US20050249909A1 - Wafer-adhering adhesive tape - Google Patents

Wafer-adhering adhesive tape Download PDF

Info

Publication number
US20050249909A1
US20050249909A1 US11/184,001 US18400105A US2005249909A1 US 20050249909 A1 US20050249909 A1 US 20050249909A1 US 18400105 A US18400105 A US 18400105A US 2005249909 A1 US2005249909 A1 US 2005249909A1
Authority
US
United States
Prior art keywords
radiation
adhesive layer
wafer
curable
adhesive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/184,001
Other languages
English (en)
Inventor
Yasumasa Morishima
Kenji Kita
Shinichi Ishiwata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Assigned to FURUKAWA ELECTRIC CO., LTD., THE reassignment FURUKAWA ELECTRIC CO., LTD., THE ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MORISHIMA, YASUMASA, ISHIWATA, SHINICHI, KITA, KENJI
Publication of US20050249909A1 publication Critical patent/US20050249909A1/en
Priority to US12/058,170 priority Critical patent/US8722184B2/en
Abandoned legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/52Mounting semiconductor bodies in containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L21/6836Wafer tapes, e.g. grinding or dicing support tapes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/38Pressure-sensitive adhesives [PSA]
    • C09J7/381Pressure-sensitive adhesives [PSA] based on macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C09J7/385Acrylic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/326Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67132Apparatus for placing on an insulating substrate, e.g. tape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68327Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used during dicing or grinding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/14Layer or component removable to expose adhesive
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/14Layer or component removable to expose adhesive
    • Y10T428/1462Polymer derived from material having at least one acrylic or alkacrylic group or the nitrile or amide derivative thereof [e.g., acrylamide, acrylate ester, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
    • Y10T428/24364Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.] with transparent or protective coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
    • Y10T428/24926Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.] including ceramic, glass, porcelain or quartz layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/28Web or sheet containing structurally defined element or component and having an adhesive outermost layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/28Web or sheet containing structurally defined element or component and having an adhesive outermost layer
    • Y10T428/2809Web or sheet containing structurally defined element or component and having an adhesive outermost layer including irradiated or wave energy treated component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/28Web or sheet containing structurally defined element or component and having an adhesive outermost layer
    • Y10T428/2852Adhesive compositions

Definitions

  • the present invention relates to an adhesive tape that is provided with a removable adhesive agent layer on one side of a base film.
  • An assembling process of a semiconductor device comprises the steps of: cutting and separating (dicing) a semiconductor wafer and the like into respective chips, after patterning; mounting the chips on a substrate or the like; and sealing them with a resin or the like.
  • a semiconductor wafer is adhered and fixed by an adhesive tape in advance, and then it is diced along a chip shape.
  • the chip is peeled off (picked up) from the adhesive tape and then fixed on a substrate or the like with an adhesive agent for adhering and fixing.
  • the tapes used for the above purposes include a usual pressure-sensitive adhesive-type tape, and a tape having a reduced adhesive force when it is hardened or cured by radiation, such as ultraviolet (UV) rays, electronic rays, and the like. Both of these types of tapes are required to have sufficient adhesive force so that the tape is not peeled off from the wafer upon dicing, and they are also required to have peeling capability to be easily peeled off from the wafer upon picking up.
  • UV ultraviolet
  • These adhesive tapes enable a so-called direct die bonding for, after dicing, picking up a chip with a removable adhesive layer adhered on the rear side of the chip, mounting the chip on a substrate or the like, and curing and adhering the chip by heating or the like.
  • the coating process of an adhesive can be omitted.
  • the removable adhesion agent or adhesive agent used for these adhesive tapes is in a coating liquid state with low viscosity and low wettability to a tape base, and thus it has the problem of poor yield. Further, the above adhesion or adhesive agent is low in adhesion strength, compared with an existing adhesive or bonding agent for die bonding. Thus it is difficult to obtain reliability from the above adhesion or adhesive agent.
  • the laminate-type tape As means to obtain adhesion reliability and provide dicing performance, it is proposed to use a laminate of a die bonding adhesive layer and a dicing tape.
  • this laminate-type tape has the problem that it is difficult to control the peeling ability between the adhesive and the dicing tape.
  • a die bonding adhesive with high adhesion reliability generally requires heat adhesion upon temporarily fixing it to a wafer.
  • the laminate-type tape has the problem of increase of peeling ability between the dicing tape and the die-bonding-sheet adhesive layer due to such a heat adhesion, thereby causing a raise of the pickup failure ratio after the dicing.
  • a die bond sheet is heat-adhered to a wafer in-advance, and a dicing tape is laminated to the die bonding adhesive layer adhered to the wafer, before use.
  • a surface protective tape for back-grinding is usually bonded to a side of the wafer on which no die bonding sheet or dicing tape is bonded.
  • the heating temperature is generally about 40° C. or more, for example, about 60° C. Similarly to the above, this causes the problem of increased peeling force between the die bonding adhesive layer and the dicing tape.
  • the present invention resides in a wafer-adhering adhesive tape, which has a radiation-curable removable adhesive layer on a surface of a base, wherein the radiation-curable removable adhesive layer is mainly composed of an acrylic-series copolymer having, in a principal chain, at least a radiation-curable carbon-carbon double bond containing group, a hydroxyl group, and a group containing a carboxyl group, respectively, and the radiation-curable removable adhesive layer has a gel fraction of 60% or greater.
  • the present invention resides in a wafer-adhering adhesive tape, which has a radiation-curable removable adhesive layer and a die-bonding adhesive layer, in this order, on a surface of a base, wherein the radiation-curable removable adhesive layer is mainly composed of an acrylic-series copolymer having, in a principal chain, at least a radiation-curable carbon-carbon double bond containing group, a hydroxyl group, and a group containing a carboxyl group, respectively, and the radiation-curable removable adhesive layer has a gel fraction of 60% or greater.
  • the term “being mainly composed of” means that a main component of a removable adhesive component in the radiation-curable removable adhesive layer, which layer is comprised of the removable adhesive component, a hardening agent and a polymerization initiator, is the acrylic-series copolymer having a carbon-carbon double bond containing group, a hydroxyl group, and a carboxyl group, respectively.
  • 60% by mass or more of the radiation-curable removable adhesive layer is generally composed of the acrylic-series copolymer having a carbon-carbon double bond containing group, a hydroxyl group, and a carboxyl group, respectively.
  • the “removable adhesive” means an agent capable of adhering and being removed after treatment such as curing, while an “adhesive” means an agent capable of adhering only.
  • the “radiation-curable removable adhesive” means a removable adhesive capable of being removed or pealed off by hardening by irradiation of radiation such as UV, after application of the removable adhesive to a wafer and the like.
  • an adhesive tape that comprises an adhesive or adhesion composition, which is mainly composed of an acrylic-series polymer having at least a radiation-curable carbon-carbon double bond containing group, a hydroxyl group, and a group containing a carboxyl group, respectively, in a principal chain, and which composition has a gel fraction of 60% or greater; and, if necessary, further laminating a die-bonding adhesive layer with the above adhesive tape.
  • an adhesive tape that comprises an adhesive or adhesion composition, which is mainly composed of an acrylic-series polymer having at least a radiation-curable carbon-carbon double bond containing group, a hydroxyl group, and a group containing a carboxyl group, respectively, in a principal chain, and which composition has a gel fraction of 60% or greater; and, if necessary, further laminating a die-bonding adhesive layer with the above adhesive tape.
  • the present invention has been accomplished based on this finding.
  • the wafer adhering adhesive tape of the present invention can be made by forming a radiation curable removable adhesive layer on a base surface, in which the removable adhesive layer is mainly composed of the acrylic-series copolymer having at least a radiation curable carbon-carbon double bond containing group, a hydroxyl group and a carboxyl group-containing group, respectively, in the principal chain, and in which the adhesive layer has a gel fraction of 60% or greater.
  • a die-bonding adhesive layer may be form on the base surface, and it is preferred to form the radiation curable removable adhesive layer and the die-bonding adhesive layer, in order, on the base surface.
  • the acrylic-series copolymer (hereinafter, referred to as “acrylic copolymer (A)”) having at least a radiation curable carbon-carbon double bond containing group, a hydroxyl group, and a group containing a carboxyl group, respectively, in the principal chain, which copolymer can be used in the present invention, may be any one prepared by any manner.
  • the acrylic copolymer (A) can be obtained, by subjecting a copolymer (A1), which comprises a (meth)acrylic acid ester, a hydroxyl group-containing unsaturated compound, a carboxyl group-containing unsaturated compound, and the like, to addition reaction with a compound (A2) that has a functional group addition-reactive to a functional group in the copolymer (A1) and that has a carbon-carbon double bond, in which a carbon chain of the copolymer (A1) is to be a principal chain.
  • a copolymer (A1) which comprises a (meth)acrylic acid ester, a hydroxyl group-containing unsaturated compound, a carboxyl group-containing unsaturated compound, and the like.
  • a compound (A2) that has a functional group addition-reactive to a functional group in the copolymer (A1) and that has a carbon-carbon double bond, in which a carbon chain of the copolymer (A1) is to be
  • the (meth)acrylic acid ester included are, for example, hexyl acrylate, n-octyl acrylate, isooctyl acrylate, 2-ethylhexyl acrylate, dodecyl acrylate, decyl acrylate, each having 6 to 12 carbon atoms, or monomers having 5 or less carbon atoms, such as pentyl acrylate, n-butyl acrylate, isobutyl acrylate, ethyl acrylate, and methyl acrylate, or methacrylates like these.
  • the glass transition temperature becomes lower, thereby enabling manufacture of monomers of a desired transition temperature.
  • a low molecular compound having a carbon-carbon double bond such as vinyl acetate, styrene, and acrylonitrile, can be blended within the range of 5% by mass or less.
  • hydroxyl group-containing unsaturated compound examples include 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl acrylate, 2-hydroxypropyl methacrylate, and the like.
  • carboxyl group-containing unsaturated compound examples include acrylic acid, methacrylic acid, and the like.
  • the functional group in the above-described compound (A2) having an addition reactive functional group and a carbon-carbon double bond in a case that the functional group in the copolymer (A1) is a carboxyl group or a cyclic acid anhydride group, included are a hydroxyl group, an epoxy group, an isocyanato group, and the like; or in a case that the functional group in the copolymer (A1) is a hydroxyl group, included are a cyclic acid anhydride group, an isocyanato group, and the like; or in a case that the functional group in the copolymer (A1) is an amino group, included is an isocyanato group, and the like.
  • the compound (A2) include acrylic acid, methacrylic acid, cinnamic acid, itaconic acid, fumaric acid, phthalic acid, 2-hydroxyalkyl acrylates, 2-hydroxyalkyl methacrylates, glycol monoacrylates, glycol monomethacrylates, N-methylol acrylamide, N-methylol methacrylamide, allyl alcohol, N-alkylaminoethyl acrylates, N-alkylaminoethyl methacrylates, acrylamides, methacrylamides, maleic anhydride, itaconic anhydride, fumaric anhydride, phthalic anhydride, glycidyl acrylate, glycidyl methacrylate, allyl glycidyl ether, and polyisocyanate compounds in which isocyanato groups are partially urethanated with a monomer having a hydroxyl group or carboxyl group and a photopolymerizable carbon-carbon double bond.
  • a ketone-series, ester-series, alcohol-series, or aromatic-series solvent can be used as an organic solvent.
  • a preferable solvent is a usual good solvent for an acrylic-series polymer, which solvent has a boiling point of 60 to 120° C.
  • the preferable solvent include toluene, ethyl acetate, isopropyl alcohol, benzene methylcellosolve, ethylcellosolve, acetone, methyl ethyl ketone, and the like.
  • a polymerization initiator use may be generally made of a radical generating agent of azobis-series, such as ⁇ , ⁇ ′-azobisisobutyronitrile, and organic peroxide-series, such as benzoylperoxide.
  • a catalyst a polymerization inhibitor can be optionally added, if necessary.
  • an acrylic-series copolymer (A) with a desired molecular weight, by controlling a polymerization temperature and a polymerization time, and then carrying out an addition reaction at a functional group.
  • the control of the molecular weight it is preferred to use a mercaptan-series or carbon tetrachloride-series solvent.
  • this copolymerization is not limited to a solution polymerization, but it may also be performed in other ways such as bulk polymerization, suspension polymerization, and the like.
  • the acrylic-series copolymer (A) can be obtained.
  • the mass average molecular weight of the acrylic-series copolymer (A) is preferably about 300,000 to about 1,000,000. If the molecular weight is too small, the cohesive force by irradiation of a radiation becomes lesser, thus a misalignment of elements (chips) may occur easily upon dicing the wafer, and image recognition may be difficult. Further, to prevent this misalignment of elements as much as possible, it is preferable that the molecular weight is 400,000 or more. If the molecular weight is too large, there is a possibility of gelation upon synthesis and coating.
  • the molecular weight in the present invention means a mass average molecular weight in terms of polystyrene.
  • an amount to be introduced of a photopolymerizable carbon-carbon double bond in the acrylic-series copolymer (A) may be varied according, for example, to use conditions thereof such as a UV irradiation amount and the like, and it is not limited, as long as it reaches an amount to give the effect of sufficiently lowering the adhesive force after radiation curing.
  • the amount of the photopolymerizable carbon-carbon double bond to be introduced is preferably 0.5 to 2.0 meq/g, more preferably 0.8 to 1.5 meq/g. If the double bond amount is too small, the effect of reducing the adhesive ability after irradiation of a radiation becomes smaller.
  • the acrylic-series copolymer (A) itself may be insufficient in stability and may be made difficult to manufacture.
  • the gel fraction of the radiation-curable removable adhesive layer can be controlled by the average molecular weight of the acrylic-series copolymer (A) and the amount of the hardening agent to be blended.
  • the gel fraction is 60% or greater, and more preferably 80% or greater. If the gel fraction is too small, the removable adhesive component may be slightly moved on the contact interface, thus making it difficult to obtain stability on the peeling force with the lapse of time.
  • the acrylic-series copolymer (A) has a hydroxyl group and a carboxyl group-containing group, each of which is unreacted, in the principal chain. It is preferable that the acrylic-series copolymer (A) has a hydroxyl group so that a hydroxyl group value is from 5 to 10, more preferably from 20 to 70, since the adhesive ability after irradiation of a radiation is reduced, to thus further decrease the risk of picking-up mistakes. Further, it is preferable that the acrylic-series copolymer (A) has a carboxyl group so that an acid value is from 0.5 to 30, since the tape recovery (restoration) ability is improved, to thus make it easy to cope with a tape housing-type mechanism for a used tape.
  • the acid value is more preferably 1 to 10.
  • the hydroxyl group value of the acrylic-series copolymer (A) is too low, the adhesive ability after irradiation of a radiation is not sufficiently reduced, or if too high, the flowability of the removable adhesive after irradiation of a radiation is damaged. Further, if the acid value is too low, the tape recovery ability is not sufficiently improved, or if too high, the flowability of the removable adhesive is damaged.
  • a photo polymerization initiator such as isopropyl benzoin ether, isobutyl benzoin ether, benzophenone, Michler's ketone, chlorothioxanthone, dodecyl thioxanthone, dimethyl thioxanthone, diethyl thioxanthone, benzyl dimethyl ketal, ⁇ -hydroxycyclohexyl phenyl ketone, 2-hydroxymethylphenylpropane, and the like.
  • the amount of the photo polymerization initiator to be blended is preferably 0.01 to 5 mass parts, to 100 mass parts of the acrylic-series polymer.
  • the radiation curable removable adhesive layer may contain, if necessary, another additional component including, for example, a hardening agent such as a polyisocyanate compound and the like.
  • a hardening agent such as a polyisocyanate compound and the like.
  • the amount of the hardening agent to be blended is preferably 0.5 to 10 mass parts, to 100 mass parts of the acrylic-series polymer that is the main component.
  • the thickness of the radiation-curable removable adhesive layer is preferably 5 to 50 ⁇ m.
  • the base that can be used in the present invention may be a film of any material having a radiation transmission ability.
  • the film include those made, for example, of a homopolymer or copolymer of an ⁇ -olefin, such as polyethylene, polypropylene, an ethylene/propylene copolymer, polybuten, an ethylene/vinyl acetate copolymer, an ethylene/acrylate copolymer, or an ionomer; an engineering plastic, such as polyethylene terephthalates, a polycarbonate, or poly(methyl methacrylate); or a thermoplastic elastomer, such as polyurethane, styrene/ethylene/buten, or a penten-series copolymer.
  • a mixture or double or higher layer of two or more kinds selected from the above compound group may be used.
  • the thickness of the base film to be used is preferably 50 to 200 ⁇ m.
  • the wafer-adhering adhesive tape By laminating the thus-obtained adhesive tape and a die-bonding adhesive, it is possible to make the wafer-adhering adhesive tape with higher performance.
  • the die-bonding adhesive an acrylic/epoxy-series die bonding adhesive or the like can be used.
  • the removable adhesive layer By heat adhering the wafer-adhering adhesive tape to a semiconductor wafer, sufficient adhesive ability is obtained in the dicing step so not to peel off or remove the wafer, the die-bonding adhesive layer, the radiation-curable removable adhesive layer, and the base film each other.
  • the removable adhesive layer can be easily peeled off from chips attached to the die-bonding adhesive layer via radiation hardening.
  • the peeling force of the die-bonding adhesive layer and the radiation-curable removable adhesive layer upon dicing is preferably 0.5 to 10 N/25 mm, and the peeling force between the chip attached to the die-bonding adhesive layer and the tape attached with the removable adhesive layer after irradiation of a radiation is preferably 0.5 to 0.05 N/25 mm.
  • the radiation curable removable adhesive layer and the die-bonding adhesive layer are formed on the surface of a base, in this order from the base side.
  • a bonding adhesive gent which is usually used for die-bonding, such as a film-like bonding adhesive mainly composed of an epoxy resin, can be used.
  • the thickness of the die-bonding adhesive layer is preferably 5 to 50 ⁇ m.
  • the wafer-adhering adhesive tape of the present invention has sufficient adhesive ability that the radiation-curable removable adhesive layer is not peeled off from a die-bonding adhesive layer and a wafer, when dicing; it allows easy removal of the removable adhesive layer and a chip attached to the die-bonding adhesive layer by radiation and hardening, when picking up; and it gives sufficient adhesive ability between the resultant chip and a substrate or the like, when mounting; thereby it enables a so-called direct die bonding
  • the wafer-adhering adhesive tape of the present invention can be used as a dicing tape upon dicing, and it can be used with the adhesive layer easily peeled off upon mounting, thereby to enable a direct die-bonding, and the wafer-adhering adhesive tape is excellent in storage stability.
  • the wafer-adhering adhesive tape of the present invention can be preferably used as the above dicing tape.
  • an interval between elements is sufficiently made after stretching, while obtaining the effects of reducing adhesive force after radiation hardening.
  • a copolymer was prepared by solution radical polymerization of 65 mass parts of butyl acrylate, 25 mass parts of 2-hydroxyethyl acrylate, and 10 mass parts of acrylic acid, as raw materials. Then, to the thus-obtained copolymer, 2-isocyanatethyl methacrylate was added dropwise and reacted therewith, to prepare a copolymer A. In this manner, the amount of 2-isocyanatethyl methacrylate to be added dropwise and the reaction time of the solution radical polymerization are properly adjusted, to prepare copolymers A1 to A5, respectively, which were different in carbon-carbon double bond amounts and molecular weights.
  • a polyisocyanate compound (trade name: Coronet L, produced by Japan Polyurethane) as a hardening agent, and ⁇ -hydroxycyclohexyl phenyl ketone as a photo polymerization initiator were admixed in a mixing ratio, as shown in the following Table 1, to thereby obtain a radiation-curable removable adhesive, respectively.
  • Each of the removable adhesives was coated on a high-density polyethylene resin film (100 ⁇ m) such that the removable adhesive thickness after drying would be 10 ⁇ m, to prepare an adhesive tape, respectively.
  • Each of these adhesive tapes and a film-like adhesive (for die bonding) mainly composed of an epoxy resin with 25- ⁇ m thickness were laminated at a room temperature, to prepare respective wafer-adhering adhesive tapes of Examples 1 to 4 and Comparative Example 1, as shown in Table 1.
  • the amount of carbon-carbon double bond contained in about 10 g of the heated and dried removable adhesive was measured and quantitatively determined by a mass increasing method by bromine addition reaction in a dark place in vacuo.
  • the above-prepared wafer-adhering adhesive tape was heat adhered to a wafer for 10 seconds at 80° C., then a silicon wafer of a diameter of 5 inches was full-cut into a size of 3 mm ⁇ 3 mm, and the thus-cut wafer was subjected to ultraviolet-radiation hardening (irradiation not on a pattern shape but on the entire wafer). Then, the resultant wafer was stretched in a wafer expanding machine (air pressure: 2.0 kg/cm 2 ), and the lengths of element intervals in longitudinal and transverse directions upon being stretched were measured, to estimate the average values.
  • the lengths of element intervals included a blade thickness of 40 ⁇ m upon dicing.
  • the expandability is evaluated as below, based on the size (q) of element interval.
  • the above-prepared wafer-adhering adhesive tape was heat adhered to a wafer for 10 seconds at 80° C., and then diced-to 10 mm ⁇ 10 mm. Afterwards, ultraviolet rays of 200 mJ/cm 2 were irradiated to the removable adhesive layer by an air-cooling-type high-pressure mercury lamp (80 W/cm, irradiation distance: 10 cm). Then a picking-up test was carried out by a die bonder machine (produced by NEC Machinery, trade name: CPS-100 FM), to obtain a picking-up success ratio at 100 picked-up chips.
  • a die bonder machine produced by NEC Machinery, trade name: CPS-100 FM
  • Peeling ability before and after UV irradiation were measured according to JIS Z0237 (UV irradiation amount: 1000 mJ/cm 2 ).
  • the wafer-adhering adhesive tape was heat adhered to a mirror surface of a silicon wafer heated to 80° C., and then the peeling force between the die-bonding adhesive layer and the adhesive tape was measured. The test was carried out under the conditions of a peeling angle of 90° and a peeling speed of 50 mm/min.
  • the above-prepared wafer-adhering adhesive tape was heat adhered to a wafer for 10 seconds at 80° C., and diced to 10 mm ⁇ 10 mm. Afterwards, ultraviolet rays of 200 mJ/cm 2 were irradiated to the removable adhesive layer by an air-cooling-type high-pressure mercury lamp (80 W/cm, irradiation distance: 10 cm). Then, after the thus-irradiated wafer-adhering adhesive tape was stood for 2 weeks under room temperature conditions (25° C., 60% RH), the picking-up success ratio was obtained. Storage stability is evaluated and shown with this picking-up success ratio (%).
  • Examples 1 to 3 according to the present invention showed that, in addition to that both of the picking-up success ratio and the storage stability were each 100%, the expandability was also good. Further, Example 4 indicated that the element interval upon expansion was slightly poor, but the picking-up success ratio and the storage stability were each 100%. Contrary to these, Comparative Example 1 showed that the storage stability was conspicuously poor.
  • the wafer-adhering adhesive tape of the present invention can be used as a dicing tape upon dicing, and it can be used with the adhesive layer easily peeled off upon mounting, to thereby enable a direct die-bonding, and that the inventive wafer-adhering adhesive tape is excellent in storage stability.
  • an example of the wafer-adhering adhesive tape in which the ratio of a carbon-carbon double bond contained in the radiation-curable removable adhesive layer was too low, was prepared and tested in the same manner as Example 1, excepted that the ratio of carbon-carbon double bond was changed to 0.3 meq/g.
  • the picking-up success ratio obtained in this example was 25%.
  • the peeling forces before and after UV irradiation were 1.42 N/25 mm and 0.4 N/25 mm, respectively.
  • the removable adhesive same as that in Example 1 was coated on a high-density polyethylene resin film (thickness: 100 ⁇ m) such that the adhesive thickness after drying would be 10 ⁇ m, to prepare an adhesive tape.
  • a silicon wafer of 5-inch diameter, on which a surface protective tape for grinding was attached was provided.
  • a film-like adhesive (for die bonding) with 25- ⁇ m thickness was heat adhered for 10 seconds at 80° C.
  • the above-prepared adhesive tape was attached to a (die-bonding) adhesive layer attached to the wafer.
  • the resultant silicon wafer adhered with the adhesive tape was subjected to heat treatment for 100 seconds at 60° C., to peel off the surface protective tape from the wafer.
  • this silicon wafer was full-cut into a size of 3 mm ⁇ 3 mm, UV-irradiation hardened, and expanded, and then subjected to the picking-up test. As a result, good expandability and picking-up property, as in Example 1, were exhibited. Further, it was found that the storage stability of the adhesive tape was also good.
  • the adhesive tape of the present invention can also be preferably used.
  • the wafer-adhering adhesive tape of the present invention is preferable, for example, as a semiconductor wafer-adhering adhesive tape that is used in an adhering process for fixing a wafer or the like, dicing it, and lap-jointing it with a substrate or a semiconductor chip, when a semiconductor device, such as a silicon wafer or the like, is manufactured.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Adhesive Tapes (AREA)
  • Dicing (AREA)
US11/184,001 2003-02-05 2005-07-19 Wafer-adhering adhesive tape Abandoned US20050249909A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/058,170 US8722184B2 (en) 2003-02-05 2008-03-28 Wafer-adhering adhesive tape

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003028912 2003-02-05
JP2003-028912 2003-02-05
PCT/JP2004/001038 WO2004069951A1 (ja) 2003-02-05 2004-02-03 ウエハ貼着用粘着テープ

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/001038 Continuation WO2004069951A1 (ja) 2003-02-05 2004-02-03 ウエハ貼着用粘着テープ

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/058,170 Continuation US8722184B2 (en) 2003-02-05 2008-03-28 Wafer-adhering adhesive tape

Publications (1)

Publication Number Publication Date
US20050249909A1 true US20050249909A1 (en) 2005-11-10

Family

ID=32844217

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/184,001 Abandoned US20050249909A1 (en) 2003-02-05 2005-07-19 Wafer-adhering adhesive tape
US12/058,170 Active 2026-07-09 US8722184B2 (en) 2003-02-05 2008-03-28 Wafer-adhering adhesive tape

Family Applications After (1)

Application Number Title Priority Date Filing Date
US12/058,170 Active 2026-07-09 US8722184B2 (en) 2003-02-05 2008-03-28 Wafer-adhering adhesive tape

Country Status (7)

Country Link
US (2) US20050249909A1 (zh)
EP (1) EP1591504B1 (zh)
KR (1) KR101170845B1 (zh)
CN (1) CN100358962C (zh)
MY (1) MY147594A (zh)
TW (1) TWI382468B (zh)
WO (1) WO2004069951A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090065133A1 (en) * 2007-09-06 2009-03-12 Nitto Denko Corporation Pressure-sensitive adhesive sheet for dicing and dicing method
US20100215882A1 (en) * 2009-02-23 2010-08-26 Nitto Denko Corporation Heat-peelable pressure-sensitive adhesive sheet for cutting laminated ceramic sheet and method for cut-processing laminated ceramic sheet
US20100279109A1 (en) * 2009-04-30 2010-11-04 Nitto Denko Corporation Laminated film and process for producing semiconductor device
US20100279050A1 (en) * 2009-04-30 2010-11-04 Nitto Denko Corporation Laminated film and process for producing semiconductor device
US20110014443A1 (en) * 2008-03-10 2011-01-20 The Furukawa Electric Co., Ltd Adhesive tape for electronic component fabrication
US20110027551A1 (en) * 2009-08-03 2011-02-03 Industrial Technology Research Institute Substrate structures applied in flexible electrical devices and fabrication method thereof
US20140037923A1 (en) * 2010-07-29 2014-02-06 Nitto Denko Corporation Dicing tape-integrated film for semiconductor back surface, and process for producing semiconductor device
TWI671799B (zh) * 2011-03-30 2019-09-11 Sumitomo Bakelite Co., Ltd. 半導體晶圓等加工用黏著帶
US12040306B2 (en) * 2020-08-10 2024-07-16 Laird Technologies, Inc. Systems of applying materials to components

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI395253B (zh) * 2004-12-28 2013-05-01 Mitsumasa Koyanagi 使用自我組織化功能之積體電路裝置的製造方法及製造裝置
JP4717085B2 (ja) * 2008-01-18 2011-07-06 日東電工株式会社 ダイシング・ダイボンドフィルム
JP4717086B2 (ja) * 2008-01-18 2011-07-06 日東電工株式会社 ダイシング・ダイボンドフィルム
KR20100089389A (ko) 2009-02-03 2010-08-12 삼성전자주식회사 점착 조성물 및 이로부터 제조되는 점착 필름
JP2011023396A (ja) * 2009-07-13 2011-02-03 Nitto Denko Corp 表面保護シート
JP4851613B2 (ja) * 2009-12-22 2012-01-11 古河電気工業株式会社 半導体ウエハ表面保護用粘着テープ
KR101393895B1 (ko) * 2011-11-02 2014-05-13 (주)엘지하우시스 절단성이 우수한 반도체 웨이퍼 표면보호용 점착필름
JP5294358B2 (ja) * 2012-01-06 2013-09-18 古河電気工業株式会社 ウエハ加工用テープ及びこれを使用した半導体装置の製造方法
KR20220038770A (ko) * 2012-01-18 2022-03-29 미쯔비시 케미컬 주식회사 화상 표시 장치용 투명 양면 점착 시트 및 이를 사용한 화상 표시 장치
JP5242830B1 (ja) * 2012-07-06 2013-07-24 古河電気工業株式会社 半導体ウェハ表面保護用粘着テープおよび半導体ウェハの製造方法
KR20140139212A (ko) * 2013-05-27 2014-12-05 제일모직주식회사 다이싱 다이본딩 필름
KR102238757B1 (ko) 2019-02-26 2021-04-09 구자규 반도체 웨이퍼의 보호필름 제조방법 및 이에 따라 제조된 보호필름
CN111057474A (zh) * 2019-12-24 2020-04-24 合肥乐凯科技产业有限公司 一种uv减粘膜用粘合剂及其uv减粘膜

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4687693A (en) * 1985-06-13 1987-08-18 Stauffer Chemical Company Adhesively mountable die attach film
US5637395A (en) * 1984-03-12 1997-06-10 Nitto Electric Industrial Co., Ltd. Thin adhesive sheet for working semiconductor wafers
US5705016A (en) * 1994-11-29 1998-01-06 Lintec Corporation Method of preventing transfer of adhesive substance to dicing ring frame, pressure-sensitive adhesive sheet for use in the method and wafer working sheet having the pressure-sensitive adhesive sheet
US6403215B1 (en) * 1998-05-22 2002-06-11 Lintec Corporation Energy beam curable hydrophilic pressure sensitive adhesive composition and use thereof

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0715087B2 (ja) 1988-07-21 1995-02-22 リンテック株式会社 粘接着テープおよびその使用方法
JP2678655B2 (ja) * 1989-03-20 1997-11-17 日東電工株式会社 半導体チップ固着キャリヤの製造方法及びウエハ固定部材
JP3495388B2 (ja) 1993-07-15 2004-02-09 古河電気工業株式会社 半導体ウエハダイシング用粘着テープ
JP3348923B2 (ja) * 1993-07-27 2002-11-20 リンテック株式会社 ウェハ貼着用粘着シート
JPH07235583A (ja) * 1994-02-24 1995-09-05 Nec Kansai Ltd 粘着シート
JP3483161B2 (ja) 1994-08-11 2004-01-06 リンテック株式会社 粘接着テープおよびその使用方法
JP3620810B2 (ja) * 1996-05-02 2005-02-16 リンテック株式会社 ウエハ保護用粘着シート
JP3669196B2 (ja) * 1998-07-27 2005-07-06 日東電工株式会社 紫外線硬化型粘着シート
EP1061108B1 (en) * 1999-06-10 2003-10-22 Nitto Denko Corporation Low-staining adhesive sheets and method for removing resist material
JP2002158276A (ja) * 2000-11-20 2002-05-31 Hitachi Chem Co Ltd ウエハ貼着用粘着シートおよび半導体装置
JP4107417B2 (ja) * 2002-10-15 2008-06-25 日東電工株式会社 チップ状ワークの固定方法
JP4283596B2 (ja) * 2003-05-29 2009-06-24 日東電工株式会社 チップ状ワークの固定方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5637395A (en) * 1984-03-12 1997-06-10 Nitto Electric Industrial Co., Ltd. Thin adhesive sheet for working semiconductor wafers
US4687693A (en) * 1985-06-13 1987-08-18 Stauffer Chemical Company Adhesively mountable die attach film
US5705016A (en) * 1994-11-29 1998-01-06 Lintec Corporation Method of preventing transfer of adhesive substance to dicing ring frame, pressure-sensitive adhesive sheet for use in the method and wafer working sheet having the pressure-sensitive adhesive sheet
US6403215B1 (en) * 1998-05-22 2002-06-11 Lintec Corporation Energy beam curable hydrophilic pressure sensitive adhesive composition and use thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090065133A1 (en) * 2007-09-06 2009-03-12 Nitto Denko Corporation Pressure-sensitive adhesive sheet for dicing and dicing method
US20110014443A1 (en) * 2008-03-10 2011-01-20 The Furukawa Electric Co., Ltd Adhesive tape for electronic component fabrication
US20100215882A1 (en) * 2009-02-23 2010-08-26 Nitto Denko Corporation Heat-peelable pressure-sensitive adhesive sheet for cutting laminated ceramic sheet and method for cut-processing laminated ceramic sheet
US20100279109A1 (en) * 2009-04-30 2010-11-04 Nitto Denko Corporation Laminated film and process for producing semiconductor device
US20100279050A1 (en) * 2009-04-30 2010-11-04 Nitto Denko Corporation Laminated film and process for producing semiconductor device
US20110027551A1 (en) * 2009-08-03 2011-02-03 Industrial Technology Research Institute Substrate structures applied in flexible electrical devices and fabrication method thereof
US8182892B2 (en) * 2009-08-03 2012-05-22 Industrial Technology Research Institute Substrate structures applied in flexible electrical devices and fabrication method thereof
US20140037923A1 (en) * 2010-07-29 2014-02-06 Nitto Denko Corporation Dicing tape-integrated film for semiconductor back surface, and process for producing semiconductor device
US9050773B2 (en) * 2010-07-29 2015-06-09 Nitto Denko Corporation Dicing tape-integrated film for semiconductor back surface, and process for producing semiconductor device
TWI671799B (zh) * 2011-03-30 2019-09-11 Sumitomo Bakelite Co., Ltd. 半導體晶圓等加工用黏著帶
US12040306B2 (en) * 2020-08-10 2024-07-16 Laird Technologies, Inc. Systems of applying materials to components

Also Published As

Publication number Publication date
CN100358962C (zh) 2008-01-02
US20080299345A1 (en) 2008-12-04
EP1591504A1 (en) 2005-11-02
KR20050097979A (ko) 2005-10-10
TW200504877A (en) 2005-02-01
EP1591504A4 (en) 2006-04-05
CN1748012A (zh) 2006-03-15
KR101170845B1 (ko) 2012-08-02
WO2004069951A1 (ja) 2004-08-19
MY147594A (en) 2012-12-31
US8722184B2 (en) 2014-05-13
TWI382468B (zh) 2013-01-11
EP1591504B1 (en) 2012-05-23

Similar Documents

Publication Publication Date Title
US8722184B2 (en) Wafer-adhering adhesive tape
KR100940421B1 (ko) 다이싱·다이 본드 필름
KR100907982B1 (ko) 점착필름 형성용 조성물에 의한 반도체 패키지용 점착필름을 포함하는 다이싱 다이본드 필름
JP4002236B2 (ja) ウエハ貼着用粘着テープ
KR101545805B1 (ko) 웨이퍼가공용 테이프 및 이를 사용한 반도체장치의 제조방법
JP4804921B2 (ja) 粘着シート、半導体ウエハの表面保護方法およびワークの加工方法
KR100743772B1 (ko) 웨이퍼 가공용 테이프
KR100922684B1 (ko) 점착층용 광경화 조성물 및 이를 포함하는 다이싱 테이프
CN102206469B (zh) 晶片加工用胶带
KR102038299B1 (ko) 반도체 웨이퍼의 다이싱 방법 및 이것에 이용되는 반도체 가공용 다이싱 테이프
TWI452107B (zh) 切割晶粒黏合膜、半導體晶圓及半導體裝置
CN101942278A (zh) 半导体晶圆切割用粘合片和半导体晶圆的切割方法
KR20100054782A (ko) 다이싱-다이본딩 테이프 및 반도체 칩의 제조 방법
CN103525324A (zh) 半导体晶片表面保护用胶带及半导体晶片的制造方法
JP6833083B2 (ja) フィルム状接着剤、接着シートおよび半導体装置の製造方法
JP2006156754A (ja) ダイシングダイボンドテープ
JP4913584B2 (ja) ウェハ加工方法及びそれに用いるウェハ加工用テープ
KR100929588B1 (ko) 점착필름 형성용 광경화성 조성물 및 이를 포함하는 다이싱다이본딩 필름
US20130273355A1 (en) Dicing die bonding film
JP4297319B2 (ja) 粘接着テープ
JP2013199580A (ja) ウエハ貼着用粘着テープ
JP4148590B2 (ja) 半導体ウエハ固定用シート
KR20090081103A (ko) 반도체 패키징용 다이싱 테이프 및 그의 제조방법
TW202037694A (zh) 半導體晶圓加工用紫外線硬化型黏著帶及半導體晶片之製造方法以及該帶之使用方法
KR100922682B1 (ko) 점착제 조성물 및 이를 이용한 점착 테이프

Legal Events

Date Code Title Description
AS Assignment

Owner name: FURUKAWA ELECTRIC CO., LTD., THE, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MORISHIMA, YASUMASA;KITA, KENJI;ISHIWATA, SHINICHI;REEL/FRAME:016788/0743;SIGNING DATES FROM 20050413 TO 20050414

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION