US8462102B2 - Driving methods for bistable displays - Google Patents

Driving methods for bistable displays Download PDF

Info

Publication number
US8462102B2
US8462102B2 US12427601 US42760109A US8462102B2 US 8462102 B2 US8462102 B2 US 8462102B2 US 12427601 US12427601 US 12427601 US 42760109 A US42760109 A US 42760109A US 8462102 B2 US8462102 B2 US 8462102B2
Authority
US
Grant status
Grant
Patent type
Prior art keywords
color state
pixels
display device
time period
driving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US12427601
Other versions
US20090267970A1 (en )
Inventor
Jialock Wong
Yajuan Chen
Robert Sprague
HongMei Zang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
E Ink California LLC
Original Assignee
E Ink California LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3433Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using light modulating elements actuated by an electric field and being other than liquid crystal devices and electrochromic devices
    • G09G3/344Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using light modulating elements actuated by an electric field and being other than liquid crystal devices and electrochromic devices based on particles moving in a fluid or in a gas, e.g. electrophoretic devices
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0261Improving the quality of display appearance in the context of movement of objects on the screen or movement of the observer relative to the screen

Abstract

The disclosure relates to driving methods for bistable displays, in particular, driving methods comprising interleaving driving waveforms.

Description

BENEFIT CLAIM

The present application claims the benefit under 35 U.S.C. 119(e) of prior provisional application 61/047,908, filed Apr. 25, 2008, the entire contents of which is hereby incorporated by reference for all purposes as if fully set forth herein.

FIELD OF THE DISCLOSURE

The present disclosure relates to driving methods for bistable displays such as electrophoretic displays.

BACKGROUND

The electrophoretic display (EPD) is a non-emissive device based on the electrophoresis phenomenon of charged pigment particles suspended in a solvent. The display usually comprises two plates with electrodes placed opposing each other, separated by spacers. One of the electrodes is usually transparent. A suspension composed of a colored solvent and charged pigment particles is enclosed between the two plates. When a voltage difference is imposed between the two electrodes, the pigment particles migrate to one side or the other, according to the polarity of the voltage difference. As a result, either the color of the pigment particles or the color of the solvent is seen from the viewing side. Alternatively, the suspension may comprise a clear solvent and two types of colored particles which migrate to opposite sides of the device when a voltage is applied. Further alternatively, the suspension may comprise a dyed solvent and two types of colored particles which alternate to different sides of the device. In addition, in-plane switching structures have been shown where the particles may migrate in a planar direction to produce different color options.

There are several different types of EPDs, such as the conventional type EPD, the microcapsule-based EPD or the EPD with electrophoretic cells that are formed from parallel line reservoirs. EPDs comprising closed cells formed from microcups filled with an electrophoretic fluid and sealed with a polymeric sealing layer is disclosed in U.S. Pat. No. 6,930,818, the entire contents of which are hereby incorporated by reference as if fully set forth herein.

Currently available driving methods for electrophoretic displays have certain disadvantages. For example, they are incapable of providing fast response for input actuation. As a result, the methods often render the electrophoretic displays not useful for applications which require instant feedback, such as input-enabled devices. In addition, black and white flashes which are often used between images may be considered annoying by the user.

SUMMARY OF THE DISCLOSURE

In an embodiment, the disclosure provides driving methods which are particularly suitable for bistable displays. In an embodiment, methods can achieve fast optical response and also enable interruptions when a display device is in use.

In a first embodiment, a driving method is provided for driving a first group of pixels from a first color state to a second color state and a second group of pixels from the second color state to the first color state, which method comprises applying interleaving uni-polar driving waveforms.

In a second embodiment, a driving method is provided for driving a first group of pixels from a first color state to a second color state and a second group of pixels from the second color state to the first color, which method comprises applying interleaving uni-polar driving waveforms and waveforms for improving visual appearance during transition of the images displayed.

In a third embodiment, a driving method is provided for driving a first group of pixels from a first color state to a second color state and a second group of pixels from the second color state to the first color state, which method comprises applying interleaving uni-polar driving waveforms and waveforms for improving visual appearance during transition of the images displayed, wherein the average voltage applied across the display is substantially zero when integrated over a time period and thereby provides global DC balance.

In a fourth embodiment, a driving method is provided for driving a first group of pixels from a first color state to a second color state and a second group of pixels from the second color state to the first color state, which method comprises applying interleaving uni-polar driving waveforms, wherein the average voltage applied across the display is substantially zero when integrated over a time period and thereby provides global DC balance.

In a fifth embodiment, a driving method is provided that comprises interrupting the driving sequence for one image before it is completed in order to more rapidly change to a new image. The driving method may further comprise applying interleaving waveforms. Previously used waveforms for driving an electrophoretic display are not easily interrupted because interruptions may impact the DC balance (for good image quality) of the waveforms and thus produce image artifacts such as residual images.

In a sixth embodiment, any of the driving methods described above are used for a display device, and the method further comprises applying refreshing driving waveforms when the display device is not in use.

The driving methods of the present disclosure can be applied to drive electrophoretic displays including, but not limited to, one time applications or multiple display images. They may also be used for any display devices which require fast optical response and interruption of display images.

The whole content of each of the other documents referred to in this application is also incorporated by reference into this application in its entirety for all purposes as if fully set forth herein.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a cross-section view of an example display device.

FIG. 2 illustrates example driving waveforms.

FIG. 3 illustrates a driving method with interruptions.

FIG. 4 illustrates an example of refreshing driving waveforms applicable to any of the driving methods of the present disclosure.

DETAILED DESCRIPTION

FIG. 1 illustrates an array of display cells (10 a, 10 b and 10 c) in an electrophoretic display which may be driven by the driving methods of the present disclosure. In FIG. 1, the display cells are provided, on its front (or viewing) side (top surface as illustrated in FIG. 1) with a common electrode (11) (which usually is transparent) and on its rear side with a substrate (12) carrying a set of discrete pixel electrodes (12 a, 12 b and 12 c). Each of the discrete pixel electrodes (12 a, 12 b and 12 c) defines a pixel of the display. An electrophoretic fluid (13) is filled in each of the display cells. For ease of illustration, FIG. 1 shows only a single display cell associated with a discrete pixel electrode, although in practice a plurality of display cells (as a pixel) may be associated with one discrete pixel electrode. The electrodes may be segmented in nature rather than pixellated, defining regions of the image instead of individual pixels. Therefore while the term “pixel” or “pixels” is frequently used in the application to illustrate the driving methods herein, it is understood that the driving methods are applicable to not only pixellated display devices, but also segmented display devices.

Each of the display cells is surrounded by display cell walls (14). For ease of illustration of the methods described below, the electrophoretic fluid is assumed to comprise white charged pigment particles (15) dispersed in a dark color solvent and the particles (15) are positively charged so that they will be drawn to the discrete pixel electrode or the common electrode, whichever is at a lower potential.

The term “display cell” refers to a micro-container which is individually filled with a display fluid. The term includes, but is not limited to, microcups, microcapsules, microchannels, conventional partition type display cells and equivalents thereof. This disclosure is intended to broadly encompass cover all types of display cells.

The driving methods herein also may be applied to particles (15) in an electrophoretic fluid which are negatively charged. Also, the particles could be dark in color and the solvent light in color so long as sufficient color contrast occurs as the particles move between the front and rear sides of the display cell. The display could also be made with a transparent or lightly colored solvent with particles of two different colors and carrying opposite charges.

The display cells may be the conventional partition type of display cells, the microcapsule-based display cells or the microcup-based display cells. In the microcup-based display cells, the filled display cells may be sealed with a sealing layer (not shown in FIG. 1). There may also be an adhesive layer (not shown) between the display cells and the common electrode. The display of FIG. 1 may further comprise color filters.

The display device of FIG. 1 may be viewed from the front side or the rear side. In the latter case, the substrate 12 and the pixel electrodes 12 a, 12 b and 12 c, of course, are transparent.

The common electrode and the pixel electrodes are separately connected to two individual circuits and the two circuits in turn are connected to a display controller. In practice, the display controller issues signals to the circuits to apply appropriate voltages to the common and pixel electrodes respectively. More specifically, the display controller, based on the images to be displayed, selects appropriate waveforms and then issues signals, frame by frame, to the circuits to execute the waveforms by applying appropriate voltages to the common and pixel electrodes. The term “frame” represents timing resolution of a waveform.

The pixel electrodes may be TFTs (thin film transistors) which are deposited on substrates such as flexible substrates.

FIG. 2 illustrates example driving waveforms. FIG. 2 illustrates a uni-polar driving method. The driving method shown in the figure comprises a soft driving phase (from times T0-T3) and a full driving phase (from time T3 to the start of next driving phase).

The top waveform 202 represents the voltages applied to the common electrode in a display device. The four waveforms 204, 206, 208, 210 below waveform 202 represent how pixels in the display device may be driven from “white to white (W to W)”, “black to white (K to W)”, “white to black (W to K)” and “black to black (K to K)”, respectively, as indicated by corresponding labels in FIG. 2. The initial color, white or black, of a pixel is the color of the pixel before the driving method is applied.

In the driving frame between T0 and T1, there is a driving cycle which consists of t1 and t2. As shown in the figure, the driving cycle of t1 and t2 is applied twice. However in practice, such a cycle may be applied three (i.e., M=3) or more times.

In the driving frame between T1 and T2, there is a driving cycle which consists of t3 and t4. This driving cycle, in this example, is applied only once.

In the driving frame between T2 and T3, there is a driving cycle which consists of t5 and t6. This driving cycle is shown to be applied only twice in the figure; but in practice it may be applied four times (i.e., N=4).

The time point T3 designates the end of the soft driving phase or the beginning of the full driving phase.

In the full driving phase, there is a driving cycle which consists of t7 and t8. This driving cycle, in practice, may be applied eight times (i.e., P=8).

Table 1 below provides more specifics for the driving waveform example of FIG. 2.

TABLE 1
t1 35 msec
t2 35 msec
M 3 repetitions
t3 25 msec
t4 65 msec
t5 50 msec
t6 40 msec
N 4 repetitions
Total Soft Drive 660 msec
t7 35 msec
t8 35 msec
P 8 repetitions
Total Full Drive 560 msec

A first embodiment is directed to a driving method for driving a first group of pixels from a first color state to a second color state and a second group of pixels from the second color state to the first color state, which method comprises applying interleaving uni-polar driving waveforms.

The interleaving waveforms are illustrated for cases in which pixels are driven from the black (K) state to the white (W) state and the pixels being driven from the white (W) to the black (K) state. As shown in FIG. 2, a driving pulse (i.e., a potential difference between the common electrode and the pixel electrode) is applied to the pixels changing from the black to the white state and the pixels changing from the white to the black state, in an alternating fashion. The letters in bold indicate that a driving pulse has been applied to those pixels. For example, in the first t1 period, no net voltage is applied to the “K to W” pixels as indicated by a difference in the waveforms 202, 206 at that period, whereas a −V voltage is applied to the “W to K” pixels as indicated by waveforms 202, 208 and in the first t2 period after the first t1 period, a +V voltage is applied to the “K to W” pixels wherein no voltage is applied to the “W to K” pixels. Since the display medium takes a number of pulses to respond, the interleaving waveforms allow smooth transitions between images, thus providing visually pleasant images to the viewer.

Interleaving driving waveforms are known as applying driving pulses to pixels being driven from a first color state to a second color state and pixels being driven from the second color state to the first color state, in an alternating fashion.

A second embodiment is directed to a driving method for driving a first group of pixels from a first color state to a second color state and a second group of pixels from the second color state to the first color, which method comprises applying interleaving uni-polar driving waveforms and waveforms for improving visual appearance during transition of the images displayed. The driving cycle of t3 and t4 in the example of FIG. 2 represents waveforms which may improve the visual appearance of the images displayed. The driving cycle of t3 and t4 is optional. When it is present, it applies a driving pulse to the “W to K” pixels which is longer in duration than the driving pulse to the “K to W” pixels. As a result, it provides a better visual appearance during transition of the images displayed.

A third embodiment is directed to a driving method for driving a first group of pixels from a first color state to a second color state and a second group of pixels from the second color state to the first color state, which method comprises applying interleaving uni-polar driving waveforms and waveforms for improving visual appearance during transition of the images displayed, wherein the average voltage applied across the display is substantially zero when integrated over a time period, thereby providing global DC balance. The global DC balance feature is also demonstrated by the driving method of FIG. 2. It is first noted that the driving voltages, when applied, are the same in intensity. While t4 is longer than t3 by 40 msec, this difference is compensated by the fact that t5 is longer than t6 by 10 msec and the driving cycle of t5 and t6 is applied four times. As a result, the average voltage applied across the display device is substantially zero when integrated over a time period.

A fourth embodiment is directed to a driving method for driving a first group of pixels from a first color state to a second color state and a second group of pixels from the second color state to the first color state, which method comprises applying interleaving uni-polar driving waveforms, wherein the average voltage applied across the display is substantially zero when integrated over a time period. As stated above, the driving cycle of t3 and t4 is optional. When this driving cycle is absent, the pulse durations may be easily adjusted to provide global DC balance.

A fifth embodiment is directed to a driving method comprising a soft drive phase, a full drive phase and interrupting driving signals, which driving method comprises applying said interrupting driving signals between the soft drive phase and the full drive phase or during the full drive phase. In other words, the interruptions may occur while the display device is in use. A requirement for such interruptions is anticipated in devices which utilize user interactions, since the user may desire to move to a new display image before the previous one is completely formed. More specifically, the interruptions may occur after the end of the soft drive phase and before the beginning the full drive phase. Alternatively, the interruptions may occur after each of the driving cycles consisting of t7 and t8. For example, an interruption may occur after the first driving cycle of t7 and t8 or after the second driving cycle of t7 and t8, etc. Alternatively, an interruption may occur at any time during any phase of the driving signal, but this may introduce a DC imbalance which will result in requiring additional DC balance.

FIG. 3 illustrates a driving method with interruptions. At step 302 a display device is in standby state. At step 304 a test is performed to determine whether a request to display data has been received. If not, then control loops to step 302. Otherwise, as shown, the driving method begins with a soft-drive phase at 306. After the soft-drive phase 306 is finished at 308, the driving method may be interrupted at 310 before the full-drive phase 312 begins. For brevity, during the full-drive phase 312, the driving method is shown to have only one possibility of interruption. However, as stated above, during the full-drive phase 312, the driving method may be interrupted after each of the driving cycles as seen at step 314; if no interruption occurs then the full-drive phase 312 finishes at step 316 and control loops to step 302 to resume the standby state.

A sixth embodiment provides the application of an interleaving waveform to a display device capable of displaying grey scale images. The foregoing discussion assumes the display is a binary system having only two display states. In practice, for a grey scale display device, the same interruption and DC balance features described above may be applied to achieve different grey levels by varying the length of the interleaving waveform pulses and/or by shortening the length of the pulse train for certain pixels so that they are only turned on partially. The advantages of the interleaving waveform and DC balance discussed above for the binary system are also applicable to method and circuits used for grey scale display devices.

A seventh embodiment is directed to any of the driving methods described above for a display device, further comprising applying refreshing driving waveforms when the display device is not in use.

An example of refreshing driving waveforms is shown in FIG. 4. Top waveform 402 represents voltages applied at a common electrode and the other waveforms 404, 406, 408, 410 are for driving pixel electrodes of pixels that are driven from a white state to a colored state, using the same notation as in FIG. 2. Such refreshing waveforms 404, 406, 408, 410 may be applied to a display device at any time when the display device is not in use. They may be pre-programmed to be activated at a desirable time. As shown, the refreshing waveforms are global DC balanced. In addition, the refreshing waveforms as shown are also total DC balanced which means that the average voltage applied across each of the pixels is substantially zero when integrated over a time period.

The purpose of the refreshing waveforms is to refresh the charged pigment particles in the display fluid, thus allowing the display device to maintain its bistability.

Although the foregoing invention has been described in some detail for purposes of clarity of understanding, it will be apparent that certain changes and modifications may be practiced within the scope of the appended claims. It should be noted that there are many alternative ways of implementing both the process and apparatus of the improved driving scheme for an electrophoretic display, and for many other types of displays including, but not limited to, liquid crystal, rotating ball, dielectrophoretic and electrowetting types of displays. Accordingly, the present embodiments are to be considered as illustrative and not restrictive, and the invention is not to be limited to the details given herein, but may be modified within the scope and equivalents of the appended claims.

Claims (11)

What is claimed is:
1. A method implemented in an electrophoretic display device which has a color system of a first color state and a second color state, comprising:
a display device applying, to each pixel of a first group of pixels that are in the first color state, a first positive voltage at a common electrode and a first no voltage at each of pixel electrodes coupled to pixels of the first group, during a first time period to drive the pixels of the first color state to the second color state;
the display device applying, to each pixel of a second group of pixels that are in the second color state, a second no voltage at the common electrode and a second positive voltage at each of pixel electrodes coupled to pixels of the second group, during a second time period after the first time period to drive the pixels of the second color state to the first color state.
2. The method of claim 1 further comprising the display device applying visual appearance improvement waveforms during a transition of the first group of pixels from the first color state to the second color state and of the second group of pixels from the second color state to the first color state.
3. The method of claim 2 wherein an average voltage applied across the display device when integrated over a third time period that includes the first time period and the second time period, is substantially zero.
4. The method of claim 1 comprising a soft drive phase, a full drive phase and interrupting driving signals, and the display device applying said interrupting driving signals between the soft drive phase and the full drive phase or during the full drive phase.
5. The method of claim 4 wherein the display device applies the interrupting driving signals during the full drive phase after a driving cycle comprising at least the first time period and the second time period.
6. The method of claim 1, wherein the display device applies a first alternating voltage waveform to the common electrode wherein the first positive voltage and the second no voltage alternate at the first time period and the second time period.
7. The method of claim 6, further comprising the display device applying a second alternating voltage waveform to pixel electrodes coupled to a third group of pixels that are in the first color state and pixel electrodes coupled to a fourth group of pixels that are in the second color state wherein the second alternating voltage waveform has a same cycle and same voltages as the first alternating voltage waveform.
8. The method of claim 7, further comprising the display device applying the first no voltage continuously at the pixel electrodes of the first group of pixels during the first alternating voltage waveform.
9. The method of claim 8, further comprising the display device applying the second positive voltage continuously at the pixel electrodes of the second group of pixels during the first alternating voltage waveform.
10. The method of claim 1, wherein the first color state and the second color state are a black color state and a white color state, or vice versa.
11. The method of claim 1, wherein the first time period and the second time period are equal.
US12427601 2008-04-25 2009-04-21 Driving methods for bistable displays Active 2032-04-11 US8462102B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US4790808 true 2008-04-25 2008-04-25
US12427601 US8462102B2 (en) 2008-04-25 2009-04-21 Driving methods for bistable displays

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12427601 US8462102B2 (en) 2008-04-25 2009-04-21 Driving methods for bistable displays

Publications (2)

Publication Number Publication Date
US20090267970A1 true US20090267970A1 (en) 2009-10-29
US8462102B2 true US8462102B2 (en) 2013-06-11

Family

ID=41214563

Family Applications (1)

Application Number Title Priority Date Filing Date
US12427601 Active 2032-04-11 US8462102B2 (en) 2008-04-25 2009-04-21 Driving methods for bistable displays

Country Status (1)

Country Link
US (1) US8462102B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9171508B2 (en) 2007-05-03 2015-10-27 E Ink California, Llc Driving bistable displays
US9251736B2 (en) 2009-01-30 2016-02-02 E Ink California, Llc Multiple voltage level driving for electrophoretic displays
CN105632416A (en) * 2016-01-14 2016-06-01 龚东 Electronic ink screen ghost shadow removing method, display method and corresponding electronic device
CN105702217A (en) * 2016-01-14 2016-06-22 龚东 Electronic ink screen ghosting removing method and display method, and corresponding electronic equipment
US9501981B2 (en) 2013-05-17 2016-11-22 E Ink California, Llc Driving methods for color display devices
US10002575B2 (en) 2007-06-07 2018-06-19 E Ink California, Llc Driving methods and circuit for bi-stable displays
US10062337B2 (en) 2015-10-12 2018-08-28 E Ink California, Llc Electrophoretic display device

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8643595B2 (en) * 2004-10-25 2014-02-04 Sipix Imaging, Inc. Electrophoretic display driving approaches
US8274472B1 (en) 2007-03-12 2012-09-25 Sipix Imaging, Inc. Driving methods for bistable displays
US9224342B2 (en) * 2007-10-12 2015-12-29 E Ink California, Llc Approach to adjust driving waveforms for a display device
US8462102B2 (en) 2008-04-25 2013-06-11 Sipix Imaging, Inc. Driving methods for bistable displays
US9019318B2 (en) * 2008-10-24 2015-04-28 E Ink California, Llc Driving methods for electrophoretic displays employing grey level waveforms
US8558855B2 (en) * 2008-10-24 2013-10-15 Sipix Imaging, Inc. Driving methods for electrophoretic displays
US20100194789A1 (en) * 2009-01-30 2010-08-05 Craig Lin Partial image update for electrophoretic displays
US20100194733A1 (en) * 2009-01-30 2010-08-05 Craig Lin Multiple voltage level driving for electrophoretic displays
US9460666B2 (en) * 2009-05-11 2016-10-04 E Ink California, Llc Driving methods and waveforms for electrophoretic displays
US8576164B2 (en) * 2009-10-26 2013-11-05 Sipix Imaging, Inc. Spatially combined waveforms for electrophoretic displays
US8558786B2 (en) * 2010-01-20 2013-10-15 Sipix Imaging, Inc. Driving methods for electrophoretic displays
US9224338B2 (en) * 2010-03-08 2015-12-29 E Ink California, Llc Driving methods for electrophoretic displays
US9013394B2 (en) 2010-06-04 2015-04-21 E Ink California, Llc Driving method for electrophoretic displays
US20130076609A1 (en) * 2010-07-01 2013-03-28 Sharp Kabushiki Kaisha Liquid crystal display device
US8970640B2 (en) 2010-09-15 2015-03-03 E Ink Holdings Inc. Electronic paper display drive method and apparatus thereof
CN102446493B (en) * 2010-09-30 2014-01-01 元太科技工业股份有限公司 Drive method of electronic paper display device and drive device of electronic paper display device
US9299294B2 (en) 2010-11-11 2016-03-29 E Ink California, Llc Driving method for electrophoretic displays with different color states
JP2013231848A (en) * 2012-04-27 2013-11-14 Dainippon Printing Co Ltd Image display device and driving method of the same
US9544092B2 (en) * 2013-03-13 2017-01-10 Altera Corporation Apparatus for improved communication and associated methods
CN103258505B (en) * 2013-05-13 2015-05-13 福州瑞芯微电子有限公司 Electronic ink screen refreshing method and corresponding electronic device thereof
CN107210023A (en) * 2015-02-04 2017-09-26 伊英克公司 Electro-optic displays displaying in dark mode and light mode, and related apparatus and methods
WO2017156254A1 (en) * 2016-03-09 2017-09-14 E Ink Corporation Methods for driving electro-optic displays

Citations (104)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3612758A (en) 1969-10-03 1971-10-12 Xerox Corp Color display device
US4143947A (en) 1976-06-21 1979-03-13 General Electric Company Method for improving the response time of a display device utilizing a twisted nematic liquid crystal composition
US4443108A (en) 1981-03-30 1984-04-17 Pacific Scientific Instruments Company Optical analyzing instrument with equal wavelength increment indexing
US4972099A (en) 1988-01-30 1990-11-20 Dai Nippon Printing Co., Ltd. Sensor card
US5266937A (en) 1991-11-25 1993-11-30 Copytele, Inc. Method for writing data to an electrophoretic display panel
US5272477A (en) 1989-06-20 1993-12-21 Omron Corporation Remote control card and remote control system
US5754584A (en) 1994-09-09 1998-05-19 Omnipoint Corporation Non-coherent spread-spectrum continuous-phase modulation communication system
US5831697A (en) 1995-06-27 1998-11-03 Silicon Graphics, Inc. Flat panel display screen apparatus with optical junction and removable backlighting assembly
US5923315A (en) 1996-05-14 1999-07-13 Brother Kogyo Kabushiki Kaisha Display characteristic determining device
US5930026A (en) 1996-10-25 1999-07-27 Massachusetts Institute Of Technology Nonemissive displays and piezoelectric power supplies therefor
US5961804A (en) 1997-03-18 1999-10-05 Massachusetts Institute Of Technology Microencapsulated electrophoretic display
US6005890A (en) 1997-08-07 1999-12-21 Pittway Corporation Automatically adjusting communication system
US6019284A (en) 1998-01-27 2000-02-01 Viztec Inc. Flexible chip card with display
US6045756A (en) 1996-10-01 2000-04-04 Texas Instruments Incorporated Miniaturized integrated sensor platform
US6069971A (en) 1996-12-18 2000-05-30 Mitsubishi Denki Kabushiki Kaisha Pattern comparison inspection system and method employing gray level bit map
US6111248A (en) 1996-10-01 2000-08-29 Texas Instruments Incorporated Self-contained optical sensor system
US6154309A (en) 1997-09-19 2000-11-28 Anritsu Corporation Complementary optical sampling waveform measuring apparatus and polarization beam splitter which can be assembled therein
US20020021483A1 (en) 2000-06-22 2002-02-21 Seiko Epson Corporation Method and circuit for driving electrophoretic display and electronic device using same
US20020033792A1 (en) 2000-08-31 2002-03-21 Satoshi Inoue Electrophoretic display
US20030011868A1 (en) 1998-03-18 2003-01-16 E Ink Corporation Electrophoretic displays in portable devices and systems for addressing such displays
US20030035885A1 (en) 2001-06-04 2003-02-20 Zang Hongmei Composition and process for the sealing of microcups in roll-to-roll display manufacturing
US6532008B1 (en) 2000-03-13 2003-03-11 Recherches Point Lab Inc. Method and apparatus for eliminating steroscopic cross images
US20030067666A1 (en) 2001-08-20 2003-04-10 Hideyuki Kawai Electrophoretic device, method for driving electrophoretic device, circuit for driving electrophoretic device, and electronic device
US20030095090A1 (en) 2001-09-12 2003-05-22 Lg. Phillips Lcd Co., Ltd. Method and apparatus for driving liquid crystal display
US20030137521A1 (en) 1999-04-30 2003-07-24 E Ink Corporation Methods for driving bistable electro-optic displays, and apparatus for use therein
US6639580B1 (en) 1999-11-08 2003-10-28 Canon Kabushiki Kaisha Electrophoretic display device and method for addressing display device
US6657612B2 (en) 2000-09-21 2003-12-02 Fuji Xerox Co., Ltd. Image display medium driving method and image display device
US20030227451A1 (en) 2002-06-07 2003-12-11 Chi-Tung Chang Portable storage device with a storage capacity display
US6674561B2 (en) 2001-10-02 2004-01-06 Sony Corporation Optical state modulation method and system, and optical state modulation apparatus
US6686953B1 (en) 2000-03-01 2004-02-03 Joseph Holmes Visual calibration target set method
US20040112966A1 (en) 2001-12-28 2004-06-17 Nicolas Pangaud Non-contact portable object comprising at least a peripheral device connected to the same atenna as the chip
US20040120024A1 (en) 2002-09-23 2004-06-24 Chen Huiyong Paul Electrophoretic displays with improved high temperature performance
US6774883B1 (en) 1997-03-11 2004-08-10 Koninklijke Philips Electronics N.V. Electro-optical display device with temperature detection and voltage correction
US6796698B2 (en) 2002-04-01 2004-09-28 Gelcore, Llc Light emitting diode-based signal light
US20040219306A1 (en) 2003-01-24 2004-11-04 Xiaojia Wang Adhesive and sealing layers for electrophoretic displays
US20040246562A1 (en) 2003-05-16 2004-12-09 Sipix Imaging, Inc. Passive matrix electrophoretic display driving scheme
US20040263450A1 (en) 2003-06-30 2004-12-30 Lg Philips Lcd Co., Ltd. Method and apparatus for measuring response time of liquid crystal, and method and apparatus for driving liquid crystal display device using the same
US20050001812A1 (en) 1999-04-30 2005-01-06 E Ink Corporation Methods for driving bistable electro-optic displays, and apparatus for use therein
WO2005004099A1 (en) 2003-07-03 2005-01-13 Koninklijke Philips Electronics N.V. An electrophoretic display with reduction of remnant voltages by selection of characteristics of inter-picture potential differences
WO2005031688A1 (en) 2003-09-30 2005-04-07 Koninklijke Philips Electronics N.V. Reset pulse driving for reducing flicker in an electrophoretic display having intermediate optical states
WO2005034076A1 (en) 2003-10-07 2005-04-14 Koninklijke Philips Electronics N.V. Electrophoretic display panel
US6885495B2 (en) 2000-03-03 2005-04-26 Sipix Imaging Inc. Electrophoretic display with in-plane switching
US6902115B2 (en) 2000-07-17 2005-06-07 Giesecke & Devrient Gmbh Display device for a portable data carrier
US6903716B2 (en) 2002-03-07 2005-06-07 Hitachi, Ltd. Display device having improved drive circuit and method of driving same
US6914713B2 (en) 2002-04-23 2005-07-05 Sipix Imaging, Inc. Electro-magnetophoresis display
US20050162377A1 (en) 2002-03-15 2005-07-28 Guo-Fu Zhou Electrophoretic active matrix display device
US20050163940A1 (en) 2003-06-06 2005-07-28 Sipix Imaging, Inc. In mold manufacture of an object with embedded display panel
US6930818B1 (en) 2000-03-03 2005-08-16 Sipix Imaging, Inc. Electrophoretic display and novel process for its manufacture
US20050179642A1 (en) 2001-11-20 2005-08-18 E Ink Corporation Electro-optic displays with reduced remnant voltage
US6932269B2 (en) 2001-06-27 2005-08-23 Sony Corporation Pass-code identification device and pass-code identification method
US20050185003A1 (en) 2004-02-24 2005-08-25 Nele Dedene Display element array with optimized pixel and sub-pixel layout for use in reflective displays
US20050210405A1 (en) 2001-09-13 2005-09-22 Pixia Corp. Image display system
US6950220B2 (en) 2002-03-18 2005-09-27 E Ink Corporation Electro-optic displays, and methods for driving same
US6995550B2 (en) 1998-07-08 2006-02-07 E Ink Corporation Method and apparatus for determining properties of an electrophoretic display
US20060050361A1 (en) 2002-10-16 2006-03-09 Koninklijke Philips Electroinics, N.V. Display apparatus with a display device and method of driving the display device
US20060049263A1 (en) 2004-08-30 2006-03-09 Smartdisplayer Technology Co., Ltd. IC card with display panel but without batteries
US7046228B2 (en) 2001-08-17 2006-05-16 Sipix Imaging, Inc. Electrophoretic display with dual mode switching
US20060132426A1 (en) 2003-01-23 2006-06-22 Koninklijke Philips Electronics N.V. Driving an electrophoretic display
US20060139305A1 (en) 2003-01-23 2006-06-29 Koninkiljke Phillips Electronics N.V. Driving a bi-stable matrix display device
US20060139309A1 (en) 2004-12-28 2006-06-29 Seiko Epson Corporation Electrophoretic device, electronic apparatus, and method for driving the electrophoretic device
US20060164405A1 (en) 2003-07-11 2006-07-27 Guofu Zhou Driving scheme for a bi-stable display with improved greyscale accuracy
US20060187186A1 (en) 2003-03-07 2006-08-24 Guofu Zhou Electrophoretic display panel
US20060209055A1 (en) 2003-04-23 2006-09-21 Naohide Wakita Driver circuit and display device
US20060238488A1 (en) 2002-02-15 2006-10-26 Norio Nihei Image display unit
US20060262147A1 (en) 2005-05-17 2006-11-23 Tom Kimpe Methods, apparatus, and devices for noise reduction
US7177066B2 (en) 2003-10-24 2007-02-13 Sipix Imaging, Inc. Electrophoretic display driving scheme
US20070046625A1 (en) 2005-08-31 2007-03-01 Microsoft Corporation Input method for surface of interactive display
US20070046621A1 (en) 2005-08-23 2007-03-01 Fuji Xerox Co., Ltd. Image display device and method
US20070070032A1 (en) 2004-10-25 2007-03-29 Sipix Imaging, Inc. Electrophoretic display driving approaches
US20070080926A1 (en) 2003-11-21 2007-04-12 Koninklijke Philips Electronics N.V. Method and apparatus for driving an electrophoretic display device with reduced image retention
US20070080928A1 (en) 2005-10-12 2007-04-12 Seiko Epson Corporation Display control apparatus, display device, and control method for a display device
US20070091117A1 (en) 2003-11-21 2007-04-26 Koninklijke Philips Electronics N.V. Electrophoretic display device and a method and apparatus for improving image quality in an electrophoretic display device
US20070103427A1 (en) 2003-11-25 2007-05-10 Koninklijke Philips Electronice N.V. Display apparatus with a display device and a cyclic rail-stabilized method of driving the display device
US20070109274A1 (en) 2005-11-15 2007-05-17 Synaptics Incorporated Methods and systems for detecting a position-based attribute of an object using digital codes
US20070146306A1 (en) 2004-03-01 2007-06-28 Koninklijke Philips Electronics, N.V. Transition between grayscale an dmonochrome addressing of an electrophoretic display
US7242514B2 (en) 2003-10-07 2007-07-10 Sipix Imaging, Inc. Electrophoretic display with thermal control
US20070159682A1 (en) 2004-03-16 2007-07-12 Norio Tanaka Optically controlled optical-path-switching-type data distribution apparatus and distribution method
US20070182402A1 (en) 2004-02-19 2007-08-09 Advantest Corporation Skew adjusting method, skew adjusting apparatus, and test apparatus
US20070188439A1 (en) 2006-02-16 2007-08-16 Sanyo Epson Imaging Devices Corporation Electrooptic device, driving circuit, and electronic device
US7283119B2 (en) 2002-06-14 2007-10-16 Canon Kabushiki Kaisha Color electrophoretic display device
US20070247417A1 (en) 2006-04-25 2007-10-25 Seiko Epson Corporation Electrophoresis display device, method of driving electrophoresis display device, and electronic apparatus
US20070276615A1 (en) 2006-05-26 2007-11-29 Ensky Technology (Shenzhen) Co., Ltd. Reflective display device testing system, apparatus, and method
US20070296690A1 (en) 2006-06-23 2007-12-27 Seiko Epson Corporation Display device and timepiece
US7349146B1 (en) 2006-08-29 2008-03-25 Texas Instruments Incorporated System and method for hinge memory mitigation
US20080150886A1 (en) 2004-02-19 2008-06-26 Koninklijke Philips Electronic, N.V. Electrophoretic Display Panel
US20080211833A1 (en) 2007-01-29 2008-09-04 Seiko Epson Corporation Drive Method For A Display Device, Drive Device, Display Device, And Electronic Device
US20080303780A1 (en) 2007-06-07 2008-12-11 Sipix Imaging, Inc. Driving methods and circuit for bi-stable displays
US7504050B2 (en) 2004-02-23 2009-03-17 Sipix Imaging, Inc. Modification of electrical properties of display cells for improving electrophoretic display performance
US20090096745A1 (en) 2007-10-12 2009-04-16 Sprague Robert A Approach to adjust driving waveforms for a display device
US20090267970A1 (en) 2008-04-25 2009-10-29 Sipix Imaging, Inc. Driving methods for bistable displays
US7626444B2 (en) 2008-04-18 2009-12-01 Dialog Semiconductor Gmbh Autonomous control of multiple supply voltage generators for display drivers
US20100134538A1 (en) 2008-10-24 2010-06-03 Sprague Robert A Driving methods for electrophoretic displays
US20100194733A1 (en) 2009-01-30 2010-08-05 Craig Lin Multiple voltage level driving for electrophoretic displays
US20100194789A1 (en) 2009-01-30 2010-08-05 Craig Lin Partial image update for electrophoretic displays
US20100283804A1 (en) 2009-05-11 2010-11-11 Sipix Imaging, Inc. Driving Methods And Waveforms For Electrophoretic Displays
US7839381B2 (en) 2003-09-08 2010-11-23 Koninklijke Philips Electronics N.V. Driving method for an electrophoretic display with accurate greyscale and minimized average power consumption
US20100295880A1 (en) 2008-10-24 2010-11-25 Sprague Robert A Driving methods for electrophoretic displays
US20110096104A1 (en) 2009-10-26 2011-04-28 Sprague Robert A Spatially combined waveforms for electrophoretic displays
US20110175945A1 (en) 2010-01-20 2011-07-21 Craig Lin Driving methods for electrophoretic displays
US7999787B2 (en) * 1995-07-20 2011-08-16 E Ink Corporation Methods for driving electrophoretic displays using dielectrophoretic forces
US20110216104A1 (en) 2010-03-08 2011-09-08 Bryan Hans Chan Driving methods for electrophoretic displays
US8035611B2 (en) 2005-12-15 2011-10-11 Nec Lcd Technologies, Ltd Electrophoretic display device and driving method for same
US20120120122A1 (en) 2010-11-11 2012-05-17 Craig Lin Driving method for electrophoretic displays
US20120274671A1 (en) 2007-05-03 2012-11-01 Sipix Imaging, Inc. Driving bistable displays

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6561420B1 (en) * 2000-10-18 2003-05-13 Erica Tsai Information card system
CN100518482C (en) * 2004-07-26 2009-07-22 株式会社日立制作所 Component traceability control apparatus, control method, control program,
US20070009117A1 (en) * 2005-07-11 2007-01-11 Laflamme Robert E Fetal environment device

Patent Citations (112)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3612758A (en) 1969-10-03 1971-10-12 Xerox Corp Color display device
US4143947A (en) 1976-06-21 1979-03-13 General Electric Company Method for improving the response time of a display device utilizing a twisted nematic liquid crystal composition
US4443108A (en) 1981-03-30 1984-04-17 Pacific Scientific Instruments Company Optical analyzing instrument with equal wavelength increment indexing
US4972099A (en) 1988-01-30 1990-11-20 Dai Nippon Printing Co., Ltd. Sensor card
US5272477A (en) 1989-06-20 1993-12-21 Omron Corporation Remote control card and remote control system
US5266937A (en) 1991-11-25 1993-11-30 Copytele, Inc. Method for writing data to an electrophoretic display panel
US5754584A (en) 1994-09-09 1998-05-19 Omnipoint Corporation Non-coherent spread-spectrum continuous-phase modulation communication system
US5831697A (en) 1995-06-27 1998-11-03 Silicon Graphics, Inc. Flat panel display screen apparatus with optical junction and removable backlighting assembly
US7999787B2 (en) * 1995-07-20 2011-08-16 E Ink Corporation Methods for driving electrophoretic displays using dielectrophoretic forces
US5923315A (en) 1996-05-14 1999-07-13 Brother Kogyo Kabushiki Kaisha Display characteristic determining device
US6111248A (en) 1996-10-01 2000-08-29 Texas Instruments Incorporated Self-contained optical sensor system
US6045756A (en) 1996-10-01 2000-04-04 Texas Instruments Incorporated Miniaturized integrated sensor platform
US5930026A (en) 1996-10-25 1999-07-27 Massachusetts Institute Of Technology Nonemissive displays and piezoelectric power supplies therefor
US6069971A (en) 1996-12-18 2000-05-30 Mitsubishi Denki Kabushiki Kaisha Pattern comparison inspection system and method employing gray level bit map
US6774883B1 (en) 1997-03-11 2004-08-10 Koninklijke Philips Electronics N.V. Electro-optical display device with temperature detection and voltage correction
US5961804A (en) 1997-03-18 1999-10-05 Massachusetts Institute Of Technology Microencapsulated electrophoretic display
US6005890A (en) 1997-08-07 1999-12-21 Pittway Corporation Automatically adjusting communication system
US6154309A (en) 1997-09-19 2000-11-28 Anritsu Corporation Complementary optical sampling waveform measuring apparatus and polarization beam splitter which can be assembled therein
US6019284A (en) 1998-01-27 2000-02-01 Viztec Inc. Flexible chip card with display
US20030011868A1 (en) 1998-03-18 2003-01-16 E Ink Corporation Electrophoretic displays in portable devices and systems for addressing such displays
US6995550B2 (en) 1998-07-08 2006-02-07 E Ink Corporation Method and apparatus for determining properties of an electrophoretic display
US20050001812A1 (en) 1999-04-30 2005-01-06 E Ink Corporation Methods for driving bistable electro-optic displays, and apparatus for use therein
US7733311B2 (en) 1999-04-30 2010-06-08 E Ink Corporation Methods for driving bistable electro-optic displays, and apparatus for use therein
US20050219184A1 (en) 1999-04-30 2005-10-06 E Ink Corporation Methods for driving electro-optic displays, and apparatus for use therein
US20030137521A1 (en) 1999-04-30 2003-07-24 E Ink Corporation Methods for driving bistable electro-optic displays, and apparatus for use therein
US6639580B1 (en) 1999-11-08 2003-10-28 Canon Kabushiki Kaisha Electrophoretic display device and method for addressing display device
US6686953B1 (en) 2000-03-01 2004-02-03 Joseph Holmes Visual calibration target set method
US6930818B1 (en) 2000-03-03 2005-08-16 Sipix Imaging, Inc. Electrophoretic display and novel process for its manufacture
US6885495B2 (en) 2000-03-03 2005-04-26 Sipix Imaging Inc. Electrophoretic display with in-plane switching
US6532008B1 (en) 2000-03-13 2003-03-11 Recherches Point Lab Inc. Method and apparatus for eliminating steroscopic cross images
US20020021483A1 (en) 2000-06-22 2002-02-21 Seiko Epson Corporation Method and circuit for driving electrophoretic display and electronic device using same
US6902115B2 (en) 2000-07-17 2005-06-07 Giesecke & Devrient Gmbh Display device for a portable data carrier
US20020033792A1 (en) 2000-08-31 2002-03-21 Satoshi Inoue Electrophoretic display
US6657612B2 (en) 2000-09-21 2003-12-02 Fuji Xerox Co., Ltd. Image display medium driving method and image display device
US20030035885A1 (en) 2001-06-04 2003-02-20 Zang Hongmei Composition and process for the sealing of microcups in roll-to-roll display manufacturing
US6932269B2 (en) 2001-06-27 2005-08-23 Sony Corporation Pass-code identification device and pass-code identification method
US7046228B2 (en) 2001-08-17 2006-05-16 Sipix Imaging, Inc. Electrophoretic display with dual mode switching
US20030067666A1 (en) 2001-08-20 2003-04-10 Hideyuki Kawai Electrophoretic device, method for driving electrophoretic device, circuit for driving electrophoretic device, and electronic device
US6671081B2 (en) 2001-08-20 2003-12-30 Seiko Epson Corporation Electrophoretic device, method for driving electrophoretic device, circuit for driving electrophoretic device, and electronic device
US20030095090A1 (en) 2001-09-12 2003-05-22 Lg. Phillips Lcd Co., Ltd. Method and apparatus for driving liquid crystal display
US20050210405A1 (en) 2001-09-13 2005-09-22 Pixia Corp. Image display system
US6674561B2 (en) 2001-10-02 2004-01-06 Sony Corporation Optical state modulation method and system, and optical state modulation apparatus
US20050179642A1 (en) 2001-11-20 2005-08-18 E Ink Corporation Electro-optic displays with reduced remnant voltage
US20040112966A1 (en) 2001-12-28 2004-06-17 Nicolas Pangaud Non-contact portable object comprising at least a peripheral device connected to the same atenna as the chip
US20060238488A1 (en) 2002-02-15 2006-10-26 Norio Nihei Image display unit
US6903716B2 (en) 2002-03-07 2005-06-07 Hitachi, Ltd. Display device having improved drive circuit and method of driving same
US20050162377A1 (en) 2002-03-15 2005-07-28 Guo-Fu Zhou Electrophoretic active matrix display device
US6950220B2 (en) 2002-03-18 2005-09-27 E Ink Corporation Electro-optic displays, and methods for driving same
US6796698B2 (en) 2002-04-01 2004-09-28 Gelcore, Llc Light emitting diode-based signal light
US6914713B2 (en) 2002-04-23 2005-07-05 Sipix Imaging, Inc. Electro-magnetophoresis display
US20030227451A1 (en) 2002-06-07 2003-12-11 Chi-Tung Chang Portable storage device with a storage capacity display
US7283119B2 (en) 2002-06-14 2007-10-16 Canon Kabushiki Kaisha Color electrophoretic display device
US20040120024A1 (en) 2002-09-23 2004-06-24 Chen Huiyong Paul Electrophoretic displays with improved high temperature performance
US20060050361A1 (en) 2002-10-16 2006-03-09 Koninklijke Philips Electroinics, N.V. Display apparatus with a display device and method of driving the display device
US20060139305A1 (en) 2003-01-23 2006-06-29 Koninkiljke Phillips Electronics N.V. Driving a bi-stable matrix display device
US20060132426A1 (en) 2003-01-23 2006-06-22 Koninklijke Philips Electronics N.V. Driving an electrophoretic display
US20040219306A1 (en) 2003-01-24 2004-11-04 Xiaojia Wang Adhesive and sealing layers for electrophoretic displays
US20060187186A1 (en) 2003-03-07 2006-08-24 Guofu Zhou Electrophoretic display panel
US20060209055A1 (en) 2003-04-23 2006-09-21 Naohide Wakita Driver circuit and display device
US20040246562A1 (en) 2003-05-16 2004-12-09 Sipix Imaging, Inc. Passive matrix electrophoretic display driving scheme
US20050163940A1 (en) 2003-06-06 2005-07-28 Sipix Imaging, Inc. In mold manufacture of an object with embedded display panel
US20040263450A1 (en) 2003-06-30 2004-12-30 Lg Philips Lcd Co., Ltd. Method and apparatus for measuring response time of liquid crystal, and method and apparatus for driving liquid crystal display device using the same
US20070262949A1 (en) 2003-07-03 2007-11-15 Guofu Zhou Electrophoretic display with reduction of remnant voltages by selection of characteristics of inter-picture potential differences
WO2005004099A1 (en) 2003-07-03 2005-01-13 Koninklijke Philips Electronics N.V. An electrophoretic display with reduction of remnant voltages by selection of characteristics of inter-picture potential differences
US20060164405A1 (en) 2003-07-11 2006-07-27 Guofu Zhou Driving scheme for a bi-stable display with improved greyscale accuracy
US7839381B2 (en) 2003-09-08 2010-11-23 Koninklijke Philips Electronics N.V. Driving method for an electrophoretic display with accurate greyscale and minimized average power consumption
WO2005031688A1 (en) 2003-09-30 2005-04-07 Koninklijke Philips Electronics N.V. Reset pulse driving for reducing flicker in an electrophoretic display having intermediate optical states
US20070035510A1 (en) 2003-09-30 2007-02-15 Koninklijke Philips Electronics N.V. Reset pulse driving for reducing flicker in an electrophoretic display having intermediate optical states
US7242514B2 (en) 2003-10-07 2007-07-10 Sipix Imaging, Inc. Electrophoretic display with thermal control
WO2005034076A1 (en) 2003-10-07 2005-04-14 Koninklijke Philips Electronics N.V. Electrophoretic display panel
US20070052668A1 (en) 2003-10-07 2007-03-08 Koninklijke Philips Electronics N.V. Electrophoretic display panel
US7177066B2 (en) 2003-10-24 2007-02-13 Sipix Imaging, Inc. Electrophoretic display driving scheme
US20070091117A1 (en) 2003-11-21 2007-04-26 Koninklijke Philips Electronics N.V. Electrophoretic display device and a method and apparatus for improving image quality in an electrophoretic display device
US20070080926A1 (en) 2003-11-21 2007-04-12 Koninklijke Philips Electronics N.V. Method and apparatus for driving an electrophoretic display device with reduced image retention
US20070103427A1 (en) 2003-11-25 2007-05-10 Koninklijke Philips Electronice N.V. Display apparatus with a display device and a cyclic rail-stabilized method of driving the display device
US20070182402A1 (en) 2004-02-19 2007-08-09 Advantest Corporation Skew adjusting method, skew adjusting apparatus, and test apparatus
US20080150886A1 (en) 2004-02-19 2008-06-26 Koninklijke Philips Electronic, N.V. Electrophoretic Display Panel
US7504050B2 (en) 2004-02-23 2009-03-17 Sipix Imaging, Inc. Modification of electrical properties of display cells for improving electrophoretic display performance
US20050185003A1 (en) 2004-02-24 2005-08-25 Nele Dedene Display element array with optimized pixel and sub-pixel layout for use in reflective displays
US20070146306A1 (en) 2004-03-01 2007-06-28 Koninklijke Philips Electronics, N.V. Transition between grayscale an dmonochrome addressing of an electrophoretic display
US7800580B2 (en) 2004-03-01 2010-09-21 Koninklijke Philips Electronics N.V. Transition between grayscale and monochrome addressing of an electrophoretic display
US20070159682A1 (en) 2004-03-16 2007-07-12 Norio Tanaka Optically controlled optical-path-switching-type data distribution apparatus and distribution method
US20060049263A1 (en) 2004-08-30 2006-03-09 Smartdisplayer Technology Co., Ltd. IC card with display panel but without batteries
US20070070032A1 (en) 2004-10-25 2007-03-29 Sipix Imaging, Inc. Electrophoretic display driving approaches
US20060139309A1 (en) 2004-12-28 2006-06-29 Seiko Epson Corporation Electrophoretic device, electronic apparatus, and method for driving the electrophoretic device
US20060262147A1 (en) 2005-05-17 2006-11-23 Tom Kimpe Methods, apparatus, and devices for noise reduction
US20070046621A1 (en) 2005-08-23 2007-03-01 Fuji Xerox Co., Ltd. Image display device and method
US20070046625A1 (en) 2005-08-31 2007-03-01 Microsoft Corporation Input method for surface of interactive display
US20070080928A1 (en) 2005-10-12 2007-04-12 Seiko Epson Corporation Display control apparatus, display device, and control method for a display device
US20070109274A1 (en) 2005-11-15 2007-05-17 Synaptics Incorporated Methods and systems for detecting a position-based attribute of an object using digital codes
US8035611B2 (en) 2005-12-15 2011-10-11 Nec Lcd Technologies, Ltd Electrophoretic display device and driving method for same
US20070188439A1 (en) 2006-02-16 2007-08-16 Sanyo Epson Imaging Devices Corporation Electrooptic device, driving circuit, and electronic device
US20070247417A1 (en) 2006-04-25 2007-10-25 Seiko Epson Corporation Electrophoresis display device, method of driving electrophoresis display device, and electronic apparatus
US20070276615A1 (en) 2006-05-26 2007-11-29 Ensky Technology (Shenzhen) Co., Ltd. Reflective display device testing system, apparatus, and method
US20070296690A1 (en) 2006-06-23 2007-12-27 Seiko Epson Corporation Display device and timepiece
US7349146B1 (en) 2006-08-29 2008-03-25 Texas Instruments Incorporated System and method for hinge memory mitigation
US20080211833A1 (en) 2007-01-29 2008-09-04 Seiko Epson Corporation Drive Method For A Display Device, Drive Device, Display Device, And Electronic Device
US8044927B2 (en) * 2007-01-29 2011-10-25 Seiko Epson Corporation Drive method for a display device, drive device, display device, and electronic device
US20120274671A1 (en) 2007-05-03 2012-11-01 Sipix Imaging, Inc. Driving bistable displays
US20080303780A1 (en) 2007-06-07 2008-12-11 Sipix Imaging, Inc. Driving methods and circuit for bi-stable displays
US20090096745A1 (en) 2007-10-12 2009-04-16 Sprague Robert A Approach to adjust driving waveforms for a display device
US7626444B2 (en) 2008-04-18 2009-12-01 Dialog Semiconductor Gmbh Autonomous control of multiple supply voltage generators for display drivers
US20090267970A1 (en) 2008-04-25 2009-10-29 Sipix Imaging, Inc. Driving methods for bistable displays
US20100295880A1 (en) 2008-10-24 2010-11-25 Sprague Robert A Driving methods for electrophoretic displays
US20100134538A1 (en) 2008-10-24 2010-06-03 Sprague Robert A Driving methods for electrophoretic displays
US20100194789A1 (en) 2009-01-30 2010-08-05 Craig Lin Partial image update for electrophoretic displays
US20100194733A1 (en) 2009-01-30 2010-08-05 Craig Lin Multiple voltage level driving for electrophoretic displays
US20100283804A1 (en) 2009-05-11 2010-11-11 Sipix Imaging, Inc. Driving Methods And Waveforms For Electrophoretic Displays
US20110096104A1 (en) 2009-10-26 2011-04-28 Sprague Robert A Spatially combined waveforms for electrophoretic displays
US20110175945A1 (en) 2010-01-20 2011-07-21 Craig Lin Driving methods for electrophoretic displays
US20110216104A1 (en) 2010-03-08 2011-09-08 Bryan Hans Chan Driving methods for electrophoretic displays
US20120120122A1 (en) 2010-11-11 2012-05-17 Craig Lin Driving method for electrophoretic displays

Non-Patent Citations (54)

* Cited by examiner, † Cited by third party
Title
Allen, K. (Oct. 2003) Electrophoretics Fulfilled. Emerging Displays Review: Emerging Display Technologies, Monthly Report-Oct. 2003, pp. 9-14.
Allen, K. (Oct. 2003) Electrophoretics Fulfilled. Emerging Displays Review: Emerging Display Technologies, Monthly Report—Oct. 2003, pp. 9-14.
Bardsley, J. N. et al. (Nov. 2004) Microcup(TM) Electrophoretic Displays. USDC Flexible Display Report, 3.1:2, pp. 3.1.2-3.1.6.
Bardsley, J. N. et al. (Nov. 2004) Microcup™ Electrophoretic Displays. USDC Flexible Display Report, 3.1:2, pp. 3.1.2-3.1.6.
Chaug, Y.S. et al. (Apr. 2004). Roll-to-Roll Processes for the Manufacturing of Patterned Conductive Electrodes on Flexible Substrates. Mat. Res. Soc. Symp. Proc. vol. 814, 19.6.1.
Chen, S.M. (Jul. 2003) The Applications for the Revolutionary Electronic Paper Technology. OPTO News & Letters, 102, 37-41. (in Chinese, English abstract).
Chen, S.M. (May 2003) The New Applications and the Dynamics of Companies. TRI. 1-10 (in Chinese, English abstract).
Chung, J. et al. (Dec. 2003). Microcup® Electrophoretic Displays, Grayscale and Color Rendition. IDW, AMD2/EP1-2, 243-246.
Current Claims for Korean application No. PCT/US2010/033906, 1 page.
Ho, A. (Nov. 2006) Embedding e-Paper in Smart Cards, Pricing Labels & Indicators. Presentation conducted at Smart Paper Conference, Nov. 15-16, 2006, Atlanta, GA.
Ho, C. (Feb. 1, 2005) Microcup® Electronic Paper Device and Application. Presentation conducted at USDC 4th Annual Flexible Displays & Microelectronics Conference 2005 36 pages.
Ho, C. et al. (Dec. 2003) Microcup® Electronic Paper by Roll-to-Roll Manufacturing Processes. Presentation conducted at FEG, Nei-Li, Taiwan, 36 pages.
Hopper et al. (1979) An Electrophoretic Display, Its Properties, Model and Addressing. IEEE Trans. Elect. Dev., ED 26, No. 8, pp. 1148-1152.
Hou, J. et al. (May 2004). Reliability and Performance of Flexible Electrophoretic Displays by Roll-to-Roll Manufacturing Processes. SID Digest, 32.3, 1066-1069.
Howard, R. (Feb. 2004) Better Displays with Organic Films. Scientific American, pp. 76-81.
Kao, WC., (Feb. 2009) Configurable Timing Controller Design for Active Matrix Electrophoretic Dispaly. IEEE Transactions on Consumer Electronics, 2009, vol. 55, Issue 1, pp. 1-5.
Kao, WC., Fang, CY., Chen, YY., Shen, MH., and Wong, J. (Jan. 2008) Integrating Flexible Electrophoretic Display and One-Time Password Generator in Smart Cards. ICCE 2008 Digest of Technical Papers, P4-3. (Int'l Conference on Consumer Electronics, Jan. 9-13, 2008), 2 pgs.
Kao, WC., Ye, JA., and Lin, C. (Jan. 2009) Image Quality Improvement for Electrophoretic Displays by Combining Contrast Enhancement and Halftoning Techniques. ICCE 2009 Digest of Technical Papers, 11.2-2, 2 pgs.
Kao, WC., Ye, JA., Chu, MI., and Su, CY. (Feb. 2009) Image Quality Improvement for Electrophoretic Displays by Combining Contrast Enhancement and Halftoning Techniques. IEEE Transactions on Consumer Electronics, 2009, vol. 55, Issue 1, pp. 15-19.
Kao, WC., Ye, JA., Lin, FS., Lin, C., and Sprague, R. (Jan. 2009) Configurable Timing Controller Design for Active Matrix Electrophoretic Display with 16 Gray Levels. ICCE 2009 Digest of Technical Papers, 10.2-2, 2 pgs.
Kishi et al., Development of In-plane EPD, SID 2000 Digest, pp. 24-27.
Korean Patent Office, "International Search Report & Written Opinion", dated Dec. 7, 2010, application No. PCT/US2010/033906, 9 pages.
Lee, H. et al. (Jun. 2003) SiPix Microcup® Electronic Paper-An Introduction. Advanced Display, Issue 37, 4-9 (in Chinese, English abstract).
Lee, H. et al. (Jun. 2003) SiPix Microcup® Electronic Paper—An Introduction. Advanced Display, Issue 37, 4-9 (in Chinese, English abstract).
Liang, R. (Apr. 2004). Microcup Electronic Paper by Roll-to-Roll Manufacturing Process. Presentation at the Flexible Displays & Electronics 2004 of Intertech, San Francisco, California USA 26 pages.
Liang, R. (Feb. 2003) Microcup® Electrophoretic and Liquid Crystal Displays by Roll-to-Roll Manufacturing Processes. Presentation conducted at the Flexible Microelectronics & Displays Conference of U.S. Display Consortium, Phoenix, Arizona, USA, 18 pages.
Liang, R. (Oct. 2004) Flexible and Roll-able Display/Electronic Paper-A Technology Overview. Paper presented at the METS 2004 Conference in Taipei, Taiwan, 27 pages.
Liang, R. (Oct. 2004) Flexible and Roll-able Display/Electronic Paper—A Technology Overview. Paper presented at the METS 2004 Conference in Taipei, Taiwan, 27 pages.
Liang, R. et al. (2003). Microcup® Active and Passive Matrix Electrophoretic Displays by a Roll-to-Roll Manufacturing Processes. SID Digest, 20.1, 4 pages.
Liang, R. et al. (2003). Microcup® Displays: Electronic Paper by Roll-to-Roll Manufacturing Processes. Journal of the SID, 11(4), 621-628.
Liang, R. et al. (Dec. 2002) Microcup Electrophoretic Displays by Roll-to-Roll Manufacturing Processes. IDW, EP2-2, 1337-1340.
Liang, R. et al. (Feb. 2003). Microcup® LCD, A New Type of Dispersed LCD by a Roll-to-Roll Manufacturing Process. Paper presented at the IDMC, Taipei, Taiwan, 4 pages.
Liang, R. et al. (Feb. 2003). Passive Matrix Microcup® Electrophoretic Displays. Paper presented at the IDMC, Taipei, Taiwan, 4 pages.
Liang, R. et al. (Jun./Jul. 2004) , Presentation conducted at the 14th FPD Manufacturing Technology EXPO & Conference, 44 pages (in Chinese, English abstract).
Liang, R. et al. (Jun./Jul. 2004) < Format Flexible Microcup® Electronic Paper by Roll-to-Roll Manufacturing Process >, Presentation conducted at the 14th FPD Manufacturing Technology EXPO & Conference, 44 pages (in Chinese, English abstract).
Liang, R. Nikkei Microdevices. (Dec. 2002) Newly-Developed Color Electronic Paper Promises-Unbeatable Production Efficiency. Nikkei Microdevices, 3. (in Japanese with English translation) 4 pages.
Liang, R. Nikkei Microdevices. (Dec. 2002) Newly-Developed Color Electronic Paper Promises—Unbeatable Production Efficiency. Nikkei Microdevices, 3. (in Japanese with English translation) 4 pages.
Sprague, R.A. "Active Matrix Displays for e-Readers Using Microcup Electrophoretics". Presentation conducted at SID 2011, 49 International Symposium Seminar and Exhibition, dated May 18, 2011, 20 pages.
Swanson, et al., High Performance EPDs, SID 200 Digest, pp. 29-31.
U.S. Appl. No. 12/046,197, filed Mar. 11, 2008, Wang et al.
U.S. Appl. No. 12/155,513, filed May 5, 2008, Sprague et al.
U.S. Appl. No. 13/004,763, filed Jan. 11, 2011, Lin et al.
U.S. Appl. No. 13/152,140, filed Jun. 2, 2011, Lin.
U.S. Appl. No. 13/289,403, filed Nov. 4, 2011, Lin et al.
Wang, X. et al. (Feb. 2004). Microcup® Electronic Paper and the Converting Processes. ASID, 10.1.2-26, 396-399, Nanjing, China.
Wang, X. et al. (Feb. 2006) Inkjet Fabrication of Multi-Color Microcup® Electrophorectic Display. The Flexible Microelectronics & Displays Conference of U.S. Display Consortium, 11 pages.
Wang, X. et al. (Jun. 2004) Microcup® Electronic Paper and the Converting Processes. Advanced Display, Issue 43, 48-51.
Wang, X. et al. (Jun. 2006) Roll-to-Roll Manufacturing Process for Full Color Electrophoretic Film. SID Digest, pp. 1587-1589.
Zang, H. (Feb. 2004). Microcup Electronic Paper. Presentation conducted at the Displays & Microelectronics Conference of U.S. Display Consortium, Phoenix, Arizona, USA, 14 pages.
Zang, H. (Oct. 2003). Microcup® Electronic Paper by Roll-to-Roll Manufacturing Processes. Presentation conducted at the Advisory Board Meeting, Bowling Green State University, Ohio, USA, 18 pages.
Zang, H. et al. (2003) Microcup Electronic Paper by Roll-to-Roll Manufacturing Processes. The Spectrum, 16(2), 16-21.
Zang, H. et al. (Feb. 2005) Flexible Microcup® EPD by RTR Process. Presentation conducted at 2nd Annual Paper-Like Displays Conference, Feb. 9-11, 2005, St. Pete Beach Florida 26 pages.
Zang, H. et al. (Jan. 2004). Threshold and Grayscale Stability of Microcup® Electronic Paper. Proceeding of SPIE-IS&T Electronic Imaging, SPIE vol. 5289, 102-108.
Zang, H. et al. (May 2006) Monochrome and Area Color Microcup® EPDs by Roll-to-Roll Manufacturing Processes. ICIS '06 International Congress of Imaging Science Final Program and Proceedings, pp. 362-365.

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9171508B2 (en) 2007-05-03 2015-10-27 E Ink California, Llc Driving bistable displays
US10002575B2 (en) 2007-06-07 2018-06-19 E Ink California, Llc Driving methods and circuit for bi-stable displays
US9251736B2 (en) 2009-01-30 2016-02-02 E Ink California, Llc Multiple voltage level driving for electrophoretic displays
US9501981B2 (en) 2013-05-17 2016-11-22 E Ink California, Llc Driving methods for color display devices
US10062337B2 (en) 2015-10-12 2018-08-28 E Ink California, Llc Electrophoretic display device
CN105632416A (en) * 2016-01-14 2016-06-01 龚东 Electronic ink screen ghost shadow removing method, display method and corresponding electronic device
CN105702217A (en) * 2016-01-14 2016-06-22 龚东 Electronic ink screen ghosting removing method and display method, and corresponding electronic equipment

Also Published As

Publication number Publication date Type
US20090267970A1 (en) 2009-10-29 application

Similar Documents

Publication Publication Date Title
US20080150886A1 (en) Electrophoretic Display Panel
US20040239839A1 (en) Liquid crystal display and method and apparatus for driving the same
US4909607A (en) Addressing liquid crystal cells
US20060132426A1 (en) Driving an electrophoretic display
US20060139305A1 (en) Driving a bi-stable matrix display device
US6806995B2 (en) Electrophoretic display with holding electrodes
US20090195568A1 (en) Methods for driving electro-optic displays
US7453445B2 (en) Methods for driving electro-optic displays
US20070057905A1 (en) Electrophoretic display activation with blanking frames
US20080291129A1 (en) Methods for driving video electro-optic displays
JP2004317785A (en) Method for driving electrooptical device, electrooptical device, and electronic device
US20100283804A1 (en) Driving Methods And Waveforms For Electrophoretic Displays
US20070080926A1 (en) Method and apparatus for driving an electrophoretic display device with reduced image retention
US20070091117A1 (en) Electrophoretic display device and a method and apparatus for improving image quality in an electrophoretic display device
JP2004102054A (en) Electrooptical device, method for driving electrooptical device, and electronic appliance
US7193625B2 (en) Methods for driving electro-optic displays, and apparatus for use therein
US20080303780A1 (en) Driving methods and circuit for bi-stable displays
US20050179641A1 (en) Electrophoretic display and a method of driving an electrophoretic display
US20070126693A1 (en) Method and apparatus for reducing edge image retention in an electrophoretic display device
US20110292094A1 (en) Color display architecture and driving methods
US20100194733A1 (en) Multiple voltage level driving for electrophoretic displays
US20080291184A1 (en) Scrolling Function in an Electrophoretic Display Device
US20070212022A1 (en) Electrophoretic Display with Reduced Cross Talk
US20110096104A1 (en) Spatially combined waveforms for electrophoretic displays
US20070176889A1 (en) Electrophoretic display with cyclic rail stabilization

Legal Events

Date Code Title Description
AS Assignment

Owner name: SIPIX IMAGING, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WONG, JIALOCK;CHEN, YAJUAN;SPRAGUE, ROBERT;AND OTHERS;REEL/FRAME:022576/0622;SIGNING DATES FROM 20090416 TO 20090417

Owner name: SIPIX IMAGING, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WONG, JIALOCK;CHEN, YAJUAN;SPRAGUE, ROBERT;AND OTHERS;SIGNING DATES FROM 20090416 TO 20090417;REEL/FRAME:022576/0622

AS Assignment

Owner name: E INK CALIFORNIA, LLC, CALIFORNIA

Free format text: CHANGE OF NAME;ASSIGNOR:SIPIX IMAGING, INC.;REEL/FRAME:033280/0408

Effective date: 20140701

FPAY Fee payment

Year of fee payment: 4