US20020188053A1 - Composition and process for the sealing of microcups in roll-to-roll display manufacturing - Google Patents
Composition and process for the sealing of microcups in roll-to-roll display manufacturing Download PDFInfo
- Publication number
- US20020188053A1 US20020188053A1 US09/874,391 US87439101A US2002188053A1 US 20020188053 A1 US20020188053 A1 US 20020188053A1 US 87439101 A US87439101 A US 87439101A US 2002188053 A1 US2002188053 A1 US 2002188053A1
- Authority
- US
- United States
- Prior art keywords
- poly
- styrene
- composition
- methylstyrene
- solvent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J153/00—Adhesives based on block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Adhesives based on derivatives of such polymers
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/165—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on translational movement of particles in a fluid under the influence of an applied field
- G02F1/166—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect
- G02F1/167—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect by electrophoresis
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1341—Filling or closing of cells
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/165—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on translational movement of particles in a fluid under the influence of an applied field
- G02F1/1675—Constructional details
- G02F1/1679—Gaskets; Spacers; Sealing of cells; Filling or closing of cells
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/133377—Cells with plural compartments or having plurality of liquid crystal microcells partitioned by walls, e.g. one microcell per pixel
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1334—Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1347—Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1347—Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells
- G02F1/13475—Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells in which at least one liquid crystal cell or layer is doped with a pleochroic dye, e.g. GH-LC cell
Definitions
- the electrophoretic display is a non-emissive device based on the electrophoresis phenomenon influencing charged pigment particles suspended in a solvent.
- An EPD typically comprises a pair of opposed, spaced-apart plate-like electrodes, with spacers predetermining a certain distance between the electrodes.
- One of the electrodes is typically transparent.
- a suspension composed of a colored solvent and suspended charged pigment particles is enclosed between the two plates.
- the pigment particles migrate by attraction to the plate of polarity opposite that of the pigment particles.
- the color showing at the transparent plate may be determined by selectively charging the plates to be either the color of the solvent or the color of the pigment particles. Reversal of plate polarity will cause the particles to migrate back to the opposite plate, thereby reversing the color.
- Intermediate color density (or shades of gray) due to intermediate pigment density at the transparent plate may be obtained by controlling the voltage or charging time.
- EPD electrophoretic display
- partitions were proposed between the two electrodes for dividing the space into smaller cells. See, e.g., M. A Hopper and V. Novotny, IEEE Trans. Electr. Dev., Vol ED 26, No. 8, pp 1148-1152 (1979).
- partition-type EPD some difficulties are encountered in the formation of the partitions and the process of enclosing the suspension. Furthermore, it is also difficult to keep different colors of suspensions separate from each other in the partition-type EPD.
- microencapsulated EPDs have a substantially two dimensional arrangement of microcapsules each containing an electrophoretic composition comprising a dielectric fluid with charged pigment particles suspended therein and the particles visually contrast with the dielectric solvent.
- the microcapsules can be formed by interfacial polymerization, in-situ polymerization or other known methods such as in-liquid curing or simple/complex coacervation.
- microcapsules after their formation, may be injected into a cell housing two spaced-apart electrodes, or they may be “printed” into or coated on a transparent conductor film.
- the microcapsules may also be immobilized within a transparent matrix or binder that is itself sandwiched between the two electrodes.
- the EPDs prepared by these prior art processes in particular the microencapsulation process, as disclosed in U.S. Pat. Nos. 5,930,026, 5,961,804, and 6,017,584, have several shortcomings.
- the EPDs manufactured by the microencapsulation process suffer from sensitivity to environmental changes (in particular sensitivity to moisture and temperature) due to the wall chemistry of the microcapsules.
- the EPDs based on the microcapsules have poor scratch resistance due to the thin wall and large particle size of the microcapsules.
- microcapsules are embedded in a large quantity of polymer matrix which results in a slow response time due to the large distance between the two electrodes and a low contrast ratio due to the low payload of pigment particles. It is also difficult to increase the surface charge density on the pigment particles because charge-controlling agents tend to diffuse to the water/oil interface during the microencapsulation process. The low charge density or zeta potential of the pigment particles in the microcapsules also results in a slow response rate. Furthermore, because of the large particle size and broad size distribution of the microcapsules, the prior art EPD of this type has poor resolution and addressability for color applications.
- the cells of the improved EPD are formed from a plurality of microcups which are formed integrally with one another as portions of a structured two-dimensional array assembly. Each microcup of the array assembly is filled with a suspension or dispersion of charged pigment particles in a dielectric solvent, and sealed to form an electrophoretic cell.
- the substrate web upon which the microcups are formed includes a display addressing array comprising preformed conductor film, such as ITO conductor lines.
- the conductor film (ITO lines) is coated with a radiation curable polymer precursor layer.
- the film and precursor layer are then exposed imagewise to radiation to form the microcup wall structure.
- the precursor material is removed from the unexposed areas, leaving the cured microcup walls bonded to the conductor film/support web.
- the imagewise exposure may be accomplished by UV or other forms of radiation through a photomask to produce an image or predetermined pattern of exposure of the radiation curable material coated on the conductor film.
- the mask may be positioned and aligned with respect to the conductor film, i.e., ITO lines, so that the transparent mask portions align with the spaces between ITO lines, and the opaque mask portions align with the ITO material (intended for microcup cell floor areas).
- the conductor film i.e., ITO lines
- the microcup array may be prepared by a process including embossing a thermoplastic or thermoset precursor layer coated on a conductor film with a pre-patterned male mold, followed by releasing the mold.
- the precursor layer may be hardened by radiation, cooling, solvent evaporation, or other means during or after the embossing step.
- Solvent-resistant, thermomechanically stable microcups having a wide range of size, shape, pattern and opening ratio can be prepared by either one of the aforesaid methods.
- the manufacture of a monochrome EPD from a microcup assembly involves filling the microcups with a single pigment suspension composition, sealing the microcups, and finally laminating the sealed array of microcups with a second conductor film pre-coated with an adhesive layer.
- a color EPD its preparation from a microcup assembly involves sequential selective opening and filling of predetermined microcup subsets.
- the process includes laminating or coating the preformed microcups with a layer of positively working photoresist, selectively opening a certain number of the microcups by imagewise exposing the positive photoresist, followed by developing the resist, filling the opened cups with a colored electrophoretic fluid, and sealing the filled microcups by a sealing process. These steps may be repeated to create sealed microcups filled with electrophoretic fluids of different colors.
- the array may be filled with different colored compositions in predetermined areas to form a color EPD.
- Various known pigments and dyes provide a wide range of color options for both solvent phase and suspended particles.
- Known fluid application and filling mechanisms may be employed.
- the sealing of the microcups after they are filled with a dispersion of charged pigment particles in a dielectric fluid can be accomplished by overcoating the electrophoretic fluid with a solution containing a thermoplastic or thermoset precursor.
- a sealing composition that is immiscible with the electrophoretic fluid and preferably has a specific gravity lower than the dielectric fluid.
- the sealing is then accomplished by hardening the precursor by solvent evaporation, interfacial reaction, moisture, heat, radiation, or a combination of curing mechanisms.
- the sealing can be accomplished by dispersing a thermoplastic or thermoset precursor in the electrophoretic fluid before the filling step.
- thermoplastic or thermoset precursor is immiscible with the dielectric solvent and has a specific gravity lower than that of the solvent and the pigment particles.
- the thermoplastic or thermoset precursor phase separates from the electrophoretic fluid and forms a supernatant layer at the top of the fluid.
- the sealing of the microcups is then conveniently accomplished by hardening the precursor layer by solvent evaporation, interfacial reaction, moisture, heat, or radiation. UV radiation is the preferred method to seal the microcups, although a combination of two or more curing mechanisms as described above may be used to increase the throughput of sealing.
- the improved EPDs may also be manufactured by a synchronized roll-to-roll photolithographic exposure process as described in the co-pending application, U.S. Ser. No. 09/784,972, filed on Feb. 25, 2001.
- a photomask may be synchronized in motion with the support web using mechanisms such as coupling or feedback circuitry or common drives to maintain the coordinated motion (i.e., to move at the same speed).
- the web moves into a development area where the unexposed material is removed to form the microcup wall structure.
- the microcups and ITO lines are preferably of selected size and coordinately aligned with the photomask, so that each completed display cell (i.e., filled and sealed microcup) may be discretely addressed and controlled by the display driver.
- the ITO lines may be pre-formed by either a wet or a dry etching process on the substrate web.
- the synchronized roll-to-roll exposure photolithographic process also enables continuous web processes of selective opening, filling and sealing of pre-selected subsets of the microcup array.
- the microcup array may be temporarily sealed by laminating or coating with a positive-acting photoresist composition, imagewise exposing through a corresponding photomask, and developing the exposed area with a developer to selectively open a desired subset of the microcups.
- a positive-acting photoresist composition imagewise exposing through a corresponding photomask
- developing the exposed area with a developer to selectively open a desired subset of the microcups.
- developer in this context refers to a suitable known means for selectively removing the exposed photoresist, while leaving the unexposed photoresist in place.
- the array may be sequentially filled with several different color compositions (typically three primary colors) in a pre-determined cell pattern.
- the imagewise exposure process may employ a positively working photoresist top laminate or coating which initially seals the empty microcups.
- the microcups are then exposed through a mask (e.g., a loop photomask in the described roll-to-roll process) so that only a first selected subset of microcups are exposed.
- Development with a developer removes the exposed photoresist and thus opens the first microcup subset to permit filling with a selected color pigment dispersion composition, and sealing by one of the methods described herein.
- the exposure and development process is repeated to expose and open a second selected microcup subset, for filling with a second pigment dispersion composition, with subsequent sealing. Finally, the remaining photoresist is removed and the third subset of microcups is filled and sealed.
- Liquid crystal displays may also be prepared by the method as described above when the electrophoretic fluid is replaced by a suitable liquid crystal composition having the ordinary refractive index matched to that of the isotropic cup material.
- the liquid crystal in the microcups In the “on” state, the liquid crystal in the microcups is aligned to the field direction and is transparent. In the “off” state, the liquid crystal is not aligned and scatters light.
- the diameter of the microcups is typically in the range of 0.5-10 microns.
- the roll-to-roll process may be employed to carry out a sequence of processes on a single continuous web, by carrying and guiding the web to a plurality of process stations in sequence.
- the microcups may be formed, filled or coated, developed, sealed, and laminated in a continuous sequence.
- the synchronized roll-to-roll process may be adapted to the preparation of a wide range of structures or discrete patterns for electronic devices formable upon a support web substrate, e.g., patterned conductor films, flexible circuit boards and the like.
- a pre-patterned photomask is prepared which includes a plurality of photomask portions corresponding to structural elements of the subject device. Each such photomask portion may have a pre-selected area of transparency or opacity to radiation so as to form an image of such a structural element upon the correspondingly aligned portion of the web during exposure.
- the method may be used for selective curing of structural material, or may be used to expose positively or negatively acting photoresist material during manufacturing processes.
- these multiple-step processes may be carried out roll-to-roll continuously or semi-continuously, they are suitable for high volume and low cost production. These processes are also efficient and inexpensive as compared to other processes for manufacturing display products.
- the improved EPD involving microcups is not sensitive to environment, such as humidity and temperature.
- the display is thin, flexible, durable, easy-to-handle, and format-flexible. Since the EPD comprises cells of favorable aspect ratio and well-defined shape and size, the bi-stable reflective display has excellent color addressability, high contrast ratio and color saturation, fast switching rate and response time.
- Sealing of the microcups by a continuous web process is one of the most critical steps in the roll-to-roll manufacturing of the improved EPDs.
- the sealing layer In order to prepare a high quality display, the sealing layer must have at least the following characteristics: (1) free of defects such as entrapped air bubble, pin holes, cracking or leaking, etc; (2) good film integrity and barrier properties against the display fluid such as dielectric fluids for EPDs; and (3) good coating and adhesion properties. Since most of the dielectric solvents used in EPDs are of low surface tension and low viscosity, it has been a major challenge to achieve a seamless, defect-free sealing with good adhesion properties for the microcups.
- thermoplastic elastomers having good compatibility with the microcups and good barrier properties against the display fluid are particularly useful.
- useful thermoplastic elastomers include di-block, tri-block or multi-block copolymers represented by the formulas ABA or (AB)n in which A is styrene, ⁇ -methylstyrene, ethylene, propylene or norbonene; B is butadiene, isoprene, ethylene, proplyene, butylene, dimethoylsiloxane or propylene sulfide; and A and B cannot be the same in the formula.
- the number, n is ⁇ 1, preferably 1-10.
- copolymers include poly(styrene-b-butadiene), poly(styrene-b-butadiene-b-styrene), poly(styrene-b-isoprene-b-styrene), poly(styrene-b-ethylene/butylene-b-styrene), poly(styrene-b-dimethylsiloxane-b-styrene), poly(( ⁇ -methylstyrene-b-isoprene), poly( ⁇ -methylstyrene-b-isoprene-b- ⁇ -methylstyrene), poly( ⁇ -methylstyrene-b-propylene sulfide-b- ⁇ -methylstyrne), and poly( ⁇ -methylstyrene-b-dimethylsiloxane-b- ⁇ -methylstyrene).
- thermoplastic elastomers A review of the preparation of the thermoplastic elastomers can be found in N. R. Legge, G. Holden, and H. E. Schroeder ed., “Thermoplastic Elastomers”, Hanser Publisher (1987).
- Commercially available styrene block copolymers such as Kraton D and G series from Shell Chemical Company are particularly useful.
- Crystalline rubbers such as poly(ethylene-co-propylene-co-5-methylene-2-norbomene) or EPDM (ethylene-propylene-diene terpolymer) rubbers and their grafted copolymers have also been found very useful.
- the hard block of the thermoplastic elastomers phase separates during or after the drying of the sealing overcoat and serves as the physical crosslinker of the soft continuous phase.
- the sealing composition of the present invention significantly enhances the modulus and film integrity of the sealing layer throughout the coating and drying processes.
- Thermoplastic elastomers having low critical surface tension (lower than 40 dyne/cm) and high modulus or Shore A hardness (higher than 60) have been found useful probably because of their favorable wetting property and film integrity over the display fluid.
- thermoplastic elastomer is dissolved in a solvent or solvent mixture which is immiscible with the display fluid in the microcups and exhibits a specific gravity less than that of the display fluid.
- Low surface tension solvents are preferred for the overcoating composition because of their better wetting properties over the microcup surface and the electrophoretic fluid.
- Solvents or solvent mixtures having a surface tension lower than 35 dyne/cm are preferred. A surface tension lower than 30 dyne/cm is more preferred.
- Suitable solvents include alkanes (preferably C 6-12 alkanes such as heptane, octane or Isopar solvents from Exxon Chemical Company, nonane, decane and their isomers), cycloalkanes (preferably C 6-12 cycloalkanes such as cyclohexane, decalin and the like), alkylbenzenes (preferably mono- or di-C 1-6 alkyl benzenes such as toluene, xylene and the like), alkyl esters (preferably C 2-5 alkyl esters such as ethyl acetate, isobutyl acetate and the like) and C 3-5 alkyl alcohols (such as isopropanol and the like and their isomers.
- alkanes preferably C 6-12 alkanes such as heptane, octane or Isopar solvents from Exxon Chemical Company, nonane, decane and their is
- the composition of the present invention enables the continuous sealing of wider microcups, particularly those having a width greater than 100 microns. Wider microcups are preferred in some applications because of their higher microcup opening-to-wall ratio and better display contrast ratio.
- the sealing composition of the present invention enables the formation of a sealing layer less than 3 microns thick which is typically difficult to achieve by using traditional sealing compositions. The thinner sealing layer shortens the distance between the top and bottom electrodes and results in a faster switching rate.
- Co-solvents and wetting agents may also be included in the composition to improve the adhesion of the sealant to the microcups and provides a wider coating process latitude.
- Other ingredients such as crosslinking agents, vulcanizers, multifunctional monomers or oligomers, and high Tg polymers that are miscible with one of the blocks of the thermoplastic elastomer are also highly useful to enhance the physicomechanical properties of the sealing layer during or after the overcoating process.
- the sealed microcups may be post treated by UV radiation or thermal baking to further improve the barrier properties.
- the adhesion of the sealing layer to the microcups may also be improved by the post-curing reaction, probably due to the formation of an interpenetration network at the microcup-sealing sealing layer inter-phase.
- FIG. 1 is a schematic cross-section of an EPD, showing three microcup cells in a neutral condition.
- FIG. 2 is a schematic cross-section of the EPD of FIG. 1, but with two of the cells charged, to cause the pigment to migrate to one plate.
- FIGS. 3 A- 3 C shows the contours of an exemplary microcup array, FIG. 3A showing a perspective view, FIG. 3B showing a plan view, and FIG. 3C showing an elevation view, the vertical scale being exaggerated for clarity.
- FIGS. 4A and 4B show the basic processing steps for preparing the microcups involving imagewise photolithographic exposure through a photomask (“top exposure”) of the conductor film coated with a thermoset precursor, to UV radiation.
- FIGS. 5A and 5B show alternative processing steps for preparing the microcups involving imagewise photolithography combining the top exposure and bottom exposure principles, whereby the walls are cured in one lateral direction by top photomask exposure and in the perpendicular lateral direction by bottom exposure through the opaque base conductor film (“combined exposure”).
- FIGS. 6 A- 6 D are a sequence of cross sections of a microcup array, illustrating the steps of assembling a monochrome display.
- microcup refers to the cup-like indentations, which may be created by methods such as micro-embossing or imagewise exposure as described in the co-pending patent applications identified above.
- the plural form “microcups” in a collective context may in general refer to the microcup assembly comprising a plurality of such microcups integrally formed or joined to make a structured two-dimensional microcup array.
- cell in the context of the present invention, is intended to mean the single unit formed from a sealed microcup.
- the cells are filled with charged pigment particles dispersed in a solvent or solvent mixture.
- microcups or cells when describing the microcups or cells, is intended to indicate that the microcup or cell has a definite shape, size, pattern and aspect ratio which are predetermined according to the specific parameters of the manufacturing process.
- the term “aspect ratio” is a commonly known term in the art and is the depth to width ratio or the depth to diameter ratio of the microcup opening.
- imagewise exposure means exposure of radiation-curable material or photoresist composition to radiation, such as UV, using one of the methods of the invention, whereby the portions of the material so exposed are controlled to form a pattern or “image” corresponding to the structure of the microcups, e.g., the exposure is restricted to the portions of the material corresponding to the microcup walls, leaving the microcup floor portion unexposed.
- imagewise exposure means exposure on the portions of material corresponding to the cup opening, leaving the microcup walls unexposed.
- the pattern or image may be formed by such methods as exposure through a photomask, or alternatively by controlled particle beam exposure, and the like.
- FIGS. 1 and 2 are schematic cross-section views of an exemplary microcup array assembly embodiment, simplified for clarity, showing a microcup array assembly ( 10 ) of three microcup cells ( 12 a, b, and c ).
- each cell ( 12 ) of array ( 10 ) comprises two electrode plates ( 11 , 13 ), at least one of which is transparent ( 11 ), such as an ITO electrode, the electrodes ( 11 ) and ( 13 ) bounding two opposite faces of the cell ( 12 ).
- the microcup cell array assembly ( 10 ) comprises a plurality of cells which are disposed adjacent to one another within a plane to form a layer of cells ( 12 ) enclosed between the two electrodes layers ( 11 ) and ( 13 ).
- Three exemplary cells ( 12 a ), ( 12 b ), and ( 12 c ) are shown, bounded by their respective electrode plates ( 11 a ), ( 11 b ), and ( 11 c ) (transparent) and ( 13 a ), ( 13 b ), and ( 13 c ) (back plates), it being understood that a large number of such cells are preferably arrayed two-dimensionally (to the right/left and in/out of the plane in FIG.
- FIG. 1 shows an example in which each cell ( 12 ) is bounded by separate electrode plates ( 11 ) and ( 13 ) having the width of a single cell.
- the cells are of well-defined shape and size and are filled with a colored dielectric solvent ( 14 ) in which charged pigment particles ( 15 ) are suspended and dispersed.
- the cells ( 12 ) may be each filled with the same composition of pigment and solvent (e.g., in a monochrome display) or may be filled with different compositions of pigment and solvent (e.g., in a color display).
- FIG. 1 shows three different color combinations as indicated by the different hatch pattern in each cell ( 12 a ), ( 12 b ), and ( 12 c ), the solvents being designated ( 14 a ), ( 14 b ), and ( 14 c ) respectively, and the pigment particles being designated ( 15 a ), ( 15 b ), and ( 15 c ) respectively.
- the microcup cells ( 12 ) each comprise enclosing walls ( 16 ) bounding the cells on the sides (within the plane of array ( 10 )) and floor ( 17 ) bounding the cell on one face, in this example the face adjacent to electrode ( 13 ).
- each cell On the opposite face (adjacent electrode ( 11 )) each cell comprises sealing cap portion ( 18 ). Where the sealing cap portion is adjacent to the transparent electrode ( 11 ) (as in FIG. 1), the sealing cap ( 18 ) comprises a transparent composition.
- the floor ( 17 ) and the sealing cap ( 18 ) are shown as separate cell portions distinct from adjacent electrodes ( 13 ) and ( 11 ) respectively, alternative embodiments of the microcup array ( 10 ) of the invention may comprise an integral floor/electrode structure or an integral sealing cap/electrode structure.
- FIG. 2 is a schematic cross-section of the EPD of FIG. 1, but with two of the cells charged ( 12 a and 12 c ), to cause the pigment to migrate to one plate.
- the charged particles ( 15 ) migrate (i.e., toward electrode ( 11 ) or ( 13 ) depending on the charge of the particle and electrode), such that either the color of the pigment particle ( 15 ) or the color of the solvent ( 14 ) is seen through the transparent conductor film ( 11 ).
- At least one of the two conductors ( 11 ) or ( 13 ) is patterned (separately addressable portions ) to permit a selective electric field to be established with respect to either each cell or with respect to a pre-defined group of cells (e.g., to form a pixel).
- FIGS. 3 A- 3 C shows the contours of an exemplary portion of a microcup array, FIG. 3A showing a perspective view, FIG. 3B showing a plan view, and FIG. 3C showing an elevation view, the vertical scale being exaggerated for clarity.
- the opening area of each individual microcup may preferably be in the range of about 10 2 to about 5 ⁇ 10 5 ⁇ m 2 , more preferably from about 10 3 to about 5 ⁇ 10 4 ⁇ m 2 .
- the width w of the microcup ( 12 ) may vary over a wide range, and is selectable to suit the desired final display characteristics.
- the width w of the microcup openings preferably is in the range of from about 15 to about 450 ⁇ m, and more preferably from about 25 to about 300 ⁇ m from edge to edge of the openings.
- Each microcup may form a small segment of a pixel of the final display, or may be a full pixel.
- the wall thickness t relative to the cup width w may vary over a large range, and is selectable to suit the desired final display characteristics.
- the microcup wall thickness is typically from about 0.01 to about 1 times the microcup width, and more preferably about 0.05 to about 0.25 times the microcup width.
- the opening-to-total area ratio is preferably in the range of about 0.1 to about 0.98, more preferably from about 0.3 to about 0.95.
- the microcup wall height h (which defines the cup depth) is shown exaggerated beyond its typical proportional dimensions for clarity.
- the height of the microcups is typically in the range of about 5 to about 100 microns ( ⁇ ms), preferably from about 10 to about 50 microns.
- the height is typically in the range of about 1 to 10 microns and more preferably from about 2 to 5 microns.
- microcup array assembly For simplicity and clarity, a square microcup arranged in a linear two-dimensional array assembly is assumed in the description herein of the microcup array assembly of the invention.
- the microcup need not be square, it may be rectangular, circular, or a more complex shape if desired.
- the microcups may be hexagonal and arranged in a hexagonal close-packed array, or alternatively, triangular cups may be oriented to form hexagonal sub-arrays, which in turn are arranged in a hexagonal close-packed array.
- the microcups can be of any shape, and their sizes, pattern and shapes may vary throughout the display. This may be advantageous in the color EPD.
- microcups having a mixture of different shapes and sizes may be produced.
- microcups filled with a dispersion of the red color may have a different shape or size from the green microcups or the blue microcups.
- a pixel may consist of different numbers of microcups of different colors. For example, a pixel may consist of a number of small green microcups, a number of large red microcups, and a number of small blue microcups. It is not necessary to have the same shape and number for the three colors.
- the openings of the microcups may be round, square, rectangular, hexagonal, or any other shapes.
- the partition area between the openings is preferably kept small in order to achieve a high color saturation and contrast while maintaining desirable mechanical properties. Consequently the honeycomb-shaped opening is preferred over, for example, the circular opening.
- the microcups may be prepared by microembossing or by photolithography.
- the male mold may be prepared by any appropriate method, such as a diamond turn process or a photoresist process followed by either etching or electroplating.
- a master template for the male mold may be manufactured by any appropriate method, such as electroplating. With electroplating, a glass base is sputtered with a thin layer (typically 3000 ⁇ ) of a seed metal such as chrome inconel. It is then coated with a layer of photoresist and exposed to UV. A mask is placed between the UV and the layer of photoresist. The exposed areas of the photoresist become hardened. The unexposed areas are then removed by washing them with an appropriate solvent. The remaining hardened photoresist is dried and sputtered again with a thin layer of seed metal.
- the master is then ready for electroforming.
- a typical material used for electroforming is nickel cobalt.
- the master can be made of nickel by electroforming or electroless nickel deposition as described in “Continuous manufacturing of thin cover sheet optical media”, SPIE Proc. Vol. 1663, pp. 324 (1992).
- the floor of the mold is typically between about 50 to 400 microns.
- the master can also be made using other microengineering techniques including e-beam writing, dry etching, chemical etching, laser writing or laser interference as described in “Replication techniques for micro-optics”, SPIE Proc. Vol. 3099, pp. 76-82 (1997).
- the mold can be made by photomachining using plastics, ceramics or metals.
- the male mold thus prepared typically has protrusions between about 1 to 500 microns, preferably between about 2 to 100 microns, and most preferred about 4 to 50 microns.
- the male mold may be in the form of a belt, a roller, or a sheet. For continuous manufacturing, the belt type of mold is preferred.
- Micro-cups may be formed either in a batchwise process or in a continuous roll-to-roll process as disclosed in the co-pending application, U.S. Ser. No. 09/784,972, filed on Feb. 25, 2001.
- the latter offers a continuous, low cost, high throughput manufacturing technology for production of compartments for use in electrophoretic or LCDs.
- the mold Prior to applying a UV curable resin composition, the mold may be treated with a mold release to aid in the demolding process.
- the UV curable resin may be degassed prior to dispensing and may optionally contain a solvent. The solvent, if present, readily evaporates.
- the UV curable resin is dispensed by any appropriate means such as, coating, dipping, pouring and the like, over the male mold.
- the dispenser may be moving or stationary.
- a conductor film is overlaid the UV curable resin.
- suitable conductor film include transparent conductor ITO on plastic substrates such as polyethylene terephthalate, polyethylene naphthate, polyaramid, polyimide, polycycloolefin, polysulfone, epoxy and their composites.
- Pressure may be applied, if necessary, to ensure proper bonding between the resin and the plastic and to control the thickness of the floor of the micro-cups. The pressure may be applied using a laminating roller, vacuum molding, press device or any other like means.
- the male mold is metallic and opaque, the plastic substrate is typically transparent to the actinic radiation used to cure the resin. Conversely, the male mold can be transparent and the plastic substrate can be opaque to the actinic radiation. To obtain good transfer of the molded features onto the transfer sheet, the conductor film needs to have good adhesion to the UV curable resin which should have a good release property against the mold surface.
- the microcup array ( 40 ) may be prepared by exposure of a radiation curable material ( 41 a ) coated by known methods onto a conductor electrode film ( 42 ) to UV light (or alternatively other forms of radiation, electron beams and the like) through a mask ( 46 ) to form walls ( 41 b ) corresponding to the image projected through the mask ( 46 ).
- the base conductor film ( 42 ) is preferably mounted on a supportive substrate base web ( 43 ), which may comprise a plastic material.
- the dark squares ( 44 ) represent the opaque area and the space between the dark squares represents the transparent area ( 45 ) of the mask ( 46 ).
- the UV radiates through the transparent area ( 45 ) onto the radiation curable material ( 41 a ).
- the exposure is preferably directly onto the radiation curable material ( 41 a ), i.e., the UV does not pass through the substrate ( 43 ) or base conductor ( 42 ) (top exposure). For this reason, neither the substrate ( 43 ) nor the conductor ( 42 ) needs to be transparent to the UV or other radiation wavelengths employed.
- the exposed areas ( 41 b ) become hardened and the unexposed areas (protected by the opaque area ( 44 ) of the mask ( 46 ) are then removed by an appropriate solvent or developer to form the microcups ( 47 ).
- the solvent or developer is selected from those commonly used for dissolving or reducing the viscosity of radiation curable materials such as methylethylketone (MEK), toluene, acetone, isopropanol or the like.
- MEK methylethylketone
- the preparation of the microcups may be similarly accomplished by placing a photomask underneath the conductor film/substrate support web and in this case the UV light radiates through the photomask from the bottom and the substrate needs to be transparent to radiation.
- FIGS. 5A and 5B Still another alternative method for the preparation of the microcup array of the invention by imagewise exposure is illustrated in FIGS. 5A and 5B.
- the conductor lines can be used as the photomask for the exposure from the bottom.
- Durable microcup walls are formed by additional exposure from the top through a second photomask having opaque lines perpendicular to the conductor lines.
- FIG. 5A illustrates the use of both the top and bottom exposure principals to produce the microcup array ( 50 ) of the invention.
- the base conductor film ( 52 ) is opaque and line-patterned.
- the radiation curable material ( 51 a ) which is coated on the base conductor ( 52 ) and substrate ( 53 ), is exposed from the bottom through the conductor line pattern ( 52 ) which serves as the first photomask.
- a second exposure is performed from the “top” side through the second photomask ( 56 ) having a line pattern perpendicular to the conductor lines ( 52 ).
- the spaces ( 55 ) between the lines ( 54 ) are substantially transparent to the UV light.
- the wall material ( 51 b ) is cured from the bottom up in one lateral orientation, and cured from the top down in the perpendicular direction, joining to form an integral microcup ( 57 ).
- the unexposed area is then removed by a solvent or developer as described above to reveal the microcups ( 57 ).
- the novel sealing overcoat composition comprises the following ingredients:
- thermoplastic elastomers having good compatibility with the microcups and good barrier properties against the display fluid are particularly useful.
- useful thermoplastic elastomers include ABA, and (AB)n type of di-block, tri-block, and multi-block copolymers wherein A is styrene, ⁇ -methylstyrene, ethylene, propylene or norbonene; B is butadiene, isoprene, ethylene, propylene, butylene, dimethylsiloxane or propylene sulfide; and A and B cannot be the same in the formula.
- the number, n, is ⁇ 1, preferably 1-10.
- di-block or tri-block copolymers of styrene or ox-methylstyrene such as SB (poly(styrene-b-butadiene)), SBS (poly(styrene-b-butadiene-b-styrene)), SIS (poly(styrene-b-isoprene-b-styrene)), SEBS (poly(styrene-b-ethylene/butylenes-b-stylene)) poly(styrene-b-dimethylsiloxane-b-styrene), poly(( ⁇ -methylstyrene-b-isoprene), poly( ⁇ -methylstyrene-b-isoprene-b- ⁇ -methylstyrene), poly( ⁇ -methylstyrene-b-propylene sulfide-b- ⁇ -methylstyrene), poly( ⁇ -methylstyren
- thermoplastic elastomers A review of the preparation of the thermoplastic elastomers can be found in N. R. Legge, G. Holden, and H. E. Schroeder ed., “Thermoplastic Elastomers”, Hanser Publisher (1987).
- Commercially available styrene block copolymers such as Kraton D and G series (from Kraton Polymer, Houston, Tex.) are particularly useful.
- Crystalline rubbers such as poly(ethylene-co-propylene-co-5-methylene-2-norbomene) or EPDM (ethylene-propylene-diene terpolymer) rubbers such as Vistalon 6505 (from Exxon Mobil, Houston, Tex.) and their grafted copolymers have also been found very useful.
- the hard block of the thermoplastic elastomers phase separates during or after the drying of the sealing overcoat and serves as the physical crosslinker of the soft continuous phase.
- the sealing composition of the present invention significantly enhances the modulus and film integrity of the sealing layer throughout the coating and drying processes of the sealing layer.
- Thermoplastic elastomers having low critical surface tension (lower than 40 dyne/cm) and high modulus or Shore A hardness (higher than 60) have been found useful probably because of their favorable wetting property and film integrity over the display fluid.
- thermoplastic elastomer is dissolved in a solvent or solvent mixture which is immiscible with the display fluid in the microcups and exhibits a specific gravity less than that of the display fluid.
- Low surface tension solvents are preferred for the overcoating composition because of their better wetting properties over the microcup walls and the electrophoretic fluid.
- Solvents or solvent mixtures having a surface tension lower than 35 dyne/cm are preferred. A surface tension of lower than 30 dyne/cm is more preferred.
- Suitable solvents include alkanes (preferably C 6-12 alkanes such as heptane, octane or Isopar solvents from Exxon Chemical Company, nonane, decane and their isomers), cycloalkanes (preferably C 6-12 cycloalkanes such as cyclohexane and decalin and the like), alkylbezenes (preferably mono- or
- di-C 1-6 alkyl benzenes such as toluene, xylene and the like
- alkyl esters preferably C 2-5 alkyl esters such as ethyl acetate, isobutyl acetate and the like
- C 3-5 alkyl alcohols such as isopropanol and the like and their isomers. Mixtures of alkylbenzene and alkane are particularly useful.
- Wetting agents such as the FC surfactants from 3M Company, Zonyl fluorosurfactants from DuPont, fluoroacrylates, fluoromethacrylates, fluoro-substituted long chain alcohols, perfluoro-substituted long chain carboxylic acids and their derivatives, and Silwet silicone surfactants from OSi, Greenwich, Conn.
- FC surfactants from 3M Company, Zonyl fluorosurfactants from DuPont, fluoroacrylates, fluoromethacrylates, fluoro-substituted long chain alcohols, perfluoro-substituted long chain carboxylic acids and their derivatives, and Silwet silicone surfactants from OSi, Greenwich, Conn.
- crosslinking agents e.g., bisazides such as 4,4′-diazidodiphenylmethane and 2,6-di-(4′-azidobenzal)-4-methylcyclohexanone
- vulcanizers e.g., 2-benzothiazolyl disulfide and tetramethylthiuram disulfide
- multifunctional monomers or oligomers e.g., hexanediol, diacrylates, trimethylolpropane, triacrylate, divinylbenzene, diallylphthalene
- thermal initiators e.g., dilauroryl peroxide, benzoyl peroxide
- photoinitiators e.g., isopropyl thioxanthone (ITX), Irgacure 651 and Irgacure 369 from Ciba-Geigy
- the sealing composition is typically overcoated onto partially filled microcups and the overcoated microcups are dried at room temperature.
- the sealed microcups optionally may be post treated by UV radiation or thermal baking to further improve the barrier properties.
- the adhesion of the sealing layer to the microcups may also be improved by the post-curing reaction, likely due to the formation of an interpenetration network at the microcup-sealing layer inter-phase.
- FIGS. 6 A- 6 D The preferred process of preparing the electrophoretic cells is illustrated schematically in FIGS. 6 A- 6 D.
- the microcup array ( 60 ) may be prepared by any of the alternative methods described in Section III above.
- the unfilled microcup array made by the methods described herein typically comprises a substrate web ( 63 ) upon which a base electrode ( 62 ) is deposited.
- the microcup walls ( 61 ) extend upward from the substrate ( 63 ) to form the open cups.
- the microcups are filled with a suspension of the charged pigment particles ( 65 ) in a colored dielectric solvent composition ( 64 ).
- the composition is the same in each cup, i.e., in a monochrome display.
- the microcups are preferably partially filled (to prevent overflow), which can be achieved by diluting the electrophoretic fluid with a volatile solvent (such as acetone, methyl ethyl ketone, isopropanol, hexane, and perfluoro solvent FC-33 from 3M Co.,) and allowing the volatile solvent to evaporate.
- a volatile solvent such as acetone, methyl ethyl ketone, isopropanol, hexane, and perfluoro solvent FC-33 from 3M Co.
- a perfluoro volatile solvent such as FC-33 is particularly useful to control the level of partial filling.
- the microcups are sealed with the sealing composition of the present invention to form a sealing layer ( 66 ).
- the sealing composition is typically overcoated onto the partially filled microcups and dried on the display fluid.
- the sealed microcups optionally may be post treated by UV radiation or thermal baking to further improve the barrier properties.
- the sealed array of electrophoretic microcup cells ( 60 ) is laminated with a second conductor film ( 67 ), preferably by pre-coating the conductor ( 67 ) with an adhesive layer ( 68 ) which may be a pressure sensitive adhesive, a hot melt adhesive, or a heat, moisture, or radiation curable adhesive.
- the laminate adhesive may be post-cured by radiation such as UV through the top conductor film if the latter is transparent to the radiation.
- the microcups are preferably filled with charged pigment particles dispersed in a dielectric solvent (e.g., solvent ( 64 ) and pigment particles ( 65 ) in FIG. 6B.).
- a dielectric solvent e.g., solvent ( 64 ) and pigment particles ( 65 ) in FIG. 6B.
- the dispersion may be prepared according to methods well known in the art, such as U.S. Pat. Nos. 6,017,584, 5,914,806, 5,573,711, 5,403,518, 5,380,362, 4,680,103, 4,285,801, 4,093,534, 4,071,430, and 3,668,106. See also IEEE Trans. Electron Devices, ED-24, 827 (1977), and J. Appl. Phys. 49(9), 4820 (1978).
- the charged pigment particles visually contrast with the medium in which the particles are suspended.
- the medium is a dielectric solvent which preferably has a low viscosity and a dielectric constant in the range of about 2 to about 30, preferably about 2 to about 15 for high particle mobility.
- suitable dielectric solvents include hydrocarbons such as decahydronaphthalene (DECALIN), 5-ethylidene-2-norbomene, fatty oils, paraffin oil, aromatic hydrocarbons such as toluene, xylene, phenylxylylethane, dodecylbenzene and alkylnaphthalenes, halogenated solvents such as, dichlorobenzotrifluoride, 3,4,5-trichlorobenzotrifluoride, chloropentafluoro-benzene, dichlorononane, pentachlorobenzene, and perfluoro solvents such as perfluorodecalin, perfluorotoluene, perfluoroxylene, FC-43, FC-70 and FC-5060 from 3M Company, St.
- hydrocarbons such as decahydronaphthalene (DECALIN), 5-ethylidene-2-norbomene, fatty oils, paraffin oil, aromatic hydrocarbon
- halogen containing polymers such as poly(perfluoropropylene oxide) from TCI America, Portland, Oregon, poly(chlorotrifluoroethylene) such as Halocarbon Oils from Halocarbon Product Corp., River Edge, N.J., perfluoropolyalkylether such as Galden, HT-200, and Fluorolink from Ausimont (Thorofare, N.J.) or Krytox Oils and Greases K-Fluid Series from DuPont, Del.
- poly(chlorotrifluoroethylene) is used as the dielectric solvent.
- poly(perfluoropropylene oxide) is used as the dielectric solvent.
- a non-migrating fluid colorant may be formed from dyes or pigments.
- Nonionic azo and anthraquinone dyes are particularly useful.
- useful dyes include, but are not limited to: Oil Red EGN, Sudan Red, Sudan Blue, Oil Blue, Macrolex Blue, Solvent Blue 35, Pylam Spirit Black and Fast Spirit Black from Pylam Products Co., Arizona, Sudan Black B from Aldrich, Thermoplastic Black X-70 from BASF, and anthraquinone blue, anthraquinone yellow 114, anthraquinone red 111, 135, anthraquinone green 28 from Aldrich.
- Fluorinated dyes are particularly useful when perfluoro solvents are used.
- the non-migrating pigment particles for generating the color of the medium may also be dispersed in the dielectric medium. These color particles are preferably uncharged. If the non-migrating pigment particles for generating color in the medium are charged, they preferably carry a charge which is opposite from that of the charged, migrating pigment particles. If both types of pigment particles carry the same charge, then they should have different charge density or different electrophoretic mobility. In any case, the dye or pigment for generating the non-migrating fluid colorant of the medium must be chemically stable and compatible with other components in the suspension.
- the charged, migrating pigment particles may be organic or inorganic pigments, such as TiO 2 , phthalocyanine blue, phthalocyanine green, diarylide yellow, diarylide AAOT Yellow, and quinacridone, azo, rhodamine, perylene pigment series from Sun Chemical, Hansa yellow G particles from Kanto Chemical, and Carbon Lampblack from Fisher. Submicron particle size is preferred. These particles should have acceptable optical characteristics, should not be swollen or softened by the dielectric solvent, and should be chemically stable. The resulting suspension must also be stable against sedimentation, creaming or flocculation under normal operating conditions.
- the migrating pigment particles may exhibit a native charge, or may be charged explicitly using a charge control agent, or may acquire a charge when suspended in the dielectric solvent.
- Suitable charge control agents are well known in the art; they may be polymeric or non-polymeric in nature, and may also be ionic or non-ionic, including ionic surfactants such as Aerosol OT, sodium dodecylbenzenesulfonate, metal soaps, polybutene succinimide, maleic anhydride copolymers, vinylpyridine copolymers, vinylpyrrolidone copolymer (such as Ganex from International Specialty Products), (meth)acrylic acid copolymers, N,N-dimethylaminoethyl (meth)acrylate copolymers.
- Fluorosurfactants are particularly useful as charge controlling agents in perfluorocarbon solvents. These include FC fluorosurfactants such as FC-170C, FC-171, FC-176, FC430, FC431 and FC-740 from 3M Company and Zonyl fluorosurfactants such as Zonyl FSA, FSE, FSN, FSN-100, FSO, FSO-100, FSD and UR from Dupont.
- FC fluorosurfactants such as FC-170C, FC-171, FC-176, FC430, FC431 and FC-740 from 3M Company
- Zonyl fluorosurfactants such as Zonyl FSA, FSE, FSN, FSN-100, FSO, FSO-100, FSD and UR from Dupont.
- Suitable charged pigment dispersions may be manufactured by any of the well-known methods including grinding, milling, attriting, microfluidizing, and ultrasonic techniques. For example, pigment particles in the form of a fine powder are added to the suspending solvent and the resulting mixture is ball milled or attrited for several hours to break up the highly agglomerated dry pigment powder into primary particles. Although less preferred, a dye or pigment for producing the non-migrating fluid colorant may be added to the suspension during the ball milling process.
- Sedimentation or creaming of the pigment particles may be eliminated by microencapsulating the particles with suitable polymers to match the specific gravity to that of the dielectric solvent.
- Microencapsulation of the pigment particles may be accomplished chemically or physically. Typical microencapsulation processes include interfacial polymerization, in-situ polymerization, phase separation, coacervation, electrostatic coating, spray drying, fluidized bed coating and solvent evaporation.
- the suspension comprises charged white particles of titanium oxide (TiO 2 ) dispersed in a black dielectric solution containing a black dye or dispersed uncharged black particles.
- a black dye or dye mixture such as Pylam Spirit Black and Fast Spirit Black from Pylam Products Co. Arizona, Sudan Black B from Aldrich, Thermoplastic Black X-70 from BASF, or an insoluble black pigment such as carbon black may be used to generate the black color of the solvent.
- a black dye or dye mixture such as Pylam Spirit Black and Fast Spirit Black from Pylam Products Co. Arizona, Sudan Black B from Aldrich, Thermoplastic Black X-70 from BASF, or an insoluble black pigment such as carbon black may be used to generate the black color of the solvent.
- the charged TiO 2 particles may be suspended in a dielectric fluid of cyan, yellow or magenta color.
- the cyan, yellow or magenta color may be generated via the use of a dye or a pigment.
- the charged TiO 2 particles may be suspended in a dielectric fluid of red, green or blue color generated also via the use of a dye or a pigment.
- the red, green, blue color system is preferred for most applications.
- Ebecryl 600 35 parts by weight of Ebecryl 600 (UCB), 40 parts of SR-399 (Sartomer), 10 parts of Ebecryl 4827 (UCB), 7 parts of Ebecryl 1360 (UCB), 8 parts of HDDA, (UCB), 0.05 parts of Irgacure 369 (Ciba Specialty Chemicals) and 0.01 parts of isopropyl thioxanthone (ITX from Aldrich) were mixed homogeneously and used for micro-embossing.
- microcup formulation prepared in Example 1 was coated onto the treated ITO/PET film with a targeted thickness of about 50 ⁇ m, embossed with a Ni—Co male mold having a 60 (length) ⁇ 60 (width) ⁇ m repetitive protrusion square pattern with 25-50 ⁇ m protrusion height and 10 ⁇ m wide partition lines, UV cured from the PET side for 20 seconds, removed from the mold with a 2′′ peeling bar at a speed of about 4-5 ft/min.
- Well-defined micro-cups with depth ranging from 25 to 50 ⁇ m were prepared by using male molds having corresponding protrusion heights.
- Microcup arrays of various dimension such as 70 (length) ⁇ 70 (width) ⁇ 35 (depth) ⁇ 10 (partition), 100 (L) ⁇ 100(W) ⁇ 35(D) ⁇ 10(P), and 100 (L) ⁇ 100(W) ⁇ 30(D) ⁇ 10(P) ⁇ m were also prepared by the same procedure.
- Example 3 The same as Example 3, except the Ti Pure R706 and Fluorolink were replaced by a polymer coated TiO 2 particles PC-9003 from Elimentis (Highstown, N.J.) and Krytox (Du Pont) respectively. Note: replacing 2 things, Ti & fluorolink, with 1 thing, TiO2 PC-90003 from 2 suppliers, elimentis & krytox??
- Example 3 The electrophoretic fluid prepared in Example 3 was diluted with a volatile perfluoro co-solvent FC-33 from 3M and coated onto a 35 microns deep microcup array prepared in Example 2.
- the volatile cosolvent was allowed to evaporate to expose a partially filled microcup array.
- a 7.5% solution of polyisoprene (97% cis, from Aldrich) in heptane was then overcoated onto the partially filled cups by a Universal Blade Applicator with an opening of 3 mil.
- the overcoated microcups were then dried at room temperature.
- a seamless sealing layer of about 7-8 ⁇ m thickness (dry) with acceptable adhesion and uniformity was formed on the microcup array. No observable entrapped air bubble in the sealed microcups was found under microscope.
- a second ITO/PET conductor precoated with an adhesive layer was laminated onto the sealed microcups.
- the electrophoretic cell showed satisfactory switching performance with good flexure resistance. No observable weight loss was found after being aged in a 66° C. oven for 5 days.
- Example 5 The same as Example 5, except the thickness of the polyisoprene layer was reduced to 4 microns by using a blade applicator of 2 mil opening. Pinholes and broken sealing layer were clearly observed under optical microscope.
- Mw , polyvinylbutyral (Butvar 72, from Solutia Inc., St. Louis, Mo.)
- thermpoplastic elastomers such as SIS (Kraton D1107, 15% styrene), SBS (Kraton D1101, 31% styrene) SEBS (Kraton G1650 and FG1901, 30% styrene), and EPDM (Vistalon 6505, 57%
- microcups may also be used for manufacturing microcup arrays for liquid crystal displays.
- microcup selective filling, sealing and ITO laminating methods of the invention may also be employed in the manufacture of liquid crystal displays.
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Chemical & Material Sciences (AREA)
- Optics & Photonics (AREA)
- General Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Molecular Biology (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Mathematical Physics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Organic Chemistry (AREA)
- Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
- Sealing Material Composition (AREA)
Priority Applications (13)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/874,391 US20020188053A1 (en) | 2001-06-04 | 2001-06-04 | Composition and process for the sealing of microcups in roll-to-roll display manufacturing |
TW090123324A TWI301211B (en) | 2001-06-04 | 2001-09-21 | Composition and process for the sealing of microcups in roll-to-roll display manufacturing |
CNB011364483A CN1237140C (zh) | 2001-06-04 | 2001-10-17 | 在辊对辊显示器制造过程中密封微型杯的组分及方法 |
JP2003502091A JP4322663B2 (ja) | 2001-06-04 | 2002-06-03 | ロール・トゥ・ロール・ディスプレイ製造におけるマイクロカップの封止のための組成物および方法 |
MXPA03011144A MXPA03011144A (es) | 2001-06-04 | 2002-06-03 | Composicion y proceso para el sellado de microcopas en la manufactura de pantallas de laminado a laminado. |
CA002448440A CA2448440A1 (en) | 2001-06-04 | 2002-06-03 | Composition and process for the sealing of microcups in roll-to-roll display manufacturing |
KR1020037015909A KR100859305B1 (ko) | 2001-06-04 | 2002-06-03 | 롤투롤 방식으로 디스플레이 제조시 마이크로컵의 밀봉을위한 조성물 및 밀봉 방법 |
PCT/US2002/017632 WO2002098977A1 (en) | 2001-06-04 | 2002-06-03 | Composition and process for the sealing of microcups in roll-to-roll display manufacturing |
EP02737371A EP1401953A1 (en) | 2001-06-04 | 2002-06-03 | Composition and process for the sealing of microcups in roll-to-roll display manufacturing |
US10/222,454 US7144942B2 (en) | 2001-06-04 | 2002-08-16 | Composition and process for the sealing of microcups in roll-to-roll display manufacturing |
US10/222,297 US7005468B2 (en) | 2001-06-04 | 2002-08-16 | Composition and process for the sealing of microcups in roll-to-roll display manufacturing |
US10/310,681 US7205355B2 (en) | 2001-06-04 | 2002-12-04 | Composition and process for the manufacture of an improved electrophoretic display |
US11/582,844 US8361356B2 (en) | 2001-06-04 | 2006-10-17 | Composition and process for the sealing of microcups in roll-to-roll display manufacturing |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/874,391 US20020188053A1 (en) | 2001-06-04 | 2001-06-04 | Composition and process for the sealing of microcups in roll-to-roll display manufacturing |
Related Child Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/222,297 Division US7005468B2 (en) | 2001-06-04 | 2002-08-16 | Composition and process for the sealing of microcups in roll-to-roll display manufacturing |
US10/222,454 Division US7144942B2 (en) | 2001-06-04 | 2002-08-16 | Composition and process for the sealing of microcups in roll-to-roll display manufacturing |
US10/310,681 Continuation-In-Part US7205355B2 (en) | 2001-06-04 | 2002-12-04 | Composition and process for the manufacture of an improved electrophoretic display |
Publications (1)
Publication Number | Publication Date |
---|---|
US20020188053A1 true US20020188053A1 (en) | 2002-12-12 |
Family
ID=25363637
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/874,391 Abandoned US20020188053A1 (en) | 2001-06-04 | 2001-06-04 | Composition and process for the sealing of microcups in roll-to-roll display manufacturing |
US10/222,297 Expired - Lifetime US7005468B2 (en) | 2001-06-04 | 2002-08-16 | Composition and process for the sealing of microcups in roll-to-roll display manufacturing |
US10/222,454 Expired - Lifetime US7144942B2 (en) | 2001-06-04 | 2002-08-16 | Composition and process for the sealing of microcups in roll-to-roll display manufacturing |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/222,297 Expired - Lifetime US7005468B2 (en) | 2001-06-04 | 2002-08-16 | Composition and process for the sealing of microcups in roll-to-roll display manufacturing |
US10/222,454 Expired - Lifetime US7144942B2 (en) | 2001-06-04 | 2002-08-16 | Composition and process for the sealing of microcups in roll-to-roll display manufacturing |
Country Status (9)
Cited By (70)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020075556A1 (en) * | 2000-03-03 | 2002-06-20 | Rong-Chang Liang | Electrophoretic display and novel process for its manufacture |
US20020126249A1 (en) * | 2001-01-11 | 2002-09-12 | Rong-Chang Liang | Transmissive or reflective liquid crystal display and novel process for its manufacture |
US20020182544A1 (en) * | 2000-01-11 | 2002-12-05 | Sipix Imaging, Inc. | Process for roll-to-roll manufacture of a display by synchronized photolithographic exposure on a substrate web |
US20030035199A1 (en) * | 2001-08-20 | 2003-02-20 | Rong-Chang Liang | Transflective electrophoretic display |
US20030034950A1 (en) * | 2001-08-17 | 2003-02-20 | Rong-Chang Liang | Electrophoretic display with dual mode switching |
US20030043450A1 (en) * | 2001-08-28 | 2003-03-06 | Rong-Chang Liang | Electrophoretic display with sub relief structure for high contrast ratio and improved shear and/or compression resistance |
US20030152849A1 (en) * | 2001-02-15 | 2003-08-14 | Mary Chan-Park | Process for roll-to-roll manufacture of a display by synchronized photolithographic exposure on a substrate web |
US20040027643A1 (en) * | 2002-05-30 | 2004-02-12 | Canon Kabushiki Kaisha | Dispersion for electrophoretic display, and electrophoretic display device |
US20040032389A1 (en) * | 2002-08-16 | 2004-02-19 | Rong-Chang Liang | Electrophoretic display with dual mode switching |
US20040032391A1 (en) * | 2002-08-16 | 2004-02-19 | Rong-Chang Liang | Electrophoretic display with dual-mode switching |
US6751008B2 (en) | 2000-03-03 | 2004-06-15 | Sipix Imaging, Inc. | Electrophoretic display and novel process for its manufacture |
US20040112525A1 (en) * | 2002-09-04 | 2004-06-17 | Cheri Pereira | Adhesive and sealing layers for electrophoretic displays |
US20040120024A1 (en) * | 2002-09-23 | 2004-06-24 | Chen Huiyong Paul | Electrophoretic displays with improved high temperature performance |
US20040169912A1 (en) * | 2002-10-31 | 2004-09-02 | Rong-Chang Liang | Electrophoretic display and novel process for its manufacture |
US20040216837A1 (en) * | 2002-09-04 | 2004-11-04 | Cheri Pereira | Adhesive and sealing layers for electrophoretic displays |
US6831770B2 (en) | 2000-03-03 | 2004-12-14 | Sipix Imaging, Inc. | Electrophoretic display and novel process for its manufacture |
US6833943B2 (en) | 2000-03-03 | 2004-12-21 | Sipix Imaging, Inc. | Electrophoretic display and novel process for its manufacture |
US20050007651A1 (en) * | 2000-03-03 | 2005-01-13 | Rong-Chang Liang | Electrophoretic display with sub relief structure for high contrast ratio and improved shear and/or compression resistance |
US6850355B2 (en) | 2001-07-27 | 2005-02-01 | Sipix Imaging, Inc. | Electrophoretic display with color filters |
US6865012B2 (en) | 2000-03-03 | 2005-03-08 | Sipix Imaging, Inc. | Electrophoretic display and novel process for its manufacture |
US6885495B2 (en) | 2000-03-03 | 2005-04-26 | Sipix Imaging Inc. | Electrophoretic display with in-plane switching |
US20060033677A1 (en) * | 2004-08-10 | 2006-02-16 | Kenneth Faase | Display device |
US7042614B1 (en) | 2004-11-17 | 2006-05-09 | Hewlett-Packard Development Company, L.P. | Spatial light modulator |
US7052571B2 (en) | 2000-03-03 | 2006-05-30 | Sipix Imaging, Inc. | Electrophoretic display and process for its manufacture |
US20060132579A1 (en) * | 2004-12-20 | 2006-06-22 | Palo Alto Research Center Incorporated | Flexible electrophoretic-type display |
US20060139724A1 (en) * | 2002-09-10 | 2006-06-29 | Rong-Chang Liang | Electrochromic or electrodeposition display and novel process for their manufacture |
US7112114B2 (en) | 2000-03-03 | 2006-09-26 | Sipix Imaging, Inc. | Electrophoretic display and process for its manufacture |
EP1666965A4 (en) * | 2003-09-12 | 2006-11-08 | Bridgestone Corp | METHOD FOR PRODUCING IMAGE DISPLAY PANEL AND DISPLAY PANEL THEREFOR |
US7141279B2 (en) | 2002-11-25 | 2006-11-28 | Sipix Imaging, Inc. | Transmissive or reflective liquid crystal display and novel process for its manufacture |
US20070036919A1 (en) * | 2003-01-24 | 2007-02-15 | Xiaojia Wang | Adhesive and sealing layers for electrophoretic displays |
US20070035497A1 (en) * | 2002-09-23 | 2007-02-15 | Chen Huiyong P | Electrophoretic displays with improved high temperature performance |
US7233429B2 (en) | 2000-03-03 | 2007-06-19 | Sipix Imaging, Inc. | Electrophoretic display |
US7271947B2 (en) | 2002-08-16 | 2007-09-18 | Sipix Imaging, Inc. | Electrophoretic display with dual-mode switching |
US20070263277A1 (en) * | 2001-08-17 | 2007-11-15 | Rong-Chang Liang | Electrophoretic display with dual mode switching |
WO2008023309A1 (en) * | 2006-08-21 | 2008-02-28 | Koninklijke Philips Electronics N.V. | A sealed cell structure |
US7408696B2 (en) | 2000-03-03 | 2008-08-05 | Sipix Imaging, Inc. | Three-dimensional electrophoretic displays |
US20080220204A1 (en) * | 2007-03-08 | 2008-09-11 | Masaru Ohgaki | Display panel, method of manufacturing a display panel, and display unit |
US20080316564A1 (en) * | 2005-12-22 | 2008-12-25 | Eastman Kodak Company | Display Devices |
FR2918463A1 (fr) * | 2007-07-04 | 2009-01-09 | Essilor Int | Film transparent comprenant un film de base et un revetement |
US7557981B2 (en) | 2000-03-03 | 2009-07-07 | Sipix Imaging, Inc. | Electrophoretic display and process for its manufacture |
US7656493B2 (en) | 2007-07-31 | 2010-02-02 | Arthur Alan R | Pixel well electrodes |
US20100033803A1 (en) * | 2003-01-24 | 2010-02-11 | Xiaojia Wang | Adhesive and sealing layers for electrophoretic displays |
US20100068514A1 (en) * | 2008-09-18 | 2010-03-18 | Tesa Se | Method for encapsulating an electronic arrangement |
US7715088B2 (en) | 2000-03-03 | 2010-05-11 | Sipix Imaging, Inc. | Electrophoretic display |
DE102008060113A1 (de) | 2008-12-03 | 2010-07-29 | Tesa Se | Verfahren zur Kapselung einer elektronischen Anordnung |
US20110222141A1 (en) * | 2010-03-10 | 2011-09-15 | Seiko Epson Corporation | Method for enclosing dispersion liquid containing electrophoretic particles and electrophoretic display unit |
US8023071B2 (en) | 2002-11-25 | 2011-09-20 | Sipix Imaging, Inc. | Transmissive or reflective liquid crystal display |
EP2465426A1 (en) * | 2010-12-20 | 2012-06-20 | General Electric Company | Biomedical sensor |
US8282762B2 (en) | 2001-01-11 | 2012-10-09 | Sipix Imaging, Inc. | Transmissive or reflective liquid crystal display and process for its manufacture |
WO2013131707A1 (de) | 2012-03-07 | 2013-09-12 | Tesa Se | Verbundsystem zur verkapselung elektronischer anordnungen |
US8582197B2 (en) | 2000-03-03 | 2013-11-12 | Sipix Imaging, Inc. | Process for preparing a display panel |
US8587857B2 (en) | 2010-10-27 | 2013-11-19 | Industrial Technology Research Institute | Electro-wetting display device and non-polar color solution thereof |
US8652565B2 (en) | 2009-07-29 | 2014-02-18 | Seiko Epson Corporation | Sealing method of sealing dispersion liquid containing and electrophoretic particles, and electrophoretic display |
US20170108740A1 (en) * | 2014-04-04 | 2017-04-20 | Lg Chem, Ltd. | Liquid crystal element |
US20170166332A1 (en) * | 2015-12-10 | 2017-06-15 | Nova Chemicals (International) S.A. | Hot Fill Process With Closures Made From High Density Polyethylene Compositions |
US20170166430A1 (en) * | 2015-12-09 | 2017-06-15 | Nova Chemicals (International) S.A. | Hot Fill Process With Closures Made From High Density Unimodal Polyethylene |
CN107111176A (zh) * | 2015-02-16 | 2017-08-29 | 株式会社Lg化学 | 液晶装置 |
US9989798B2 (en) | 2014-06-27 | 2018-06-05 | Lg Display Co., Ltd. | Light controlling apparatus, method of fabricating the light controlling apparatus and transparent display device including the light controlling apparatus with transparent mode and light shielding mode |
US20180210312A1 (en) * | 2017-01-20 | 2018-07-26 | E Ink California, Llc | Color organic pigments and electrophoretic display media containing the same |
US10087344B2 (en) | 2015-10-30 | 2018-10-02 | E Ink Corporation | Methods for sealing microcell containers with phenethylamine mixtures |
WO2020033787A1 (en) | 2018-08-10 | 2020-02-13 | E Ink California, Llc | Driving waveforms for switchable light-collimating layer including bistable electrophoretic fluid |
WO2020033175A1 (en) | 2018-08-10 | 2020-02-13 | E Ink California, Llc | Switchable light-collimating layer including bistable electrophoretic fluid |
US10585325B2 (en) | 2017-03-09 | 2020-03-10 | E Ink California, Llc | Photo-thermally induced polymerization inhibitors for electrophoretic media |
US10698265B1 (en) | 2017-10-06 | 2020-06-30 | E Ink California, Llc | Quantum dot film |
US11048124B2 (en) | 2019-09-06 | 2021-06-29 | Au Optronics Corporation | Liquid crystal panel and manufacturing method thereof |
US11314098B2 (en) | 2018-08-10 | 2022-04-26 | E Ink California, Llc | Switchable light-collimating layer with reflector |
CN118672021A (zh) * | 2024-06-03 | 2024-09-20 | 江汉大学 | 一种彩色微杯型电泳电子纸及其加工方法 |
WO2025147410A2 (en) | 2024-01-02 | 2025-07-10 | E Ink Corporation | Electrophoretic media comprising a cationic charge control agent |
WO2025147504A1 (en) | 2024-01-05 | 2025-07-10 | E Ink Corporation | An electrophoretic medium comprising particles having a pigment core and a polymeric shell |
WO2025151355A1 (en) | 2024-01-08 | 2025-07-17 | E Ink Corporation | Electrophoretic device having an adhesive layer comprising conductive filler particles and a polymeric dispersant |
Families Citing this family (190)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8361356B2 (en) * | 2001-06-04 | 2013-01-29 | Sipix Imaging, Inc. | Composition and process for the sealing of microcups in roll-to-roll display manufacturing |
US7244470B2 (en) * | 2001-07-10 | 2007-07-17 | Cantega Technologies Inc. | Protection of electrical power systems |
US7177066B2 (en) * | 2003-10-24 | 2007-02-13 | Sipix Imaging, Inc. | Electrophoretic display driving scheme |
GB0327215D0 (en) * | 2003-11-22 | 2003-12-24 | Koninkl Philips Electronics Nv | Active matrix display device and method of producing the same |
US7279064B2 (en) * | 2003-12-18 | 2007-10-09 | Palo Alto Research Center, Incorporated | Method of sealing an array of cell microstructures using microencapsulated adhesive |
US8535041B2 (en) * | 2006-07-28 | 2013-09-17 | Microcontinuum, Inc. | Addressable flexible patterns |
US9039401B2 (en) | 2006-02-27 | 2015-05-26 | Microcontinuum, Inc. | Formation of pattern replicating tools |
US9307648B2 (en) | 2004-01-21 | 2016-04-05 | Microcontinuum, Inc. | Roll-to-roll patterning of transparent and metallic layers |
US8643595B2 (en) * | 2004-10-25 | 2014-02-04 | Sipix Imaging, Inc. | Electrophoretic display driving approaches |
CN100514136C (zh) * | 2006-02-08 | 2009-07-15 | 财团法人工业技术研究院 | 显示面板的制造方法 |
US8111368B2 (en) * | 2006-02-28 | 2012-02-07 | Hewlett-Packard Development Company, L.P. | Liquid crystal display |
US8029558B2 (en) * | 2006-07-07 | 2011-10-04 | Abbott Cardiovascular Systems, Inc. | Stent and catheter assembly and method for treating bifurcations |
US8830561B2 (en) | 2006-07-18 | 2014-09-09 | E Ink California, Llc | Electrophoretic display |
US20080020007A1 (en) * | 2006-07-18 | 2008-01-24 | Zang Hongmei | Liquid-containing film structure |
US20150005720A1 (en) | 2006-07-18 | 2015-01-01 | E Ink California, Llc | Electrophoretic display |
FR2910642B1 (fr) * | 2006-12-26 | 2009-03-06 | Essilor Int | Composant optique transparent a deux ensembles de cellules |
US8940117B2 (en) | 2007-02-27 | 2015-01-27 | Microcontinuum, Inc. | Methods and systems for forming flexible multilayer structures |
US8274472B1 (en) | 2007-03-12 | 2012-09-25 | Sipix Imaging, Inc. | Driving methods for bistable displays |
US8243013B1 (en) | 2007-05-03 | 2012-08-14 | Sipix Imaging, Inc. | Driving bistable displays |
US20080303780A1 (en) | 2007-06-07 | 2008-12-11 | Sipix Imaging, Inc. | Driving methods and circuit for bi-stable displays |
KR20090061869A (ko) * | 2007-12-12 | 2009-06-17 | 한국전자통신연구원 | 전기영동 디스플레이 및 그 형성 방법 |
KR20100138891A (ko) * | 2008-02-26 | 2010-12-31 | 휴렛-팩커드 디벨롭먼트 컴퍼니, 엘.피. | 전기영동 디스플레이 장치 |
US8462102B2 (en) * | 2008-04-25 | 2013-06-11 | Sipix Imaging, Inc. | Driving methods for bistable displays |
CN102113046B (zh) * | 2008-08-01 | 2014-01-22 | 希毕克斯影像有限公司 | 用于电泳显示器的带有误差扩散的伽马调节 |
EP2324386A4 (en) | 2008-08-20 | 2013-03-27 | Ravenbrick Llc | METHODS OF MANUFACTURING THERMOCHROMIC FILTERS |
ES2711555T3 (es) | 2009-04-10 | 2019-05-06 | Ravenbrick Llc | Filtro óptico conmutado térmicamente que incorpora una arquitectura de huésped-hospedador |
US9460666B2 (en) * | 2009-05-11 | 2016-10-04 | E Ink California, Llc | Driving methods and waveforms for electrophoretic displays |
US8436844B2 (en) * | 2009-06-18 | 2013-05-07 | Roche Diagnostics Operations, Inc. | Bi-stable display fail safes and devices incorporating the same |
JP5267955B2 (ja) * | 2010-01-27 | 2013-08-21 | 大日本印刷株式会社 | 電気泳動表示装置の製造方法 |
US8699114B2 (en) | 2010-06-01 | 2014-04-15 | Ravenbrick Llc | Multifunctional building component |
KR101209550B1 (ko) * | 2010-09-09 | 2012-12-07 | 주식회사 이미지앤머터리얼스 | 전기 영동 디스플레이 장치, 이미지 시트 및 이들의 제조 방법 |
US8845912B2 (en) | 2010-11-22 | 2014-09-30 | Microcontinuum, Inc. | Tools and methods for forming semi-transparent patterning masks |
CN104536231B (zh) * | 2011-05-23 | 2017-10-10 | 京东方科技集团股份有限公司 | 电致变色显示器件、其制备方法、阴极结构及微格阵列 |
CA2847185A1 (en) | 2011-09-01 | 2013-03-07 | Ravenbrick, Llc | Thermotropic optical shutter incorporating coatable polarizers |
TW201327517A (zh) * | 2011-12-21 | 2013-07-01 | Fitipower Integrated Tech Inc | 電子裝置以及切換第一顯示單元及第二顯示單元的方法 |
TWI494679B (zh) | 2012-01-09 | 2015-08-01 | Sipix Imaging Inc | 電泳顯示流體 |
JP5929239B2 (ja) * | 2012-01-27 | 2016-06-01 | セイコーエプソン株式会社 | 電気泳動分散液、電気泳動シート、電気泳動装置および電子機器 |
KR101391373B1 (ko) | 2012-02-24 | 2014-05-07 | 최명준 | 디스플레이 장치 봉지용 조성물, 디스플레이 장치의 봉지 방법 및 디스플레이 패널 |
US9589797B2 (en) | 2013-05-17 | 2017-03-07 | Microcontinuum, Inc. | Tools and methods for producing nanoantenna electronic devices |
JP2015018061A (ja) * | 2013-07-10 | 2015-01-29 | セイコーエプソン株式会社 | 電気泳動装置、電気泳動装置の製造方法、及び電子機器 |
US9188829B2 (en) * | 2013-09-09 | 2015-11-17 | E Ink California, Llc | Electrophoretic display film for anti-counterfeit application |
JP2015075517A (ja) * | 2013-10-07 | 2015-04-20 | セイコーエプソン株式会社 | 電気泳動表示装置及び電気泳動表示装置の製造方法 |
US10324353B2 (en) | 2013-10-22 | 2019-06-18 | Vlyte Innovations Limited | Wide operating temperature range electrophoretic device |
US10317767B2 (en) | 2014-02-07 | 2019-06-11 | E Ink Corporation | Electro-optic display backplane structure with drive components and pixel electrodes on opposed surfaces |
CN103941512B (zh) * | 2014-04-11 | 2016-08-17 | 京东方科技集团股份有限公司 | 像素分隔墙的制作方法、阵列基板、以及amecd |
KR102314707B1 (ko) * | 2014-06-27 | 2021-10-20 | 엘지디스플레이 주식회사 | 광 제어 장치, 상기 광 제어 장치의 제조방법, 및 상기 광 제어 장치를 포함한 투명표시장치 |
TWI613498B (zh) * | 2014-06-27 | 2018-02-01 | 電子墨水加利福尼亞有限責任公司 | 用於電泳顯示器的各向異性傳導介電層 |
US10388233B2 (en) | 2015-08-31 | 2019-08-20 | E Ink Corporation | Devices and techniques for electronically erasing a drawing device |
EP3350798B1 (en) | 2015-09-16 | 2023-07-26 | E Ink Corporation | Apparatus and methods for driving displays |
US11657774B2 (en) | 2015-09-16 | 2023-05-23 | E Ink Corporation | Apparatus and methods for driving displays |
US10803813B2 (en) | 2015-09-16 | 2020-10-13 | E Ink Corporation | Apparatus and methods for driving displays |
US10795233B2 (en) | 2015-11-18 | 2020-10-06 | E Ink Corporation | Electro-optic displays |
US10209530B2 (en) | 2015-12-07 | 2019-02-19 | E Ink Corporation | Three-dimensional display |
CN105500710B (zh) * | 2015-12-31 | 2019-01-18 | 珠海天威飞马打印耗材有限公司 | 三维成型材料、dlp三维打印机及其成型方法 |
WO2017123570A1 (en) | 2016-01-17 | 2017-07-20 | E Ink California, Llc | Surfactants for improving electrophoretic media performance |
EP3403141A4 (en) * | 2016-01-17 | 2019-01-16 | E Ink California, LLC | POLYHYDROXYLATED COMPOSITIONS FOR ENCAPSULATING ELECTROPHORETIC DISPLAYS |
US10276109B2 (en) | 2016-03-09 | 2019-04-30 | E Ink Corporation | Method for driving electro-optic displays |
US10593272B2 (en) | 2016-03-09 | 2020-03-17 | E Ink Corporation | Drivers providing DC-balanced refresh sequences for color electrophoretic displays |
US10670892B2 (en) | 2016-04-22 | 2020-06-02 | E Ink Corporation | Foldable electro-optic display apparatus |
JP6876727B2 (ja) | 2016-06-10 | 2021-05-26 | イー インク コーポレイション | 電気光学ディスプレイ装置 |
TWI764929B (zh) * | 2016-09-27 | 2022-05-21 | 德商巴地斯顏料化工廠 | 具有經增強的可交聯性之星形及三嵌段聚合物 |
US10503041B2 (en) | 2016-11-30 | 2019-12-10 | E Ink Corporation | Laminated electro-optic displays and methods of making same |
US10509294B2 (en) | 2017-01-25 | 2019-12-17 | E Ink Corporation | Dual sided electrophoretic display |
KR102187730B1 (ko) | 2017-02-15 | 2020-12-07 | 이 잉크 캘리포니아 엘엘씨 | 컬러 전기영동 디스플레이 매체에 사용되는 중합체 첨가제 |
US10324577B2 (en) | 2017-02-28 | 2019-06-18 | E Ink Corporation | Writeable electrophoretic displays including sensing circuits and styli configured to interact with sensing circuits |
CA3050122C (en) | 2017-03-06 | 2020-07-28 | E Ink Corporation | Method and apparatus for rendering color images |
US9995987B1 (en) | 2017-03-20 | 2018-06-12 | E Ink Corporation | Composite particles and method for making the same |
WO2018183240A1 (en) | 2017-03-28 | 2018-10-04 | E Ink Corporation | Porous backplane for electro-optic display |
WO2018187449A1 (en) | 2017-04-04 | 2018-10-11 | E Ink Corporation | Methods for driving electro-optic displays |
TWI682261B (zh) | 2017-05-19 | 2020-01-11 | 美商電子墨水股份有限公司 | 包含數位化及觸控感測的可折疊電光顯示器 |
US11404013B2 (en) | 2017-05-30 | 2022-08-02 | E Ink Corporation | Electro-optic displays with resistors for discharging remnant charges |
JP2020522741A (ja) | 2017-05-30 | 2020-07-30 | イー インク コーポレイション | 電気光学ディスプレイ |
EP3639087B1 (en) | 2017-06-16 | 2022-11-02 | E Ink Corporation | Variable transmission electrophoretic devices |
US10983410B2 (en) | 2017-06-16 | 2021-04-20 | E Ink Corporation | Electro-optic media including encapsulated pigments in gelatin binder |
US10802373B1 (en) | 2017-06-26 | 2020-10-13 | E Ink Corporation | Reflective microcells for electrophoretic displays and methods of making the same |
US10921676B2 (en) | 2017-08-30 | 2021-02-16 | E Ink Corporation | Electrophoretic medium |
US11721295B2 (en) | 2017-09-12 | 2023-08-08 | E Ink Corporation | Electro-optic displays, and methods for driving same |
EP3682440B1 (en) | 2017-09-12 | 2024-11-06 | E Ink Corporation | Methods for driving electro-optic displays |
US10824042B1 (en) | 2017-10-27 | 2020-11-03 | E Ink Corporation | Electro-optic display and composite materials having low thermal sensitivity for use therein |
US11079651B2 (en) | 2017-12-15 | 2021-08-03 | E Ink Corporation | Multi-color electro-optic media |
US11422427B2 (en) | 2017-12-19 | 2022-08-23 | E Ink Corporation | Applications of electro-optic displays |
JP7001217B2 (ja) | 2017-12-22 | 2022-01-19 | イー インク コーポレイション | 電気泳動表示装置、および電子機器 |
US11248122B2 (en) | 2017-12-30 | 2022-02-15 | E Ink Corporation | Pigments for electrophoretic displays |
KR102435841B1 (ko) | 2018-01-22 | 2022-08-23 | 이 잉크 코포레이션 | 전기 광학 디스플레이들, 및 그 구동 방법들 |
US11143929B2 (en) | 2018-03-09 | 2021-10-12 | E Ink Corporation | Reflective electrophoretic displays including photo-luminescent material and color filter arrays |
US11175561B1 (en) | 2018-04-12 | 2021-11-16 | E Ink Corporation | Electrophoretic display media with network electrodes and methods of making and using the same |
PL3794410T3 (pl) | 2018-05-17 | 2024-05-06 | E Ink Corporation | Sposób wytwarzania wyświetlacza piezoelektroforetycznego |
WO2020005676A1 (en) | 2018-06-28 | 2020-01-02 | E Ink Corporation | Driving methods for variable transmission electro-phoretic media |
TWI727374B (zh) | 2018-07-25 | 2021-05-11 | 美商電子墨水股份有限公司 | 可撓性透明膨脹型塗佈物及包含其之複合物 |
EP3834038B1 (en) | 2018-08-07 | 2023-10-18 | E Ink Corporation | Flexible encapsulated electro-optic media |
US11364566B2 (en) | 2018-08-09 | 2022-06-21 | The United States Of America As Represented By The Secretary Of The Army | Complex laser folding and fabrication |
EP3837582B1 (en) | 2018-08-14 | 2024-10-09 | E Ink Corporation | Piezo electrophoretic display |
JP7119235B2 (ja) | 2018-09-20 | 2022-08-16 | イー インク コーポレイション | 3次元ディスプレイ装置 |
US11656522B2 (en) | 2018-09-28 | 2023-05-23 | E Ink Corporation | Solar temperature regulation system for a fluid |
US11656525B2 (en) | 2018-10-01 | 2023-05-23 | E Ink Corporation | Electro-optic fiber and methods of making the same |
US11635640B2 (en) | 2018-10-01 | 2023-04-25 | E Ink Corporation | Switching fibers for textiles |
EP3874317B1 (en) | 2018-10-30 | 2025-03-19 | E Ink Corporation | Electro-optic assembly |
US11145262B2 (en) | 2018-11-09 | 2021-10-12 | E Ink Corporation | Electro-optic displays |
JP7158584B2 (ja) | 2018-11-30 | 2022-10-21 | イー インク コーポレイション | 電気泳動材料を備える感圧式書き込み媒体 |
US11402719B2 (en) | 2018-12-11 | 2022-08-02 | E Ink Corporation | Retroreflective electro-optic displays |
WO2020123741A1 (en) | 2018-12-12 | 2020-06-18 | E Ink Corporation | Edible electrodes and uses in electro-optic displays |
US10823373B2 (en) | 2018-12-17 | 2020-11-03 | E Ink Corporation | Light emitting device including variable transmission film to control intensity and pattern |
WO2020131799A1 (en) | 2018-12-17 | 2020-06-25 | E Ink Corporation | Anisotropically conductive moisture barrier films and electro-optic assemblies containing the same |
US11521565B2 (en) | 2018-12-28 | 2022-12-06 | E Ink Corporation | Crosstalk reduction for electro-optic displays |
US11537024B2 (en) | 2018-12-30 | 2022-12-27 | E Ink California, Llc | Electro-optic displays |
CA3123308C (en) | 2019-02-25 | 2023-10-17 | E Ink Corporation | Composite electrophoretic particles and variable transmission films containing the same |
JP7317133B2 (ja) | 2019-02-28 | 2023-07-28 | エルジー・ケム・リミテッド | 封止フィルム |
US11602806B2 (en) | 2019-02-28 | 2023-03-14 | The United States Of America As Represented By The Secretary Of The Army | Method and apparatus for performing contactless laser fabrication and propulsion of freely moving structures |
US11456397B2 (en) | 2019-03-12 | 2022-09-27 | E Ink Corporation | Energy harvesting electro-optic displays |
WO2020205206A1 (en) | 2019-03-29 | 2020-10-08 | E Ink Corporation | Electro-optic displays and methods of driving the same |
CN113423751B (zh) | 2019-04-24 | 2024-03-12 | 伊英克公司 | 电泳粒子、介质和显示器及其制造方法 |
WO2020223041A1 (en) | 2019-04-30 | 2020-11-05 | E Ink Corporation | Connectors for electro-optic displays |
EP3966628B1 (en) | 2019-05-07 | 2025-04-23 | E Ink Corporation | Driving methods for a variable light transmission device |
EP3966629A4 (en) | 2019-05-10 | 2023-08-30 | E Ink Corporation | CHARGE CONTROL AGENTS AND PARTICLE DISPERSIONS INCLUDING THE SAME |
US11761123B2 (en) | 2019-08-07 | 2023-09-19 | E Ink Corporation | Switching ribbons for textiles |
EP4022389B1 (en) | 2019-08-26 | 2024-12-25 | E Ink Corporation | Electro-optic device comprising an identification marker |
GB201914105D0 (en) | 2019-09-30 | 2019-11-13 | Vlyte Innovations Ltd | A see-through electrophoretic device having a visible grid |
KR102796992B1 (ko) | 2019-10-07 | 2025-04-18 | 이 잉크 코포레이션 | 폴리우레탄 및 양이온성 도펀트를 포함하는 접착제 조성물 |
CN114641820B (zh) | 2019-11-14 | 2024-01-05 | 伊英克公司 | 用于驱动电光显示器的方法 |
KR20220069973A (ko) | 2019-11-14 | 2022-05-27 | 이 잉크 코포레이션 | 반대로 대전된 입자들을 포함하는 전기 광학 매체 및 그것을 포함하는 가변 투과 디바이스 |
CN114667561B (zh) | 2019-11-18 | 2024-01-05 | 伊英克公司 | 用于驱动电光显示器的方法 |
EP4078276A4 (en) | 2019-12-17 | 2024-05-29 | E Ink Corporation | AUTOSTEREOSCOPIC DEVICES AND METHODS FOR 3D IMAGE PRODUCTION |
KR102721288B1 (ko) | 2019-12-23 | 2024-10-23 | 이 잉크 코포레이션 | 전기 광학 디바이스용 전사가능한 투광성 전극 필름 |
CN114930240A (zh) | 2020-02-06 | 2022-08-19 | 伊英克公司 | 具有有机颜料核和带有薄金属氧化物层和硅烷层的壳的电泳核壳粒子 |
GB2593150A (en) | 2020-03-05 | 2021-09-22 | Vlyte Ltd | A light modulator having bonded structures embedded in its viewing area |
EP4158614A4 (en) | 2020-05-31 | 2024-09-11 | E Ink Corporation | ELECTRO-OPTICAL DISPLAY DEVICES AND METHODS OF DRIVING THE SAME |
CN116529666A (zh) | 2020-06-03 | 2023-08-01 | 伊英克公司 | 包括非导电支撑板的可折叠电泳显示器模块 |
WO2021247991A1 (en) | 2020-06-05 | 2021-12-09 | E Ink California, Llc | Electrophoretic display device |
CA3177451A1 (en) | 2020-06-11 | 2021-12-16 | E Ink Corporation | Electro-optic displays, and methods for driving same |
CN116324609A (zh) | 2020-07-22 | 2023-06-23 | 伊英克公司 | 包含集成的导电边缘密封件的电光装置和用于生产电光装置的方法 |
US12181767B2 (en) | 2020-09-15 | 2024-12-31 | E Ink Corporation | Five-particle electrophoretic medium with improved black optical state |
CA3189174A1 (en) | 2020-09-15 | 2022-03-24 | Stephen J. Telfer | Improved driving voltages for advanced color electrophoretic displays and displays with improved driving voltages |
US11686989B2 (en) | 2020-09-15 | 2023-06-27 | E Ink Corporation | Four particle electrophoretic medium providing fast, high-contrast optical state switching |
US11846863B2 (en) | 2020-09-15 | 2023-12-19 | E Ink Corporation | Coordinated top electrode—drive electrode voltages for switching optical state of electrophoretic displays using positive and negative voltages of different magnitudes |
EP4222732A4 (en) | 2020-10-01 | 2024-09-25 | E Ink Corporation | Electro-optic displays, and methods for driving same |
US12326641B2 (en) | 2020-10-02 | 2025-06-10 | E Ink Corporation | Front plane laminates with outer surface electrical connections |
AU2021368779B2 (en) | 2020-11-02 | 2024-03-07 | E Ink Corporation | Enhanced push-pull (EPP) waveforms for achieving primary color sets in multi-color electrophoretic displays |
JP7646823B2 (ja) | 2020-11-02 | 2025-03-17 | イー インク コーポレイション | カラー電気泳動ディスプレイから以前の状態情報を除去するための駆動シーケンス |
JP7545588B2 (ja) | 2020-12-08 | 2024-09-04 | イー インク コーポレイション | 電気光学ディスプレイを駆動するための方法 |
US12276894B2 (en) | 2021-02-04 | 2025-04-15 | E Ink Corporation | Sealing layers comprising a conductive filler for sealing microcells of electrophoretic displays |
US20220251364A1 (en) | 2021-02-04 | 2022-08-11 | E Ink California, Llc | Sealing layers for sealing microcells of electro-optic devices |
JP7599577B2 (ja) | 2021-02-09 | 2024-12-13 | イー インク コーポレイション | 多色電気泳動ディスプレイにおける連続波形駆動 |
AU2022266617B2 (en) | 2021-04-29 | 2024-08-01 | E Ink Corporation | Disaggregation driving sequences for four particle electrophoretic displays |
KR102847961B1 (ko) | 2021-05-25 | 2025-08-19 | 이 잉크 코포레이션 | 4개 입자 전기영동 디스플레이들을 위한 동기화된 구동 파형들 |
TWI846017B (zh) | 2021-08-18 | 2024-06-21 | 美商電子墨水股份有限公司 | 用於驅動電光顯示器的方法 |
CN117897657A (zh) | 2021-09-06 | 2024-04-16 | 伊英克公司 | 用于驱动电泳显示设备的方法 |
WO2023043714A1 (en) | 2021-09-14 | 2023-03-23 | E Ink Corporation | Coordinated top electrode - drive electrode voltages for switching optical state of electrophoretic displays using positive and negative voltages of different magnitudes |
US11830448B2 (en) | 2021-11-04 | 2023-11-28 | E Ink Corporation | Methods for driving electro-optic displays |
US12339559B1 (en) | 2021-12-09 | 2025-06-24 | E Ink Corporation | Electro-optic displays and methods for discharging remnant voltage using backlight |
EP4453648A1 (en) | 2021-12-20 | 2024-10-30 | E Ink Corporation | A multi-layer device comprising a repair layer having conductive a hydrogel film or beads |
EP4453922A1 (en) | 2021-12-22 | 2024-10-30 | E Ink Corporation | Methods for driving electro-optic displays |
EP4453649A1 (en) | 2021-12-22 | 2024-10-30 | E Ink Corporation | High voltage driving using top plane switching with zero voltage frames between driving frames |
TWI847453B (zh) | 2021-12-27 | 2024-07-01 | 美商電子墨水股份有限公司 | 用於測量電光顯示器之電性質的方法 |
EP4460725A1 (en) | 2022-01-04 | 2024-11-13 | E Ink Corporation | Electrophoretic media comprising electrophoretic particles and a combination of charge control agents |
US20230276710A1 (en) | 2022-02-28 | 2023-08-31 | E Ink California, Llc | Piezoelectric films including ionic liquids and methods of making piezoelectric films including ionic liquids |
US20230273495A1 (en) | 2022-02-28 | 2023-08-31 | E Ink California, Llc | Piezo-electrophoretic film including patterned piezo polarities for creating images via electrophoretic media |
US11830449B2 (en) | 2022-03-01 | 2023-11-28 | E Ink Corporation | Electro-optic displays |
US20230324761A1 (en) | 2022-04-08 | 2023-10-12 | E Ink California, Llc | Water-resistant sealing layer for sealing microcells of electro-optic devices |
US20230333437A1 (en) | 2022-04-13 | 2023-10-19 | E Ink Corporation | Display material including patterned areas of encapsulated electrophoretic media |
JP2025513035A (ja) | 2022-04-27 | 2025-04-22 | イー インク コーポレイション | 高度カラー電子ペーパー上での表示のためにrgb画像データを変換するように構成されるカラーディスプレイ |
US20240004255A1 (en) | 2022-07-01 | 2024-01-04 | E Ink Corporation | Sealing Films and Sealing Compositions for Sealing Microcells of Electro-Optic Devices |
EP4578003A1 (en) | 2022-08-25 | 2025-07-02 | E Ink Corporation | Transitional driving modes for impulse balancing when switching between global color mode and direct update mode for electrophoretic displays |
TW202424949A (zh) | 2022-10-25 | 2024-06-16 | 美商電子墨水股份有限公司 | 驅動電光顯示器的方法 |
AU2023419622A1 (en) | 2022-12-30 | 2025-05-22 | E Ink Corporation | A variable light transmission device and a method of manufacture of the same |
WO2024145318A1 (en) | 2022-12-30 | 2024-07-04 | E Ink Corporation | A variable light transmission device and a method of operation of the same |
AU2023415499A1 (en) | 2022-12-30 | 2025-05-22 | E Ink Corporation | A variable light transmission device comprising electrophoretic medium having a compination of light reflective and light absorbing pigment particles |
US12190836B2 (en) | 2023-01-27 | 2025-01-07 | E Ink Corporation | Multi-element pixel electrode circuits for electro-optic displays and methods for driving the same |
KR20250121415A (ko) | 2023-02-28 | 2025-08-12 | 이 잉크 코포레이션 | 컬러 전기 영동 디스플레이의 개선된 색 영역을 위한 구동 방식 |
US20240402562A1 (en) | 2023-06-05 | 2024-12-05 | E Ink Corporation | Color electrophoretic medium having four pigment particle system addressable by waveforms having four voltage levels |
WO2025006476A1 (en) | 2023-06-27 | 2025-01-02 | E Ink Corporation | Multi-particle electrophoretic display having low-flash image updates |
WO2025006130A1 (en) | 2023-06-27 | 2025-01-02 | E Ink Corporation | Electrophoretic device with ambient light sensor and adaptive whiteness restoring and color balancing frontlight |
US12394388B2 (en) | 2023-06-27 | 2025-08-19 | E Ink Corporation | Time-shifted waveforms for multi-particle electrophoretic displays providing low-flash image updates |
WO2025019101A1 (en) | 2023-07-18 | 2025-01-23 | E Ink Corporation | Switchable electrophoretic light modulator having reduced aperture diffraction |
US20250053058A1 (en) | 2023-08-08 | 2025-02-13 | E Ink Corporation | Backplanes for segmented electro-optic displays and methods of manufacturing same |
WO2025049590A1 (en) | 2023-08-29 | 2025-03-06 | E Ink Corporation | Piezo-electrophoretic films and displays, and methods for manufacturing the same |
US20250076723A1 (en) | 2023-08-29 | 2025-03-06 | E Ink Corporation | Electrophoretic Particles Comprising an Organic Pigment and Graphene Oxide |
US20250110378A1 (en) | 2023-09-29 | 2025-04-03 | E Ink Corporation | Electro-optic device comprising a barrier layer |
US20250118271A1 (en) | 2023-10-05 | 2025-04-10 | E Ink Corporation | Staged gate voltage control |
US20250116908A1 (en) | 2023-10-06 | 2025-04-10 | E Ink Corporation | Large-area electro-optic light modulator or display |
US20250138382A1 (en) | 2023-10-31 | 2025-05-01 | E Ink Corporation | Reflective display and projected capacitive touch sensor with shared transparent electrode |
WO2025101330A1 (en) | 2023-11-08 | 2025-05-15 | E Ink Corporation | Continuous photolithographic fabrication process for producing seamless microstructures used in electro-optic displays and light modulating films |
US20250180959A1 (en) | 2023-11-30 | 2025-06-05 | E Ink Corporation | Electrophoretic media comprising cationic charge control agent |
US20250191547A1 (en) | 2023-12-06 | 2025-06-12 | E Ink Corporation | Method of driving a color electophoretic display to form images without dithering |
WO2025128843A1 (en) | 2023-12-15 | 2025-06-19 | E Ink Corporation | Fast response color waveforms for multiparticle electrophoretic displays |
WO2025136583A1 (en) | 2023-12-20 | 2025-06-26 | E Ink Corporation | Driving sequences for multi-particle electrophoretic displays providing improved color states |
WO2025136446A1 (en) | 2023-12-22 | 2025-06-26 | E Ink Corporation | Five-particle electrophoretic medium with improved black optical state |
WO2025144956A1 (en) | 2023-12-31 | 2025-07-03 | E Ink Corporation | Piezo-electrophoretic films and displays, and methods for manufacturing the same |
US20250237922A1 (en) | 2024-01-19 | 2025-07-24 | E Ink Corporation | Flexible segmented electro-optic displays and methods of manufacture |
WO2025155697A1 (en) | 2024-01-20 | 2025-07-24 | E Ink Corporation | Methods for delivering low-ghosting partial updates in color electrophoretic displays |
US20250239232A1 (en) | 2024-01-24 | 2025-07-24 | E Ink Corporation | Methods for producing full-color epaper images with low grain |
Family Cites Families (51)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3612758A (en) * | 1969-10-03 | 1971-10-12 | Xerox Corp | Color display device |
US3668106A (en) * | 1970-04-09 | 1972-06-06 | Matsushita Electric Ind Co Ltd | Electrophoretic display device |
IT1031474B (it) * | 1974-02-12 | 1979-04-30 | Plessey Handel Investment Ag | Fluido di lavoro per dispositivi elettroforetici di prese ntazione visuale delle immagini |
US4071430A (en) * | 1976-12-06 | 1978-01-31 | North American Philips Corporation | Electrophoretic image display having an improved switching time |
US4411115A (en) * | 1978-04-05 | 1983-10-25 | Usm Corporation | Spacer frames for multi-pane glazing units |
US4285801A (en) * | 1979-09-20 | 1981-08-25 | Xerox Corporation | Electrophoretic display composition |
US4721739A (en) * | 1982-07-01 | 1988-01-26 | Bic Corp. | Erasable ink compositions |
JPS59171930A (ja) | 1983-03-18 | 1984-09-28 | Matsushita Electric Ind Co Ltd | 電気泳動表示素子 |
US4741988A (en) | 1985-05-08 | 1988-05-03 | U.S. Philips Corp. | Patterned polyimide film, a photosensitive polyamide acid derivative and an electrophoretic image-display cell |
US4680103A (en) * | 1986-01-24 | 1987-07-14 | Epid. Inc. | Positive particles in electrophoretic display device composition |
US5360026A (en) * | 1986-12-04 | 1994-11-01 | Oral Logic, Inc. | Tooth cleaning device and method |
US4881996A (en) * | 1988-02-22 | 1989-11-21 | Ashland Oil, Inc. | Splice adhesive for EDPM roofing and splicing method employing same |
US5326865A (en) * | 1990-06-08 | 1994-07-05 | Hercules Incorporated | Arylazo and poly(arylazo) dyes having at least one core radical selected from naphthyl or anthracyl and having at least one 2,3-dihydro-1,3-dialkyl perimidine substituent |
US5124405A (en) * | 1990-07-27 | 1992-06-23 | Shell Oil Company | Method of chemically crosslinking unsaturated polymers |
US5352531A (en) * | 1990-12-20 | 1994-10-04 | Ozko, Inc. | Coating solution for treating basement walls |
JP2994750B2 (ja) | 1991-08-29 | 1999-12-27 | コピイテル,インコーポレイテッド | 内部メッシュ背景スクリーンを有する電気泳動表示パネル |
US5234987A (en) * | 1992-07-06 | 1993-08-10 | Adco Products, Inc. | Solvent-based adhesive composition for roofing membranes |
US5279511A (en) * | 1992-10-21 | 1994-01-18 | Copytele, Inc. | Method of filling an electrophoretic display |
CA2162874A1 (en) | 1993-05-21 | 1994-12-08 | Wei-Hsin Hou | Methods of preparing electrophoretic dispersions containing two types of particles with different colors and opposite charges |
US5380362A (en) * | 1993-07-16 | 1995-01-10 | Copytele, Inc. | Suspension for use in electrophoretic image display systems |
US5403518A (en) * | 1993-12-02 | 1995-04-04 | Copytele, Inc. | Formulations for improved electrophoretic display suspensions and related methods |
US5492963A (en) * | 1994-01-11 | 1996-02-20 | Lord Corporation | Overcoat and adhesive compositions based on chlorinated polyolefins having high chlorine contents |
US5699097A (en) | 1994-04-22 | 1997-12-16 | Kabushiki Kaisha Toshiba | Display medium and method for display therewith |
WO1995033085A1 (en) * | 1994-05-26 | 1995-12-07 | Copytele, Inc. | Fluorinated dielectric suspensions for electrophoretic image displays and related methods |
DE19517915A1 (de) * | 1995-05-16 | 1996-11-21 | Elringklinger Gmbh | Verfahren zur Herstellung von elastomerbeschichteten Metallagendichtungen |
US6120839A (en) * | 1995-07-20 | 2000-09-19 | E Ink Corporation | Electro-osmotic displays and materials for making the same |
US6120588A (en) * | 1996-07-19 | 2000-09-19 | E Ink Corporation | Electronically addressable microencapsulated ink and display thereof |
US6017584A (en) * | 1995-07-20 | 2000-01-25 | E Ink Corporation | Multi-color electrophoretic displays and materials for making the same |
US5932648A (en) * | 1995-09-15 | 1999-08-03 | Shell Oil Company | Low VOC, high solids fumigation adhesive composition |
GB2314845A (en) * | 1996-06-24 | 1998-01-14 | Shell Int Research | Primer composition |
US5930026A (en) * | 1996-10-25 | 1999-07-27 | Massachusetts Institute Of Technology | Nonemissive displays and piezoelectric power supplies therefor |
WO1998040435A1 (fr) * | 1997-03-11 | 1998-09-17 | Nippon Zeon Co., Ltd. | Couche mince elastomere conductrice, son procede de production et composition elastomere conductrice |
US5961804A (en) * | 1997-03-18 | 1999-10-05 | Massachusetts Institute Of Technology | Microencapsulated electrophoretic display |
US6067185A (en) * | 1997-08-28 | 2000-05-23 | E Ink Corporation | Process for creating an encapsulated electrophoretic display |
WO1999023174A1 (en) * | 1997-10-31 | 1999-05-14 | Cabot Corporation | Particles having an attached stable free radical, polymerized modified particles, and methods of making the same |
GB2332202A (en) * | 1997-12-09 | 1999-06-16 | Courtaulds Coatings | Curable epoxy resin compositions |
US5914806A (en) * | 1998-02-11 | 1999-06-22 | International Business Machines Corporation | Stable electrophoretic particles for displays |
EP1075670B1 (en) | 1998-04-27 | 2008-12-17 | E-Ink Corporation | Shutter mode microencapsulated electrophoretic display |
US6184856B1 (en) * | 1998-09-16 | 2001-02-06 | International Business Machines Corporation | Transmissive electrophoretic display with laterally adjacent color cells |
US6312304B1 (en) * | 1998-12-15 | 2001-11-06 | E Ink Corporation | Assembly of microencapsulated electronic displays |
AU4205400A (en) * | 1999-04-06 | 2000-10-23 | E-Ink Corporation | Microcell electrophoretic displays |
JP2001056653A (ja) * | 1999-06-11 | 2001-02-27 | Ricoh Co Ltd | 電気泳動表示用表示液、表示粒子及び、それらを利用した表示媒体、表示装置、表示方法、表示カード、記録シート、ディスプレイ、可逆表示型看板 |
ATE502320T1 (de) * | 1999-07-01 | 2011-04-15 | E Ink Corp | Elektrophoretisches medium versehen mit abstandselementen |
US6337761B1 (en) * | 1999-10-01 | 2002-01-08 | Lucent Technologies Inc. | Electrophoretic display and method of making the same |
US6933098B2 (en) * | 2000-01-11 | 2005-08-23 | Sipix Imaging Inc. | Process for roll-to-roll manufacture of a display by synchronized photolithographic exposure on a substrate web |
US6930818B1 (en) | 2000-03-03 | 2005-08-16 | Sipix Imaging, Inc. | Electrophoretic display and novel process for its manufacture |
US6788449B2 (en) * | 2000-03-03 | 2004-09-07 | Sipix Imaging, Inc. | Electrophoretic display and novel process for its manufacture |
US6750844B2 (en) * | 2000-06-14 | 2004-06-15 | Canon Kabushiki Kaisha | Electrophoretic display device and process for production thereof |
TW527529B (en) * | 2001-07-27 | 2003-04-11 | Sipix Imaging Inc | An improved electrophoretic display with color filters |
TW539928B (en) * | 2001-08-20 | 2003-07-01 | Sipix Imaging Inc | An improved transflective electrophoretic display |
TWI308231B (en) * | 2001-08-28 | 2009-04-01 | Sipix Imaging Inc | Electrophoretic display |
-
2001
- 2001-06-04 US US09/874,391 patent/US20020188053A1/en not_active Abandoned
- 2001-09-21 TW TW090123324A patent/TWI301211B/zh not_active IP Right Cessation
- 2001-10-17 CN CNB011364483A patent/CN1237140C/zh not_active Expired - Lifetime
-
2002
- 2002-06-03 JP JP2003502091A patent/JP4322663B2/ja not_active Expired - Lifetime
- 2002-06-03 MX MXPA03011144A patent/MXPA03011144A/es unknown
- 2002-06-03 CA CA002448440A patent/CA2448440A1/en not_active Abandoned
- 2002-06-03 EP EP02737371A patent/EP1401953A1/en not_active Withdrawn
- 2002-06-03 KR KR1020037015909A patent/KR100859305B1/ko not_active Expired - Lifetime
- 2002-06-03 WO PCT/US2002/017632 patent/WO2002098977A1/en active Application Filing
- 2002-08-16 US US10/222,297 patent/US7005468B2/en not_active Expired - Lifetime
- 2002-08-16 US US10/222,454 patent/US7144942B2/en not_active Expired - Lifetime
Cited By (134)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020182544A1 (en) * | 2000-01-11 | 2002-12-05 | Sipix Imaging, Inc. | Process for roll-to-roll manufacture of a display by synchronized photolithographic exposure on a substrate web |
US6933098B2 (en) | 2000-01-11 | 2005-08-23 | Sipix Imaging Inc. | Process for roll-to-roll manufacture of a display by synchronized photolithographic exposure on a substrate web |
US7557981B2 (en) | 2000-03-03 | 2009-07-07 | Sipix Imaging, Inc. | Electrophoretic display and process for its manufacture |
US7715088B2 (en) | 2000-03-03 | 2010-05-11 | Sipix Imaging, Inc. | Electrophoretic display |
US6885495B2 (en) | 2000-03-03 | 2005-04-26 | Sipix Imaging Inc. | Electrophoretic display with in-plane switching |
US7052571B2 (en) | 2000-03-03 | 2006-05-30 | Sipix Imaging, Inc. | Electrophoretic display and process for its manufacture |
US8520292B2 (en) | 2000-03-03 | 2013-08-27 | Sipix Imaging, Inc. | Electrophoretic display and process for its manufacture |
US6867898B2 (en) | 2000-03-03 | 2005-03-15 | Sipix Imaging Inc. | Electrophoretic display and novel process for its manufacture |
US8582197B2 (en) | 2000-03-03 | 2013-11-12 | Sipix Imaging, Inc. | Process for preparing a display panel |
US7522332B2 (en) | 2000-03-03 | 2009-04-21 | Sipix Imaging, Inc. | Electrophoretic display and process for its manufacture |
US20020075556A1 (en) * | 2000-03-03 | 2002-06-20 | Rong-Chang Liang | Electrophoretic display and novel process for its manufacture |
US6751008B2 (en) | 2000-03-03 | 2004-06-15 | Sipix Imaging, Inc. | Electrophoretic display and novel process for its manufacture |
US7112114B2 (en) | 2000-03-03 | 2006-09-26 | Sipix Imaging, Inc. | Electrophoretic display and process for its manufacture |
US9081250B2 (en) | 2000-03-03 | 2015-07-14 | E Ink California, Llc | Electrophoretic display and process for its manufacture |
US7408696B2 (en) | 2000-03-03 | 2008-08-05 | Sipix Imaging, Inc. | Three-dimensional electrophoretic displays |
US6865012B2 (en) | 2000-03-03 | 2005-03-08 | Sipix Imaging, Inc. | Electrophoretic display and novel process for its manufacture |
US6859302B2 (en) | 2000-03-03 | 2005-02-22 | Sipix Imaging, Inc. | Electrophoretic display and novel process for its manufacture |
US6947202B2 (en) | 2000-03-03 | 2005-09-20 | Sipix Imaging, Inc. | Electrophoretic display with sub relief structure for high contrast ratio and improved shear and/or compression resistance |
US20050007651A1 (en) * | 2000-03-03 | 2005-01-13 | Rong-Chang Liang | Electrophoretic display with sub relief structure for high contrast ratio and improved shear and/or compression resistance |
US6987605B2 (en) | 2000-03-03 | 2006-01-17 | Sipix Imaging, Inc. | Transflective electrophoretic display |
US20040196527A1 (en) * | 2000-03-03 | 2004-10-07 | Rong-Chang Liang | Electrophoretic display and novel process for its manufacture |
US7233429B2 (en) | 2000-03-03 | 2007-06-19 | Sipix Imaging, Inc. | Electrophoretic display |
US6831770B2 (en) | 2000-03-03 | 2004-12-14 | Sipix Imaging, Inc. | Electrophoretic display and novel process for its manufacture |
US6833943B2 (en) | 2000-03-03 | 2004-12-21 | Sipix Imaging, Inc. | Electrophoretic display and novel process for its manufacture |
US6795138B2 (en) | 2001-01-11 | 2004-09-21 | Sipix Imaging, Inc. | Transmissive or reflective liquid crystal display and novel process for its manufacture |
US20020126249A1 (en) * | 2001-01-11 | 2002-09-12 | Rong-Chang Liang | Transmissive or reflective liquid crystal display and novel process for its manufacture |
US20040169813A1 (en) * | 2001-01-11 | 2004-09-02 | Rong-Chang Liang | Transmissive or reflective liquid crystal display and process for its manufacture |
US6784953B2 (en) | 2001-01-11 | 2004-08-31 | Sipix Imaging, Inc. | Transmissive or reflective liquid crystal display and novel process for its manufacture |
US20030169387A1 (en) * | 2001-01-11 | 2003-09-11 | Rong-Chang Liang | Transmissive or reflective liquid crystal display and novel process for its manufacture |
US8282762B2 (en) | 2001-01-11 | 2012-10-09 | Sipix Imaging, Inc. | Transmissive or reflective liquid crystal display and process for its manufacture |
US7095477B2 (en) | 2001-01-11 | 2006-08-22 | Sipix Imaging, Inc. | Transmissive or reflective liquid crystal display and process for its manufacture |
US6906779B2 (en) | 2001-02-15 | 2005-06-14 | Sipix Imaging, Inc. | Process for roll-to-roll manufacture of a display by synchronized photolithographic exposure on a substrate web |
US20030152849A1 (en) * | 2001-02-15 | 2003-08-14 | Mary Chan-Park | Process for roll-to-roll manufacture of a display by synchronized photolithographic exposure on a substrate web |
US6850355B2 (en) | 2001-07-27 | 2005-02-01 | Sipix Imaging, Inc. | Electrophoretic display with color filters |
US20070263277A1 (en) * | 2001-08-17 | 2007-11-15 | Rong-Chang Liang | Electrophoretic display with dual mode switching |
US7679813B2 (en) | 2001-08-17 | 2010-03-16 | Sipix Imaging, Inc. | Electrophoretic display with dual-mode switching |
US7821702B2 (en) | 2001-08-17 | 2010-10-26 | Sipix Imaging, Inc. | Electrophoretic display with dual mode switching |
US7046228B2 (en) | 2001-08-17 | 2006-05-16 | Sipix Imaging, Inc. | Electrophoretic display with dual mode switching |
US7492505B2 (en) | 2001-08-17 | 2009-02-17 | Sipix Imaging, Inc. | Electrophoretic display with dual mode switching |
US20030034950A1 (en) * | 2001-08-17 | 2003-02-20 | Rong-Chang Liang | Electrophoretic display with dual mode switching |
US6751007B2 (en) | 2001-08-20 | 2004-06-15 | Sipix Imaging, Inc. | Transflective electrophoretic display |
US20030035199A1 (en) * | 2001-08-20 | 2003-02-20 | Rong-Chang Liang | Transflective electrophoretic display |
US6795229B2 (en) | 2001-08-28 | 2004-09-21 | Sipix Imaging, Inc. | Electrophoretic display with sub relief structure for high contrast ratio and improved shear and/or compression resistance |
US20030043450A1 (en) * | 2001-08-28 | 2003-03-06 | Rong-Chang Liang | Electrophoretic display with sub relief structure for high contrast ratio and improved shear and/or compression resistance |
US20040027643A1 (en) * | 2002-05-30 | 2004-02-12 | Canon Kabushiki Kaisha | Dispersion for electrophoretic display, and electrophoretic display device |
US7511876B2 (en) * | 2002-05-30 | 2009-03-31 | Canon Kabushiki Kaisha | Dispersion for electrophoretic display, and electrophoretic display device |
US7271947B2 (en) | 2002-08-16 | 2007-09-18 | Sipix Imaging, Inc. | Electrophoretic display with dual-mode switching |
US7038670B2 (en) | 2002-08-16 | 2006-05-02 | Sipix Imaging, Inc. | Electrophoretic display with dual mode switching |
US20040032389A1 (en) * | 2002-08-16 | 2004-02-19 | Rong-Chang Liang | Electrophoretic display with dual mode switching |
US20040032391A1 (en) * | 2002-08-16 | 2004-02-19 | Rong-Chang Liang | Electrophoretic display with dual-mode switching |
US7038656B2 (en) | 2002-08-16 | 2006-05-02 | Sipix Imaging, Inc. | Electrophoretic display with dual-mode switching |
US20040112525A1 (en) * | 2002-09-04 | 2004-06-17 | Cheri Pereira | Adhesive and sealing layers for electrophoretic displays |
US20040216837A1 (en) * | 2002-09-04 | 2004-11-04 | Cheri Pereira | Adhesive and sealing layers for electrophoretic displays |
US7560004B2 (en) | 2002-09-04 | 2009-07-14 | Sipix Imaging, Inc. | Adhesive and sealing layers for electrophoretic displays |
US7166182B2 (en) | 2002-09-04 | 2007-01-23 | Sipix Imaging, Inc. | Adhesive and sealing layers for electrophoretic displays |
US7245414B2 (en) | 2002-09-10 | 2007-07-17 | Sipix Imaging, Inc. | Electrochromic or electrodeposition display and novel process for their manufacture |
US20060139724A1 (en) * | 2002-09-10 | 2006-06-29 | Rong-Chang Liang | Electrochromic or electrodeposition display and novel process for their manufacture |
US20070035497A1 (en) * | 2002-09-23 | 2007-02-15 | Chen Huiyong P | Electrophoretic displays with improved high temperature performance |
US20040120024A1 (en) * | 2002-09-23 | 2004-06-24 | Chen Huiyong Paul | Electrophoretic displays with improved high temperature performance |
US7616374B2 (en) | 2002-09-23 | 2009-11-10 | Sipix Imaging, Inc. | Electrophoretic displays with improved high temperature performance |
US20040169912A1 (en) * | 2002-10-31 | 2004-09-02 | Rong-Chang Liang | Electrophoretic display and novel process for its manufacture |
US7072095B2 (en) * | 2002-10-31 | 2006-07-04 | Sipix Imaging, Inc. | Electrophoretic display and novel process for its manufacture |
US7141279B2 (en) | 2002-11-25 | 2006-11-28 | Sipix Imaging, Inc. | Transmissive or reflective liquid crystal display and novel process for its manufacture |
US8023071B2 (en) | 2002-11-25 | 2011-09-20 | Sipix Imaging, Inc. | Transmissive or reflective liquid crystal display |
US7572491B2 (en) | 2003-01-24 | 2009-08-11 | Sipix Imaging, Inc. | Adhesive and sealing layers for electrophoretic displays |
US9346987B2 (en) | 2003-01-24 | 2016-05-24 | E Ink California, Llc | Adhesive and sealing layers for electrophoretic displays |
US20100033803A1 (en) * | 2003-01-24 | 2010-02-11 | Xiaojia Wang | Adhesive and sealing layers for electrophoretic displays |
US20070036919A1 (en) * | 2003-01-24 | 2007-02-15 | Xiaojia Wang | Adhesive and sealing layers for electrophoretic displays |
US7717764B2 (en) | 2003-09-12 | 2010-05-18 | Bridgestone Corporation | Method of manufacturing image display panel and image display panel |
EP1666965A4 (en) * | 2003-09-12 | 2006-11-08 | Bridgestone Corp | METHOD FOR PRODUCING IMAGE DISPLAY PANEL AND DISPLAY PANEL THEREFOR |
US20070029931A1 (en) * | 2003-09-12 | 2007-02-08 | Bridgestone Corporation | Method of manufacturing image display panel and image display panel |
US20060033677A1 (en) * | 2004-08-10 | 2006-02-16 | Kenneth Faase | Display device |
US20060103909A1 (en) * | 2004-11-17 | 2006-05-18 | Hewlett-Packard Development Company, L.P. | Spatial light modulator |
US7042614B1 (en) | 2004-11-17 | 2006-05-09 | Hewlett-Packard Development Company, L.P. | Spatial light modulator |
US7463409B2 (en) | 2004-12-20 | 2008-12-09 | Palo Alto Research Center Incorporated | Flexible electrophoretic-type display |
US20060132579A1 (en) * | 2004-12-20 | 2006-06-22 | Palo Alto Research Center Incorporated | Flexible electrophoretic-type display |
US20090051646A1 (en) * | 2004-12-20 | 2009-02-26 | Palo Alto Research Center Incorporated | Flexible Electrophoretic-Type Display |
US20080316564A1 (en) * | 2005-12-22 | 2008-12-25 | Eastman Kodak Company | Display Devices |
US8153354B2 (en) | 2006-08-21 | 2012-04-10 | Koninklijke Philips Electronics N.V. | Sealed cell structure |
WO2008023309A1 (en) * | 2006-08-21 | 2008-02-28 | Koninklijke Philips Electronics N.V. | A sealed cell structure |
US20100015557A1 (en) * | 2006-08-21 | 2010-01-21 | Koninklijke Philips Electronics N.V. | Sealed cell structure |
US8241731B2 (en) * | 2007-03-08 | 2012-08-14 | Ricoh Company, Ltd. | Display panel, method of manufacturing a display panel, and display unit |
US20080220204A1 (en) * | 2007-03-08 | 2008-09-11 | Masaru Ohgaki | Display panel, method of manufacturing a display panel, and display unit |
WO2009004265A3 (fr) * | 2007-07-04 | 2009-02-12 | Essilor Int | Film transparent comprenant un film de base et un revêtement |
FR2918463A1 (fr) * | 2007-07-04 | 2009-01-09 | Essilor Int | Film transparent comprenant un film de base et un revetement |
US8199305B2 (en) | 2007-07-31 | 2012-06-12 | Hewlett-Packard Development Company, L.P. | Pixel well electrodes |
US7656493B2 (en) | 2007-07-31 | 2010-02-02 | Arthur Alan R | Pixel well electrodes |
US20100177272A1 (en) * | 2007-07-31 | 2010-07-15 | Hewlet-Packard Development Company LP | Pixel well electrodes |
US20100068514A1 (en) * | 2008-09-18 | 2010-03-18 | Tesa Se | Method for encapsulating an electronic arrangement |
EP2166593A1 (de) | 2008-09-18 | 2010-03-24 | tesa SE | Verfahren zur Kapselung einer elektronischen Anordnung |
US9627646B2 (en) | 2008-09-18 | 2017-04-18 | Tesa Se | Method for encapsulating an electronic arrangement |
DE102008047964A1 (de) | 2008-09-18 | 2010-03-25 | Tesa Se | Verfahren zur Kapselung einer elektronischen Anordnung |
US20110121356A1 (en) * | 2008-12-03 | 2011-05-26 | Tesa Se | Method for encapsulating an electronic arrangement |
US8460969B2 (en) | 2008-12-03 | 2013-06-11 | Tesa Se | Method for encapsulating an electronic arrangement |
DE102008060113A1 (de) | 2008-12-03 | 2010-07-29 | Tesa Se | Verfahren zur Kapselung einer elektronischen Anordnung |
US8652565B2 (en) | 2009-07-29 | 2014-02-18 | Seiko Epson Corporation | Sealing method of sealing dispersion liquid containing and electrophoretic particles, and electrophoretic display |
US8289615B2 (en) | 2010-03-10 | 2012-10-16 | Seiko Epson Corporation | Method for enclosing dispersion liquid containing electrophoretic particles and electrophoretic display unit |
US20110222141A1 (en) * | 2010-03-10 | 2011-09-15 | Seiko Epson Corporation | Method for enclosing dispersion liquid containing electrophoretic particles and electrophoretic display unit |
US8587857B2 (en) | 2010-10-27 | 2013-11-19 | Industrial Technology Research Institute | Electro-wetting display device and non-polar color solution thereof |
US8718740B2 (en) | 2010-12-20 | 2014-05-06 | General Electric Company | Biomedical sensor |
EP2465426A1 (en) * | 2010-12-20 | 2012-06-20 | General Electric Company | Biomedical sensor |
WO2013131707A1 (de) | 2012-03-07 | 2013-09-12 | Tesa Se | Verbundsystem zur verkapselung elektronischer anordnungen |
DE102012203623A1 (de) | 2012-03-07 | 2013-09-12 | Tesa Se | Verbundsystem zur Verkapselung elektronischer Anordnungen |
US20170108740A1 (en) * | 2014-04-04 | 2017-04-20 | Lg Chem, Ltd. | Liquid crystal element |
US10196550B2 (en) * | 2014-04-04 | 2019-02-05 | Lg Chem, Ltd. | Liquid crystal element |
US9989798B2 (en) | 2014-06-27 | 2018-06-05 | Lg Display Co., Ltd. | Light controlling apparatus, method of fabricating the light controlling apparatus and transparent display device including the light controlling apparatus with transparent mode and light shielding mode |
CN107111176A (zh) * | 2015-02-16 | 2017-08-29 | 株式会社Lg化学 | 液晶装置 |
US20180011352A1 (en) * | 2015-02-16 | 2018-01-11 | Lg Chem, Ltd. | Liquid crystal device |
US10203539B2 (en) * | 2015-02-16 | 2019-02-12 | Lg Chem, Ltd. | Liquid crystal device |
US10087344B2 (en) | 2015-10-30 | 2018-10-02 | E Ink Corporation | Methods for sealing microcell containers with phenethylamine mixtures |
US10793750B2 (en) | 2015-10-30 | 2020-10-06 | E Ink Corporation | Methods for sealing microcell containers with phenethylamine mixtures |
US20170166430A1 (en) * | 2015-12-09 | 2017-06-15 | Nova Chemicals (International) S.A. | Hot Fill Process With Closures Made From High Density Unimodal Polyethylene |
US10071895B2 (en) * | 2015-12-09 | 2018-09-11 | Nova Chemicals (International) S.A. | Hot fill process with closures made from high density unimodal polyethylene |
US20170166332A1 (en) * | 2015-12-10 | 2017-06-15 | Nova Chemicals (International) S.A. | Hot Fill Process With Closures Made From High Density Polyethylene Compositions |
US10071826B2 (en) * | 2015-12-10 | 2018-09-11 | Nova Chemicals (International) S.A. | Hot fill process with closures made from high density polyethylene compositions |
US11493820B2 (en) * | 2017-01-20 | 2022-11-08 | E Ink California, Llc | Color organic pigments and electrophoretic display media containing the same |
US11099452B2 (en) * | 2017-01-20 | 2021-08-24 | E Ink California, Llc | Color organic pigments and electrophoretic display media containing the same |
US10782586B2 (en) * | 2017-01-20 | 2020-09-22 | E Ink California, Llc | Color organic pigments and electrophoretic display media containing the same |
US20180210312A1 (en) * | 2017-01-20 | 2018-07-26 | E Ink California, Llc | Color organic pigments and electrophoretic display media containing the same |
US10585325B2 (en) | 2017-03-09 | 2020-03-10 | E Ink California, Llc | Photo-thermally induced polymerization inhibitors for electrophoretic media |
US10698265B1 (en) | 2017-10-06 | 2020-06-30 | E Ink California, Llc | Quantum dot film |
US11493805B2 (en) | 2017-10-06 | 2022-11-08 | E Ink California, Llc | Quantum dot film with sealed microcells |
US11397366B2 (en) | 2018-08-10 | 2022-07-26 | E Ink California, Llc | Switchable light-collimating layer including bistable electrophoretic fluid |
US11314098B2 (en) | 2018-08-10 | 2022-04-26 | E Ink California, Llc | Switchable light-collimating layer with reflector |
WO2020033175A1 (en) | 2018-08-10 | 2020-02-13 | E Ink California, Llc | Switchable light-collimating layer including bistable electrophoretic fluid |
US11435606B2 (en) | 2018-08-10 | 2022-09-06 | E Ink California, Llc | Driving waveforms for switchable light-collimating layer including bistable electrophoretic fluid |
WO2020033787A1 (en) | 2018-08-10 | 2020-02-13 | E Ink California, Llc | Driving waveforms for switchable light-collimating layer including bistable electrophoretic fluid |
US11656526B2 (en) | 2018-08-10 | 2023-05-23 | E Ink California, Llc | Switchable light-collimating layer including bistable electrophoretic fluid |
US11719953B2 (en) | 2018-08-10 | 2023-08-08 | E Ink California, Llc | Switchable light-collimating layer with reflector |
US11048124B2 (en) | 2019-09-06 | 2021-06-29 | Au Optronics Corporation | Liquid crystal panel and manufacturing method thereof |
WO2025147410A2 (en) | 2024-01-02 | 2025-07-10 | E Ink Corporation | Electrophoretic media comprising a cationic charge control agent |
WO2025147504A1 (en) | 2024-01-05 | 2025-07-10 | E Ink Corporation | An electrophoretic medium comprising particles having a pigment core and a polymeric shell |
WO2025151355A1 (en) | 2024-01-08 | 2025-07-17 | E Ink Corporation | Electrophoretic device having an adhesive layer comprising conductive filler particles and a polymeric dispersant |
CN118672021A (zh) * | 2024-06-03 | 2024-09-20 | 江汉大学 | 一种彩色微杯型电泳电子纸及其加工方法 |
Also Published As
Publication number | Publication date |
---|---|
WO2002098977A1 (en) | 2002-12-12 |
CN1389534A (zh) | 2003-01-08 |
JP4322663B2 (ja) | 2009-09-02 |
KR20040006017A (ko) | 2004-01-16 |
KR100859305B1 (ko) | 2008-09-19 |
CA2448440A1 (en) | 2002-12-12 |
US20030004254A1 (en) | 2003-01-02 |
JP2005509690A (ja) | 2005-04-14 |
TWI301211B (en) | 2008-09-21 |
MXPA03011144A (es) | 2004-02-26 |
US7144942B2 (en) | 2006-12-05 |
EP1401953A1 (en) | 2004-03-31 |
CN1237140C (zh) | 2006-01-18 |
US7005468B2 (en) | 2006-02-28 |
US20030035885A1 (en) | 2003-02-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7005468B2 (en) | Composition and process for the sealing of microcups in roll-to-roll display manufacturing | |
US8361356B2 (en) | Composition and process for the sealing of microcups in roll-to-roll display manufacturing | |
US6788449B2 (en) | Electrophoretic display and novel process for its manufacture | |
US6987605B2 (en) | Transflective electrophoretic display | |
US6885495B2 (en) | Electrophoretic display with in-plane switching | |
US6795229B2 (en) | Electrophoretic display with sub relief structure for high contrast ratio and improved shear and/or compression resistance | |
US6947202B2 (en) | Electrophoretic display with sub relief structure for high contrast ratio and improved shear and/or compression resistance | |
US6850355B2 (en) | Electrophoretic display with color filters | |
US6865012B2 (en) | Electrophoretic display and novel process for its manufacture | |
JP2005509690A5 (enrdf_load_stackoverflow) | ||
US7233429B2 (en) | Electrophoretic display | |
EP1352288A2 (en) | Manufacturing process for electrophoretic display | |
WO2003009059A1 (en) | In-plane switching electrophoretic display | |
JP2004536344A5 (enrdf_load_stackoverflow) | ||
HK1050912A (en) | Composition and process for the sealing of microcups in roll-to-roll display manufacturing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SIPIX IMAGING, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ZANG, HONGMEI;WANG, XIANJIA;LIANG, RONG-CHANG;REEL/FRAME:012223/0461 Effective date: 20010919 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |