US20060266158A1 - High purity hafnium, target and thin film comprising said high purity hafnium, and method for producing high purity hafnium - Google Patents

High purity hafnium, target and thin film comprising said high purity hafnium, and method for producing high purity hafnium Download PDF

Info

Publication number
US20060266158A1
US20060266158A1 US10/595,660 US59566004A US2006266158A1 US 20060266158 A1 US20060266158 A1 US 20060266158A1 US 59566004 A US59566004 A US 59566004A US 2006266158 A1 US2006266158 A1 US 2006266158A1
Authority
US
United States
Prior art keywords
hafnium
high purity
wtppm
zirconium
purity hafnium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/595,660
Other languages
English (en)
Inventor
Yuichiro Shindo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Nippon Mining Holdings Inc
Original Assignee
Nikko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikko Materials Co Ltd filed Critical Nikko Materials Co Ltd
Assigned to NIKKO MATERIALS CO., LTD. reassignment NIKKO MATERIALS CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SHINDO, YUCHIRO
Assigned to NIPPON MINING & METALS CO., LTD. reassignment NIPPON MINING & METALS CO., LTD. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: NIKKO MATERIALS CO., LTD.
Publication of US20060266158A1 publication Critical patent/US20060266158A1/en
Assigned to NIPPON MINING HOLDINGS, INC. reassignment NIPPON MINING HOLDINGS, INC. MERGER (SEE DOCUMENT FOR DETAILS). Assignors: NIPPON MINING & METALS CO., LTD.
Assigned to JX NIPPON MINING & METALS CORPORATION reassignment JX NIPPON MINING & METALS CORPORATION CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: NIPPON MINING HOLDINGS, INC.
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/10Obtaining titanium, zirconium or hafnium
    • C22B34/14Obtaining zirconium or hafnium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy

Definitions

  • the present invention relates to a high purity hafnium material in which the content of impurities such as zirconium, oxygen, sulfur and phosphorus contained in the hafnium is reduced, as well as to a target and thin film formed from such high purity hafnium material, and a manufacturing method of high purity hafnium.
  • hafnium and zirconium are very similar in terms of atomic structure and chemical property, the inclusion of zirconium or the inclusion of zirconium in hafnium was never really acknowledged as a problem as exemplified below.
  • Hafnium and zirconium are superior in heat resistance and corrosion resistance, and are characterized in that they have a strong affinity with oxygen and nitrogen. And, since the oxides or nitrides thereof have superior stability in high temperatures, they are utilized as fire-resistant materials in the manufacture of nuclear ceramics, steel or castings. Further, recently, these are also being used as electronic materials or optical materials.
  • the manufacturing method of metal hafnium or metal zirconium is proposed as the same manufacturing method.
  • Patent Document 1 a manufacturing method of reducing zirconium chloride, hafnium chloride or titanium chloride and manufacturing the respective metals thereof characterized in the sealing metal (e.g., refer to Patent Document 2); a manufacturing method of hafnium or zirconium characterized in the reaction container structure upon reducing zirconium tetrachloride or hafnium tetrachloride with magnesium and the manufacturing technique thereof (e.g., refer to Patent Document 3); a method of manufacturing chloro-, bromo- or iodic zirconium, hafnium, tantalum, vanadium and niobium compound vapor by introducing these into a crucible (e.g., refer to Patent Document 4); a method of refining zirconium or hafnium chloride or an acid chloride aqueous solution with strongly basic anion exchange resin (e.g., refer to Patent Document 5); a method of collecting zirconium via solvent extraction (
  • Patent Document 1 Japanese Patent Laid-Open Publication No. S60-17027
  • Patent Document 2 Japanese Patent Laid-Open Publication No. S61-279641
  • Patent Document 3 Japanese Patent Laid-Open Publication No. S62-103328
  • Patent Document 4 WO89/11449
  • Patent Document 5 Japanese Patent Laid-Open Publication No. H10-204554
  • Patent Document 6 Japanese Patent Laid-Open Publication No. S60-255621
  • Patent Document 7 Japanese Patent Laid-Open Publication No. S61-242993
  • hafnium silicide is being demanded.
  • zirconium is an impurity, and there is a possibility that the required characteristics of the hafnium raw material may become unstable. Therefore, there is demand for a high purity hafnium material with reduced zirconium, and a target and thin film formed from such a material.
  • an object of the present invention is to provide a high purity hafnium material which uses a hafnium sponge with reduced zirconium as the raw material, and in which the content of oxygen, sulfur and phosphorus contained in the hafnium is reduced, as well as to a target and thin film formed from such material, and to the manufacturing method of high purity hafnium.
  • the present inventors discovered that the intended high purity hafnium can be manufactured by using a hafnium sponge with reduced zirconium developed previously by the inventors as the raw material, and further performing electron beam melting and deoxidation with molten salt so as to efficiently separate oxygen, sulfur and phosphorus, and, as necessary, further performing electron beam melting.
  • the present invention provides:
  • a manufacturing method of high purity hafnium wherein a hafnium sponge raw material is subject to solvent extraction and thereafter dissolved, and the obtained hafnium ingot is further subject to deoxidation with molten salt;
  • the present invention yields a superior effect in that it is capable of stably manufacturing high purity hafnium by using a hafnium sponge in which the zirconium in the hafnium is eliminated as the raw material, and further performing electron beam melting and deoxidation with molten salt to this hafnium sponge. Further, by manufacturing a sputtering target with the high purity hafnium ingot obtained as described above and performing sputtering with this target, it is possible to obtain a high purity hafnium thin film. Moreover, it is possible to obtain a thin film having a high residual resistance ratio from the high purity hafnium material, which will be able to sufficiently meet the demands as an electronic component material.
  • a hafnium sponge from which zirconium has been eliminated is used as the raw material.
  • a method invented previously by the present inventors may be adopted, or another raw material may be used so as long as it is hafnium with reduced zirconium.
  • the previous invention as a method for reducing zirconium is introduced below.
  • Hafnium tetrachloride (HfCl 4 ) is used as the raw material.
  • a commercially available material can be used as the hafnium tetrachloride.
  • This commercially available hafnium tetrachloride contains roughly 5 wt % of zirconium.
  • hafnium (Hf) metal or hafnium oxide (HfO 2 ) may also be used as the raw material.
  • These raw materials have a purity level of 3N excluding zirconium, and contain iron, chrome and nickel as main impurities other than zirconium.
  • this hafnium tetrachloride raw material is dissolved in purified water.
  • this is subject to multistage organic solvent extraction. Normally, solvent extraction is performed in 1 to 10 stages. TBP may be used as the organic solvent.
  • zirconium can be made to be 5000 wtppm or less, and can be further made to be 1000 wtppm or less by repeating solvent extraction. Further, the total content of other impurities can be made to be 1000 wtppm or less.
  • hafnium oxide HfO 2
  • This hafnium oxide is subject to chlorination to obtain high purity hafnium tetrachloride (HfCl 4 ), and this is further reduced with, for instance, magnesium metal having chloridization power that is stronger than hafnium or zirconium to obtain a hafnium sponge.
  • magnesium metal having chloridization power that is stronger than hafnium or zirconium to obtain a hafnium sponge.
  • the reducing metal in addition to magnesium, for instance, calcium, sodium, and so on may be used.
  • the hafnium sponge obtained as described above is once subject to electron beam melting (hearth melting) in a Cu crucible. Thereafter, the hafnium sponge is sequentially placed therein.
  • the hafnium molten metal overflowing from the upper part of the pool flows into the upper part of the ingot. This is still in a molten metal state, and the purity can be improved by performing the two melting processes with a series of electronic beam operations at the stages of hearth melting and manufacturing the ingot.
  • the obtained ingot is subject to deoxidation with molten salt.
  • This deoxidation process as described later, is able to eliminate carbon, sulfur, phosphorus and other impurities. Specifically, it is possible to make oxygen 40 wtppm or less, and sulfur and phosphorus respectively 10 wtppm or less.
  • zirconium can be made to be 5000 wtppm or less, and further 1000 wtppm.
  • this high purity hafnium it is possible to use this high purity hafnium to manufacture a high purity hafnium target, and it is further possible to deposit high purity hafnium on a substrate by performing sputtering with this high purity target.
  • a material having a high residual resistance ratio can be obtained from the foregoing high purity hafnium material as described in the following Examples, and it is possible to sufficiently meet the demands as an electronic component material.
  • the target may be manufactured with the ordinary processing steps of forging, rolling, cutting, finishing (polishing) and so on. There is no particular limitation in the manufacturing method thereof, and the method may be selected arbitrarily.
  • HfCl 4 hafnium tetrachloride shown in Table 1 having a purity of 3N and containing roughly 5000 wtppm of zirconium was used as the raw material, and this was dissolved in 1 L of purified water to create a nitric acid solution.
  • This raw material contained 500 wtppm, 40 wtppm and 1000 wtppm of iron, chrome and nickel, respectively, as its main impurities in HfCl 4 .
  • this hafnium raw material (a nitric acid solution) was subject to 4-stage organic solvent extraction using a TBP organic solvent, and neutralization treatment was performed to obtain hafnium oxide (HfO 2 ).
  • hafnium oxide was subject to chlorination to obtain high purity hafnium tetrachloride (HfCl 4 ), and then subject to magnesium reduction to obtain a hafnium sponge as the raw material.
  • This hafnium sponge contained 300 wtppm of zirconium, and the total content of other impurities was reduced to 300 wtppm.
  • the obtained hafnium sponge was used as the raw material, and further subject to two-stage melting via hearth melting and ingot melting with an electron beam to remove volatile elements, gas components and so on.
  • the zirconium content did not change at 300 wtppm
  • iron, chrome, nickel and other impurities were reduced to 70 wtppm as shown in Table 1, and further resulted in O: 250 wtppm
  • N ⁇ 10 wtppm
  • S ⁇ 10 wtppm
  • P ⁇ 10 wtppm.
  • the hafnium thus obtained was subject to deoxidation at 1200° C. for 5 hours with molten salt of Ca and CaCl 2 . Reduction was realized where O: ⁇ 10 wtppm and C: ⁇ 10 wtppm, and other impurities were also reduced to 30 wtppm.
  • the sputtering target obtained from this ingot is also capable of maintaining high purity, and, by performing sputtering with this target, a uniform high purity hafnium thin film can be formed on a substrate.
  • hafnium metal raw material (zirconium content of 2 wt %) shown in Table 2 was used and dissolved in nitric-hydrofluoric acid.
  • This raw material contained 15000 wtppm, 8000 wtppm and 5000 wtppm of iron, chrome and nickel, respectively, as its main impurities in the raw material.
  • hafnium raw material was subject to 10-stage organic solvent extraction using a TBP organic solvent, and neutralization treatment was performed to obtain hafnium oxide (HfO 2 ).
  • hafnium oxide was subject to chlorination to obtain high purity hafnium tetrachloride (HfCl 4 ), and then subject to calcium reduction to obtain a hafnium sponge.
  • This hafnium sponge contained 1500 wtppm of zirconium, and the total content of other impurities was reduced to 1000 wtppm.
  • the obtained hafnium sponge was used as the raw material, and further subject to two-stage melting via hearth melting and ingot melting with an electron beam to remove volatile elements, gas components and so on.
  • Table 2 realized was O: 400 wtppm, C: 30 wtppm, N: ⁇ 10 wtppm, S: 10 wtppm, P: 10 wtppm.
  • the hafnium thus obtained was subject to deoxidation at 1200° C. for 10 hours with molten salt of Mg and MgCl 2 . Reduction was realized where O: 20 wtppm and C: 10 wtppm, and other impurities were also reduced to 50 wtppm.
  • hafnium oxide (HfO 2 ) raw material (3N level) shown in Table 3 100 Kg was used and dissolved in nitric-hydrofluoric acid.
  • This raw material contained 15000 wtppm, 8000 wtppm and 5000 wtppm of iron, chrome and nickel, respectively, as its main impurities in the raw material.
  • this hafnium oxide raw material was chlorinated and subject to refining with distillation of 10 or more stages, then further subject to sodium reduction.
  • the obtained hafnium was used as the raw material, and further subject to two-stage melting via hearth melting and ingot melting with an electron beam to remove volatile elements, gas components and so on.
  • Table 3 realized was Zr: 500 wtppm, O: 100 wtppm, C: 100 wtppm, N: 20 wtppm, S: 10 wtppm, P: 10 wtppm, others: 30 wtppm.
  • the hafnium thus obtained was subject to deoxidation at 1250° C., under argon pressure (4 atm) for 10 hours with molten salt of Ca and CaCl 2 . Reduction was realized where 0, C, N, S, P ⁇ 10 wtppm, and other impurities were also reduced to 25 wtppm.
  • the raw material shown in Table 2 was subject to plasma arc melting to manufacture an ingot.
  • the impurity content of the ingot was O: 7,000 wtppm, C: 1,800 wtppm, S: 100 wtppm, P: 50 wtppm, Zr: 20,000 wtppm, others: 1,600 wtppm.
  • the residual resistance ratio of this ingot is similarly shown in Table 4.
  • the present invention is able to stably manufacture high purity hafnium in which gas components such as oxygen and other impurity elements are reduced by using a hafnium sponge with reduced zirconium as the raw material and subjecting this hafnium sponge to electron beam melting and deoxidation processing with molten salt, such high purity hafnium can be used as a heat-resistant or corrosion-resistant material, or an electronic material or optical material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Physical Vapour Deposition (AREA)
US10/595,660 2003-11-19 2004-10-25 High purity hafnium, target and thin film comprising said high purity hafnium, and method for producing high purity hafnium Abandoned US20060266158A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003388737 2003-11-19
JP2003-388737 2003-11-19
PCT/JP2004/015777 WO2005049882A1 (ja) 2003-11-19 2004-10-25 高純度ハフニウム、同高純度ハフニウムからなるターゲット及び薄膜並びに高純度ハフニウムの製造方法

Publications (1)

Publication Number Publication Date
US20060266158A1 true US20060266158A1 (en) 2006-11-30

Family

ID=34616230

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/595,660 Abandoned US20060266158A1 (en) 2003-11-19 2004-10-25 High purity hafnium, target and thin film comprising said high purity hafnium, and method for producing high purity hafnium

Country Status (8)

Country Link
US (1) US20060266158A1 (zh)
EP (2) EP1686196B1 (zh)
JP (2) JP4749862B2 (zh)
KR (1) KR100766275B1 (zh)
CN (2) CN1882711B (zh)
DE (1) DE602004020916D1 (zh)
TW (1) TWI275653B (zh)
WO (1) WO2005049882A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060193979A1 (en) * 2004-03-01 2006-08-31 Meiere Scott H Low zirconium, hafnium-containing compositions, processes for the preparation thereof and methods of use thereof
US20070018138A1 (en) * 2003-07-25 2007-01-25 Nikko Materials Co.,Ltd. Highly pure hafnium material, target thin film comprising the same and method for producing highly pure hafnium
US20090000704A1 (en) * 2003-03-07 2009-01-01 Nippon Mining & Metals Co., Ltd. Hafnium Alloy Target and Process for Producing the Same
US20090194898A1 (en) * 2001-07-18 2009-08-06 Nippon Mining & Metals Co., Ltd. Hafnium Silicide Target for Forming Gate Oxide Film, and Method for Preparation Thereof
US20090226341A1 (en) * 2005-07-07 2009-09-10 Nippon Mining & Metals Co., Ltd. High-Purity Hafnium, Target and Thin Film Comprising High-Purity Hafnium, and Process for Producing High-Purity Hafnium
US20110300017A1 (en) * 2009-01-29 2011-12-08 Jx Nippon Mining & Metals Corporation Method for Manufacturing High-Purity Erbium, High-Purity Erbium, Sputtering Target Composed of High-Purity Erbium, and Metal Gate Film having High-Purity Erbium as Main Component
CN102471828A (zh) * 2009-07-15 2012-05-23 株式会社神户制钢所 合金铸锭的制造方法
US9834830B2 (en) 2011-12-20 2017-12-05 Kabushiki Kaisha Toshiba Tungsten alloy, tungsten alloy part, discharge lamp, transmitting tube, and magnetron
US10395879B2 (en) 2012-05-29 2019-08-27 Kabushiki Kaisha Toshiba Tungsten alloy part, and discharge lamp, transmitting tube, and magnetron using the same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050214458A1 (en) * 2004-03-01 2005-09-29 Meiere Scott H Low zirconium hafnium halide compositions
JP5395545B2 (ja) * 2009-07-15 2014-01-22 株式会社神戸製鋼所 超高純度合金鋳塊の製造方法
WO2013103100A1 (ja) * 2012-01-07 2013-07-11 株式会社 東芝 タングステン合金、およびそれを用いたタングステン合金部品、放電ランプ、送信管並びにマグネトロン
CN104646659B (zh) * 2013-11-22 2017-06-20 北京有色金属研究总院 一种低氧高纯金属铪粉的制造方法
CN111235400B (zh) * 2020-03-11 2021-02-09 西北有色金属研究院 一种铪的分切重组熔炼工艺

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2782116A (en) * 1946-09-06 1957-02-19 Frank H Spedding Method of preparing metals from their halides
US4637831A (en) * 1985-05-30 1987-01-20 Westinghouse Electric Corp. Process for reduction of zirconium, hafnium or titanium using a zinc or tin seal
US4668287A (en) * 1985-09-26 1987-05-26 Westinghouse Electric Corp. Process for producing high purity zirconium and hafnium
US4897116A (en) * 1988-05-25 1990-01-30 Teledyne Industries, Inc. High purity Zr and Hf metals and their manufacture
US5112493A (en) * 1990-12-10 1992-05-12 Westinghouse Electric Corp. Zirconium-hafnium production in a zero liquid discharge process
US5196916A (en) * 1990-02-15 1993-03-23 Kabushiki Kaisha Toshiba Highly purified metal material and sputtering target using the same
US5460793A (en) * 1993-05-07 1995-10-24 Japan Energy Corporation Silicide targets for sputtering and method of manufacturing the same
US6352628B2 (en) * 1993-07-27 2002-03-05 Kabushiki Kaisha Toshiba Refractory metal silicide target, method of manufacturing the target, refractory metal silicide thin film, and semiconductor device
US20020194953A1 (en) * 1997-04-30 2002-12-26 Harry Rosenberg Titanium materials
US20030062261A1 (en) * 2000-10-02 2003-04-03 Yuichiro Shindo High purity zirconium or hafnium, sputtering target comprising the high purity zirconium of hafnium and thin film formed using the target, and method for producing high purity zirconium or hafnium and method for producing powder of high purity zirconium or hafnium
US6723183B2 (en) * 2000-06-19 2004-04-20 Nikko Materials Company, Limited Silicide target for depositing less embrittling gate oxide and method of manufacturing silicide target
US6737030B2 (en) * 2002-01-29 2004-05-18 Ati Properties, Inc. Method for separating hafnium from zirconium
US20040170552A1 (en) * 2001-07-18 2004-09-02 Shuichi Irumata Hafnium silicide target for forming gate oxide film and method for preparation thereof
US6986834B2 (en) * 2002-08-06 2006-01-17 Nikko Materials Co., Ltd. Hafnium silicide target and manufacturing method for preparation thereof
US20060062910A1 (en) * 2004-03-01 2006-03-23 Meiere Scott H Low zirconium, hafnium-containing compositions, processes for the preparation thereof and methods of use thereof
US20060189164A1 (en) * 2003-03-07 2006-08-24 Nikko Materials Co., Ltd Hafnium alloy target and process for producing the same
US20070018138A1 (en) * 2003-07-25 2007-01-25 Nikko Materials Co.,Ltd. Highly pure hafnium material, target thin film comprising the same and method for producing highly pure hafnium
US7241368B2 (en) * 2001-07-09 2007-07-10 Nippon Mining & Metals Co., Ltd. Hafnium silicide target for gate oxide film formation and its production method
US20090226341A1 (en) * 2005-07-07 2009-09-10 Nippon Mining & Metals Co., Ltd. High-Purity Hafnium, Target and Thin Film Comprising High-Purity Hafnium, and Process for Producing High-Purity Hafnium

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4722827A (en) * 1985-09-26 1988-02-02 Westinghouse Electric Corp. Zirconium and hafnium with low oxygen and iron
JPH0723526B2 (ja) * 1986-01-13 1995-03-15 株式会社日立製作所 耐食ハフニウム基体およびその製造方法
US4923531A (en) * 1988-09-23 1990-05-08 Rmi Company Deoxidation of titanium and similar metals using a deoxidant in a molten metal carrier
JP2921799B2 (ja) * 1990-02-15 1999-07-19 株式会社 東芝 半導体素子形成用高純度スパッタターゲットの製造方法
JPH0814009B2 (ja) * 1990-08-14 1996-02-14 京都大学長 極低酸素チタンの製造方法
JPH07316681A (ja) * 1994-05-25 1995-12-05 Japan Energy Corp 金属材料又は合金材料の製造方法及び精製剤、並びに耐食性に優れた金属材料又は合金材料
JP3591756B2 (ja) * 1997-04-04 2004-11-24 日本電信電話株式会社 金属フッ化物の製造方法
JP3607532B2 (ja) * 1999-06-03 2005-01-05 住友チタニウム株式会社 チタン材料の脱酸素方法
JP2002206103A (ja) * 2000-11-09 2002-07-26 Nikko Materials Co Ltd 高純度ジルコニウム若しくはハフニウム粉の製造方法
JP4104039B2 (ja) * 2000-10-02 2008-06-18 日鉱金属株式会社 高純度ジルコニウム又はハフニウムの製造方法
JP3737429B2 (ja) * 2001-12-25 2006-01-18 住友チタニウム株式会社 金属塩の精製方法並びにチタン材の脱酸方法および製造方法

Patent Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2782116A (en) * 1946-09-06 1957-02-19 Frank H Spedding Method of preparing metals from their halides
US4637831A (en) * 1985-05-30 1987-01-20 Westinghouse Electric Corp. Process for reduction of zirconium, hafnium or titanium using a zinc or tin seal
US4668287A (en) * 1985-09-26 1987-05-26 Westinghouse Electric Corp. Process for producing high purity zirconium and hafnium
US4897116A (en) * 1988-05-25 1990-01-30 Teledyne Industries, Inc. High purity Zr and Hf metals and their manufacture
US5196916A (en) * 1990-02-15 1993-03-23 Kabushiki Kaisha Toshiba Highly purified metal material and sputtering target using the same
US5458697A (en) * 1990-02-15 1995-10-17 Kabushiki Kaisha Toshiba Highly purified metal material and sputtering target using the same
US5679983A (en) * 1990-02-15 1997-10-21 Kabushiki Kaisha Toshiba Highly purified metal material and sputtering target using the same
US5112493A (en) * 1990-12-10 1992-05-12 Westinghouse Electric Corp. Zirconium-hafnium production in a zero liquid discharge process
US5460793A (en) * 1993-05-07 1995-10-24 Japan Energy Corporation Silicide targets for sputtering and method of manufacturing the same
US6352628B2 (en) * 1993-07-27 2002-03-05 Kabushiki Kaisha Toshiba Refractory metal silicide target, method of manufacturing the target, refractory metal silicide thin film, and semiconductor device
US20020194953A1 (en) * 1997-04-30 2002-12-26 Harry Rosenberg Titanium materials
US6723183B2 (en) * 2000-06-19 2004-04-20 Nikko Materials Company, Limited Silicide target for depositing less embrittling gate oxide and method of manufacturing silicide target
US6861030B2 (en) * 2000-10-02 2005-03-01 Nikko Materials Company, Limited Method of manufacturing high purity zirconium and hafnium
US20030062261A1 (en) * 2000-10-02 2003-04-03 Yuichiro Shindo High purity zirconium or hafnium, sputtering target comprising the high purity zirconium of hafnium and thin film formed using the target, and method for producing high purity zirconium or hafnium and method for producing powder of high purity zirconium or hafnium
US7241368B2 (en) * 2001-07-09 2007-07-10 Nippon Mining & Metals Co., Ltd. Hafnium silicide target for gate oxide film formation and its production method
US20040170552A1 (en) * 2001-07-18 2004-09-02 Shuichi Irumata Hafnium silicide target for forming gate oxide film and method for preparation thereof
US6737030B2 (en) * 2002-01-29 2004-05-18 Ati Properties, Inc. Method for separating hafnium from zirconium
US6986834B2 (en) * 2002-08-06 2006-01-17 Nikko Materials Co., Ltd. Hafnium silicide target and manufacturing method for preparation thereof
US20060189164A1 (en) * 2003-03-07 2006-08-24 Nikko Materials Co., Ltd Hafnium alloy target and process for producing the same
US20070018138A1 (en) * 2003-07-25 2007-01-25 Nikko Materials Co.,Ltd. Highly pure hafnium material, target thin film comprising the same and method for producing highly pure hafnium
US20090126529A1 (en) * 2003-07-25 2009-05-21 Nippon Mining & Metals Co., Ltd. Highly Pure Hafnium Material, Target and Thin Film Comprising the Same and Method for Producing Highly Pure Hafnium
US7674441B2 (en) * 2003-07-25 2010-03-09 Nippon Mining & Metals Co., Ltd Highly pure hafnium material, target and thin film comprising the same and method for producing highly pure hafnium
US7964070B2 (en) * 2003-07-25 2011-06-21 Jx Nippon Mining & Metals Corporation Highly pure hafnium material, target thin film comprising the same and method for producing highly pure hafnium
US20060062910A1 (en) * 2004-03-01 2006-03-23 Meiere Scott H Low zirconium, hafnium-containing compositions, processes for the preparation thereof and methods of use thereof
US20060193979A1 (en) * 2004-03-01 2006-08-31 Meiere Scott H Low zirconium, hafnium-containing compositions, processes for the preparation thereof and methods of use thereof
US20090226341A1 (en) * 2005-07-07 2009-09-10 Nippon Mining & Metals Co., Ltd. High-Purity Hafnium, Target and Thin Film Comprising High-Purity Hafnium, and Process for Producing High-Purity Hafnium

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7674446B2 (en) 2001-07-18 2010-03-09 Nippon Mining & Metals Co., Ltd Hafnium silicide target for forming gate oxide film, and method for preparation thereof
US20090194898A1 (en) * 2001-07-18 2009-08-06 Nippon Mining & Metals Co., Ltd. Hafnium Silicide Target for Forming Gate Oxide Film, and Method for Preparation Thereof
US8241438B2 (en) 2003-03-07 2012-08-14 Jx Nippon Mining & Metals Corporation Hafnium alloy target
US20090000704A1 (en) * 2003-03-07 2009-01-01 Nippon Mining & Metals Co., Ltd. Hafnium Alloy Target and Process for Producing the Same
US20090050475A1 (en) * 2003-03-07 2009-02-26 Nippon Mining & Metals Co., Ltd. Hafnium Alloy Target and Process for Producing the Same
US20090057142A1 (en) * 2003-03-07 2009-03-05 Nippon Mining & Metals Co., Ltd. Hafnium Alloy Target and Process for Producing the Same
US8062440B2 (en) 2003-03-07 2011-11-22 Jx Nippon Mining & Metals Corporation Hafnium alloy target and process for producing the same
US7964070B2 (en) 2003-07-25 2011-06-21 Jx Nippon Mining & Metals Corporation Highly pure hafnium material, target thin film comprising the same and method for producing highly pure hafnium
US20070018138A1 (en) * 2003-07-25 2007-01-25 Nikko Materials Co.,Ltd. Highly pure hafnium material, target thin film comprising the same and method for producing highly pure hafnium
US7674441B2 (en) 2003-07-25 2010-03-09 Nippon Mining & Metals Co., Ltd Highly pure hafnium material, target and thin film comprising the same and method for producing highly pure hafnium
US20090126529A1 (en) * 2003-07-25 2009-05-21 Nippon Mining & Metals Co., Ltd. Highly Pure Hafnium Material, Target and Thin Film Comprising the Same and Method for Producing Highly Pure Hafnium
US20060193979A1 (en) * 2004-03-01 2006-08-31 Meiere Scott H Low zirconium, hafnium-containing compositions, processes for the preparation thereof and methods of use thereof
US20090226341A1 (en) * 2005-07-07 2009-09-10 Nippon Mining & Metals Co., Ltd. High-Purity Hafnium, Target and Thin Film Comprising High-Purity Hafnium, and Process for Producing High-Purity Hafnium
US8277723B2 (en) 2005-07-07 2012-10-02 Jx Nippon Mining & Metals Corporation High-purity hafnium, target and thin film comprising high-purity hafnium, and process for producing high-purity hafnium
US20110300017A1 (en) * 2009-01-29 2011-12-08 Jx Nippon Mining & Metals Corporation Method for Manufacturing High-Purity Erbium, High-Purity Erbium, Sputtering Target Composed of High-Purity Erbium, and Metal Gate Film having High-Purity Erbium as Main Component
TWI485263B (zh) * 2009-01-29 2015-05-21 Jx Nippon Mining & Metals Corp High purity erbium, a high purity erbium, a sputtering target composed of high purity erbium, and a metal gate film containing high purity erbium as the main component
CN102471828A (zh) * 2009-07-15 2012-05-23 株式会社神户制钢所 合金铸锭的制造方法
US8496046B2 (en) 2009-07-15 2013-07-30 Kobe Steel. Ltd. Method for producing alloy ingot
RU2494158C1 (ru) * 2009-07-15 2013-09-27 Кабусики Кайся Кобе Сейко Се Способ получения слитка сплава
US9834830B2 (en) 2011-12-20 2017-12-05 Kabushiki Kaisha Toshiba Tungsten alloy, tungsten alloy part, discharge lamp, transmitting tube, and magnetron
US10167536B2 (en) 2011-12-20 2019-01-01 Kabushiki Kaisha Toshiba Tungsten alloy, tungsten alloy part, discharge lamp, transmitting tube, and magnetron
US10395879B2 (en) 2012-05-29 2019-08-27 Kabushiki Kaisha Toshiba Tungsten alloy part, and discharge lamp, transmitting tube, and magnetron using the same
US10998157B2 (en) 2012-05-29 2021-05-04 Kabushiki Kaisha Toshiba Tungsten alloy part, and discharge lamp, transmitting tube, and magnetron using the same

Also Published As

Publication number Publication date
EP1686196B1 (en) 2009-04-29
KR100766275B1 (ko) 2007-10-15
JP5406104B2 (ja) 2014-02-05
DE602004020916D1 (de) 2009-06-10
EP2017360B1 (en) 2012-08-08
TW200521255A (en) 2005-07-01
JP4749862B2 (ja) 2011-08-17
EP2017360A3 (en) 2009-08-05
EP2017360A2 (en) 2009-01-21
WO2005049882A1 (ja) 2005-06-02
JPWO2005049882A1 (ja) 2008-06-12
EP1686196A1 (en) 2006-08-02
CN1882711B (zh) 2010-05-12
TWI275653B (en) 2007-03-11
CN101760647A (zh) 2010-06-30
CN1882711A (zh) 2006-12-20
JP2010196172A (ja) 2010-09-09
KR20060101526A (ko) 2006-09-25
EP1686196A4 (en) 2007-04-25

Similar Documents

Publication Publication Date Title
JP5406104B2 (ja) 高純度ハフニウムの製造方法
US7674441B2 (en) Highly pure hafnium material, target and thin film comprising the same and method for producing highly pure hafnium
US8277723B2 (en) High-purity hafnium, target and thin film comprising high-purity hafnium, and process for producing high-purity hafnium
KR100438670B1 (ko) 탄탈륨 스퍼터링 타겟 및 그의 제조 방법
KR20160125537A (ko) 고순도 망간

Legal Events

Date Code Title Description
AS Assignment

Owner name: NIKKO MATERIALS CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SHINDO, YUCHIRO;REEL/FRAME:017851/0062

Effective date: 20060421

AS Assignment

Owner name: NIPPON MINING & METALS CO., LTD., JAPAN

Free format text: CHANGE OF NAME;ASSIGNOR:NIKKO MATERIALS CO., LTD.;REEL/FRAME:018560/0126

Effective date: 20060403

Owner name: NIPPON MINING & METALS CO., LTD.,JAPAN

Free format text: CHANGE OF NAME;ASSIGNOR:NIKKO MATERIALS CO., LTD.;REEL/FRAME:018560/0126

Effective date: 20060403

AS Assignment

Owner name: NIPPON MINING HOLDINGS, INC., JAPAN

Free format text: MERGER;ASSIGNOR:NIPPON MINING & METALS CO., LTD.;REEL/FRAME:025115/0062

Effective date: 20100701

AS Assignment

Owner name: JX NIPPON MINING & METALS CORPORATION, JAPAN

Free format text: CHANGE OF NAME;ASSIGNOR:NIPPON MINING HOLDINGS, INC.;REEL/FRAME:025123/0358

Effective date: 20100701

STCB Information on status: application discontinuation

Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION