US20010028964A1 - Master medium for magnetic transfer including metal disk with relief or recess pattern - Google Patents
Master medium for magnetic transfer including metal disk with relief or recess pattern Download PDFInfo
- Publication number
- US20010028964A1 US20010028964A1 US09/802,933 US80293301A US2001028964A1 US 20010028964 A1 US20010028964 A1 US 20010028964A1 US 80293301 A US80293301 A US 80293301A US 2001028964 A1 US2001028964 A1 US 2001028964A1
- Authority
- US
- United States
- Prior art keywords
- disk
- master medium
- original disk
- original
- relief
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 230000005291 magnetic effect Effects 0.000 title claims abstract description 155
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 135
- 239000002184 metal Substances 0.000 title claims abstract description 135
- 238000012546 transfer Methods 0.000 title claims abstract description 63
- 229920002120 photoresistant polymer Polymers 0.000 claims abstract description 47
- 238000000151 deposition Methods 0.000 claims abstract description 19
- 238000010894 electron beam technology Methods 0.000 claims abstract description 11
- 239000011347 resin Substances 0.000 claims description 14
- 229920005989 resin Polymers 0.000 claims description 14
- 239000000463 material Substances 0.000 claims description 10
- 238000005530 etching Methods 0.000 claims description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 7
- 229910052799 carbon Inorganic materials 0.000 claims description 7
- 239000010453 quartz Substances 0.000 claims description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 7
- 239000011521 glass Substances 0.000 claims description 6
- 238000003825 pressing Methods 0.000 claims description 5
- 238000000034 method Methods 0.000 description 47
- 239000010408 film Substances 0.000 description 36
- 238000007747 plating Methods 0.000 description 15
- 238000011156 evaluation Methods 0.000 description 12
- 230000005415 magnetization Effects 0.000 description 12
- 239000002585 base Substances 0.000 description 11
- 238000004519 manufacturing process Methods 0.000 description 10
- 238000004544 sputter deposition Methods 0.000 description 9
- 238000005323 electroforming Methods 0.000 description 7
- 239000011248 coating agent Substances 0.000 description 6
- 238000000576 coating method Methods 0.000 description 6
- 239000003302 ferromagnetic material Substances 0.000 description 6
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 239000000696 magnetic material Substances 0.000 description 5
- 229910052709 silver Inorganic materials 0.000 description 5
- 239000004332 silver Substances 0.000 description 5
- 230000003068 static effect Effects 0.000 description 5
- 238000011161 development Methods 0.000 description 4
- 230000018109 developmental process Effects 0.000 description 4
- 229910002546 FeCo Inorganic materials 0.000 description 3
- 229910002545 FeCoNi Inorganic materials 0.000 description 3
- 238000007733 ion plating Methods 0.000 description 3
- 238000001459 lithography Methods 0.000 description 3
- 239000000314 lubricant Substances 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 229910000531 Co alloy Inorganic materials 0.000 description 2
- 229910002441 CoNi Inorganic materials 0.000 description 2
- 229910000684 Cobalt-chrome Inorganic materials 0.000 description 2
- 229910000640 Fe alloy Inorganic materials 0.000 description 2
- 229910000990 Ni alloy Inorganic materials 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 239000010952 cobalt-chrome Substances 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 238000007772 electroless plating Methods 0.000 description 2
- 230000005294 ferromagnetic effect Effects 0.000 description 2
- 230000005389 magnetism Effects 0.000 description 2
- 238000004528 spin coating Methods 0.000 description 2
- VZSRBBMJRBPUNF-UHFFFAOYSA-N 2-(2,3-dihydro-1H-inden-2-ylamino)-N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]pyrimidine-5-carboxamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C(=O)NCCC(N1CC2=C(CC1)NN=N2)=O VZSRBBMJRBPUNF-UHFFFAOYSA-N 0.000 description 1
- 229910001149 41xx steel Inorganic materials 0.000 description 1
- -1 CoPtCr Inorganic materials 0.000 description 1
- 229910015372 FeAl Inorganic materials 0.000 description 1
- 229910002555 FeNi Inorganic materials 0.000 description 1
- 229910005335 FePt Inorganic materials 0.000 description 1
- 229910005435 FeTaN Inorganic materials 0.000 description 1
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 1
- NIPNSKYNPDTRPC-UHFFFAOYSA-N N-[2-oxo-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 NIPNSKYNPDTRPC-UHFFFAOYSA-N 0.000 description 1
- 229910000943 NiAl Inorganic materials 0.000 description 1
- NPXOKRUENSOPAO-UHFFFAOYSA-N Raney nickel Chemical compound [Al].[Ni] NPXOKRUENSOPAO-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000005347 demagnetization Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000003698 laser cutting Methods 0.000 description 1
- 239000006247 magnetic powder Substances 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/86—Re-recording, i.e. transcribing information from one magnetisable record carrier on to one or more similar or dissimilar record carriers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y10/00—Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/74—Record carriers characterised by the form, e.g. sheet shaped to wrap around a drum
- G11B5/743—Patterned record carriers, wherein the magnetic recording layer is patterned into magnetic isolated data islands, e.g. discrete tracks
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/86—Re-recording, i.e. transcribing information from one magnetisable record carrier on to one or more similar or dissimilar record carriers
- G11B5/865—Re-recording, i.e. transcribing information from one magnetisable record carrier on to one or more similar or dissimilar record carriers by contact "printing"
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B23/00—Record carriers not specific to the method of recording or reproducing; Accessories, e.g. containers, specially adapted for co-operation with the recording or reproducing apparatus ; Intermediate mediums; Apparatus or processes specially adapted for their manufacture
- G11B23/0057—Intermediate mediums, i.e. mediums provided with an information structure not specific to the method of reproducing or duplication such as matrixes for mechanical pressing of an information structure ; record carriers having a relief information structure provided with or included in layers not specific for a single reproducing method; apparatus or processes specially adapted for their manufacture
- G11B23/0064—Intermediate mediums, i.e. mediums provided with an information structure not specific to the method of reproducing or duplication such as matrixes for mechanical pressing of an information structure ; record carriers having a relief information structure provided with or included in layers not specific for a single reproducing method; apparatus or processes specially adapted for their manufacture mediums or carriers characterised by the selection of the material
- G11B23/0071—Intermediate mediums, i.e. mediums provided with an information structure not specific to the method of reproducing or duplication such as matrixes for mechanical pressing of an information structure ; record carriers having a relief information structure provided with or included in layers not specific for a single reproducing method; apparatus or processes specially adapted for their manufacture mediums or carriers characterised by the selection of the material additional layers for lubrication or wear protection
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/48—Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed
- G11B5/58—Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed with provision for moving the head for the purpose of maintaining alignment of the head relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
- G11B5/596—Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed with provision for moving the head for the purpose of maintaining alignment of the head relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following for track following on disks
- G11B5/59633—Servo formatting
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/74—Record carriers characterised by the form, e.g. sheet shaped to wrap around a drum
- G11B5/82—Disk carriers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S430/00—Radiation imagery chemistry: process, composition, or product thereof
- Y10S430/146—Laser beam
Definitions
- the present invention relates to a master medium which bears information, and is used in a process of magnetically transferring the information from the master medium to a slave medium.
- the so-called tracking servo technique plays an important role in realizing a high-density flexible disk having great capacity. Due to the tracking servo technique, a magnetic head can move precisely within a narrow track width, and a signal can be regenerated with a high S/N ratio.
- a so-called preformat including tracking servo signals, address information signals, regeneration clock signals, and the like is recorded on the track of the disk in such a manner that the signals constituting the preformat appear at predetermined intervals during each rotation of the disk.
- the magnetic head is arranged so that the magnetic head can move precisely on the track by reading the signals in the preformat and correcting its own position.
- the preformat is produced by recording the signals on each disk on a track-by-track basis by using a dedicated servo recording apparatus.
- a dedicated servo recording apparatus it takes a long time to record the preformat by using the servo recording apparatus. Therefore, the cost of the preformat recording forms a considerable proportion of the total manufacturing cost, and thus reduction of the preformat recording cost is required.
- Japanese Unexamined Patent Publications Nos. 63 (1988)-183623, 10 (1998)-40544, and 10 (1998)-269566 disclose techniques of recording a preformat by magnetic transfer, instead of recording signals constituting the preformat on the track-by-track basis.
- the above patent publications do not substantially disclose concrete procedures. In particular, conditions of the magnetic fields which are applied during magnetic transfer and constructions of apparatuses for generating the magnetic fields are not disclosed.
- JUPP63 (1988)-183623 and JUPP10 (1998)-40544 disclose methods of recording magnetization patterns corresponding to information signals on a magnetic recording medium (as a slave medium).
- a master medium is prepared for magnetic transfer.
- the master medium is produced by forming relieved portions having shapes corresponding to the information signals on a surface of a substrate, and further forming a thin magnetic film at least on the relieved portions of the substrate.
- the slave medium has the form of a sheet or disk, and includes a thin ferromagnetic film or a magnetic-powder layer.
- the magnetic transfer is achieved by placing the slave medium in close contact with the magnetic film of the master medium, and applying an AC or DC bias magnetic field to the master medium so as to excite the magnetic material (thin film) formed on the relieved portions of the master medium.
- the magnetization patterns corresponding to the relieved portions of the master medium are recorded on the slave medium.
- the relieved portions of the master medium are placed in close contact with the slave medium which is to be preformatted, and the magnetic material on the relieved portions are concurrently excited so as to record the predetermined patterns on the slave medium, the patterns can be statically recorded on the slave medium without changing the relative positions of the master medium and the slave medium.
- the preformat can be precisely recorded, and the time needed for the preformatting is very short.
- the above methods of recording magnetization patterns by magnetic transfer are used for recording servo signals on a magnetic recording medium (as a slave medium)
- the 3.5-inch and 2.5-inch magnetic recording mediums have diameters of 3.5 and 2.5 inches, respectively. Since the servo patterns respectively indicate addresses of information items, the respective servo patterns must be different.
- Micropatterns as mentioned above can be recorded by the lithography techniques which are conventionally used in manufacturing semiconductor devices or magnetic heads.
- the lithography techniques an original image is reduced in order to increase accuracy. Therefore, the area which can be exposed by each exposure shot is limited to about 2 cm square.
- the large-size pattern includes an array of identical patterns. That is, it is difficult to form the servo patterns on a magnetic recording medium by using the above lithography techniques since the servo patterns are respectively different.
- the master medium is placed in close contact with the slave medium during the magnetic transfer operation. Therefore, when the magnetic transfer operation is performed a number of times, the relieved patterns representing information wear down, and therefore the accuracy of the magnetic transfer decreases. Further, when dust exists between the master medium and the slave medium, the dust may scratch the surfaces of the relieved portions of the master medium. In these cases, the master medium must be replaced. Therefore, it is desirable that the master medium is easy to produce, and inexpensive.
- the production of the master medium by repetition of the micropattern exposure requires complicated quality control operations, and is disadvantageous in qualitative stability and production cost.
- An object of the present invention is to provide a master medium for use in magnetic transfer, which is inexpensive and easy to produce.
- a master medium for use in magnetic transfer of information.
- the master medium comprises a metal disk which has a first relief or recess pattern representing the information.
- the metal disk is produced by exposing a photoresist film formed on a base disk with a laser or electron beam modulated with the information while rotating the base disk, developing the photoresist film so as to form an original disk having a second relief or recess pattern, depositing metal on the original disk so as to mold the metal disk on the original disk, and removing the metal disk from the original disk.
- the master medium according to the first aspect of the present invention may also have one or any possible combination of the following additional features (i) to (x).
- the original disk may be formed by etching the base disk after the photoresist film is developed.
- the base disk may be made of glass or quartz.
- the original disk may be made of a material containing Ni as a main component.
- the first relief or recess pattern has a height or depth of 80 to 800 nm. More preferably, the height or depth of the first relief or recess pattern is 150 to 600 nm.
- the master medium may further comprise a soft magnetic layer formed on the first relief or recess pattern.
- the master medium having the feature (v) may further comprise a nonmagnetic layer formed between the soft magnetic layer and the first relief or recess pattern.
- the soft magnetic layer has a thickness of 50 to 500 nm. More preferably, the thickness of the soft magnetic layer is 150 to 400 nm.
- the master medium may further comprise a diamond-like carbon protection layer as an uppermost layer.
- the first relief or recess pattern is elongated in a radial direction. More preferably, the size of the first relief or recess pattern is in the range of 0.3 to 20 micrometers in the radial direction, and in the range of 0.2 to 5 micrometers in the circumferential direction. In particular, when the first relief or recess pattern represents a servo signal, it is preferable that the first relief or recess pattern is elongated in a radial direction, and the size of the first relief or recess pattern is within the above ranges.
- the deposition of metal may be performed in accordance with one of various film formation methods including electroless plating, electroforming, sputtering, and ion plating.
- a master medium for use in magnetic transfer of information.
- the master medium comprises a metal disk which has a first relief or recess pattern representing the information.
- the metal disk is produced by exposing a photoresist film formed on a base disk with a laser or electron beam modulated with the information while rotating the base disk, developing the photoresist film so as to form a first original disk having a second relief or recess pattern, depositing metal on the first original disk so as to mold on the first original disk a second original disk having a third relief or recess pattern, removing the second original disk from the first original disk, depositing metal on the second original disk so as to mold the metal disk on the second original disk; and, removing the metal disk from the second original disk.
- the master medium according to the second aspect of the present invention may also have one or any possible combination of the aforementioned additional features (ii) to (x) and the following additional features (xi) and (xii).
- the first original disk may be formed by etching the base disk after the photoresist film is developed.
- the second original disk may be formed by pressing a resin solution on the first original disk, curing the resin solution so as to mold the second original disk on the first original disk, instead of depositing metal on the first original disk.
- a master medium for use in magnetic transfer of information.
- the master medium comprises a metal disk which has a first relief or recess pattern representing the information.
- the metal disk is produced by exposing a photoresist film formed on a base disk with a laser or electron beam modulated with the information while rotating the base disk, developing the photoresist film so as to form a first original disk having a second relief or recess pattern, depositing metal on the first original disk so as to mold on the first original disk a second original disk having a third relief or recess pattern, removing the second original disk from the first original disk, depositing metal on the second original disk so as to mold on the second original disk a third original disk having a fourth relief or recess pattern, removing the third original disk from the second original disk, depositing metal on the third original disk so as to mold the metal disk on the third original disk, and removing the metal disk from the third original disk.
- the master medium according to the third aspect of the present invention may also have one or any possible combination of the aforementioned additional features (ii) to
- the third original disk may be formed by pressing a resin solution on the second original disk, curing the resin solution so as to mold the third original disk on the second original disk, instead of depositing metal on the second original disk.
- the magnetic transfer is achieved by placing a slave medium in contact with the first relief or recess pattern of each master medium, and applying a magnetic field to the master medium for transferring the information represented by the first relief or recess pattern to the slave medium.
- the magnetic transfer is made through the following process by using a magnetic recording medium (as a slave medium) and a master medium in which the metal disk is made of a ferromagnetic material, or the first relief or recess pattern is coated with the soft magnetic layer.
- the process comprises the steps of: (a) performing an initial direct-current magnetization of the magnetic recording medium in a first direction (e.g., along a track of the magnetic recording medium); (b) placing the master medium and the magnetic recording medium so that the magnetic recording medium is in contact with the first relief or recess pattern made of the ferromagnetic material or the soft magnetic layer formed on the first relief or recess pattern of the master medium; and (c) applying to the master medium a magnetic field in a second direction approximately opposite to the first direction.
- the pattern formed on the magnetic recording medium is magnetized in the same way when the directions of the initial magnetization of the magnetic recording medium and the magnetic field applied to the master medium for magnetic transfer are inverted accordingly.
- the master mediums according to the first to third aspects of the present invention are made with a metal disk which has a relief or recess pattern representing information signals to be magnetically transferred.
- the master mediums used in magnetic transfer of the information signals (such as servo signals) to a magnetic recording medium can be produced at low cost with a desired accuracy.
- a great number of identical metal disks can be produced by metal deposition using one original plate. Therefore, the qualitative stability of the magnetic transfer can be maintained by timely replacing the master medium in response to increase in the number of the magnetic transfer operations.
- the master mediums according to the first to third aspects of the present invention is advantageous in their hardness, formability, and weather resistance when the metal disk in the master medium is made of a material containing Ni as a main component.
- the metal disk is made of a material containing Ni as a main component, the magnetic transfer is possible without additional provision, since Ni is a ferromagnetic material.
- Ni is a ferromagnetic material.
- a nonmagnetic layer is provided between the metal disk and the soft magnetic layer in order to eliminate the influence of the magnetism of the metal disk.
- the soft magnetic layer which realizes desirable transfer characteristics is indispensable.
- FIGS. 1A to 1 C are cross-sectional views of the first to third stages in a process of magnetically transferring information from a master medium as an embodiment of the present invention to a slave medium.
- FIG. 2 is a cross-sectional view of a master medium as another embodiment of the present invention.
- FIGS. 3A to 3 D are cross-sectional views of representative stages in a first process of producing a metal disk of a master medium.
- FIGS. 4A to 4 F are cross-sectional views of representative stages in a second process of producing a metal disk of a master medium.
- FIGS. 5A to 5 H are cross-sectional views of representative stages in a third process of producing a metal disk of a master medium.
- FIGS. 6A to 6 F are cross-sectional views of representative stages in a fourth process of producing a metal disk of a master medium.
- FIGS. 7A to 7 H are cross-sectional views of representative stages in a fifth process of producing a metal disk of a master medium.
- FIGS. 8A to 8 J are cross-sectional views of representative stages in a sixth process of producing a metal disk of a master medium.
- FIGS. 1A to 1 C are cross-sectional views of the first to third stages in a process of magnetically transferring information from a master medium as an embodiment of the present invention to a slave medium.
- initial magnetization direct-current demagnetization
- a slave medium 2 by applying to the slave medium 2 an initial static magnetic field Hin in a direction along a track of the slave medium 2 .
- the slave medium 2 and a master medium 3 are placed so that the magnetic transfer surface of the slave medium 2 is in close contact with information-bearing surfaces of the master medium 3 , where the information-bearing surfaces are surfaces of a soft magnetic layer 32 formed on relieved portions of a microrelief or microrecess pattern (elongated in the radial directions, i.e., in the directions of the widths of the track) of a metal disk 31 .
- a transfer magnetic field i.e., magnetic field for magnetic transfer
- Hdu a transfer magnetic field
- Hdu magnetic field for magnetic transfer
- FIG. 1C a pattern formed with the relieved portions of the master medium 3 and spaces above the recessed portions of the master medium 3 is magnetically transferred to the magnetic transfer surface (track) of the slave medium 2 , and a magnetization pattern is recorded in the slave medium 2 . Details of the process of magnetic transfer are explained, for example, in Japanese Unexamined Patent Publication No. 11 (1999)-117800.
- the same magnetization pattern as that of FIG. 1C can be realized by inverting the directions of the initial static magnetic field Hin and the transfer magnetic field Hdu.
- the metal disk 31 is made of a ferromagnetic material such as Ni, the magnetic transfer can be made without the soft magnetic layer 32 , and therefore the soft magnetic layer 32 can be dispensed with. However, when the soft magnetic layer 32 is provided, the performance of the magnetic transfer is improved. When the metal disk 31 is made of a nonmagnetic material, the soft magnetic layer 32 is indispensable.
- FIG. 2 is a cross-sectional view of such a master medium. That is, in the master medium 3 ′ of FIG. 2, the metal disk 31 having a microrelief or microrecess pattern is coated with a nonmagnetic layer 33 , a soft magnetic layer 32 is formed on the nonmagnetic layer 33 , and a diamond-like carbon (DLC) protection layer 34 is formed as the uppermost layer of the master medium 3 ′ on the soft magnetic layer 32 .
- DLC diamond-like carbon
- a protection layer 34 is provided as the uppermost layer of the master medium 3 in FIG. 1B.
- FIGS. 3A to 3 D are cross-sectional views of representative stages in the first process.
- a photoresist solution is applied to a smooth surface of a disk 10 (made of glass or quartz) by spin coating or the like so as to form a photoresist film 11 .
- the photoresist film 11 is irradiated with laser light (or an electron beam) L which is modulated with servo signals, so that portions of the entire surface of the photoresist film 11 , corresponding to predetermined preformat patterns which represent the servo signals, are exposed to the modulated laser light or an electron beam.
- each preformat pattern is comprised of lines being located at a position corresponding to each frame, radially extending across each track, and representing a servo signal.
- an original disk (first original disk) 12 having a microrecess (negative) pattern is obtained as illustrated in FIG. 3B.
- the surface of the original disk 12 is coated with a thin silver plating layer 13 , electroforming processing is performed on the silver-plated original disk 12 , and a metal disk 31 A having a microrelief (positive) pattern and a predetermined thickness is molded from metal on the original disk 12 , as illustrated in FIG. 3C.
- the metal disk 31 A is removed from the silver-plated original disk 12 as illustrated in FIG. 3D.
- the microrelief (positive) pattern on the metal disk 31 A is reverse to the microrecess (negative) pattern on the original disk 12 .
- the microrelief pattern can be formed at arbitrary position on the metal disk 31 A with an accuracy of one micrometer or less.
- the metal disk 31 A per se may be used as a master medium.
- a master medium may be formed by coating the metal disk 31 A with a soft magnetic layer 32 .
- a nonmagnetic layer 33 and/or a protection layer 34 may be provided as necessary.
- FIGS. 4A to 4 F are cross-sectional views of representative stages in the second process.
- the first original disk 12 having a microrecess (negative) pattern is produced by forming a photoresist film 11 on a disk 10 , exposing the disk 10 with modulated laser light L, and developing the exposed photoresist film 11 in a similar manner to the stages of FIGS. 3A and 3B in the first process.
- the surface of the first original disk 12 is coated with a thin silver plating layer 13 .
- the surface of the first original disk 12 is coated with a thin silver plating layer 13 , electroforming processing is performed on the silver-plated original disk 12 , and a second original disk 14 having a microrelief (positive) pattern and a predetermined thickness is molded from metal on the first original disk 12 , as illustrated in FIG. 4C. Then, the second original disk 14 is removed from the first original disk 12 as illustrated in FIG. 4D. Thereafter, the second original disk 14 is plated, and a metal disk 31 B having a microrecess (negative) pattern and a predetermined thickness is molded from metal on the second original disk 14 , as illustrated in FIG. 4E. Then, the metal disk 31 B is removed from the second original disk 14 as illustrated in FIG. 4F.
- the microrecess (negative) pattern on the metal disk 31 B is identical with the microrecess (negative) pattern on the first original disk 12 .
- the metal disk 31 B per se may be used as a master medium.
- a master medium may be formed by coating the metal disk 31 B with a soft magnetic layer 32 .
- a nonmagnetic layer 33 and/or a protection layer 34 may be provided as necessary.
- the same magnetization pattern as that of FIG. 1C can be recorded on the magnetic recording medium by inverting the directions of the initial static magnetic field Hin (illustrated in FIG. 1A) and the transfer magnetic field Hdu (illustrated in FIG. 1B).
- FIGS. 5A to 5 H are cross-sectional views of representative stages in the third process.
- the first original disk 12 having a microrecess (negative) pattern and the second original disk 14 having a microrelief (positive) pattern are produced in a similar manner to the stages of FIGS. 3A to 3 D in the second process.
- a third original disk 15 having a microrecess (negative) pattern and a predetermined thickness is molded on the second original disk 14 by plating the second original disk 14 , or curing a resin solution which is pressed on the second original disk 14 , as illustrated in FIG. 5E.
- the third original disk 15 is removed from the second original disk 14 as illustrated in FIG. 5F.
- the third original disk 15 is plated, and a metal disk 31 C having a microrelief (positive) pattern and a predetermined thickness is molded from metal on the third original disk 15 , as illustrated in FIG. 5G. Then, the metal disk 31 C is removed from the third original disk 15 as illustrated in FIG. 5H.
- the microrelief (positive) pattern on the metal disk 31 C is identical with the microrelief pattern on the metal disk 31 A.
- the metal disk 31 C per se may be used as a master medium.
- a master medium may be formed by coating the metal disk 31 C with a soft magnetic layer 32 .
- a nonmagnetic layer 33 and/or a protection layer 34 may be provided as necessary.
- FIGS. 6A to 6 F are cross-sectional views of representative stages in the fourth process.
- a photoresist solution is applied to a smooth surface of a disk 10 (made of glass or quartz) by spin coating or the like so as to form a photoresist film 11 .
- the photoresist film 11 is irradiated with laser light (or an electron beam) L modulated with servo signals so that portions of the entire surface of the photoresist film 11 , corresponding to predetermined preformat patterns which represent the servo signals, are exposed to the modulated laser light or an electron beam.
- each preformat pattern is comprised of lines being located at a position corresponding to each frame, radially extending across each track, and representing a servo signal.
- the above portions of the photoresist which are exposed to the laser light L are removed by development, as illustrated in FIG. 6B.
- portions of the disk 10 which are exposed by the removal of the exposed portions of the photoresist are etched so as to form depressions 10 a corresponding to the preformat patterns, as illustrated in FIG. 6C.
- the remaining portions of the photoresist are removed.
- the original disk (first original disk) 20 having a microrecess pattern formed with the depressions 10 a is obtained as illustrated in FIG. 6D.
- a thin silver plating layer 13 is formed on the microrecess pattern formed on the original disk 20 , electroforming processing is performed on the plated original disk 20 so as to mold a metal disk 31 D having a microrelief (positive) pattern on the plated original disk 20 .
- the metal disk 31 D is removed from the original disk 20 as illustrated in FIG. 6F.
- the microrelief (positive) pattern on the metal disk 31 D is similar to the microrelief pattern on the metal disk 31 A.
- the microrelief pattern can be formed at arbitrary position on the metal disk 31 D with an accuracy of one micrometer or less.
- the metal disk 31 D per se may be used as a master medium.
- a master medium may be formed by coating the metal disk 31 D with a soft magnetic layer 32 .
- a nonmagnetic layer 33 and/or a protection layer 34 may be provided as necessary.
- FIGS. 7A to 7 F are cross-sectional views of representative stages in the fifth process.
- the first original disk 20 having a microrecess (negative) pattern is produced by forming a photoresist film 11 on a disk 10 , exposing the disk 10 with modulated laser light L, developing the exposed photoresist film 11 , and etching the disk 10 in a similar manner to the stages of FIGS. 6A to 6 D in the fourth process.
- a second original disk 21 having a microrelief (positive) pattern and a predetermined thickness is molded on the first original disk 20 by plating the first original disk 20 , or curing a resin solution which is pressed on the first original disk 20 , as illustrated in FIG. 7E.
- the second original disk 21 is removed from the first original disk 20 as illustrated in FIG. 7F. Thereafter, plating and electroforming operations are performed on the second original disk 21 in order to mold a metal disk 31 E having a microrecess (negative) pattern and a predetermined thickness on the second original disk 21 , as illustrated in FIG. 7G. Then, the metal disk 31 E is removed from the second original disk 21 as illustrated in FIG. 7H.
- the microrecess (negative) pattern on the metal disk 31 E is identical with the microrecess (negative) pattern on the metal disk 31 B.
- the metal disk 31 E per se may be used as a master medium.
- a master medium may be formed by coating the metal disk 31 E with a soft magnetic layer 32 .
- a nonmagnetic layer 33 and/or a protection layer 34 may be provided as necessary.
- the same magnetization pattern as that of FIG. 1C can be recorded on the magnetic recording medium by inverting the directions of the initial static magnetic field Hin (illustrated in FIG. 1A) and the transfer magnetic field Hdu (illustrated in FIG. 1B).
- FIGS. 8A to 8 J are cross-sectional views of representative stages in the sixth process.
- the first original disk 20 having a microrecess (negative) pattern and the second original disk 21 having a microrelief (positive) pattern are produced in a similar manner to the stages of FIGS. 7A to 7 F in the fifth process.
- a third original disk 22 having a microrecess (negative) pattern and a predetermined thickness is molded by plating the second original disk 21 , or curing a resin solution which is pressed on the second original disk 21 , as illustrated in FIG. 8G.
- the third original disk 22 is removed from the second original disk 21 as illustrated in FIG. 8H.
- plating and electroforming operations are performed on the third original disk 22 , and a metal disk 31 F having a microrelief (positive) pattern and a predetermined thickness, as illustrated in FIG. 8I. Then, the metal disk 31 F is removed from the third original disk 22 as illustrated in FIG. 8J.
- the microrelief pattern on the metal disk 31 F is a microrelief (positive) pattern which is identical with the microrelief pattern on the metal disk 31 D.
- the metal disk 31 F per se may be used as a master medium.
- a master medium may be formed by coating the metal disk 31 F with a soft magnetic layer 32 .
- a nonmagnetic layer 33 and/or a protection layer 34 may be provided as necessary.
- Each of the metal disks 31 A to 31 F may be made of Ni or a Ni alloy.
- Various film formation methods including electroless plating, electroforming, sputtering, and ion plating can be used for forming the metal disks 31 A to 31 F.
- the height of the relieves (or depths of the recesses) of the microrelief or microrecess patterns on the metal disks 31 A to 31 F are preferably 80 to 800 nm, and more preferably 150 to 600 nm.
- the microrelief or microrecess patterns represent servo signals, the microrelief or microrecess patterns are elongated in the radial directions.
- the sizes of the microrelief or microrecess patterns representing servo signals are in the range of 0.3 to 20 micrometers in the radial direction, and in the range of 0.2 to 5 micrometers in the circumferential direction. That is, it is preferable that each pattern representing a servo signal is designed to have a shape elongated in the radial direction within the above ranges.
- the soft magnetic layer 32 is formed with a magnetic material by plating, vacuum film formation, or the like.
- the vacuum film formation includes vacuum evaporation, sputtering, and ion plating.
- the magnetic material used in the soft magnetic layer 32 may be Co, a Co alloy (such as CoNi, CoNiZr, and CoNbTaZr), Fe, a Fe alloy (such as FeCo, FeCoNi, FeNiMo, FeAlSi, FeAl, and FeTaN), Ni, and a Ni alloy (such as NiFe).
- FeCo and FeCoNi are preferable.
- the thickness of the soft magnetic layer 32 is preferably 50 to 500 nm, and more preferably 150 to 400 nm.
- the aforementioned nonmagnetic layer 33 which is provided as a base layer of the soft magnetic layer 32 , may be made of Cr, CrTi, CoCr, CrTa, CrMo, NiAl, Ru, C, Ti, Al, Mo, W, Ta, Nb, or the like.
- the nonmagnetic base layer 33 can reduce deterioration in quality of signals due to the ferromagnetic metal disk 31 .
- a protection film made of diamond-like carbon (DLC) or the like on the soft magnetic layer 32 it is preferable to provide a protection film made of diamond-like carbon (DLC) or the like on the soft magnetic layer 32 .
- DLC diamond-like carbon
- a lubricant layer More preferably, both of the lubricant layer and the DLC protection layer which has a thickness of 5 to 30 nm are provided.
- an adhesion reinforcement layer made of Si or the like may be provided between the soft magnetic layer 32 and the protection layer 34 .
- the slave medium 2 may be an application-type magnetic recording medium or a thin-metal-film-type magnetic recording medium.
- the application-type magnetic recording medium such as a high-density flexible disk is available on the market.
- the magnetic material used in the thin-metal-film-type magnetic recording medium is Co, a Co alloy (such as CoPtCr, CoCr, CoPtCrTa, CoPtCrNbTa, CoCrB, and CoNi), Fe, or a Fe alloy (such as FeCo, FePt, and FeCoNi).
- Table 1 indicates evaluations of magnetic transfer characteristics in five concrete examples of the master mediums as the above embodiments and another example (comparison example) of a master medium produced for comparison.
- transferred signals The applicant has evaluated the quality of signals transferred to and recorded in slave mediums (hereinbelow called transferred signals), as follows.
- a magnetic developer solution “Sigmarker Q” manufactured by Sigma Hi-Chemical Inc., Japan
- the magnetic developer solution on each slave medium is dried, and the quality of the transferred signal is evaluated based on variations of the edges of the transferred signal.
- Ten fields of view are observed under a microscope at magnification of 1,000 ⁇ . The evaluation is made on a scale of 0 to 5, where the score of 5 is given to the clearest transferred signal, the score of 1 is given to the most unclear transferred signal, and the score of 0 is given to a transferred signal which is impossible to evaluate.
- the observation and evaluation of each master medium is performed after each of the first and thousandth magnetic transfer operations using the same master medium.
- the master medium as the concrete example 1 is produced in accordance with the first process of producing a master medium as illustrated in FIGS. 3A to 3 D.
- the disk 10 is a synthetic quartz disk having a surface roughness Ra of 0.8 nm, and the thickness of the photoresist film which is formed on the disk 10 and prebaked is 200 nm. Portions of the photoresist film corresponding to patterns are exposed by using a laser cutting machine, and the exposed photoresist film is developed with an alkali developer solution.
- Each pattern formed on the photoresist film includes lines radially extending in the radius range of 20 to 40 mm, and the lines are equally spaced, and each have a width of 0.5 micrometers.
- the spaces between adjacent ones of the lines are 0.5 micrometers at the radius of 20 mm.
- An original disk is produced by washing and baking the surface of the photoresist film. Next, a thin silver plating layer and a Ni plating layer having a thickness of 300 micrometers are formed on the original disk, and then a metal disk formed with the plating layers is removed from the original disk.
- the master medium as the concrete example 1 is obtained.
- the magnetic transfer is made by using the above master medium, and the aforementioned evaluation is made. As a result, the quality of the transferred patterns obtained by each of the first and thousandth magnetic transfer operations is found to be allowable.
- the master medium as the concrete example 2 is produced in accordance with the fourth process of producing a master medium as illustrated in FIGS. 6A to 6 F.
- a photoresist film is formed on a disk, and patterns are formed by exposure with laser light and development, in a similar manner to the concrete example 1.
- reactive ion etching is performed on the disk to a depth of 200 nm, and the residual photoresist is removed.
- an original disk is obtained.
- a Ni plating layer is formed on the original disk, and then a metal disk formed with the plating layer is removed from the original disk.
- the master medium as the concrete example 2 is obtained.
- the magnetic transfer is made by using the above master medium, and the aforementioned evaluation is made. As a result, the quality of the transferred patterns obtained by each of the first and thousandth magnetic transfer operations is found to be equal to the quality of the concrete example 1, i.e., allowable.
- the master medium as the concrete example 3 is produced by forming a soft magnetic layer on the metal disk produced in the concrete example 2, where the soft magnetic layer contains 50 atomic percent FeNi, and has a thickness of 200 nm.
- the soft magnetic layer is formed by a direct-current (DC) sputtering method using the sputtering apparatus 730H” (manufactured by ANELVA Corporation, Japan). In the sputtering process, the formation temperature is 25° C., the Ar sputtering pressure is 4 ⁇ 10 ⁇ 4 Pa, and the input power is 3 W/cm 2 .
- the magnetic transfer is made by using the above master medium, and the aforementioned evaluation is made. Due to the provision of the soft magnetic layer, the quality of the transferred patterns in the concrete example 3 is better than the quality of the transferred patterns in the concrete example 1 or 2.
- the master medium as the concrete example 4 is identical with the master medium as the concrete example 3 except that a nonmagnetic layer being made of Cr and having a thickness of 300 nm is formed under the soft magnetic layer.
- the magnetic transfer is made by using the above master medium, and the aforementioned evaluation is made. Due to the provision of the nonmagnetic layer under the soft magnetic layer, the quality of the transferred patterns in the concrete example 4 is further improved, and better than the quality of the transferred patterns in the concrete example 1, 2, or 3.
- the master medium as the concrete example 5 is produced by forming a Si layer on the master medium produced in the concrete example 2 by sputtering, and further forming a DLC protection layer on the Si layer by chemical vapor deposition (CVD).
- the Si layer has a thickness of 1 nm
- the DLC protection layer has a thickness of 5 nm.
- the magnetic transfer is made by using the above master medium, and the aforementioned evaluation is made. Since the abrasion resistance of the master medium is increased due to the provision of the DLC protection layer, the initial quality of the transferred patterns in the concrete example 5 is maintained even after the thousandth magnetic transfer operation.
- the master medium as the comparison example 1 is produced as follows.
- a soft magnetic layer is formed on a silicon wafer, where the soft magnetic layer in the comparison example 1 is the same as the soft magnetic layer in the concrete example 2. Then, a photoresist is applied to the soft magnetic layer, and the photoresist is exposed by using masks corresponding to the same patterns as the concrete example 1. After development, portions of the soft magnetic layer are removed by etching so as to form the above patterns.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Nanotechnology (AREA)
- Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Theoretical Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacturing Of Magnetic Record Carriers (AREA)
- Magnetic Record Carriers (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/425,598 US6759183B2 (en) | 2000-03-10 | 2003-04-30 | Master medium for magnetic transfer including metal disk with relief or recess pattern |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000066122A JP3999436B2 (ja) | 2000-03-10 | 2000-03-10 | 磁気転写用マスター担体 |
JP066122/2000 | 2000-03-10 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/425,598 Division US6759183B2 (en) | 2000-03-10 | 2003-04-30 | Master medium for magnetic transfer including metal disk with relief or recess pattern |
Publications (1)
Publication Number | Publication Date |
---|---|
US20010028964A1 true US20010028964A1 (en) | 2001-10-11 |
Family
ID=18585536
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/802,933 Abandoned US20010028964A1 (en) | 2000-03-10 | 2001-03-12 | Master medium for magnetic transfer including metal disk with relief or recess pattern |
US10/425,598 Expired - Fee Related US6759183B2 (en) | 2000-03-10 | 2003-04-30 | Master medium for magnetic transfer including metal disk with relief or recess pattern |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/425,598 Expired - Fee Related US6759183B2 (en) | 2000-03-10 | 2003-04-30 | Master medium for magnetic transfer including metal disk with relief or recess pattern |
Country Status (7)
Country | Link |
---|---|
US (2) | US20010028964A1 (zh) |
EP (1) | EP1132898A3 (zh) |
JP (1) | JP3999436B2 (zh) |
KR (1) | KR20010088331A (zh) |
CN (1) | CN1208760C (zh) |
MY (1) | MY124923A (zh) |
SG (1) | SG106603A1 (zh) |
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030099867A1 (en) * | 2001-11-28 | 2003-05-29 | Fuji Photo Film Co., Ltd. | Master information carrier for magnetic transfer and magnetic transfer method |
US20030161222A1 (en) * | 2002-02-26 | 2003-08-28 | Fuji Photo Film Co., Ltd. | Method of producing master information carrier for magnetic transfer |
US20040040668A1 (en) * | 2002-08-27 | 2004-03-04 | Fuji Photo Film Co., Ltd. | Holder for magnetic transfer device |
US20040057158A1 (en) * | 2002-09-19 | 2004-03-25 | Fuji Photo Film Co., Ltd. | Method of depicting a pattern with electron beam and method of producing disc-like substrate carrying thereon a pattern depicted with electron beam |
US20040081856A1 (en) * | 2002-09-13 | 2004-04-29 | Fuji Photo Film Co., Ltd. | Master information carrier for magnetic transfer |
US20040091817A1 (en) * | 2002-11-06 | 2004-05-13 | Fuji Photo Film Co., Ltd. | Electron beam lithography method |
US20040156135A1 (en) * | 2003-02-04 | 2004-08-12 | Fuji Photo Film Co., Ltd. | Master information carrier for magnetic transfer |
US20040160691A1 (en) * | 2003-02-18 | 2004-08-19 | Fuji Photo Film Co., Ltd. | Master information carrier for magnetic transfer |
US20040180174A1 (en) * | 2003-03-04 | 2004-09-16 | Fuji Photo Film Co., Ltd. | Master information carrier for magnetic transfer and its production method |
US20040233559A1 (en) * | 2003-05-20 | 2004-11-25 | Fuji Photo Film Co., Ltd. | Master carrier for magnetic transfer and magnetic transfer method |
EP1511013A1 (en) * | 2003-08-19 | 2005-03-02 | Fuji Photo Film Co., Ltd. | Process for producing master carrier for magnetic transfer |
US20050047286A1 (en) * | 2003-08-29 | 2005-03-03 | Hanks Darwin Mitchel | Focus error signal generation |
US20050200990A1 (en) * | 2004-03-10 | 2005-09-15 | Fuji Photo Film Co., Ltd. | Master substrate, apparatus and method for magnetic transfer |
US6967815B2 (en) | 2002-10-15 | 2005-11-22 | Fuji Photo Film Co., Ltd. | Method of depicting a pattern with electron beam and disc-like substrate and magnetic recording medium |
US20060177699A1 (en) * | 2005-02-08 | 2006-08-10 | Fuji Photo Film Co., Ltd. | Magnetic transfer master disk, its manufacturing method and magnetic transfer method |
US20060177569A1 (en) * | 2005-02-04 | 2006-08-10 | Fuji Photo Film Co., Ltd. | Method of manufacturing master disk for magnetic transfer |
US20060176801A1 (en) * | 2005-02-04 | 2006-08-10 | Fuji Photo Film Co., Ltd. | Method of manufacturing reverse disk |
US20060210840A1 (en) * | 2005-03-17 | 2006-09-21 | Fuji Photo Film Co., Ltd. | Master disk for magnetic transfer |
US20060216550A1 (en) * | 2005-03-23 | 2006-09-28 | Fuji Photo Film Co., Ltd. | Method of manufacturing master disk for magnetic transfer, master disk for magnetic transfer, and magnetic recording medium |
US20060219560A1 (en) * | 2005-03-29 | 2006-10-05 | Fuji Photo Film Co., Ltd. | Method of manufacturing master disks for magnetic transferring, system of controlling content concentrations in electroforming bath, and magnetic recording medium |
US20060219561A1 (en) * | 2005-03-29 | 2006-10-05 | Fuji Photo Film Co., Ltd. | Method for manufacturing a master disk for magnetic transfer |
US20070146918A1 (en) * | 2005-12-28 | 2007-06-28 | Fujitsu Limited | Master medium and magnetic recording medium |
US20080223723A1 (en) * | 2007-03-13 | 2008-09-18 | Fujifilm Corporation | Method for manufacturing master information carrier for magnetic transfer |
US20090141382A1 (en) * | 2007-11-29 | 2009-06-04 | Fujifilm Corporation | Magnetic transfer master disk and method for manufacturing the same |
US20100075179A1 (en) * | 2008-09-19 | 2010-03-25 | Fujifilm Corporation | Master disk for transfer and manufacturing method of the same |
US20110181975A1 (en) * | 2010-01-22 | 2011-07-28 | Fuji Electric Device Technology Co., Ltd. | Method of manufacturing a master disk for magnetic transfer |
US20110226625A1 (en) * | 2010-03-18 | 2011-09-22 | Fujifilm Corporation | Master mold manufacturing method and mold structure manufacturing method |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1235198C (zh) * | 2001-05-18 | 2006-01-04 | 富士胶片株式会社 | 磁复制用主载体 |
US6911270B2 (en) * | 2001-12-14 | 2005-06-28 | Fuji Photo Film Co., Ltd. | Master information carrier for magnetic transfer |
JP3727603B2 (ja) | 2002-03-15 | 2005-12-14 | 富士写真フイルム株式会社 | 磁気転写装置のホルダー |
US7105280B1 (en) * | 2002-06-28 | 2006-09-12 | Seagate Technology Llc | Utilizing permanent master for making stampers/imprinters for patterning of recording media |
US6755984B2 (en) * | 2002-10-24 | 2004-06-29 | Hewlett-Packard Development Company, L.P. | Micro-casted silicon carbide nano-imprinting stamp |
JP4190371B2 (ja) * | 2003-08-26 | 2008-12-03 | Tdk株式会社 | 凹凸パターン形成用スタンパー、凹凸パターン形成方法および磁気記録媒体 |
EP1612838A3 (en) | 2004-06-30 | 2006-08-16 | Fuji Photo Film Co., Ltd | Electron beam lithography method |
JP2006017782A (ja) | 2004-06-30 | 2006-01-19 | Fuji Photo Film Co Ltd | 電子ビーム描画方法 |
JP4218896B2 (ja) * | 2005-03-02 | 2009-02-04 | Tdk株式会社 | 磁気記録媒体、記録再生装置およびスタンパー |
KR100624462B1 (ko) * | 2005-03-04 | 2006-09-19 | 삼성전자주식회사 | 패턴화된 기록매체의 제조 방법 |
JP4850671B2 (ja) | 2006-12-01 | 2012-01-11 | 富士フイルム株式会社 | モールド及びその製造方法、並びに磁気記録媒体 |
US20080206602A1 (en) * | 2007-02-28 | 2008-08-28 | Katine Jordan A | Nanoimprinting of topography for patterned magnetic media |
JP2009245555A (ja) | 2008-03-31 | 2009-10-22 | Fujifilm Corp | 磁気転写用マスター担体の製造方法、磁気転写用マスター担体、磁気転写方法、及び磁気記録媒体 |
KR101457528B1 (ko) * | 2008-05-15 | 2014-11-04 | 삼성디스플레이 주식회사 | 임프린트 기판의 제조방법 및 임프린팅 방법 |
JP2011090738A (ja) | 2009-10-22 | 2011-05-06 | Fuji Electric Device Technology Co Ltd | 磁気転写用パターンの描画方法 |
JP2015072953A (ja) * | 2013-10-01 | 2015-04-16 | キヤノン株式会社 | 減磁装置、描画装置、および物品の製造方法 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3844907A (en) * | 1970-03-27 | 1974-10-29 | Fuji Photo Film Co Ltd | Method of reproducing magnetization pattern |
JPS4944405B1 (zh) * | 1970-03-27 | 1974-11-28 | ||
JPS63183623A (ja) | 1987-01-23 | 1988-07-29 | Sony Corp | 可撓性デイスクへの接触磁界転写方法 |
US5067039A (en) * | 1989-10-20 | 1991-11-19 | Insite Peripherals, Inc. | High track density magnetic media with pitted optical servo tracks and method for stamping the tracks on the media |
JP2751532B2 (ja) * | 1990-02-26 | 1998-05-18 | ソニー株式会社 | 磁気転写方法 |
EP0488239B1 (en) * | 1990-11-28 | 1997-07-30 | Sharp Kabushiki Kaisha | Method for manufacturing a stamper |
US5796533A (en) | 1994-03-15 | 1998-08-18 | Kao Corporation | System for magnetic contact duplication |
US5858477A (en) * | 1996-12-10 | 1999-01-12 | Akashic Memories Corporation | Method for producing recording media having protective overcoats of highly tetrahedral amorphous carbon |
JP3343326B2 (ja) | 1997-03-27 | 2002-11-11 | 松下電器産業株式会社 | マスター情報担体 |
JP3323743B2 (ja) | 1996-07-22 | 2002-09-09 | 松下電器産業株式会社 | マスター情報担体および磁気記録媒体の製造方法 |
TW342495B (en) | 1996-07-22 | 1998-10-11 | Matsushita Electric Ind Co Ltd | Master information carrier, method of producing the same, and method for recording master information signal on magnetic recording medium |
JP4025398B2 (ja) | 1997-10-17 | 2007-12-19 | 株式会社日立製作所 | 車載用制御装置およびそれに用いられる障害診断方法 |
JPH11161944A (ja) * | 1997-11-27 | 1999-06-18 | Sony Corp | 磁気ディスク及び磁気ディスク装置 |
US6190838B1 (en) * | 1998-04-06 | 2001-02-20 | Imation Corp. | Process for making multiple data storage disk stampers from one master |
JP2001307324A (ja) * | 2000-02-15 | 2001-11-02 | Fuji Photo Film Co Ltd | 磁気転写用マスター担体および磁気記録媒体 |
-
2000
- 2000-03-10 MY MYPI20011097A patent/MY124923A/en unknown
- 2000-03-10 JP JP2000066122A patent/JP3999436B2/ja not_active Expired - Fee Related
-
2001
- 2001-02-08 CN CNB011037121A patent/CN1208760C/zh not_active Expired - Fee Related
- 2001-02-13 KR KR1020010007052A patent/KR20010088331A/ko not_active Application Discontinuation
- 2001-03-09 EP EP01105377A patent/EP1132898A3/en not_active Withdrawn
- 2001-03-09 SG SG200101486A patent/SG106603A1/en unknown
- 2001-03-12 US US09/802,933 patent/US20010028964A1/en not_active Abandoned
-
2003
- 2003-04-30 US US10/425,598 patent/US6759183B2/en not_active Expired - Fee Related
Cited By (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7094481B2 (en) | 2001-11-28 | 2006-08-22 | Fuji Photo Film Co., Ltd. | Master information carrier for magnetic transfer and magnetic transfer method |
US6816327B2 (en) * | 2001-11-28 | 2004-11-09 | Fuji Photo Film Co., Ltd. | Master information carrier for magnetic transfer and magnetic transfer method |
US20030099867A1 (en) * | 2001-11-28 | 2003-05-29 | Fuji Photo Film Co., Ltd. | Master information carrier for magnetic transfer and magnetic transfer method |
US20050041314A1 (en) * | 2001-11-28 | 2005-02-24 | Fuji Photo Film Co., Ltd. | Master information carrier for magnetic transfer and magnetic transfer method |
US20030161222A1 (en) * | 2002-02-26 | 2003-08-28 | Fuji Photo Film Co., Ltd. | Method of producing master information carrier for magnetic transfer |
US20040040668A1 (en) * | 2002-08-27 | 2004-03-04 | Fuji Photo Film Co., Ltd. | Holder for magnetic transfer device |
US20040081856A1 (en) * | 2002-09-13 | 2004-04-29 | Fuji Photo Film Co., Ltd. | Master information carrier for magnetic transfer |
US6887593B2 (en) | 2002-09-13 | 2005-05-03 | Fuji Photo Film Co., Ltd. | Master information carrier for magnetic transfer |
US20040057158A1 (en) * | 2002-09-19 | 2004-03-25 | Fuji Photo Film Co., Ltd. | Method of depicting a pattern with electron beam and method of producing disc-like substrate carrying thereon a pattern depicted with electron beam |
US6967815B2 (en) | 2002-10-15 | 2005-11-22 | Fuji Photo Film Co., Ltd. | Method of depicting a pattern with electron beam and disc-like substrate and magnetic recording medium |
US7026098B2 (en) | 2002-11-06 | 2006-04-11 | Fuji Photo Film Co., Ltd. | Electron beam lithography method |
US20040091817A1 (en) * | 2002-11-06 | 2004-05-13 | Fuji Photo Film Co., Ltd. | Electron beam lithography method |
US7477463B2 (en) * | 2003-02-04 | 2009-01-13 | Fujifilm Corporation | Master information carrier for magnetic transfer |
US20040156135A1 (en) * | 2003-02-04 | 2004-08-12 | Fuji Photo Film Co., Ltd. | Master information carrier for magnetic transfer |
US20040160691A1 (en) * | 2003-02-18 | 2004-08-19 | Fuji Photo Film Co., Ltd. | Master information carrier for magnetic transfer |
US7465383B2 (en) | 2003-03-04 | 2008-12-16 | Fujifilm Corporation | Master information carrier for magnetic transfer and its production method |
US20040180174A1 (en) * | 2003-03-04 | 2004-09-16 | Fuji Photo Film Co., Ltd. | Master information carrier for magnetic transfer and its production method |
US20050181133A1 (en) * | 2003-03-04 | 2005-08-18 | Fuji Photo Film Co., Ltd. | Master information carrier for magnetic transfer and its production method |
US20040233559A1 (en) * | 2003-05-20 | 2004-11-25 | Fuji Photo Film Co., Ltd. | Master carrier for magnetic transfer and magnetic transfer method |
EP1511013A1 (en) * | 2003-08-19 | 2005-03-02 | Fuji Photo Film Co., Ltd. | Process for producing master carrier for magnetic transfer |
US20050047286A1 (en) * | 2003-08-29 | 2005-03-03 | Hanks Darwin Mitchel | Focus error signal generation |
US20050200990A1 (en) * | 2004-03-10 | 2005-09-15 | Fuji Photo Film Co., Ltd. | Master substrate, apparatus and method for magnetic transfer |
US20060177569A1 (en) * | 2005-02-04 | 2006-08-10 | Fuji Photo Film Co., Ltd. | Method of manufacturing master disk for magnetic transfer |
US20060176801A1 (en) * | 2005-02-04 | 2006-08-10 | Fuji Photo Film Co., Ltd. | Method of manufacturing reverse disk |
US20060177699A1 (en) * | 2005-02-08 | 2006-08-10 | Fuji Photo Film Co., Ltd. | Magnetic transfer master disk, its manufacturing method and magnetic transfer method |
US7674535B2 (en) | 2005-02-08 | 2010-03-09 | Fujifilm Corporation | Magnetic transfer master disk, its manufacturing method and magnetic transfer method |
US20060210840A1 (en) * | 2005-03-17 | 2006-09-21 | Fuji Photo Film Co., Ltd. | Master disk for magnetic transfer |
US7577079B2 (en) | 2005-03-17 | 2009-08-18 | Fujifilm Corporation | Master disk for magnetic transfer |
US20060216550A1 (en) * | 2005-03-23 | 2006-09-28 | Fuji Photo Film Co., Ltd. | Method of manufacturing master disk for magnetic transfer, master disk for magnetic transfer, and magnetic recording medium |
US20060219561A1 (en) * | 2005-03-29 | 2006-10-05 | Fuji Photo Film Co., Ltd. | Method for manufacturing a master disk for magnetic transfer |
US7648620B2 (en) | 2005-03-29 | 2010-01-19 | Fujifilm Corporation | Method for manufacturing a master disk for magnetic transfer |
US20060219560A1 (en) * | 2005-03-29 | 2006-10-05 | Fuji Photo Film Co., Ltd. | Method of manufacturing master disks for magnetic transferring, system of controlling content concentrations in electroforming bath, and magnetic recording medium |
US20070146918A1 (en) * | 2005-12-28 | 2007-06-28 | Fujitsu Limited | Master medium and magnetic recording medium |
US7489462B2 (en) | 2005-12-28 | 2009-02-10 | Fujitsu Limited | Master medium and magnetic recording medium |
US20080223723A1 (en) * | 2007-03-13 | 2008-09-18 | Fujifilm Corporation | Method for manufacturing master information carrier for magnetic transfer |
US20090141382A1 (en) * | 2007-11-29 | 2009-06-04 | Fujifilm Corporation | Magnetic transfer master disk and method for manufacturing the same |
US7972490B2 (en) | 2007-11-29 | 2011-07-05 | Fujifilm Corporation | Magnetic transfer master disk and method for manufacturing the same |
US20100075179A1 (en) * | 2008-09-19 | 2010-03-25 | Fujifilm Corporation | Master disk for transfer and manufacturing method of the same |
US20110181975A1 (en) * | 2010-01-22 | 2011-07-28 | Fuji Electric Device Technology Co., Ltd. | Method of manufacturing a master disk for magnetic transfer |
US20110226625A1 (en) * | 2010-03-18 | 2011-09-22 | Fujifilm Corporation | Master mold manufacturing method and mold structure manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
KR20010088331A (ko) | 2001-09-26 |
CN1313587A (zh) | 2001-09-19 |
US6759183B2 (en) | 2004-07-06 |
MY124923A (en) | 2006-07-31 |
JP3999436B2 (ja) | 2007-10-31 |
CN1208760C (zh) | 2005-06-29 |
JP2001256644A (ja) | 2001-09-21 |
SG106603A1 (en) | 2004-10-29 |
EP1132898A3 (en) | 2005-12-07 |
EP1132898A2 (en) | 2001-09-12 |
US20030198833A1 (en) | 2003-10-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6759183B2 (en) | Master medium for magnetic transfer including metal disk with relief or recess pattern | |
US20030063403A1 (en) | Master carrier for magnetic transfer | |
US20060269791A1 (en) | Magnetic recording medium, magnetic recording and reproducing apparatus, stamper, method of manufacturing stamper, and method of manufacturing magnetic recording medium | |
JP3963637B2 (ja) | 磁気転写方法 | |
US7094481B2 (en) | Master information carrier for magnetic transfer and magnetic transfer method | |
US6804069B2 (en) | Magnetic transfer method to prevent dropout of servo signal | |
US20050242453A1 (en) | Master carrier for magnetic transfer | |
US20010019784A1 (en) | Master medium for magnetic transfer including resin substrate integrally molded with microrelief or microrecess pattern | |
US20040033389A1 (en) | Master information carrier for magnetic transfer | |
US20070217047A1 (en) | Master medium for perpendicular magnetic transfer, method of perpendicular magnetic transfer, perpendicular magnetic recording medium and perpendicular magnetic recording apparatus | |
US7641822B2 (en) | Master information carrier for magnetic transfer and a method for producing the carrier | |
JP3986951B2 (ja) | 磁気転写用マスター担体および磁気転写方法 | |
EP1445765B1 (en) | Master information carrier for magnetic transfer | |
JP2004348795A (ja) | 磁気転写方法および磁気転写装置 | |
US20090244776A1 (en) | Magnetic transfer master carrier and magnetic recording medium | |
JP4847489B2 (ja) | 磁気転写用マスター担体及びその製造方法 | |
JP2008016114A (ja) | 磁気転写用マスター媒体、磁気記録媒体、及び、磁気記録装置 | |
KR20010082119A (ko) | 자기전사용 마스터담체 및 자기기록매체 | |
JP2002117533A (ja) | 磁気転写用マスター担体 | |
JP2002008229A (ja) | 磁気転写方法 | |
JP2009245533A (ja) | 磁気転写用マスター担体及び磁気記録媒体 | |
JP2006252609A (ja) | マスターディスクの吸着保持方法及び磁気転写装置 | |
JP2003272133A (ja) | 磁気転写用マスター担体 | |
JP2002216344A (ja) | 磁気転写用マスター担体およびその使用方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: FUJI PHOTO FILM CO., LTD., JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:NAGAO, MAKOTO;WATANABE, SEIICHI;NISHIKAWA, MASAKAZU;REEL/FRAME:011610/0682 Effective date: 20010223 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |