US20060119366A1 - System for inspection of a disk-shaped object - Google Patents

System for inspection of a disk-shaped object Download PDF

Info

Publication number
US20060119366A1
US20060119366A1 US11/289,022 US28902205A US2006119366A1 US 20060119366 A1 US20060119366 A1 US 20060119366A1 US 28902205 A US28902205 A US 28902205A US 2006119366 A1 US2006119366 A1 US 2006119366A1
Authority
US
United States
Prior art keywords
disc
shaped object
front side
back side
detector element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/289,022
Other languages
English (en)
Inventor
Thomas Iffland
Joachim Wienecke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KLA Tencor MIE Jena GmbH
Original Assignee
Leica Microsystems Jena GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leica Microsystems Jena GmbH filed Critical Leica Microsystems Jena GmbH
Assigned to LEICA MICROSYSTEMS JENA GMBH reassignment LEICA MICROSYSTEMS JENA GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: IFFLAND, THOMAS, WIENECKE, DR. JOACHIM
Publication of US20060119366A1 publication Critical patent/US20060119366A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67288Monitoring of warpage, curvature, damage, defects or the like
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/9501Semiconductor wafers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • G01N2021/8841Illumination and detection on two sides of object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/9501Semiconductor wafers
    • G01N21/9503Wafer edge inspection

Definitions

  • the invention relates to a device for inspecting the front side and the back side of a semiconductor substrate.
  • wafers are processed sequentially in a multiplicity of processing steps during the production process.
  • the quality requirements for structures applied to the wafers increase with increasing integration density.
  • the front side of the wafer is the side to which the various structures are applied.
  • German patent DE 100 53 232 C2 discloses a substrate feed module for feeding substrates to a workstation.
  • the substrate feed module is surrounded by side walls and has connector elements that interact with the corresponding connector elements in the workstation.
  • German published application DE 101 03 253 A1 discloses a method and an arrangement for transporting and inspecting semiconductor substrates.
  • the arrangement for transporting and inspecting semiconductor substrates comprises at least three workstations in a housing.
  • One workstation is a transfer position of a transfer unit for semiconductor substrates; another workstation is a macroinspection device, and a further workstation is a microinspection device.
  • German published application DE 101 21 115 A1 discloses a holding apparatus for a wafer.
  • the holding apparatus possesses two grippers that in their closed state surround the edge of the wafer. The front side and back side of the wafer are therefore not covered.
  • the holding apparatus can be swiveled, which enables visual inspection of the back side of the wafer.
  • German published application DE 103 07 373 A1 discloses a method and an apparatus for inspecting semiconductor wafers, taking die-saw designs into consideration.
  • An image of the entire wafer can be constructed from a multiplicity of individual images.
  • the size of the image field of the camera is selected such that the current die/saw design is taken into account.
  • U.S. Pat. No. 6,559,938 B1 discloses a device for simultaneously inspecting for defects on the front side and the back side of a wafer.
  • the wafer lies on a table that exhibits an open channel that in its length corresponds to the diameter of the wafer.
  • a detector moves in the channel, and simultaneously takes an image of a part of the wafer.
  • the wafer can be rotated on the table. The friction between the table and the wafer is minimized by corresponding air bearings. Simultaneous imaging or inspection of the entire surface of the front side and the back side of the wafer is not possible with this apparatus.
  • U.S. Pat. No. 6,747,464 B1 discloses a wafer holder with which the back side of the wafer can be observed, and measurements can be taken on the front side of the wafer.
  • the wafer holder may be used in machines for automatically inspecting a wafer.
  • the wafer holder is implemented such that the front side and the back side of the wafer are almost completely accessible from both sides. Simultaneous imaging of the front side and the back side of the wafer is not possible with the wafer holder.
  • US patent application 2004/0087146 discloses a ring-shaped wafer holder.
  • the wafer holder possesses a bracket for the wafer and is open at the top such that the wafer can be completely inspected from one side.
  • the wafer rests with its other side on a crib that is implemented with an inspection window through which a fraction of the side of the wafer that lies on the crib can be inspected. Simultaneous and complete inspection of the front side and the back side of the wafer is not possible with this wafer holder.
  • the object underlying the invention is to create a system that makes possible effective imaging of the front side and the back side of a disc-shaped object, whereby the footprint of the system is also reduced.
  • This object is solved by a system comprising a loading unit for disc-shaped objects and a device to simultaneously image the front side and the back side of the disc-shaped object.
  • the system for inspecting a disc-shaped object comprises a loading unit for disc-shaped objects and a device for simultaneous imaging of the front side and back side of the disc-shaped object.
  • system may comprise a device for microinspection of the disc-shaped objects in addition to the loading unit and the device for simultaneous imaging of the front side and back side of the disc-shaped object.
  • a transport robot is also provided in the loading unit of this system, which transports the disc-shaped object from and to at least one FOUP, from and to the device for simultaneously imaging the front side and back side of the disc-shaped object, and from and to the device for microinspection of the disc-shaped object.
  • the device for microinspection of the disc-shaped object comprises a transfer position for the disc-shaped objects from the transport robot to a three-paddle handler, and that the three-paddle handler then transports the disc-shaped objects to a pre-aligner and a microinspection element.
  • a transport robot is provided in the loading unit, which transports the disc-shaped object from and to the FOUPs and from and to the device for simultaneously imaging the front side and back side of the disc-shaped object.
  • the device for imaging the front side and back side of the disc-shaped object comprises an optical alignment.
  • An device that comprises a detection unit for inspection of the front side and back side of a disc-shaped object is provided in the system.
  • the detection unit comprises a first detector element facing the front side of the disc-shaped object and a second detector element facing the back side of the disc-shaped object.
  • a means is provided for generating a relative movement between the detection unit and the disc-shaped object such that an image is made of the front side and the back side of the disc-shaped object.
  • the disc-shaped object may be a wafer on a semiconductor substrate or on a glass substrate, or a mask for lithography, or a flat-panel display.
  • the first and the second detector element is a linear detector with integrated optic and an integrated light source.
  • the means for generating relative movement between the detection unit and the disc-shaped object is a movement device, whereby the first and a second detector element are attached to the movement device, which moves the first and the second detector element along the top and bottom of the disc-shaped object when the disc-shaped object is fixed in place.
  • the first and the second detector element is a linear detector with an integrated optic, whereby an external light source is provided for the two-dimensional object.
  • the light source is fixed in place and the light glances off the wafer.
  • the first and the second detector element have at least the same width as the two-dimensional object.
  • FIG. 1 a schematic view of a first embodiment of the system, comprising a micro-inspection and a macroinspection device;
  • FIG. 2 a schematic view of a second embodiment of the system, comprising a macroinspection device with a pre-aligner;
  • FIG. 3 a schematic view of a third embodiment of the system, comprising a macroinspection device with an optical alignment
  • FIG. 4 a schematic top view of an element of the system for simultaneously inspecting the front side and the back side of a disc-shaped object
  • FIG. 5 a schematic lateral view of the system for simultaneously inspecting the front side and the back side of a disc-shaped object
  • FIG. 6 a top view of a first embodiment of a detector element for the detector unit
  • FIG. 7 a top view of a second embodiment of a detector element for the detector unit
  • FIG. 8 a lateral view of a linear detector
  • FIG. 9 a lateral view of a further embodiment of the construction of an element of the system for simultaneously inspecting the front side and the back side of a disc-shaped object, whereby the light source is implemented externally.
  • FIG. 1 shows a schematic view of a first embodiment of the system 100 , comprising a microinspection device 101 and a macroinspection device 102 .
  • the macroinspection device 102 is implemented as a module and can therefore be quickly and easily connected to the system.
  • the front side and the back side 2 , 3 of a disc-shaped object 4 (see FIG. 4 ) are imaged in the macroinspection device 102 .
  • the system is provided with at least one FOUP 103 via which the disc-shaped object 4 is fed into and transported away from the system.
  • the system is provided with a handler 104 that takes the disc-shaped objects 4 out of the FOUPs 103 and places them in the FOUPs 103 , or transfers them to the macroinspection device 102 or to the three-paddle handler 105 .
  • the system represented in FIG. 1 comprises a first transfer position, a second transfer position, and a third transfer position.
  • the three-paddle handler 105 receives the disc-shaped object 4 from the handler 104 .
  • a pre-aligner 106 receives the disc-shaped object 4 from the three-paddle handler 105 .
  • the microinspection device 101 receives the disc-shaped object 4 from the three-paddle handler 105 .
  • FIG. 2 shows a schematic view of a second embodiment of the system 200 , comprising a macroinspection device 102 with a pre-aligner 106 .
  • the system comprises a pre-aligner 106 in which mechanical alignment is carried out.
  • the macroinspection device 102 has a device for simultaneously imaging the front side and back side of the disc-shaped object.
  • the disc-shaped object can be oriented such that imaging by the device occurs at a right angle to the structural edges of the disc-shaped object.
  • the disc-shaped objects can be placed in various orientations in the minimum of one FOUP 103 that can be connected to the system 200 .
  • FIG. 3 shows a schematic view of a third embodiment of the system 300 , comprising a macroinspection device 102 with an optical alignment.
  • Optical alignment occurs by means of graphic analysis of the captured image.
  • the image of the front side and the back side of the disc-shaped object is taken with the device as described in FIG. 4 . Higher throughput can be achieved by this method, and the costs for the entire system reduced.
  • FIG. 4 shows a schematic top view of the construction of a device 14 (see FIG. 5 ) of a disc-shaped object for simultaneously inspecting the front side and the backside 2 , 3 .
  • FIG. 5 represents a lateral view of the construction of the apparatus for simultaneously inspecting the front side and the back side 2 , 3 of the disc-shaped object 4 .
  • the device 1 comprises a detection unit 5 .
  • the detection unit 5 comprises a detector element 6 facing the front side 2 and a detector element 7 facing the back side 3 of the disc-shaped object 4 .
  • a means 8 is provided for generating a relative movement between the detection unit 5 and the disc-shaped object 4 .
  • the detection unit 5 creates an image of the front side and the back side 2 , 3 of the disc-shaped object 4 .
  • the direction of the relative movement is indicated in FIG. 1 with a double arrow 10 .
  • the disc-shaped object 4 can be a wafer on a semiconductor substrate, or a wafer on a glass substrate, or a mask for lithography, or a flat-panel display.
  • a crib is provided that fixes in place the disc-shaped object 4 .
  • the edge grip system 11 makes the front side and the back side of the disc-shaped object 4 accessible for optical inspection.
  • the first detector element 6 and the second detector element 7 are at least as wide as the disc-shaped object 4 .
  • the means 8 for generating the relative movement between the detection unit 5 and the disc-shaped object 4 is a movement device that can, for example, be implemented as a carriage.
  • the first detector element 6 and the second detector element 7 are attached to the movement device.
  • the first detector element 6 and a second detector element 7 may be moved simultaneously along the top and bottom of disc-shaped object 4 when the disc-shaped object 4 is fixed in place.
  • FIG. 6 is a top view of a first embodiment of a detector element 6 , 7 for the detection unit 5 .
  • the detector element 6 , 7 has a largely linear form.
  • the detector element 6 , 7 comprises at least one linear arrangement 15 of individual detectors 20 .
  • the detector element 6 , 7 is also provided with a light source that is arranged parallel to the linear arrangement.
  • the light source 18 may consist of an array of several diodes 19 .
  • a suitably dimensioned surface emitter is also conceivable as the light source 18 .
  • FIG. 7 is a top view of a second embodiment of a detector element 6 , 7 for the detection unit 5 .
  • the detector element 6 , 7 has a largely linear form.
  • the detector element 6 , 7 comprises at least one linear arrangement 15 of individual detectors 20 .
  • the detector element 6 , 7 is also provided with a light source that is arranged parallel to the linear arrangement.
  • the light source 18 may consist of an array of several diodes 19 .
  • a suitably dimensioned surface emitter is also conceivable as the light source 18 .
  • FIG. 8 shows a lateral view of the detector element 6 , 7 .
  • the first and the second detector element 6 , 7 comprise a linear arrangement 15 of detectors 20 having at least one integrated optic 22 for imaging the front side and the back side 2 , 3 of a disc-shaped object 4 .
  • the first and the second detector element 6 , 7 may be implemented with an integrated light source 18 .
  • FIG. 9 shows a lateral view of a further embodiment of the construction of the apparatus for simultaneous inspection of the front side and back side 2 , 3 of a disc-shaped object 4 , whereby the light source 18 is provided externally.
  • the light source 18 is fixed in place and emits a two-dimensional light beam 25 that glances off the front side and the back side 2 , 3 of the disc-shaped object 4 .
US11/289,022 2004-12-02 2005-11-29 System for inspection of a disk-shaped object Abandoned US20060119366A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004058128A DE102004058128B4 (de) 2004-12-02 2004-12-02 System zur Inspektion eines scheibenförmigen Objekts
DEDE102004058128.2 2004-12-02

Publications (1)

Publication Number Publication Date
US20060119366A1 true US20060119366A1 (en) 2006-06-08

Family

ID=36441645

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/289,022 Abandoned US20060119366A1 (en) 2004-12-02 2005-11-29 System for inspection of a disk-shaped object

Country Status (2)

Country Link
US (1) US20060119366A1 (de)
DE (1) DE102004058128B4 (de)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060119367A1 (en) * 2004-12-02 2006-06-08 Leica Microsystems Jena Gmbh Apparatus for Inspecting the front side and backside of a disk-shaped object
US20080204738A1 (en) * 2007-02-28 2008-08-28 Vistec Semiconductor Systems Gmbh Method for acquiring high-resolution images of defects on the upper surface of the wafer edge
US20080232672A1 (en) * 2007-03-19 2008-09-25 Vistec Semiconductor Systems Gmbh Device and method for evaluating defects in the edge area of a wafer and use of the device in inspection system for wafers
US20090086483A1 (en) * 2007-10-02 2009-04-02 Vistec Semiconductor System Gmbh Illumination means and inspection means having an illumination means
US20100226042A1 (en) * 2007-09-04 2010-09-09 Hoya Corporation Magnetic disk substrate
WO2011006687A1 (de) 2009-07-16 2011-01-20 Hseb Dresden Gmbh Inspektionssystem
US20130021465A1 (en) * 2007-09-22 2013-01-24 Dynamic Micro Systems, Semiconductor Equipment Gmbh Simultaneous wafer ID reading

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9355919B2 (en) 2010-08-24 2016-05-31 Nanda Technologies Gmbh Methods and systems for inspecting bonded wafers

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020018217A1 (en) * 2000-08-11 2002-02-14 Michael Weber-Grabau Optical critical dimension metrology system integrated into semiconductor wafer process tool
US6559938B1 (en) * 1998-09-22 2003-05-06 Kla-Tencor Corporation Backside contamination inspection device
US6630996B2 (en) * 2000-11-15 2003-10-07 Real Time Metrology, Inc. Optical method and apparatus for inspecting large area planar objects
US20040078114A1 (en) * 2002-10-21 2004-04-22 Cordell Andrew W. Robot with tactile sensor device
US20040087146A1 (en) * 2002-10-31 2004-05-06 Strasbaugh, A California Corporation Method of preparing whole semiconductor wafer for analysis
US6747464B1 (en) * 2001-06-21 2004-06-08 Lsi Logic Corporation Wafer holder for backside viewing, frontside probing on automated wafer probe stations
US20040156539A1 (en) * 2003-02-10 2004-08-12 Asm Assembly Automation Ltd Inspecting an array of electronic components
US20040202362A1 (en) * 2001-04-13 2004-10-14 Shinichi Ishikawa Wafer carrying robot teaching method and teaching plate

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10121115A1 (de) * 2001-04-28 2002-10-31 Leica Microsystems Haltevorrichtung für Wafer
DE10121044B4 (de) * 2001-04-28 2011-03-03 Vistec Semiconductor Systems Jena Gmbh Anordnung zur Waferinspektion
KR100452317B1 (ko) * 2001-07-11 2004-10-12 삼성전자주식회사 포토리소그래피 공정시스템 및 그 방법
DE10303459A1 (de) * 2003-01-29 2004-08-19 Infineon Technologies Ag Verfahren und Vorrichtung zum Kontrollieren des Randes eines scheibenförmigen Gegenstandes

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6559938B1 (en) * 1998-09-22 2003-05-06 Kla-Tencor Corporation Backside contamination inspection device
US20020018217A1 (en) * 2000-08-11 2002-02-14 Michael Weber-Grabau Optical critical dimension metrology system integrated into semiconductor wafer process tool
US6630996B2 (en) * 2000-11-15 2003-10-07 Real Time Metrology, Inc. Optical method and apparatus for inspecting large area planar objects
US20040202362A1 (en) * 2001-04-13 2004-10-14 Shinichi Ishikawa Wafer carrying robot teaching method and teaching plate
US6747464B1 (en) * 2001-06-21 2004-06-08 Lsi Logic Corporation Wafer holder for backside viewing, frontside probing on automated wafer probe stations
US20040078114A1 (en) * 2002-10-21 2004-04-22 Cordell Andrew W. Robot with tactile sensor device
US20040087146A1 (en) * 2002-10-31 2004-05-06 Strasbaugh, A California Corporation Method of preparing whole semiconductor wafer for analysis
US20040156539A1 (en) * 2003-02-10 2004-08-12 Asm Assembly Automation Ltd Inspecting an array of electronic components

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060119367A1 (en) * 2004-12-02 2006-06-08 Leica Microsystems Jena Gmbh Apparatus for Inspecting the front side and backside of a disk-shaped object
US20080204738A1 (en) * 2007-02-28 2008-08-28 Vistec Semiconductor Systems Gmbh Method for acquiring high-resolution images of defects on the upper surface of the wafer edge
US7768637B2 (en) 2007-02-28 2010-08-03 Vistec Semiconductor Systems Gmbh Method for acquiring high-resolution images of defects on the upper surface of the wafer edge
US8089622B2 (en) 2007-03-19 2012-01-03 Vistec Semiconductor Systems Gmbh Device and method for evaluating defects in the edge area of a wafer and use of the device in inspection system for wafers
US20080232672A1 (en) * 2007-03-19 2008-09-25 Vistec Semiconductor Systems Gmbh Device and method for evaluating defects in the edge area of a wafer and use of the device in inspection system for wafers
US20100226042A1 (en) * 2007-09-04 2010-09-09 Hoya Corporation Magnetic disk substrate
US10096500B2 (en) * 2007-09-22 2018-10-09 Brooks Automation Germany Gmbh Simultaneous wafer ID reading
US20130021465A1 (en) * 2007-09-22 2013-01-24 Dynamic Micro Systems, Semiconductor Equipment Gmbh Simultaneous wafer ID reading
US20090086483A1 (en) * 2007-10-02 2009-04-02 Vistec Semiconductor System Gmbh Illumination means and inspection means having an illumination means
US8087799B2 (en) 2007-10-02 2012-01-03 Vistec Semiconductor Systems Gmbh Illumination means and inspection means having an illumination means
DE102009026187A1 (de) 2009-07-16 2011-01-27 Hseb Dresden Gmbh Inspektionssystem
US8817089B2 (en) 2009-07-16 2014-08-26 Hseb Dresden Gmbh Inspection system
WO2011006687A1 (de) 2009-07-16 2011-01-20 Hseb Dresden Gmbh Inspektionssystem

Also Published As

Publication number Publication date
DE102004058128B4 (de) 2008-05-15
DE102004058128A1 (de) 2006-06-08

Similar Documents

Publication Publication Date Title
US20060119366A1 (en) System for inspection of a disk-shaped object
KR102138347B1 (ko) 자동화된 검사 툴
US10872794B2 (en) Automatic in-line inspection system
US8863373B2 (en) Apparatus and method of application and development
TW201603101A (zh) 檢查裝置
JP4668809B2 (ja) 表面検査装置
CN109427609B (zh) 半导体晶片在线检验的系统及方法
CN117192342B (zh) 探针台
JP2012094770A (ja) 検査装置および基板の位置決め方法
JP2008210951A (ja) 位置検出装置および位置検出方法
WO2010014041A1 (en) Method and system for detecting micro-cracks in wafers
US7280197B1 (en) Wafer edge inspection apparatus
US9570334B2 (en) Method and system for positioning wafer in semiconductor manufacturing fabrication
JP2016065739A (ja) 欠陥検査装置及び欠陥検査方法
TW201637063A (zh) 檢查裝置
US20060119367A1 (en) Apparatus for Inspecting the front side and backside of a disk-shaped object
JP2011119636A (ja) ウェハ搬送検査機台及びウェハ搬送検査方法
KR102136084B1 (ko) 웨이퍼의 에지 영역 검사 시스템
JP2004281430A (ja) 紫外線照射方法およびそれを用いた装置
JP2018128339A (ja) 半導体ウェハの表面検査装置及び半導体ウェハの表面検査方法
JPH10242233A (ja) 半導体製造方法
JP2017069370A (ja) 搬送機構
US20060238920A1 (en) Transportation system for a disk-like object and system for inspecting disk-like object
KR20100042340A (ko) 반도체 웨이퍼 후면 검사 장치 및 검사 방법
JP3931121B2 (ja) 被検査品の外観検査方法

Legal Events

Date Code Title Description
AS Assignment

Owner name: LEICA MICROSYSTEMS JENA GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:IFFLAND, THOMAS;WIENECKE, DR. JOACHIM;REEL/FRAME:016876/0712

Effective date: 20051104

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION