US20040101760A1 - Organic-inorganic membranes - Google Patents

Organic-inorganic membranes Download PDF

Info

Publication number
US20040101760A1
US20040101760A1 US10/275,113 US27511302A US2004101760A1 US 20040101760 A1 US20040101760 A1 US 20040101760A1 US 27511302 A US27511302 A US 27511302A US 2004101760 A1 US2004101760 A1 US 2004101760A1
Authority
US
United States
Prior art keywords
metal
membrane
membranes according
membranes
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/275,113
Other languages
English (en)
Inventor
Jochen Kerres
Thomas Haring
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of US20040101760A1 publication Critical patent/US20040101760A1/en
Priority to US11/300,479 priority Critical patent/US7387732B2/en
Abandoned legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0093Chemical modification
    • B01D67/00931Chemical modification by introduction of specific groups after membrane formation, e.g. by grafting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0093Chemical modification
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0011Casting solutions therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0048Inorganic membrane manufacture by sol-gel transition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/14Dynamic membranes
    • B01D69/141Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/52Polyethers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/52Polyethers
    • B01D71/522Aromatic polyethers
    • B01D71/5222Polyetherketone, polyetheretherketone, or polyaryletherketone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
    • B01D71/68Polysulfones; Polyethersulfones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/76Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74
    • B01D71/82Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74 characterised by the presence of specified groups, e.g. introduced by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2275Heterogeneous membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1009Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
    • H01M8/1011Direct alcohol fuel cells [DAFC], e.g. direct methanol fuel cells [DMFC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1025Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon and oxygen, e.g. polyethers, sulfonated polyetheretherketones [S-PEEK], sulfonated polysaccharides, sulfonated celluloses or sulfonated polyesters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1027Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having carbon, oxygen and other atoms, e.g. sulfonated polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1032Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having sulfur, e.g. sulfonated-polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1044Mixtures of polymers, of which at least one is ionically conductive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1072Polymeric electrolyte materials characterised by the manufacturing processes by chemical reactions, e.g. insitu polymerisation or insitu crosslinking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1072Polymeric electrolyte materials characterised by the manufacturing processes by chemical reactions, e.g. insitu polymerisation or insitu crosslinking
    • H01M8/1074Sol-gel processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1081Polymeric electrolyte materials characterised by the manufacturing processes starting from solutions, dispersions or slurries exclusively of polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/26Electrical properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2357/00Characterised by the use of unspecified polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C08J2357/06Homopolymers or copolymers containing elements other than carbon and hydrogen
    • C08J2357/08Homopolymers or copolymers containing elements other than carbon and hydrogen containing halogen atoms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0091Composites in the form of mixtures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to organic/inorganic hybrid polymer blends and hybrid polymer blend membranes, that are composed of:
  • an element oxide or element hydroxide or metal oxide or metal hydroxide obtained by the hydrolysis and/or the sol/gel reaction of an element organic and/or metal organic compound during the membrane formation process and/or by subsequently treating the membrane in aqueous acidic, alkaline or neutral electrolytes.
  • the invention farther relates to hybrid blends and hybrid blend membranes containing polymers that carry SO 3 H, PO 3 H 2 and/or COOH groups, obtained by aqueous, alkaline or acidic hydrolysis of the polymeric acid halides contained in the polymer blend or the polymer blend membrane.
  • the invention also relates to methods for producing said hybrid blends and hybrid blend membranes.
  • Nafion sulfonyl fluoride precursor membranes are preswollen in perfluorohydrophenanthrene and immersed in 3-aminopropyltriethoxysilane. Thereafter excess silane is washed out with EtOH. Hybrids are formed, in which by hydrolysis of silane and by reaction of silanes with SO 2 F groups SiO 2 networks partially cross-linked with the polymer are formed in the membrane matrix 1 .
  • An object of the invention is to provide composites and composite membranes of polymeric acid halides containing in addition an inorganic element/metal oxide/hydroxide phase, which improves the following membrane properties:
  • organic precursors of element/metal oxides/hydroxides are brought into the polymer solution (alkoxides/esters, acetylacetonates etc).
  • tie inorganic phase in the ionomer happens after the membrane formation by hydrolysis in acidic, alkaline and/or neutral aqueous environment, whereby optionally at the same time or in another step the polymeric acid halide groups may be hydrolyzed to acid groups.
  • zirconium(IV) propylate 70, weight % in 1-propanol, Zr(OCH 2 CH 2 CH 3 ) 4 is brought into solutions of PSU sulfochloride in tetrahydrofuran, the zirconium(IV) propylate does not hydrolyze in the polymer solution or form a sparingly soluble complex, but is built into the membrane matrix upon evaporation of the solvent.
  • zirconium(IV) propylate solution in propanol would be mixed with a solution of PSU sulfochloride (or PSU sulfonic acid or PSU sulfonic acid salt) in a dipolar aprotic solvent like N-methylpyrrolidinone, zirconium(IV) propylate would immediately hydrolyze or precipitate.
  • the organic Zr compound can be hydrolyzed by successive posttreatment of the membrane in aqueous lye and/or water and/or acid to zirconium dioxide or zirconium oxide hydroxide nanodispersed in the membrane matrix.
  • the inorganic zirconium compound can be detected by EDX in the membrane matrix.
  • organometallic compounds like Ti(acac) 2 (OiPr) 2 can be mixed with PSU sulfochloride solutions in ether solvents without hydrolysis in the polymer solution and built into the membrane matrix upon evaporation of the solvent.
  • At least one salt, element oxide or element hydroxide or metal oxide or metal hydroxide obtained by hydrolysis of the following classes of element organic and/or metal organic compounds:
  • metal acetylacetonates e.g. Ti(acac) 4 , Zr(acac) 4
  • dipolar-aprotic solvents such as N-methylpyrrolidinone (NMP), N,N-dimethylacetamide (DMAc), N,N-dimethylformamide (DMF), dimethylsulfoxide (DMSO) or sulfolane or ether solvents such as tetrahydrofuran, dioxan, glyme, diglyme, triglyme.
  • NMP N-methylpyrrolidinone
  • DMAc N,N-dimethylacetamide
  • DMF N,N-dimethylformamide
  • DMSO dimethylsulfoxide
  • ether solvents such as tetrahydrofuran, dioxan, glyme, diglyme, triglyme.
  • the permselectivity of the membranes changes also for nonionic permeating molecules (e.g. gases).
  • the new inorganic/organic hybrid membranes according to the invention show an excellent profile of properties:
  • Some membranes according to the invention show, caused by the inorganic oxide/hydroxide in the membrane matrix, an improved water holding ability especially at T>80° C. It is supposed, that the nanodispersion of the inorganic component in the membrane is the reason behind.
  • oxide powders into ionomer membranes as has been proposed in some publications 4 already, such a fine distribution of the inorganic component in the membrane matrix as with the method according to the invention can not be reached, where the element—organic/metal organic compounds are hydrolyzed only in the membrane matrix to the oxide or (hydrogen)phosphate.
  • the membranes according to the invention show further advantages:
  • the membranes are photochemically active, especially those with nanodispersed titanium dioxide.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Composite Materials (AREA)
  • Transplantation (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Conductive Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
US10/275,113 2000-05-02 2001-05-02 Organic-inorganic membranes Abandoned US20040101760A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/300,479 US7387732B2 (en) 2000-05-02 2005-12-15 Organic-inorganic membranes

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10021104A DE10021104A1 (de) 2000-05-02 2000-05-02 Organisch-anorganische Membranen
DE10021104.6 2000-05-02
PCT/EP2001/004907 WO2001083092A1 (de) 2000-05-02 2001-05-02 Organisch-anorganische membranen

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/300,479 Continuation US7387732B2 (en) 2000-05-02 2005-12-15 Organic-inorganic membranes

Publications (1)

Publication Number Publication Date
US20040101760A1 true US20040101760A1 (en) 2004-05-27

Family

ID=7640366

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/275,113 Abandoned US20040101760A1 (en) 2000-05-02 2001-05-02 Organic-inorganic membranes
US11/300,479 Expired - Fee Related US7387732B2 (en) 2000-05-02 2005-12-15 Organic-inorganic membranes

Family Applications After (1)

Application Number Title Priority Date Filing Date
US11/300,479 Expired - Fee Related US7387732B2 (en) 2000-05-02 2005-12-15 Organic-inorganic membranes

Country Status (11)

Country Link
US (2) US20040101760A1 (ja)
EP (2) EP1278590B1 (ja)
JP (1) JP5037773B2 (ja)
KR (1) KR100915021B1 (ja)
CN (1) CN1427739B (ja)
AT (1) ATE372165T1 (ja)
AU (1) AU2001256331A1 (ja)
BR (1) BRPI0110562B1 (ja)
CA (1) CA2407509C (ja)
DE (2) DE10021104A1 (ja)
WO (1) WO2001083092A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007537578A (ja) * 2004-05-13 2007-12-20 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ インコーポレイテッド グラフトされたリン酸基とインプラントされた金属カチオンとを有するハイブリッド無機−有機コポリマーをベースにするプロトン交換メンブラン(pem)
US8672143B2 (en) 2010-03-30 2014-03-18 Toray Industries, Inc. Composite semipermeable membrane
US8739977B2 (en) 2009-03-31 2014-06-03 Toray Industries, Inc. Composite semipermeable membrane and method for producing the same
US9533264B2 (en) 2012-12-06 2017-01-03 Samsung Electronics Co., Ltd. Composite membrane, method of manufacturing the same, separation membrane including the composite membrane, and water treatment device using the separation membrane
WO2017010718A1 (en) 2015-07-14 2017-01-19 Lg Nanoh2O, Inc. Chemical additives for water flux enhancement
CN115052680A (zh) * 2019-12-05 2022-09-13 B.G.内盖夫技术和应用有限公司本-古里安大学 具有改进的单价选择性的阳离子交换膜、制造及其在电渗析中的用途
US11830977B2 (en) 2021-02-25 2023-11-28 International Business Machines Corporation Method to reduce interfacial resistance of hybrid solid-state electrolytes for secondary energy storage devices

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4911822B2 (ja) * 2001-02-07 2012-04-04 旭化成イーマテリアルズ株式会社 イオン交換樹脂膜の製造方法
WO2004107477A2 (en) 2003-05-28 2004-12-09 Toyota Technical Center Usa, Inc. Conductive membranes formed from silanes having functional groups
US7183370B2 (en) 2003-09-11 2007-02-27 Toyota Technical Center Usa, Inc Phosphonic-acid grafted hybrid inorganic-organic proton electrolyte membranes (PEMs)
US7071271B2 (en) 2003-10-30 2006-07-04 3M Innovative Properties Company Aqueous emulsion polymerization of functionalized fluoromonomers
US7179847B2 (en) 2003-11-13 2007-02-20 3M Innovative Properties Company Polymer electrolytes crosslinked by e-beam
US7259208B2 (en) 2003-11-13 2007-08-21 3M Innovative Properties Company Reinforced polymer electrolyte membrane
US7265162B2 (en) 2003-11-13 2007-09-04 3M Innovative Properties Company Bromine, chlorine or iodine functional polymer electrolytes crosslinked by e-beam
US7074841B2 (en) 2003-11-13 2006-07-11 Yandrasits Michael A Polymer electrolyte membranes crosslinked by nitrile trimerization
US7060756B2 (en) 2003-11-24 2006-06-13 3M Innovative Properties Company Polymer electrolyte with aromatic sulfone crosslinking
US7112614B2 (en) 2003-12-08 2006-09-26 3M Innovative Properties Company Crosslinked polymer
US7060738B2 (en) 2003-12-11 2006-06-13 3M Innovative Properties Company Polymer electrolytes crosslinked by ultraviolet radiation
US7173067B2 (en) 2003-12-17 2007-02-06 3M Innovative Properties Company Polymer electrolyte membranes crosslinked by direct fluorination
US7576165B2 (en) 2004-01-27 2009-08-18 Georgia Institute Of Technology Heterocycle grafted monomers and related polymers and hybrid inorganic-organic polymer membranes
JP4351557B2 (ja) 2004-03-03 2009-10-28 本田技研工業株式会社 プロトン伝導体
JPWO2007139147A1 (ja) * 2006-05-31 2009-10-08 国立大学法人山梨大学 イオン伝導性高分子組成物、その製造方法及びこのイオン伝導性高分子組成物を含む膜並びにこれを用いた電気化学デバイス
US8048487B2 (en) * 2006-11-15 2011-11-01 Aculon, Inc. Organometallic films, methods for applying organometallic films to substrates and substrates coated with such films
US9585985B2 (en) * 2006-12-13 2017-03-07 Fujifilm Corporation Method for coating synthetic polymer surface with biopolymer
KR100954861B1 (ko) * 2007-12-12 2010-04-28 한국에너지기술연구원 연료전지용 유기-무기 복합체 고분자 전해질막 및 그의수소이온전도도 향상을 위한 제조 방법
CN102210985B (zh) * 2010-04-06 2013-05-01 中国科学院过程工程研究所 一种有机-无机杂化荷正电分离膜
US8829060B2 (en) 2011-03-01 2014-09-09 Dow Global Technologies Llc Sulfonated poly(aryl ether) membrane including blend with phenol compound
US8752714B2 (en) 2011-03-01 2014-06-17 Dow Global Technologies Llc Sulfonated poly (aryl ether) membrane including blend with phenyl amine compound
WO2013142141A1 (en) * 2012-03-22 2013-09-26 President And Fellows Of Harvard College Polyethersulfone filtration membrane
CN108246111B (zh) * 2018-01-22 2020-11-20 江苏理工学院 一种沸石咪唑酯骨架/聚偏氟乙烯杂化膜的制备方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2416060A (en) * 1946-07-06 1947-02-18 Du Pont Curing substituted monoolefin hydrocarbon polymers with polyvalent metal salts
US2630398A (en) * 1946-03-15 1953-03-03 Du Pont Process of bonding a layer of chlorosulfonated polyethylene to fabric
US2752316A (en) * 1954-09-02 1956-06-26 Standard Oil Co Asphalt compositions containing a small amount of chlorosulfonated polyethylene
US2914496A (en) * 1957-12-04 1959-11-24 Du Pont Chlorosulfonated polyethylene composition
US2963382A (en) * 1957-12-23 1960-12-06 Switzer Brothers Inc Elastic compositions and method of applying same
US2978401A (en) * 1956-04-16 1961-04-04 Hooker Chemical Corp Elastomeric permselective membranes
US4775567A (en) * 1986-10-24 1988-10-04 Hyload Corporation Waterproofing laminate
US4866099A (en) * 1986-03-10 1989-09-12 Imperial Chemical Industries Plc Membrane
USH982H (en) * 1989-12-20 1991-11-05 Method for preparing polymeric membranes in-situ and an apparatus for performing this process
US5389433A (en) * 1993-04-01 1995-02-14 W. R. Grace & Co.-Conn. Battery separator
US5389463A (en) * 1993-04-01 1995-02-14 W. R. Grace & Co.-Conn. Battery separator
US5401410A (en) * 1992-06-12 1995-03-28 Gambro Dialysatoren Gmbh & Co. Kg Membrane and process for the production thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4508852A (en) * 1983-09-22 1985-04-02 Albany International Corp. Compositions and method of preparation by chlorosulfonation of difficultly sulfonatable poly(ether sulfone)
CN1031785C (zh) * 1988-12-24 1996-05-15 西北大学 聚砜-钛微孔体复合超滤膜的制备方法
US6090895A (en) * 1998-05-22 2000-07-18 3M Innovative Properties Co., Crosslinked ion conductive membranes
JP4457462B2 (ja) * 2000-04-19 2010-04-28 株式会社カネカ プロトン伝導膜の製造方法及びそれからなる燃料電池
DE10021106A1 (de) * 2000-05-02 2001-11-08 Univ Stuttgart Polymere Membranen

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2630398A (en) * 1946-03-15 1953-03-03 Du Pont Process of bonding a layer of chlorosulfonated polyethylene to fabric
US2416060A (en) * 1946-07-06 1947-02-18 Du Pont Curing substituted monoolefin hydrocarbon polymers with polyvalent metal salts
US2752316A (en) * 1954-09-02 1956-06-26 Standard Oil Co Asphalt compositions containing a small amount of chlorosulfonated polyethylene
US2978401A (en) * 1956-04-16 1961-04-04 Hooker Chemical Corp Elastomeric permselective membranes
US2914496A (en) * 1957-12-04 1959-11-24 Du Pont Chlorosulfonated polyethylene composition
US2963382A (en) * 1957-12-23 1960-12-06 Switzer Brothers Inc Elastic compositions and method of applying same
US4866099A (en) * 1986-03-10 1989-09-12 Imperial Chemical Industries Plc Membrane
US4775567A (en) * 1986-10-24 1988-10-04 Hyload Corporation Waterproofing laminate
USH982H (en) * 1989-12-20 1991-11-05 Method for preparing polymeric membranes in-situ and an apparatus for performing this process
US5401410A (en) * 1992-06-12 1995-03-28 Gambro Dialysatoren Gmbh & Co. Kg Membrane and process for the production thereof
US5389433A (en) * 1993-04-01 1995-02-14 W. R. Grace & Co.-Conn. Battery separator
US5389463A (en) * 1993-04-01 1995-02-14 W. R. Grace & Co.-Conn. Battery separator

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007537578A (ja) * 2004-05-13 2007-12-20 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ インコーポレイテッド グラフトされたリン酸基とインプラントされた金属カチオンとを有するハイブリッド無機−有機コポリマーをベースにするプロトン交換メンブラン(pem)
US20110009504A1 (en) * 2004-05-13 2011-01-13 Toyota Motor Engineering & Manufacturing North America, Inc. Proton exchange membranes (pem) based on hybrid inorganic-organic copolymers with grafted phosphoric acid groups and implanted metal cations
US8465857B2 (en) 2004-05-13 2013-06-18 Toyota Motor Engineering & Manufacturing North America, Inc. Proton exchange membranes (PEM) based on hybrid inorganic-organic copolymers with grafted phosphoric acid groups and implanted metal cations
US8739977B2 (en) 2009-03-31 2014-06-03 Toray Industries, Inc. Composite semipermeable membrane and method for producing the same
US8672143B2 (en) 2010-03-30 2014-03-18 Toray Industries, Inc. Composite semipermeable membrane
US9533264B2 (en) 2012-12-06 2017-01-03 Samsung Electronics Co., Ltd. Composite membrane, method of manufacturing the same, separation membrane including the composite membrane, and water treatment device using the separation membrane
WO2017010718A1 (en) 2015-07-14 2017-01-19 Lg Nanoh2O, Inc. Chemical additives for water flux enhancement
US9724651B2 (en) 2015-07-14 2017-08-08 Lg Nanoh2O, Inc. Chemical additives for water flux enhancement
CN115052680A (zh) * 2019-12-05 2022-09-13 B.G.内盖夫技术和应用有限公司本-古里安大学 具有改进的单价选择性的阳离子交换膜、制造及其在电渗析中的用途
US11830977B2 (en) 2021-02-25 2023-11-28 International Business Machines Corporation Method to reduce interfacial resistance of hybrid solid-state electrolytes for secondary energy storage devices

Also Published As

Publication number Publication date
CN1427739A (zh) 2003-07-02
BR0110562A (pt) 2003-12-30
WO2001083092A1 (de) 2001-11-08
DE50112963D1 (de) 2007-10-18
CA2407509A1 (en) 2001-11-08
CA2407509C (en) 2012-02-21
KR20030015233A (ko) 2003-02-20
EP1278590A1 (de) 2003-01-29
US20060096913A1 (en) 2006-05-11
DE10021104A1 (de) 2001-11-08
EP1278590B1 (de) 2007-09-05
CN1427739B (zh) 2010-05-26
KR100915021B1 (ko) 2009-09-02
ATE372165T1 (de) 2007-09-15
AU2001256331A1 (en) 2001-11-12
US7387732B2 (en) 2008-06-17
JP2004501229A (ja) 2004-01-15
EP2047899A1 (de) 2009-04-15
BRPI0110562B1 (pt) 2015-09-01
JP5037773B2 (ja) 2012-10-03

Similar Documents

Publication Publication Date Title
US20040101760A1 (en) Organic-inorganic membranes
CA2408381C (en) Polymer membranes
KR100749156B1 (ko) 중합체아민의 단계적 알킬화
JP2004501229A5 (ja)
CN103108695A (zh) 阴离子交换聚合物电解质
US11165068B2 (en) Manufacturing of electrolytic membrane with cationic or anionic ion conducting capability comprising crosslinked inorganic-organic hybrid electrolyte in a porous support and articles comprising the same
CA3066028A1 (en) Crosslinked highly stable anion-exchange blend membranes with polyethyleneglycols as the hydrophilic membrane phase
Colicchio Silica-based nanocomposite membranes via the sol gel process of polyethoxysiloxane within a sulfonated poly (ether-ether-ketone) matrix: morphology and proton mobility
AU2005201750A1 (en) Step-by-step alkylation of polymeric Amines New Title: Crosslinked Acid-Base Membranes

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION