | 2010-12-02 | Wilson-Cook Medical Inc. | Tacking device and methods of deployment |
US9532724B2 (en) | 2009-06-12 | 2017-01-03 | Bard Access Systems, Inc. | Apparatus and method for catheter navigation using endovascular energy mapping |
ES2745861T3 (en) | 2009-06-12 | 2020-03-03 | Bard Access Systems Inc | Apparatus, computer-aided data-processing algorithm, and computer storage medium for positioning an endovascular device in or near the heart |
WO2010150244A1 (en) * | 2009-06-21 | 2010-12-29 | Aesthetics Point Ltd. | An implanted medical device useful for cosmetic surgery |
JP5674775B2 (en) | 2009-06-26 | 2015-02-25 | クック メディカル テクノロジーズ エルエルシーCook Medical Technologies Llc | Linear clamp for anastomosis |
US8790369B2 (en) | 2009-07-24 | 2014-07-29 | Depuy Mitek, Llc | Apparatus and method for repairing tissue |
WO2011019760A2 (en) | 2009-08-10 | 2011-02-17 | Romedex International Srl | Devices and methods for endovascular electrography |
US20110054492A1 (en) * | 2009-08-26 | 2011-03-03 | Abbott Laboratories | Medical device for repairing a fistula |
EP2633821B1 (en) | 2009-09-15 | 2016-04-06 | Evalve, Inc. | Device for cardiac valve repair |
EP3120811A3 (en) | 2009-09-17 | 2017-04-19 | Abbott Vascular | Methods, systems and devices for cardiac valve repair |
US20110077733A1 (en) * | 2009-09-25 | 2011-03-31 | Edwards Lifesciences Corporation | Leaflet contacting apparatus and method |
JP5814243B2 (en) * | 2009-09-25 | 2015-11-17 | ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. | Device that brings tissue closer |
EP2517622A3 (en) | 2009-09-29 | 2013-04-24 | C. R. Bard, Inc. | Stylets for use with apparatus for intravascular placement of a catheter |
US20110082480A1 (en) * | 2009-10-01 | 2011-04-07 | Tyco Healthcare Group Lp | Wound closure device including pivotable claws |
WO2011041571A2 (en) | 2009-10-01 | 2011-04-07 | Kardium Inc. | Medical device, kit and method for constricting tissue or a bodily orifice, for example, a mitral valve |
US8430892B2 (en) * | 2009-10-06 | 2013-04-30 | Covidien Lp | Surgical clip applier having a wireless clip counter |
US8734469B2 (en) * | 2009-10-13 | 2014-05-27 | Covidien Lp | Suture clip applier |
US8277502B2 (en) * | 2009-10-29 | 2012-10-02 | Valtech Cardio, Ltd. | Tissue anchor for annuloplasty device |
US9011520B2 (en) | 2009-10-29 | 2015-04-21 | Valtech Cardio, Ltd. | Tissue anchor for annuloplasty device |
US10098737B2 (en) | 2009-10-29 | 2018-10-16 | Valtech Cardio, Ltd. | Tissue anchor for annuloplasty device |
US9180007B2 (en) | 2009-10-29 | 2015-11-10 | Valtech Cardio, Ltd. | Apparatus and method for guide-wire based advancement of an adjustable implant |
US8690939B2 (en) | 2009-10-29 | 2014-04-08 | Valtech Cardio, Ltd. | Method for guide-wire based advancement of a rotation assembly |
WO2011056445A1 (en) | 2009-11-03 | 2011-05-12 | Wilson-Cook Medical Inc. | Planar clamps for anastomosis |
EP2498688B1 (en) | 2009-11-09 | 2016-03-23 | Ceterix Orthopedics, Inc. | Devices, systems and methods for meniscus repair |
US9011454B2 (en) | 2009-11-09 | 2015-04-21 | Ceterix Orthopaedics, Inc. | Suture passer with radiused upper jaw |
US9848868B2 (en) | 2011-01-10 | 2017-12-26 | Ceterix Orthopaedics, Inc. | Suture methods for forming locking loops stitches |
US11744575B2 (en) | 2009-11-09 | 2023-09-05 | Ceterix Orthopaedics, Inc. | Suture passer devices and methods |
EP2506777B1 (en) | 2009-12-02 | 2020-11-25 | Valtech Cardio, Ltd. | Combination of spool assembly coupled to a helical anchor and delivery tool for implantation thereof |
US8449599B2 (en) | 2009-12-04 | 2013-05-28 | Edwards Lifesciences Corporation | Prosthetic valve for replacing mitral valve |
US8870950B2 (en) | 2009-12-08 | 2014-10-28 | Mitral Tech Ltd. | Rotation-based anchoring of an implant |
US9186136B2 (en) | 2009-12-09 | 2015-11-17 | Covidien Lp | Surgical clip applier |
US8545486B2 (en) | 2009-12-15 | 2013-10-01 | Covidien Lp | Surgical clip applier |
US10010336B2 (en) | 2009-12-22 | 2018-07-03 | Cook Medical Technologies, Inc. | Medical devices with detachable pivotable jaws |
US8851354B2 (en) | 2009-12-24 | 2014-10-07 | Ethicon Endo-Surgery, Inc. | Surgical cutting instrument that analyzes tissue thickness |
US8961596B2 (en) | 2010-01-22 | 2015-02-24 | 4Tech Inc. | Method and apparatus for tricuspid valve repair using tension |
US10058323B2 (en) | 2010-01-22 | 2018-08-28 | 4 Tech Inc. | Tricuspid valve repair using tension |
US8475525B2 (en) | 2010-01-22 | 2013-07-02 | 4Tech Inc. | Tricuspid valve repair using tension |
US9307980B2 (en) | 2010-01-22 | 2016-04-12 | 4Tech Inc. | Tricuspid valve repair using tension |
ES2811107T3 (en) | 2010-02-02 | 2021-03-10 | Bard Inc C R | Apparatus and method for catheter conduction and tip localization |
US8500776B2 (en) | 2010-02-08 | 2013-08-06 | Covidien Lp | Vacuum patch for rapid wound closure |
US8403945B2 (en) | 2010-02-25 | 2013-03-26 | Covidien Lp | Articulating endoscopic surgical clip applier |
US8398916B2 (en) | 2010-03-04 | 2013-03-19 | Icon Medical Corp. | Method for forming a tubular medical device |
US20110224785A1 (en) | 2010-03-10 | 2011-09-15 | Hacohen Gil | Prosthetic mitral valve with tissue anchors |
US9168034B2 (en) * | 2010-03-12 | 2015-10-27 | Linvatec Corporation | Suture anchor |
US8906013B2 (en) | 2010-04-09 | 2014-12-09 | Endosense Sa | Control handle for a contact force ablation catheter |
JP6085553B2 (en) | 2010-04-13 | 2017-02-22 | センターハート・インコーポレイテッドSentreHEART, Inc. | Devices and methods for accessing and delivering devices to the heart |
WO2011130388A1 (en) | 2010-04-14 | 2011-10-20 | Surti Vihar C | System for creating anastomoses |
US9918787B2 (en) | 2010-05-05 | 2018-03-20 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Monitoring, managing and/or protecting system and method for non-targeted tissue |
US8579964B2 (en) | 2010-05-05 | 2013-11-12 | Neovasc Inc. | Transcatheter mitral valve prosthesis |
US8790394B2 (en) | 2010-05-24 | 2014-07-29 | Valtech Cardio, Ltd. | Adjustable artificial chordeae tendineae with suture loops |
JP2013526388A (en) | 2010-05-25 | 2013-06-24 | イエナバルブ テクノロジー インク | Artificial heart valve, and transcatheter delivery prosthesis comprising an artificial heart valve and a stent |
EP2575610B1 (en) | 2010-05-28 | 2022-10-05 | C. R. Bard, Inc. | Insertion guidance system for needles and medical components |
US9050066B2 (en) | 2010-06-07 | 2015-06-09 | Kardium Inc. | Closing openings in anatomical tissue |
US9247942B2 (en) | 2010-06-29 | 2016-02-02 | Artventive Medical Group, Inc. | Reversible tubal contraceptive device |
US9017351B2 (en) | 2010-06-29 | 2015-04-28 | Artventive Medical Group, Inc. | Reducing flow through a tubular structure |
US8657872B2 (en) | 2010-07-19 | 2014-02-25 | Jacques Seguin | Cardiac valve repair system and methods of use |
US9763657B2 (en) | 2010-07-21 | 2017-09-19 | Mitraltech Ltd. | Techniques for percutaneous mitral valve replacement and sealing |
US11653910B2 (en) | 2010-07-21 | 2023-05-23 | Cardiovalve Ltd. | Helical anchor implantation |
US9132009B2 (en) | 2010-07-21 | 2015-09-15 | Mitraltech Ltd. | Guide wires with commissural anchors to advance a prosthetic valve |
US8968337B2 (en) | 2010-07-28 | 2015-03-03 | Covidien Lp | Articulating clip applier |
US8403946B2 (en) | 2010-07-28 | 2013-03-26 | Covidien Lp | Articulating clip applier cartridge |
US8906042B2 (en) | 2010-07-29 | 2014-12-09 | Covidien Lp | Wound closure device including mesh barrier |
US8783543B2 (en) | 2010-07-30 | 2014-07-22 | Ethicon Endo-Surgery, Inc. | Tissue acquisition arrangements and methods for surgical stapling devices |
US8758399B2 (en) | 2010-08-02 | 2014-06-24 | Abbott Cardiovascular Systems, Inc. | Expandable bioabsorbable plug apparatus and method |
US8603116B2 (en) | 2010-08-04 | 2013-12-10 | Abbott Cardiovascular Systems, Inc. | Closure device with long tines |
GB2482749A (en) * | 2010-08-10 | 2012-02-15 | Yissum Res Dev Co | An adapter for supporting gastric devices. |
DE102010039304A1 (en) | 2010-08-13 | 2012-02-16 | Siemens Aktiengesellschaft | Fastening device for a mitral valve and method |
MX338127B (en) | 2010-08-20 | 2016-04-04 | Bard Inc C R | Reconfirmation of ecg-assisted catheter tip placement. |
CN106073946B (en) | 2010-09-10 | 2022-01-04 | 西美蒂斯股份公司 | Valve replacement device, delivery device for a valve replacement device and method of producing a valve replacement device |
US10076327B2 (en) | 2010-09-14 | 2018-09-18 | Evalve, Inc. | Flexible actuator mandrel for tissue apposition systems |
US9737687B2 (en) * | 2010-09-22 | 2017-08-22 | The Johns Hopkins University | Cable-driven morphable manipulator |
WO2012043898A1 (en) * | 2010-09-29 | 2012-04-05 | Kim June-Hong | Tissue protective device for coronary sinus and tricuspid valve, knot delivery device, and device for mitral valve cerclage, containing same |
US11812965B2 (en) | 2010-09-30 | 2023-11-14 | Cilag Gmbh International | Layer of material for a surgical end effector |
US11849952B2 (en) | 2010-09-30 | 2023-12-26 | Cilag Gmbh International | Staple cartridge comprising staples positioned within a compressible portion thereof |
US9629814B2 (en) | 2010-09-30 | 2017-04-25 | Ethicon Endo-Surgery, Llc | Tissue thickness compensator configured to redistribute compressive forces |
US9788834B2 (en) | 2010-09-30 | 2017-10-17 | Ethicon Llc | Layer comprising deployable attachment members |
US10945731B2 (en) | 2010-09-30 | 2021-03-16 | Ethicon Llc | Tissue thickness compensator comprising controlled release and expansion |
US8740038B2 (en) | 2010-09-30 | 2014-06-03 | Ethicon Endo-Surgery, Inc. | Staple cartridge comprising a releasable portion |
US9241714B2 (en) | 2011-04-29 | 2016-01-26 | Ethicon Endo-Surgery, Inc. | Tissue thickness compensator and method for making the same |
US8940002B2 (en) | 2010-09-30 | 2015-01-27 | Kardium Inc. | Tissue anchor system |
US11298125B2 (en) | 2010-09-30 | 2022-04-12 | Cilag Gmbh International | Tissue stapler having a thickness compensator |
US9320523B2 (en) | 2012-03-28 | 2016-04-26 | Ethicon Endo-Surgery, Llc | Tissue thickness compensator comprising tissue ingrowth features |
US8695866B2 (en) | 2010-10-01 | 2014-04-15 | Ethicon Endo-Surgery, Inc. | Surgical instrument having a power control circuit |
US9149277B2 (en) | 2010-10-18 | 2015-10-06 | Artventive Medical Group, Inc. | Expandable device delivery |
US8900616B2 (en) | 2010-10-22 | 2014-12-02 | Covidien Lp | System and method for satellite drug delivery |
CN103189009B (en) | 2010-10-29 | 2016-09-07 | C·R·巴德股份有限公司 | The bio-impedance auxiliary of Medical Devices is placed |
US9011464B2 (en) | 2010-11-02 | 2015-04-21 | Covidien Lp | Self-centering clip and jaw |
JP6010545B2 (en) | 2010-12-23 | 2016-10-19 | トゥエルヴ, インコーポレイテッド | System for mitral valve repair and replacement |
US11141063B2 (en) | 2010-12-23 | 2021-10-12 | Philips Image Guided Therapy Corporation | Integrated system architectures and methods of use |
US11040140B2 (en) | 2010-12-31 | 2021-06-22 | Philips Image Guided Therapy Corporation | Deep vein thrombosis therapeutic methods |
US9913638B2 (en) | 2011-01-10 | 2018-03-13 | Ceterix Orthopaedics, Inc. | Transosteal anchoring methods for tissue repair |
US11259867B2 (en) | 2011-01-21 | 2022-03-01 | Kardium Inc. | High-density electrode-based medical device system |
US9452016B2 (en) | 2011-01-21 | 2016-09-27 | Kardium Inc. | Catheter system |
US9480525B2 (en) | 2011-01-21 | 2016-11-01 | Kardium, Inc. | High-density electrode-based medical device system |
CA2764494A1 (en) | 2011-01-21 | 2012-07-21 | Kardium Inc. | Enhanced medical device for use in bodily cavities, for example an atrium |
US8888843B2 (en) | 2011-01-28 | 2014-11-18 | Middle Peak Medical, Inc. | Device, system, and method for transcatheter treatment of valve regurgitation |
US8845717B2 (en) | 2011-01-28 | 2014-09-30 | Middle Park Medical, Inc. | Coaptation enhancement implant, system, and method |
US9186153B2 (en) | 2011-01-31 | 2015-11-17 | Covidien Lp | Locking cam driver and jaw assembly for clip applier |
US9149276B2 (en) | 2011-03-21 | 2015-10-06 | Abbott Cardiovascular Systems, Inc. | Clip and deployment apparatus for tissue closure |
US9072511B2 (en) | 2011-03-25 | 2015-07-07 | Kardium Inc. | Medical kit for constricting tissue or a bodily orifice, for example, a mitral valve |
US9308087B2 (en) | 2011-04-28 | 2016-04-12 | Neovasc Tiara Inc. | Sequentially deployed transcatheter mitral valve prosthesis |
US9554897B2 (en) | 2011-04-28 | 2017-01-31 | Neovasc Tiara Inc. | Methods and apparatus for engaging a valve prosthesis with tissue |
US9775623B2 (en) | 2011-04-29 | 2017-10-03 | Covidien Lp | Surgical clip applier including clip relief feature |
CA2834649C (en) | 2011-04-29 | 2021-02-16 | Ethicon Endo-Surgery, Inc. | Staple cartridge comprising staples positioned within a compressible portion thereof |
EP2520251A1 (en) | 2011-05-05 | 2012-11-07 | Symetis SA | Method and Apparatus for Compressing Stent-Valves |
US8747462B2 (en) | 2011-05-17 | 2014-06-10 | Boston Scientific Scimed, Inc. | Corkscrew annuloplasty device |
WO2012158186A1 (en) | 2011-05-17 | 2012-11-22 | Boston Scientific Scimed, Inc. | Percutaneous mitral annulus mini-plication |
WO2012158189A1 (en) | 2011-05-17 | 2012-11-22 | Boston Scientific Scimed, Inc. | Annuloplasty ring with anchors fixed by curing polymer |
WO2012158258A1 (en) | 2011-05-17 | 2012-11-22 | Boston Scientific Scimed, Inc. | Annuloplasty ring with piercing wire and segmented wire lumen |
US11207064B2 (en) | 2011-05-27 | 2021-12-28 | Cilag Gmbh International | Automated end effector component reloading system for use with a robotic system |
US9498206B2 (en) | 2011-06-08 | 2016-11-22 | Sentreheart, Inc. | Tissue ligation devices and tensioning devices therefor |
US10758262B2 (en) | 2011-06-20 | 2020-09-01 | Medtronic, Inc. | Medical assemblies and methods for implantation of multiple medical leads through a single entry |
CA2840084C (en) | 2011-06-21 | 2019-11-05 | Foundry Newco Xii, Inc. | Prosthetic heart valve devices and associated systems and methods |
US10792152B2 (en) | 2011-06-23 | 2020-10-06 | Valtech Cardio, Ltd. | Closed band for percutaneous annuloplasty |
US9918840B2 (en) | 2011-06-23 | 2018-03-20 | Valtech Cardio, Ltd. | Closed band for percutaneous annuloplasty |
KR20140051284A (en) | 2011-07-06 | 2014-04-30 | 씨. 알. 바드, 인크. | Needle length determination and calibration for insertion guidance system |
WO2013009975A1 (en) | 2011-07-12 | 2013-01-17 | Boston Scientific Scimed, Inc. | Coupling system for medical devices |
EP3424468A1 (en) | 2011-07-21 | 2019-01-09 | 4Tech Inc. | Apparatus for tricuspid valve repair using tension |
US9528169B2 (en) | 2011-08-03 | 2016-12-27 | The Curators Of The University Of Missouri | Method for separation of chemically pure Os from metal mixtures |
WO2013021374A2 (en) | 2011-08-05 | 2013-02-14 | Mitraltech Ltd. | Techniques for percutaneous mitral valve replacement and sealing |
EP3417813B1 (en) | 2011-08-05 | 2020-05-13 | Cardiovalve Ltd | Percutaneous mitral valve replacement |
US20140324164A1 (en) | 2011-08-05 | 2014-10-30 | Mitraltech Ltd. | Techniques for percutaneous mitral valve replacement and sealing |
US9668859B2 (en) | 2011-08-05 | 2017-06-06 | California Institute Of Technology | Percutaneous heart valve delivery systems |
US8852272B2 (en) | 2011-08-05 | 2014-10-07 | Mitraltech Ltd. | Techniques for percutaneous mitral valve replacement and sealing |
WO2013033592A1 (en) | 2011-08-31 | 2013-03-07 | Volcano Corporation | Optical-electrical rotary joint and methods of use |
ES2616030T3 (en) * | 2011-09-12 | 2017-06-09 | Highlife Sas | Treatment catheter system |
US9011468B2 (en) | 2011-09-13 | 2015-04-21 | Abbott Cardiovascular Systems Inc. | Independent gripper |
US10524778B2 (en) | 2011-09-28 | 2020-01-07 | Ceterix Orthopaedics | Suture passers adapted for use in constrained regions |
US9655722B2 (en) | 2011-10-19 | 2017-05-23 | Twelve, Inc. | Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods |
US11202704B2 (en) | 2011-10-19 | 2021-12-21 | Twelve, Inc. | Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods |
WO2013059743A1 (en) | 2011-10-19 | 2013-04-25 | Foundry Newco Xii, Inc. | Devices, systems and methods for heart valve replacement |
CN107028685B (en) | 2011-10-19 | 2019-11-15 | 托尔福公司 | Artificial heart valve film device, artificial mitral valve and related systems and methods |
US9763780B2 (en) | 2011-10-19 | 2017-09-19 | Twelve, Inc. | Devices, systems and methods for heart valve replacement |
US9039757B2 (en) | 2011-10-19 | 2015-05-26 | Twelve, Inc. | Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods |
US8858623B2 (en) | 2011-11-04 | 2014-10-14 | Valtech Cardio, Ltd. | Implant having multiple rotational assemblies |
EP2775896B1 (en) * | 2011-11-08 | 2020-01-01 | Valtech Cardio, Ltd. | Controlled steering functionality for implant-delivery tool |
US9199061B2 (en) * | 2011-11-18 | 2015-12-01 | Biosense Webster (Israel) Ltd. | Medical device control handle |
US20130131697A1 (en) | 2011-11-21 | 2013-05-23 | Covidien Lp | Surgical clip applier |
US9332976B2 (en) | 2011-11-30 | 2016-05-10 | Abbott Cardiovascular Systems, Inc. | Tissue closure device |
US8951243B2 (en) | 2011-12-03 | 2015-02-10 | Boston Scientific Scimed, Inc. | Medical device handle |
EP2790609B1 (en) | 2011-12-12 | 2015-09-09 | David Alon | Heart valve repair device |
US9364239B2 (en) | 2011-12-19 | 2016-06-14 | Covidien Lp | Jaw closure mechanism for a surgical clip applier |
US9364216B2 (en) | 2011-12-29 | 2016-06-14 | Covidien Lp | Surgical clip applier with integrated clip counter |
USD777926S1 (en) | 2012-01-20 | 2017-01-31 | Kardium Inc. | Intra-cardiac procedure device |
USD777925S1 (en) | 2012-01-20 | 2017-01-31 | Kardium Inc. | Intra-cardiac procedure device |
US10172708B2 (en) | 2012-01-25 | 2019-01-08 | Boston Scientific Scimed, Inc. | Valve assembly with a bioabsorbable gasket and a replaceable valve implant |
US10076414B2 (en) | 2012-02-13 | 2018-09-18 | Mitraspan, Inc. | Method and apparatus for repairing a mitral valve |
AU2013221670A1 (en) | 2012-02-13 | 2014-10-02 | Mitraspan, Inc | Method and apparatus for repairing a mitral valve |
US9579198B2 (en) | 2012-03-01 | 2017-02-28 | Twelve, Inc. | Hydraulic delivery systems for prosthetic heart valve devices and associated methods |
US9161756B2 (en) * | 2012-03-16 | 2015-10-20 | Covidien Lp | Closure tape dispenser |
RU2014143258A (en) | 2012-03-28 | 2016-05-20 | Этикон Эндо-Серджери, Инк. | FABRIC THICKNESS COMPENSATOR CONTAINING MANY LAYERS |
CN104334098B (en) | 2012-03-28 | 2017-03-22 | 伊西康内外科公司 | Tissue thickness compensator comprising capsules defining a low pressure environment |
WO2013148118A1 (en) * | 2012-03-30 | 2013-10-03 | Boston Scientific Scimed, Inc. | Inserts for dividing a medical device lumen |
US10179033B2 (en) | 2012-04-26 | 2019-01-15 | Bio-Medical Engineering (HK) Limited | Magnetic-anchored robotic system |
US9789613B2 (en) * | 2012-04-26 | 2017-10-17 | Bio-Medical Engineering (HK) Limited | Magnetic-anchored robotic system |
US9408610B2 (en) | 2012-05-04 | 2016-08-09 | Covidien Lp | Surgical clip applier with dissector |
ES2742808T3 (en) * | 2012-05-08 | 2020-02-17 | Protego Medical Pty Ltd | Apparatus for covering an exposed end of a sternum cut |
US20130317481A1 (en) | 2012-05-25 | 2013-11-28 | Arstasis, Inc. | Vascular access configuration |
US20130317438A1 (en) | 2012-05-25 | 2013-11-28 | Arstasis, Inc. | Vascular access configuration |
US9345573B2 (en) | 2012-05-30 | 2016-05-24 | Neovasc Tiara Inc. | Methods and apparatus for loading a prosthesis onto a delivery system |
US9532787B2 (en) | 2012-05-31 | 2017-01-03 | Covidien Lp | Endoscopic clip applier |
US8961594B2 (en) | 2012-05-31 | 2015-02-24 | 4Tech Inc. | Heart valve repair system |
US9101358B2 (en) | 2012-06-15 | 2015-08-11 | Ethicon Endo-Surgery, Inc. | Articulatable surgical instrument comprising a firing drive |
US9883941B2 (en) | 2012-06-19 | 2018-02-06 | Boston Scientific Scimed, Inc. | Replacement heart valve |
US9289256B2 (en) | 2012-06-28 | 2016-03-22 | Ethicon Endo-Surgery, Llc | Surgical end effectors having angled tissue-contacting surfaces |
US20140001231A1 (en) | 2012-06-28 | 2014-01-02 | Ethicon Endo-Surgery, Inc. | Firing system lockout arrangements for surgical instruments |
US20140001234A1 (en) | 2012-06-28 | 2014-01-02 | Ethicon Endo-Surgery, Inc. | Coupling arrangements for attaching surgical end effectors to drive systems therefor |
US9282974B2 (en) | 2012-06-28 | 2016-03-15 | Ethicon Endo-Surgery, Llc | Empty clip cartridge lockout |
CN104487005B (en) | 2012-06-28 | 2017-09-08 | 伊西康内外科公司 | Empty squeeze latching member |
BR112014032776B1 (en) | 2012-06-28 | 2021-09-08 | Ethicon Endo-Surgery, Inc | SURGICAL INSTRUMENT SYSTEM AND SURGICAL KIT FOR USE WITH A SURGICAL INSTRUMENT SYSTEM |
US11197671B2 (en) | 2012-06-28 | 2021-12-14 | Cilag Gmbh International | Stapling assembly comprising a lockout |
CN102860846B (en) * | 2012-09-05 | 2015-08-12 | 中国人民解放军第一0一医院 | A kind of Tricuspid valve edge-to-edge jaw device can implanted through conduit |
US20140067048A1 (en) | 2012-09-06 | 2014-03-06 | Edwards Lifesciences Corporation | Heart Valve Sealing Devices |
WO2014052818A1 (en) | 2012-09-29 | 2014-04-03 | Mitralign, Inc. | Plication lock delivery system and method of use thereof |
US9286673B2 (en) | 2012-10-05 | 2016-03-15 | Volcano Corporation | Systems for correcting distortions in a medical image and methods of use thereof |
US9367965B2 (en) | 2012-10-05 | 2016-06-14 | Volcano Corporation | Systems and methods for generating images of tissue |
US9324141B2 (en) | 2012-10-05 | 2016-04-26 | Volcano Corporation | Removal of A-scan streaking artifact |
US10568586B2 (en) | 2012-10-05 | 2020-02-25 | Volcano Corporation | Systems for indicating parameters in an imaging data set and methods of use |
US11272845B2 (en) | 2012-10-05 | 2022-03-15 | Philips Image Guided Therapy Corporation | System and method for instant and automatic border detection |
EP2904671B1 (en) | 2012-10-05 | 2022-05-04 | David Welford | Systems and methods for amplifying light |
US9307926B2 (en) | 2012-10-05 | 2016-04-12 | Volcano Corporation | Automatic stent detection |
US10070827B2 (en) | 2012-10-05 | 2018-09-11 | Volcano Corporation | Automatic image playback |
US9292918B2 (en) | 2012-10-05 | 2016-03-22 | Volcano Corporation | Methods and systems for transforming luminal images |
US9858668B2 (en) | 2012-10-05 | 2018-01-02 | Volcano Corporation | Guidewire artifact removal in images |
US9840734B2 (en) | 2012-10-22 | 2017-12-12 | Raindance Technologies, Inc. | Methods for analyzing DNA |
WO2014064695A2 (en) | 2012-10-23 | 2014-05-01 | Valtech Cardio, Ltd. | Percutaneous tissue anchor techniques |
WO2014064694A2 (en) | 2012-10-23 | 2014-05-01 | Valtech Cardio, Ltd. | Controlled steering functionality for implant-delivery tool |
US9414752B2 (en) | 2012-11-09 | 2016-08-16 | Elwha Llc | Embolism deflector |
US9757106B2 (en) * | 2012-12-03 | 2017-09-12 | Cook Medical Technologies Llc | Degradable expanding closure plug |
WO2014089397A1 (en) | 2012-12-06 | 2014-06-12 | Aastrom Biosciences, Inc. | Compositions and methods of treating and preventing pulmonary fibrosis |
US9730793B2 (en) | 2012-12-06 | 2017-08-15 | Valtech Cardio, Ltd. | Techniques for guide-wire based advancement of a tool |
CA2894403A1 (en) | 2012-12-13 | 2014-06-19 | Volcano Corporation | Devices, systems, and methods for targeted cannulation |
EP2934282B1 (en) | 2012-12-20 | 2020-04-29 | Volcano Corporation | Locating intravascular images |
US10939826B2 (en) | 2012-12-20 | 2021-03-09 | Philips Image Guided Therapy Corporation | Aspirating and removing biological material |
CA2895989A1 (en) | 2012-12-20 | 2014-07-10 | Nathaniel J. Kemp | Optical coherence tomography system that is reconfigurable between different imaging modes |
WO2014099899A1 (en) | 2012-12-20 | 2014-06-26 | Jeremy Stigall | Smooth transition catheters |
US11406498B2 (en) | 2012-12-20 | 2022-08-09 | Philips Image Guided Therapy Corporation | Implant delivery system and implants |
US10942022B2 (en) | 2012-12-20 | 2021-03-09 | Philips Image Guided Therapy Corporation | Manual calibration of imaging system |
US10191220B2 (en) | 2012-12-21 | 2019-01-29 | Volcano Corporation | Power-efficient optical circuit |
US9486143B2 (en) | 2012-12-21 | 2016-11-08 | Volcano Corporation | Intravascular forward imaging device |
US10413317B2 (en) | 2012-12-21 | 2019-09-17 | Volcano Corporation | System and method for catheter steering and operation |
CA2895940A1 (en) | 2012-12-21 | 2014-06-26 | Andrew Hancock | System and method for multipath processing of image signals |
US9612105B2 (en) | 2012-12-21 | 2017-04-04 | Volcano Corporation | Polarization sensitive optical coherence tomography system |
EP2936626A4 (en) | 2012-12-21 | 2016-08-17 | David Welford | Systems and methods for narrowing a wavelength emission of light |
US9364209B2 (en) | 2012-12-21 | 2016-06-14 | Abbott Cardiovascular Systems, Inc. | Articulating suturing device |
WO2014100606A1 (en) | 2012-12-21 | 2014-06-26 | Meyer, Douglas | Rotational ultrasound imaging catheter with extended catheter body telescope |
EP2936426B1 (en) | 2012-12-21 | 2021-10-13 | Jason Spencer | System and method for graphical processing of medical data |
US10166003B2 (en) | 2012-12-21 | 2019-01-01 | Volcano Corporation | Ultrasound imaging with variable line density |
US10058284B2 (en) | 2012-12-21 | 2018-08-28 | Volcano Corporation | Simultaneous imaging, monitoring, and therapy |
US10076377B2 (en) | 2013-01-05 | 2018-09-18 | P Tech, Llc | Fixation systems and methods |
US9968362B2 (en) | 2013-01-08 | 2018-05-15 | Covidien Lp | Surgical clip applier |
US9113892B2 (en) | 2013-01-08 | 2015-08-25 | Covidien Lp | Surgical clip applier |
US9788948B2 (en) | 2013-01-09 | 2017-10-17 | 4 Tech Inc. | Soft tissue anchors and implantation techniques |
US9750500B2 (en) | 2013-01-18 | 2017-09-05 | Covidien Lp | Surgical clip applier |
US9681952B2 (en) | 2013-01-24 | 2017-06-20 | Mitraltech Ltd. | Anchoring of prosthetic valve supports |
US9439763B2 (en) | 2013-02-04 | 2016-09-13 | Edwards Lifesciences Corporation | Prosthetic valve for replacing mitral valve |
US9095344B2 (en) | 2013-02-05 | 2015-08-04 | Artventive Medical Group, Inc. | Methods and apparatuses for blood vessel occlusion |
US8984733B2 (en) | 2013-02-05 | 2015-03-24 | Artventive Medical Group, Inc. | Bodily lumen occlusion |
WO2014125588A1 (en) * | 2013-02-14 | 2014-08-21 | テルモ株式会社 | Medical device |
EP2961351B1 (en) | 2013-02-26 | 2018-11-28 | Mitralign, Inc. | Devices for percutaneous tricuspid valve repair |
ES2671997T3 (en) | 2013-02-27 | 2018-06-12 | Spirox, Inc. | Nasal implants and systems |
BR112015021082B1 (en) | 2013-03-01 | 2022-05-10 | Ethicon Endo-Surgery, Inc | surgical instrument |
MX368026B (en) | 2013-03-01 | 2019-09-12 | Ethicon Endo Surgery Inc | Articulatable surgical instruments with conductive pathways for signal communication. |
WO2014136056A1 (en) * | 2013-03-04 | 2014-09-12 | Medical Research, Infrastructure And Health Services Fund Of The Tel-Aviv Medical Center | Cardiac valve commissure brace |
US10226597B2 (en) | 2013-03-07 | 2019-03-12 | Volcano Corporation | Guidewire with centering mechanism |
WO2014138284A1 (en) | 2013-03-07 | 2014-09-12 | Cedars-Sinai Medical Center | Catheter based apical approach heart prostheses delivery system |
WO2014138482A1 (en) | 2013-03-07 | 2014-09-12 | Cedars-Sinai Medical Center | Method and apparatus for percutaneous delivery and deployment of a cardiovascular prosthesis |
CN113705586A (en) | 2013-03-07 | 2021-11-26 | 飞利浦影像引导治疗公司 | Multi-modal segmentation in intravascular images |
US11154313B2 (en) | 2013-03-12 | 2021-10-26 | The Volcano Corporation | Vibrating guidewire torquer and methods of use |
JP6336560B2 (en) | 2013-03-12 | 2018-06-06 | センターハート・インコーポレイテッドSentreHEART, Inc. | Tissue ligation apparatus and method therefor |
CN105228518B (en) | 2013-03-12 | 2018-10-09 | 火山公司 | System and method for diagnosing coronal microvascular diseases |
CN105120759B (en) | 2013-03-13 | 2018-02-23 | 火山公司 | System and method for producing image from rotation intravascular ultrasound equipment |
US11026591B2 (en) | 2013-03-13 | 2021-06-08 | Philips Image Guided Therapy Corporation | Intravascular pressure sensor calibration |
US9301687B2 (en) | 2013-03-13 | 2016-04-05 | Volcano Corporation | System and method for OCT depth calibration |
US20160030151A1 (en) | 2013-03-14 | 2016-02-04 | Volcano Corporation | Filters with echogenic characteristics |
US10292677B2 (en) | 2013-03-14 | 2019-05-21 | Volcano Corporation | Endoluminal filter having enhanced echogenic properties |
US10449333B2 (en) | 2013-03-14 | 2019-10-22 | Valtech Cardio, Ltd. | Guidewire feeder |
US9629629B2 (en) | 2013-03-14 | 2017-04-25 | Ethicon Endo-Surgey, LLC | Control systems for surgical instruments |
US9907681B2 (en) | 2013-03-14 | 2018-03-06 | 4Tech Inc. | Stent with tether interface |
US10219887B2 (en) | 2013-03-14 | 2019-03-05 | Volcano Corporation | Filters with echogenic characteristics |
JP6561040B2 (en) * | 2013-03-15 | 2019-08-14 | コンメッド コーポレイション | System and method for securing tissue to bone |
US9744037B2 (en) | 2013-03-15 | 2017-08-29 | California Institute Of Technology | Handle mechanism and functionality for repositioning and retrieval of transcatheter heart valves |
US9724195B2 (en) | 2013-03-15 | 2017-08-08 | Mitralign, Inc. | Translation catheters and systems |
US9572665B2 (en) | 2013-04-04 | 2017-02-21 | Neovasc Tiara Inc. | Methods and apparatus for delivering a prosthetic valve to a beating heart |
BR112015026109B1 (en) | 2013-04-16 | 2022-02-22 | Ethicon Endo-Surgery, Inc | surgical instrument |
US10405857B2 (en) | 2013-04-16 | 2019-09-10 | Ethicon Llc | Powered linear surgical stapler |
EP2999435B1 (en) | 2013-05-20 | 2022-12-21 | Twelve, Inc. | Implantable heart valve devices, mitral valve repair devices and associated systems |
US10149968B2 (en) | 2013-06-14 | 2018-12-11 | Artventive Medical Group, Inc. | Catheter-assisted tumor treatment |
US9636116B2 (en) | 2013-06-14 | 2017-05-02 | Artventive Medical Group, Inc. | Implantable luminal devices |
US9737308B2 (en) | 2013-06-14 | 2017-08-22 | Artventive Medical Group, Inc. | Catheter-assisted tumor treatment |
US9737306B2 (en) | 2013-06-14 | 2017-08-22 | Artventive Medical Group, Inc. | Implantable luminal devices |
US10070851B2 (en) | 2013-08-02 | 2018-09-11 | Covidien Lp | Devices, systems, and methods for wound closure |
US10426472B2 (en) | 2013-08-02 | 2019-10-01 | Covidien Lp | Devices, systems, and methods for wound closure |
US9907570B2 (en) * | 2013-08-23 | 2018-03-06 | Oscor Inc. | Steerable medical devices |
CN106028966B (en) | 2013-08-23 | 2018-06-22 | 伊西康内外科有限责任公司 | For the firing member restoring device of powered surgical instrument |
US20150053737A1 (en) | 2013-08-23 | 2015-02-26 | Ethicon Endo-Surgery, Inc. | End effector detection systems for surgical instruments |
US9775624B2 (en) | 2013-08-27 | 2017-10-03 | Covidien Lp | Surgical clip applier |
CN105491978A (en) | 2013-08-30 | 2016-04-13 | 耶拿阀门科技股份有限公司 | Radially collapsible frame for a prosthetic valve and method for manufacturing such a frame |
US10070857B2 (en) | 2013-08-31 | 2018-09-11 | Mitralign, Inc. | Devices and methods for locating and implanting tissue anchors at mitral valve commissure |
US9247935B2 (en) | 2013-09-23 | 2016-02-02 | Ceterix Orthopaedics, Inc. | Arthroscopic knot pusher and suture cutter |
US10299793B2 (en) | 2013-10-23 | 2019-05-28 | Valtech Cardio, Ltd. | Anchor magazine |
US10166098B2 (en) | 2013-10-25 | 2019-01-01 | Middle Peak Medical, Inc. | Systems and methods for transcatheter treatment of valve regurgitation |
US10022114B2 (en) | 2013-10-30 | 2018-07-17 | 4Tech Inc. | Percutaneous tether locking |
EP3062709A2 (en) | 2013-10-30 | 2016-09-07 | 4Tech Inc. | Multiple anchoring-point tension system |
US10052095B2 (en) | 2013-10-30 | 2018-08-21 | 4Tech Inc. | Multiple anchoring-point tension system |
US10258408B2 (en) | 2013-10-31 | 2019-04-16 | Sentreheart, Inc. | Devices and methods for left atrial appendage closure |
US9839765B2 (en) * | 2013-11-12 | 2017-12-12 | St. Jude Medical, Cardiology Division, Inc. | Transfemoral mitral valve repair delivery device |
WO2015077356A1 (en) | 2013-11-19 | 2015-05-28 | Wheeler William K | Fastener applicator with interlock |
CN104939875B (en) | 2013-12-16 | 2019-07-26 | 赛特里克斯整形公司 | Automatically suture passer device and method are reloaded |
US9610162B2 (en) | 2013-12-26 | 2017-04-04 | Valtech Cardio, Ltd. | Implantation of flexible implant |
EP2896387A1 (en) | 2014-01-20 | 2015-07-22 | Mitricares | Heart valve anchoring device |
EP3073910B1 (en) | 2014-02-06 | 2020-07-15 | C.R. Bard, Inc. | Systems for guidance and placement of an intravascular device |
EP3116414B9 (en) * | 2014-03-13 | 2023-01-25 | LSI Solutions, Inc. | Surgical clamp jaw |
EP2918249B1 (en) | 2014-03-14 | 2020-04-29 | Venus MedTech (HangZhou), Inc. | Supraclavicular catheter system for transseptal access to the left atrium and left ventricle |
BR112016021943B1 (en) | 2014-03-26 | 2022-06-14 | Ethicon Endo-Surgery, Llc | SURGICAL INSTRUMENT FOR USE BY AN OPERATOR IN A SURGICAL PROCEDURE |
US10013049B2 (en) | 2014-03-26 | 2018-07-03 | Ethicon Llc | Power management through sleep options of segmented circuit and wake up control |
EP2929841B1 (en) | 2014-04-08 | 2017-11-15 | Ceterix Orthopaedics, Inc. | Suture passers adapted for use in constrained regions |
CN106456158B (en) | 2014-04-16 | 2019-02-05 | 伊西康内外科有限责任公司 | Fastener cartridge including non-uniform fastener |
BR112016023698B1 (en) | 2014-04-16 | 2022-07-26 | Ethicon Endo-Surgery, Llc | FASTENER CARTRIDGE FOR USE WITH A SURGICAL INSTRUMENT |
US10327764B2 (en) | 2014-09-26 | 2019-06-25 | Ethicon Llc | Method for creating a flexible staple line |
CN106456159B (en) | 2014-04-16 | 2019-03-08 | 伊西康内外科有限责任公司 | Fastener cartridge assembly and nail retainer lid arragement construction |
US20150297223A1 (en) | 2014-04-16 | 2015-10-22 | Ethicon Endo-Surgery, Inc. | Fastener cartridges including extensions having different configurations |
US10363043B2 (en) | 2014-05-01 | 2019-07-30 | Artventive Medical Group, Inc. | Treatment of incompetent vessels |
US11826172B2 (en) | 2014-05-06 | 2023-11-28 | St. Jude Medical, Cardiology Division, Inc. | Electrode support structure assembly |
US10118022B2 (en) | 2014-06-05 | 2018-11-06 | St. Jude Medical, Cardiology Division, Inc. | Deflectable catheter shaft section |
US9918714B2 (en) | 2014-06-13 | 2018-03-20 | Cook Medical Technologies Llc | Stapling device and method |
US9844645B2 (en) | 2014-06-17 | 2017-12-19 | St. Jude Medical, Cardiology Division, Inc. | Triple coil catheter support |
ES2908178T3 (en) | 2014-06-18 | 2022-04-28 | Polares Medical Inc | Mitral valve implants for the treatment of valvular regurgitation |
JP6559161B2 (en) | 2014-06-19 | 2019-08-14 | 4テック インコーポレイテッド | Tightening heart tissue |
US10251635B2 (en) | 2014-06-24 | 2019-04-09 | Middle Peak Medical, Inc. | Systems and methods for anchoring an implant |
WO2015199816A1 (en) | 2014-06-24 | 2015-12-30 | Icon Medical Corp. | Improved metal alloys for medical devices |
EP3165183A4 (en) * | 2014-07-01 | 2018-01-17 | Olympus Corporation | Tissue grasping tool |
WO2016004041A1 (en) * | 2014-07-01 | 2016-01-07 | Boston Scientific Scimed, Inc. | Overlapped braid termination |
US10524910B2 (en) | 2014-07-30 | 2020-01-07 | Mitraltech Ltd. 3 Ariel Sharon Avenue | Articulatable prosthetic valve |
CA2958213A1 (en) | 2014-08-26 | 2016-03-03 | Spirox, Inc. | Nasal implants and systems and method of use |
BR112017004361B1 (en) | 2014-09-05 | 2023-04-11 | Ethicon Llc | ELECTRONIC SYSTEM FOR A SURGICAL INSTRUMENT |
US9757128B2 (en) | 2014-09-05 | 2017-09-12 | Ethicon Llc | Multiple sensors with one sensor affecting a second sensor's output or interpretation |
US11311294B2 (en) | 2014-09-05 | 2022-04-26 | Cilag Gmbh International | Powered medical device including measurement of closure state of jaws |
US10799359B2 (en) | 2014-09-10 | 2020-10-13 | Cedars-Sinai Medical Center | Method and apparatus for percutaneous delivery and deployment of a cardiac valve prosthesis |
AU2015314906B2 (en) * | 2014-09-12 | 2018-09-20 | Cook Medical Technologies Llc | Medical devices with detachable pivotable jaws |
US10076469B2 (en) | 2014-09-16 | 2018-09-18 | Casey James Thomas | Tube management system |
GB2536538B (en) | 2014-09-17 | 2018-07-18 | Cardiomech As | Anchor for implantation in body tissue |
US10105142B2 (en) | 2014-09-18 | 2018-10-23 | Ethicon Llc | Surgical stapler with plurality of cutting elements |
CN107427300B (en) | 2014-09-26 | 2020-12-04 | 伊西康有限责任公司 | Surgical suture buttress and buttress material |
US11523821B2 (en) | 2014-09-26 | 2022-12-13 | Cilag Gmbh International | Method for creating a flexible staple line |
DE102014114762B3 (en) * | 2014-10-10 | 2016-03-03 | Asanus Medizintechnik Gmbh | Aortic valve clamp and instrument set for aortic valve reconstruction |
EP4331503A3 (en) | 2014-10-14 | 2024-06-05 | Edwards Lifesciences Innovation (Israel) Ltd. | Leaflet-restraining techniques |
US9924944B2 (en) | 2014-10-16 | 2018-03-27 | Ethicon Llc | Staple cartridge comprising an adjunct material |
US10898096B2 (en) | 2014-10-27 | 2021-01-26 | St. Jude Medical, Cardiology Division, Inc. | Apparatus and method for connecting elements in medical devices |
US10517594B2 (en) | 2014-10-29 | 2019-12-31 | Ethicon Llc | Cartridge assemblies for surgical staplers |
US11141153B2 (en) | 2014-10-29 | 2021-10-12 | Cilag Gmbh International | Staple cartridges comprising driver arrangements |
US10617847B2 (en) | 2014-11-04 | 2020-04-14 | Orbusneich Medical Pte. Ltd. | Variable flexibility catheter support frame |
US9844376B2 (en) | 2014-11-06 | 2017-12-19 | Ethicon Llc | Staple cartridge comprising a releasable adjunct material |
US10758265B2 (en) | 2014-11-14 | 2020-09-01 | Cedars-Sinai Medical Center | Cardiovascular access and device delivery system |
US9901445B2 (en) | 2014-11-21 | 2018-02-27 | Boston Scientific Scimed, Inc. | Valve locking mechanism |
US9907547B2 (en) | 2014-12-02 | 2018-03-06 | 4Tech Inc. | Off-center tissue anchors |
US10702278B2 (en) | 2014-12-02 | 2020-07-07 | Covidien Lp | Laparoscopic surgical ligation clip applier |
US10736636B2 (en) | 2014-12-10 | 2020-08-11 | Ethicon Llc | Articulatable surgical instrument system |
US9943309B2 (en) | 2014-12-18 | 2018-04-17 | Ethicon Llc | Surgical instruments with articulatable end effectors and movable firing beam support arrangements |
BR112017012996B1 (en) | 2014-12-18 | 2022-11-08 | Ethicon Llc | SURGICAL INSTRUMENT WITH AN ANvil WHICH IS SELECTIVELY MOVABLE ABOUT AN IMMOVABLE GEOMETRIC AXIS DIFFERENT FROM A STAPLE CARTRIDGE |
US9987000B2 (en) | 2014-12-18 | 2018-06-05 | Ethicon Llc | Surgical instrument assembly comprising a flexible articulation system |
US10085748B2 (en) | 2014-12-18 | 2018-10-02 | Ethicon Llc | Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors |
US9844375B2 (en) | 2014-12-18 | 2017-12-19 | Ethicon Llc | Drive arrangements for articulatable surgical instruments |
US9844374B2 (en) | 2014-12-18 | 2017-12-19 | Ethicon Llc | Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member |
US9931124B2 (en) | 2015-01-07 | 2018-04-03 | Covidien Lp | Reposable clip applier |
US10368876B2 (en) | 2015-01-15 | 2019-08-06 | Covidien Lp | Endoscopic reposable surgical clip applier |
WO2016115375A1 (en) | 2015-01-16 | 2016-07-21 | Boston Scientific Scimed, Inc. | Displacement based lock and release mechanism |
US10973584B2 (en) | 2015-01-19 | 2021-04-13 | Bard Access Systems, Inc. | Device and method for vascular access |
US9861477B2 (en) | 2015-01-26 | 2018-01-09 | Boston Scientific Scimed Inc. | Prosthetic heart valve square leaflet-leaflet stitch |
US10292712B2 (en) | 2015-01-28 | 2019-05-21 | Covidien Lp | Surgical clip applier with integrated cutter |
US10201417B2 (en) | 2015-02-03 | 2019-02-12 | Boston Scientific Scimed Inc. | Prosthetic heart valve having tubular seal |
US9788942B2 (en) | 2015-02-03 | 2017-10-17 | Boston Scientific Scimed Inc. | Prosthetic heart valve having tubular seal |
US9974651B2 (en) | 2015-02-05 | 2018-05-22 | Mitral Tech Ltd. | Prosthetic valve with axially-sliding frames |
CA3162308A1 (en) | 2015-02-05 | 2016-08-11 | Cardiovalve Ltd. | Prosthetic valve with axially-sliding frames |
WO2016130991A1 (en) | 2015-02-13 | 2016-08-18 | Millipede, Inc. | Valve replacement using rotational anchors |
EP3261706B1 (en) | 2015-02-23 | 2019-11-20 | C.R. Bard, Inc. | Access system |
EP3261528B1 (en) | 2015-02-23 | 2018-10-03 | Koninklijke Philips N.V. | Multi-state clip-on fixation device for pulse oximeter |
US11154301B2 (en) | 2015-02-27 | 2021-10-26 | Cilag Gmbh International | Modular stapling assembly |
US20160256269A1 (en) | 2015-03-05 | 2016-09-08 | Mitralign, Inc. | Devices for treating paravalvular leakage and methods use thereof |
US10245033B2 (en) | 2015-03-06 | 2019-04-02 | Ethicon Llc | Surgical instrument comprising a lockable battery housing |
US10548504B2 (en) | 2015-03-06 | 2020-02-04 | Ethicon Llc | Overlaid multi sensor radio frequency (RF) electrode system to measure tissue compression |
US10285809B2 (en) | 2015-03-06 | 2019-05-14 | Boston Scientific Scimed Inc. | TAVI anchoring assist device |
JP2020121162A (en) | 2015-03-06 | 2020-08-13 | エシコン エルエルシーEthicon LLC | Time dependent evaluation of sensor data to determine stability element, creep element and viscoelastic element of measurement |
US10441279B2 (en) | 2015-03-06 | 2019-10-15 | Ethicon Llc | Multiple level thresholds to modify operation of powered surgical instruments |
US10426617B2 (en) | 2015-03-06 | 2019-10-01 | Boston Scientific Scimed, Inc. | Low profile valve locking mechanism and commissure assembly |
US9993248B2 (en) | 2015-03-06 | 2018-06-12 | Ethicon Endo-Surgery, Llc | Smart sensors with local signal processing |
US10159491B2 (en) | 2015-03-10 | 2018-12-25 | Covidien Lp | Endoscopic reposable surgical clip applier |
US10080652B2 (en) | 2015-03-13 | 2018-09-25 | Boston Scientific Scimed, Inc. | Prosthetic heart valve having an improved tubular seal |
PL3273870T3 (en) | 2015-03-24 | 2024-04-29 | Atricure, Inc. | Tissue ligation devices |
CN107530070B (en) | 2015-03-24 | 2021-09-28 | 森特里心脏股份有限公司 | Device and method for left atrial appendage closure |
US10390825B2 (en) | 2015-03-31 | 2019-08-27 | Ethicon Llc | Surgical instrument with progressive rotary drive systems |
CN107690322A (en) * | 2015-04-01 | 2018-02-13 | 爱德华兹生命科学公司 | heart valve repair device |
SG10202010021SA (en) | 2015-04-30 | 2020-11-27 | Valtech Cardio Ltd | Annuloplasty technologies |
WO2016177562A1 (en) | 2015-05-01 | 2016-11-10 | Jenavalve Technology, Inc. | Device and method with reduced pacemaker rate in heart valve replacement |
US10602983B2 (en) | 2015-05-08 | 2020-03-31 | St. Jude Medical International Holding S.À R.L. | Integrated sensors for medical devices and method of making integrated sensors for medical devices |
AU2016260305B2 (en) | 2015-05-12 | 2022-01-06 | Ancora Heart, Inc. | Device and method for releasing catheters from cardiac structures |
US10349890B2 (en) | 2015-06-26 | 2019-07-16 | C. R. Bard, Inc. | Connector interface for ECG-based catheter positioning system |
US10335277B2 (en) | 2015-07-02 | 2019-07-02 | Boston Scientific Scimed Inc. | Adjustable nosecone |
US10195392B2 (en) | 2015-07-02 | 2019-02-05 | Boston Scientific Scimed, Inc. | Clip-on catheter |
US10226245B2 (en) | 2015-07-21 | 2019-03-12 | Ceterix Orthopaedics, Inc. | Automatically reloading suture passer devices that prevent entanglement |
EP3324855B1 (en) | 2015-07-23 | 2024-03-20 | Cedars-Sinai Medical Center | Device for securing heart valve leaflets |
US10179041B2 (en) | 2015-08-12 | 2019-01-15 | Boston Scientific Scimed Icn. | Pinless release mechanism |
US10136991B2 (en) | 2015-08-12 | 2018-11-27 | Boston Scientific Scimed Inc. | Replacement heart valve implant |
CN111658234B (en) | 2015-08-21 | 2023-03-10 | 托尔福公司 | Implantable heart valve devices, mitral valve repair devices, and associated systems and methods |
US10105139B2 (en) | 2015-09-23 | 2018-10-23 | Ethicon Llc | Surgical stapler having downstream current-based motor control |
US10238386B2 (en) | 2015-09-23 | 2019-03-26 | Ethicon Llc | Surgical stapler having motor control based on an electrical parameter related to a motor current |
CN108024825B (en) | 2015-09-25 | 2021-07-30 | 斯贝洛克斯公司 | Nasal implants and systems and methods of use |
US10299878B2 (en) | 2015-09-25 | 2019-05-28 | Ethicon Llc | Implantable adjunct systems for determining adjunct skew |
US10478188B2 (en) | 2015-09-30 | 2019-11-19 | Ethicon Llc | Implantable layer comprising a constricted configuration |
US10433846B2 (en) | 2015-09-30 | 2019-10-08 | Ethicon Llc | Compressible adjunct with crossing spacer fibers |
US11890015B2 (en) | 2015-09-30 | 2024-02-06 | Cilag Gmbh International | Compressible adjunct with crossing spacer fibers |
US10405853B2 (en) | 2015-10-02 | 2019-09-10 | Ceterix Orthpaedics, Inc. | Knot tying accessory |
USD809139S1 (en) | 2015-10-09 | 2018-01-30 | Evalve, Inc. | Handle for a medical device |
US10226309B2 (en) * | 2015-10-09 | 2019-03-12 | Evalve, Inc. | Devices, systems, and methods to support, stabilize, and position a medical device |
USD816832S1 (en) | 2015-10-09 | 2018-05-01 | Evalve, Inc. | Stabilizer |
WO2017070559A1 (en) | 2015-10-21 | 2017-04-27 | St. Jude, Cardiology Division, Inc. | High density electrode mapping catheter |
AU2015413639A1 (en) | 2015-11-03 | 2018-04-05 | Covidien Lp | Endoscopic surgical clip applier |
US9592121B1 (en) | 2015-11-06 | 2017-03-14 | Middle Peak Medical, Inc. | Device, system, and method for transcatheter treatment of valvular regurgitation |
US10390831B2 (en) | 2015-11-10 | 2019-08-27 | Covidien Lp | Endoscopic reposable surgical clip applier |
JP6678741B2 (en) | 2015-11-10 | 2020-04-08 | コヴィディエン リミテッド パートナーシップ | Endoscope disposable surgical clip applier |
US10702280B2 (en) | 2015-11-10 | 2020-07-07 | Covidien Lp | Endoscopic reposable surgical clip applier |
US20170143318A1 (en) * | 2015-11-24 | 2017-05-25 | Bobby Hu | Delivery Apparatus for a Medical Device |
CN107049372A (en) * | 2015-11-24 | 2017-08-18 | 胡厚飞 | The delivery apparatus of medical equipment |
JP7002451B2 (en) | 2015-12-15 | 2022-01-20 | ニオバスク ティアラ インコーポレイテッド | Transseptal delivery system |
US9554792B1 (en) * | 2015-12-15 | 2017-01-31 | Heartstitch, Inc. | Variable spread suturing device |
WO2017117370A2 (en) | 2015-12-30 | 2017-07-06 | Mitralign, Inc. | System and method for reducing tricuspid regurgitation |
US10368865B2 (en) | 2015-12-30 | 2019-08-06 | Ethicon Llc | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
US10292704B2 (en) | 2015-12-30 | 2019-05-21 | Ethicon Llc | Mechanisms for compensating for battery pack failure in powered surgical instruments |
US10751182B2 (en) | 2015-12-30 | 2020-08-25 | Edwards Lifesciences Corporation | System and method for reshaping right heart |
US10265068B2 (en) | 2015-12-30 | 2019-04-23 | Ethicon Llc | Surgical instruments with separable motors and motor control circuits |
EP3402417A4 (en) | 2016-01-11 | 2019-12-04 | Covidien LP | Endoscopic reposable surgical clip applier |
US11833034B2 (en) | 2016-01-13 | 2023-12-05 | Shifamed Holdings, Llc | Prosthetic cardiac valve devices, systems, and methods |
US10507036B2 (en) | 2016-01-13 | 2019-12-17 | Covidien LLP | Tissue-removing catheter, tissue-removing element, and method of making same |
AU2016388454A1 (en) | 2016-01-18 | 2018-07-19 | Covidien Lp | Endoscopic surgical clip applier |
US11000207B2 (en) | 2016-01-29 | 2021-05-11 | C. R. Bard, Inc. | Multiple coil system for tracking a medical device |
WO2017127939A1 (en) | 2016-01-29 | 2017-08-03 | Neovasc Tiara Inc. | Prosthetic valve for avoiding obstruction of outflow |
US10342660B2 (en) | 2016-02-02 | 2019-07-09 | Boston Scientific Inc. | Tensioned sheathing aids |
BR112018016098B1 (en) | 2016-02-09 | 2023-02-23 | Ethicon Llc | SURGICAL INSTRUMENT |
US11213293B2 (en) | 2016-02-09 | 2022-01-04 | Cilag Gmbh International | Articulatable surgical instruments with single articulation link arrangements |
US10299924B2 (en) | 2016-02-10 | 2019-05-28 | Abbott Cardiovascular Systems Inc. | System and method for implant delivery |
US10448948B2 (en) | 2016-02-12 | 2019-10-22 | Ethicon Llc | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
US11224426B2 (en) | 2016-02-12 | 2022-01-18 | Cilag Gmbh International | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
US10531866B2 (en) | 2016-02-16 | 2020-01-14 | Cardiovalve Ltd. | Techniques for providing a replacement valve and transseptal communication |
USD816215S1 (en) | 2016-02-23 | 2018-04-24 | C.R. Bard Inc. | Access device |
CA2958160A1 (en) | 2016-02-24 | 2017-08-24 | Covidien Lp | Endoscopic reposable surgical clip applier |
EP4331509A3 (en) | 2016-02-26 | 2024-05-15 | AtriCure, Inc. | Devices for left atrial appendage closure |
US11766506B2 (en) | 2016-03-04 | 2023-09-26 | Mirus Llc | Stent device for spinal fusion |
US10835714B2 (en) | 2016-03-21 | 2020-11-17 | Edwards Lifesciences Corporation | Multi-direction steerable handles for steering catheters |
US10799676B2 (en) | 2016-03-21 | 2020-10-13 | Edwards Lifesciences Corporation | Multi-direction steerable handles for steering catheters |
US11219746B2 (en) | 2016-03-21 | 2022-01-11 | Edwards Lifesciences Corporation | Multi-direction steerable handles for steering catheters |
US10799677B2 (en) | 2016-03-21 | 2020-10-13 | Edwards Lifesciences Corporation | Multi-direction steerable handles for steering catheters |
US10799675B2 (en) | 2016-03-21 | 2020-10-13 | Edwards Lifesciences Corporation | Cam controlled multi-direction steerable handles |
US10813644B2 (en) | 2016-04-01 | 2020-10-27 | Artventive Medical Group, Inc. | Occlusive implant and delivery system |
US10799358B2 (en) | 2016-04-12 | 2020-10-13 | Lars Erickson | Catheter system for selectively manipulating and connecting cardiac tissues |
US10159569B2 (en) * | 2016-04-12 | 2018-12-25 | Lars Erickson | Minimally invasive atrio-ventricular valve treatment by chordae adjustment |
US10357247B2 (en) | 2016-04-15 | 2019-07-23 | Ethicon Llc | Surgical instrument with multiple program responses during a firing motion |
US11179150B2 (en) | 2016-04-15 | 2021-11-23 | Cilag Gmbh International | Systems and methods for controlling a surgical stapling and cutting instrument |
US10456137B2 (en) | 2016-04-15 | 2019-10-29 | Ethicon Llc | Staple formation detection mechanisms |
US11607239B2 (en) | 2016-04-15 | 2023-03-21 | Cilag Gmbh International | Systems and methods for controlling a surgical stapling and cutting instrument |
US10335145B2 (en) | 2016-04-15 | 2019-07-02 | Ethicon Llc | Modular surgical instrument with configurable operating mode |
US10492783B2 (en) | 2016-04-15 | 2019-12-03 | Ethicon, Llc | Surgical instrument with improved stop/start control during a firing motion |
US10426467B2 (en) | 2016-04-15 | 2019-10-01 | Ethicon Llc | Surgical instrument with detection sensors |
US10828028B2 (en) | 2016-04-15 | 2020-11-10 | Ethicon Llc | Surgical instrument with multiple program responses during a firing motion |
US20170296173A1 (en) | 2016-04-18 | 2017-10-19 | Ethicon Endo-Surgery, Llc | Method for operating a surgical instrument |
US11317917B2 (en) | 2016-04-18 | 2022-05-03 | Cilag Gmbh International | Surgical stapling system comprising a lockable firing assembly |
US10478181B2 (en) | 2016-04-18 | 2019-11-19 | Ethicon Llc | Cartridge lockout arrangements for rotary powered surgical cutting and stapling instruments |
CN109069272A (en) | 2016-04-29 | 2018-12-21 | 美敦力瓦斯科尔勒公司 | Prosthetic heart valve equipment and associated system and method with the anchor log with tether |
EP4299100A3 (en) | 2016-05-02 | 2024-03-20 | Entellus Medical, Inc. | Nasal valve implants |
CN113425304B (en) | 2016-05-03 | 2024-06-25 | 圣犹达医疗用品心脏病学部门有限公司 | Flushing high density electrode catheter |
JP7081749B2 (en) | 2016-05-13 | 2022-06-07 | イエナバルブ テクノロジー インク | Heart valve prosthesis delivery system |
US10583005B2 (en) | 2016-05-13 | 2020-03-10 | Boston Scientific Scimed, Inc. | Medical device handle |
US10201416B2 (en) | 2016-05-16 | 2019-02-12 | Boston Scientific Scimed, Inc. | Replacement heart valve implant with invertible leaflets |
US20190192830A1 (en) * | 2017-12-21 | 2019-06-27 | Daniel Ezra Walzman | Vessel access catheter |
US10702274B2 (en) | 2016-05-26 | 2020-07-07 | Edwards Lifesciences Corporation | Method and system for closing left atrial appendage |
EP3868306A1 (en) | 2016-06-20 | 2021-08-25 | Evalve, Inc. | Transapical removal device |
US10973638B2 (en) * | 2016-07-07 | 2021-04-13 | Edwards Lifesciences Corporation | Device and method for treating vascular insufficiency |
GB201611910D0 (en) | 2016-07-08 | 2016-08-24 | Valtech Cardio Ltd | Adjustable annuloplasty device with alternating peaks and troughs |
CN109715078B (en) * | 2016-07-13 | 2022-05-27 | 迈德福瑞公司 | Tissue grasping device and related methods |
US11185413B2 (en) | 2016-07-13 | 2021-11-30 | Medfree, Inc. | Tissue grasping devices and related methods |
US10058426B2 (en) | 2016-07-20 | 2018-08-28 | Abbott Cardiovascular Systems Inc. | System for tricuspid valve repair |
US10478304B2 (en) | 2016-07-20 | 2019-11-19 | Abbott Cardiovascular Systems Inc. | Independent system for tricuspid valve repair |
US10646689B2 (en) | 2016-07-29 | 2020-05-12 | Cephea Valve Technologies, Inc. | Mechanical interlock for catheters |
US10974027B2 (en) | 2016-07-29 | 2021-04-13 | Cephea Valve Technologies, Inc. | Combination steerable catheter and systems |
US10661052B2 (en) * | 2016-07-29 | 2020-05-26 | Cephea Valve Technologies, Inc. | Intravascular device delivery sheath |
US11324495B2 (en) | 2016-07-29 | 2022-05-10 | Cephea Valve Technologies, Inc. | Systems and methods for delivering an intravascular device to the mitral annulus |
US10639151B2 (en) | 2016-07-29 | 2020-05-05 | Cephea Valve Technologies, Inc. | Threaded coil |
GB201613219D0 (en) | 2016-08-01 | 2016-09-14 | Mitraltech Ltd | Minimally-invasive delivery systems |
USD800908S1 (en) | 2016-08-10 | 2017-10-24 | Mitraltech Ltd. | Prosthetic valve element |
EP3848003A1 (en) | 2016-08-10 | 2021-07-14 | Cardiovalve Ltd. | Prosthetic valve with concentric frames |
US10383725B2 (en) | 2016-08-11 | 2019-08-20 | 4C Medical Technologies, Inc. | Heart chamber prosthetic valve implant with base, mesh and dome sections with single chamber anchoring for preservation, supplementation and/or replacement of native valve function |
US10806464B2 (en) | 2016-08-11 | 2020-10-20 | Covidien Lp | Endoscopic surgical clip applier and clip applying systems |
AU2016420481A1 (en) | 2016-08-25 | 2019-01-17 | Covidien Lp | Endoscopic surgical clip applier and clip applying systems |
US10751485B2 (en) | 2016-08-29 | 2020-08-25 | Cephea Valve Technologies, Inc. | Methods, systems, and devices for sealing and flushing a delivery system |
US11109967B2 (en) | 2016-08-29 | 2021-09-07 | Cephea Valve Technologies, Inc. | Systems and methods for loading and deploying an intravascular device |
US10933216B2 (en) * | 2016-08-29 | 2021-03-02 | Cephea Valve Technologies, Inc. | Multilumen catheter |
US11045315B2 (en) | 2016-08-29 | 2021-06-29 | Cephea Valve Technologies, Inc. | Methods of steering and delivery of intravascular devices |
PL3515327T3 (en) | 2016-09-23 | 2024-06-10 | Atricure, Inc. | Devices for left atrial appendage closure |
US10874512B2 (en) | 2016-10-05 | 2020-12-29 | Cephea Valve Technologies, Inc. | System and methods for delivering and deploying an artificial heart valve within the mitral annulus |
US11786705B2 (en) | 2016-10-24 | 2023-10-17 | St. Jude Medical, Cardiology Division, Inc. | Catheter insertion devices |
US11172858B2 (en) | 2016-10-28 | 2021-11-16 | St. Jude Medical, Cardiology Division, Inc. | Flexible high-density mapping catheter |
US10660651B2 (en) | 2016-10-31 | 2020-05-26 | Covidien Lp | Endoscopic reposable surgical clip applier |
US10639044B2 (en) | 2016-10-31 | 2020-05-05 | Covidien Lp | Ligation clip module and clip applier |
US10610236B2 (en) | 2016-11-01 | 2020-04-07 | Covidien Lp | Endoscopic reposable surgical clip applier |
US10492795B2 (en) | 2016-11-01 | 2019-12-03 | Covidien Lp | Endoscopic surgical clip applier |
US10426489B2 (en) | 2016-11-01 | 2019-10-01 | Covidien Lp | Endoscopic reposable surgical clip applier |
US10653862B2 (en) | 2016-11-07 | 2020-05-19 | Edwards Lifesciences Corporation | Apparatus for the introduction and manipulation of multiple telescoping catheters |
US10631981B2 (en) | 2016-11-15 | 2020-04-28 | Cephea Valve Technologies, Inc. | Delivery catheter distal cap |
US10398552B2 (en) | 2016-11-15 | 2019-09-03 | Abbott Cardiovascular Systems Inc. | Fixation devices, systems and methods for heart valve leaf repair |
CN113893064A (en) | 2016-11-21 | 2022-01-07 | 内奥瓦斯克迪亚拉公司 | Methods and systems for rapid retrieval of transcatheter heart valve delivery systems |
US10548614B2 (en) | 2016-11-29 | 2020-02-04 | Evalve, Inc. | Tricuspid valve repair system |
US10420565B2 (en) | 2016-11-29 | 2019-09-24 | Abbott Cardiovascular Systems Inc. | Cinch and post for tricuspid valve repair |
US10849615B2 (en) * | 2016-12-15 | 2020-12-01 | Heartstitch, Inc. | Balloon component for locating a suturing device |
WO2018118717A1 (en) | 2016-12-20 | 2018-06-28 | Edwards Lifesciences Corporation | Systems and mechanisms for deploying a docking device for a replacement heart valve |
US20180168618A1 (en) | 2016-12-21 | 2018-06-21 | Ethicon Endo-Surgery, Llc | Surgical stapling systems |
US10736629B2 (en) | 2016-12-21 | 2020-08-11 | Ethicon Llc | Surgical tool assemblies with clutching arrangements for shifting between closure systems with closure stroke reduction features and articulation and firing systems |
MX2019007295A (en) | 2016-12-21 | 2019-10-15 | Ethicon Llc | Surgical instrument system comprising an end effector lockout and a firing assembly lockout. |
US10758230B2 (en) | 2016-12-21 | 2020-09-01 | Ethicon Llc | Surgical instrument with primary and safety processors |
US11090048B2 (en) | 2016-12-21 | 2021-08-17 | Cilag Gmbh International | Method for resetting a fuse of a surgical instrument shaft |
JP7010956B2 (en) | 2016-12-21 | 2022-01-26 | エシコン エルエルシー | How to staple tissue |
US10568624B2 (en) | 2016-12-21 | 2020-02-25 | Ethicon Llc | Surgical instruments with jaws that are pivotable about a fixed axis and include separate and distinct closure and firing systems |
US10588632B2 (en) | 2016-12-21 | 2020-03-17 | Ethicon Llc | Surgical end effectors and firing members thereof |
US11191539B2 (en) | 2016-12-21 | 2021-12-07 | Cilag Gmbh International | Shaft assembly comprising a manually-operable retraction system for use with a motorized surgical instrument system |
US11419606B2 (en) | 2016-12-21 | 2022-08-23 | Cilag Gmbh International | Shaft assembly comprising a clutch configured to adapt the output of a rotary firing member to two different systems |
JP6983893B2 (en) | 2016-12-21 | 2021-12-17 | エシコン エルエルシーEthicon LLC | Lockout configuration for surgical end effectors and replaceable tool assemblies |
US20180168615A1 (en) | 2016-12-21 | 2018-06-21 | Ethicon Endo-Surgery, Llc | Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument |
BR112019011947A2 (en) | 2016-12-21 | 2019-10-29 | Ethicon Llc | surgical stapling systems |
US9877833B1 (en) | 2016-12-30 | 2018-01-30 | Pipeline Medical Technologies, Inc. | Method and apparatus for transvascular implantation of neo chordae tendinae |
US10925731B2 (en) | 2016-12-30 | 2021-02-23 | Pipeline Medical Technologies, Inc. | Method and apparatus for transvascular implantation of neo chordae tendinae |
US11083580B2 (en) | 2016-12-30 | 2021-08-10 | Pipeline Medical Technologies, Inc. | Method of securing a leaflet anchor to a mitral valve leaflet |
US10653523B2 (en) | 2017-01-19 | 2020-05-19 | 4C Medical Technologies, Inc. | Systems, methods and devices for delivery systems, methods and devices for implanting prosthetic heart valves |
CN110177494A (en) | 2017-01-19 | 2019-08-27 | 圣犹达医疗用品心脏病学部门有限公司 | Sheath visualization |
US10561495B2 (en) | 2017-01-24 | 2020-02-18 | 4C Medical Technologies, Inc. | Systems, methods and devices for two-step delivery and implantation of prosthetic heart valve |
JP7280194B2 (en) | 2017-01-25 | 2023-05-23 | セダーズ-シナイ メディカル センター | A device that secures the heart valve leaflets |
CN110392557A (en) | 2017-01-27 | 2019-10-29 | 耶拿阀门科技股份有限公司 | Heart valve simulation |
US10709455B2 (en) | 2017-02-02 | 2020-07-14 | Covidien Lp | Endoscopic surgical clip applier |
EP3576643B1 (en) | 2017-02-06 | 2022-04-06 | Covidien LP | Surgical clip applier with user feedback feature |
US10758244B2 (en) | 2017-02-06 | 2020-09-01 | Covidien Lp | Endoscopic surgical clip applier |
US10660725B2 (en) | 2017-02-14 | 2020-05-26 | Covidien Lp | Endoscopic surgical clip applier including counter assembly |
US10675439B2 (en) | 2017-02-21 | 2020-06-09 | Abbott Cardiovascular Systems Inc. | High torsion delivery catheter element |
US10603038B2 (en) | 2017-02-22 | 2020-03-31 | Covidien Lp | Surgical clip applier including inserts for jaw assembly |
US10548602B2 (en) | 2017-02-23 | 2020-02-04 | Covidien Lp | Endoscopic surgical clip applier |
US11583291B2 (en) | 2017-02-23 | 2023-02-21 | Covidien Lp | Endoscopic surgical clip applier |
US10952852B2 (en) | 2017-02-24 | 2021-03-23 | Abbott Cardiovascular Systems Inc. | Double basket assembly for valve repair |
US12029647B2 (en) | 2017-03-07 | 2024-07-09 | 4C Medical Technologies, Inc. | Systems, methods and devices for prosthetic heart valve with single valve leaflet |
US10478303B2 (en) | 2017-03-13 | 2019-11-19 | Polares Medical Inc. | Device, system, and method for transcatheter treatment of valvular regurgitation |
US10653524B2 (en) | 2017-03-13 | 2020-05-19 | Polares Medical Inc. | Device, system, and method for transcatheter treatment of valvular regurgitation |
CN115040289A (en) | 2017-03-13 | 2022-09-13 | 宝来瑞斯医疗有限公司 | Devices, systems, and methods for transcatheter treatment of valve regurgitation |
US11045627B2 (en) | 2017-04-18 | 2021-06-29 | Edwards Lifesciences Corporation | Catheter system with linear actuation control mechanism |
US10575950B2 (en) | 2017-04-18 | 2020-03-03 | Twelve, Inc. | Hydraulic systems for delivering prosthetic heart valve devices and associated methods |
US10433961B2 (en) | 2017-04-18 | 2019-10-08 | Twelve, Inc. | Delivery systems with tethers for prosthetic heart valve devices and associated methods |
US10702378B2 (en) | 2017-04-18 | 2020-07-07 | Twelve, Inc. | Prosthetic heart valve device and associated systems and methods |
US10799312B2 (en) | 2017-04-28 | 2020-10-13 | Edwards Lifesciences Corporation | Medical device stabilizing apparatus and method of use |
US10675043B2 (en) | 2017-05-04 | 2020-06-09 | Covidien Lp | Reposable multi-fire surgical clip applier |
US10722235B2 (en) | 2017-05-11 | 2020-07-28 | Covidien Lp | Spring-release surgical clip |
US10792151B2 (en) | 2017-05-11 | 2020-10-06 | Twelve, Inc. | Delivery systems for delivering prosthetic heart valve devices and associated methods |
US10842619B2 (en) | 2017-05-12 | 2020-11-24 | Edwards Lifesciences Corporation | Prosthetic heart valve docking assembly |
IT201700052909A1 (en) * | 2017-05-16 | 2018-11-16 | Star Tric S R L | ARTICULATED PROSTHESIS FOR TRICUSPIDE OR MITRAL VALVE AND ITS RELEASING DEVICE |
US10646338B2 (en) | 2017-06-02 | 2020-05-12 | Twelve, Inc. | Delivery systems with telescoping capsules for deploying prosthetic heart valve devices and associated methods |
US10709591B2 (en) | 2017-06-06 | 2020-07-14 | Twelve, Inc. | Crimping device and method for loading stents and prosthetic heart valves |
CA3066361A1 (en) | 2017-06-07 | 2018-12-13 | Shifamed Holdings, Llc | Intravascular fluid movement devices, systems, and methods of use |
US10828154B2 (en) | 2017-06-08 | 2020-11-10 | Boston Scientific Scimed, Inc. | Heart valve implant commissure support structure |
US12036113B2 (en) | 2017-06-14 | 2024-07-16 | 4C Medical Technologies, Inc. | Delivery of heart chamber prosthetic valve implant |
US10307170B2 (en) | 2017-06-20 | 2019-06-04 | Ethicon Llc | Method for closed loop control of motor velocity of a surgical stapling and cutting instrument |
US10779820B2 (en) | 2017-06-20 | 2020-09-22 | Ethicon Llc | Systems and methods for controlling motor speed according to user input for a surgical instrument |
US11653914B2 (en) | 2017-06-20 | 2023-05-23 | Cilag Gmbh International | Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument according to articulation angle of end effector |
US10881399B2 (en) | 2017-06-20 | 2021-01-05 | Ethicon Llc | Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument |
US11517325B2 (en) | 2017-06-20 | 2022-12-06 | Cilag Gmbh International | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured displacement distance traveled over a specified time interval |
US11382638B2 (en) | 2017-06-20 | 2022-07-12 | Cilag Gmbh International | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified displacement distance |
WO2018237165A1 (en) | 2017-06-21 | 2018-12-27 | Troy Thornton | Delivery system for mitral valve apposition device |
US20180368844A1 (en) | 2017-06-27 | 2018-12-27 | Ethicon Llc | Staple forming pocket arrangements |
US10993716B2 (en) | 2017-06-27 | 2021-05-04 | Ethicon Llc | Surgical anvil arrangements |
US11266405B2 (en) | 2017-06-27 | 2022-03-08 | Cilag Gmbh International | Surgical anvil manufacturing methods |
US11324503B2 (en) | 2017-06-27 | 2022-05-10 | Cilag Gmbh International | Surgical firing member arrangements |
US11259805B2 (en) | 2017-06-28 | 2022-03-01 | Cilag Gmbh International | Surgical instrument comprising firing member supports |
US11020114B2 (en) | 2017-06-28 | 2021-06-01 | Cilag Gmbh International | Surgical instruments with articulatable end effector with axially shortened articulation joint configurations |
US11564686B2 (en) | 2017-06-28 | 2023-01-31 | Cilag Gmbh International | Surgical shaft assemblies with flexible interfaces |
USD906355S1 (en) | 2017-06-28 | 2020-12-29 | Ethicon Llc | Display screen or portion thereof with a graphical user interface for a surgical instrument |
US10765427B2 (en) | 2017-06-28 | 2020-09-08 | Ethicon Llc | Method for articulating a surgical instrument |
US11678880B2 (en) | 2017-06-28 | 2023-06-20 | Cilag Gmbh International | Surgical instrument comprising a shaft including a housing arrangement |
US11246592B2 (en) | 2017-06-28 | 2022-02-15 | Cilag Gmbh International | Surgical instrument comprising an articulation system lockable to a frame |
EP3420947B1 (en) | 2017-06-28 | 2022-05-25 | Cilag GmbH International | Surgical instrument comprising selectively actuatable rotatable couplers |
US10932772B2 (en) | 2017-06-29 | 2021-03-02 | Ethicon Llc | Methods for closed loop velocity control for robotic surgical instrument |
US10639032B2 (en) | 2017-06-30 | 2020-05-05 | Covidien Lp | Endoscopic surgical clip applier including counter assembly |
US10660723B2 (en) | 2017-06-30 | 2020-05-26 | Covidien Lp | Endoscopic reposable surgical clip applier |
US10786352B2 (en) | 2017-07-06 | 2020-09-29 | Twelve, Inc. | Prosthetic heart valve devices and associated systems and methods |
US10729541B2 (en) | 2017-07-06 | 2020-08-04 | Twelve, Inc. | Prosthetic heart valve devices and associated systems and methods |
US11647935B2 (en) | 2017-07-24 | 2023-05-16 | St. Jude Medical, Cardiology Division, Inc. | Masked ring electrodes |
US20190030285A1 (en) * | 2017-07-27 | 2019-01-31 | Evalve, Inc. | Intravascular delivery system with centralized steering |
CN111163729B (en) | 2017-08-01 | 2022-03-29 | 波士顿科学国际有限公司 | Medical implant locking mechanism |
US11304695B2 (en) | 2017-08-03 | 2022-04-19 | Cilag Gmbh International | Surgical system shaft interconnection |
US12064347B2 (en) | 2017-08-03 | 2024-08-20 | Cardiovalve Ltd. | Prosthetic heart valve |
US10575948B2 (en) | 2017-08-03 | 2020-03-03 | Cardiovalve Ltd. | Prosthetic heart valve |
US11793633B2 (en) | 2017-08-03 | 2023-10-24 | Cardiovalve Ltd. | Prosthetic heart valve |
US10537426B2 (en) | 2017-08-03 | 2020-01-21 | Cardiovalve Ltd. | Prosthetic heart valve |
US11974742B2 (en) | 2017-08-03 | 2024-05-07 | Cilag Gmbh International | Surgical system comprising an articulation bailout |
US10888421B2 (en) | 2017-09-19 | 2021-01-12 | Cardiovalve Ltd. | Prosthetic heart valve with pouch |
US11471155B2 (en) | 2017-08-03 | 2022-10-18 | Cilag Gmbh International | Surgical system bailout |
US11944300B2 (en) | 2017-08-03 | 2024-04-02 | Cilag Gmbh International | Method for operating a surgical system bailout |
US11246704B2 (en) | 2017-08-03 | 2022-02-15 | Cardiovalve Ltd. | Prosthetic heart valve |
US10675112B2 (en) | 2017-08-07 | 2020-06-09 | Covidien Lp | Endoscopic surgical clip applier including counter assembly |
US10863992B2 (en) | 2017-08-08 | 2020-12-15 | Covidien Lp | Endoscopic surgical clip applier |
US10932790B2 (en) | 2017-08-08 | 2021-03-02 | Covidien Lp | Geared actuation mechanism and surgical clip applier including the same |
US10786262B2 (en) | 2017-08-09 | 2020-09-29 | Covidien Lp | Endoscopic reposable surgical clip applier |
US10786263B2 (en) | 2017-08-15 | 2020-09-29 | Covidien Lp | Endoscopic reposable surgical clip applier |
CN111225633B (en) | 2017-08-16 | 2022-05-31 | 波士顿科学国际有限公司 | Replacement heart valve coaptation assembly |
CA3072301C (en) * | 2017-08-24 | 2024-01-16 | Tricares SAS | Double steerable sheath and method for deployment of a medical device |
US10856984B2 (en) | 2017-08-25 | 2020-12-08 | Neovasc Tiara Inc. | Sequentially deployed transcatheter mitral valve prosthesis |
US20190069996A1 (en) * | 2017-09-07 | 2019-03-07 | Edwards Lifesciences Corporation | Integral flushing solution for blood stasis prevention in artificial heart valves |
US11065117B2 (en) | 2017-09-08 | 2021-07-20 | Edwards Lifesciences Corporation | Axisymmetric adjustable device for treating mitral regurgitation |
US10835341B2 (en) | 2017-09-12 | 2020-11-17 | Covidien Lp | Endoscopic surgical clip applier and handle assemblies for use therewith |
WO2019051587A1 (en) | 2017-09-12 | 2019-03-21 | Cheema Asim | Apparatus and system for changing mitral valve annulus geometry |
US10835260B2 (en) | 2017-09-13 | 2020-11-17 | Covidien Lp | Endoscopic surgical clip applier and handle assemblies for use therewith |
US10758245B2 (en) | 2017-09-13 | 2020-09-01 | Covidien Lp | Clip counting mechanism for surgical clip applier |
US10653429B2 (en) | 2017-09-13 | 2020-05-19 | Covidien Lp | Endoscopic surgical clip applier |
US11337803B2 (en) | 2017-09-19 | 2022-05-24 | Cardiovalve Ltd. | Prosthetic valve with inner and outer frames connected at a location of tissue anchor portion |
US11110251B2 (en) | 2017-09-19 | 2021-09-07 | Edwards Lifesciences Corporation | Multi-direction steerable handles for steering catheters |
DE202017105870U1 (en) * | 2017-09-27 | 2017-10-09 | H & B Electronic Gmbh & Co. Kg | Anchor for surgical tissue repair |
US11399829B2 (en) | 2017-09-29 | 2022-08-02 | Cilag Gmbh International | Systems and methods of initiating a power shutdown mode for a surgical instrument |
US10743872B2 (en) | 2017-09-29 | 2020-08-18 | Ethicon Llc | System and methods for controlling a display of a surgical instrument |
JP7213873B2 (en) | 2017-10-10 | 2023-01-27 | ラグビア バスデ, | Tissue grasping device and related method |
US10806579B2 (en) | 2017-10-20 | 2020-10-20 | Boston Scientific Scimed, Inc. | Heart valve repair implant for treating tricuspid regurgitation |
US11090075B2 (en) | 2017-10-30 | 2021-08-17 | Cilag Gmbh International | Articulation features for surgical end effector |
US11134944B2 (en) | 2017-10-30 | 2021-10-05 | Cilag Gmbh International | Surgical stapler knife motion controls |
US10842490B2 (en) | 2017-10-31 | 2020-11-24 | Ethicon Llc | Cartridge body design with force reduction based on firing completion |
US10835221B2 (en) | 2017-11-02 | 2020-11-17 | Valtech Cardio, Ltd. | Implant-cinching devices and systems |
US11116513B2 (en) | 2017-11-03 | 2021-09-14 | Covidien Lp | Modular surgical clip cartridge |
US10945734B2 (en) | 2017-11-03 | 2021-03-16 | Covidien Lp | Rotation knob assemblies and surgical instruments including the same |
US10828036B2 (en) | 2017-11-03 | 2020-11-10 | Covidien Lp | Endoscopic surgical clip applier and handle assemblies for use therewith |
US11376015B2 (en) | 2017-11-03 | 2022-07-05 | Covidien Lp | Endoscopic surgical clip applier and handle assemblies for use therewith |
US10932791B2 (en) | 2017-11-03 | 2021-03-02 | Covidien Lp | Reposable multi-fire surgical clip applier |
US11511103B2 (en) | 2017-11-13 | 2022-11-29 | Shifamed Holdings, Llc | Intravascular fluid movement devices, systems, and methods of use |
US11135062B2 (en) | 2017-11-20 | 2021-10-05 | Valtech Cardio Ltd. | Cinching of dilated heart muscle |
JP7130748B2 (en) | 2017-11-28 | 2022-09-05 | セント・ジュード・メディカル,カーディオロジー・ディヴィジョン,インコーポレイテッド | lumen management catheter |
US10722236B2 (en) | 2017-12-12 | 2020-07-28 | Covidien Lp | Endoscopic reposable surgical clip applier |
GB201720803D0 (en) | 2017-12-13 | 2018-01-24 | Mitraltech Ltd | Prosthetic Valve and delivery tool therefor |
US10743887B2 (en) | 2017-12-13 | 2020-08-18 | Covidien Lp | Reposable multi-fire surgical clip applier |
US10959737B2 (en) | 2017-12-13 | 2021-03-30 | Covidien Lp | Reposable multi-fire surgical clip applier |
US10849630B2 (en) | 2017-12-13 | 2020-12-01 | Covidien Lp | Reposable multi-fire surgical clip applier |
US10779826B2 (en) | 2017-12-15 | 2020-09-22 | Ethicon Llc | Methods of operating surgical end effectors |
US11197670B2 (en) | 2017-12-15 | 2021-12-14 | Cilag Gmbh International | Surgical end effectors with pivotal jaws configured to touch at their respective distal ends when fully closed |
US10835330B2 (en) | 2017-12-19 | 2020-11-17 | Ethicon Llc | Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly |
US11311290B2 (en) | 2017-12-21 | 2022-04-26 | Cilag Gmbh International | Surgical instrument comprising an end effector dampener |
US20190192147A1 (en) | 2017-12-21 | 2019-06-27 | Ethicon Llc | Surgical instrument comprising an articulatable distal head |
US11076853B2 (en) | 2017-12-21 | 2021-08-03 | Cilag Gmbh International | Systems and methods of displaying a knife position during transection for a surgical instrument |
US11090091B1 (en) | 2018-01-03 | 2021-08-17 | Advance Research System, Llc | Cannulated endplate plunger assembly |
DE102018100322B4 (en) * | 2018-01-09 | 2021-11-11 | Edwards Lifesciences Corporation | Repair devices and systems for endogenous valves |
DE102018100328B9 (en) * | 2018-01-09 | 2020-02-13 | Edwards Lifesciences Corporation | Repair devices and methods for body flaps |
DE102018100319B9 (en) * | 2018-01-09 | 2021-01-07 | Edwards Lifesciences Corporation | Repair devices and methods for the body's own valves |
DE102018100347B9 (en) * | 2018-01-09 | 2020-04-09 | Edwards Lifesciences Corporation | REPAIR DEVICES AND METHODS FOR BODY'S VALVES |
DE102018100323B9 (en) * | 2018-01-09 | 2021-01-07 | Edwards Lifesciences Corporation | FLAP REPAIR SYSTEM |
GB201800399D0 (en) | 2018-01-10 | 2018-02-21 | Mitraltech Ltd | Temperature-control during crimping of an implant |
EP3740135A4 (en) | 2018-01-16 | 2021-10-27 | Medfree, Inc. | Tissue grasping devices and related methods |
US11051827B2 (en) | 2018-01-16 | 2021-07-06 | Covidien Lp | Endoscopic surgical instrument and handle assemblies for use therewith |
EP3740160A2 (en) | 2018-01-19 | 2020-11-25 | Boston Scientific Scimed Inc. | Inductance mode deployment sensors for transcatheter valve system |
US11246625B2 (en) | 2018-01-19 | 2022-02-15 | Boston Scientific Scimed, Inc. | Medical device delivery system with feedback loop |
WO2019144121A1 (en) | 2018-01-22 | 2019-07-25 | Edwards Lifesciences Corporation | Heart shape preserving anchor |
CA3086884A1 (en) | 2018-01-24 | 2019-08-01 | Valtech Cardio, Ltd. | Contraction of an annuloplasty structure |
WO2019145941A1 (en) | 2018-01-26 | 2019-08-01 | Valtech Cardio, Ltd. | Techniques for facilitating heart valve tethering and chord replacement |
US11191547B2 (en) | 2018-01-26 | 2021-12-07 | Syntheon 2.0, LLC | Left atrial appendage clipping device and methods for clipping the LAA |
WO2019152875A1 (en) | 2018-02-01 | 2019-08-08 | Shifamed Holdings, Llc | Intravascular blood pumps and methods of use and manufacture |
WO2019152598A2 (en) | 2018-02-02 | 2019-08-08 | Cedars-Sinai Medical Center | Delivery platforms, devices, and methods for tricuspid valve repair |
WO2019157156A1 (en) | 2018-02-07 | 2019-08-15 | Boston Scientific Scimed, Inc. | Medical device delivery system with alignment feature |
EP3758651B1 (en) | 2018-02-26 | 2022-12-07 | Boston Scientific Scimed, Inc. | Embedded radiopaque marker in adaptive seal |
WO2019191316A1 (en) | 2018-03-27 | 2019-10-03 | Sentreheart, Inc. | Devices and methods for left atrial appendage closure |
JP7348199B2 (en) | 2018-03-28 | 2023-09-20 | データスコープ コーポレイション | Device for atrial appendage exclusion |
WO2019195860A2 (en) | 2018-04-04 | 2019-10-10 | Vdyne, Llc | Devices and methods for anchoring transcatheter heart valve |
US20210052854A1 (en) * | 2018-04-09 | 2021-02-25 | Magellan Biomedical Inc. | System and method for device steering,tracking, and navigation of devices for interventional procedures |
US10993721B2 (en) | 2018-04-25 | 2021-05-04 | Covidien Lp | Surgical clip applier |
CN112041016B (en) * | 2018-05-01 | 2023-06-13 | 麦哲伦生物医学公司 | System for device steering, tracking and navigation of interventional surgical devices |
US11213288B2 (en) | 2018-05-02 | 2022-01-04 | Covidien Lp | Port site closure instrument |
US11234690B2 (en) | 2018-05-02 | 2022-02-01 | Covidien Lp | Method and device for closing a port site incision |
US11229517B2 (en) | 2018-05-15 | 2022-01-25 | Boston Scientific Scimed, Inc. | Replacement heart valve commissure assembly |
WO2019226803A1 (en) | 2018-05-22 | 2019-11-28 | Boston Scientific Scimed, Inc. | Percutaneous papillary muscle relocation |
US11439507B2 (en) * | 2018-06-01 | 2022-09-13 | Tendyne Holdings, Inc. | Tether attachment assembly for epicardial pads and devices and methods of delivery for same |
WO2019241477A1 (en) | 2018-06-13 | 2019-12-19 | Boston Scientific Scimed, Inc. | Replacement heart valve delivery device |
MX2020013973A (en) | 2018-07-12 | 2021-06-15 | Valtech Cardio Ltd | Annuloplasty systems and locking tools therefor. |
US10786273B2 (en) | 2018-07-13 | 2020-09-29 | Covidien Lp | Rotation knob assemblies for handle assemblies |
US11344316B2 (en) | 2018-08-13 | 2022-05-31 | Covidien Lp | Elongated assemblies for surgical clip appliers and surgical clip appliers incorporating the same |
US11246601B2 (en) | 2018-08-13 | 2022-02-15 | Covidien Lp | Elongated assemblies for surgical clip appliers and surgical clip appliers incorporating the same |
US11219463B2 (en) | 2018-08-13 | 2022-01-11 | Covidien Lp | Bilateral spring for surgical instruments and surgical instruments including the same |
US11051828B2 (en) | 2018-08-13 | 2021-07-06 | Covidien Lp | Rotation knob assemblies and surgical instruments including same |
US11278267B2 (en) | 2018-08-13 | 2022-03-22 | Covidien Lp | Latch assemblies and surgical instruments including the same |
US11253256B2 (en) | 2018-08-20 | 2022-02-22 | Cilag Gmbh International | Articulatable motor powered surgical instruments with dedicated articulation motor arrangements |
US11207065B2 (en) | 2018-08-20 | 2021-12-28 | Cilag Gmbh International | Method for fabricating surgical stapler anvils |
US11324501B2 (en) | 2018-08-20 | 2022-05-10 | Cilag Gmbh International | Surgical stapling devices with improved closure members |
US11291440B2 (en) | 2018-08-20 | 2022-04-05 | Cilag Gmbh International | Method for operating a powered articulatable surgical instrument |
WO2020039392A2 (en) | 2018-08-23 | 2020-02-27 | St. Jude Medical, Cardiology Division, Inc. | Curved high density electrode mapping catheter |
US11857441B2 (en) | 2018-09-04 | 2024-01-02 | 4C Medical Technologies, Inc. | Stent loading device |
EP3943142A3 (en) * | 2018-09-10 | 2022-03-02 | Orbusneich Medical Pte. Ltd | Variable flexibility catheter support frame |
FR3085835B1 (en) | 2018-09-13 | 2020-08-28 | Univ Compiegne Tech | HEART VALVE IMPLANT |
US10321995B1 (en) | 2018-09-20 | 2019-06-18 | Vdyne, Llc | Orthogonally delivered transcatheter heart valve replacement |
US11278437B2 (en) | 2018-12-08 | 2022-03-22 | Vdyne, Inc. | Compression capable annular frames for side delivery of transcatheter heart valve replacement |
US11344413B2 (en) | 2018-09-20 | 2022-05-31 | Vdyne, Inc. | Transcatheter deliverable prosthetic heart valves and methods of delivery |
US12082936B2 (en) | 2018-09-27 | 2024-09-10 | St. Jude Medical, Cardiology Division, Inc. | Uniform mapping balloon |
US11147566B2 (en) | 2018-10-01 | 2021-10-19 | Covidien Lp | Endoscopic surgical clip applier |
US11918762B2 (en) | 2018-10-03 | 2024-03-05 | St. Jude Medical, Cardiology Division, Inc. | Reduced actuation force electrophysiology catheter handle |
AU2019353156A1 (en) | 2018-10-05 | 2021-05-13 | Shifamed Holdings, Llc | Prosthetic cardiac valve devices, systems, and methods |
CN112867443B (en) | 2018-10-16 | 2024-04-26 | 巴德阿克塞斯系统股份有限公司 | Safety equipment connection system for establishing electrical connection and method thereof |
CN109303579B (en) * | 2018-11-03 | 2024-07-19 | 上海捍宇医疗科技股份有限公司 | Valve clamp with anticreep device |
CN113271890B (en) | 2018-11-08 | 2024-08-30 | 内奥瓦斯克迪亚拉公司 | Ventricular deployment of transcatheter mitral valve prosthesis |
US11724068B2 (en) | 2018-11-16 | 2023-08-15 | Cephea Valve Technologies, Inc. | Intravascular delivery system |
US20220022863A1 (en) * | 2018-11-29 | 2022-01-27 | Cardiomech As | Device for Heart Repair |
WO2020123486A1 (en) | 2018-12-10 | 2020-06-18 | Boston Scientific Scimed, Inc. | Medical device delivery system including a resistance member |
CA3123034A1 (en) | 2018-12-12 | 2020-06-18 | Pipeline Medical Technologies, Inc. | Method and apparatus for mitral valve chord repair |
US11583401B2 (en) * | 2018-12-13 | 2023-02-21 | Medtronic Vascular, Inc. | Heart valve repair |
US11253359B2 (en) | 2018-12-20 | 2022-02-22 | Vdyne, Inc. | Proximal tab for side-delivered transcatheter heart valves and methods of delivery |
US11504105B2 (en) | 2019-01-25 | 2022-11-22 | Rex Medical L.P. | Vascular hole closure device |
US11273032B2 (en) | 2019-01-26 | 2022-03-15 | Vdyne, Inc. | Collapsible inner flow control component for side-deliverable transcatheter heart valve prosthesis |
US11793974B2 (en) | 2019-02-11 | 2023-10-24 | Alcyone Therapeutics, Inc. | Fixation devices for catheters |
BR122021018588A2 (en) | 2019-02-14 | 2021-10-13 | Edwards Lifesciences Corporation | "CLOSURE FOR A HEART VALVE TREATMENT DEVICE" |
AU2020231221A1 (en) * | 2019-03-05 | 2021-09-23 | Vdyne, Inc. | Tricuspid regurgitation control devices for orthogonal transcatheter heart valve prosthesis |
AU2020233892A1 (en) | 2019-03-08 | 2021-11-04 | Neovasc Tiara Inc. | Retrievable prosthesis delivery system |
WO2020191216A1 (en) | 2019-03-19 | 2020-09-24 | Shifamed Holdings, Llc | Prosthetic cardiac valve devices, systems, and methods |
US11524398B2 (en) | 2019-03-19 | 2022-12-13 | Covidien Lp | Gear drive mechanisms for surgical instruments |
US11147553B2 (en) | 2019-03-25 | 2021-10-19 | Cilag Gmbh International | Firing drive arrangements for surgical systems |
US11172929B2 (en) | 2019-03-25 | 2021-11-16 | Cilag Gmbh International | Articulation drive arrangements for surgical systems |
US11696761B2 (en) | 2019-03-25 | 2023-07-11 | Cilag Gmbh International | Firing drive arrangements for surgical systems |
WO2020206012A1 (en) | 2019-04-01 | 2020-10-08 | Neovasc Tiara Inc. | Controllably deployable prosthetic valve |
US11446163B1 (en) | 2019-04-05 | 2022-09-20 | Advanced Research Systems, LLC | Cannulated endplate plunger |
WO2020210652A1 (en) | 2019-04-10 | 2020-10-15 | Neovasc Tiara Inc. | Prosthetic valve with natural blood flow |
WO2020210609A1 (en) * | 2019-04-10 | 2020-10-15 | W. L. Gore & Associates, Inc. | Deployment system access sheath |
US11903581B2 (en) | 2019-04-30 | 2024-02-20 | Cilag Gmbh International | Methods for stapling tissue using a surgical instrument |
US11471157B2 (en) | 2019-04-30 | 2022-10-18 | Cilag Gmbh International | Articulation control mapping for a surgical instrument |
US11253254B2 (en) | 2019-04-30 | 2022-02-22 | Cilag Gmbh International | Shaft rotation actuator on a surgical instrument |
US11426251B2 (en) | 2019-04-30 | 2022-08-30 | Cilag Gmbh International | Articulation directional lights on a surgical instrument |
US11648009B2 (en) | 2019-04-30 | 2023-05-16 | Cilag Gmbh International | Rotatable jaw tip for a surgical instrument |
US11452528B2 (en) | 2019-04-30 | 2022-09-27 | Cilag Gmbh International | Articulation actuators for a surgical instrument |
US11432816B2 (en) | 2019-04-30 | 2022-09-06 | Cilag Gmbh International | Articulation pin for a surgical instrument |
US10925615B2 (en) | 2019-05-03 | 2021-02-23 | Syntheon 2.0, LLC | Recapturable left atrial appendage clipping device and methods for recapturing a left atrial appendage clip |
JP7529689B2 (en) | 2019-05-04 | 2024-08-06 | ブイダイン,インコーポレイテッド | Clamping device and method for deploying a laterally delivered prosthetic heart valve at a native valve annulus - Patents.com |
US11439504B2 (en) | 2019-05-10 | 2022-09-13 | Boston Scientific Scimed, Inc. | Replacement heart valve with improved cusp washout and reduced loading |
CN114025813B (en) | 2019-05-20 | 2024-05-14 | 内奥瓦斯克迪亚拉公司 | Introducer with hemostatic mechanism |
EP3972533A1 (en) * | 2019-05-20 | 2022-03-30 | Edwards Lifesciences Corporation | Heart valve sealing devices, delivery devices therefor, and retrieval devices |
EP3941361A1 (en) | 2019-05-22 | 2022-01-26 | Evalve, Inc. | Devices and systems for accessing and repairing a heart valve |
US11534303B2 (en) | 2020-04-09 | 2022-12-27 | Evalve, Inc. | Devices and systems for accessing and repairing a heart valve |
WO2020247690A1 (en) * | 2019-06-05 | 2020-12-10 | Maine Medical Center | Gastrocutaneous closure device |
WO2020257643A1 (en) | 2019-06-20 | 2020-12-24 | Neovasc Tiara Inc. | Low profile prosthetic mitral valve |
US11376098B2 (en) | 2019-06-28 | 2022-07-05 | Cilag Gmbh International | Surgical instrument system comprising an RFID system |
US11291451B2 (en) | 2019-06-28 | 2022-04-05 | Cilag Gmbh International | Surgical instrument with battery compatibility verification functionality |
US11497492B2 (en) | 2019-06-28 | 2022-11-15 | Cilag Gmbh International | Surgical instrument including an articulation lock |
US11399837B2 (en) | 2019-06-28 | 2022-08-02 | Cilag Gmbh International | Mechanisms for motor control adjustments of a motorized surgical instrument |
US11361176B2 (en) | 2019-06-28 | 2022-06-14 | Cilag Gmbh International | Surgical RFID assemblies for compatibility detection |
US12004740B2 (en) | 2019-06-28 | 2024-06-11 | Cilag Gmbh International | Surgical stapling system having an information decryption protocol |
US11259803B2 (en) | 2019-06-28 | 2022-03-01 | Cilag Gmbh International | Surgical stapling system having an information encryption protocol |
US11426167B2 (en) | 2019-06-28 | 2022-08-30 | Cilag Gmbh International | Mechanisms for proper anvil attachment surgical stapling head assembly |
US11553971B2 (en) | 2019-06-28 | 2023-01-17 | Cilag Gmbh International | Surgical RFID assemblies for display and communication |
DE102020110715A1 (en) * | 2019-06-28 | 2020-12-31 | Protembis Gmbh | Embolic protection device for feeding into an aortic arch |
US11224497B2 (en) | 2019-06-28 | 2022-01-18 | Cilag Gmbh International | Surgical systems with multiple RFID tags |
US11241235B2 (en) | 2019-06-28 | 2022-02-08 | Cilag Gmbh International | Method of using multiple RFID chips with a surgical assembly |
US11298127B2 (en) | 2019-06-28 | 2022-04-12 | Cilag GmbH Interational | Surgical stapling system having a lockout mechanism for an incompatible cartridge |
US11638587B2 (en) | 2019-06-28 | 2023-05-02 | Cilag Gmbh International | RFID identification systems for surgical instruments |
US11684434B2 (en) | 2019-06-28 | 2023-06-27 | Cilag Gmbh International | Surgical RFID assemblies for instrument operational setting control |
US11478241B2 (en) | 2019-06-28 | 2022-10-25 | Cilag Gmbh International | Staple cartridge including projections |
US11298132B2 (en) | 2019-06-28 | 2022-04-12 | Cilag GmbH Inlernational | Staple cartridge including a honeycomb extension |
US11523822B2 (en) | 2019-06-28 | 2022-12-13 | Cilag Gmbh International | Battery pack including a circuit interrupter |
US11771419B2 (en) | 2019-06-28 | 2023-10-03 | Cilag Gmbh International | Packaging for a replaceable component of a surgical stapling system |
US11246678B2 (en) | 2019-06-28 | 2022-02-15 | Cilag Gmbh International | Surgical stapling system having a frangible RFID tag |
US11464601B2 (en) | 2019-06-28 | 2022-10-11 | Cilag Gmbh International | Surgical instrument comprising an RFID system for tracking a movable component |
US11660163B2 (en) | 2019-06-28 | 2023-05-30 | Cilag Gmbh International | Surgical system with RFID tags for updating motor assembly parameters |
US11853835B2 (en) | 2019-06-28 | 2023-12-26 | Cilag Gmbh International | RFID identification systems for surgical instruments |
US11627959B2 (en) | 2019-06-28 | 2023-04-18 | Cilag Gmbh International | Surgical instruments including manual and powered system lockouts |
WO2021003375A1 (en) | 2019-07-03 | 2021-01-07 | Boston Scientific Scimed, Inc. | Devices, systems, and methods for anchoring an artificial chordae tendineae to a papillary muscle or heart wall |
EP4364697A3 (en) * | 2019-07-03 | 2024-05-22 | Boston Scientific Scimed, Inc. | Devices and systems for artificial chordae tendineae |
US11850152B2 (en) | 2019-07-03 | 2023-12-26 | Boston Scientific Scimed, Inc. | Devices, systems, and methods for artificial chordae tendineae |
EP3993712A1 (en) | 2019-07-03 | 2022-05-11 | Boston Scientific Scimed, Inc. | Devices, systems, and methods for adjustably tensioning an artificial chordae tendineae between a leaflet and a papillary muscle or heart wall |
JP2022540616A (en) | 2019-07-12 | 2022-09-16 | シファメド・ホールディングス・エルエルシー | Intravascular blood pump and methods of manufacture and use |
US11648117B2 (en) | 2019-07-12 | 2023-05-16 | Boston Scientific Scimed, Inc. | Devices, systems, and methods for clamping a leaflet of a heart valve |
US11660189B2 (en) | 2019-07-15 | 2023-05-30 | Evalve, Inc. | Wide clip with nondeformable wings |
US11850151B2 (en) | 2019-07-15 | 2023-12-26 | Evalve, Inc. | Proximal element actuator fixation and release mechanisms |
WO2021016372A1 (en) | 2019-07-22 | 2021-01-28 | Shifamed Holdings, Llc | Intravascular blood pumps with struts and methods of use and manufacture |
CN110403734B (en) * | 2019-07-22 | 2024-10-01 | 上海汇禾医疗器械有限公司 | Clamping device and clamping assembly |
US11517425B2 (en) | 2019-07-25 | 2022-12-06 | Innovheart S.R.L. | Device for implanting a prosthesis for a heart valve and assembly procedure |
US11684473B2 (en) * | 2019-07-25 | 2023-06-27 | Innovheart S.R.L. | Device for arranging guidewires around a heart valve |
CN111671547A (en) * | 2019-07-31 | 2020-09-18 | 杭州德晋医疗科技有限公司 | Valve clamping device with covering film and valve clamping system |
WO2021027588A1 (en) * | 2019-08-13 | 2021-02-18 | 杭州德晋医疗科技有限公司 | Adjustable valve clamping device and valve clamping system |
CA3152042A1 (en) | 2019-08-20 | 2021-02-25 | Vdyne, Inc. | Delivery and retrieval devices and methods for side-deliverable transcatheter prosthetic valves |
AU2020334143A1 (en) | 2019-08-21 | 2022-03-17 | Lsi Solutions, Inc. | Sternal ascender apparatus |
CA3152632A1 (en) | 2019-08-26 | 2021-03-04 | Vdyne, Inc. | Side-deliverable transcatheter prosthetic valves and methods for delivering and anchoring the same |
US11497506B2 (en) * | 2019-08-28 | 2022-11-15 | Shanghai Huihe Healthcare Technology Co., Ltd. | Clamping instrument and clamping assembly |
CN112472363A (en) * | 2019-09-12 | 2021-03-12 | 杭州德晋医疗科技有限公司 | Anti-slip valve clamping device and valve clamping system |
WO2021062265A1 (en) | 2019-09-25 | 2021-04-01 | Shifamed Holdings, Llc | Intravascular blood pump systems and methods of use and control thereof |
WO2021062270A1 (en) | 2019-09-25 | 2021-04-01 | Shifamed Holdings, Llc | Catheter blood pumps and collapsible pump housings |
EP4033970A1 (en) | 2019-09-26 | 2022-08-03 | Evalve, Inc. | Systems for intra-procedural cardiac pressure monitoring |
CN110742657A (en) * | 2019-10-10 | 2020-02-04 | 广东脉搏医疗科技有限公司 | Mitral valve clamping device and mitral valve surgery system with same |
EP4041136A1 (en) | 2019-10-11 | 2022-08-17 | Evalve, Inc. | Repair clip for variable tissue thickness |
AU2020375903A1 (en) | 2019-10-29 | 2021-12-23 | Edwards Lifesciences Innovation (Israel) Ltd. | Annuloplasty and tissue anchor technologies |
WO2021092107A1 (en) | 2019-11-06 | 2021-05-14 | Evalve, Inc. | Stabilizer for a medical delivery system |
US11622859B2 (en) | 2019-11-08 | 2023-04-11 | Evalve, Inc. | Medical device delivery system with locking system |
WO2021097124A1 (en) | 2019-11-14 | 2021-05-20 | Evalve, Inc. | Catheter assembly with coaptation aid and methods for valve repair |
WO2021097089A1 (en) | 2019-11-14 | 2021-05-20 | Evalve, Inc. | Kit with coaptation aid and fixation system and methods for valve repair |
WO2021098371A1 (en) * | 2019-11-19 | 2021-05-27 | 杭州德晋医疗科技有限公司 | Independently controllable valve clamping system |
US12109115B2 (en) | 2019-12-18 | 2024-10-08 | Evalve, Inc. | Wide clip with deformable width |
US11576672B2 (en) | 2019-12-19 | 2023-02-14 | Cilag Gmbh International | Surgical instrument comprising a closure system including a closure member and an opening member driven by a drive screw |
US11234698B2 (en) | 2019-12-19 | 2022-02-01 | Cilag Gmbh International | Stapling system comprising a clamp lockout and a firing lockout |
US11529137B2 (en) | 2019-12-19 | 2022-12-20 | Cilag Gmbh International | Staple cartridge comprising driver retention members |
US11701111B2 (en) | 2019-12-19 | 2023-07-18 | Cilag Gmbh International | Method for operating a surgical stapling instrument |
US11911032B2 (en) | 2019-12-19 | 2024-02-27 | Cilag Gmbh International | Staple cartridge comprising a seating cam |
US12035913B2 (en) | 2019-12-19 | 2024-07-16 | Cilag Gmbh International | Staple cartridge comprising a deployable knife |
US11304696B2 (en) | 2019-12-19 | 2022-04-19 | Cilag Gmbh International | Surgical instrument comprising a powered articulation system |
US11504122B2 (en) | 2019-12-19 | 2022-11-22 | Cilag Gmbh International | Surgical instrument comprising a nested firing member |
US11464512B2 (en) | 2019-12-19 | 2022-10-11 | Cilag Gmbh International | Staple cartridge comprising a curved deck surface |
US11931033B2 (en) | 2019-12-19 | 2024-03-19 | Cilag Gmbh International | Staple cartridge comprising a latch lockout |
US11446029B2 (en) | 2019-12-19 | 2022-09-20 | Cilag Gmbh International | Staple cartridge comprising projections extending from a curved deck surface |
US11559304B2 (en) | 2019-12-19 | 2023-01-24 | Cilag Gmbh International | Surgical instrument comprising a rapid closure mechanism |
US11607219B2 (en) | 2019-12-19 | 2023-03-21 | Cilag Gmbh International | Staple cartridge comprising a detachable tissue cutting knife |
US11529139B2 (en) | 2019-12-19 | 2022-12-20 | Cilag Gmbh International | Motor driven surgical instrument |
US11291447B2 (en) | 2019-12-19 | 2022-04-05 | Cilag Gmbh International | Stapling instrument comprising independent jaw closing and staple firing systems |
US11844520B2 (en) | 2019-12-19 | 2023-12-19 | Cilag Gmbh International | Staple cartridge comprising driver retention members |
CN113116426B (en) * | 2019-12-30 | 2024-07-02 | 杭州德晋医疗科技有限公司 | Direct-drive suture knot locking device |
US11147671B2 (en) | 2019-12-31 | 2021-10-19 | Creative Heart Valve Solutions Llc | Methods, implants, and systems for treatment of mitral valve prolapse |
US11779340B2 (en) | 2020-01-02 | 2023-10-10 | Covidien Lp | Ligation clip loading device |
US11723669B2 (en) | 2020-01-08 | 2023-08-15 | Covidien Lp | Clip applier with clip cartridge interface |
US11234813B2 (en) | 2020-01-17 | 2022-02-01 | Vdyne, Inc. | Ventricular stability elements for side-deliverable prosthetic heart valves and methods of delivery |
EP4093334A4 (en) | 2020-01-22 | 2024-03-13 | Opus Medical Therapies, LLC | Transcatheter anchor support, systems and methods of implantation |
US11931253B2 (en) | 2020-01-31 | 2024-03-19 | 4C Medical Technologies, Inc. | Prosthetic heart valve delivery system: ball-slide attachment |
US20210244916A1 (en) | 2020-02-12 | 2021-08-12 | Cephea Valve Technologies, Inc. | Systems, methods, and devices for controlling re-sheathing forces |
US12053375B2 (en) | 2020-03-05 | 2024-08-06 | 4C Medical Technologies, Inc. | Prosthetic mitral valve with improved atrial and/or annular apposition and paravalvular leakage mitigation |
US11992403B2 (en) | 2020-03-06 | 2024-05-28 | 4C Medical Technologies, Inc. | Devices, systems and methods for improving recapture of prosthetic heart valve device with stent frame having valve support with inwardly stent cells |
US12114866B2 (en) | 2020-03-26 | 2024-10-15 | Covidien Lp | Interoperative clip loading device |
US12036119B2 (en) | 2020-04-20 | 2024-07-16 | Cephea Valve Technologies, Inc. | Delivery system for heart valve replacement |
US11395910B2 (en) | 2020-05-20 | 2022-07-26 | Rainbow Medical Ltd. | Passive pump |
US12023247B2 (en) | 2020-05-20 | 2024-07-02 | Edwards Lifesciences Corporation | Reducing the diameter of a cardiac valve annulus with independent control over each of the anchors that are launched into the annulus |
USD967421S1 (en) | 2020-06-02 | 2022-10-18 | Cilag Gmbh International | Staple cartridge |
USD975850S1 (en) | 2020-06-02 | 2023-01-17 | Cilag Gmbh International | Staple cartridge |
USD976401S1 (en) | 2020-06-02 | 2023-01-24 | Cilag Gmbh International | Staple cartridge |
USD975278S1 (en) | 2020-06-02 | 2023-01-10 | Cilag Gmbh International | Staple cartridge |
USD975851S1 (en) | 2020-06-02 | 2023-01-17 | Cilag Gmbh International | Staple cartridge |
USD966512S1 (en) | 2020-06-02 | 2022-10-11 | Cilag Gmbh International | Staple cartridge |
USD974560S1 (en) | 2020-06-02 | 2023-01-03 | Cilag Gmbh International | Staple cartridge |
EP4167892A1 (en) | 2020-06-19 | 2023-04-26 | Remedy Robotics, Inc. | Systems and methods for guidance of intraluminal devices within the vasculature |
US20210401434A1 (en) * | 2020-06-24 | 2021-12-30 | Medtronic Vascular, Inc. | Apparatus and methods for removal of heart valve ligation clip |
US11890135B2 (en) | 2020-07-02 | 2024-02-06 | Evalve, Inc. | Integrated imaging and device deployment platform |
US20220031350A1 (en) | 2020-07-28 | 2022-02-03 | Cilag Gmbh International | Surgical instruments with double pivot articulation joint arrangements |
US11857417B2 (en) | 2020-08-16 | 2024-01-02 | Trilio Medical Ltd. | Leaflet support |
WO2022047393A1 (en) | 2020-08-31 | 2022-03-03 | Shifamed Holdings, Llc | Prosthetic delivery system |
JP7432796B2 (en) * | 2020-09-29 | 2024-02-16 | 上海捍宇医療科技股▲ふん▼有限公司 | Clamping device |
JP2023544036A (en) * | 2020-10-01 | 2023-10-19 | オーパス メディカル セラピーズ、エルエルシー | Transcatheter anchor support and implantation method |
US20220110577A1 (en) * | 2020-10-12 | 2022-04-14 | Biosense Webster (Israel) Ltd. | Guiding sheath with distal tip locator |
WO2022081328A1 (en) | 2020-10-15 | 2022-04-21 | Evalve, Inc. | Biased distal assemblies with locking mechanism |
US11617577B2 (en) | 2020-10-29 | 2023-04-04 | Cilag Gmbh International | Surgical instrument comprising a sensor configured to sense whether an articulation drive of the surgical instrument is actuatable |
US11452526B2 (en) | 2020-10-29 | 2022-09-27 | Cilag Gmbh International | Surgical instrument comprising a staged voltage regulation start-up system |
US11534259B2 (en) | 2020-10-29 | 2022-12-27 | Cilag Gmbh International | Surgical instrument comprising an articulation indicator |
US11844518B2 (en) | 2020-10-29 | 2023-12-19 | Cilag Gmbh International | Method for operating a surgical instrument |
US11517390B2 (en) | 2020-10-29 | 2022-12-06 | Cilag Gmbh International | Surgical instrument comprising a limited travel switch |
US11896217B2 (en) | 2020-10-29 | 2024-02-13 | Cilag Gmbh International | Surgical instrument comprising an articulation lock |
US11779330B2 (en) | 2020-10-29 | 2023-10-10 | Cilag Gmbh International | Surgical instrument comprising a jaw alignment system |
US11931025B2 (en) | 2020-10-29 | 2024-03-19 | Cilag Gmbh International | Surgical instrument comprising a releasable closure drive lock |
US11717289B2 (en) | 2020-10-29 | 2023-08-08 | Cilag Gmbh International | Surgical instrument comprising an indicator which indicates that an articulation drive is actuatable |
USD980425S1 (en) | 2020-10-29 | 2023-03-07 | Cilag Gmbh International | Surgical instrument assembly |
US12053175B2 (en) | 2020-10-29 | 2024-08-06 | Cilag Gmbh International | Surgical instrument comprising a stowed closure actuator stop |
USD1013170S1 (en) | 2020-10-29 | 2024-01-30 | Cilag Gmbh International | Surgical instrument assembly |
CN114431903B (en) * | 2020-11-03 | 2024-06-18 | 深圳市健心医疗科技有限公司 | Tissue closure device |
US20220168036A1 (en) | 2020-11-30 | 2022-06-02 | Evalve, Inc. | Systems, apparatuses, and methods for removing a medical implant from cardiac tissue |
US20220168014A1 (en) | 2020-11-30 | 2022-06-02 | Evalve, Inc. | Systems, apparatuses, and methods for removing a medical implant from cardiac tissue |
US11944296B2 (en) | 2020-12-02 | 2024-04-02 | Cilag Gmbh International | Powered surgical instruments with external connectors |
US11890010B2 (en) | 2020-12-02 | 2024-02-06 | Cllag GmbH International | Dual-sided reinforced reload for surgical instruments |
US11678882B2 (en) | 2020-12-02 | 2023-06-20 | Cilag Gmbh International | Surgical instruments with interactive features to remedy incidental sled movements |
US11627960B2 (en) | 2020-12-02 | 2023-04-18 | Cilag Gmbh International | Powered surgical instruments with smart reload with separately attachable exteriorly mounted wiring connections |
US11849943B2 (en) | 2020-12-02 | 2023-12-26 | Cilag Gmbh International | Surgical instrument with cartridge release mechanisms |
US11744581B2 (en) | 2020-12-02 | 2023-09-05 | Cilag Gmbh International | Powered surgical instruments with multi-phase tissue treatment |
US11653920B2 (en) | 2020-12-02 | 2023-05-23 | Cilag Gmbh International | Powered surgical instruments with communication interfaces through sterile barrier |
US11737751B2 (en) | 2020-12-02 | 2023-08-29 | Cilag Gmbh International | Devices and methods of managing energy dissipated within sterile barriers of surgical instrument housings |
US11653915B2 (en) | 2020-12-02 | 2023-05-23 | Cilag Gmbh International | Surgical instruments with sled location detection and adjustment features |
US20240042174A1 (en) | 2020-12-10 | 2024-02-08 | Sv Swissvortex Ag | Intravascular bending of medical instruments |
US11464634B2 (en) | 2020-12-16 | 2022-10-11 | Polares Medical Inc. | Device, system, and method for transcatheter treatment of valvular regurgitation with secondary anchors |
CN114680955B (en) * | 2020-12-30 | 2024-05-14 | 沛嘉医疗科技(苏州)有限公司 | Tissue fixing device with self-locking function |
CN114681141B (en) * | 2020-12-30 | 2024-03-29 | 沛嘉医疗科技(苏州)有限公司 | Tissue closing device with clutch mechanism |
CN118453199A (en) * | 2020-12-30 | 2024-08-09 | 沛嘉医疗科技(苏州)有限公司 | System for clamping tissue |
CN117157119A (en) | 2021-01-29 | 2023-12-01 | 亚克安娜医疗有限公司 | Fixing device for catheter |
CN113274168A (en) * | 2021-02-01 | 2021-08-20 | 应脉医疗科技(上海)有限公司 | Implantable fixation device for engaging cardiac tissue including improved locking mechanism |
US11744583B2 (en) | 2021-02-26 | 2023-09-05 | Cilag Gmbh International | Distal communication array to tune frequency of RF systems |
US11925349B2 (en) | 2021-02-26 | 2024-03-12 | Cilag Gmbh International | Adjustment to transfer parameters to improve available power |
US11751869B2 (en) | 2021-02-26 | 2023-09-12 | Cilag Gmbh International | Monitoring of multiple sensors over time to detect moving characteristics of tissue |
US11980362B2 (en) | 2021-02-26 | 2024-05-14 | Cilag Gmbh International | Surgical instrument system comprising a power transfer coil |
US12108951B2 (en) | 2021-02-26 | 2024-10-08 | Cilag Gmbh International | Staple cartridge comprising a sensing array and a temperature control system |
US11793514B2 (en) | 2021-02-26 | 2023-10-24 | Cilag Gmbh International | Staple cartridge comprising sensor array which may be embedded in cartridge body |
US11950777B2 (en) | 2021-02-26 | 2024-04-09 | Cilag Gmbh International | Staple cartridge comprising an information access control system |
US11950779B2 (en) | 2021-02-26 | 2024-04-09 | Cilag Gmbh International | Method of powering and communicating with a staple cartridge |
US11696757B2 (en) | 2021-02-26 | 2023-07-11 | Cilag Gmbh International | Monitoring of internal systems to detect and track cartridge motion status |
US11723657B2 (en) | 2021-02-26 | 2023-08-15 | Cilag Gmbh International | Adjustable communication based on available bandwidth and power capacity |
US11749877B2 (en) | 2021-02-26 | 2023-09-05 | Cilag Gmbh International | Stapling instrument comprising a signal antenna |
US11701113B2 (en) | 2021-02-26 | 2023-07-18 | Cilag Gmbh International | Stapling instrument comprising a separate power antenna and a data transfer antenna |
US11730473B2 (en) | 2021-02-26 | 2023-08-22 | Cilag Gmbh International | Monitoring of manufacturing life-cycle |
US11812964B2 (en) | 2021-02-26 | 2023-11-14 | Cilag Gmbh International | Staple cartridge comprising a power management circuit |
US11759202B2 (en) | 2021-03-22 | 2023-09-19 | Cilag Gmbh International | Staple cartridge comprising an implantable layer |
US11826042B2 (en) | 2021-03-22 | 2023-11-28 | Cilag Gmbh International | Surgical instrument comprising a firing drive including a selectable leverage mechanism |
US11806011B2 (en) | 2021-03-22 | 2023-11-07 | Cilag Gmbh International | Stapling instrument comprising tissue compression systems |
US11737749B2 (en) | 2021-03-22 | 2023-08-29 | Cilag Gmbh International | Surgical stapling instrument comprising a retraction system |
US11723658B2 (en) | 2021-03-22 | 2023-08-15 | Cilag Gmbh International | Staple cartridge comprising a firing lockout |
US11717291B2 (en) | 2021-03-22 | 2023-08-08 | Cilag Gmbh International | Staple cartridge comprising staples configured to apply different tissue compression |
US11826012B2 (en) | 2021-03-22 | 2023-11-28 | Cilag Gmbh International | Stapling instrument comprising a pulsed motor-driven firing rack |
US12102323B2 (en) | 2021-03-24 | 2024-10-01 | Cilag Gmbh International | Rotary-driven surgical stapling assembly comprising a floatable component |
US11903582B2 (en) | 2021-03-24 | 2024-02-20 | Cilag Gmbh International | Leveraging surfaces for cartridge installation |
US11944336B2 (en) | 2021-03-24 | 2024-04-02 | Cilag Gmbh International | Joint arrangements for multi-planar alignment and support of operational drive shafts in articulatable surgical instruments |
US11849944B2 (en) | 2021-03-24 | 2023-12-26 | Cilag Gmbh International | Drivers for fastener cartridge assemblies having rotary drive screws |
US11896218B2 (en) | 2021-03-24 | 2024-02-13 | Cilag Gmbh International | Method of using a powered stapling device |
US11786239B2 (en) | 2021-03-24 | 2023-10-17 | Cilag Gmbh International | Surgical instrument articulation joint arrangements comprising multiple moving linkage features |
US11832816B2 (en) | 2021-03-24 | 2023-12-05 | Cilag Gmbh International | Surgical stapling assembly comprising nonplanar staples and planar staples |
US11793516B2 (en) | 2021-03-24 | 2023-10-24 | Cilag Gmbh International | Surgical staple cartridge comprising longitudinal support beam |
US11896219B2 (en) | 2021-03-24 | 2024-02-13 | Cilag Gmbh International | Mating features between drivers and underside of a cartridge deck |
US11744603B2 (en) | 2021-03-24 | 2023-09-05 | Cilag Gmbh International | Multi-axis pivot joints for surgical instruments and methods for manufacturing same |
US11786243B2 (en) | 2021-03-24 | 2023-10-17 | Cilag Gmbh International | Firing members having flexible portions for adapting to a load during a surgical firing stroke |
US11849945B2 (en) | 2021-03-24 | 2023-12-26 | Cilag Gmbh International | Rotary-driven surgical stapling assembly comprising eccentrically driven firing member |
US11857183B2 (en) | 2021-03-24 | 2024-01-02 | Cilag Gmbh International | Stapling assembly components having metal substrates and plastic bodies |
CN113017929A (en) * | 2021-04-02 | 2021-06-25 | 上海汇禾医疗科技有限公司 | Clamping apparatus |
EP4082481B1 (en) | 2021-04-30 | 2024-04-17 | Evalve Inc. | Fixation device having a flexure portion |
EP4088689B1 (en) | 2021-05-14 | 2024-06-05 | Evalve, Inc. | Systems and kit for separating native heart valve leaflets attached together by a fixation device |
CN113397764A (en) * | 2021-05-27 | 2021-09-17 | 华中科技大学同济医学院附属协和医院 | Heart valve fixture and conveying device |
US11998201B2 (en) | 2021-05-28 | 2024-06-04 | Cilag CmbH International | Stapling instrument comprising a firing lockout |
US11759321B2 (en) | 2021-06-25 | 2023-09-19 | Polares Medical Inc. | Device, system, and method for transcatheter treatment of valvular regurgitation |
US11707332B2 (en) | 2021-07-01 | 2023-07-25 | Remedy Robotics, Inc. | Image space control for endovascular tools |
WO2023278789A1 (en) | 2021-07-01 | 2023-01-05 | Remedy Robotics, Inc. | Vision-based position and orientation determination for endovascular tools |
US20230016654A1 (en) | 2021-07-08 | 2023-01-19 | Evalve, Inc. | Valve Repair Clip with Automatic Locking Mechanism Activation |
CN113476182B (en) * | 2021-09-06 | 2021-11-19 | 上海汇禾医疗器械有限公司 | Conveying interface of human heart implantation instrument and using method |
US11980363B2 (en) | 2021-10-18 | 2024-05-14 | Cilag Gmbh International | Row-to-row staple array variations |
US11957337B2 (en) | 2021-10-18 | 2024-04-16 | Cilag Gmbh International | Surgical stapling assembly with offset ramped drive surfaces |
US11877745B2 (en) | 2021-10-18 | 2024-01-23 | Cilag Gmbh International | Surgical stapling assembly having longitudinally-repeating staple leg clusters |
US11484700B1 (en) | 2021-10-25 | 2022-11-01 | Yossi Gross | Mechanical treatment of heart failure |
US11357629B1 (en) | 2021-10-25 | 2022-06-14 | Rainbow Medical Ltd. | Diastolic heart failure treatment |
US11937816B2 (en) | 2021-10-28 | 2024-03-26 | Cilag Gmbh International | Electrical lead arrangements for surgical instruments |
US12089841B2 (en) | 2021-10-28 | 2024-09-17 | Cilag CmbH International | Staple cartridge identification systems |
CN114099076B (en) | 2021-11-19 | 2024-09-06 | 上海傲流医疗科技有限公司 | Clamp holder for positioning and fixing valve and narrow environment alignment system thereof |
EP4193938A1 (en) | 2021-12-09 | 2023-06-14 | Evalve, Inc. | Systems for separating native heart valve leaflets attached together by a fixation device |
AU2023239164A1 (en) * | 2022-03-25 | 2024-10-10 | V2V Medtech Inc. | Clips implanted in the heart and great vessels that allow their complete or partial removal, kits and methods to perform such removal |
CN115137415A (en) * | 2022-07-16 | 2022-10-04 | 上海傲流医疗科技有限公司 | In-vivo plugging clamping instrument |
US11638643B1 (en) * | 2022-07-20 | 2023-05-02 | Laplace Interventional Inc. | Prosthetic heart valves |
WO2024088313A1 (en) * | 2022-10-27 | 2024-05-02 | 应脉医疗科技(上海)有限公司 | Conveying device and prosthesis system |
US11654024B1 (en) | 2022-10-31 | 2023-05-23 | Capstan Medical Inc. | Heart valve clip |
WO2024097234A1 (en) | 2022-11-02 | 2024-05-10 | Cephea Valve Technologies, Inc. | Intravascular delivery system |
US20240148505A1 (en) | 2022-11-03 | 2024-05-09 | Evalve, Inc. | Valve Repair Clip With Leaflet Capture Confirmation |
WO2024108072A1 (en) | 2022-11-18 | 2024-05-23 | Evalve, Inc. | Tunable fixation device |
WO2024108118A1 (en) | 2022-11-18 | 2024-05-23 | Evalve, Inc. | Fixation device with symmetrical extension elements |
WO2024108146A1 (en) | 2022-11-18 | 2024-05-23 | Evalve, Inc. | Size adapter attachments |
WO2024129213A1 (en) * | 2022-12-16 | 2024-06-20 | Boston Scientific Scimed, Inc. | Reverse anastomosis closure clip |
CN118267592A (en) * | 2022-12-30 | 2024-07-02 | 杭州德晋医疗科技有限公司 | Interventional guidance system |
US20240268957A1 (en) | 2023-02-14 | 2024-08-15 | Evalve, Inc. | Clip Delivery Catheter with Helical Multi-Lumen Extrusion for Improved Gripper Actuation and Methods of Making and Using Same |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4146019A (en) * | 1976-09-30 | 1979-03-27 | University Of Southern California | Multichannel endoscope |
US4756303A (en) * | 1985-09-30 | 1988-07-12 | Olympus Optical Co., Ltd. | Insertion section of an endoscope |
US5913866A (en) * | 1997-06-19 | 1999-06-22 | Cardiothoracic Systems, Inc. | Devices and methods for harvesting vascular conduits |
US6048351A (en) * | 1992-09-04 | 2000-04-11 | Scimed Life Systems, Inc. | Transvaginal suturing system |
US6165183A (en) * | 1998-07-15 | 2000-12-26 | St. Jude Medical, Inc. | Mitral and tricuspid valve repair |
US6978176B2 (en) * | 2001-12-08 | 2005-12-20 | Lattouf Omar M | Treatment for patient with congestive heart failure |
Family Cites Families (463)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2097018A (en) | 1936-07-17 | 1937-10-26 | Coleman R Chamberlin | Multiple purpose guide and retention clip |
US2108206A (en) | 1937-03-09 | 1938-02-15 | Lillian Pearl Mecker | Tenaculum |
US3296668A (en) * | 1965-03-03 | 1967-01-10 | Winthrop J Aiken | Clip for sheets and the like |
US3378010A (en) | 1965-07-28 | 1968-04-16 | Coldling | Surgical clip with means for releasing the clamping pressure |
US3671979A (en) | 1969-09-23 | 1972-06-27 | Univ Utah | Catheter mounted artificial heart valve for implanting in close proximity to a defective natural heart valve |
US3779108A (en) * | 1971-05-19 | 1973-12-18 | J Reiter | Clamp |
US3874338A (en) | 1972-10-09 | 1975-04-01 | Fritz Happel | Milking cup |
US3874388A (en) | 1973-02-12 | 1975-04-01 | Ochsner Med Found Alton | Shunt defect closure system |
GB1486351A (en) | 1975-06-06 | 1977-09-21 | Rocket Of London Ltd | Surgical clip applicator |
US4007743A (en) * | 1975-10-20 | 1977-02-15 | American Hospital Supply Corporation | Opening mechanism for umbrella-like intravascular shunt defect closure device |
US4112951A (en) | 1976-01-26 | 1978-09-12 | Research Corporation | Surgical clip |
US4056854A (en) | 1976-09-28 | 1977-11-08 | The United States Of America As Represented By The Department Of Health, Education And Welfare | Aortic heart valve catheter |
AU521676B2 (en) | 1977-02-23 | 1982-04-22 | Clark, Richard Edwin | Heart valve prosthesis |
US4297749A (en) | 1977-04-25 | 1981-11-03 | Albany International Corp. | Heart valve prosthesis |
US4235238A (en) | 1978-05-11 | 1980-11-25 | Olympus Optical Co., Ltd. | Apparatus for suturing coeliac tissues |
NL7906691A (en) | 1979-09-07 | 1981-03-10 | Jansen Anton | MEDICAL DEVICE FOR COUPLING TWO Bowel Sections, Auxiliary Device For Using It And Method Of Laying A Gut Knot Using This Device. |
US4578061A (en) * | 1980-10-28 | 1986-03-25 | Lemelson Jerome H | Injection catheter and method |
US4498476A (en) | 1981-08-27 | 1985-02-12 | Ethicon, Inc. | Non-metallic, bio-compatible hemostatic clips with interlocking latch means |
US4809695A (en) | 1981-10-21 | 1989-03-07 | Owen M. Gwathmey | Suturing assembly and method |
US4944295A (en) | 1981-10-21 | 1990-07-31 | Owen Gwathmay | Suturing assembly |
US4425908A (en) * | 1981-10-22 | 1984-01-17 | Beth Israel Hospital | Blood clot filter |
US4487205A (en) | 1982-04-26 | 1984-12-11 | Ethicon, Inc. | Non-metallic, bio-compatible hemostatic clips |
US4484579A (en) * | 1982-07-19 | 1984-11-27 | University Of Pittsburgh | Commissurotomy catheter apparatus and method |
US4458682A (en) | 1982-08-02 | 1984-07-10 | Ethicon, Inc. | Non-metallic, bio-compatible hemostatic clips (ring lock clips) |
FI68515C (en) * | 1983-01-07 | 1991-05-14 | Instrumentarium Oy | Soft tissue filter arrangement |
US4510934A (en) | 1983-05-13 | 1985-04-16 | Batra Subhash K | Suture |
US4531522A (en) * | 1983-06-20 | 1985-07-30 | Ethicon, Inc. | Two-piece tissue fastener with locking top and method for applying same |
US4577856A (en) * | 1983-08-17 | 1986-03-25 | Blackaby Dale W | Theatrical risers |
DE3344934A1 (en) | 1983-12-13 | 1985-06-20 | Richard Wolf Gmbh, 7134 Knittlingen | ENDOSCOPE WITH DISTALLY DEFLECTABLE AUXILIARY INSTRUMENT |
GB8424582D0 (en) | 1984-09-28 | 1984-11-07 | Univ Glasgow | Heart valve prosthesis |
JPS6187434A (en) * | 1984-10-04 | 1986-05-02 | Nec Corp | Portable radio equipment |
DE3504292C1 (en) | 1985-02-08 | 1986-07-24 | Richard Wolf Gmbh, 7134 Knittlingen | Instrument for endoscopic interventions, especially for percutaneous gallstone removal or gallbladder surgery |
CA1303298C (en) | 1986-08-06 | 1992-06-16 | Alain Carpentier | Flexible cardiac valvular support prosthesis |
US4777951A (en) | 1986-09-19 | 1988-10-18 | Mansfield Scientific, Inc. | Procedure and catheter instrument for treating patients for aortic stenosis |
US5542949A (en) | 1987-05-14 | 1996-08-06 | Yoon; Inbae | Multifunctional clip applier instrument |
US5478353A (en) | 1987-05-14 | 1995-12-26 | Yoon; Inbae | Suture tie device system and method for suturing anatomical tissue proximate an opening |
US5059211A (en) | 1987-06-25 | 1991-10-22 | Duke University | Absorbable vascular stent |
JPH088933B2 (en) | 1987-07-10 | 1996-01-31 | 日本ゼオン株式会社 | Catheter |
US5019096A (en) | 1988-02-11 | 1991-05-28 | Trustees Of Columbia University In The City Of New York | Infection-resistant compositions, medical devices and surfaces and methods for preparing and using same |
WO1989009029A1 (en) | 1989-02-16 | 1989-10-05 | Taheri Syde A | Method and apparatus for removing venous valves |
US5447966A (en) | 1988-07-19 | 1995-09-05 | United States Surgical Corporation | Treating bioabsorbable surgical articles by coating with glycerine, polalkyleneoxide block copolymer and gelatin |
US4917089A (en) * | 1988-08-29 | 1990-04-17 | Sideris Eleftherios B | Buttoned device for the transvenous occlusion of intracardiac defects |
US5108368A (en) | 1990-01-04 | 1992-04-28 | Pilot Cardiovascular System, Inc. | Steerable medical device |
US4994077A (en) | 1989-04-21 | 1991-02-19 | Dobben Richard L | Artificial heart valve for implantation in a blood vessel |
US5092872A (en) | 1989-07-28 | 1992-03-03 | Jacob Segalowitz | Valvulotome catheter |
US5047041A (en) | 1989-08-22 | 1991-09-10 | Samuels Peter B | Surgical apparatus for the excision of vein valves in situ |
GB8924806D0 (en) * | 1989-11-03 | 1989-12-20 | Neoligaments Ltd | Prosthectic ligament system |
US5015249A (en) | 1989-12-26 | 1991-05-14 | Nakao Naomi L | Endoscopic stapling device and method |
US5049153A (en) | 1989-12-26 | 1991-09-17 | Nakao Naomi L | Endoscopic stapling device and method |
US6033378A (en) * | 1990-02-02 | 2000-03-07 | Ep Technologies, Inc. | Catheter steering mechanism |
US5195968A (en) | 1990-02-02 | 1993-03-23 | Ingemar Lundquist | Catheter steering mechanism |
US5171259A (en) | 1990-04-02 | 1992-12-15 | Kanji Inoue | Device for nonoperatively occluding a defect |
US5411552A (en) | 1990-05-18 | 1995-05-02 | Andersen; Henning R. | Valve prothesis for implantation in the body and a catheter for implanting such valve prothesis |
DK124690D0 (en) * | 1990-05-18 | 1990-05-18 | Henning Rud Andersen | FAT PROTECTION FOR IMPLEMENTATION IN THE BODY FOR REPLACEMENT OF NATURAL FLEET AND CATS FOR USE IN IMPLEMENTING A SUCH FAT PROTECTION |
US5001136A (en) | 1990-06-07 | 1991-03-19 | Pfizer Inc. | Leukotriene-synthesis-inhibiting 2-substitutedmethylamino-5-(hydroxy or alkoxy)pyridines |
US5389102A (en) | 1990-09-13 | 1995-02-14 | United States Surgical Corporation | Apparatus and method for subcuticular stapling of body tissue |
US5423856A (en) * | 1990-09-13 | 1995-06-13 | United States Surgical Corporation | Apparatus and method for subcuticular stapling of body tissue |
US5282845A (en) * | 1990-10-01 | 1994-02-01 | Ventritex, Inc. | Multiple electrode deployable lead |
US5042707A (en) * | 1990-10-16 | 1991-08-27 | Taheri Syde A | Intravascular stapler, and method of operating same |
US5125758A (en) | 1990-12-06 | 1992-06-30 | Dewan Thomas E | Piercing clamp |
US5275578A (en) * | 1991-01-11 | 1994-01-04 | Adams Andy W | Clip |
US5163955A (en) | 1991-01-24 | 1992-11-17 | Autogenics | Rapid assembly, concentric mating stent, tissue heart valve with enhanced clamping and tissue alignment |
US5171252A (en) | 1991-02-05 | 1992-12-15 | Friedland Thomas W | Surgical fastening clip formed of a shape memory alloy, a method of making such a clip and a method of using such a clip |
US5329923A (en) | 1991-02-15 | 1994-07-19 | Lundquist Ingemar H | Torquable catheter |
US5251611A (en) | 1991-05-07 | 1993-10-12 | Zehel Wendell E | Method and apparatus for conducting exploratory procedures |
US5226429A (en) | 1991-06-20 | 1993-07-13 | Inamed Development Co. | Laparoscopic gastric band and method |
US5304131A (en) * | 1991-07-15 | 1994-04-19 | Paskar Larry D | Catheter |
US5571215A (en) | 1993-02-22 | 1996-11-05 | Heartport, Inc. | Devices and methods for intracardiac procedures |
US5452733A (en) | 1993-02-22 | 1995-09-26 | Stanford Surgical Technologies, Inc. | Methods for performing thoracoscopic coronary artery bypass |
US5370685A (en) | 1991-07-16 | 1994-12-06 | Stanford Surgical Technologies, Inc. | Endovascular aortic valve replacement |
US5769812A (en) | 1991-07-16 | 1998-06-23 | Heartport, Inc. | System for cardiac procedures |
CA2078530A1 (en) | 1991-09-23 | 1993-03-24 | Jay Erlebacher | Percutaneous arterial puncture seal device and insertion tool therefore |
US5226911A (en) | 1991-10-02 | 1993-07-13 | Target Therapeutics | Vasoocclusion coil with attached fibrous element(s) |
DE4137218C1 (en) | 1991-11-13 | 1993-02-11 | Heidmueller, Harald, 5000 Koeln, De | |
US5271381A (en) | 1991-11-18 | 1993-12-21 | Vision Sciences, Inc. | Vertebrae for a bending section of an endoscope |
US5242456A (en) | 1991-11-21 | 1993-09-07 | Kensey Nash Corporation | Apparatus and methods for clamping tissue and reflecting the same |
US5261916A (en) | 1991-12-12 | 1993-11-16 | Target Therapeutics | Detachable pusher-vasoocclusive coil assembly with interlocking ball and keyway coupling |
US5234437A (en) | 1991-12-12 | 1993-08-10 | Target Therapeutics, Inc. | Detachable pusher-vasoocclusion coil assembly with threaded coupling |
US5423882A (en) | 1991-12-26 | 1995-06-13 | Cordis-Webster, Inc. | Catheter having electrode with annular recess and method of using same |
AU3803193A (en) | 1991-12-30 | 1994-09-26 | Wellesley Research Associates, Inc. | Dental implant system and apparatus |
US5489297A (en) | 1992-01-27 | 1996-02-06 | Duran; Carlos M. G. | Bioprosthetic heart valve with absorbable stent |
US5417700A (en) | 1992-03-30 | 1995-05-23 | Thomas D. Egan | Automatic suturing and ligating device |
US5314424A (en) | 1992-04-06 | 1994-05-24 | United States Surgical Corporation | Surgical instrument locking mechanism |
US5190554A (en) | 1992-04-08 | 1993-03-02 | Eastern Virginia Medical School | Appendix extractor |
US5318525A (en) | 1992-04-10 | 1994-06-07 | Medtronic Cardiorhythm | Steerable electrode catheter |
US5254130A (en) | 1992-04-13 | 1993-10-19 | Raychem Corporation | Surgical device |
US5368601A (en) | 1992-04-30 | 1994-11-29 | Lasersurge, Inc. | Trocar wound closure device |
DE4215449C1 (en) * | 1992-05-11 | 1993-09-02 | Ethicon Gmbh & Co Kg, 2000 Norderstedt, De | |
US5332402A (en) | 1992-05-12 | 1994-07-26 | Teitelbaum George P | Percutaneously-inserted cardiac valve |
US5389098A (en) | 1992-05-19 | 1995-02-14 | Olympus Optical Co., Ltd. | Surgical device for stapling and/or fastening body tissues |
US5658300A (en) | 1992-06-04 | 1997-08-19 | Olympus Optical Co., Ltd. | Tissue fixing surgical instrument, tissue-fixing device, and method of fixing tissues |
US5325845A (en) * | 1992-06-08 | 1994-07-05 | Adair Edwin Lloyd | Steerable sheath for use with selected removable optical catheter |
US5306283A (en) | 1992-06-30 | 1994-04-26 | American Cyanamid Company | Two-part surgical ligation clip |
US5368606A (en) | 1992-07-02 | 1994-11-29 | Marlow Surgical Technologies, Inc. | Endoscopic instrument system |
US5383886A (en) * | 1992-10-13 | 1995-01-24 | Kensey Nash Corporation | Methods and instruments for performing medical procedures percutaneously without a trocar |
US5713910A (en) * | 1992-09-04 | 1998-02-03 | Laurus Medical Corporation | Needle guidance system for endoscopic suture device |
US5312415A (en) | 1992-09-22 | 1994-05-17 | Target Therapeutics, Inc. | Assembly for placement of embolic coils using frictional placement |
US5350397A (en) | 1992-11-13 | 1994-09-27 | Target Therapeutics, Inc. | Axially detachable embolic coil assembly |
US5250071A (en) | 1992-09-22 | 1993-10-05 | Target Therapeutics, Inc. | Detachable embolic coil assembly using interlocking clasps and method of use |
CA2106126A1 (en) | 1992-09-23 | 1994-03-24 | Ian M. Scott | Bipolar surgical instruments |
US5500180A (en) | 1992-09-30 | 1996-03-19 | C. R. Bard, Inc. | Method of making a distensible dilatation balloon using a block copolymer |
US5330442A (en) | 1992-10-09 | 1994-07-19 | United States Surgical Corporation | Suture retaining clip |
US5718725A (en) | 1992-12-03 | 1998-02-17 | Heartport, Inc. | Devices and methods for intracardiac procedures |
US6283127B1 (en) | 1992-12-03 | 2001-09-04 | Wesley D. Sterman | Devices and methods for intracardiac procedures |
US5462527A (en) | 1993-06-29 | 1995-10-31 | C.R. Bard, Inc. | Actuator for use with steerable catheter |
US5417699A (en) | 1992-12-10 | 1995-05-23 | Perclose Incorporated | Device and method for the percutaneous suturing of a vascular puncture site |
US6036699A (en) * | 1992-12-10 | 2000-03-14 | Perclose, Inc. | Device and method for suturing tissue |
US5702825A (en) | 1992-12-22 | 1997-12-30 | Essilor International (Compagnie Generale D'optique) | Low yellow index polymer compositions, polymerizable compositions and lenses using said compositions |
US5403312A (en) | 1993-07-22 | 1995-04-04 | Ethicon, Inc. | Electrosurgical hemostatic device |
US5368564A (en) | 1992-12-23 | 1994-11-29 | Angeion Corporation | Steerable catheter |
US5403326A (en) | 1993-02-01 | 1995-04-04 | The Regents Of The University Of California | Method for performing a gastric wrap of the esophagus for use in the treatment of esophageal reflux |
US5569274A (en) | 1993-02-22 | 1996-10-29 | Heartport, Inc. | Endoscopic vascular clamping system and method |
JPH08502438A (en) | 1993-02-22 | 1996-03-19 | ヴァリーラブ・インコーポレーテッド | Laparoscopic distraction tension retractor device and method |
US5425705A (en) | 1993-02-22 | 1995-06-20 | Stanford Surgical Technologies, Inc. | Thoracoscopic devices and methods for arresting the heart |
US5980455A (en) | 1993-02-22 | 1999-11-09 | Heartport, Inc. | Method for manipulating a tissue structure within a thoracic cavity |
US5797960A (en) | 1993-02-22 | 1998-08-25 | Stevens; John H. | Method and apparatus for thoracoscopic intracardiac procedures |
US5972030A (en) | 1993-02-22 | 1999-10-26 | Heartport, Inc. | Less-invasive devices and methods for treatment of cardiac valves |
US5636634A (en) | 1993-03-16 | 1997-06-10 | Ep Technologies, Inc. | Systems using guide sheaths for introducing, deploying, and stabilizing cardiac mapping and ablation probes |
US5456400A (en) * | 1993-04-22 | 1995-10-10 | United States Surgical Corporation | Apparatus and clip for fastening body tissue |
DE4319829C1 (en) | 1993-06-16 | 1994-08-25 | Lerch Karl Dieter | Set for treating vascular deformities |
US5715817A (en) | 1993-06-29 | 1998-02-10 | C.R. Bard, Inc. | Bidirectional steering catheter |
US5549565A (en) | 1993-07-13 | 1996-08-27 | Symbiosis Corporation | Reusable surgical trocar with disposable valve assembly |
US5527321A (en) | 1993-07-14 | 1996-06-18 | United States Surgical Corporation | Instrument for closing trocar puncture wounds |
US5450860A (en) * | 1993-08-31 | 1995-09-19 | W. L. Gore & Associates, Inc. | Device for tissue repair and method for employing same |
US5423858A (en) | 1993-09-30 | 1995-06-13 | United States Surgical Corporation | Septoplasty fasteners and device for applying same |
US5472044A (en) * | 1993-10-20 | 1995-12-05 | E. I. Du Pont De Nemours And Company | Method and apparatus for interacting a gas and liquid on a convoluted array of tubes |
US5496333A (en) | 1993-10-20 | 1996-03-05 | Applied Medical Resources Corporation | Laparoscopic surgical clamp |
US5423857A (en) * | 1993-11-02 | 1995-06-13 | Ethicon, Inc. | Three piece surgical staple |
US5640955A (en) * | 1995-02-14 | 1997-06-24 | Daig Corporation | Guiding introducers for use in the treatment of accessory pathways around the mitral valve using a retrograde approach |
US6203531B1 (en) * | 1993-11-03 | 2001-03-20 | Daig Corporation | Guiding introducers for use in the treatment of accessory pathways around the mitral valve using a retrograde approach |
US5527322A (en) * | 1993-11-08 | 1996-06-18 | Perclose, Inc. | Device and method for suturing of internal puncture sites |
US5437681A (en) | 1994-01-13 | 1995-08-01 | Suturtek Inc. | Suturing instrument with thread management |
GB9400739D0 (en) | 1994-01-15 | 1994-03-16 | Femcare Ltd | Medical clip |
US5741280A (en) * | 1994-01-18 | 1998-04-21 | Coral Medical | Knot tying method and apparatus |
US5359994A (en) | 1994-01-24 | 1994-11-01 | Welch Allyn, Inc. | Proximal steering cable adjustment |
US5501698A (en) * | 1994-02-14 | 1996-03-26 | Heartport, Inc. | Endoscopic microsurgical instruments and methods |
CA2141911C (en) | 1994-02-24 | 2002-04-23 | Jude S. Sauer | Surgical crimping device and method of use |
US5431666A (en) | 1994-02-24 | 1995-07-11 | Lasersurge, Inc. | Surgical suture instrument |
US5476470A (en) | 1994-04-15 | 1995-12-19 | Fitzgibbons, Jr.; Robert J. | Trocar site suturing device |
US5478309A (en) | 1994-05-27 | 1995-12-26 | William P. Sweezer, Jr. | Catheter system and method for providing cardiopulmonary bypass pump support during heart surgery |
DE4447658C2 (en) | 1994-05-28 | 1996-12-19 | Karlsruhe Forschzent | Thread for constructing surgical seam |
US5732872A (en) | 1994-06-17 | 1998-03-31 | Heartport, Inc. | Surgical stapling instrument |
US5554185A (en) | 1994-07-18 | 1996-09-10 | Block; Peter C. | Inflatable prosthetic cardiovascular valve for percutaneous transluminal implantation of same |
US5593435A (en) * | 1994-07-29 | 1997-01-14 | Baxter International Inc. | Distensible annuloplasty ring for surgical remodelling of an atrioventricular valve and nonsurgical method for post-implantation distension thereof to accommodate patient growth |
US5593424A (en) * | 1994-08-10 | 1997-01-14 | Segmed, Inc. | Apparatus and method for reducing and stabilizing the circumference of a vascular structure |
US5601576A (en) | 1994-08-10 | 1997-02-11 | Heartport Inc. | Surgical knot pusher and method of use |
US5456684A (en) | 1994-09-08 | 1995-10-10 | Hutchinson Technology Incorporated | Multifunctional minimally invasive surgical instrument |
US5599305A (en) | 1994-10-24 | 1997-02-04 | Cardiovascular Concepts, Inc. | Large-diameter introducer sheath having hemostasis valve and removable steering mechanism |
US5814029A (en) | 1994-11-03 | 1998-09-29 | Daig Corporation | Guiding introducer system for use in ablation and mapping procedures in the left ventricle |
US5487746A (en) | 1994-11-23 | 1996-01-30 | Yu; George W. | Surgical clip having a longitudinal opening through which clamped tissue protrudes |
US5747280A (en) * | 1995-06-05 | 1998-05-05 | Human Genome Sciences, Inc. | Human vascular IBP-like growth factor |
US5690671A (en) | 1994-12-13 | 1997-11-25 | Micro Interventional Systems, Inc. | Embolic elements and methods and apparatus for their delivery |
US5620452A (en) | 1994-12-22 | 1997-04-15 | Yoon; Inbae | Surgical clip with ductile tissue penetrating members |
US5643295A (en) | 1994-12-29 | 1997-07-01 | Yoon; Inbae | Methods and apparatus for suturing tissue |
US5609598A (en) | 1994-12-30 | 1997-03-11 | Vnus Medical Technologies, Inc. | Method and apparatus for minimally invasive treatment of chronic venous insufficiency |
US6540755B2 (en) | 1995-02-14 | 2003-04-01 | Daig Corporation | Guiding introducers for use in the treatment of accessory pathways around the mitral valve using a retrograde approach |
US5695504A (en) * | 1995-02-24 | 1997-12-09 | Heartport, Inc. | Devices and methods for performing a vascular anastomosis |
JPH08231444A (en) * | 1995-02-28 | 1996-09-10 | Daikin Ind Ltd | Production of 1,1,3,3-pentafluoropropane |
US5695505A (en) * | 1995-03-09 | 1997-12-09 | Yoon; Inbae | Multifunctional spring clips and cartridges and applicators therefor |
US5571085A (en) | 1995-03-24 | 1996-11-05 | Electro-Catheter Corporation | Steerable open lumen catheter |
US5849005A (en) | 1995-06-07 | 1998-12-15 | Heartport, Inc. | Method and apparatus for minimizing the risk of air embolism when performing a procedure in a patient's thoracic cavity |
AU708976B2 (en) | 1995-03-30 | 1999-08-19 | Edwards Lifesciences Ag | System and methods for performing endovascular procedures |
US5626607A (en) | 1995-04-03 | 1997-05-06 | Heartport, Inc. | Clamp assembly and method of use |
US5639277A (en) | 1995-04-28 | 1997-06-17 | Target Therapeutics, Inc. | Embolic coils with offset helical and twisted helical shapes |
US5540705A (en) | 1995-05-19 | 1996-07-30 | Suturtek, Inc. | Suturing instrument with thread management |
US5562678A (en) | 1995-06-02 | 1996-10-08 | Cook Pacemaker Corporation | Needle's eye snare |
US5846253A (en) | 1995-07-14 | 1998-12-08 | C. R. Bard, Inc. | Wound closure apparatus and method |
US6562052B2 (en) * | 1995-08-24 | 2003-05-13 | Sutura, Inc. | Suturing device and method |
WO1997007745A1 (en) * | 1995-08-24 | 1997-03-06 | Nobles-Lai Engineering, Inc. | Method and apparatus for suturing |
US6117144A (en) * | 1995-08-24 | 2000-09-12 | Sutura, Inc. | Suturing device and method for sealing an opening in a blood vessel or other biological structure |
DE19534112A1 (en) | 1995-09-14 | 1997-03-20 | Wolf Gmbh Richard | Endoscopic instrument with steerable distal end |
US5722421A (en) * | 1995-09-15 | 1998-03-03 | Symbiosis Corporation | Clevis having deflection limiting stops for use in an endoscopic biopsy forceps instrument |
US5797927A (en) | 1995-09-22 | 1998-08-25 | Yoon; Inbae | Combined tissue clamping and suturing instrument |
US5810876A (en) * | 1995-10-03 | 1998-09-22 | Akos Biomedical, Inc. | Flexible forceps device |
US5634932A (en) | 1995-10-10 | 1997-06-03 | Industrial & Scientific Designs, Ltd. | Cantilever aneurysm clip system |
US6283951B1 (en) * | 1996-10-11 | 2001-09-04 | Transvascular, Inc. | Systems and methods for delivering drugs to selected locations within the body |
JP3293118B2 (en) * | 1995-10-18 | 2002-06-17 | ニプロ株式会社 | Catheter assembly for endocardial suture surgery |
WO1997016119A1 (en) * | 1995-10-30 | 1997-05-09 | Children's Medical Center Corporation | Self-centering umbrella-type septal closure device |
US5855271A (en) * | 1995-11-03 | 1999-01-05 | T. K. F., Inc. | Noise and wear reducing apparatus for endless conveyors |
US5823955A (en) | 1995-11-20 | 1998-10-20 | Medtronic Cardiorhythm | Atrioventricular valve tissue ablation catheter and method |
JP2963037B2 (en) | 1995-11-30 | 1999-10-12 | 三洋電機株式会社 | Disk recording and playback device |
US5662704A (en) * | 1995-12-01 | 1997-09-02 | Medtronic, Inc. | Physiologic mitral valve bioprosthesis |
US5725556A (en) | 1995-12-15 | 1998-03-10 | M & R Medical, Inc. | Suture locking apparatus |
US5749828A (en) | 1995-12-22 | 1998-05-12 | Hewlett-Packard Company | Bending neck for use with invasive medical devices |
US5810853A (en) | 1996-01-16 | 1998-09-22 | Yoon; Inbae | Knotting element for use in suturing anatomical tissue and methods therefor |
US5871489A (en) * | 1996-01-24 | 1999-02-16 | S.M.T. (Medical Technologies) Ltd | Surgical implement particularly useful for implanting prosthetic heart valves, valve holder particularly useful therewith and surgical method including such implement |
US6015417A (en) * | 1996-01-25 | 2000-01-18 | Reynolds, Jr.; Walker | Surgical fastener |
US6182664B1 (en) * | 1996-02-19 | 2001-02-06 | Edwards Lifesciences Corporation | Minimally invasive cardiac valve surgery procedure |
US6162233A (en) | 1996-02-23 | 2000-12-19 | Cardiovascular Technologies, Llc | Wire fasteners for use in minimally invasive surgery and means and methods for handling those fasteners |
US5891160A (en) * | 1996-02-23 | 1999-04-06 | Cardiovascular Technologies, Llc | Fastener delivery and deployment mechanism and method for placing the fastener in minimally invasive surgery |
US6402780B2 (en) | 1996-02-23 | 2002-06-11 | Cardiovascular Technologies, L.L.C. | Means and method of replacing a heart valve in a minimally invasive manner |
US5879307A (en) | 1996-03-15 | 1999-03-09 | Pulse Metric, Inc. | Non-invasive method and apparatus for diagnosing and monitoring aortic valve abnormalities, such a aortic regurgitation |
US5853422A (en) | 1996-03-22 | 1998-12-29 | Scimed Life Systems, Inc. | Apparatus and method for closing a septal defect |
US5769859A (en) | 1996-04-09 | 1998-06-23 | Dorsey; William R. | Umbilical scissors |
US5738649A (en) | 1996-04-16 | 1998-04-14 | Cardeon Corporation | Peripheral entry biventricular catheter system for providing access to the heart for cardiopulmonary surgery or for prolonged circulatory support of the heart |
US6110145A (en) | 1996-04-16 | 2000-08-29 | Cardeon Corporation | Catheter system for surgical access and circulatory support of the heart |
US6149660A (en) | 1996-04-22 | 2000-11-21 | Vnus Medical Technologies, Inc. | Method and apparatus for delivery of an appliance in a vessel |
US5662681A (en) | 1996-04-23 | 1997-09-02 | Kensey Nash Corporation | Self locking closure for sealing percutaneous punctures |
US5706824A (en) | 1996-05-20 | 1998-01-13 | Symbiosis Corporation | Endoscopic biopsy forceps instrument having a constant force spring biasing the jaws closed |
US5833671A (en) | 1996-06-17 | 1998-11-10 | Cardeon Corporation | Triple lumen catheter with controllable antegrade and retrograde fluid flow |
JP2001503286A (en) | 1996-06-17 | 2001-03-13 | カーデオン コーポレイション | Externally valved catheter for controlled antegrade and retrograde fluid flow |
US6059757A (en) | 1996-06-18 | 2000-05-09 | Cardeon | Single lumen catheter with controlled antegrade and retrograde flow |
US5827237A (en) * | 1996-06-17 | 1998-10-27 | Cardeon Corporation | Dual lumen catheter with controlled antegrade and retrograde fluid flow |
US6001796A (en) * | 1996-07-03 | 1999-12-14 | Alliedsignal Inc. | Azeotrope-like compositions of 1,1,1,3,3-pentafluoropropane and hydrogen fluoride |
US5820592A (en) | 1996-07-16 | 1998-10-13 | Hammerslag; Gary R. | Angiographic and/or guide catheter |
US5782845A (en) | 1996-07-31 | 1998-07-21 | Shewchuk; Dwight | Trocar site suturing device |
US5820631A (en) | 1996-08-01 | 1998-10-13 | Nr Medical, Inc. | Device and method for suturing tissue adjacent to a blood vessel |
US6068628A (en) | 1996-08-20 | 2000-05-30 | Oratec Interventions, Inc. | Apparatus for treating chondromalacia |
WO1998007375A1 (en) | 1996-08-22 | 1998-02-26 | The Trustees Of Columbia University | Endovascular flexible stapling device |
US5713911A (en) * | 1996-10-03 | 1998-02-03 | United States Surgical Corporation | Surgical clip |
CA2273149A1 (en) | 1996-12-02 | 1998-06-11 | Angiotrax, Inc. | Apparatus and methods for percutaneously performing surgery |
IL119911A (en) * | 1996-12-25 | 2001-03-19 | Niti Alloys Tech Ltd | Surgical clip |
US6050936A (en) | 1997-01-02 | 2000-04-18 | Myocor, Inc. | Heart wall tension reduction apparatus |
US6406420B1 (en) | 1997-01-02 | 2002-06-18 | Myocor, Inc. | Methods and devices for improving cardiac function in hearts |
US6077214A (en) | 1998-07-29 | 2000-06-20 | Myocor, Inc. | Stress reduction apparatus and method |
US6074401A (en) | 1997-01-09 | 2000-06-13 | Coalescent Surgical, Inc. | Pinned retainer surgical fasteners, instruments and methods for minimally invasive vascular and endoscopic surgery |
US5928224A (en) | 1997-01-24 | 1999-07-27 | Hearten Medical, Inc. | Device for the treatment of damaged heart valve leaflets and methods of using the device |
US5916213A (en) | 1997-02-04 | 1999-06-29 | Medtronic, Inc. | Systems and methods for tissue mapping and ablation |
US6056769A (en) | 1997-02-11 | 2000-05-02 | Biointerventional Corporation | Expansile device for use in blood vessels and tracts in the body and tension application device for use therewith and method |
US5972020A (en) | 1997-02-14 | 1999-10-26 | Cardiothoracic Systems, Inc. | Surgical instrument for cardiac valve repair on the beating heart |
US5989284A (en) | 1997-02-18 | 1999-11-23 | Hearten Medical, Inc. | Method and device for soft tissue modification |
US5885271A (en) * | 1997-03-14 | 1999-03-23 | Millennium Cardiac Strategies, Inc. | Device for regional immobilization of a compliant body |
US5957949A (en) | 1997-05-01 | 1999-09-28 | World Medical Manufacturing Corp. | Percutaneous placement valve stent |
US5876399A (en) * | 1997-05-28 | 1999-03-02 | Irvine Biomedical, Inc. | Catheter system and methods thereof |
US5810849A (en) | 1997-06-09 | 1998-09-22 | Cardiologics, L.L.C. | Device and method for suturing blood vessels and the like |
US6014417A (en) * | 1997-06-11 | 2000-01-11 | National Semiconductor Corporation | On-chip phase step generator for a digital phase locked loop |
US6269819B1 (en) | 1997-06-27 | 2001-08-07 | The Trustees Of Columbia University In The City Of New York | Method and apparatus for circulatory valve repair |
IT1293068B1 (en) | 1997-07-01 | 1999-02-11 | Kempro Italiana S R L | PROCEDURE FOR OBTAINING A HIGH CONCENTRATION COLLOIDAL SILICA SUSPENSION AND PRODUCT SO OBTAINED |
US5944733A (en) * | 1997-07-14 | 1999-08-31 | Target Therapeutics, Inc. | Controlled detachable vasoocclusive member using mechanical junction and friction-enhancing member |
US5910148A (en) * | 1997-08-06 | 1999-06-08 | Mitek Surgical Products, Inc. | Suture retrograder |
US6060454A (en) | 1997-08-08 | 2000-05-09 | Duke University | Compositions, apparatus and methods for facilitating surgical procedures |
US6088889A (en) | 1997-09-03 | 2000-07-18 | Edward Elson | Clamp operable as a hemostasis valve |
AU9225598A (en) * | 1997-09-04 | 1999-03-22 | Endocore, Inc. | Artificial chordae replacement |
US6123699A (en) | 1997-09-05 | 2000-09-26 | Cordis Webster, Inc. | Omni-directional steerable catheter |
US5954732A (en) * | 1997-09-10 | 1999-09-21 | Hart; Charles C. | Suturing apparatus and method |
FR2768324B1 (en) | 1997-09-12 | 1999-12-10 | Jacques Seguin | SURGICAL INSTRUMENT FOR PERCUTANEOUSLY FIXING TWO AREAS OF SOFT TISSUE, NORMALLY MUTUALLY REMOTE, TO ONE ANOTHER |
US6019722A (en) * | 1997-09-17 | 2000-02-01 | Guidant Corporation | Device to permit offpump beating heart coronary bypass surgery |
JPH1189937A (en) | 1997-09-19 | 1999-04-06 | Atsuo Mori | Catheter for mitral regurgitation test |
US6063106A (en) * | 1997-09-19 | 2000-05-16 | Gibson; William Frits Stewart | Surgical spacer |
US5916147A (en) * | 1997-09-22 | 1999-06-29 | Boury; Harb N. | Selectively manipulable catheter |
US6086600A (en) * | 1997-11-03 | 2000-07-11 | Symbiosis Corporation | Flexible endoscopic surgical instrument for invagination and fundoplication |
US6187003B1 (en) * | 1997-11-12 | 2001-02-13 | Sherwood Services Ag | Bipolar electrosurgical instrument for sealing vessels |
DE19753800C2 (en) * | 1997-12-04 | 1999-12-30 | Mannesmann Vdo Ag | Method for producing an electrical resistance and a mechanical-electrical converter |
US6332893B1 (en) | 1997-12-17 | 2001-12-25 | Myocor, Inc. | Valve to myocardium tension members device and method |
DE69833882T2 (en) * | 1998-01-30 | 2006-08-17 | St. Jude Medical ATG, Inc., Maple Grove | MEDICAL TRANSPLANTER CONNECTOR OR STOPPING AND PROCESS FOR THEIR MANUFACTURE |
US6562037B2 (en) * | 1998-02-12 | 2003-05-13 | Boris E. Paton | Bonding of soft biological tissues by passing high frequency electric current therethrough |
US6126658A (en) | 1998-02-19 | 2000-10-03 | Baker; James A. | Radiofrequency medical instrument and methods for vessel welding |
US20020095175A1 (en) | 1998-02-24 | 2002-07-18 | Brock David L. | Flexible instrument |
US6190408B1 (en) | 1998-03-05 | 2001-02-20 | The University Of Cincinnati | Device and method for restructuring the heart chamber geometry |
US6010516A (en) * | 1998-03-20 | 2000-01-04 | Hulka; Jaroslav F. | Bipolar coaptation clamps |
US6099553A (en) * | 1998-05-21 | 2000-08-08 | Applied Medical Resources Corporation | Suture clinch |
US6143024A (en) | 1998-06-04 | 2000-11-07 | Sulzer Carbomedics Inc. | Annuloplasty ring having flexible anterior portion |
US6165164A (en) | 1999-03-29 | 2000-12-26 | Cordis Corporation | Catheter for injecting therapeutic and diagnostic agents |
US6599311B1 (en) | 1998-06-05 | 2003-07-29 | Broncus Technologies, Inc. | Method and assembly for lung volume reduction |
US6283962B1 (en) | 1998-06-08 | 2001-09-04 | Quantum Therapeutics Corp. | Device for valvular annulus treatment and methods thereof |
US6250308B1 (en) | 1998-06-16 | 2001-06-26 | Cardiac Concepts, Inc. | Mitral valve annuloplasty ring and method of implanting |
US6630001B2 (en) | 1998-06-24 | 2003-10-07 | International Heart Institute Of Montana Foundation | Compliant dehyrated tissue for implantation and process of making the same |
US6066146A (en) * | 1998-06-24 | 2000-05-23 | Carroll; Brendan J. | Laparascopic incision closure device |
US6322559B1 (en) | 1998-07-06 | 2001-11-27 | Vnus Medical Technologies, Inc. | Electrode catheter having coil structure |
JP4080161B2 (en) | 1998-07-08 | 2008-04-23 | アクシーア メディカル インコーポレイテッド | Tool and method for holding a suture and a ligature without a knot |
US7569062B1 (en) | 1998-07-15 | 2009-08-04 | St. Jude Medical, Inc. | Mitral and tricuspid valve repair |
AU5101699A (en) | 1998-07-15 | 2000-02-07 | Corazon Technologies, Inc. | Methods and devices for reducing the mineral content of vascular calcified lesions |
US6547821B1 (en) | 1998-07-16 | 2003-04-15 | Cardiothoracic Systems, Inc. | Surgical procedures and devices for increasing cardiac output of the heart |
US6260552B1 (en) | 1998-07-29 | 2001-07-17 | Myocor, Inc. | Transventricular implant tools and devices |
US6159240A (en) | 1998-08-31 | 2000-12-12 | Medtronic, Inc. | Rigid annuloplasty device that becomes compliant after implantation |
US6267781B1 (en) | 1998-08-31 | 2001-07-31 | Quantum Therapeutics Corp. | Medical device and methods for treating valvular annulus |
AU5903599A (en) | 1998-09-01 | 2000-03-21 | Cardeon Corporation | System and methods for catheter procedures with circulatory support in high riskpatients |
US6203553B1 (en) * | 1999-09-08 | 2001-03-20 | United States Surgical | Stapling apparatus and method for heart valve replacement |
US6355030B1 (en) | 1998-09-25 | 2002-03-12 | Cardiothoracic Systems, Inc. | Instruments and methods employing thermal energy for the repair and replacement of cardiac valves |
US6368326B1 (en) | 1998-09-28 | 2002-04-09 | Daos Limited | Internal cord fixation device |
US6685627B2 (en) | 1998-10-09 | 2004-02-03 | Swaminathan Jayaraman | Modification of properties and geometry of heart tissue to influence heart function |
US6319250B1 (en) | 1998-11-23 | 2001-11-20 | C.R. Bard, Inc | Tricuspid annular grasp catheter |
US6210419B1 (en) | 1998-12-18 | 2001-04-03 | Aesculap Ag & Co. Kg | Surgical clip |
US6558418B2 (en) | 1999-01-26 | 2003-05-06 | Edwards Lifesciences Corporation | Flexible heart valve |
DK1154738T3 (en) | 1999-01-27 | 2010-07-26 | Medtronic Inc | Cardiac arrest devices |
US6701929B2 (en) | 1999-03-03 | 2004-03-09 | Hany Hussein | Device and method for treatment of congestive heart failure |
US6136010A (en) | 1999-03-04 | 2000-10-24 | Perclose, Inc. | Articulating suturing device and method |
US6267746B1 (en) * | 1999-03-22 | 2001-07-31 | Biosense Webster, Inc. | Multi-directional steerable catheters and control handles |
JP3425387B2 (en) * | 1999-03-29 | 2003-07-14 | 有限会社タカタデザインラボ | Fixture for goods |
WO2000059382A1 (en) | 1999-04-01 | 2000-10-12 | Bjerken David B | Vacuum-assisted remote suture placement system |
US8216256B2 (en) | 1999-04-09 | 2012-07-10 | Evalve, Inc. | Detachment mechanism for implantable fixation devices |
US6752813B2 (en) | 1999-04-09 | 2004-06-22 | Evalve, Inc. | Methods and devices for capturing and fixing leaflets in valve repair |
US20040044350A1 (en) | 1999-04-09 | 2004-03-04 | Evalve, Inc. | Steerable access sheath and methods of use |
WO2000060995A2 (en) | 1999-04-09 | 2000-10-19 | Evalve, Inc. | Methods and apparatus for cardiac valve repair |
US7811296B2 (en) * | 1999-04-09 | 2010-10-12 | Evalve, Inc. | Fixation devices for variation in engagement of tissue |
US7226467B2 (en) * | 1999-04-09 | 2007-06-05 | Evalve, Inc. | Fixation device delivery catheter, systems and methods of use |
US10327743B2 (en) * | 1999-04-09 | 2019-06-25 | Evalve, Inc. | Device and methods for endoscopic annuloplasty |
US6860179B2 (en) | 1999-05-03 | 2005-03-01 | Irwin Industrial Tool Company | Clamp device |
US6709382B1 (en) | 1999-05-04 | 2004-03-23 | Simon Marcus Horner | Cardiac assist method and apparatus |
US6206907B1 (en) * | 1999-05-07 | 2001-03-27 | Cardia, Inc. | Occlusion device with stranded wire support arms |
CA2373636A1 (en) | 1999-05-11 | 2000-11-16 | Craig Berky | Surgical clamp devices and methods especially useful in cardiac surgery |
US6165204A (en) | 1999-06-11 | 2000-12-26 | Scion International, Inc. | Shaped suture clip, appliance and method therefor |
US6626899B2 (en) | 1999-06-25 | 2003-09-30 | Nidus Medical, Llc | Apparatus and methods for treating tissue |
JP4576521B2 (en) | 1999-06-25 | 2010-11-10 | ハンセン メディカル, インコーポレイテッド | Apparatus and method for treating tissue |
SE514718C2 (en) * | 1999-06-29 | 2001-04-09 | Jan Otto Solem | Apparatus for treating defective closure of the mitral valve apparatus |
US6997951B2 (en) | 1999-06-30 | 2006-02-14 | Edwards Lifesciences Ag | Method and device for treatment of mitral insufficiency |
US7192442B2 (en) | 1999-06-30 | 2007-03-20 | Edwards Lifesciences Ag | Method and device for treatment of mitral insufficiency |
DE19932565A1 (en) | 1999-07-13 | 2001-01-18 | Henkel Kgaa | Agent for dyeing keratin fibers |
US20030109770A1 (en) | 1999-08-09 | 2003-06-12 | Sharkey Hugh R. | Device with a porous membrane for improving cardiac function |
US6541159B1 (en) * | 1999-08-12 | 2003-04-01 | Reveo, Inc. | Oxygen separation through hydroxide-conductive membrane |
US6299637B1 (en) | 1999-08-20 | 2001-10-09 | Samuel M. Shaolian | Transluminally implantable venous valve |
US6231561B1 (en) | 1999-09-20 | 2001-05-15 | Appriva Medical, Inc. | Method and apparatus for closing a body lumen |
US6485489B2 (en) | 1999-10-02 | 2002-11-26 | Quantum Cor, Inc. | Catheter system for repairing a mitral valve annulus |
US6306133B1 (en) | 1999-10-02 | 2001-10-23 | Quantum Cor Incorporated | Ablation catheter system and methods for repairing a valvular annulus |
US20030069570A1 (en) | 1999-10-02 | 2003-04-10 | Witzel Thomas H. | Methods for repairing mitral valve annulus percutaneously |
FR2799364B1 (en) | 1999-10-12 | 2001-11-23 | Jacques Seguin | MINIMALLY INVASIVE CANCELING DEVICE |
US6312447B1 (en) * | 1999-10-13 | 2001-11-06 | The General Hospital Corporation | Devices and methods for percutaneous mitral valve repair |
WO2001026588A2 (en) | 1999-10-13 | 2001-04-19 | Yeung Jeffrey E | Methods and devices for treating urinary incontinence or obstruction |
US6352708B1 (en) | 1999-10-14 | 2002-03-05 | The International Heart Institute Of Montana Foundation | Solution and method for treating autologous tissue for implant operation |
US6491511B1 (en) | 1999-10-14 | 2002-12-10 | The International Heart Institute Of Montana Foundation | Mold to form stent-less replacement heart valves from biological membranes |
US7004970B2 (en) * | 1999-10-20 | 2006-02-28 | Anulex Technologies, Inc. | Methods and devices for spinal disc annulus reconstruction and repair |
EP1674040A3 (en) | 1999-10-21 | 2007-09-19 | Edwards Lifesciences Corporation | Minimally invasive mitral valve repair |
US6626930B1 (en) * | 1999-10-21 | 2003-09-30 | Edwards Lifesciences Corporation | Minimally invasive mitral valve repair method and apparatus |
WO2001028455A1 (en) | 1999-10-21 | 2001-04-26 | Myocor, Inc. | Methods and devices for improving cardiac function in hearts |
US6533767B2 (en) | 2000-03-20 | 2003-03-18 | Corazon Technologies, Inc. | Methods for enhancing fluid flow through an obstructed vascular site, and systems and kits for use in practicing the same |
US6926730B1 (en) * | 2000-10-10 | 2005-08-09 | Medtronic, Inc. | Minimally invasive valve repair procedure and apparatus |
US6641592B1 (en) | 1999-11-19 | 2003-11-04 | Lsi Solutions, Inc. | System for wound closure |
US6458153B1 (en) | 1999-12-31 | 2002-10-01 | Abps Venture One, Ltd. | Endoluminal cardiac and venous valve prostheses and methods of manufacture and delivery thereof |
EP1239795B1 (en) | 1999-12-23 | 2006-12-06 | Edwards Lifesciences Corporation | Enhanced visualization of medical implants |
WO2001050985A1 (en) | 2000-01-14 | 2001-07-19 | Viacor Incorporated | Tissue annuloplasty band and apparatus and method for fashioning, sizing and implanting the same |
US20010010005A1 (en) | 2000-01-24 | 2001-07-26 | Kammerer Gene W. | Meniscal repair device |
US6402781B1 (en) | 2000-01-31 | 2002-06-11 | Mitralife | Percutaneous mitral annuloplasty and cardiac reinforcement |
US7507252B2 (en) | 2000-01-31 | 2009-03-24 | Edwards Lifesciences Ag | Adjustable transluminal annuloplasty system |
US6797002B2 (en) | 2000-02-02 | 2004-09-28 | Paul A. Spence | Heart valve repair apparatus and methods |
WO2001056512A1 (en) | 2000-02-02 | 2001-08-09 | Snyders Robert V | Artificial heart valve |
EP1263330B1 (en) | 2000-03-03 | 2014-06-18 | C.R. Bard, Inc. | Suture clip delivery device |
TW465542U (en) | 2000-03-14 | 2001-11-21 | Tange Seiki Taichung Co Ltd | Improved structure for bearing alignment of concealed operation head joint of bicycle |
CA2403533C (en) | 2000-03-20 | 2014-12-30 | Corazon Technologies, Inc. | Methods and systems for enhancing fluid flow through an obstructed vascular site |
US6530897B2 (en) | 2000-04-28 | 2003-03-11 | Mahase Nardeo | Steerable medical catheter with bendable encapsulated metal spring tip fused to polymeric shaft |
US7083628B2 (en) * | 2002-09-03 | 2006-08-01 | Edwards Lifesciences Corporation | Single catheter mitral valve repair device and method for use |
US6743239B1 (en) | 2000-05-25 | 2004-06-01 | St. Jude Medical, Inc. | Devices with a bendable tip for medical procedures |
US6902522B1 (en) | 2000-06-12 | 2005-06-07 | Acorn Cardiovascular, Inc. | Cardiac disease treatment and device |
US6730016B1 (en) | 2000-06-12 | 2004-05-04 | Acorn Cardiovascular, Inc. | Cardiac disease treatment and device |
US6840246B2 (en) | 2000-06-20 | 2005-01-11 | University Of Maryland, Baltimore | Apparatuses and methods for performing minimally invasive diagnostic and surgical procedures inside of a beating heart |
US6358277B1 (en) | 2000-06-21 | 2002-03-19 | The International Heart Institute Of Montana Foundation | Atrio-ventricular valvular device |
US6702826B2 (en) | 2000-06-23 | 2004-03-09 | Viacor, Inc. | Automated annular plication for mitral valve repair |
WO2002001999A2 (en) | 2000-06-30 | 2002-01-10 | Viacor, Incorporated | Method and apparatus for performing a procedure on a cardiac valve |
US6419696B1 (en) | 2000-07-06 | 2002-07-16 | Paul A. Spence | Annuloplasty devices and related heart valve repair methods |
US7120176B2 (en) | 2000-07-27 | 2006-10-10 | Intel Corporation | Wavelength reference apparatus and method |
SE0002878D0 (en) * | 2000-08-11 | 2000-08-11 | Kimblad Ola | Device and method of treatment of atrioventricular regurgitation |
US6572652B2 (en) * | 2000-08-29 | 2003-06-03 | Venpro Corporation | Method and devices for decreasing elevated pulmonary venous pressure |
WO2002019951A1 (en) | 2000-09-07 | 2002-03-14 | Viacor, Inc. | Fixation band for affixing a prosthetic heart valve to tissue |
US20020035381A1 (en) * | 2000-09-18 | 2002-03-21 | Cameron Health, Inc. | Subcutaneous electrode with improved contact shape for transthoracic conduction |
US20050228422A1 (en) | 2002-11-26 | 2005-10-13 | Ample Medical, Inc. | Devices, systems, and methods for reshaping a heart valve annulus, including the use of magnetic tools |
WO2004030570A2 (en) | 2002-10-01 | 2004-04-15 | Ample Medical, Inc. | Devices for retaining native heart valve leaflet |
WO2004030569A2 (en) | 2002-10-01 | 2004-04-15 | Ample Medical, Inc. | Devices, systems, and methods for reshaping a heart valve annulus |
US8784482B2 (en) | 2000-09-20 | 2014-07-22 | Mvrx, Inc. | Method of reshaping a heart valve annulus using an intravascular device |
US8956407B2 (en) * | 2000-09-20 | 2015-02-17 | Mvrx, Inc. | Methods for reshaping a heart valve annulus using a tensioning implant |
US7033374B2 (en) * | 2000-09-26 | 2006-04-25 | Microvention, Inc. | Microcoil vaso-occlusive device with multi-axis secondary configuration |
US6723038B1 (en) | 2000-10-06 | 2004-04-20 | Myocor, Inc. | Methods and devices for improving mitral valve function |
US6616684B1 (en) | 2000-10-06 | 2003-09-09 | Myocor, Inc. | Endovascular splinting devices and methods |
US6918917B1 (en) | 2000-10-10 | 2005-07-19 | Medtronic, Inc. | Minimally invasive annuloplasty procedure and apparatus |
US6533796B1 (en) * | 2000-10-11 | 2003-03-18 | Lsi Solutions, Inc. | Loader for surgical suturing instrument |
EP1326672A4 (en) | 2000-10-18 | 2007-03-07 | Nmt Medical Inc | Over-the-wire interlock attachment/detachment mechanism |
US6508828B1 (en) * | 2000-11-03 | 2003-01-21 | Radi Medical Systems Ab | Sealing device and wound closure device |
US20020103920A1 (en) * | 2000-11-21 | 2002-08-01 | Berkun Ken Alan | Interpretive stream metadata extraction |
US20020077687A1 (en) | 2000-12-14 | 2002-06-20 | Ahn Samuel S. | Catheter assembly for treating ischemic tissue |
US7591826B2 (en) | 2000-12-28 | 2009-09-22 | Cardiac Dimensions, Inc. | Device implantable in the coronary sinus to provide mitral valve therapy |
US6810882B2 (en) | 2001-01-30 | 2004-11-02 | Ev3 Santa Rosa, Inc. | Transluminal mitral annuloplasty |
WO2002060352A1 (en) | 2001-01-30 | 2002-08-08 | Ev3 Santa Rosa, Inc. | Medical system and method for remodeling an extravascular tissue structure |
AU2002240288B2 (en) | 2001-02-05 | 2006-05-18 | Viacor, Inc. | Method and apparatus for improving mitral valve function |
WO2002062263A2 (en) | 2001-02-05 | 2002-08-15 | Viacor, Inc. | Apparatus and method for reducing mitral regurgitation |
JP2001239212A (en) | 2001-02-06 | 2001-09-04 | Matsushita Electric Ind Co Ltd | Vibration generating motor |
US20020107531A1 (en) | 2001-02-06 | 2002-08-08 | Schreck Stefan G. | Method and system for tissue repair using dual catheters |
US6723109B2 (en) | 2001-02-07 | 2004-04-20 | Karl Storz Endoscopy-America, Inc. | Deployable surgical clamp with delivery/retrieval device and actuator |
US7842050B2 (en) | 2001-02-26 | 2010-11-30 | Diduch David R | Suture passing devices |
JP4295925B2 (en) * | 2001-03-01 | 2009-07-15 | Hoya株式会社 | Bipolar high-frequency treatment instrument for endoscope |
US6585761B2 (en) | 2001-03-01 | 2003-07-01 | Syde A. Taheri | Prosthetic vein valve and method |
DE10116168A1 (en) * | 2001-03-31 | 2001-11-29 | Joachim Heinzl | Clip has gripper arms operated by articulated lever mechanism and joined by spacer piece, tie rod, pulley cable, locking mechanism with cogging and pawl |
US6619291B2 (en) | 2001-04-24 | 2003-09-16 | Edwin J. Hlavka | Method and apparatus for catheter-based annuloplasty |
US20060069429A1 (en) | 2001-04-24 | 2006-03-30 | Spence Paul A | Tissue fastening systems and methods utilizing magnetic guidance |
US6858039B2 (en) | 2002-07-08 | 2005-02-22 | Edwards Lifesciences Corporation | Mitral valve annuloplasty ring having a posterior bow |
WO2002092148A2 (en) | 2001-05-17 | 2002-11-21 | The Regents Of The University Of California | Retrieval catheter |
US7338514B2 (en) | 2001-06-01 | 2008-03-04 | St. Jude Medical, Cardiology Division, Inc. | Closure devices, related delivery methods and tools, and related methods of use |
DE10129525A1 (en) | 2001-06-21 | 2003-01-09 | Basf Ag | Multimodal polyamides, polyesters and polyester amides |
US6850166B2 (en) | 2001-06-28 | 2005-02-01 | Nokia Mobile Phones Limited | Ancillary wireless detector |
US20030078654A1 (en) | 2001-08-14 | 2003-04-24 | Taylor Daniel C. | Method and apparatus for improving mitral valve function |
US6726716B2 (en) | 2001-08-24 | 2004-04-27 | Edwards Lifesciences Corporation | Self-molding annuloplasty ring |
WO2003020179A1 (en) | 2001-08-31 | 2003-03-13 | Mitral Interventions | Apparatus for valve repair |
US20030050693A1 (en) | 2001-09-10 | 2003-03-13 | Quijano Rodolfo C. | Minimally invasive delivery system for annuloplasty rings |
FR2829922B1 (en) * | 2001-09-21 | 2004-06-18 | Sofradim Production | COMPLETE AND UNIVERSAL IMPLANT FOR THE REPAIR OF HERNIA BY ANTERIOR |
CN100333704C (en) | 2001-10-01 | 2007-08-29 | 安普尔医药公司 | Methods and devices for heart valve treatments |
US7144363B2 (en) | 2001-10-16 | 2006-12-05 | Extensia Medical, Inc. | Systems for heart treatment |
US7052487B2 (en) | 2001-10-26 | 2006-05-30 | Cohn William E | Method and apparatus for reducing mitral regurgitation |
US6949122B2 (en) * | 2001-11-01 | 2005-09-27 | Cardiac Dimensions, Inc. | Focused compression mitral valve device and method |
US6805710B2 (en) * | 2001-11-13 | 2004-10-19 | Edwards Lifesciences Corporation | Mitral valve annuloplasty ring for molding left ventricle geometry |
US6575971B2 (en) | 2001-11-15 | 2003-06-10 | Quantum Cor, Inc. | Cardiac valve leaflet stapler device and methods thereof |
AU2002228753A1 (en) | 2001-12-04 | 2003-06-17 | Edwards Lifesciences Corporation | Minimally-invasive annuloplasty repair segment delivery template system |
US6976995B2 (en) | 2002-01-30 | 2005-12-20 | Cardiac Dimensions, Inc. | Fixed length anchor and pull mitral valve device and method |
US6908478B2 (en) | 2001-12-05 | 2005-06-21 | Cardiac Dimensions, Inc. | Anchor and pull mitral valve device and method |
US6740107B2 (en) | 2001-12-19 | 2004-05-25 | Trimedyne, Inc. | Device for treatment of atrioventricular valve regurgitation |
US20030120341A1 (en) * | 2001-12-21 | 2003-06-26 | Hani Shennib | Devices and methods of repairing cardiac valves |
US20030120340A1 (en) | 2001-12-26 | 2003-06-26 | Jan Liska | Mitral and tricuspid valve repair |
US6764510B2 (en) | 2002-01-09 | 2004-07-20 | Myocor, Inc. | Devices and methods for heart valve treatment |
WO2003105670A2 (en) * | 2002-01-10 | 2003-12-24 | Guided Delivery Systems, Inc. | Devices and methods for heart valve repair |
US7150750B2 (en) * | 2002-01-10 | 2006-12-19 | Boston Scientific Scimed, Inc. | Method and device for endoscopic suturing |
US6796002B2 (en) * | 2002-01-23 | 2004-09-28 | Darla L. Beckwith | Universally fitting removable padded wrap-around handle cover |
US7125420B2 (en) | 2002-02-05 | 2006-10-24 | Viacor, Inc. | Method and apparatus for improving mitral valve function |
EP2172165B1 (en) | 2002-02-27 | 2013-06-26 | DENTSPLY International Inc. | dental handpiece with improved grease retention |
EP1489968B1 (en) | 2002-03-01 | 2009-02-18 | Siemens Healthcare Diagnostics Inc. | Assays for cancer patient monitoring based on levels of analyte components of the plasminogen activator system in body fluid samples |
US7048754B2 (en) | 2002-03-01 | 2006-05-23 | Evalve, Inc. | Suture fasteners and methods of use |
US7004958B2 (en) | 2002-03-06 | 2006-02-28 | Cardiac Dimensions, Inc. | Transvenous staples, assembly and method for mitral valve repair |
US6797001B2 (en) | 2002-03-11 | 2004-09-28 | Cardiac Dimensions, Inc. | Device, assembly and method for mitral valve repair |
US7094244B2 (en) * | 2002-03-26 | 2006-08-22 | Edwards Lifesciences Corporation | Sequential heart valve leaflet repair device and method of use |
US7588585B2 (en) | 2002-03-26 | 2009-09-15 | Novare Surgical Systems, Inc. | Handleless clamping device |
US7335221B2 (en) | 2002-04-12 | 2008-02-26 | Ethicon, Inc. | Suture anchoring and tensioning device and method for using same |
US7497822B1 (en) | 2003-04-10 | 2009-03-03 | Torax Medical, Inc. | Stomach reduction methods and apparatus |
FR2839881B1 (en) * | 2002-05-24 | 2004-09-03 | Perouse Lab | RADIAL AND PERIPHERAL SEWING COLLAR PROSTHESIS |
US7101395B2 (en) | 2002-06-12 | 2006-09-05 | Mitral Interventions, Inc. | Method and apparatus for tissue connection |
US8287555B2 (en) | 2003-02-06 | 2012-10-16 | Guided Delivery Systems, Inc. | Devices and methods for heart valve repair |
US6773440B2 (en) * | 2002-07-02 | 2004-08-10 | Satiety, Inc. | Method and device for use in tissue approximation and fixation |
US8348963B2 (en) | 2002-07-03 | 2013-01-08 | Hlt, Inc. | Leaflet reinforcement for regurgitant valves |
EP1545371B1 (en) | 2002-08-01 | 2016-04-13 | Robert A. Levine | Cardiac devices and methods for minimally invasive repair of ischemic mitral regurgitation |
US8172856B2 (en) | 2002-08-02 | 2012-05-08 | Cedars-Sinai Medical Center | Methods and apparatus for atrioventricular valve repair |
EP2319427A2 (en) | 2002-08-13 | 2011-05-11 | The General Hospital Corporation | Cardiac devices and methods for percutaneous repair of atrioventricular valves |
CA2827984A1 (en) | 2002-08-28 | 2004-03-11 | Heart Leaflet Technologies, Inc. | Method and device for treating diseased valve |
ATE464028T1 (en) | 2002-08-29 | 2010-04-15 | St Jude Medical Cardiology Div | IMPLANTABLE DEVICES FOR CONTROLLING THE INNER DIAMETER OF AN OPENING IN THE BODY |
US7734316B2 (en) * | 2002-08-30 | 2010-06-08 | Motorola, Inc. | User-specified outputs in mobile wireless communication devices and methods therefor |
US20040133062A1 (en) | 2002-10-11 | 2004-07-08 | Suresh Pai | Minimally invasive cardiac force transfer structures |
US7087064B1 (en) * | 2002-10-15 | 2006-08-08 | Advanced Cardiovascular Systems, Inc. | Apparatuses and methods for heart valve repair |
US8460371B2 (en) | 2002-10-21 | 2013-06-11 | Mitralign, Inc. | Method and apparatus for performing catheter-based annuloplasty using local plications |
DE10249415B3 (en) | 2002-10-23 | 2004-03-25 | Siemens Ag | Motor vehicle has occupant medical support system with system controlling and/or interrogating data processor, arrangement for requesting person to carry out action and/or identification arrangement |
CA2502967A1 (en) | 2002-10-24 | 2004-05-06 | Boston Scientific Limited | Venous valve apparatus and method |
US20040097979A1 (en) | 2002-11-14 | 2004-05-20 | Oleg Svanidze | Aortic valve implantation device |
WO2004045378A2 (en) | 2002-11-15 | 2004-06-03 | The Government Of The United States Of America As Represented By The Secretary Of Health And Human Services | Method and device for catheter-based repair of cardiac valves |
US7485143B2 (en) | 2002-11-15 | 2009-02-03 | Abbott Cardiovascular Systems Inc. | Apparatuses and methods for heart valve repair |
US6945978B1 (en) | 2002-11-15 | 2005-09-20 | Advanced Cardiovascular Systems, Inc. | Heart valve catheter |
US20040133240A1 (en) | 2003-01-07 | 2004-07-08 | Cardiac Dimensions, Inc. | Electrotherapy system, device, and method for treatment of cardiac valve dysfunction |
US7381210B2 (en) | 2003-03-14 | 2008-06-03 | Edwards Lifesciences Corporation | Mitral valve repair system and method for use |
EP1608297A2 (en) | 2003-03-18 | 2005-12-28 | St. Jude Medical, Inc. | Body tissue remodeling apparatus |
US20040210240A1 (en) | 2003-04-21 | 2004-10-21 | Sean Saint | Method and repair device for treating mitral valve insufficiency |
US20040220593A1 (en) * | 2003-05-01 | 2004-11-04 | Secant Medical, Llc | Restraining clip for mitral valve repair |
US20040220657A1 (en) | 2003-05-02 | 2004-11-04 | Cardiac Dimensions, Inc., A Washington Corporation | Tissue shaping device with conformable anchors |
US20070255396A1 (en) | 2003-06-20 | 2007-11-01 | Medtronic Vascular, Inc. | Chrodae Tendinae Girdle |
EP1648346A4 (en) | 2003-06-20 | 2006-10-18 | Medtronic Vascular Inc | Valve annulus reduction system |
US20050004665A1 (en) * | 2003-07-02 | 2005-01-06 | Lishan Aklog | Annuloplasty rings and methods for repairing cardiac valves |
US8052751B2 (en) | 2003-07-02 | 2011-11-08 | Flexcor, Inc. | Annuloplasty rings for repairing cardiac valves |
WO2005018507A2 (en) | 2003-07-18 | 2005-03-03 | Ev3 Santa Rosa, Inc. | Remotely activated mitral annuloplasty system and methods |
US7160322B2 (en) | 2003-08-13 | 2007-01-09 | Shlomo Gabbay | Implantable cardiac prosthesis for mitigating prolapse of a heart valve |
US20060167474A1 (en) | 2003-09-15 | 2006-07-27 | Medtronic Vascular, Inc. | Apparatus and method for elongation of a papillary muscle |
WO2005027797A1 (en) | 2003-09-23 | 2005-03-31 | Ersin Erek | A mitral web apparatus for mitral valve insufficiencies |
WO2005069850A2 (en) | 2004-01-15 | 2005-08-04 | Macoviak John A | Trestle heart valve replacement |
US20050159810A1 (en) | 2004-01-15 | 2005-07-21 | Farzan Filsoufi | Devices and methods for repairing cardiac valves |
ITTO20040135A1 (en) * | 2004-03-03 | 2004-06-03 | Sorin Biomedica Cardio Spa | CARDIAC VALVE PROSTHESIS |
US7641686B2 (en) | 2004-04-23 | 2010-01-05 | Direct Flow Medical, Inc. | Percutaneous heart valve with stentless support |
JP4774048B2 (en) | 2004-05-14 | 2011-09-14 | エヴァルヴ インコーポレイテッド | Locking mechanism of fixing device engaged with tissue and tissue engaging method |
US7601117B2 (en) * | 2004-06-30 | 2009-10-13 | Ethicon, Inc. | Systems and methods for assisting cardiac valve coaptation |
US7556632B2 (en) * | 2004-07-09 | 2009-07-07 | Reza Zadno | Device and method for repairing tissue |
US7402134B2 (en) * | 2004-07-15 | 2008-07-22 | Micardia Corporation | Magnetic devices and methods for reshaping heart anatomy |
EP1796597B1 (en) | 2004-09-14 | 2013-01-09 | Edwards Lifesciences AG | Device for treatment of heart valve regurgitation |
US7651502B2 (en) | 2004-09-24 | 2010-01-26 | Jackson Roger P | Spinal fixation tool set and method for rod reduction and fastener insertion |
WO2006037073A2 (en) | 2004-09-27 | 2006-04-06 | Evalve, Inc. | Methods and devices for tissue grasping and assessment |
US8052592B2 (en) * | 2005-09-27 | 2011-11-08 | Evalve, Inc. | Methods and devices for tissue grasping and assessment |
US20060089711A1 (en) | 2004-10-27 | 2006-04-27 | Medtronic Vascular, Inc. | Multifilament anchor for reducing a compass of a lumen or structure in mammalian body |
EP3967269A3 (en) | 2005-02-07 | 2022-07-13 | Evalve, Inc. | Systems and devices for cardiac valve repair |
EP1865887A1 (en) | 2005-03-25 | 2007-12-19 | Ample Medical, Inc. | Device, systems, and methods for reshaping a heart valve annulus |
US20060241746A1 (en) | 2005-04-21 | 2006-10-26 | Emanuel Shaoulian | Magnetic implants and methods for reshaping tissue |
US7753934B2 (en) | 2005-04-22 | 2010-07-13 | Wilk Patent, Llc | Medical closure method and associated device |
WO2007078772A1 (en) | 2005-12-15 | 2007-07-12 | The Cleveland Clinic Foundation | Apparatus and method for treating a regurgitant valve |
EP2056750A2 (en) * | 2006-08-14 | 2009-05-13 | BUCH, Wally S. | Methods and apparatus for mitral valve repair |
US7533790B1 (en) | 2007-03-08 | 2009-05-19 | Cardica, Inc. | Surgical stapler |
US8949122B2 (en) | 2008-02-25 | 2015-02-03 | Nuance Communications, Inc. | Stored phrase reutilization when testing speech recognition |
US8457968B2 (en) | 2009-12-08 | 2013-06-04 | At&T Intellectual Property I, L.P. | System and method for efficient tracking of multiple dialog states with incremental recombination |
-
2003
- 2003-05-19 US US10/441,687 patent/US7226467B2/en not_active Expired - Lifetime
- 2003-05-19 US US10/441,531 patent/US7563267B2/en not_active Expired - Lifetime
- 2003-05-19 US US10/441,508 patent/US7666204B2/en not_active Expired - Fee Related
-
2004
- 2004-05-18 JP JP2006533201A patent/JP4611991B2/en not_active Expired - Lifetime
- 2004-05-18 WO PCT/US2004/015609 patent/WO2004103162A2/en active Application Filing
- 2004-05-18 EP EP19216292.3A patent/EP3643249A1/en not_active Withdrawn
- 2004-05-18 EP EP19216311.1A patent/EP3643250A1/en not_active Withdrawn
- 2004-05-18 EP EP04752603.3A patent/EP1624810B1/en not_active Expired - Lifetime
- 2004-05-18 EP EP17175101.9A patent/EP3248550A1/en not_active Withdrawn
- 2004-05-18 EP EP19216330.1A patent/EP3649963B1/en not_active Expired - Lifetime
-
2006
- 2006-11-13 US US11/559,247 patent/US20070100356A1/en not_active Abandoned
-
2007
- 2007-01-16 US US11/623,585 patent/US20070129737A1/en not_active Abandoned
- 2007-01-16 US US11/623,590 patent/US7736388B2/en not_active Expired - Lifetime
- 2007-10-30 US US11/928,298 patent/US8409273B2/en not_active Expired - Lifetime
- 2007-12-21 US US11/962,654 patent/US7655015B2/en not_active Expired - Lifetime
-
2009
- 2009-12-11 US US12/636,471 patent/US8500761B2/en not_active Expired - Lifetime
- 2009-12-18 US US12/642,630 patent/US8057493B2/en not_active Expired - Fee Related
-
2013
- 2013-05-22 US US13/899,901 patent/US8740920B2/en not_active Expired - Fee Related
-
2014
- 2014-04-23 US US14/259,826 patent/US9510829B2/en not_active Expired - Lifetime
-
2016
- 2016-10-26 US US15/334,992 patent/US20170042546A1/en not_active Abandoned
-
2017
- 2017-04-10 US US15/483,523 patent/US20170239048A1/en not_active Abandoned
-
2019
- 2019-02-14 US US16/276,357 patent/US20190175182A1/en not_active Abandoned
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4146019A (en) * | 1976-09-30 | 1979-03-27 | University Of Southern California | Multichannel endoscope |
US4756303A (en) * | 1985-09-30 | 1988-07-12 | Olympus Optical Co., Ltd. | Insertion section of an endoscope |
US6048351A (en) * | 1992-09-04 | 2000-04-11 | Scimed Life Systems, Inc. | Transvaginal suturing system |
US5913866A (en) * | 1997-06-19 | 1999-06-22 | Cardiothoracic Systems, Inc. | Devices and methods for harvesting vascular conduits |
US6165183A (en) * | 1998-07-15 | 2000-12-26 | St. Jude Medical, Inc. | Mitral and tricuspid valve repair |
US6978176B2 (en) * | 2001-12-08 | 2005-12-20 | Lattouf Omar M | Treatment for patient with congestive heart failure |
Cited By (281)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9510837B2 (en) | 1997-09-12 | 2016-12-06 | Evalve, Inc. | Surgical device for connecting soft tissue |
US8740918B2 (en) | 1997-09-12 | 2014-06-03 | Evalve, Inc. | Surgical device for connecting soft tissue |
US7981123B2 (en) * | 1997-09-12 | 2011-07-19 | Evalve, Inc. | Surgical device for connecting soft tissue |
US7998151B2 (en) | 1999-04-09 | 2011-08-16 | Evalve, Inc. | Leaflet suturing |
US9510829B2 (en) | 1999-04-09 | 2016-12-06 | Evalve, Inc. | Fixation devices, systems and methods for engaging tissue |
US8343174B2 (en) | 1999-04-09 | 2013-01-01 | Evalve, Inc. | Locking mechanisms for fixation devices and methods of engaging tissue |
US7811296B2 (en) | 1999-04-09 | 2010-10-12 | Evalve, Inc. | Fixation devices for variation in engagement of tissue |
US9044246B2 (en) | 1999-04-09 | 2015-06-02 | Abbott Vascular Inc. | Methods and devices for capturing and fixing leaflets in valve repair |
US8123703B2 (en) | 1999-04-09 | 2012-02-28 | Evalve, Inc. | Steerable access sheath and methods of use |
US8187299B2 (en) | 1999-04-09 | 2012-05-29 | Evalve, Inc. | Methods and apparatus for cardiac valve repair |
US8409273B2 (en) | 1999-04-09 | 2013-04-02 | Abbott Vascular Inc | Multi-catheter steerable guiding system and methods of use |
US8734505B2 (en) | 1999-04-09 | 2014-05-27 | Evalve, Inc. | Methods and apparatus for cardiac valve repair |
US8740920B2 (en) | 1999-04-09 | 2014-06-03 | Evalve, Inc. | Fixation devices, systems and methods for engaging tissue |
US8029518B2 (en) | 1999-04-09 | 2011-10-04 | Evalve, Inc. | Methods and devices for capturing and fixing leaflets in valve repair |
US8500761B2 (en) | 1999-04-09 | 2013-08-06 | Abbott Vascular | Fixation devices, systems and methods for engaging tissue |
US7736388B2 (en) | 1999-04-09 | 2010-06-15 | Evalve, Inc. | Fixation devices, systems and methods for engaging tissue |
US8057493B2 (en) | 1999-04-09 | 2011-11-15 | Evalve, Inc. | Fixation devices, systems and methods for engaging tissue |
US7753923B2 (en) | 1999-04-09 | 2010-07-13 | Evalve, Inc. | Leaflet suturing |
US8216256B2 (en) | 1999-04-09 | 2012-07-10 | Evalve, Inc. | Detachment mechanism for implantable fixation devices |
US10624618B2 (en) | 2001-06-27 | 2020-04-21 | Evalve, Inc. | Methods and devices for capturing and fixing leaflets in valve repair |
US10653427B2 (en) | 2001-06-27 | 2020-05-19 | Evalve, Inc. | Fixation devices, systems and methods for engaging tissue |
US7981139B2 (en) | 2002-03-01 | 2011-07-19 | Evalve, Inc | Suture anchors and methods of use |
US10667823B2 (en) | 2003-05-19 | 2020-06-02 | Evalve, Inc. | Fixation devices, systems and methods for engaging tissue |
US10646229B2 (en) | 2003-05-19 | 2020-05-12 | Evalve, Inc. | Fixation devices, systems and methods for engaging tissue |
US10828042B2 (en) | 2003-05-19 | 2020-11-10 | Evalve, Inc. | Fixation devices, systems and methods for engaging tissue |
US10631871B2 (en) | 2003-05-19 | 2020-04-28 | Evalve, Inc. | Fixation devices, systems and methods for engaging tissue |
US9867695B2 (en) | 2004-03-03 | 2018-01-16 | Sorin Group Italia S.R.L. | Minimally-invasive cardiac-valve prosthesis |
US11484331B2 (en) | 2004-09-27 | 2022-11-01 | Evalve, Inc. | Methods and devices for tissue grasping and assessment |
US11304715B2 (en) | 2004-09-27 | 2022-04-19 | Evalve, Inc. | Methods and devices for tissue grasping and assessment |
US8968338B2 (en) | 2005-01-21 | 2015-03-03 | Mayo Foundation For Medical Education And Research | Thorascopic heart valve repair method and apparatus |
US20100174297A1 (en) * | 2005-01-21 | 2010-07-08 | Giovanni Speziali | Thorascopic Heart Valve Repair Method and Apparatus |
US11534156B2 (en) | 2005-01-21 | 2022-12-27 | Mayo Foundation For Medical Education And Research | Thorascopic heart valve repair method and apparatus |
US10582924B2 (en) | 2005-01-21 | 2020-03-10 | Mayo Foundation For Medical Education And Research | Thorascopic heart valve repair method |
US9364213B2 (en) | 2005-01-21 | 2016-06-14 | Mayo Foundation For Medical Education And Research | Thorascopic heart valve repair method |
US9700300B2 (en) | 2005-01-21 | 2017-07-11 | Mayo Foundation For Medical Education And Research | Thorascopic heart valve repair apparatus |
US8465500B2 (en) | 2005-01-21 | 2013-06-18 | Mayo Foundation For Medical Education And Research | Thorascopic heart valve repair method and apparatus |
US9486313B2 (en) | 2005-02-10 | 2016-11-08 | Sorin Group Italia S.R.L. | Cardiac valve prosthesis |
US9895223B2 (en) | 2005-02-10 | 2018-02-20 | Sorin Group Italia S.R.L. | Cardiac valve prosthesis |
US8052592B2 (en) | 2005-09-27 | 2011-11-08 | Evalve, Inc. | Methods and devices for tissue grasping and assessment |
US8172839B2 (en) | 2006-02-24 | 2012-05-08 | Terumo Kabushiki Kaisha | PFO closing device |
US8574265B2 (en) | 2006-02-24 | 2013-11-05 | Terumo Kabushiki Kaisha | PFO closing device |
US8603139B2 (en) | 2006-02-24 | 2013-12-10 | Terumo Kabushiki Kaisha | PFO closing device |
US9044247B2 (en) | 2006-02-24 | 2015-06-02 | Terumo Kabushiki Kaisha | PFO closing device |
US8864809B2 (en) | 2006-08-09 | 2014-10-21 | Coherex Medical, Inc. | Systems and devices for reducing the size of an internal tissue opening |
US20100324595A1 (en) * | 2006-08-09 | 2010-12-23 | Coherex Medical, Inc. | Devices for reducing the size of an internal tissue opening |
US8979941B2 (en) | 2006-08-09 | 2015-03-17 | Coherex Medical, Inc. | Devices for reducing the size of an internal tissue opening |
US8840655B2 (en) | 2006-08-09 | 2014-09-23 | Coherex Medical, Inc. | Systems and devices for reducing the size of an internal tissue opening |
US9585644B2 (en) | 2006-08-09 | 2017-03-07 | Coherex Medical, Inc. | Devices for reducing the size of an internal tissue opening |
US20080039804A1 (en) * | 2006-08-09 | 2008-02-14 | Coherex Medical, Inc. | Systems and devices for reducing the size of an internal tissue opening |
US20080039922A1 (en) * | 2006-08-09 | 2008-02-14 | Coherex Medical, Inc. | Systems and devices for reducing the size of an internal tissue opening |
US8167894B2 (en) * | 2006-08-09 | 2012-05-01 | Coherex Medical, Inc. | Methods, systems and devices for reducing the size of an internal tissue opening |
US9138208B2 (en) | 2006-08-09 | 2015-09-22 | Coherex Medical, Inc. | Devices for reducing the size of an internal tissue opening |
US20080039743A1 (en) * | 2006-08-09 | 2008-02-14 | Coherex Medical, Inc. | Methods for determining characteristics of an internal tissue opening |
US20080119891A1 (en) * | 2006-08-09 | 2008-05-22 | Coherex Medical, Inc. | Methods, systems and devices for reducing the size of an internal tissue opening |
US9220487B2 (en) | 2006-08-09 | 2015-12-29 | Coherex Medical, Inc. | Devices for reducing the size of an internal tissue opening |
US8529597B2 (en) * | 2006-08-09 | 2013-09-10 | Coherex Medical, Inc. | Devices for reducing the size of an internal tissue opening |
US8388680B2 (en) | 2006-10-18 | 2013-03-05 | Guided Delivery Systems, Inc. | Methods and devices for catheter advancement and delivery of substances therethrough |
US20080262507A1 (en) * | 2006-12-19 | 2008-10-23 | Sorin Biomedica Cardio S.R.L. | Instrument and method for in situ deployment of cardiac valve prostheses |
US20080147180A1 (en) * | 2006-12-19 | 2008-06-19 | Sorin Biomedica Cardio S.R.L. | Device for in situ positioning of cardiac valve prostheses |
US9056008B2 (en) | 2006-12-19 | 2015-06-16 | Sorin Group Italia S.R.L. | Instrument and method for in situ development of cardiac valve prostheses |
US8470024B2 (en) | 2006-12-19 | 2013-06-25 | Sorin Group Italia S.R.L. | Device for in situ positioning of cardiac valve prosthesis |
US20080147182A1 (en) * | 2006-12-19 | 2008-06-19 | Sorin Biomedica Cardio S.R.L. | Instrument and method for in situ deployment of cardiac valve prostheses |
US8070799B2 (en) | 2006-12-19 | 2011-12-06 | Sorin Biomedica Cardio S.R.L. | Instrument and method for in situ deployment of cardiac valve prostheses |
US7993392B2 (en) | 2006-12-19 | 2011-08-09 | Sorin Biomedica Cardio S.R.L. | Instrument and method for in situ deployment of cardiac valve prostheses |
US8057539B2 (en) | 2006-12-19 | 2011-11-15 | Sorin Biomedica Cardio S.R.L. | System for in situ positioning of cardiac valve prostheses without occluding blood flow |
US9839378B2 (en) | 2007-02-06 | 2017-12-12 | Medtronic Minimed, Inc. | Optical systems and methods for ratiometric measurement of blood glucose concentration |
US8838195B2 (en) | 2007-02-06 | 2014-09-16 | Medtronic Minimed, Inc. | Optical systems and methods for ratiometric measurement of blood glucose concentration |
US20080262603A1 (en) * | 2007-04-23 | 2008-10-23 | Sorin Biomedica Cardio | Prosthetic heart valve holder |
US8738107B2 (en) | 2007-05-10 | 2014-05-27 | Medtronic Minimed, Inc. | Equilibrium non-consuming fluorescence sensor for real time intravascular glucose measurement |
US20090005776A1 (en) * | 2007-06-25 | 2009-01-01 | Terumo Kabushiki Kaisha | Medical device |
US8382752B2 (en) | 2007-06-25 | 2013-02-26 | Terumo Kabushiki Kaisha | Medical device |
US8006535B2 (en) | 2007-07-12 | 2011-08-30 | Sorin Biomedica Cardio S.R.L. | Expandable prosthetic valve crimping device |
US20090018570A1 (en) * | 2007-07-12 | 2009-01-15 | Sorin Biomedica Cardio S.R.L. | Expandable prosthetic valve crimping device |
US8640521B2 (en) | 2007-07-12 | 2014-02-04 | Sorin Group Italia S.R.L. | Expandable prosthetic valve crimping device |
US8920418B2 (en) | 2007-08-28 | 2014-12-30 | Terumo Kabushiki Kaisha | PFO closing device |
US8597294B2 (en) | 2007-08-28 | 2013-12-03 | Terumo Kabushiki Kaisha | Biological tissue closing device |
US20090069809A1 (en) * | 2007-08-28 | 2009-03-12 | Terumo Kabushiki Kaisha | Pfo closing device |
US20090069810A1 (en) * | 2007-08-28 | 2009-03-12 | Terumo Kabushiki Kaisha | Biological tissue closing device |
US20090076525A1 (en) * | 2007-08-28 | 2009-03-19 | Terumo Kabushiki Kaisha | Pfo closing device |
US8460287B2 (en) | 2007-08-28 | 2013-06-11 | Terumo Kabushiki Kaisha | PFO closing device |
US8182481B2 (en) | 2007-08-28 | 2012-05-22 | Terumo Kabushiki Kaisha | PFO closing device |
US8114154B2 (en) | 2007-09-07 | 2012-02-14 | Sorin Biomedica Cardio S.R.L. | Fluid-filled delivery system for in situ deployment of cardiac valve prostheses |
US8808367B2 (en) | 2007-09-07 | 2014-08-19 | Sorin Group Italia S.R.L. | Prosthetic valve delivery system including retrograde/antegrade approach |
US20090069886A1 (en) * | 2007-09-07 | 2009-03-12 | Sorin Biomedica Cardio S.R.L. | Prosthetic valve delivery system including retrograde/antegrade approach |
US8475521B2 (en) | 2007-09-07 | 2013-07-02 | Sorin Group Italia S.R.L. | Streamlined delivery system for in situ deployment of cardiac valve prostheses |
US8486137B2 (en) | 2007-09-07 | 2013-07-16 | Sorin Group Italia S.R.L. | Streamlined, apical delivery system for in situ deployment of cardiac valve prostheses |
US10966823B2 (en) | 2007-10-12 | 2021-04-06 | Sorin Group Italia S.R.L. | Expandable valve prosthesis with sealing mechanism |
US9848981B2 (en) | 2007-10-12 | 2017-12-26 | Mayo Foundation For Medical Education And Research | Expandable valve prosthesis with sealing mechanism |
US9192374B2 (en) | 2007-10-18 | 2015-11-24 | Neochord, Inc. | Minimally invasive repair of a valve leaflet in a beating heart |
US11419602B2 (en) | 2007-10-18 | 2022-08-23 | Neochord, Inc. | Minimally invasive repair of a valve leaflet in a beating heart |
US8758393B2 (en) | 2007-10-18 | 2014-06-24 | Neochord, Inc. | Minimally invasive repair of a valve leaflet in a beating heart |
US10507018B2 (en) | 2007-10-18 | 2019-12-17 | Neochord, Inc. | Minimally invasive repair of a valve leaflet in a beating heart |
US8535262B2 (en) | 2007-11-21 | 2013-09-17 | Glumetrics, Inc. | Use of an equilibrium intravascular sensor to achieve tight glycemic control |
US8979790B2 (en) | 2007-11-21 | 2015-03-17 | Medtronic Minimed, Inc. | Use of an equilibrium sensor to monitor glucose concentration |
US20090264719A1 (en) * | 2008-04-17 | 2009-10-22 | Glumetrics, Inc. | Sensor for percutaneous intravascular deployment without an indwelling cannula |
US8512245B2 (en) * | 2008-04-17 | 2013-08-20 | Glumetrics, Inc. | Sensor for percutaneous intravascular deployment without an indwelling cannula |
US20140058223A1 (en) * | 2008-04-17 | 2014-02-27 | Glumetrics, Inc. | Sensor for percutaneous intravascular deployment without an indwelling cannula |
US10363392B2 (en) | 2008-05-07 | 2019-07-30 | Ancora Heart, Inc. | Deflectable guide |
US10098733B2 (en) | 2008-12-23 | 2018-10-16 | Sorin Group Italia S.R.L. | Expandable prosthetic valve having anchoring appendages |
US11980722B2 (en) | 2009-01-20 | 2024-05-14 | Ancora Heart, Inc. | Diagnostic catheters, guide catheters, visualization devices and chord manipulation devices, and related kits and methods |
US9173646B2 (en) | 2009-01-20 | 2015-11-03 | Guided Delivery Systems Inc. | Diagnostic catheters, guide catheters, visualization devices and chord manipulation devices, and related kits and methods |
US11202883B2 (en) | 2009-01-20 | 2021-12-21 | Ancora Heart, Inc. | Diagnostic catheters, guide catheters, visualization devices and chord manipulation devices, and related kits and methods |
US10625046B2 (en) | 2009-01-20 | 2020-04-21 | Ancora Heart, Inc. | Diagnostic catheters, guide catheters, visualization devices and chord manipulation devices, and related kits and methods |
US10625047B2 (en) | 2009-01-20 | 2020-04-21 | Ancora Heart, Inc. | Anchor deployment devices and related methods |
US20100249661A1 (en) * | 2009-03-19 | 2010-09-30 | Sorin Biomedica Cardio S.r.I | Universal Valve Annulus Sizing Device |
US9918841B2 (en) | 2009-03-19 | 2018-03-20 | Sorin Group Italia S.R.L. | Universal valve annulus sizing device |
US8715207B2 (en) | 2009-03-19 | 2014-05-06 | Sorin Group Italia S.R.L. | Universal valve annulus sizing device |
US9149207B2 (en) | 2009-03-26 | 2015-10-06 | Sorin Group Usa, Inc. | Annuloplasty sizers for minimally invasive procedures |
US20100262043A1 (en) * | 2009-03-26 | 2010-10-14 | Sorin Group Usa, Inc. | Annuloplasty sizers for minimally invasive procedures |
US20100292784A1 (en) * | 2009-05-13 | 2010-11-18 | Sorin Biomedica Cardio S.r. I. | Device for the in situ delivery of heart valves |
US8403982B2 (en) | 2009-05-13 | 2013-03-26 | Sorin Group Italia S.R.L. | Device for the in situ delivery of heart valves |
US8353953B2 (en) | 2009-05-13 | 2013-01-15 | Sorin Biomedica Cardio, S.R.L. | Device for the in situ delivery of heart valves |
US9168105B2 (en) | 2009-05-13 | 2015-10-27 | Sorin Group Italia S.R.L. | Device for surgical interventions |
US20100292782A1 (en) * | 2009-05-13 | 2010-11-18 | Sorin Biomedica Cardio S.R.L. | Device for the in situ delivery of heart valves |
US8715589B2 (en) | 2009-09-30 | 2014-05-06 | Medtronic Minimed, Inc. | Sensors with thromboresistant coating |
US8467843B2 (en) | 2009-11-04 | 2013-06-18 | Glumetrics, Inc. | Optical sensor configuration for ratiometric correction of blood glucose measurement |
US8700115B2 (en) | 2009-11-04 | 2014-04-15 | Glumetrics, Inc. | Optical sensor configuration for ratiometric correction of glucose measurement |
US9248017B2 (en) | 2010-05-21 | 2016-02-02 | Sorin Group Italia S.R.L. | Support device for valve prostheses and corresponding kit |
US9044221B2 (en) | 2010-12-29 | 2015-06-02 | Neochord, Inc. | Exchangeable system for minimally invasive beating heart repair of heart valve leaflets |
US10080659B1 (en) | 2010-12-29 | 2018-09-25 | Neochord, Inc. | Devices and methods for minimally invasive repair of heart valves |
US10130474B2 (en) | 2010-12-29 | 2018-11-20 | Neochord, Inc. | Exchangeable system for minimally invasive beating heart repair of heart valve leaflets |
US9289289B2 (en) | 2011-02-14 | 2016-03-22 | Sorin Group Italia S.R.L. | Sutureless anchoring device for cardiac valve prostheses |
US9161836B2 (en) | 2011-02-14 | 2015-10-20 | Sorin Group Italia S.R.L. | Sutureless anchoring device for cardiac valve prostheses |
US10058313B2 (en) | 2011-05-24 | 2018-08-28 | Sorin Group Italia S.R.L. | Transapical valve replacement |
US11974920B2 (en) | 2011-06-01 | 2024-05-07 | Neochord, Inc. | Minimally invasive repair of heart valve leaflets |
US10695178B2 (en) | 2011-06-01 | 2020-06-30 | Neochord, Inc. | Minimally invasive repair of heart valve leaflets |
US9956078B2 (en) | 2011-06-29 | 2018-05-01 | Mitralix Ltd. | Heart valve repair devices and methods |
US11039924B2 (en) | 2011-06-29 | 2021-06-22 | Mitralix Ltd. | Heart valve repair devices and methods |
US9364326B2 (en) | 2011-06-29 | 2016-06-14 | Mitralix Ltd. | Heart valve repair devices and methods |
US12016561B2 (en) | 2011-09-13 | 2024-06-25 | Abbott Cardiovascular Systems Inc. | System for fixation of leaflets of a heart valve |
US10792039B2 (en) | 2011-09-13 | 2020-10-06 | Abbott Cardiovascular Systems Inc. | Gripper pusher mechanism for tissue apposition systems |
US10743876B2 (en) | 2011-09-13 | 2020-08-18 | Abbott Cardiovascular Systems Inc. | System for fixation of leaflets of a heart valve |
US10667804B2 (en) | 2014-03-17 | 2020-06-02 | Evalve, Inc. | Mitral valve fixation device removal devices and methods |
US10390943B2 (en) | 2014-03-17 | 2019-08-27 | Evalve, Inc. | Double orifice device for transcatheter mitral valve replacement |
US11666433B2 (en) | 2014-03-17 | 2023-06-06 | Evalve, Inc. | Double orifice device for transcatheter mitral valve replacement |
US10864079B2 (en) | 2014-06-26 | 2020-12-15 | Mitralix Ltd. | Heart valve repair devices for placement in ventricle and delivery systems for implanting heart valve repair devices |
US9700412B2 (en) | 2014-06-26 | 2017-07-11 | Mitralix Ltd. | Heart valve repair devices for placement in ventricle and delivery systems for implanting heart valve repair devices |
US10098738B2 (en) | 2014-06-26 | 2018-10-16 | Mitralix Ltd. | Heart valve repair devices for placement in ventricle and delivery systems for implanting heart valve repair devices |
US10660625B2 (en) | 2014-11-04 | 2020-05-26 | Abbott Cardiovascular Systems, Inc. | One-way actuator knob |
US10524792B2 (en) | 2014-12-04 | 2020-01-07 | Edwards Lifesciences Corporation | Percutaneous clip for repairing a heart valve |
US11006956B2 (en) | 2014-12-19 | 2021-05-18 | Abbott Cardiovascular Systems Inc. | Grasping for tissue repair |
US11109863B2 (en) | 2014-12-19 | 2021-09-07 | Abbott Cardiovascular Systems, Inc. | Grasping for tissue repair |
US11229435B2 (en) | 2014-12-19 | 2022-01-25 | Abbott Cardiovascular Systems Inc. | Grasping for tissue repair |
US10188392B2 (en) | 2014-12-19 | 2019-01-29 | Abbott Cardiovascular Systems, Inc. | Grasping for tissue repair |
EP3242609B1 (en) | 2015-01-05 | 2020-02-12 | Strait Access Technologies Holdings (PTY) LTD | Heart valve leaflet capture device |
EP3242609B2 (en) † | 2015-01-05 | 2023-08-09 | Strait Access Technologies Holdings (PTY) LTD | Heart valve leaflet capture device |
US12102316B2 (en) | 2015-03-05 | 2024-10-01 | Ancora Heart, Inc. | Devices and methods of visualizing and determining depth of penetration in cardiac tissue |
US10058321B2 (en) | 2015-03-05 | 2018-08-28 | Ancora Heart, Inc. | Devices and methods of visualizing and determining depth of penetration in cardiac tissue |
US10980529B2 (en) | 2015-03-05 | 2021-04-20 | Ancora Heart, Inc. | Devices and methods of visualizing and determining depth of penetration in cardiac tissue |
US10893941B2 (en) | 2015-04-02 | 2021-01-19 | Abbott Cardiovascular Systems, Inc. | Tissue fixation devices and methods |
US10524912B2 (en) | 2015-04-02 | 2020-01-07 | Abbott Cardiovascular Systems, Inc. | Tissue fixation devices and methods |
US10517726B2 (en) | 2015-05-14 | 2019-12-31 | Edwards Lifesciences Corporation | Heart valve sealing devices and delivery devices therefor |
US11793642B2 (en) | 2015-05-14 | 2023-10-24 | Edwards Lifesciences Corporation | Heart valve sealing devices and delivery devices therefor |
US12011353B2 (en) | 2015-05-14 | 2024-06-18 | Edwards Lifesciences Corporation | Heart valve sealing devices and delivery devices therefor |
US11590321B2 (en) | 2015-06-19 | 2023-02-28 | Evalve, Inc. | Catheter guiding system and methods |
US10376673B2 (en) | 2015-06-19 | 2019-08-13 | Evalve, Inc. | Catheter guiding system and methods |
US10238494B2 (en) | 2015-06-29 | 2019-03-26 | Evalve, Inc. | Self-aligning radiopaque ring |
US10856988B2 (en) | 2015-06-29 | 2020-12-08 | Evalve, Inc. | Self-aligning radiopaque ring |
US11096691B2 (en) | 2015-07-21 | 2021-08-24 | Evalve, Inc. | Tissue grasping devices and related methods |
US11759209B2 (en) | 2015-07-21 | 2023-09-19 | Evalve, Inc. | Tissue grasping devices and related methods |
US10667815B2 (en) | 2015-07-21 | 2020-06-02 | Evalve, Inc. | Tissue grasping devices and related methods |
US10413408B2 (en) | 2015-08-06 | 2019-09-17 | Evalve, Inc. | Delivery catheter systems, methods, and devices |
US11484409B2 (en) | 2015-10-01 | 2022-11-01 | Neochord, Inc. | Ringless web for repair of heart valves |
US10765517B2 (en) | 2015-10-01 | 2020-09-08 | Neochord, Inc. | Ringless web for repair of heart valves |
US11109972B2 (en) | 2015-10-09 | 2021-09-07 | Evalve, Inc. | Delivery catheter handle and methods of use |
US11931263B2 (en) | 2015-10-09 | 2024-03-19 | Evalve, Inc. | Delivery catheter handle and methods of use |
US10238495B2 (en) | 2015-10-09 | 2019-03-26 | Evalve, Inc. | Delivery catheter handle and methods of use |
US10736632B2 (en) | 2016-07-06 | 2020-08-11 | Evalve, Inc. | Methods and devices for valve clip excision |
US11504064B2 (en) * | 2016-07-28 | 2022-11-22 | Evalve, Inc. | Systems and methods for intra-procedural cardiac pressure monitoring |
US11071564B2 (en) | 2016-10-05 | 2021-07-27 | Evalve, Inc. | Cardiac valve cutting device |
US11653947B2 (en) | 2016-10-05 | 2023-05-23 | Evalve, Inc. | Cardiac valve cutting device |
US10363138B2 (en) | 2016-11-09 | 2019-07-30 | Evalve, Inc. | Devices for adjusting the curvature of cardiac valve structures |
US11166818B2 (en) | 2016-11-09 | 2021-11-09 | Evalve, Inc. | Devices for adjusting the curvature of cardiac valve structures |
US11116633B2 (en) | 2016-11-11 | 2021-09-14 | Evalve, Inc. | Opposing disk device for grasping cardiac valve tissue |
US10398553B2 (en) | 2016-11-11 | 2019-09-03 | Evalve, Inc. | Opposing disk device for grasping cardiac valve tissue |
US10426616B2 (en) | 2016-11-17 | 2019-10-01 | Evalve, Inc. | Cardiac implant delivery system |
US11957358B2 (en) | 2016-12-08 | 2024-04-16 | Evalve, Inc. | Adjustable arm device for grasping tissues |
US10779837B2 (en) | 2016-12-08 | 2020-09-22 | Evalve, Inc. | Adjustable arm device for grasping tissues |
US11406388B2 (en) | 2016-12-13 | 2022-08-09 | Evalve, Inc. | Rotatable device and method for fixing tricuspid valve tissue |
US10314586B2 (en) | 2016-12-13 | 2019-06-11 | Evalve, Inc. | Rotatable device and method for fixing tricuspid valve tissue |
US20210145582A1 (en) * | 2017-01-05 | 2021-05-20 | Edwards Lifesciences Corporation | Heart valve coaptation device |
US11969346B2 (en) * | 2017-01-05 | 2024-04-30 | Edwards Lifesciences Corporation | Heart valve coaptation device |
US11589989B2 (en) | 2017-03-31 | 2023-02-28 | Neochord, Inc. | Minimally invasive heart valve repair in a beating heart |
US10932908B2 (en) | 2017-04-18 | 2021-03-02 | Edwards Lifesciences Corporation | Heart valve sealing devices and delivery devices therefor |
US11058539B2 (en) | 2017-04-18 | 2021-07-13 | Edwards Lifesciences Corporation | Heart valve sealing devices and delivery devices therefor |
US10959848B2 (en) | 2017-04-18 | 2021-03-30 | Edwards Lifesciences Corporation | Heart valve sealing devices and delivery devices therefor |
US10842627B2 (en) | 2017-04-18 | 2020-11-24 | Edwards Lifesciences Corporation | Heart valve sealing devices and delivery devices therefor |
US10849754B2 (en) | 2017-04-18 | 2020-12-01 | Edwards Lifesciences Corporation | Heart valve sealing devices and delivery devices therefor |
US10869763B2 (en) | 2017-04-18 | 2020-12-22 | Edwards Lifesciences Corporation | Heart valve sealing devices and delivery devices therefor |
US10945843B2 (en) | 2017-04-18 | 2021-03-16 | Edwards Lifesciences Corporation | Heart valve sealing devices and delivery devices therefor |
US11602431B2 (en) | 2017-04-18 | 2023-03-14 | Edwards Lifesciences Corporation | Heart valve sealing devices and delivery devices therefor |
US10918482B2 (en) | 2017-04-18 | 2021-02-16 | Edwards Lifesciences Corporation | Heart valve sealing devices and delivery devices therefor |
US10524913B2 (en) | 2017-04-18 | 2020-01-07 | Edwards Lifesciences Corporation | Heart valve sealing devices and delivery devices therefor |
US10507108B2 (en) | 2017-04-18 | 2019-12-17 | Edwards Lifesciences Corporation | Heart valve sealing devices and delivery devices therefor |
US11000373B2 (en) | 2017-04-18 | 2021-05-11 | Edwards Lifesciences Corporation | Heart valve sealing devices and delivery devices therefor |
US10874514B2 (en) | 2017-04-18 | 2020-12-29 | Edwards Lifesciences Corporation | Heart valve sealing devices and delivery devices therefor |
US10888425B2 (en) | 2017-04-18 | 2021-01-12 | Edwards Lifesciences Corporation | Heart valve sealing devices and delivery devices therefor |
US10940005B2 (en) | 2017-04-18 | 2021-03-09 | Edwards Lifesciences Corporation | Heart valve sealing devices and delivery devices therefor |
US11013601B2 (en) | 2017-04-18 | 2021-05-25 | Edwards Lifesciences Corporation | Heart valve sealing devices and delivery devices therefor |
US10898327B2 (en) | 2017-04-18 | 2021-01-26 | Edwards Lifesciences Corporation | Heart valve sealing devices and delivery devices therefor |
US11020229B2 (en) | 2017-04-18 | 2021-06-01 | Edwards Lifesciences Corporation | Heart valve sealing devices and delivery devices therefor |
US10952853B2 (en) | 2017-04-18 | 2021-03-23 | Edwards Lifesciences Corporation | Heart valve sealing devices and delivery devices therefor |
US10905552B2 (en) | 2017-04-18 | 2021-02-02 | Edwards Lifesciences Corporation | Heart valve sealing devices and delivery devices therefor |
US10905553B2 (en) | 2017-04-18 | 2021-02-02 | Edwards Lifesciences Corporation | Heart valve sealing devices and delivery devices therefor |
US10925733B2 (en) | 2017-04-18 | 2021-02-23 | Edwards Lifesciences Corporation | Heart valve sealing devices and delivery devices therefor |
US10667912B2 (en) | 2017-04-18 | 2020-06-02 | Edwards Lifesciences Corporation | Heart valve sealing devices and delivery devices therefor |
US10925734B2 (en) | 2017-04-18 | 2021-02-23 | Edwards Lifesciences Corporation | Heart valve sealing devices and delivery devices therefor |
US10925732B2 (en) | 2017-04-18 | 2021-02-23 | Edwards Lifesciences Corporation | Heart valve sealing devices and delivery devices therefor |
US11224511B2 (en) | 2017-04-18 | 2022-01-18 | Edwards Lifesciences Corporation | Heart valve sealing devices and delivery devices therefor |
US11096784B2 (en) | 2017-04-18 | 2021-08-24 | Edwards Lifesciences Corporation | Heart valve sealing devices and delivery devices therefor |
US11179240B2 (en) | 2017-04-18 | 2021-11-23 | Edwards Lifesciences Corporation | Heart valve sealing devices and delivery devices therefor |
US10959846B2 (en) | 2017-05-10 | 2021-03-30 | Edwards Lifesciences Corporation | Mitral valve spacer device |
US11065119B2 (en) | 2017-05-12 | 2021-07-20 | Evalve, Inc. | Long arm valve repair clip |
US11051940B2 (en) | 2017-09-07 | 2021-07-06 | Edwards Lifesciences Corporation | Prosthetic spacer device for heart valve |
US12083013B2 (en) | 2017-10-07 | 2024-09-10 | Corcym S.R.L. | Bendable cardiac surgery instruments |
US10918483B2 (en) | 2018-01-09 | 2021-02-16 | Edwards Lifesciences Corporation | Native valve repair devices and procedures |
US10123873B1 (en) | 2018-01-09 | 2018-11-13 | Edwards Lifesciences Corporation | Native valve repair devices and procedures |
US10959847B2 (en) | 2018-01-09 | 2021-03-30 | Edwards Lifesciences Corporation | Native valve repair devices and procedures |
US10925735B2 (en) | 2018-01-09 | 2021-02-23 | Edwards Lifesciences Corporation | Native valve repair devices and procedures |
US10238493B1 (en) * | 2018-01-09 | 2019-03-26 | Edwards Lifesciences Corporation | Native valve repair devices and procedures |
US20200337842A1 (en) * | 2018-01-09 | 2020-10-29 | Edwards Lifesciences Corporation | Native valve repair devices and procedures |
US10111751B1 (en) | 2018-01-09 | 2018-10-30 | Edwards Lifesciences Corporation | Native valve repair devices and procedures |
US10105222B1 (en) | 2018-01-09 | 2018-10-23 | Edwards Lifesciences Corporation | Native valve repair devices and procedures |
US10231837B1 (en) | 2018-01-09 | 2019-03-19 | Edwards Lifesciences Corporation | Native valve repair devices and procedures |
US10973639B2 (en) | 2018-01-09 | 2021-04-13 | Edwards Lifesciences Corporation | Native valve repair devices and procedures |
US10076415B1 (en) | 2018-01-09 | 2018-09-18 | Edwards Lifesciences Corporation | Native valve repair devices and procedures |
US11259927B2 (en) | 2018-01-09 | 2022-03-01 | Edwards Lifesciences Corporation | Native valve repair devices and procedures |
US10813760B2 (en) | 2018-01-09 | 2020-10-27 | Edwards Lifesciences Corporation | Native valve repair devices and procedures |
US10245144B1 (en) | 2018-01-09 | 2019-04-02 | Edwards Lifesciences Corporation | Native valve repair devices and procedures |
US11298228B2 (en) | 2018-01-09 | 2022-04-12 | Edwards Lifesciences Corporation | Native valve repair devices and procedures |
US10159570B1 (en) | 2018-01-09 | 2018-12-25 | Edwards Lifesciences Corporation | Native valve repair devices and procedures |
US11918469B2 (en) | 2018-01-09 | 2024-03-05 | Edwards Lifesciences Corporation | Native valve repair devices and procedures |
US11850154B2 (en) | 2018-01-09 | 2023-12-26 | Edwards Lifesciences Corporation | Native valve repair devices and procedures |
US11547564B2 (en) * | 2018-01-09 | 2023-01-10 | Edwards Lifesciences Corporation | Native valve repair devices and procedures |
US11039925B2 (en) * | 2018-01-09 | 2021-06-22 | Edwards Lifesciences Corporation | Native valve repair devices and procedures |
US10136993B1 (en) | 2018-01-09 | 2018-11-27 | Edwards Lifesciences Corporation | Native valve repair devices and procedures |
US10130475B1 (en) | 2018-01-09 | 2018-11-20 | Edwards Lifesciences Corporation | Native valve repair devices and procedures |
US10595997B2 (en) | 2018-01-09 | 2020-03-24 | Edwards Lifesciences Corporation | Native valve repair devices and procedures |
US10507109B2 (en) | 2018-01-09 | 2019-12-17 | Edwards Lifesciences Corporation | Native valve repair devices and procedures |
US11013598B2 (en) | 2018-01-09 | 2021-05-25 | Edwards Lifesciences Corporation | Native valve repair devices and procedures |
US11026791B2 (en) | 2018-03-20 | 2021-06-08 | Medtronic Vascular, Inc. | Flexible canopy valve repair systems and methods of use |
US11285003B2 (en) | 2018-03-20 | 2022-03-29 | Medtronic Vascular, Inc. | Prolapse prevention device and methods of use thereof |
US11931261B2 (en) | 2018-03-20 | 2024-03-19 | Medtronic Vascular, Inc. | Prolapse prevention device and methods of use thereof |
US11701228B2 (en) | 2018-03-20 | 2023-07-18 | Medtronic Vascular, Inc. | Flexible canopy valve repair systems and methods of use |
US11612389B2 (en) | 2018-03-23 | 2023-03-28 | Neochord, Inc. | Device for suture attachment for minimally invasive heart valve repair |
US10588620B2 (en) | 2018-03-23 | 2020-03-17 | Neochord, Inc. | Device for suture attachment for minimally invasive heart valve repair |
US11389297B2 (en) | 2018-04-12 | 2022-07-19 | Edwards Lifesciences Corporation | Mitral valve spacer device |
US11207181B2 (en) | 2018-04-18 | 2021-12-28 | Edwards Lifesciences Corporation | Heart valve sealing devices and delivery devices therefor |
US11253360B2 (en) | 2018-05-09 | 2022-02-22 | Neochord, Inc. | Low profile tissue anchor for minimally invasive heart valve repair |
US11957584B2 (en) | 2018-05-09 | 2024-04-16 | Neochord, Inc. | Suture length adjustment for minimally invasive heart valve repair |
US11173030B2 (en) | 2018-05-09 | 2021-11-16 | Neochord, Inc. | Suture length adjustment for minimally invasive heart valve repair |
US11819406B2 (en) | 2018-05-23 | 2023-11-21 | Corcym S.R.L. | Loading system for an implantable prosthesis and related loading method |
US11992397B2 (en) | 2018-05-23 | 2024-05-28 | Corcym S.R.L. | Holder for heart valve prosthesis, a storage arrangement for a heart valve prosthesis, and a crimping kit and method |
US11969341B2 (en) | 2018-05-23 | 2024-04-30 | Corcym S.R.L. | Cardiac valve prosthesis |
US11504231B2 (en) | 2018-05-23 | 2022-11-22 | Corcym S.R.L. | Cardiac valve prosthesis |
US10966709B2 (en) | 2018-09-07 | 2021-04-06 | Neochord, Inc. | Device for suture attachment for minimally invasive heart valve repair |
US10993809B2 (en) | 2018-10-10 | 2021-05-04 | Edwards Lifesciences Corporation | Heart valve sealing devices and delivery devices therefor |
US10987221B2 (en) | 2018-10-10 | 2021-04-27 | Edwards Lifesciences Corporation | Heart valve sealing devices and delivery devices therefor |
US11344415B2 (en) | 2018-10-10 | 2022-05-31 | Edwards Lifesciences Corporation | Heart valve sealing devices and delivery devices therefor |
US11766330B2 (en) | 2018-10-10 | 2023-09-26 | Edwards Lifesciences Corporation | Valve repair devices for repairing a native valve of a patient |
US11083582B2 (en) | 2018-10-10 | 2021-08-10 | Edwards Lifesciences Corporation | Heart valve sealing devices and delivery devices therefor |
US11278409B2 (en) | 2018-10-10 | 2022-03-22 | Edwards Lifesciences Corporation | Heart valve sealing devices and delivery devices therefor |
US11234823B2 (en) | 2018-10-10 | 2022-02-01 | Edwards Lifesciences Corporation | Heart valve sealing devices and delivery devices therefor |
US10945844B2 (en) | 2018-10-10 | 2021-03-16 | Edwards Lifesciences Corporation | Heart valve sealing devices and delivery devices therefor |
US11202710B2 (en) | 2018-10-10 | 2021-12-21 | Edwards Lifesciences Corporation | Heart valve sealing devices and delivery devices therefor |
US11147672B2 (en) | 2018-10-10 | 2021-10-19 | Edwards Lifesciences Corporation | Heart valve sealing devices and delivery devices therefor |
US11000375B2 (en) | 2018-10-10 | 2021-05-11 | Edwards Lifesciences Corporation | Heart valve sealing devices and delivery devices therefor |
US11129717B2 (en) | 2018-10-10 | 2021-09-28 | Edwards Lifesciences Corporation | Heart valve sealing devices and delivery devices therefor |
US12102531B2 (en) | 2018-10-22 | 2024-10-01 | Evalve, Inc. | Tissue cutting systems, devices and methods |
US11918468B2 (en) | 2019-04-16 | 2024-03-05 | Neochord, Inc. | Transverse helical cardiac anchor for minimally invasive heart valve repair |
US11376126B2 (en) | 2019-04-16 | 2022-07-05 | Neochord, Inc. | Transverse helical cardiac anchor for minimally invasive heart valve repair |
US12048624B2 (en) | 2019-07-15 | 2024-07-30 | Evalve, Inc. | Independent proximal element actuation methods |
US11672524B2 (en) | 2019-07-15 | 2023-06-13 | Ancora Heart, Inc. | Devices and methods for tether cutting |
US12048448B2 (en) | 2020-05-06 | 2024-07-30 | Evalve, Inc. | Leaflet grasping and cutting device |
US11969347B2 (en) | 2020-05-13 | 2024-04-30 | Evalve, Inc. | Methods, systems, and devices for deploying an implant |
US11931251B2 (en) | 2020-08-24 | 2024-03-19 | Edwards Lifesciences Corporation | Methods and systems for aligning a commissure of a prosthetic heart valve with a commissure of a native valve |
US11918459B2 (en) | 2020-08-24 | 2024-03-05 | Edwards Lifesciences Corporation | Commissure marker for a prosthetic heart valve |
US11806231B2 (en) | 2020-08-24 | 2023-11-07 | Edwards Lifesciences Corporation | Commissure marker for a prosthetic heart valve |
US11944559B2 (en) | 2020-08-31 | 2024-04-02 | Edwards Lifesciences Corporation | Systems and methods for crimping and device preparation |
US12121672B2 (en) | 2020-10-23 | 2024-10-22 | Edwards Lifesciences Corporation | Advanced sheath patterns |
US12121231B2 (en) | 2022-04-18 | 2024-10-22 | Evalve, Inc. | Methods and devices for tissue grasping and assessment |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10828042B2 (en) | Fixation devices, systems and methods for engaging tissue | |
US20190175182A1 (en) | Fixation devices, systems and methods for engaging tissue | |
US8216256B2 (en) | Detachment mechanism for implantable fixation devices |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ABBOTT VASCULAR INC., CALIFORNIA Free format text: SECURITY AGREEMENT;ASSIGNOR:EVALVE, INC.;REEL/FRAME:023245/0637 Effective date: 20090909 Owner name: ABBOTT VASCULAR INC.,CALIFORNIA Free format text: SECURITY AGREEMENT;ASSIGNOR:EVALVE, INC.;REEL/FRAME:023245/0637 Effective date: 20090909 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |