US20070015238A1 - Production of pseudotyped recombinant AAV virions - Google Patents

Production of pseudotyped recombinant AAV virions Download PDF

Info

Publication number
US20070015238A1
US20070015238A1 US10/456,423 US45642303A US2007015238A1 US 20070015238 A1 US20070015238 A1 US 20070015238A1 US 45642303 A US45642303 A US 45642303A US 2007015238 A1 US2007015238 A1 US 2007015238A1
Authority
US
United States
Prior art keywords
nucleic acid
aav
cell
protein
acid molecule
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/456,423
Other languages
English (en)
Inventor
Richard Snyder
Sergie Zolotukhin
Yoshihisa Sakai
Barry Byrne
Mark Potter
Irine Zolotukhin
Scott Loiler
Vince Chiodo
Nicholas Muzyczka
William Hauswirth
Terence Flotte
Corinna Burger
Edgardo Rodriguez
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US10/456,423 priority Critical patent/US20070015238A1/en
Priority to US10/798,192 priority patent/US7094604B2/en
Publication of US20070015238A1 publication Critical patent/US20070015238A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/10011Adenoviridae
    • C12N2710/10311Mastadenovirus, e.g. human or simian adenoviruses
    • C12N2710/10322New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2750/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
    • C12N2750/00011Details
    • C12N2750/14011Parvoviridae
    • C12N2750/14111Dependovirus, e.g. adenoassociated viruses
    • C12N2750/14141Use of virus, viral particle or viral elements as a vector
    • C12N2750/14143Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2840/00Vectors comprising a special translation-regulating system
    • C12N2840/20Vectors comprising a special translation-regulating system translation of more than one cistron

Definitions

  • the invention relates to the fields of molecular biology, gene therapy, microbiology and virology. More particularly, the invention relates to compositions and methods for producing and purifying recombinant Adeno-Associated Virus (rAAV) virions.
  • rAAV Adeno-Associated Virus
  • AAV a non-pathogenic, helper-dependent virus
  • Adenovirus (Ad) or Herpesvirus a suitable helper virus
  • the host and tissue tropism of AAV is determined by the ability of its capsid to bind to specific cellular receptors and/or co-receptors. Due to the broad host and tissue range, however, delivery of conventional AAV preferentially to a particular tissue of interest has been problematic.
  • serotype 2 AAV has been the most extensively studied and characterized. Accordingly, serotype 2 rAAV vectors (i.e., nucleic acid constructs) and virions (i.e., encapsidated vectors) have been proposed as the vector of choice for gene transfer protocols. Animal experiments, however, have shown that dramatic differences exist in the transduction efficiency and cell specificity of rAAV virions of different serotypes (Chao et al., Mol. Ther. 2:619-623, 2000; Davidson et al., PNAS 97:3428-3432, 2000; and Rabinowitz et al., J. Virol.
  • non-serotype 2 AAV virions were able to transduce certain tissues more efficiently and specifically than serotype 2 virions. Accordingly, an AAV virion including a well-characterized serotype 2 genome and a non-serotype 2 capsid would be useful for certain tissue-specific gene transfer applications. Methods that facilitate preparing such pseudotyped AAV virions would also be useful. Current methods involve the use of multiple vectors to provide the replication, packaging, and helper functions that are required for the formation of recombinant virions. These methods are inefficient and inadequate for large-scale production of pseudotyped recombinant virions.
  • the invention relates to the development of reagents and methods for producing purified AAV2 vectors pseudotyped with a non-serotype 2 AAV capsid.
  • AAV helper vectors were constructed for pseudotyping AAV serotype 2 DNA with capsids from AAV serotypes 1 and 5. These helper vectors encode AAV gene products necessary for AAV virion production (i.e., Rep and Cap proteins), as well as transcription products having Ad helper function.
  • a helper vector encoding a serotype 2 Rep protein and a serotype 1 Cap protein was used.
  • helper vector useful for pseudotyping AAV serotype 2 DNA with an AAV5 capsid encodes a serotype 2 Rep protein and a serotype 5 Cap protein.
  • methods were developed that result in highly purified and concentrated virion stocks. These methods involve applying a virus-containing sample to an iodixanol gradient centrifugation step followed by a chromatography step.
  • the helper vectors and purification methods described herein provide for efficient, large-scale production of pseudotyped virions without the need for multiple helper vectors.
  • the resultant pseudotyped virions can be used in numerous gene therapy applications.
  • the invention features a nucleic acid molecule including a first nucleotide sequence encoding an AAV Rep protein of a first serotype, a second nucleotide sequence encoding an AAV Cap protein of a second serotype, the second serotype being different from the first serotype, and a third nucleotide sequence encoding a transcription product having at least one Adenoviral helper function.
  • the nucleic acid molecule can be within a vector.
  • the AAV Rep protein can be an AAV serotype 2 protein.
  • the AAV serotype 2 Rep protein can be a Rep52 protein and/or a Rep78 protein. Both Rep52 and Rep78 proteins can be encoded by the first nucleotide sequence.
  • the AAV Cap protein can be an AAV serotype 1 protein and/or an AAV serotype 5 Cap protein.
  • the second nucleotide sequence encoding an AAV Cap protein can encode an AAV protein such as VP1, VP2, or VP3.
  • the second nucleotide sequence can encode all three AAV Cap proteins VP1, VP2, and VP3.
  • the transcription product having at least one Adenoviral helper function can be Adenovirus DNA binding protein, Adenovirus E4 protein, as well as Adenovirus virus associated RNA molecule.
  • the nucleic acid can be operably linked to at least one expression control sequence.
  • the first nucleotide sequence encoding an AAV Rep protein of a first serotype can be operably linked to a promoter. Examples of promoters include AAV p5 and AAV p19 promoters.
  • the second nucleotide sequence encoding an AAV Cap protein of a second serotype can also be operably linked to a promoter, such as an AAV p40 promoter.
  • the third nucleotide sequence encoding a transcription product having at least one Adenoviral helper function can further be operably linked to a promoter.
  • the nucleic acid molecule can further include a selectable marker such as a selectable marker that confers antibiotic resistance to a cell.
  • the invention features a cell including a nucleic acid molecule that includes a first nucleotide sequence encoding an AAV Rep protein of a first serotype, a second nucleotide sequence encoding an AAV Cap protein of a second serotype, the second serotype being different from the first serotype, and a third nucleotide sequence encoding a transcription product having at least one Adenoviral helper function.
  • the cell can be a mammalian cell.
  • the cell can further include a second nucleic acid that includes a polynucleotide (to be expressed) interposed between a first AAV inverted terminal repeat and a second AAV inverted terminal repeat.
  • the second nucleic acid can be within a vector.
  • the first and second AAV inverted terminal repeats can be AAV serotype 2 inverted terminal repeats.
  • the polynucleotide can encode a protein or a selectable marker such as green fluorescent protein.
  • the invention features a method of producing rAAV virions.
  • the method includes the steps of placing a cell having: 1) a nucleic acid molecule that includes a first nucleotide sequence encoding an AAV Rep protein of a first serotype, a second nucleotide sequence encoding an AAV Cap protein of a second serotype, the second serotype being different from the first serotype, and a third nucleotide sequence encoding a transcription product having at least one Adenoviral helper function and 2) a nucleic acid having a polynucleotide to be expressed interposed between a first AAV inverted terminal repeat and a second AAV inverted terminal repeat under conditions in which the first nucleic acid molecule is expressed, the second nucleic acid molecule is replicated, and rAAV virions are produced, and isolating the rAAV virions produced from the cell.
  • the cell can be a mammalian cell.
  • the step of placing the cell under conditions in which the first nucleic acid molecule is expressed and the second nucleic acid molecule is replicated includes placing the cell into a culture medium.
  • the step of isolating the rAAV virions produced from the cell includes separating the cell from the medium, lysing the cell to yield a cell lysate, and then isolating the rAAV virions from the cell lysate.
  • This step can also include subjecting the produced rAAV virions to an iodixanol step gradient and can further include subjecting the produced rAAV virions to ion exchange chromatography.
  • the produced rAAV virions can contain at least one AAV serotype 1 capsid protein or at least one AAV serotype 5 capsid protein.
  • gene is meant a nucleic acid molecule that codes for a particular protein, or in certain cases a functional or structural RNA molecule.
  • nucleic acid means a chain of two or more nucleotides such as RNA (ribonucleic acid) and DNA (deoxyribonucleic acid).
  • protein or “polypeptide” are used synonymously to mean any peptide-linked chain of amino acids, regardless of length or post-translational modification, e.g., glycosylation or phosphorylation.
  • nucleic acid molecule or polypeptide when referring to a nucleic acid molecule or polypeptide, the term “native” refers to a naturally-occurring (e.g., a wild-type; “WT”) nucleic acid or polypeptide.
  • WT wild-type
  • Rep protein is meant a polypeptide having at least one functional activity of a native AAV Rep protein (e.g., Rep 40, 52, 68, 78).
  • Cap protein is meant a polypeptide having at least one functional activity of a native AAV Cap protein (e.g., VP1, VP2, VP3).
  • a “functional activity” of a protein is any activity associated with the physiological function of the protein.
  • functional activities of Rep proteins include facilitating replication of DNA through recognition, binding and nicking of the AAV origin of DNA replication as well as DNA helicase activity.
  • Cap proteins include the ability to induce formation of a capsid, facilitate accumulation of single-stranded DNA, facilitate AAV DNA packaging into capsids (i.e., encapsidation), bind to cellular receptors, and facilitate entry of the virion into host cells.
  • vector refers to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked.
  • vectors capable of directing the expression of genes to which they are operatively linked are referred to herein as “expression vectors.”
  • a first nucleic acid sequence is “operably” linked with a second nucleic acid sequence when the first nucleic acid sequence is placed in a functional relationship with the second nucleic acid sequence.
  • a promoter is operably linked to a coding sequence if the promoter affects the transcription or expression of the coding sequence.
  • operably linked nucleic acid sequences are contiguous and, where necessary to join two protein coding regions, in reading frame.
  • expression control sequence refers to a nucleic acid that regulates the replication, transcription and translation of a coding sequence in a recipient cell.
  • expression control sequences include promoter sequences, polyadenylation (pA) signals, introns, transcription termination sequences, enhancers, upstream regulatory domains, origins of replication, and internal ribosome entry sites (“IRES”).
  • promoter is used herein to refer to a DNA regulatory sequence to which RNA polymerase binds, initiating transcription of a downstream (3′ direction) coding sequence.
  • proliferative typed a nucleic acid or genome derived from a first AAV serotype that is encapsidated or packaged by an AAV capsid containing at least one AAV Cap protein of a second serotype (i.e., one different from the first AAV serotype).
  • AAV inverted terminal repeats By “AAV inverted terminal repeats”, “AAV terminal repeats”, “ITRs”, and “TRs” are meant those sequences required in cis for replication and packaging of the AAV virion including any fragments or derivatives of an ITR which retain activity of a full-length or WT ITR.
  • rAAV vector and “recombinant AAV vector” refer to a recombinant nucleic acid derived from an AAV serotype, including without limitation, AAV1, AAV2, AAV3, AAV4, AAV5, AAV6, AAV7, etc.
  • rAAV vectors can have one or more of the AAV WT genes deleted in whole or in part, preferably the rep and/or cap genes, but retain functional flanking ITR sequences.
  • a “recombinant AAV virion” or “rAAV virion” is defined herein as an infectious, replication-defective virus composed of an AAV protein shell encapsulating a heterologous nucleotide sequence that is flanked on both sides by AAV ITRs.
  • rAAV1 a rAAV virion having at least one AAV serotype 1 capsid protein.
  • rAAV5 a rAAV virion having at least one AAV serotype 5 capsid protein.
  • FIG. 1 is two plasmid maps (top:pXYZ1, bottom: pXYZ5).
  • FIG. 2 is a schematic illustration of purification schemes for rAAV1, 2, and 5 virions.
  • FIGS. 3A and B are chromatograms of rAAV virions purified by anion exchange and hydroxyapatite chromatography.
  • FIGS. 4A , B, and C are gels characterizing rAAV virion stocks.
  • A Silver-stained sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) gel of rAAV1, 2, and 5 virion stocks (10 ul per lane). The titers of rAAV stocks are shown below each lane.
  • B Western blot analysis of rAAV1 and 2 virion stocks (10 ul per lane).
  • C Profile of anion exchange chromatography of an AAV5 virus (10 ul of each fraction per lane). Load is the iodixanol gradient purified material that was applied to the column; FT is the flow through, 1-5 are fractions eluted from the column. Monoclonal antibody B1 was used to detect AAV capsid proteins in Panels B and C.
  • FIGS. 5A and B are infectious center and dot blot assays.
  • the invention provides methods and compositions for producing pseudotyped AAV virions.
  • purified pseudotyped rAAV virions were produced in large quantities by introducing into host cells both (1) a first nucleic acid construct that contains AAV ITRs of a first AAV serotype, and encodes an exogenous nucleic acid (i.e., polynucleotide to be expressed in a cell infected with the virions produced); and (2) a second nucleic acid construct that encodes Ad transcription products having Ad helper function, Rep proteins of the first serotype, and Cap proteins of a second serotype.
  • the exogenous nucleic acid is located between two AAV ITRs that are the minimal cis-acting AAV sequences that direct replication and packaging of an AAV genome as well as an rAAV vector.
  • the second nucleic acid construct has sequences that encode (1) at least one AAV Cap protein of a first serotype, (2) at least one AAV Rep protein of a second serotype (i.e., serotype of the rAAV vector to be encapsidated), and (3) at least one transcription product having Ad helper function.
  • the first and second nucleic acids are introduced into host cells, which are then cultured under appropriate conditions to allow the host cells to replicate.
  • the portion of the first nucleic acid construct containing the two AAV ITRs and exogenous nucleic acid i.e., rAAV vector
  • the second nucleic acid construct is expressed, resulting in the production of transcription products having Ad helper function as well as Rep and Cap proteins.
  • Ad proteins such as E2A and E4, as well as Ad VA RNA provide helper functions that facilitate a productive AAV infection.
  • Rep proteins are essential for rAAV vector replication, while the Cap (e.g., VP1, VP2, VP3) proteins are structural proteins that are required for formation of the virion capsid.
  • the replicated rAAV vectors of a first serotype e.g., serotype 2
  • infectious rAAV virions i.e., an infectious virus particle containing an rAAV vector
  • cap proteins of a second serotype e.g., serotypes 1, 5
  • the first nucleic acid construct described above includes an exogenous nucleic acid and also contains other sequences that facilitates expression of the exogenous nucleic acid in a host cell.
  • An exogenous nucleic acid is a nucleic acid that is not native to AAV.
  • the exogenous nucleic acid is inserted into the construct in such a way that the nucleic acid is expressed.
  • the nucleic acid is placed within a construct (e.g., vector) at a particular location such that: (1) it is between two functional AAV ITRs of a particular serotype, (2) it is operatively linked with a promoter and (3) it is placed 5′ to a pA tail.
  • the exogenous nucleic acid can be any nucleic acid that is desired to be included in the rAAV to be produced so long as it does not exceed the number of nucleotides that can be encapsulated within a rAAV virion (i.e., approximately 5 kilobases).
  • Typical examples of such nucleic acids include those that encode a protein or an RNA. Proteins might, for example, be those that exert a therapeutic effect on a diseased cell (e.g., a human or non-human cell).
  • Genes that can be delivered by rAAV to exert a therapeutic effect include alpha-one antitrypsin, clotting factor IX, clotting factor VIII, clotting factor VII, dystrophin, ⁇ -, ⁇ -, ⁇ -, ⁇ -sarcoglycans, tyrosine hydroxylase, aromatic acid decarboxylase, GTP cyclohydrolasel, erythropoietin, aspartoacylase (ASPA), Nerve growth factor (NGF), lysosomal beta-glucuronidase (GUSB), insulin, alpha-synuclein, basic fibroblast growth factor (FGF-2), IGF1, alpha-galactosidase A (alpha-gal A), neurotrophin-3, Neuroglobin (Ngb), angoigenic proteins (vascular endothelial growth factor (VEGF165)), anti-angiogenic proteins, and any cytokines, including interferons (IFN- ⁇ , IFN- ⁇ , IFN
  • the second nucleic acid construct encodes transcription products having Ad helper function and AAV proteins that facilitate pseudotyping of an rAAV vector.
  • Such a nucleic acid construct encodes: 1) at least one AAV Cap protein of a first serotype, 2) at least one AAV Rep protein of a second serotype (i.e., serotype of the rAAV vector to be encapsidated), and 3) at least one transcription product having Ad helper function.
  • a nucleic acid encoding a Rep and/or Cap protein and transcription product having Ad helper function is inserted into the second nucleic acid construct in such a way that the nucleic acid is expressed.
  • the nucleic acid is placed within a construct (e.g., vector) at a particular location such that: (1) it is operatively linked with a promoter and (2) it is placed 5′ to a pA tail.
  • a nucleic acid encoding a Cap protein is any nucleic acid that encodes at least one functional Cap protein or functional derivative thereof.
  • the AAV cap gene encodes three capsid proteins: VP1, VP2 and VP3, and any one or combination of these three proteins may be expressed by a nucleic acid of the invention.
  • a nucleic acid encoding a Rep protein is any nucleic acid that encodes at least one functional Rep protein or functional derivative thereof. Any one or combination of the four AAV Rep proteins Rep40, Rep52, Rep68, and Rep78, may be expressed by a nucleic acid of the invention.
  • the rep and cap genes used in methods of the invention can be mutant or non-naturally occurring versions of AAV rep and cap genes.
  • nucleic acids encoding Rep and Cap proteins useful in the invention may be hybrid sequences containing portions of rep and cap genes from different serotypes.
  • rep and cap genes used in compositions and methods of the invention may include engineered as well as naturally-occurring rep and cap mutants.
  • a preferred rep gene according to the invention is a serotype 2 rep gene, while a preferred cap gene is a serotype 1 or 5 cap gene.
  • a nucleic acid encoding a transcription product having Ad helper function is any nucleic acid that encodes at least one protein or RNA molecule having Ad helper function.
  • Ad gene products that are known to provide Ad helper function include E1a, E1b, E2a, E4 (e.g., E4 orf6) and VA RNA.
  • Such nucleic acids can be mutant or non-naturally occurring versions of Ad nucleotide sequences. Mutants include those that are engineered as well as those that are naturally-occurring.
  • vectors for pseudotyping rAAV virions are constructed by combining the ORF coding for AAV Rep proteins of a first serotype and the ORF coding for capsid proteins of serotypes different from the first ( FIG. 1 ).
  • AAV helper plasmid such as pACG2R1C is constructed by substituting the AAV1 cap ORF for AAV2 cap ORF in pACG2 (Li et al., J. Virol. 71:5236-5243, 1997).
  • helper plasmid such as pACG2R5C
  • Rep2cap 1 and rep2cap5 helper sequences resulting from these constucts can be subcloned into an Ad helper plasmid, pXYZ, constructed from pAdEasy (Stratagene).
  • Ad helper plasmid pXYZ
  • several Ad genes penton, core protein, hexon, and Ad DNA polymerase
  • the left hand end of the Ad genome is removed to eliminate the possibility of generating infectious Ad and Ad structural proteins (some of which are cytotoxic).
  • the resultant plasmids pXYZ1 (26,256 bp) and pXYZ5 (26,147 bp) encode the AAV proteins and Ad transcription products required to pseudotype AAV2-ITR-containing nucleic acids into AAV1 and AAV5 capsids.
  • Both plasmids contain the Ad VA, E2A and E4 genes under the transcriptional control of their native promoters.
  • Both plasmid backbones also encode for ampicillin resistance.
  • rAAV vectors pseudotyped with AAV1 and AAV5 capsids can be generated using plasmids pACG2R1C and pACG2R5C, respectively, with plasmids pXX6 and pXYZ. See Xiao et al., J. Virol. 72:2224-2232, 1998.
  • the AAV and Ad transcription products can be expressed by more than one vector.
  • cells can be cotransfected with a first vector expressing the AAV genes and a second vector expressing transcription products.
  • the AAV proteins and Ad transcription products can be expressed by three different vectors. In this method, cells are transfected with the three vectors expressing the AAV proteins and Ad transcription products. In some applications, cells can be transfected with more than one vector expressing the AAV and Ad genes and a rAAV vector.
  • the exogenous nucleic acid and the nucleic acids encoding Rep, Cap and transcription products having Ad helper function are operably linked to one or more expression control sequences that facilitate gene expression in host cells.
  • operably linked nucleic acid sequences are contiguous and, where necessary to join two protein coding regions, in reading frame.
  • expression control sequences include promoters, insulators, response elements, introns, IRESs, silencers, enhancers, introns, initiation sites, termination signals, and pA tails.
  • any expression control sequence that facilitates gene expression in the host cell may be used.
  • control elements can include control sequences normally associated with the selected exogenous nucleic acid or nucleic acids encoding Rep and Cap. Alternatively, heterologous control sequences can be employed.
  • any of a number of promoters suitable for use in the selected host cell may be employed.
  • constitutive promoters of different strengths can be used to express the different AAV proteins.
  • Inducible promoters may also be used in compositions and methods of the invention.
  • the AAV p5 and p19 promoters are preferred.
  • Other promoters for use in the invention include both non-viral and viral promoters.
  • Non-viral promoters that may be used include ⁇ -actin and Factor IX promoters.
  • viral promoters examples include cytomegalovirus immediate early promoter (CMV), simian virus 40 (SV40) late promoter, Mouse Mammary Tumor Virus (MMTV) promoter (Grimm et al., Hum. Gene Ther. 9:2745-2760, 1998) and Ad E1A promoter.
  • CMV cytomegalovirus immediate early promoter
  • SV40 simian virus 40
  • MMTV Mouse Mammary Tumor Virus
  • vectors of the invention contain a selectable marker gene used to identify cells that contain the vector.
  • Suitable selectable marker genes for use in the invention include genes encoding enzymes that produce antibiotic resistance (e.g., those conferring resistance to ampicillin, penicillin, kanamycin, hygromycin, G418, or streptomycin), as well as those that encode enzymes that result in a colorimetric or fluorescent signal (e.g., green fluorescent protein, ⁇ -galactosidase).
  • the invention provides a cell containing a nucleic acid molecule having a nucleotide sequence encoding an AAV Rep protein of a first serotype, a nucleotide sequence encoding an AAV Cap protein of a second serotype, and a nucleotide sequence encoding a transcription product having at least one Ad helper function.
  • a cell according to the invention is any cell in which the nucleotide sequences can be expressed resulting in expression products (e.g., polypeptides, RNA molecules).
  • Cells of the invention may be non-mammalian cells (e.g., microorganisms, yeast cells, insect cells) or mammalian cells (e.g., human cells).
  • a cell according to the invention can further contain a second nucleic acid molecule containing a polynucleotide to be expressed interposed between two AAV ITRs.
  • both nucleic acid molecules are present within a vector (e.g., plasmid).
  • Preferred cells are those in which pseudotyped virions are formed based on the presence of the two nucleic acid molecules. Examples of useful cells for expressing nucleotide sequences resulting in the formation of pseudotyped rAAV virions include 293 (Graham et al., J. Gen. Virol. 36:59-72, 1977), HeLa (Bantel-Schaal et al., J. Virol. 73:939-947, 1984), and KB (Srivastava, A. Intervirology 27:138-147, 1987) cells.
  • the invention encompasses nucleotide sequences encoding transcription products (e.g., polypeptides, RNA) having at least one Ad helper function.
  • AAV is a helper-dependent virus, and as such, it requires co-infection with a helper virus such as Ad or cotransfection of helper virus DNA for a productive infection. See Ward and Berns, J. Virol., 70:4495, 1996.
  • Nucleotide sequences encoding transcription products having Ad helper function utilized in the present invention may be derived from any of a number of Ad serotypes that facilitate AAV infection. For example, sequences derived from Ad serotype 5 (Ad5) can be used.
  • nucleotide sequences encoding transcription products having Ad helper function reside in plasmids pXYZ1 and pXYZ5 for the generation of pseudotyped rAAV virions.
  • rAAV vectors and virions useful in the invention include those derived from a number of AAV serotypes, including 1, 2, 3, 4, 5, 6, and 7. Because of wide construct availability and extensive characterization, preferred rAAV vectors for use in the invention are those derived from serotype 2 (or mutants thereof). In methods of encapsidating rAAV2 vector contructs, use of serotype 2 Rep proteins is preferred. Because of tissue tropisms and purification methods described herein, preferred AAV Cap proteins are those derived from serotypes 1 and 5. Construction and use of AAV vectors and AAV proteins of different serotypes are discussed in Chao et al., Mol. Ther.
  • the invention also relates to the production of pseudotyped rAAV virions that have mutations within the virion capsid.
  • suitable AAV mutants may have ligand insertion mutations for the facilitation of targeting AAV to specific cell types.
  • the construction and characterization of AAV capsid mutants including insertion mutants, alanine screening mutants, and epitope tag mutants is described in Wu et al., (J. Virol. 74:8635-45, 2000).
  • Other rAAV virions that can be generated in methods of the invention include those capsid hybrids that are generated by molecular breeding of viruses as well as by exon shuffling. See Soong et al., Nat. Genet. 25:436-439, 2000; and Kolman and Stemmer Nat. Biotechnol. 19:423-428, 2001.
  • the nucleic acid molecules of the invention are useful in methods of producing pseudotyped rAAV virions.
  • Placing the cell in in vitro conditions includes placing the cell into a culture medium (e.g., DMEM supplemented with fetal bovine serum and antibiotics) in a humidified incubator (e.g., 5% CO 2 ) at a suitable temperature (e.g., 37°).
  • a culture medium e.g., DMEM supplemented with fetal bovine serum and antibiotics
  • a humidified incubator e.g., 5% CO 2
  • a suitable temperature e.g. 37°
  • the rAAV virions are subjected to a density gradient separation step, such as an iodixanol step gradient.
  • the virions can be further isolated (e.g., purified) by subjecting the virions to an additional purification step such as an ion exchange (e.g., anion exchange) chromatography step.
  • an ion exchange e.g., anion exchange
  • a cell used in the method is a mammalian cell (e.g., 293 cells).
  • the rAAV virions produced contain at least one AAV serotype 1 capsid protein.
  • the rAAV virions produced contain at least one AAV serotype 5 capsid protein.
  • the nucleic acids are introduced into the cells.
  • a number of known transfection techniques may be used. See, e.g., Graham et al., (Virology 52:456, 1973), Sambrook et al., supra, Chu et al., (Gene 13:197, 1981).
  • Particularly suitable transfection methods include calcium phosphate co-precipitation (Graham et al., Virol. 52:456-467, 1973), direct micro-injection into cultured cells (Capecchi, M. R.
  • the invention provides methods for purifying pseudotyped rAAV virions.
  • Methods of the invention involve applying a virus-containing sample to one or more purification steps, including density gradient separation and chromatography.
  • An example of a method for purifying rAAV virions includes several steps. First, a plurality of cells infected with rAAV virions is provided. From these infected cells, rAAV virions are collected. These virions are then subjected to a density gradient separation step such as one using an iodixanol gradient.
  • a typical iodixanol step gradient contains a 15% iodixanol step, a 25% iodixanol step, a 40% iodixanol step, and a 60% iodixanol step.
  • the iodixanol step can further include 1M NaCl.
  • the virion-containing iodixanol step is centrifuged, and the resultant virion-containing sample is collected from the iodixanol gradient step. This sample is then subjected to a chromatography step, such as an ion exchange or hydroxyapatite chromatography step.
  • Purification methods of the invention are particularly useful for purifying virions having capsids containing proteins from AAV serotypes 1 and 5 because these serotypes do not bind to heparin columns.
  • purification protocols are employed that use iodixanol density gradient centrifugation followed by anion exchange or hydroxyapatite chromatography.
  • Iodixanol is an iodinated density gradient media originally produced as an X-ray contrast compound for injection into humans.
  • iodixanol solutions can be made iso-osmotic at all densities. This property makes iodixanol an ideal media for analysis and downstream purification steps.
  • iodixanol has the capacity to separate free capsid proteins and empty capsids from vector genome-containing (full) capsids.
  • iodixanol is preferred in the invention, other suitable density gradient media might be substituted.
  • rAAV vectors are purified by column chromatography. Any chromatography method that allows purification of rAAV virions may be used.
  • ion exchange chromatography can be used. Ion exchange chromatography is a method that relies on charge interactions between the protein of interest and the ion exchange matrix, which is generally composed of resins, such as agarose, dextran, and cross-linked cellulose and agarose, that are covalently bound to a charged group. Charged groups are classified according to type (cationic and anionic) and strength (strong or weak).
  • Ion exchange chromatographic techniques generally take place in several steps: equilibration of the column to pH and ionic conditions ideal for target protein binding, reversible adsorption of the sample to the column through counterion displacement, introduction of elution conditions that change the buffer's pH or ionic strength in order to displace bound proteins, and elution of substances from the column in order of binding strength (weakly-bound proteins are eluted first).
  • Ion exchange chromatography is directly upgradable from a small-scale to a bulk-scale level.
  • Anionic exchange chromatography is a type of ionic exchange chromatography in which a negatively charged resin will bind proteins with a net positive charge.
  • anion-exchange resins examples include HiTrapQ by Pharmacia; MonoQ, MonoS, MiniQ, Source 15Q, 30Q, Q Sepharose, DEAE, and Q Sepharose High Performance by Amersham Biosciences (Piscataway, N.J.); WP PEI, WP DEAM, and WP QUAT by J. T. Baker (St.
  • Hydroxyapatite chromatography is another example of a suitable chromatography technique. Hydroxyapatite is a crystalline form of calcium phosphate. The mechanism of hydroxyapatite chromatography involves nonspecific interactions between negatively charged protein carboxyl groups and positively charged calcium ions on the resin, and positively charged protein amino groups and negatively charged phosphate ions on the resin.
  • hydroxyapatite resins examples include Bio-Gel HT and CHT ceramic resins by Bio-Rad (Hercules, Calif.); hydroxylapatite high resolution and hydroxylapatite fast flow by Calbiochem (San Diego, Calif.); HA Ultrogel by Ciphergen (Fremont, Calif.); and hydroxyapatite by Sigma-Aldrich (St. Louis, Mo.).
  • rAAV5 virions were purified using hydroxyapatite chromatography ( FIG. 3B ).
  • a preferred hydroxyapatite resin is ceramic hydroxyapatite by Bio-Rad, Hercules, Calif., as this is a stable, porous form of hydroxyapatite with an improved calcium:phoshpate ration, which overcomes low binding capacity due to excess phoshpate.
  • heparin-agarose chromatography is preferred ( FIG. 3A ). See, e.g, U.S. Pat. No. 6,146,874.
  • a combination of iodixanol step gradient followed by either affinity heparin (for purifying rAAV2), hydroxyapatite, or anion exchange chromatography (for purifying AAV1, 2 and 5) is used to facilitate the high-throughput of several viruses for direct comparison of transduction efficiency and specificity in animal models and cell culture. Scaled-up production of the viruses in tissue culture is facilitated by the use of cell factories, e.g., plastic trays with large culture surface areas (Nunc, Rochester, N.Y.). More importantly, purification of rAAV1, 2 and 5 virions on Q-Sepharose allows the comparison of virions purified using the same method.
  • the cell-factory based protocol results in virion stocks with titers of 1 ⁇ 10 12 ⁇ 1 ⁇ 10 13 vg/ml purified from 1 ⁇ 10 9 cells.
  • These chromatographic methods have the added benefit that they can be readily scaled up to purify virus from 1 ⁇ 10 10 cells.
  • the final yield of rAAV is approximately 1 ⁇ 5 ⁇ 10 11 IU or approximately 1 ⁇ 10 12 ⁇ 1 ⁇ 10 13 vector genomes, with P:I ratios that average 20 and rarely exceed 100.
  • Virions are also purified using chromatography in the absence of density gradient centrifugation.
  • lysates from infected cells can be directly subjected to chromatography for purification of rAAV virions.
  • chromatography For large-scale production methods of rAAV vectors involving chromatography, see Potter et al. (Methods Enzymol. 346:413-430, 2002).
  • AAV helper plasmids were constructed by combining the ORF coding for the AAV2 Rep proteins and the ORF coding for capsid proteins of serotypes 1 and 5.
  • the pACG2R1C helper plasmid was constructed by substituting the AAV1 cap ORF for AAV2 cap ORF in pACG2 (Li et al., J. Virol. 71:5236-5243, 1997) and a similar approach was applied to the pACG2R5C plasmid.
  • Rep2cap1 and rep2cap5 helper cassettes were then subcloned into an Ad helper plasmid, pXYZ, constructed from pAdEasy.
  • pXYZ To construct pXYZ, several Ad genes (penton, core protein, hexon, and Ad DNA polymerase) were disrupted and the left hand end of the Ad genome was removed to eliminate the possibility of generating infectious Ad and Ad structural proteins (some of which are cytotoxic).
  • the resultant plasmids pXYZ1 and pXYZ5 FIG. 1 ) were used to pseudotype AAV2-ITR-containing expression cassettes into AAV1 and AAV5 capsids, respectively.
  • Plasmid pAdEasy-1 (Stratagene, La Jolla, Calif.) was digested with SgfI and PmeI, the SgfI 3′-overhang was removed by treatment with T4 DNA-polymerase, and blunt ends were ligated to produce pAdEasyDel1. Upon digestion with ClaI and SalI, the 18.9 Kbp fragment was subcloned into pBlueScriptKS(-) to derive the pXYZ Ad helper plasmid.
  • pACG2R1C and pACG2R5C pseudotyping plasmids wtAAV1 DNA (Genbank Accession no. NC — 002077) and pAAV5-2 (Chiorini et al., J. Virol. 73:1309-1319, 1999) were used to amplify the ORFs coding for the capsid proteins of AAV1 and AAV5, respectively.
  • AAV1 cap ORF primers 5′GAGCAATAAATGATTTAAACCAGGTATG3′ (SEQ ID NO:1) and 5′GCTCTAGACCCGATGACGTAAGTCTTTTATCG3′ (SEQ ID NO:2) were used, and for the AAV5 cap ORF primers, 5′ GCCAATAAAGAACAGTAAATAATTTAAATAGTCATGTCTTTTGTTGATCACC3′ (SEQ ID NO:3) and 5′ GGTGATCAACAAAAGACATGACTATTTAAATTATTTACTGTTCTTTATTGGC3′ (SEQ ID NO:4) were used.
  • the hybrid plasmids pACG2R1C and pACG2R5C contain the ORF coding for the AAV2 Rep proteins, and the ORF coding for either AAV1 or AAV5 capsid proteins, respectively.
  • helper plasmids encode the AAV and Ad genes required to pseudotype AAV2 ITR-containing nucleic acids into AAV1 or AAV5 capsids.
  • rAAV vector constructs were assembled using the pTR-UF backbone (Klein et al., Exp. Neurol. 150:183-194, 1998; and Zolotukhin et al., J. Virol. 70:4646-4654, 1996), thereby containing ITRs from AAV2.
  • the mixture was incubated for 1 min at room temperature, at which time the formation of precipitate was stopped by diluting the mixture into 1100 ml of pre-warmed DMEM-complete.
  • the conditioned culture media was removed from the cells and the fresh precipitate-containing media was added immediately.
  • Cells were incubated at 37° C., 5% CO 2 for 60 hrs and the CaPO 4 precipitate was allowed to remain on the cells during this incubation period. At the end of the incubation the culture media was discarded, cells were washed with PBS, and harvested using PBS containing 5 mM EDTA.
  • the collected cells were centrifuged at 1000 ⁇ g for 10 minutes, resuspended in 60 ml Lysis Solution (150 mM NaCl, 50 mM Tris pH 8.4), combined, and stored at ⁇ 20° C. until purified.
  • Cells were lysed by 3 freeze/thaw cycles between dry ice-ethanol and 37° C. water baths. Other methods for lysing cells might also be used, e.g., microfluidization. Benzonase (Sigma, St. Louis, Mo.) was then added to the cell lysate (50 U/ml final concentration) and incubated for 30 min at 37° C. The crude lysate was clarified by centrifugation at 4000 ⁇ g for 20 minutes and the virus-containing supernatant was divided between four iodixanol gradients.
  • Benzonase Sigma, St. Louis, Mo.
  • Discontinuous iodixanol step gradients were formed in quick seal tubes (25 ⁇ 89 mm, Beckman, Fullerton, Calif.) by underlaying and displacing the less dense cell lysate (15 ml) with iodixanol prepared using a 60% (w/v) sterile solution of OptiPrep (Nycomed, Roskilde, Denmark) and PBS-MK buffer (1 ⁇ PBS containing 1 nM MgCl 2 and 2.5 mM KCl). Therefore, each gradient consisted of (from the bottom): 5 ml 60%, 5 ml 40%, 6 ml 25%, and 9 ml of 15% iodixanol; the 15% density step also contained 1 M NaCl.
  • Tubes were sealed and centrifuged in a Type 70 Ti rotor at 69,000 rpm (350,000 ⁇ g) for 1 hr at 18° C. Approximately 5 ml of the 60%-40% step interface was aspirated after side-puncturing each tube with a syringe equipped with an 18-gauge needle. The iodixanol band from each of the four gradients was combined; this could be frozen until column chromatography was performed.
  • the iodixanol gradient fraction was further purified and concentrated by column chromatography.
  • AAV2 virions a 3 ml heparin agarose Type I column (Sigma, St. Louis, Mo.) was equilibrated with 10 ml of PBS-MK buffer, then 10 ml of PBS-MK/1M NaCl, followed by 20 ml of PBS-MK buffer.
  • the virus-containing iodixanol fraction (20 ml) was loaded onto the column by gravity flow. The column was washed with 20 ml of PBS-MK buffer and eluted in 15 ml of PBS-MK/1M NaCl.
  • the AAV2 virions were purified using a 1 ml or 5 ml HiTrap Heparin column (Pharmacia) on an ATKA FPLC system (Pharmacia) run at 1 column volume per minute.
  • the virus was then concentrated and desalted in a Biomax 100K concentrator (Millipore, Bedford, Mass.) by three cycles of centrifugation. In each cycle the virus was concentrated to 1 ml following the addition of 10 ml of Lactated Ringer's or 1 ⁇ PBS. The virus was stored at ⁇ 80° in Lactated Ringer's or 1 ⁇ PBS.
  • a 5 ml HiTrap Q column (Pharmacia) was equilibrated at 5 ml/min with 5 column volumes (25 ml) of Buffer A (20 mM Tris, 15 mM NaCl, pH 8.5), then by 25 ml Buffer B (20 mM Tris, 500 mM NaCl, pH 8.5), followed by 25 ml of Buffer A using a Pharmacia ATKA FPLC system.
  • the 20 ml virus-containing iodixanol fraction was diluted 1:1 with Buffer A and applied to the column at a flow rate of 3-5 ml/min. After loading the sample, the column was washed with 10 column volumes (50 ml) of Buffer A. The virus was eluted with Buffer B and 2 ml fractions were collected.
  • rAAV5 virions For rAAV5 virions, a buffer exchange and concentration of the vector-containing iodixanol fraction was performed using a Millipore (Bedford, Mass.) BioMax 50 filter device and 50 mM Tris pH 7.5.
  • a Bio-scale Q5 (5 ml bed volume) CHT type I hydroxyapatite column (BioRad, Hercules, Calif.) was equilibrated with 5 ml Buffer C (20 mM potassium phosphate pH 7.5), then 7 ml Buffer D (500 mM Potassium phosphate pH 7.5), followed by 7 ml Buffer C at 1 ml/min using a BioRad (Hercules, Calif.) Biologic Duoflow system.
  • Virus was loaded onto the column at 1 ml/min and the column was washed with 7 ml Buffer C, and eluted with a 25 ml linear gradient of 0-100% Buffer D followed by 7 ml 100% Buffer D. The virus eluted with 0.2M K-phosphate.
  • Assays for infectious rAAV Stocks were assayed for infectious rAAV by the infectious center assay (ICA). In this assay, 96-well plates seeded with 2 ⁇ 10 4 C12 cells were infected 16 hours after seeding with 10-fold dilutions of rAAV and superinfected with WT Ad5 at a multiplicity of infection (MOI) of 10. Cells that had been infected by rAAV were then complemented for DNA replication and amplification of the rAAV genomes.
  • MOI multiplicity of infection
  • Cells were harvested and suspended in 5 ml of 1 ⁇ PBS, vacuum filtered onto nylon membranes (0.45 ⁇ m), and lysed with 0.5N NaOH/1.5M NaCl (this step also denatured and immobilized the DNA to the membrane) followed by neutralization with 1M Tris-HCl pH 7.0/2 ⁇ SSC (20 ⁇ SSC is 3M NaCl and 0.3M NaCitrate pH 7.0).
  • the immobilized DNA was probed for transgene DNA (i.e., exogenous DNA) and only those cells that had been productively infected with rAAV produced a spot.
  • the assay was accurate in the range of 10-200 spots (or infectious centers) per filter ( FIG. 5A ).
  • SCFA single cell fluorescence assay
  • Dot blot assay to determine the titer of rAAV physical particles and the particle to infectivity ratio.
  • the dot blot assay was used to determine the titer of rAAV virions that contained vector genomes ( FIG. 5B ).
  • Plasmid and unpackaged vector DNA was digested for 1 hour at 37° C. in a final volume of 200 ul containing SU of DNaseI (Roche, Basel, Switzerland), 10 mM Tris-HCl, pH 7.5, and 1 mM MgCl 2 .
  • Encapsidated rAAV vector genomes were liberated by adding an equal volume of 2 ⁇ proteinase K buffer (20 m M Tris-Cl, pH 8.0, 20 mM EDTA, pH 8.0, 1% SDS) followed by the addition of proteinase K (100 ug), and incubated at 37° C. for 1 hour.
  • the liberated vector DNA was phenol extracted and ethanol precipitated.
  • Precipitated DNA was dissolved in 40 ul of dH 2 O and diluted into 400 ul 0.4N NaOH/10 mM EDTA immediately prior to immobilization.
  • a two-fold dilution series of the plasmid DNA that was packaged was prepared in water and diluted into 400 ul 0.4N NaOH/10 mM EDTA immediately prior to immobilization.
  • Denatured vector DNA was immobilized onto a nylon membrane along with the plasmid standard curve using a dot blot apparatus (BioRad, Hercules, Calif.). The blots were probed for the transgene and exposed to film or Phosphorimager screen (Molecular Dynamics, Piscataway, N.J.).
  • the vector DNA signal was compared to the signal generated from the plasmid DNA standard curve, and extrapolated to determine a vector genome titer. A comparison of the vector genome titer to the ICA titer produced the P:I ratio.
  • AAV1 and AAV5 both lack significant binding to the heparin affinity resin used to purify rAAV2 virions
  • purification protocols were developed that use density gradient centrifugation followed by anion exchange or hydroxyapatite chromatography.
  • rAAV virions were purified by column chromatography. Three column resins were used: heparin-agarose, Q-sepharose, and hydroxyapatite.
  • AAV2 virions bound heparin-agarose ( FIGS. 6A and B), AAV5 virions bound hydroxyapatite, and AAV1, 2, and 5 virions bound Q-Sepaharose ( FIGS. 3A and 4 ).
  • rAAV2 virions eluted from heparin with 0.35M NaCl and rAAV5 virions eluted from hydroxyapatite with 0.2 M phosphate.
  • AAV1, 2, and 5 eluted from Q-Sepharose in 0.5 M NaCl.
  • virions produced were 99% pure with the three capsid proteins at the proper ratio of ⁇ 1:1:20 for VP1:VP2:VP3.
  • a combination of iodixanol step gradient followed by either affinity Heparin (for purifying rAAV2), hydroxyapatite (for purifying AAV5), or anion exchange chromatography (for purifying AAV1, 2 and 5) was used to facilitate the high throughput of several viruses for direct comparison of transduction efficiency and specificity in animal models and cell culture.
  • the infectious titer of rAAV was determined by measuring the ability of the virus to infect C12 cells expressing AAV2 rep and cap ORFs, unpackage, and replicate ( FIG. 5A ).
  • rep-cap expressing C12 cells were infected with serial dilutions of rAAV.
  • To score the infecting viral particle it was amplified through viral DNA replication, whereupon the number of viral genomes reached several thousand per cell. This amplification was achieved by co-infecting the cell with a saturating amount of Ad5 to initiate rep and cap gene expression required for AAV DNA replication.
  • the cells were then incubated for 40 hours, harvested, and transferred onto a nylon membrane and lysed.
  • the immobilized viral DNA was hybridized with a transgene-specific probe and the cells infected with rAAV particles were scored as black dots following autoradiography ( FIG. 5A ).
  • WT AAV may contaminate vector preparations, and rcAAV may be formed during the production of rAAV due to recombination between the rAAV genome and the AAV helper plasmid. Since expression of the AAV rep gene has been shown to affect transduction frequency (McLaughlin et al., J. Virol. 62:1963-1973, 1988; and Samulski et al., J. Virol. 63:3822-3828, 1989) and gene expression (Horer et al., J. Virol. 69:5485-5496, 1995; and Labow et al., J. Virol.
  • the dot blot assay was used to determine the titer of rAAV virions harboring vector genomes ( FIG. 5B ). This assay allowed direct comparisons of the potency of the different serotype virions administered to the same cell type.
  • the dot blot assay was performed on the same rAAV2-GFP stock as that of Example 2. The calculated vg titer was 8.2 ⁇ 10 12 vg/ml.
  • rAAV1-GFP and rAAV5-GFP virions purified by Q-sepharose chromatography and rAAV2 virions purified by heparin chromatography were used to transduce rat oval cells in culture ( FIG. 6 ).
  • the rAAV5-GFP transduced rat oval cells more efficiently than either rAAV2-GFP or rAAV1-GFP virions. Transduction of oval cells with rAAV vectors provides a therapeutic approach for treating liver disease or systemic protein deficiencies.
  • Glycogen storage disease type II mice (Raben et al., J. Biol. Chem. 273:19086-19092, 1998), which lack the lysosomal hyrolase acid ⁇ -glucosidase, were injected intramuscularly under 2,2,2-tribromoethanol (Avertin) anesthesia. Mice were administered 4 ⁇ 10 10 vector genomes of rAAV1-CMV-mGaa, expressing the murine Gaa cDNA.
  • Rat oval cells were isolated from male Fischer 344 rats (Petersen et al., Science 284:1168-1170, 1999; and Petersen et al., Hepatology 27:1030-1038, 1998). Briefly, a 2-acetylaminofluorene (2-AAF) tablet was inserted subcutaneously into the lower quadrant to suppress the hepatocyte proliferation. After 5-7 days a partial hepatectamy was performed to induce a severe hepatic injury. Seven days later the liver was perfused with a collagenase H solution. The oval cells were immediately sorted by fluorescence activated cell sorting (FACS) using a FITC-conjugated anti-rat Thy 1.1 antibody.
  • FACS fluorescence activated cell sorting
  • the purified oval cells were then plated onto sixteen well chamber slides and infected with the rAAV1, 2, and 5 viruses (10,000 vector genomes/cell) or mock infected. Nine days after infection the cells were visualized by either bright-field or fluorescent microscopy for the expression of GFP using a Zeiss Axiovert microscope.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Virology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
US10/456,423 2002-06-05 2003-06-05 Production of pseudotyped recombinant AAV virions Abandoned US20070015238A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/456,423 US20070015238A1 (en) 2002-06-05 2003-06-05 Production of pseudotyped recombinant AAV virions
US10/798,192 US7094604B2 (en) 2002-06-05 2004-03-11 Production of pseudotyped recombinant AAV virions

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US38586402P 2002-06-05 2002-06-05
US10/456,423 US20070015238A1 (en) 2002-06-05 2003-06-05 Production of pseudotyped recombinant AAV virions

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/798,192 Continuation US7094604B2 (en) 2002-06-05 2004-03-11 Production of pseudotyped recombinant AAV virions

Publications (1)

Publication Number Publication Date
US20070015238A1 true US20070015238A1 (en) 2007-01-18

Family

ID=29736112

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/456,423 Abandoned US20070015238A1 (en) 2002-06-05 2003-06-05 Production of pseudotyped recombinant AAV virions
US10/798,192 Expired - Fee Related US7094604B2 (en) 2002-06-05 2004-03-11 Production of pseudotyped recombinant AAV virions

Family Applications After (1)

Application Number Title Priority Date Filing Date
US10/798,192 Expired - Fee Related US7094604B2 (en) 2002-06-05 2004-03-11 Production of pseudotyped recombinant AAV virions

Country Status (3)

Country Link
US (2) US20070015238A1 (fr)
AU (1) AU2003274397A1 (fr)
WO (1) WO2003104413A2 (fr)

Cited By (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007131180A2 (fr) 2006-05-04 2007-11-15 Wayne State University Restauration de réponses visuelles par administration in vivo d'acides nucléiques de rhodopsine
WO2015134643A1 (fr) 2014-03-04 2015-09-11 University Of Florida Research Foundation, Inc. Vecteurs raav améliorés et procédés pour la transduction de photorécepteurs et cellules epr
WO2015164789A1 (fr) 2014-04-24 2015-10-29 University Of Florida Research Foundation, Inc. Thérapie génique à base de vaa pour la sclérose en plaques
WO2016081927A2 (fr) 2014-11-21 2016-05-26 University Of Florida Research Foundation, Inc. Vecteurs viraux adéno-associés recombinés au génome modifié
WO2016134337A1 (fr) * 2015-02-19 2016-08-25 University Of Florida Research Foundation, Inc. Intégration spécifique à un site de vecteurs de vaa recombinés pour la thérapie génique et procédés de production améliorés
WO2017151823A1 (fr) 2016-03-01 2017-09-08 University Of Florida Research Foundation, Inc. Vecteurs aav pour le traitement de la rétinite pigmentaire dominante
WO2017181162A1 (fr) 2016-04-16 2017-10-19 University Of Florida Research Foundation, Incorporated Procédés d'amélioration de la puissance biologique d'un virus adéno-associé produit par un système baculoviral
US9855314B2 (en) 2013-03-01 2018-01-02 The Schepens Eye Research Insititute, Inc. Methods for modulating development and function of photoreceptor cells
WO2018156654A1 (fr) 2017-02-21 2018-08-30 University Of Florida Research Foundation, Incorporated Protéines des capsides aav modifiées et leurs utilisations
WO2018132155A3 (fr) * 2016-11-03 2018-10-18 University Of Florida Research Foundation Incorporated Administration d'un sharn délivré par un virus adéno-associé pour le traitement du cancer du pancréas
WO2019246544A2 (fr) 2018-06-22 2019-12-26 Asklepios Biopharmaceutical, Inc. Vecteurs pour l'administration de gènes qui persistent dans les cellules
WO2020181193A1 (fr) 2019-03-06 2020-09-10 The Broad Institute, Inc. Édition de bases t:a à a:t par méthylation de l'adénosine
WO2020181202A1 (fr) 2019-03-06 2020-09-10 The Broad Institute, Inc. Édition de base a:t en t:a par déamination et oxydation d'adénine
WO2020181178A1 (fr) 2019-03-06 2020-09-10 The Broad Institute, Inc. Édition de base t:a à a:t par alkylation de thymine
WO2020181180A1 (fr) 2019-03-06 2020-09-10 The Broad Institute, Inc. Éditeurs de base a:t en c:g et leurs utilisations
WO2020181195A1 (fr) 2019-03-06 2020-09-10 The Broad Institute, Inc. Édition de base t : a à a : t par excision d'adénine
WO2020214842A1 (fr) 2019-04-17 2020-10-22 The Broad Institute, Inc. Éditeurs de base d'adénine présentant des effets hors cible réduits
WO2021025750A1 (fr) 2019-08-08 2021-02-11 The Broad Institute, Inc. Éditeurs de bases à portée de ciblage diversifiée
WO2021030666A1 (fr) 2019-08-15 2021-02-18 The Broad Institute, Inc. Édition de bases par transglycosylation
WO2021072328A1 (fr) 2019-10-10 2021-04-15 The Broad Institute, Inc. Procédés et compositions pour le prime editing d'arn
WO2021108717A2 (fr) 2019-11-26 2021-06-03 The Broad Institute, Inc Systèmes et procédés pour l'évaluation d'édition hors cible indépendante de cas9 d'acides nucléiques
WO2021119053A1 (fr) 2019-12-10 2021-06-17 Shire Human Genetic Therapies, Inc. Vecteurs de virus adéno-associés pour le traitement de la maladie de hunter
WO2021155065A1 (fr) 2020-01-28 2021-08-05 The Broad Institute, Inc. Éditeurs de bases, compositions, et procédés de modification du génome mitochondrial
WO2021158921A2 (fr) 2020-02-05 2021-08-12 The Broad Institute, Inc. Éditeurs de base d'adénine et leurs utilisations
WO2021158999A1 (fr) 2020-02-05 2021-08-12 The Broad Institute, Inc. Procédés d'édition génomique pour le traitement de l'amyotrophie musculaire spinale
WO2021222318A1 (fr) 2020-04-28 2021-11-04 The Broad Institute, Inc. Édition de base ciblée du gène ush2a
EP3909602A1 (fr) 2014-04-25 2021-11-17 University of Florida Research Foundation, Inc. Méthodes permettant qu'un sujet reçoive des doses multiples de virus adéno-associé recombinant
DE112020001339T5 (de) 2019-03-19 2022-01-13 President and Fellows of Harvard College Verfahren und zusammensetzung zum editing von nukleotidsequenzen
WO2022026632A2 (fr) 2020-07-29 2022-02-03 University Of Florida Research Foundation, Incorporated Thérapies améliorées du rétinoschisis lié à l'x, médiées par aav
WO2022140402A1 (fr) 2020-12-23 2022-06-30 University Of Florida Research Foundation, Incorporated Efficacité accrue d'encapsidation de vecteur pour thérapie génique cardiaque
WO2022183052A1 (fr) 2021-02-26 2022-09-01 Takeda Pharmaceutical Company Limited Composition et méthodes de traitement de la maladie de fabry
US20220334126A1 (en) * 2013-07-12 2022-10-20 The Children's Hospital Of Philadelphia Aav vector and assay for anti-aav (adeno-associated virus) neutralizing antibodies
WO2022261509A1 (fr) 2021-06-11 2022-12-15 The Broad Institute, Inc. Éditeurs de bases cytosine à guanine améliorés
US11578343B2 (en) 2014-07-30 2023-02-14 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US11661590B2 (en) 2016-08-09 2023-05-30 President And Fellows Of Harvard College Programmable CAS9-recombinase fusion proteins and uses thereof
US11702673B2 (en) 2018-10-18 2023-07-18 University Of Florida Research Foundation, Incorporated Methods of enhancing biological potency of baculovirus system-produced recombinant adeno-associated virus
US11732274B2 (en) 2017-07-28 2023-08-22 President And Fellows Of Harvard College Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE)
WO2023187728A1 (fr) 2022-04-01 2023-10-05 Takeda Pharmaceutical Company Limited Thérapie génique pour des maladies avec des manifestations du snc
WO2023196802A1 (fr) 2022-04-04 2023-10-12 The Broad Institute, Inc. Variantes de cas9 ayant des spécificités pam non canoniques et leurs utilisations
US11795443B2 (en) 2017-10-16 2023-10-24 The Broad Institute, Inc. Uses of adenosine base editors
WO2023212715A1 (fr) 2022-04-28 2023-11-02 The Broad Institute, Inc. Vecteurs aav codant pour des éditeurs de base et utilisations associées
US11820969B2 (en) 2016-12-23 2023-11-21 President And Fellows Of Harvard College Editing of CCR2 receptor gene to protect against HIV infection
WO2023230613A1 (fr) 2022-05-27 2023-11-30 The Broad Institute, Inc. Éditeurs de base mitochondriale améliorés et méthodes d'édition d'adn mitochondrial
WO2023240137A1 (fr) 2022-06-08 2023-12-14 The Board Institute, Inc. Variants de cas14a1 évolués, compositions et méthodes de fabrication et d'utilisation de ceux-ci dans l'édition génomique
US11898179B2 (en) 2017-03-09 2024-02-13 President And Fellows Of Harvard College Suppression of pain by gene editing
US11905523B2 (en) 2019-10-17 2024-02-20 Ginkgo Bioworks, Inc. Adeno-associated viral vectors for treatment of Niemann-Pick Disease type-C
WO2024040083A1 (fr) 2022-08-16 2024-02-22 The Broad Institute, Inc. Cytosine désaminases évoluées et méthodes d'édition d'adn l'utilisant
US11912985B2 (en) 2020-05-08 2024-02-27 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence
WO2024042485A1 (fr) 2022-08-25 2024-02-29 Takeda Pharmaceutical Company Limited Composition destinée à être utilisée dans le traitement de la maladie de fabry
US11920181B2 (en) 2013-08-09 2024-03-05 President And Fellows Of Harvard College Nuclease profiling system
US11932884B2 (en) 2017-08-30 2024-03-19 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11976096B2 (en) 2018-04-03 2024-05-07 Ginkgo Bioworks, Inc. Antibody-evading virus vectors
US11981914B2 (en) 2019-03-21 2024-05-14 Ginkgo Bioworks, Inc. Recombinant adeno-associated virus vectors
WO2024105638A1 (fr) 2022-11-18 2024-05-23 Jcr Pharmaceuticals Co., Ltd. Vecteurs aav recombinants et méthodes de traitement de la maladie de hunter
US11999947B2 (en) 2016-08-03 2024-06-04 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US12006520B2 (en) 2011-07-22 2024-06-11 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
US12043852B2 (en) 2015-10-23 2024-07-23 President And Fellows Of Harvard College Evolved Cas9 proteins for gene editing
WO2024163862A2 (fr) 2023-02-03 2024-08-08 The Broad Institute, Inc. Méthodes d'édition de gènes, systèmes et compositions pour le traitement de l'amyotrophie spinale
US12060390B2 (en) 2018-04-03 2024-08-13 Ginkgo Bioworks, Inc. Antibody-evading virus vectors
US12084663B2 (en) 2016-08-24 2024-09-10 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing

Families Citing this family (132)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003104413A2 (fr) * 2002-06-05 2003-12-18 University Of Florida Production de virions de virus adeno-associe (aav) recombinants pseudo-types
FR2910485B1 (fr) 2006-12-22 2009-03-06 Inst Francais Du Petrole Procedes d'hydrotraitement d'un melange constitue d'huiles d'origine animale ou vegetale et de coupes petrolieres avec stripage intermediaire
GB2472964B (en) 2008-05-20 2013-04-24 Eos Neuroscience Inc Vectors for delivery of light-sensitive proteins and methods of use
US8058407B2 (en) * 2008-10-31 2011-11-15 Wyeth Llc Purification of acidic proteins using ceramic hydroxyapatite chromatography
DK2539015T3 (da) 2010-02-26 2016-04-04 Univ Cornell Nethindeprotese
SG183929A1 (en) 2010-03-29 2012-10-30 Univ Pennsylvania Pharmacologically induced transgene ablation system
US20130225664A1 (en) 2010-04-05 2013-08-29 Alan Horsager Methods and compositions for decreasing chronic pain
WO2012007458A1 (fr) 2010-07-12 2012-01-19 Universidad Autónoma De Barcelona Composition de thérapie génique destinée à être utilisée dans le traitement du diabète
BR112013004964A2 (pt) 2010-08-31 2017-05-23 Univ Cornell aparelho protético para recuperar ou melhorar a visão de um indivíduo em necessidade do mesmo
US9302103B1 (en) 2010-09-10 2016-04-05 Cornell University Neurological prosthesis
CA2883091C (fr) 2011-08-25 2020-02-25 Cornell University Codeur retinien pour vision industrielle
US9375491B2 (en) 2011-10-28 2016-06-28 University Of Florida Research Foundation, Inc. Chimeric promoter for cone photoreceptor targeted gene therapy
CN107982548A (zh) 2012-02-07 2018-05-04 全球生物疗法有限公司 核酸输送的区室化方法及其组合物和应用
EP2692868A1 (fr) 2012-08-02 2014-02-05 Universitat Autònoma De Barcelona Vecteurs viraux adéno-associés (AAV) utiles pour la transduction de tissu adipeux
CA2920261C (fr) 2013-08-08 2018-04-03 Global Bio Therapeutics, Inc. Dispositif de serrage pour procedures mini-invasives et utilisations de ce dernier
US9890365B2 (en) 2014-03-09 2018-02-13 The Trustees Of The University Of Pennsylvania Compositions useful in treatment of ornithine transcarbamylase (OTC) deficiency
BR112016024379A2 (pt) 2014-04-25 2017-10-10 Univ Pennsylvania variantes ldlr e seu uso em composições para reduzir os níveis de colesterol
WO2015164723A1 (fr) 2014-04-25 2015-10-29 The Trustees Of The University Of Pennsylvania Procédés et compositions pour le traitement du cancer du sein métastatique et d'autres cancers dans le cerveau
CA2947614C (fr) 2014-05-13 2023-10-03 The Trustees Of The University Of Pennsylvania Compositions comprenant un virus adeno-associe exprimant des constructions a double anticorps et leurs utilisations
WO2015191508A1 (fr) 2014-06-09 2015-12-17 Voyager Therapeutics, Inc. Capsides chimériques
WO2015196179A1 (fr) * 2014-06-20 2015-12-23 University Of Florida Research Foundation, Inc. Procédés d'encapsulation de plusieurs vecteurs viraux associés aux adénovirus
EP3194430A1 (fr) 2014-09-16 2017-07-26 Universitat Autònoma De Barcelona Vecteurs viraux adéno-associés pour la thérapie génique des maladies métaboliques
CN107106689A (zh) 2014-11-05 2017-08-29 沃雅戈治疗公司 用于治疗帕金森病的aadc多核苷酸
MX2017006216A (es) 2014-11-14 2018-08-29 Voyager Therapeutics Inc Composiciones y métodos para tratar la esclerosis lateral amiotrófica (ela).
SG11201703419UA (en) 2014-11-14 2017-05-30 Voyager Therapeutics Inc Modulatory polynucleotides
EP3230441A4 (fr) 2014-12-12 2018-10-03 Voyager Therapeutics, Inc. Compositions et méthodes pour la production de scaav
EP3242945B1 (fr) 2015-01-07 2021-09-01 Universitat Autònoma de Barcelona Construction génique à vecteur unique comprenant des gènes de l'insuline et de la glucokinase
WO2016130600A2 (fr) 2015-02-09 2016-08-18 Duke University Compositions et procédés pour l'édition de l'épigénome
US10515269B2 (en) 2015-04-20 2019-12-24 Cornell University Machine vision with dimensional data reduction
WO2016176191A1 (fr) 2015-04-27 2016-11-03 The Trustees Of The University Of Pennsylvania Système de vecteur aav double pour la correction médiée par crispr/cas9 d'une maladie humaine
EA201792500A1 (ru) 2015-05-13 2018-04-30 Дзе Трастиз Оф Дзе Юниверсити Оф Пенсильвания Aav-опосредованная экспрессия антител против гриппа и способы их использования
WO2017015637A1 (fr) 2015-07-22 2017-01-26 Duke University Criblage à haut rendement d'une fonction d'élément de régulation à l'aide de technologies d'édition de l'épigénome
AU2016302335B2 (en) 2015-08-06 2022-08-04 The Trustees Of The University Of Pennsylvania GLP-1 and use thereof in compositions for treating metabolic diseases
MX2018002339A (es) 2015-08-25 2018-12-19 Univ Duke Composiciones y metodos de mejora de la especificidad en ingenieria genomica usando endonucleasas guiadas por arn.
AU2016315699B2 (en) 2015-08-31 2021-09-09 The Trustees Of The University Of Pennsylvania AAV-EPO for treating companion animals
IL296929A (en) 2015-09-24 2022-12-01 Univ Pennsylvania A preparation and method for the treatment of a complement-mediated disease
WO2017062750A1 (fr) 2015-10-09 2017-04-13 The Trustees Of The University Of Pennsylvania Compositions et méthodes utilisables dans le traitement de la maladie de stargardt et autres troubles oculaires
US11970710B2 (en) 2015-10-13 2024-04-30 Duke University Genome engineering with Type I CRISPR systems in eukaryotic cells
EP3368054A4 (fr) 2015-10-28 2019-07-03 Voyager Therapeutics, Inc. Expression régulable au moyen d'un virus adéno-associé (vaa)
US11135313B2 (en) 2015-10-28 2021-10-05 The Trustees Of The University Of Pennsylvania Intrathecal administration of adeno-associated-viral vectors for gene therapy
IL303850A (en) 2015-12-11 2023-08-01 Univ Pennsylvania Gene therapy for the treatment of familial hypercholesterolemia
CN109069668B (zh) 2015-12-14 2023-04-18 宾夕法尼亚州大学信托人 用于眼病的基因疗法
US11241506B2 (en) 2015-12-14 2022-02-08 The Trustees Of The University Of Pennsylvania Composition for treatment of Crigler-Najjar syndrome
US11326182B2 (en) 2016-04-29 2022-05-10 Voyager Therapeutics, Inc. Compositions for the treatment of disease
US11299751B2 (en) 2016-04-29 2022-04-12 Voyager Therapeutics, Inc. Compositions for the treatment of disease
KR102392236B1 (ko) 2016-05-18 2022-05-03 보이저 테라퓨틱스, 인크. 조절성 폴리뉴클레오티드
SG11201809643UA (en) 2016-05-18 2018-12-28 Voyager Therapeutics Inc Compositions and methods of treating huntington's disease
RU2764920C2 (ru) 2016-07-08 2022-01-24 Зе Трастис Оф Зе Юниверсити Оф Пенсильвания Способы и композиции для лечения нарушений и заболеваний, связанных с rdh12
US11883470B2 (en) 2016-07-25 2024-01-30 The Trustees Of The University Of Pennsylvania Compositions comprising a lecithin cholesterol acyltransferase variant and uses thereof
EP3831281A1 (fr) 2016-08-30 2021-06-09 The Regents of The University of California Procédés de ciblage et d'administration biomédicaux, et dispositifs et systèmes pour leur mise en uvre
MX2019003567A (es) 2016-09-28 2019-12-02 Cohbar Inc Peptidos terapeuticos relacionados con mots-c.
ES2931960T3 (es) 2016-12-01 2023-01-05 Inst Nat Sante Rech Med Composiciones farmacéuticas para el tratamiento de enfermedades degenerativas retinianas
US11781116B2 (en) 2017-02-17 2023-10-10 Lonza Ltd. Mammalian cells for producing adeno-associated viruses
KR20190118163A (ko) 2017-02-20 2019-10-17 더 트러스티스 오브 더 유니버시티 오브 펜실바니아 가족성 고콜레스테롤혈증을 치료하기 위한 유전자 요법
US11117930B2 (en) 2017-02-23 2021-09-14 Adrx, Inc. Peptide inhibitors of transcription factor aggregation
SI3589730T1 (sl) 2017-02-28 2024-04-30 The Trustees Of The University Of Pennsylvania Adeno-povezan virus (AAV) clade F vektor in njihova uporaba
SG10201913833PA (en) 2017-02-28 2020-03-30 Univ Pennsylvania Influenza vaccines based on aav vectors
JOP20190200A1 (ar) 2017-02-28 2019-08-27 Univ Pennsylvania تركيبات نافعة في معالجة ضمور العضل النخاعي
RU2019130004A (ru) 2017-03-01 2021-04-01 Зе Трастис Оф Зе Юниверсити Оф Пеннсильвания Генная терапия при глазных заболеваниях
US10858631B2 (en) 2017-04-18 2020-12-08 Glaxosmithkline Intellectual Property Development Limited Methods for adeno-associated viral vector production
WO2018200542A1 (fr) 2017-04-24 2018-11-01 The Trustees Of The University Of Pennsylvania Thérapie génique pour troubles oculaires
EP3619308A4 (fr) 2017-05-05 2021-01-27 Voyager Therapeutics, Inc. Compositions et méthodes de traitement de la maladie de huntington
CA3061652A1 (fr) 2017-05-05 2018-11-08 Voyager Therapeutics, Inc. Compositions et methodes de traitement de la sclerose laterale amyotrophique (sla)
SG10201912401QA (en) 2017-05-11 2020-02-27 Univ Pennsylvania Gene therapy for neuronal ceroid lipofuscinoses
WO2018215613A1 (fr) 2017-05-24 2018-11-29 Universitat Autonoma De Barcelona Construction d'expression virale comprenant une séquence de codage du facteur de croissance des fibroblastes 21 (fgf21)
US11793887B2 (en) 2017-05-31 2023-10-24 The Trustees Of The University Of Pennsylvania Gene therapy for treating peroxisomal disorders
WO2018226992A1 (fr) 2017-06-07 2018-12-13 Adrx, Inc. Inhibiteur d'agrégation de tau
US11827898B2 (en) 2017-06-14 2023-11-28 The Trustees Of The University Of Pennsylvania Gene therapy for ocular disorders
JOP20190269A1 (ar) 2017-06-15 2019-11-20 Voyager Therapeutics Inc بولي نوكليوتيدات aadc لعلاج مرض باركنسون
JP7229989B2 (ja) 2017-07-17 2023-02-28 ボイジャー セラピューティクス インコーポレイテッド 軌道アレイガイドシステム
KR20200044793A (ko) 2017-08-03 2020-04-29 보이저 테라퓨틱스, 인크. Aav의 전달을 위한 조성물 및 방법
WO2019079242A1 (fr) 2017-10-16 2019-04-25 Voyager Therapeutics, Inc. Traitement de la sclérose latérale amyotrophique (sla)
JP7502991B2 (ja) 2017-10-16 2024-06-19 ボイジャー セラピューティクス インコーポレイテッド 筋萎縮性側索硬化症(als)の治療
EP3727468A4 (fr) 2017-12-19 2021-09-22 Akouos, Inc. Administration d'anticorps thérapeutiques médiée par aav à l'oreille interne
US10610606B2 (en) 2018-02-01 2020-04-07 Homology Medicines, Inc. Adeno-associated virus compositions for PAH gene transfer and methods of use thereof
CN112041437A (zh) 2018-02-19 2020-12-04 同源药物公司 用于恢复f8基因功能的腺相关病毒组合物和其使用方法
EP3762500A1 (fr) 2018-03-06 2021-01-13 Voyager Therapeutics, Inc. Génomes aav partiels auto-complémentaires fabriqués par des cellules d'insectes
EP3793615A2 (fr) 2018-05-16 2021-03-24 Voyager Therapeutics, Inc. Évolution dirigée
US20210207167A1 (en) 2018-05-16 2021-07-08 Voyager Therapeutics, Inc. Aav serotypes for brain specific payload delivery
EP3818161A1 (fr) 2018-07-02 2021-05-12 Voyager Therapeutics, Inc. Traitement de la sclérose latérale amyotrophique et de troubles associés à la moelle épinière
CA3107462A1 (fr) 2018-07-24 2020-01-30 Voyager Therapeutics, Inc. Systemes et methodes de production de formulations de therapie genique
JP7534290B2 (ja) 2018-10-01 2024-08-14 ザ・トラステイーズ・オブ・ザ・ユニバーシテイ・オブ・ペンシルベニア Gm1ガングリオシドーシスの治療に有用な組成物
EP3861113A1 (fr) 2018-10-04 2021-08-11 Voyager Therapeutics, Inc. Procédés de mesure du titre et de la puissance de particules de vecteur viral
AU2019389253A1 (en) 2018-11-26 2021-06-10 Universitat Autonoma De Barcelona Fibroblast growth factor 21 (FGF21) gene therapy
SG11202107645RA (en) 2019-01-18 2021-08-30 Voyager Therapeutics Inc Methods and systems for producing aav particles
CN113518784A (zh) 2019-01-28 2021-10-19 科巴公司 治疗性肽
EP3927381A1 (fr) 2019-02-22 2021-12-29 The Trustees of The University of Pennsylvania Virus adéno-associé recombinant pour le traitement d'une neurodégénérescence d'apparition tardive chez l'adulte associée à grn
MX2021010266A (es) 2019-02-26 2021-09-23 Univ Pennsylvania Composiciones utiles en el tratamiento de la enfermedad de krabbe.
US20220243225A1 (en) 2019-04-29 2022-08-04 Voyager Therapeutics, Inc. SYSTEMS AND METHODS FOR PRODUCING BACULOVIRAL INFECTED INSECT CELLS (BIICs) IN BIOREACTORS
WO2020239995A1 (fr) 2019-05-31 2020-12-03 Universitat Autònoma De Barcelona Thérapie génique par l'insuline
WO2021002257A1 (fr) * 2019-07-04 2021-01-07 株式会社カネカ Procédé de purification d'un virus ou d'une particule de type virus
EP4007814A1 (fr) 2019-07-26 2022-06-08 Akouos, Inc. Méthodes de traitement de la perte auditive à l'aide d'une protéine cible sécrétée
US20220290182A1 (en) 2019-08-09 2022-09-15 Voyager Therapeutics, Inc. Cell culture medium for use in producing gene therapy products in bioreactors
WO2021041485A1 (fr) 2019-08-26 2021-03-04 Voyager Therapeutics, Inc. Expression contrôlée de protéines virales
TW202140791A (zh) 2020-01-13 2021-11-01 美商霍蒙拉奇醫藥公司 治療苯酮尿症之方法
JP2023512071A (ja) 2020-01-30 2023-03-23 ウモジャ バイオファーマ, インコーポレイテッド 二特異性形質導入エンハンサー
CN116801911A (zh) 2020-05-13 2023-09-22 阿库斯股份有限公司 用于治疗slc26a4相关听力损失的组合物和方法
EP4157317A1 (fr) 2020-05-26 2023-04-05 Universitat Autònoma De Barcelona Thérapie génique du facteur de croissance des fibroblastes 21 (fgf21) pour des troubles du système nerveux central
TW202208632A (zh) 2020-05-27 2022-03-01 美商同源醫藥公司 用於恢復pah基因功能的腺相關病毒組成物及其使用方法
EP4192514A1 (fr) 2020-08-06 2023-06-14 Voyager Therapeutics, Inc. Milieu de culture cellulaire destiné à être utilisé dans la production de produits de thérapie génique dans des bioréacteurs
MX2023001615A (es) 2020-08-07 2023-03-08 Spacecraft Seven Llc Genoterapia con placofilina-2 (pkp2) mediante el uso de vector de aav.
GB202013057D0 (en) * 2020-08-21 2020-10-07 Oxford Genetics Ltd Method of making recombinant aavs
JP2023543125A (ja) 2020-08-24 2023-10-13 ザ・トラステイーズ・オブ・ザ・ユニバーシテイ・オブ・ペンシルベニア Glp-1受容体アゴニスト融合物をコードするウイルスベクター及び代謝性疾患の治療におけるその使用
EP4204014A1 (fr) 2020-08-26 2023-07-05 The Trustees of The University of Pennsylvania Virus adéno-associé recombinant pour le traitement d'une neurodégénérescence d'apparition tardive chez l'adulte associée à grn
EP4225926A1 (fr) 2020-10-07 2023-08-16 RegenxBio Inc. Thérapie génique pour manifestations oculaires de maladie cln2
US20230383313A1 (en) 2020-10-18 2023-11-30 The Trustees Of The University Of Pennsylvania Improved adeno-associated virus (aav) vector and uses therefor
WO2022094078A1 (fr) 2020-10-28 2022-05-05 The Trustees Of The University Of Pennsylvania Compositions utiles dans le traitement du syndrome de rett
TW202233844A (zh) 2020-10-29 2022-09-01 賓州大學委員會 Aav衣殼及含有其之組成物
KR20230117179A (ko) 2020-12-01 2023-08-07 아카우오스, 인크. 청신경초종 연관 증상을 치료하기 위한 항-vegf 항체작제물 및 관련된 방법
IL303236A (en) 2020-12-01 2023-07-01 Univ Pennsylvania New compounds with specific tissue-targeting motifs and preparations containing them
MX2023007800A (es) 2020-12-29 2023-07-11 Akouos Inc Composiciones y metodos para tratar la perdida de audicion y/o la perdida de vision asociada a clrn1.
WO2022162067A1 (fr) 2021-01-30 2022-08-04 Universitat Autònoma De Barcelona Thérapie génique pour le diabète monogène
AU2022214429A1 (en) 2021-02-01 2023-09-14 Regenxbio Inc. Gene therapy for neuronal ceroid lipofuscinoses
EP4301768A2 (fr) 2021-03-03 2024-01-10 Voyager Therapeutics, Inc. Expression contrôlée de protéines virales
WO2022187548A1 (fr) 2021-03-03 2022-09-09 Voyager Therapeutics, Inc. Expression régulée de protéines virales
US20240191258A1 (en) 2021-04-12 2024-06-13 The Trustees Of The University Of Pennsylvania Compositions useful for treating spinal and bulbar muscular atrophy (sbma)
WO2022226296A2 (fr) 2021-04-23 2022-10-27 University Of Rochester Édition génomique par insertion d'adn non homologue dirigée à l'aide d'une protéine de fusion cas-intégrase rétrovirale et méthodes de traitement
EP4089171A1 (fr) 2021-05-12 2022-11-16 Fundación del Sector Público Estatal Centro Nacional de Investigaciones Oncológicas Carlos III (F.S.P. CNIO) Génomes et vecteurs viraux recombinants à encodage tert
CN113308492B (zh) * 2021-05-31 2023-03-21 北京中因科技有限公司 一种用于复制性aav的检测方法
CN118139655A (zh) 2021-08-13 2024-06-04 特里奥万斯控股公司 皮肤替代组合物及其产生和使用方法
WO2023034880A2 (fr) 2021-08-31 2023-03-09 Scout Bio, Inc. Molécules de liaison à l'antigène et leurs utilisations
AU2022356427A1 (en) 2021-09-30 2024-05-09 Akouos, Inc. Compositions and methods for treating kcnq4-associated hearing loss
EP4409010A1 (fr) 2021-10-02 2024-08-07 The Trustees of The University of Pennsylvania Nouvelles capsides de vaa et compositions les contenant
WO2023133574A1 (fr) 2022-01-10 2023-07-13 The Trustees Of The University Of Pennsylvania Compositions et méthodes utiles pour le traitement de troubles médiés par c9orf72
AU2023211652A1 (en) 2022-01-25 2024-08-08 The Trustees Of The University Of Pennsylvania Aav capsids for improved heart transduction and detargeting of liver
TW202342525A (zh) 2022-02-02 2023-11-01 美商阿科奧斯公司 用於治療前庭神經鞘瘤相關症狀之抗vegf抗體構築體及相關方法
WO2023196893A1 (fr) 2022-04-06 2023-10-12 The Trustees Of The University Of Pennsylvania Compositions et méthodes de traitement d'un cancer du sein métastatique her2 positif et d'autres cancers
WO2023198685A1 (fr) 2022-04-13 2023-10-19 F. Hoffmann-La Roche Ag Procédé de détermination de génomes d'aav
WO2024015966A2 (fr) 2022-07-15 2024-01-18 The Trustees Of The University Of Pennsylvania Vaa recombinants ayant des capsides de clade d et de clade e de vaa et compositions les contenant
WO2024052413A1 (fr) 2022-09-07 2024-03-14 Universitat Autònoma De Barcelona Vecteurs de beta-hexosaminidase
WO2024054983A1 (fr) 2022-09-08 2024-03-14 Voyager Therapeutics, Inc. Expression controlée de protéines virales
WO2024130067A2 (fr) 2022-12-17 2024-06-20 The Trustees Of The University Of Pennsylvania Vecteurs mutants aav recombinants avec motifs de ciblage spécifiques des muscles cardiaque et squelettique et compositions les contenant

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030223966A1 (en) * 2002-04-30 2003-12-04 Fraites Thomas J. Treatment for pompe disease
US20050014262A1 (en) * 2001-12-17 2005-01-20 Guangping Gao Adeno-associated virus (aav) serotype 9 sequences, vectors containing same, and uses therefor
US7094604B2 (en) * 2002-06-05 2006-08-22 University Of Florida Research Foundation, Inc. Production of pseudotyped recombinant AAV virions

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2340230T3 (es) * 1998-11-10 2010-05-31 University Of North Carolina At Chapel Hill Vectores viricos y sus procedimientos de preparacion y administracion.
CA2373110A1 (fr) * 2000-03-14 2001-09-20 Neurologix, Inc. Production de vecteurs de capsides chimeres

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050014262A1 (en) * 2001-12-17 2005-01-20 Guangping Gao Adeno-associated virus (aav) serotype 9 sequences, vectors containing same, and uses therefor
US20030223966A1 (en) * 2002-04-30 2003-12-04 Fraites Thomas J. Treatment for pompe disease
US7094604B2 (en) * 2002-06-05 2006-08-22 University Of Florida Research Foundation, Inc. Production of pseudotyped recombinant AAV virions

Cited By (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3437473A1 (fr) 2006-05-04 2019-02-06 Wayne State University Restauration de réponses visuelles par administration in vivo d'acides nucléiques de la rhodopsine
WO2007131180A2 (fr) 2006-05-04 2007-11-15 Wayne State University Restauration de réponses visuelles par administration in vivo d'acides nucléiques de rhodopsine
US12006520B2 (en) 2011-07-22 2024-06-11 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
US11351225B2 (en) 2013-03-01 2022-06-07 The Schepens Eye Research Institute, Inc. Methods for modulating development and function of photoreceptor cells
US9855314B2 (en) 2013-03-01 2018-01-02 The Schepens Eye Research Insititute, Inc. Methods for modulating development and function of photoreceptor cells
US20220334126A1 (en) * 2013-07-12 2022-10-20 The Children's Hospital Of Philadelphia Aav vector and assay for anti-aav (adeno-associated virus) neutralizing antibodies
US11920181B2 (en) 2013-08-09 2024-03-05 President And Fellows Of Harvard College Nuclease profiling system
WO2015134643A1 (fr) 2014-03-04 2015-09-11 University Of Florida Research Foundation, Inc. Vecteurs raav améliorés et procédés pour la transduction de photorécepteurs et cellules epr
EP3744177A1 (fr) 2014-04-24 2020-12-02 University of Florida Research Foundation, Inc. Thérapie génique à base de vaa pour la sclérose en plaques
WO2015164789A1 (fr) 2014-04-24 2015-10-29 University Of Florida Research Foundation, Inc. Thérapie génique à base de vaa pour la sclérose en plaques
EP3909602A1 (fr) 2014-04-25 2021-11-17 University of Florida Research Foundation, Inc. Méthodes permettant qu'un sujet reçoive des doses multiples de virus adéno-associé recombinant
US11578343B2 (en) 2014-07-30 2023-02-14 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
WO2016081927A2 (fr) 2014-11-21 2016-05-26 University Of Florida Research Foundation, Inc. Vecteurs viraux adéno-associés recombinés au génome modifié
WO2016134337A1 (fr) * 2015-02-19 2016-08-25 University Of Florida Research Foundation, Inc. Intégration spécifique à un site de vecteurs de vaa recombinés pour la thérapie génique et procédés de production améliorés
US12043852B2 (en) 2015-10-23 2024-07-23 President And Fellows Of Harvard College Evolved Cas9 proteins for gene editing
WO2017151823A1 (fr) 2016-03-01 2017-09-08 University Of Florida Research Foundation, Inc. Vecteurs aav pour le traitement de la rétinite pigmentaire dominante
EP4119668A1 (fr) 2016-03-01 2023-01-18 University of Florida Research Foundation, Inc. Vecteurs aav pour le traitement de la rétinite pigmentaire dominante
WO2017181162A1 (fr) 2016-04-16 2017-10-19 University Of Florida Research Foundation, Incorporated Procédés d'amélioration de la puissance biologique d'un virus adéno-associé produit par un système baculoviral
US11384364B2 (en) 2016-04-16 2022-07-12 University Of Florida Research Foundation, Incorporated Methods of enhancing biological potency of baculovirus system-produced recombinant adeno-associated virus
US11999947B2 (en) 2016-08-03 2024-06-04 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US11661590B2 (en) 2016-08-09 2023-05-30 President And Fellows Of Harvard College Programmable CAS9-recombinase fusion proteins and uses thereof
US12084663B2 (en) 2016-08-24 2024-09-10 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
WO2018132155A3 (fr) * 2016-11-03 2018-10-18 University Of Florida Research Foundation Incorporated Administration d'un sharn délivré par un virus adéno-associé pour le traitement du cancer du pancréas
US11781142B2 (en) 2016-11-03 2023-10-10 University Of Florida Research Foundation, Incorporated AAV delivery of shRNA for treatment of pancreatic cancer
US11820969B2 (en) 2016-12-23 2023-11-21 President And Fellows Of Harvard College Editing of CCR2 receptor gene to protect against HIV infection
WO2018156654A1 (fr) 2017-02-21 2018-08-30 University Of Florida Research Foundation, Incorporated Protéines des capsides aav modifiées et leurs utilisations
US11898179B2 (en) 2017-03-09 2024-02-13 President And Fellows Of Harvard College Suppression of pain by gene editing
US11732274B2 (en) 2017-07-28 2023-08-22 President And Fellows Of Harvard College Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE)
US11932884B2 (en) 2017-08-30 2024-03-19 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11795443B2 (en) 2017-10-16 2023-10-24 The Broad Institute, Inc. Uses of adenosine base editors
US12060390B2 (en) 2018-04-03 2024-08-13 Ginkgo Bioworks, Inc. Antibody-evading virus vectors
US11976096B2 (en) 2018-04-03 2024-05-07 Ginkgo Bioworks, Inc. Antibody-evading virus vectors
US12091435B2 (en) 2018-04-03 2024-09-17 Ginkgo Bioworks, Inc. Antibody-evading virus vectors
WO2019246544A2 (fr) 2018-06-22 2019-12-26 Asklepios Biopharmaceutical, Inc. Vecteurs pour l'administration de gènes qui persistent dans les cellules
US11702673B2 (en) 2018-10-18 2023-07-18 University Of Florida Research Foundation, Incorporated Methods of enhancing biological potency of baculovirus system-produced recombinant adeno-associated virus
WO2020181178A1 (fr) 2019-03-06 2020-09-10 The Broad Institute, Inc. Édition de base t:a à a:t par alkylation de thymine
WO2020181193A1 (fr) 2019-03-06 2020-09-10 The Broad Institute, Inc. Édition de bases t:a à a:t par méthylation de l'adénosine
WO2020181202A1 (fr) 2019-03-06 2020-09-10 The Broad Institute, Inc. Édition de base a:t en t:a par déamination et oxydation d'adénine
WO2020181180A1 (fr) 2019-03-06 2020-09-10 The Broad Institute, Inc. Éditeurs de base a:t en c:g et leurs utilisations
WO2020181195A1 (fr) 2019-03-06 2020-09-10 The Broad Institute, Inc. Édition de base t : a à a : t par excision d'adénine
US11795452B2 (en) 2019-03-19 2023-10-24 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
DE112020001342T5 (de) 2019-03-19 2022-01-13 President and Fellows of Harvard College Verfahren und Zusammensetzungen zum Editing von Nukleotidsequenzen
DE112020001339T5 (de) 2019-03-19 2022-01-13 President and Fellows of Harvard College Verfahren und zusammensetzung zum editing von nukleotidsequenzen
US11643652B2 (en) 2019-03-19 2023-05-09 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11981914B2 (en) 2019-03-21 2024-05-14 Ginkgo Bioworks, Inc. Recombinant adeno-associated virus vectors
WO2020214842A1 (fr) 2019-04-17 2020-10-22 The Broad Institute, Inc. Éditeurs de base d'adénine présentant des effets hors cible réduits
WO2021025750A1 (fr) 2019-08-08 2021-02-11 The Broad Institute, Inc. Éditeurs de bases à portée de ciblage diversifiée
WO2021030666A1 (fr) 2019-08-15 2021-02-18 The Broad Institute, Inc. Édition de bases par transglycosylation
WO2021072328A1 (fr) 2019-10-10 2021-04-15 The Broad Institute, Inc. Procédés et compositions pour le prime editing d'arn
US11905523B2 (en) 2019-10-17 2024-02-20 Ginkgo Bioworks, Inc. Adeno-associated viral vectors for treatment of Niemann-Pick Disease type-C
WO2021108717A2 (fr) 2019-11-26 2021-06-03 The Broad Institute, Inc Systèmes et procédés pour l'évaluation d'édition hors cible indépendante de cas9 d'acides nucléiques
WO2021119053A1 (fr) 2019-12-10 2021-06-17 Shire Human Genetic Therapies, Inc. Vecteurs de virus adéno-associés pour le traitement de la maladie de hunter
WO2021155065A1 (fr) 2020-01-28 2021-08-05 The Broad Institute, Inc. Éditeurs de bases, compositions, et procédés de modification du génome mitochondrial
WO2021158921A2 (fr) 2020-02-05 2021-08-12 The Broad Institute, Inc. Éditeurs de base d'adénine et leurs utilisations
WO2021158999A1 (fr) 2020-02-05 2021-08-12 The Broad Institute, Inc. Procédés d'édition génomique pour le traitement de l'amyotrophie musculaire spinale
WO2021222318A1 (fr) 2020-04-28 2021-11-04 The Broad Institute, Inc. Édition de base ciblée du gène ush2a
US12031126B2 (en) 2020-05-08 2024-07-09 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence
US11912985B2 (en) 2020-05-08 2024-02-27 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence
WO2022026632A2 (fr) 2020-07-29 2022-02-03 University Of Florida Research Foundation, Incorporated Thérapies améliorées du rétinoschisis lié à l'x, médiées par aav
WO2022140402A1 (fr) 2020-12-23 2022-06-30 University Of Florida Research Foundation, Incorporated Efficacité accrue d'encapsidation de vecteur pour thérapie génique cardiaque
WO2022183052A1 (fr) 2021-02-26 2022-09-01 Takeda Pharmaceutical Company Limited Composition et méthodes de traitement de la maladie de fabry
WO2022261509A1 (fr) 2021-06-11 2022-12-15 The Broad Institute, Inc. Éditeurs de bases cytosine à guanine améliorés
WO2023187728A1 (fr) 2022-04-01 2023-10-05 Takeda Pharmaceutical Company Limited Thérapie génique pour des maladies avec des manifestations du snc
WO2023196802A1 (fr) 2022-04-04 2023-10-12 The Broad Institute, Inc. Variantes de cas9 ayant des spécificités pam non canoniques et leurs utilisations
WO2023212715A1 (fr) 2022-04-28 2023-11-02 The Broad Institute, Inc. Vecteurs aav codant pour des éditeurs de base et utilisations associées
WO2023230613A1 (fr) 2022-05-27 2023-11-30 The Broad Institute, Inc. Éditeurs de base mitochondriale améliorés et méthodes d'édition d'adn mitochondrial
WO2023240137A1 (fr) 2022-06-08 2023-12-14 The Board Institute, Inc. Variants de cas14a1 évolués, compositions et méthodes de fabrication et d'utilisation de ceux-ci dans l'édition génomique
WO2024040083A1 (fr) 2022-08-16 2024-02-22 The Broad Institute, Inc. Cytosine désaminases évoluées et méthodes d'édition d'adn l'utilisant
WO2024042485A1 (fr) 2022-08-25 2024-02-29 Takeda Pharmaceutical Company Limited Composition destinée à être utilisée dans le traitement de la maladie de fabry
WO2024105638A1 (fr) 2022-11-18 2024-05-23 Jcr Pharmaceuticals Co., Ltd. Vecteurs aav recombinants et méthodes de traitement de la maladie de hunter
WO2024163862A2 (fr) 2023-02-03 2024-08-08 The Broad Institute, Inc. Méthodes d'édition de gènes, systèmes et compositions pour le traitement de l'amyotrophie spinale

Also Published As

Publication number Publication date
US20040209245A1 (en) 2004-10-21
AU2003274397A8 (en) 2003-12-22
WO2003104413A2 (fr) 2003-12-18
AU2003274397A1 (en) 2003-12-22
WO2003104413A3 (fr) 2004-07-08
US7094604B2 (en) 2006-08-22

Similar Documents

Publication Publication Date Title
US7094604B2 (en) Production of pseudotyped recombinant AAV virions
US7851195B2 (en) High-efficiency wild-type-free AAV helper functions
US8409842B2 (en) Recombinant adeno-associated virus production
CA2236968C (fr) Fonctions accessoires servant a produire des virions de vaa recombines
Snyder Adeno‐associated virus‐mediated gene delivery
US7238526B2 (en) Methods and cell line useful for production of recombinant adeno-associated viruses
US20040087026A1 (en) Host cells for packing a recombinant adeno-associated virus (raav), method for the production and use thereof
US6221646B1 (en) Materials and methods for simplified AAV production
US5945335A (en) Adenovirus helper-free system for producing recombinant AAV virions lacking oncogenic sequences
CN106884014B (zh) 腺相关病毒反向末端重复序列突变体及其应用
EP0842287B1 (fr) Systeme d'auxiliaires d'efficacite elevee pour la production de vecteurs d'aav
Gonçalves et al. Efficient generation and amplification of high-capacity adeno-associated virus/adenovirus hybrid vectors
US20040248288A1 (en) Compositions and methods for efficient aav vector production
US6303371B1 (en) Method of purified rAAV vector production in non-human cell line transfected with cocksackie and adenovirus receptor
US20020045250A1 (en) Methods for purified AAV vector production
Weger High-Level rAAV Vector Production by rAdV-Mediated Amplification of Small Amounts of Input Vector. Viruses 2023, 15, 64
WO2024013239A1 (fr) Procédé de production de particules de virus adéno-associé recombinant
Adeno-Associated Efficient Generation and Amplification of

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION