US11609494B2 - Semiconductor photoresist composition and method of forming patterns using the composition - Google Patents

Semiconductor photoresist composition and method of forming patterns using the composition Download PDF

Info

Publication number
US11609494B2
US11609494B2 US16/859,682 US202016859682A US11609494B2 US 11609494 B2 US11609494 B2 US 11609494B2 US 202016859682 A US202016859682 A US 202016859682A US 11609494 B2 US11609494 B2 US 11609494B2
Authority
US
United States
Prior art keywords
group
unsubstituted
substituted
chemical formula
compound represented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US16/859,682
Other languages
English (en)
Other versions
US20200348591A1 (en
Inventor
Jaehyun Kim
Kyung Soo MOON
Seungyong CHAE
Ran Namgung
Seung HAN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung SDI Co Ltd
Original Assignee
Samsung SDI Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190160169A external-priority patent/KR102606844B1/ko
Application filed by Samsung SDI Co Ltd filed Critical Samsung SDI Co Ltd
Assigned to SAMSUNG SDI CO., LTD. reassignment SAMSUNG SDI CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHAE, SEUNGYONG, HAN, SEUNG, KIM, JAEHYUN, MOON, KYUNG SOO, NAMGUNG, RAN
Publication of US20200348591A1 publication Critical patent/US20200348591A1/en
Application granted granted Critical
Publication of US11609494B2 publication Critical patent/US11609494B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0042Photosensitive materials with inorganic or organometallic light-sensitive compounds not otherwise provided for, e.g. inorganic resists
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/22Tin compounds
    • C07F7/2224Compounds having one or more tin-oxygen linkages
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • G03F7/2004Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image characterised by the use of a particular light source, e.g. fluorescent lamps or deep UV light
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70008Production of exposure light, i.e. light sources
    • G03F7/70033Production of exposure light, i.e. light sources by plasma extreme ultraviolet [EUV] sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/308Chemical or electrical treatment, e.g. electrolytic etching using masks
    • H01L21/3081Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their composition, e.g. multilayer masks, materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor

Definitions

  • One or more aspects of embodiments of the present disclosure relate to a semiconductor photoresist composition and a method of forming patterns using the same.
  • EUV (extreme ultraviolet) lithography is an important technology for manufacturing next generation semiconductor devices.
  • EUV lithography is a pattern-forming technology using an EUV ray having a wavelength of about 13.5 nm as an exposure light source.
  • an extremely fine pattern e.g., having a spatial resolution of less than or equal to about 20 nm may be formed in an exposure process during a manufacture of a semiconductor device.
  • EUV Extreme ultraviolet
  • lithography may be facilitated by development of compatible photoresists that can be performed at a spatial resolution of less than or equal to about 16 nm.
  • Current efforts are focused on improving the specifications (such as resolution, photospeed, and feature roughness (also referred to as line edge roughness (LER)) of chemically amplified (CA) photoresists for next generation devices.
  • LER line edge roughness
  • CA photoresists are designed for high sensitivity, but because their typical elemental makeups reduce light absorbance of the photoresists at a wavelength of about 13.5 nm and thus decrease their sensitivity, chemically amplified (CA) photoresists may have more difficulties (e.g., exposure defects) under an EUV exposure.
  • CA photoresists may have difficulties in the small feature sizes (e.g., may produce defects in high resolution features) due to roughness issues, because the line edge roughness (LER) of the CA photoresists has been experimentally shown to increase as the photospeed is decreased, partially due to acid-catalyzed processes. Accordingly, a novel high performance photoresist is desired by the semiconductor industry because of these defects and problems of CA photoresists.
  • LER line edge roughness
  • Inorganic photoresists based on peroxopolyacids of tungsten mixed with tungsten, niobium, titanium, and/or tantalum have been reported as radiation sensitive materials for patterning. These materials are effective with far ultraviolet (UV) (deep UV), X-ray, and electron beam sources for patterning large pitches for a bilayer configuration. More recently, cationic hafnium metal oxide sulfate (HfSOx) materials along with a peroxo complexing agent have been used to image a 15 nm half-pitch (HP) through projection EUV exposure, obtaining impressive performance.
  • UV far ultraviolet
  • X-ray X-ray
  • HfSOx cationic hafnium metal oxide sulfate
  • This system exhibits the highest performance of a non-CA photoresist and has a practicable photospeed near to that required for (e.g., suitable for) an EUV photoresist.
  • the hafnium metal oxide sulfate materials with peroxo complexing agent have a few practical drawbacks.
  • these materials are coated in a mixture of corrosive sulfuric acid/hydrogen peroxide and have insufficient shelf-life stability.
  • Second, a structural change thereof for performance improvement as a composite mixture is not easy.
  • development should be performed in a TMAH (tetramethylammonium hydroxide) solution at an extremely high concentration of about 25 wt % and/or the like.
  • an inorganic photosensitive composition In order to overcome the aforementioned drawbacks of the chemically amplified (CA) photosensitive composition, an inorganic photosensitive composition has been developed.
  • the inorganic photosensitive composition is mainly used for negative tone patterning and is resistant to removal by a developer using chemical modification because it has a nonchemical amplification mechanism.
  • the inorganic composition contains an inorganic element having a higher EUV absorption rate than hydrocarbons and may thus secure sensitivity through the nonchemical amplification mechanism, and in addition, may be less sensitive to stochastic effects and may thus have low line edge roughness and a smaller number of defects.
  • an alkyl ligand may be dissociated by light absorption or secondary electrons produced from light absorption, and may subsequently cross-link with adjacent chains through an oxo bond and thus enable negative tone patterning, which may not be removed by an organic developing solution.
  • This organic tin polymer exhibits greatly improved sensitivity and maintains a high resolution and line edge roughness, but the patterning characteristics should be additionally improved for commercial availability.
  • One or more aspects of embodiments of the present disclosure are directed toward a semiconductor photoresist composition having improved etch resistance, sensitivity, resolution, and/or pattern-forming capability.
  • One or more aspects of embodiments of the present disclosure are directed toward a method of forming patterns using the semiconductor photoresist composition.
  • One or more example embodiments of the present disclosure provide a semiconductor photoresist composition including an organometallic compound represented by Chemical Formula 1, an organometallic compound represented by Chemical Formula 2, and a solvent.
  • R is a substituted or unsubstituted C1 to C20 alkyl group, a substituted or unsubstituted C3 to C20 cycloalkyl group, a substituted or unsubstituted C2 to C20 aliphatic unsaturated organic group including at least one double bond or triple bond, a substituted or unsubstituted C6 to C30 aryl group, an ethylene oxide group, a propylene oxide group, or any combination thereof,
  • X, Y, and Z are each independently —OR 1 or —OC( ⁇ O)R 2 ,
  • R 1 is a substituted or unsubstituted C1 to C20 alkyl group, a substituted or unsubstituted C3 to C20 cycloalkyl group, a substituted or unsubstituted C2 to C20 alkenyl group, a substituted or unsubstituted C2 to C20 alkynyl group, a substituted or unsubstituted C6 to C30 aryl group, or any combination thereof, and
  • R 2 is hydrogen, a substituted or unsubstituted C1 to C20 alkyl group, a substituted or unsubstituted C3 to C20 cycloalkyl group, a substituted or unsubstituted C2 to C20 alkenyl group, a substituted or unsubstituted C2 to C20 alkynyl group, a substituted or unsubstituted C6 to C30 aryl group, or any combination thereof.
  • X′ is —OR 3 or —OC( ⁇ O)R 4 ,
  • R 3 is a substituted or unsubstituted C1 to C20 alkyl group, a substituted or unsubstituted C3 to C20 cycloalkyl group, a substituted or unsubstituted C2 to C20 alkenyl group, a substituted or unsubstituted C2 to C20 alkynyl group, a substituted or unsubstituted C6 to C30 aryl group, or any combination thereof, and
  • R 4 is hydrogen, a substituted or unsubstituted C1 to C20 alkyl group, a substituted or unsubstituted C3 to C20 cycloalkyl group, a substituted or unsubstituted C2 to C20 alkenyl group, a substituted or unsubstituted C2 to C20 alkynyl group, a substituted or unsubstituted C6 to C30 aryl group, or any combination thereof.
  • R may be a substituted or unsubstituted C1 to C8 alkyl group, a substituted or unsubstituted C3 to C8 cycloalkyl group, a substituted or unsubstituted C2 to C8 aliphatic unsaturated organic group including at least one double bond or triple bond, a substituted or unsubstituted C6 to C20 aryl group, an ethylene oxide group, a propylene oxide group, or any combination thereof, and
  • R 1 and R 3 may each independently be a substituted or unsubstituted C1 to C8 alkyl group, a substituted or unsubstituted C3 to C8 cycloalkyl group, a substituted or unsubstituted C2 to C8 alkenyl group, a substituted or unsubstituted C2 to C8 alkynyl group, a substituted or unsubstituted C6 to C20 aryl group, or any combination thereof, and
  • R 2 and R 4 may each independently be hydrogen, a substituted or unsubstituted C1 to C8 alkyl group, a substituted or unsubstituted C3 to C8 cycloalkyl group, a substituted or unsubstituted C2 to C8 alkenyl group, a substituted or unsubstituted C2 to C8 alkynyl group, a substituted or unsubstituted C6 to C20 aryl group, or a combination thereof.
  • R may be a methyl group, an ethyl group, a propyl group, a butyl group, an isopropyl group, a tert-butyl group, a 2,2-dimethylpropyl group, a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, an ethenyl group, a propenyl group, a butenyl group, an ethynyl group, a propynyl group, a butynyl group, a phenyl group, a tolyl group, a xylene group, a benzyl group, an ethylene oxide group, a propylene oxide group, or any combination thereof,
  • R 1 and R 3 may each independently be a methyl group, an ethyl group, a propyl group, a butyl group, an isopropyl group, a tert-butyl group, a 2,2-dimethylpropyl group, a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, an ethenyl group, a propenyl group, a butenyl group, an ethynyl group, a propynyl group, a butynyl group, a phenyl group, a tolyl group, a xylene group, a benzyl group, or any combination thereof, and
  • R 2 and R 4 may each independently be hydrogen, a methyl group, an ethyl group, a propyl group, a butyl group, an isopropyl group, a tert-butyl group, a 2,2-dimethylpropyl group, a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, an ethenyl group, a propenyl group, a butenyl group, an ethynyl group, a propynyl group, a butynyl group, a phenyl group, a tolyl group, a xylene group, a benzyl group, or any combination thereof.
  • the compound represented by Chemical Formula 1 may be a compound represented by Chemical Formula 3, a compound represented by Chemical Formula 4, a compound represented by Chemical Formula 5, a compound represented by Chemical Formula 6, or any combination thereof:
  • R may be the same as defined in Chemical Formula 1,
  • R a , R b , R c , R i , R k , and R l may each independently be the same as defined for R 1 in Chemical Formula 1, and
  • R d , R e , R f , R g , R h , and R j may each independently be the same as defined for R 2 in Chemical Formula 1.
  • the semiconductor photoresist composition may include the organometallic compound represented by Chemical Formula 1 and the organometallic compound represented by Chemical Formula 2 in a weight ratio of about 20:1 to about 1:1.
  • the semiconductor photoresist composition may include about 0.01 wt % to about 30 wt % of the organometallic compound represented by Chemical Formula 1 and about 0.01 wt % to about 15 wt % of the organometallic compound represented by Chemical Formula 2 based on 100 wt % of the semiconductor photoresist composition.
  • the semiconductor photoresist composition may further include an additive selected from a surfactant, a cross-linking agent, a leveling agent, and combinations thereof.
  • One or more example embodiments of the present disclosure provide a method of forming patterns including: forming an etching-objective layer on a substrate, coating the semiconductor photoresist composition on the etching-objective layer to form a photoresist layer, patterning the photoresist layer to form a photoresist pattern, and etching the etching-objective layer using the photoresist pattern as an etching mask.
  • the photoresist pattern may be formed using light in a wavelength of about 5 nm to about 150 nm.
  • the method of forming patterns may further include providing a resist underlayer formed between the substrate and the photoresist layer.
  • the photoresist pattern may have a width of about 5 nm to about 100 nm.
  • the semiconductor photoresist composition according to an embodiment may have relatively improved etch resistance, sensitivity, resolution, and/or pattern-forming capability, and may thus provide a photoresist pattern having improved sensitivity and a high aspect ratio without a pattern collapse.
  • FIGS. 1 to 5 are cross-sectional views for explaining a method of forming patterns using a semiconductor resist composition according to an embodiment.
  • the term “and/or” includes any and all combinations of one or more of the associated listed items. Further, the use of “may” when describing embodiments of the present disclosure refers to “one or more embodiments of the present disclosure”.
  • substituted refers to replacement of a hydrogen atom with deuterium, a halogen, a hydroxy group, a cyano group, a nitro group, —NRR′ (wherein R and R′ are each independently hydrogen, a substituted or unsubstituted C1 to C30 saturated or unsaturated aliphatic hydrocarbon group, a substituted or unsubstituted C3 to C30 saturated or unsaturated alicyclic hydrocarbon group, or a substituted or unsubstituted C6 to C30 aromatic hydrocarbon group), —SiRR′R′′ (wherein R, R′, and R′′ are each independently hydrogen, a substituted or unsubstituted C1 to C30 saturated or unsaturated aliphatic hydrocarbon group, a substituted or unsubstituted C3 to C30 saturated or unsaturated alicyclic hydrocarbon group, or a substituted or unsubstituted C6 to C30 aromatic hydrocarbon group),
  • hetero refers to inclusion of 1 to 3 heteroatoms selected from nitrogen (N), oxygen (O), and sulfur (S).
  • alkyl group may refer to a “saturated alkyl group” that does not include any double or triple bonds.
  • the alkyl group may be a C1 to C8 alkyl group.
  • the alkyl group may be a C1 to C7 alkyl group, a C1 to C6 alkyl group, a C1 to C5 alkyl group, or a C1 to C4 alkyl group.
  • the C1 to C4 alkyl group may be a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, or a 2,2-dimethylpropyl group.
  • cycloalkyl group refers to a monovalent cyclic aliphatic hydrocarbon group.
  • the cycloalkyl group may be a C3 to C8 cycloalkyl group, for example, a C3 to C7 cycloalkyl group, a C3 to C6 cycloalkyl group, a C3 to C5 cycloalkyl group, or a C3 to C4 cycloalkyl group.
  • the cycloalkyl group may be a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, or a cyclohexyl group, but is not limited thereto.
  • aliphatic unsaturated organic group refers to a hydrocarbon group including one or more carbon-carbon double bonds and/or triple bonds.
  • the aliphatic unsaturated organic group may be a C2 to C8 aliphatic unsaturated organic group.
  • the aliphatic unsaturated organic group may be a C2 to C7 aliphatic unsaturated organic group, a C2 to C6 aliphatic unsaturated organic group, a C2 to C5 aliphatic unsaturated organic group, or a C2 to C4 aliphatic unsaturated organic group.
  • the C2 to C4 aliphatic unsaturated organic group may be a vinyl group, an ethynyl group, an allyl group, a 1-propenyl group, a 1-methyl-1-propenyl group, a 2-propenyl group, a 2-methyl-2-propenyl group, a 1-propynyl group, a 1-methyl-1 propynyl group, a 2-propynyl group, a 2-methyl-2-propynyl group, a 1-butenyl group, a 2-butenyl group, a 3-butenyl group, a 1-butynyl group, a 2-butynyl group, or a 3-butynyl group.
  • aryl group refers to a cyclic substituent in which all of the ring-forming atoms have mutually conjugated p-orbitals normal to the plane of the ring, and the aryl group may be a monocyclic functional group or a fused ring polycyclic functional group (i.e., may include two or more rings sharing adjacent pairs of carbon atoms).
  • alkenyl group refers to a linear or branched aliphatic unsaturated hydrocarbon group including at least one double bond.
  • alkynyl group refers to a linear or branched aliphatic unsaturated hydrocarbon group including at least one triple bond.
  • One or more example embodiments of the present disclosure provide a semiconductor photoresist composition according to an embodiment as hereinafter described.
  • a semiconductor photoresist composition according to an embodiment of the present disclosure includes organometallic compounds and a solvent, where the organometallic compounds include (e.g., consist of) compounds represented by Chemical Formula 1 and Chemical Formula 2.
  • R may be a substituted or unsubstituted C1 to C20 alkyl group, a substituted or unsubstituted C3 to C20 cycloalkyl group, a substituted or unsubstituted C2 to C20 aliphatic unsaturated organic group including at least one double bond or triple bond, a substituted or unsubstituted C6 to C30 aryl group, an ethylene oxide group, a propylene oxide group, or any combination thereof,
  • X, Y, and Z may each independently be —OR 1 or —OC( ⁇ O)R 2 ,
  • R 1 may be a substituted or unsubstituted C1 to C20 alkyl group, a substituted or unsubstituted C3 to C20 cycloalkyl group, a substituted or unsubstituted C2 to C20 alkenyl group, a substituted or unsubstituted C2 to C20 alkynyl group, a substituted or unsubstituted C6 to C30 aryl group, or any combination thereof, and
  • R 2 may be hydrogen, a substituted or unsubstituted C1 to C20 alkyl group, a substituted or unsubstituted C3 to C20 cycloalkyl group, a substituted or unsubstituted C2 to C20 alkenyl group, a substituted or unsubstituted C2 to C20 alkynyl group, a substituted or unsubstituted C6 to C30 aryl group, or any combination thereof.
  • X′ may be —OR 3 or —OC( ⁇ O)R 4 ,
  • R 3 may be a substituted or unsubstituted C1 to C20 alkyl group, a substituted or unsubstituted C3 to C20 cycloalkyl group, a substituted or unsubstituted C2 to C20 alkenyl group, a substituted or unsubstituted C2 to C20 alkynyl group, a substituted or unsubstituted C6 to C30 aryl group, or any combination thereof, and
  • R 4 may be hydrogen, a substituted or unsubstituted C1 to C20 alkyl group, a substituted or unsubstituted C3 to C20 cycloalkyl group, a substituted or unsubstituted C2 to C20 alkenyl group, a substituted or unsubstituted C2 to C20 alkynyl group, a substituted or unsubstituted C6 to C30 aryl group, or any combination thereof.
  • the organic tin copolymer including the organometallic compounds represented by Chemical Formulae 1 and 2 may be prepared by copolymerizing an organometallic compound represented by Chemical Formula 1 (which has a tin atom substituted with one R group and three —OR 1 's or —OC( ⁇ O)R 2 's) and an organometallic compound represented by Chemical Formula 2 (which has a tin atom substituted with four —OR 1 's or —OC( ⁇ O)R 2 's).
  • the compounds represented by Chemical Formulae 1 and 2 are organic tin compounds, wherein tin may intensively absorb extreme ultraviolet (EUV) light at 13.5 nm and thus have excellent sensitivity to high energy light, the R group bound to tin (Sn) of Chemical Formula 1 may make the compound photosensitive, and the Sn—R bond may solubilize the organic tin compound in an organic solvent.
  • X, Y, and Z of Chemical Formula 1, —OR 3 or —OC( ⁇ O)R 4 , and X′ of Chemical Formula 2 may each or collectively determine or affect the solubility of the two compounds in a solvent.
  • R of Chemical Formula 1 when the organic tin copolymer having structural units formed through copolymerization of the compounds represented by Chemical Formulae 1 and 2 is exposed to extreme ultraviolet (EUV), the R functional group may be dissociated from the Sn—R bond so that a radical is formed, and this radical (e.g., a Sn. radical) may form an additional —Sn—O—Sn— bond and initiate a condensation polymerization reaction between organic tin copolymers, thereby forming a semiconductor photoresist from the composition according to an embodiment.
  • EUV extreme ultraviolet
  • the substituent represented by R may be a substituted or unsubstituted C1 to C20 alkyl group, a substituted or unsubstituted C3 to C20 cycloalkyl group, a substituted or unsubstituted C2 to C20 aliphatic unsaturated organic group including at least one double bond or triple bond, a substituted or unsubstituted C6 to C30 aryl group, an ethylene oxide group, a propylene oxide group, or any combination thereof.
  • the compound represented by Chemical Formula 1 may further include three organic ligands X, Y, and Z, which may each be hydrolyzed to form Sn—O bonds, in addition to the substituent R.
  • the compound represented by Chemical Formula 2 is hydrolyzed, and thus includes four X′ substituents forming a Sn—O bond with a tin atom.
  • X, Y, Z, and X′ may each independently be —OR 1 or —OC( ⁇ O)R 2 , the organic groups therein may be hydrolyzed through a heat treatment or by a non-heated treatment with an acidic or basic catalyst to thereby form a Sn—O—Sn bond between the organic tin compounds, and accordingly, the organometallic compounds represented by Chemical Formulae 1 and 2 may form the organic tin copolymer.
  • the semiconductor photoresist composition according to an embodiment of the present disclosure concurrently (e.g., simultaneously) includes the organometallic compound represented by Chemical Formula 1 and the organometallic compound represented by Chemical Formula 2, and thus may exhibit improved sensitivity compared with a semiconductor photoresist composition including an organometallic compound represented by Chemical Formula 1 or 2 alone.
  • a ratio of the organometallic compounds represented by Chemical Formulae 1 and 2 in the copolymer may be suitably or appropriately controlled to adjust a dissociation degree of a ligand represented by R from the copolymer (e.g., the percentage of R that dissociates from Sn) and thus a cross-linking degree (which occurs through oxo bond formation between the radical generated through the dissociation of the ligand and adjacent chains), and may therefore provide a semiconductor photoresist having excellent sensitivity, small or reduced line edge roughness, and/or an excellent resolution.
  • a semiconductor photoresist having improved sensitivity, line edge roughness, and/or resolution may be provided by (e.g., simultaneously) including both of the organometallic compounds represented by Chemical Formulae 1 and 2.
  • R may be, for example, a substituted or unsubstituted C1 to C8 alkyl group, a substituted or unsubstituted C3 to C8 cycloalkyl group, a substituted or unsubstituted C2 to C8 aliphatic unsaturated organic group including at least one double bond or triple bond, a substituted or unsubstituted C6 to C20 aryl group, an ethylene oxide group, a propylene oxide group, or any combination thereof, for example, a methyl group, an ethyl group, a propyl group, a butyl group, an isopropyl group, a tert-butyl group, a 2,2-dimethylpropyl group, a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, an ethenyl group, a propenyl group, a butenyl group
  • R 1 and R 3 may each independently be, for example, a substituted or unsubstituted C1 to C8 alkyl group, a substituted or unsubstituted C3 to C8 cycloalkyl group, a substituted or unsubstituted C2 to C8 alkenyl group, a substituted or unsubstituted C2 to C8 alkynyl group, a substituted or unsubstituted C6 to C20 aryl group, or any combination thereof, for example, a methyl group, an ethyl group, a propyl group, a butyl group, an isopropyl group, a tert-butyl group, a 2,2-dimethylpropyl group, a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, an ethenyl group, a propenyl group, a buteny
  • R 2 and R 4 may each independently be, for example, hydrogen, a substituted or unsubstituted C1 to C8 alkyl group, a substituted or unsubstituted C3 to C8 cycloalkyl group, a substituted or unsubstituted C2 to C8 alkenyl group, a substituted or unsubstituted C2 to C8 alkynyl group, a substituted or unsubstituted C6 to C20 aryl group, or a combination thereof, for example, hydrogen, a methyl group, an ethyl group, a propyl group, a butyl group, an isopropyl group, a tert-butyl group, a 2,2-dimethylpropyl group, a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, an ethenyl group, a propenyl group,
  • the compound represented by Chemical Formula 1 may include a compound represented by Chemical Formula 3, a compound represented by Chemical Formula 4, a compound represented by Chemical Formula 5, a compound represented by Chemical Formula 6, or any combination thereof.
  • R may be the same as defined in Chemical Formula 1,
  • R a , R b , R c , R i , R k , and R l may independently be the same as defined for R 1 in Chemical Formula 1, and
  • R d , R e , R f , R g , R h , and R j may independently be the same as defined for R 2 in Chemical Formula 1.
  • the semiconductor photoresist composition according to an embodiment of the present disclosure concurrently (e.g., simultaneously) includes the compound represented by Chemical Formula 1 or Chemical Formulae 3 to 6 having three substituents respectively linked via an oxygen atom bound to a tin atom and the compound represented by Chemical Formula 2 having four substituents respectively linked via oxygen atoms bound to a tin atom, and thus provides a photoresist pattern including the organometallic copolymer obtained through copolymerization of the compounds, and this photoresist may have relatively improved etch resistance, sensitivity, and/or resolution as well as excellent pattern-forming capability, and accordingly, patterns formed of the composition may not be destroyed despite having a high aspect ratio.
  • the organometallic compound represented by Chemical Formula 1 and the organometallic compound represented by Chemical Formula 2 may be included in the semiconductor photoresist composition at a weight ratio of about 20:1 to about 1:1, for example, about 18:1 to about 1:1, about 15:1 to about 1:1, about 12:1 to about 1:1, about 10:1 to about 1:1, about 8:1 to about 1:1, about 5:1 to about 1:1, about 3:1 to about 1:1, or about 2:1 to about 1:1, but are not limited thereto.
  • a semiconductor photoresist composition having improved sensitivity may be provided.
  • the semiconductor photoresist composition may include about 0.01 wt % to about 30 wt % of the organometallic compound represented by Chemical Formula 1 and about 0.01 wt % to about 15 wt % of the organometallic compound represented by Chemical Formula 2 based on 100 wt % of the semiconductor photoresist composition.
  • the composition may include about 0.1 wt % to about 20 wt % of the organometallic compound represented by Chemical Formula 1 and about 0.1 wt % to about 10 wt % of the organometallic compound represented by Chemical Formula 2, for example, about 0.1 wt % to about 10 wt % of the organometallic compound represented by Chemical Formula 1 and about 0.1 wt % to about 5 wt % of the organometallic compound represented by Chemical Formula 2, but are not limited thereto.
  • the semiconductor photoresist composition according to an embodiment includes the organometallic compound represented by Chemical Formula 1 and the organometallic compound represented by Chemical Formula 2 within the above-described ranges, a coating process when forming a photoresist from the composition may be facilitated and the sensitivity of the photoresist may be improved.
  • the solvent included in the semiconductor photo resist composition may be an organic solvent.
  • the solvent may be or include, for example, aromatic compounds (e.g., xylene, toluene, etc.), alcohols (e.g., 4-methyl-2-pentanol, 4-methyl-2-propanol, 1-butanol, methanol, isopropyl alcohol, 1-propanol, etc.), ethers (e.g., anisole, tetrahydrofuran, etc.), esters (n-butyl acetate, propylene glycol monomethyl ether acetate, ethyl acetate, ethyl lactate), ketones (e.g., methyl ethyl ketone, 2-heptanone), or a mixture thereof, but is not limited thereto.
  • aromatic compounds e.g., xylene, toluene, etc.
  • alcohols e.g., 4-methyl-2-pentanol, 4-methyl-2-prop
  • the semiconductor photo resist composition may further include a resin in addition to the aforementioned organometallic compound and solvent.
  • the resin may be a phenol-based resin including one or more aromatic moieties selected from Group 1.
  • the resin may have a weight average molecular weight of about 500 to about 20,000.
  • the resin may be included in an amount of about 0.1 wt % to about 50 wt % based on a total amount of the semiconductor resist composition.
  • the resin When the resin is included within the above-described amount range, the resin may have excellent etch resistance and/or heat resistance.
  • the semiconductor resist composition according to an embodiment may be desirably composed of the organometallic compound, solvent, and resin.
  • the semiconductor resist composition according to the above embodiment may further include an additive as needed or desired.
  • the additive include a surfactant, a cross-linking agent, a leveling agent, and any combination thereof.
  • the surfactant may include, for example, an alkyl benzene sulfonate salt, an alkyl pyridinium salt, polyethylene glycol, a quaternary ammonium salt, or any combination thereof, but is not limited thereto.
  • the cross-linking agent may be, for example, a melamine-based cross-linking agent, a substituted urea-based cross-linking agent, or a polymer-based cross-linking agent, but is not limited thereto.
  • the cross-linking agent may be a cross-linking agent having at least two cross-linking forming substituents, for example, a compound such as methoxymethylated glycoluril, butoxymethylated glycoluril, methoxymethylated melamine, butoxymethylated melamine, methoxymethylated benzoguanamine, butoxymethylated benzoguanamine, methoxymethylated urea, butoxymethylated urea, methoxymethylated thiourea, and/or the like.
  • the leveling agent may be used for improving coating flatness during printing, and may be a commercially available or suitable known leveling agent.
  • the amount of each additive may be selected or controlled depending on desired or suitable properties.
  • the semiconductor resist composition may further include a silane coupling agent as an adherence enhancer in order to improve a close-contacting force with the substrate (e.g., in order to improve adherence of the semiconductor resist composition to the substrate).
  • the silane coupling agent may be, for example, a silane compound including a carbon-carbon unsaturated bond (such as vinyltrimethoxysilane, vinyltriethoxysilane, vinyl trichlorosilane, or vinyltris( ⁇ -methoxyethoxy)silane); 3-methacryloxypropyltrimethoxysilane, 3-acryloxypropyltrimethoxysilane, p-styryl trimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropylmethyl diethoxysilane; trimethoxy[3-(phenylamino)propyl]silane, and/or the like, but is not limited thereto.
  • the semiconductor photoresist composition may be formed into a pattern having a high aspect ratio without a collapse. Accordingly, in order to form a fine pattern having a width of, for example, about 5 nm to about 100 nm, about 5 nm to about 80 nm, about 5 nm to about 70 nm, about 5 nm to about 50 nm, about 5 nm to about 40 nm, about 5 nm to about 30 nm, or about 5 nm to about 20 nm, the semiconductor resist composition may be used for a photoresist process using light in a wavelength ranging from about 5 nm to about 150 nm, for example, about 5 nm to about 100 nm, about 5 nm to about 80 nm, about 5 nm to about 50 nm, about 5 nm to about 30 nm, or about 5 nm to about 20 nm. Accordingly, the semiconductor photoresist composition according to an embodiment may be used to realize extreme ultraviolet (EUV
  • One or more example embodiments of the present disclosure provide a method of forming patterns using the semiconductor photoresist composition.
  • the manufactured pattern may be a photoresist pattern.
  • the method of forming patterns includes: forming an etching-objective layer on a substrate, coating the semiconductor photo resist composition on the etching-objective layer to form a photoresist layer, patterning the photoresist layer to form a photoresist pattern, and etching the etching-objective layer using the photoresist pattern as an etching mask.
  • FIGS. 1 to 5 are cross-sectional views for explaining a method of forming patterns using a semiconductor resist composition according to an embodiment.
  • the object for etching may be a thin layer 102 formed on a semiconductor substrate 100 .
  • the object for etching is limited to the thin layer 102 .
  • An entire surface of the thin layer 102 is washed to remove impurities and the like remaining thereon.
  • the thin layer 102 may be for example a silicon nitride layer, a polysilicon layer, or a silicon oxide layer.
  • the resist underlayer composition for forming a resist underlayer 104 is spin-coated on the surface of the washed thin layer 102 .
  • the embodiment is not limited thereto, and any suitable coating method (for example, spray coating, dip coating, knife edge coating, etc.) or printing method (for example inkjet printing, screen printing, etc.) and/or the like may be used.
  • the coating process of the resist underlayer may be omitted.
  • a process including a coating of the resist underlayer is described.
  • the coated composition is dried and baked to form a resist underlayer 104 on the thin layer 102 .
  • the baking may be performed at about 100° C. to about 500° C., for example, about 100° C. to about 300° C.
  • the resist underlayer 104 is formed between the substrate 100 and a photoresist layer 106 and thus may prevent or reduce non-uniformity and improve the pattern-forming capability of a photoresist line width when a ray reflected from the interface between the substrate 100 and the photoresist layer 106 and/or from a hardmask between layers is scattered into an unintended photoresist region.
  • the photoresist layer 106 is formed by coating the semiconductor resist composition on the resist underlayer 104 .
  • the photoresist layer 106 is obtained by coating the aforementioned semiconductor resist composition on the thin layer 102 formed on the substrate 100 and then, curing it through a heat treatment.
  • the formation of a pattern using the semiconductor resist composition may include coating the semiconductor resist composition on the substrate 100 having the thin layer 102 through spin coating, slit coating, inkjet printing, and/or the like, and then drying it to form the photoresist layer 106 .
  • the semiconductor resist composition has already been illustrated in detail and will not be illustrated again.
  • a substrate 100 having the photoresist layer 106 is subjected to a first baking process.
  • the first baking process may be performed at about 80° C. to about 120° C.
  • the photoresist layer 106 may be selectively exposed through a pattern mask 110 .
  • the exposure may use an activation radiation with light having a high energy wavelength (such as EUV (extreme ultraviolet; a wavelength of about 13.5 nm), an E-Beam (an electron beam), and/or the like), as well as light having a short wavelength (e.g., compared to the visible spectrum) (such as an i-line (a wavelength of about 365 nm), a KrF excimer laser (a wavelength of about 248 nm), an ArF excimer laser (a wavelength of about 193 nm), and/or the like).
  • EUV extreme ultraviolet
  • E-Beam an electron beam
  • a short wavelength e.g., compared to the visible spectrum
  • an i-line a wavelength of about 365 nm
  • KrF excimer laser a wavelength of about 248 nm
  • ArF excimer laser a wavelength of about 193 nm
  • light for the exposure may include a short, high-energy wavelength ranging from about 5 nm to about 150 nm, for example, EUV, an E-Beam, and/or the like.
  • the exposed region 106 b of the photoresist layer 106 has a different solubility from the non-exposed region 106 a of the photoresist layer 106 due to forming a polymer by a cross-linking reaction (such as condensation) between organometallic compounds.
  • the substrate 100 is subjected to a second baking process.
  • the second baking process may be performed at a temperature of about 90° C. to about 200° C.
  • the exposed region 106 b of the photoresist layer 106 becomes insoluble in a developing solution due to the second baking process.
  • the non-exposed region 106 a of the photoresist layer is dissolved and removed using the developing solution to form a photoresist pattern 108 .
  • the non-exposed region 106 a of the photoresist layer is dissolved and removed using an organic solvent (such as 2-heptanone and/or the like) to complete the photoresist pattern 108 corresponding to the negative tone image.
  • the developing solution used in a method of forming patterns according to an embodiment may be an organic solvent.
  • the organic solvent used in the method of forming patterns according to an embodiment may be or include, for example, ketones (such as methylethylketone, acetone, cyclohexanone, 2-heptanone, and/or the like), alcohols (such as 4-methyl-2-propanol, 1-butanol, isopropanol, 1-propanol, methanol, and/or the like), esters (such as propylene glycol monomethyl ether acetate, ethyl acetate, ethyl lactate, n-butyl acetate, butyrolactone, and/or the like), aromatic compounds (such as benzene, xylene, toluene, and/or the like), or a combination thereof.
  • ketones such as methylethylketone, acetone, cyclohexanone, 2-heptanone, and/or
  • the photoresist pattern according to an embodiment is not necessarily limited to being a negative tone image, and for example, may be formed to have a positive tone image.
  • a developing agent used for forming the positive tone image may be a quaternary ammonium hydroxide composition (such as tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, or any combination thereof).
  • exposure to high energy light such as EUV, an E-Beam, and/or the like
  • light having a second wavelength such as i-line (wavelength of about 365 nm), KrF excimer laser (wavelength of about 248 nm), ArF excimer laser (wavelength of about 193 nm), and/or the like) may provide a photoresist pattern 108 having a width of about 5 nm to about 100 nm.
  • the photoresist pattern 108 may have a width of about 5 nm to about 90 nm, about 5 nm to about 80 nm, about 5 nm to about 70 nm, about 5 nm to about 60 nm, about 10 nm to about 50 nm, about 10 nm to about 40 nm, about 10 nm to about 30 nm, or about 10 nm to about 20 nm.
  • the photoresist pattern 108 may have a half-pitch of less than or equal to about 50 nm, for example, less than or equal to about 40 nm, less than or equal to about 30 nm, or less than or equal to about 25 nm, and a line width roughness of less than or equal to about 10 nm, or less than or equal to about 5 nm.
  • the photoresist pattern 108 is used as an etching mask to etch the resist underlayer 104 .
  • an organic layer pattern 112 is formed.
  • the organic layer pattern 112 may have a width corresponding to that of the photoresist pattern 108 .
  • the photoresist pattern 108 is applied as an etching mask to etch the exposed thin layer 102 .
  • the thin layer is formed with a thin layer pattern 114 .
  • the etching of the thin layer 102 may be, for example, a dry etching using an etching gas, and the etching gas may be, for example, CHF 3 , CF 4 , Cl 2 , BCl 3 , or any mixture thereof.
  • the thin layer pattern 114 formed by using the photoresist pattern 108 formed through the exposure process using an EUV light source may have a width corresponding to that of the photoresist pattern 108 .
  • the thin layer pattern 114 may have a width of about 5 nm to about 100 nm, which is equal to that of the photoresist pattern 108 .
  • the thin layer pattern 114 formed by using the photoresist pattern 108 formed through the exposure process using an EUV light source may have a width of about 5 nm to about 90 nm, about 5 nm to about 80 nm, about 5 nm to about 70 nm, about 5 nm to about 60 nm, about 10 nm to about 50 nm, about 10 nm to about 40 nm, about 10 nm to about 30 nm, and about 10 nm to about 20 nm, or less than or equal to about 20 nm, like that of the photoresist pattern 108 .
  • a compound represented by Chemical Formula 8 was obtained at a yield of 88% using substantially the same method as Synthesis Example 1, except that a 2 M isopropyl magnesium chloride (iPrMgCl) THF solution (62.3 mmol) was used instead of the 1 M butyl magnesium chloride (BuMgCl) THF solution in Synthesis Example 1.
  • iPrMgCl isopropyl magnesium chloride
  • BuMgCl butyl magnesium chloride
  • a compound represented by Chemical Formula 9 was obtained at a yield of 76% using substantially the same method as Synthesis Example 1, except that a 1 M neopentyl magnesium chloride THF solution (62.3 mmol) was used instead of the 1 M butyl magnesium chloride (BuMgCl) THF solution in Synthesis Example 1.
  • a compound represented by Chemical Formula 11 was obtained at a yield of 75% according to substantially the same method as Synthesis Example 4, except that the compound represented by Chemical Formula 8 according to Synthesis Example 2 was used instead of the compound represented by Chemical Formula 7 according to Synthesis Example 1.
  • a compound represented by Chemical Formula 12 was obtained at a yield of 70% according to substantially the same method as Synthesis Example 4, except that the compound represented by Chemical Formula 9 according to Synthesis Example 3 was used instead of the compound represented by Chemical Formula 7 according to Synthesis Example 1.
  • Ph 4 Sn (20 g, 46.8 mmol) was put in a 100 mL round-bottomed flask, and 50 mL of propionic acid was slowly added thereto in a dropwise fashion and the, heated and refluxed at 110° C. for 26 hours. Subsequently, the temperature was decreased to room temperature, and the propionic acid was vacuum-distilled to obtain a compound represented by Chemical Formula 20 at a yield of 95%.
  • a 4-inch diameter disk-shaped silicon wafer having a native-oxide surface was used as a substrate for thin film coating, and treated in a UV ozone cleaning system for 10 minutes before coating the compositions.
  • the semiconductor photoresist compositions according to Examples 1 to 14 were respectively spin-coated at 1500 rpm for 30 seconds and then, baked (baked after applied, PAB (post-apply bake)) at 100° C. for 120 seconds to form a photoresist thin film.
  • the thicknesses of the films were measured through ellipsometry to be about 25 nm.
  • a semiconductor photoresist composition according to Comparative Example 1 and a photoresist thin film including the same were manufactured according to substantially the same method as in the Examples, except that the compound represented by Chemical Formula 13 according to Synthesis Example 7 was dissolved at a concentration of 2 wt % in xylene. After coating and baking, the thickness of the film was about 25 nm.
  • a semiconductor photoresist composition according to Comparative Example 2 and a photoresist thin film including the same were manufactured according to substantially the same method as Example 1, except that nBuSnOOH (TCI Inc.) was used instead of the compound represented by Chemical Formula 13. After coating and baking, the thickness of the film was about 25 nm.
  • the films according to Examples 1 to 14 and Comparative Examples 1 to 2 formed on a disk-shaped silicon wafer in the coating method were exposed to extreme ultraviolet (EUV) to form 12 nm to 100 nm line/space patterns by varying energy and a focus. After the exposure, the films were baked at 180° C. for 120 seconds, dipped in a Petri dish containing 2-heptanone for 60 seconds and taken out, and washed with the same solvent for 10 seconds. Finally, the films were baked at 150° C. for 5 minutes, and then, pattern images thereof were obtained through SEM (scanning electron microscopy). From the SEM images, the highest resolution, optimal energy, and line edge roughness (LER) are provided Table 2.
  • EUV extreme ultraviolet
  • substrate 102 thin layer 104: photoresist underlayer 106: photoresist layer 106b: exposed region 106a: non-exposed region 108: photoresist pattern 112: organic layer pattern 114: thin film pattern

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Plasma & Fusion (AREA)
  • Materials For Photolithography (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
US16/859,682 2019-04-30 2020-04-27 Semiconductor photoresist composition and method of forming patterns using the composition Active US11609494B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2019-0050856 2019-04-30
KR20190050856 2019-04-30
KR1020190160169A KR102606844B1 (ko) 2019-04-30 2019-12-04 반도체 포토 레지스트용 조성물 및 이를 이용한 패턴 형성 방법
KR10-2019-0160169 2019-12-04

Publications (2)

Publication Number Publication Date
US20200348591A1 US20200348591A1 (en) 2020-11-05
US11609494B2 true US11609494B2 (en) 2023-03-21

Family

ID=72985004

Family Applications (1)

Application Number Title Priority Date Filing Date
US16/859,682 Active US11609494B2 (en) 2019-04-30 2020-04-27 Semiconductor photoresist composition and method of forming patterns using the composition

Country Status (2)

Country Link
US (1) US11609494B2 (ja)
JP (1) JP7025474B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210311387A1 (en) * 2020-04-02 2021-10-07 Samsung Sdi Co., Ltd. Semiconductor photoresist composition and method of forming patterns using the composition
US20220194968A1 (en) * 2020-12-18 2022-06-23 Samsung Sdi Co., Ltd. Semiconductor photoresist composition, method for preparing thereof and method of forming patterns using the composition

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102598259B1 (ko) * 2020-12-18 2023-11-02 삼성에스디아이 주식회사 반도체 포토레지스트용 조성물 및 이를 이용한 패턴 형성 방법
US11906901B2 (en) * 2021-06-07 2024-02-20 International Business Machines Corporation Alternating copolymer chain scission photoresists
US11827659B2 (en) * 2022-03-31 2023-11-28 Feng Lu Organometallic tin compounds as EUV photoresist
KR102703674B1 (ko) 2022-08-02 2024-09-04 삼성에스디아이 주식회사 반도체 포토레지스트용 조성물 및 이를 이용한 패턴 형성 방법
WO2024035914A1 (en) 2022-08-12 2024-02-15 Gelest, Inc. High purity tin compounds containing unsaturated substituent and method for preparation thereof

Citations (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5061599A (en) 1986-06-11 1991-10-29 Hitachi, Ltd. Radiation sensitive materials
JPH08260159A (ja) 1994-12-09 1996-10-08 Mitsubishi Materials Corp 金属酸化物薄膜パターン形成用組成物及びその製造方法、金属酸化物薄膜パターンの形成方法並びに電子部品及び光学部品の製造方法
US6103448A (en) 1997-10-08 2000-08-15 Korea Advanced Institute Of Science And Technology Organometal-containing acrylate or methacrylate derivatives and photoresists containing the polymers thereof
KR20020041759A (ko) 2000-11-28 2002-06-03 마티네즈 길러모 포토레지스트 조성물
US20020072009A1 (en) 2000-12-13 2002-06-13 Kim Hyun-Woo Photosensitive polymer containing Si, Ge or Sn and resist composition comprising the same
US6514666B1 (en) 1999-11-05 2003-02-04 Hyundai Electronics Industries Co., Ltd. Photoresist monomers, polymers thereof and photoresist compositions containing it
US6607867B1 (en) 2000-06-30 2003-08-19 Korea Advanced Institute Of Science And Technology Organometal-containing norbornene monomer, photoresist containing its polymer, manufacturing method thereof, and method of forming photoresist patterns
KR100386719B1 (ko) 1996-12-19 2004-05-22 주식회사 코오롱 디아조형 감광필름
JP2009229593A (ja) 2008-03-19 2009-10-08 Mitsuboshi Belting Ltd フォトマスク補修用インキ組成物及びフォトマスク補修方法
US20110045406A1 (en) 2006-11-01 2011-02-24 State of Oregon acting by and through the State Board of Higher Education on behalf of Oregon Solution processed thin films and laminates, devices comprising such thin films and laminates, and method for their use and manufacture
US20110293888A1 (en) 2010-06-01 2011-12-01 Stowers Jason K Patterned inorganic layers, radiation based patterning compositions and corresponding methods
JP4831324B2 (ja) 2006-07-06 2011-12-07 日産化学工業株式会社 スルホンを含有するレジスト下層膜形成組成物
US20120208127A1 (en) 2011-02-15 2012-08-16 Shin-Etsu Chemical Co., Ltd. Resist composition and patterning process
US20130005150A1 (en) 2011-06-28 2013-01-03 Shin-Etsu Chemical Co., Ltd. Composition for forming resist underlayer film and patterning process using the same
JP5178858B2 (ja) 2003-03-03 2013-04-10 ローム・アンド・ハース・エレクトロニック・マテリアルズ,エル.エル.シー. ポリマー、およびそれを含むフォトレジスト
US20130224652A1 (en) 2012-02-27 2013-08-29 International Business Machines Corporation Metal peroxo compounds with organic co-ligands for electron beam, deep uv and extreme uv photoresist applications
US20160116839A1 (en) 2014-10-23 2016-04-28 Inpria Corporation Organometallic solution based high resolution patterning compositions and corresponding methods
WO2016140057A1 (ja) 2015-03-05 2016-09-09 Jsr株式会社 感放射線性組成物及びパターン形成方法
US20160310944A1 (en) 2015-04-21 2016-10-27 Jsr Corporation Method of producing microfluidic device, microfluidic device, and photosensitive resin composition
US20170052449A1 (en) 2015-08-20 2017-02-23 Osaka University Chemically amplified resist material, pattern-forming method, compound, and production method of compound
US20170102612A1 (en) 2015-10-13 2017-04-13 Inpria Corporation Organotin oxide hydroxide patterning compositions, precursors, and patterning
WO2017169440A1 (ja) 2016-03-28 2017-10-05 Jsr株式会社 感放射線性組成物及びパターン形成方法
JP2017207532A (ja) 2016-05-16 2017-11-24 東洋合成工業株式会社 レジスト組成物及びそれを用いたデバイスの製造方法
KR20170132726A (ko) 2015-04-01 2017-12-04 도레이 카부시키가이샤 감광성 수지 조성물, 도전성 패턴의 제조 방법, 기판, 터치패널 및 디스플레이
JP2018017780A (ja) 2016-07-25 2018-02-01 Jsr株式会社 感放射線性組成物及びパターン形成方法
US20180046086A1 (en) 2016-08-12 2018-02-15 Inpria Corporation Methods of reducing metal residue in edge bead region from metal-containing resists
WO2018043506A1 (ja) 2016-08-29 2018-03-08 Jsr株式会社 感放射線性組成物及びパターン形成方法
WO2018168221A1 (ja) 2017-03-13 2018-09-20 Jsr株式会社 感放射線性組成物及びパターン形成方法
WO2018179704A1 (ja) 2017-03-27 2018-10-04 Jsr株式会社 パターン形成方法
TW201920214A (zh) 2017-08-02 2019-06-01 加拿大商海星化工無限責任公司 有機金屬化合物及用於沉積高純度氧化錫的方法
TW201924927A (zh) 2017-11-17 2019-07-01 日商三井化學股份有限公司 半導體元件中間體、含金屬膜形成用組成物、半導體元件中間體的製造方法、半導體元件的製造方法
US20190384171A1 (en) 2018-06-15 2019-12-19 Taiwan Semiconductor Manufacturing Co., Ltd. Photoresist composition and method of forming photoresist pattern
KR20200005370A (ko) 2018-07-06 2020-01-15 삼성에스디아이 주식회사 반도체 레지스트용 조성물 및 이를 이용한 패턴 형성 방법
JP2020021071A (ja) 2018-07-31 2020-02-06 三星エスディアイ株式会社Samsung SDI Co., Ltd. 半導体レジスト用組成物およびこれを用いたパターン形成方法
US20200041901A1 (en) 2018-07-31 2020-02-06 Samsung Sdi Co., Ltd. Semiconductor resist composition, and method of forming patterns using the composition
US20200041896A1 (en) 2018-07-31 2020-02-06 Samsung Sdi Co., Ltd. Semiconductor resist composition, and method of forming patterns using the composition
TW202007691A (zh) 2018-07-31 2020-02-16 南韓商三星Sdi股份有限公司 半導體抗蝕劑組成物及使用所述組成物形成圖案的方法及系統
KR20200018080A (ko) 2018-08-10 2020-02-19 삼성에스디아이 주식회사 반도체 레지스트용 조성물 및 이를 이용한 패턴 형성 방법
US20200117085A1 (en) * 2018-07-31 2020-04-16 Samsung Sdi Co., Ltd. Semiconductor resist composition, and method of forming patterns using the composition
US20210311387A1 (en) * 2020-04-02 2021-10-07 Samsung Sdi Co., Ltd. Semiconductor photoresist composition and method of forming patterns using the composition
US20210356861A1 (en) * 2020-05-12 2021-11-18 Samsung Sdi Co., Ltd. Semiconductor photoresist composition and method of forming patterns using the composition

Patent Citations (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5061599A (en) 1986-06-11 1991-10-29 Hitachi, Ltd. Radiation sensitive materials
JPH08260159A (ja) 1994-12-09 1996-10-08 Mitsubishi Materials Corp 金属酸化物薄膜パターン形成用組成物及びその製造方法、金属酸化物薄膜パターンの形成方法並びに電子部品及び光学部品の製造方法
KR100386719B1 (ko) 1996-12-19 2004-05-22 주식회사 코오롱 디아조형 감광필름
US6103448A (en) 1997-10-08 2000-08-15 Korea Advanced Institute Of Science And Technology Organometal-containing acrylate or methacrylate derivatives and photoresists containing the polymers thereof
KR100269513B1 (ko) 1997-10-08 2000-10-16 윤덕용 신규한 아크릴레이트 또는 메타크릴레이트 유도체 및 이들의 고분자중합체를 함유하는 포토레지스트(New acrylate or metacrylate derivatives and photoresist containing its polymer)
US6514666B1 (en) 1999-11-05 2003-02-04 Hyundai Electronics Industries Co., Ltd. Photoresist monomers, polymers thereof and photoresist compositions containing it
KR100398312B1 (ko) 2000-06-30 2003-09-19 한국과학기술원 유기금속을 함유하고 있는 노르보넨 단량체, 이들의고분자 중합체를 함유하는 포토레지스트, 및 그제조방법과, 포토레지스트 패턴 형성방법
US6607867B1 (en) 2000-06-30 2003-08-19 Korea Advanced Institute Of Science And Technology Organometal-containing norbornene monomer, photoresist containing its polymer, manufacturing method thereof, and method of forming photoresist patterns
KR20020041759A (ko) 2000-11-28 2002-06-03 마티네즈 길러모 포토레지스트 조성물
US20020072009A1 (en) 2000-12-13 2002-06-13 Kim Hyun-Woo Photosensitive polymer containing Si, Ge or Sn and resist composition comprising the same
JP3990146B2 (ja) 2000-12-13 2007-10-10 三星電子株式会社 シリコンを含有する感光性ポリマー及びこれを含むレジスト組成物
JP5178858B2 (ja) 2003-03-03 2013-04-10 ローム・アンド・ハース・エレクトロニック・マテリアルズ,エル.エル.シー. ポリマー、およびそれを含むフォトレジスト
JP4831324B2 (ja) 2006-07-06 2011-12-07 日産化学工業株式会社 スルホンを含有するレジスト下層膜形成組成物
US20110045406A1 (en) 2006-11-01 2011-02-24 State of Oregon acting by and through the State Board of Higher Education on behalf of Oregon Solution processed thin films and laminates, devices comprising such thin films and laminates, and method for their use and manufacture
JP2009229593A (ja) 2008-03-19 2009-10-08 Mitsuboshi Belting Ltd フォトマスク補修用インキ組成物及びフォトマスク補修方法
US20110293888A1 (en) 2010-06-01 2011-12-01 Stowers Jason K Patterned inorganic layers, radiation based patterning compositions and corresponding methods
CN102269929A (zh) 2010-06-01 2011-12-07 因普利亚公司 图案化的无机层、基于辐射的图案化组合物和相应方法
JP2018041099A (ja) 2010-06-01 2018-03-15 インプリア・コーポレイションInpria Corporation パターン形成された無機層、放射線によるパターン形成組成物、およびそれに対応する方法
US20120208127A1 (en) 2011-02-15 2012-08-16 Shin-Etsu Chemical Co., Ltd. Resist composition and patterning process
JP5708521B2 (ja) 2011-02-15 2015-04-30 信越化学工業株式会社 レジスト材料及びこれを用いたパターン形成方法
US20130005150A1 (en) 2011-06-28 2013-01-03 Shin-Etsu Chemical Co., Ltd. Composition for forming resist underlayer film and patterning process using the same
JP5650086B2 (ja) 2011-06-28 2015-01-07 信越化学工業株式会社 レジスト下層膜形成用組成物、及びパターン形成方法
KR20140121826A (ko) 2012-02-27 2014-10-16 인터내셔널 비지네스 머신즈 코포레이션 전자빔, 딥 자외선 및 극자외선 포토레지스트 적용을 위한 유기 코-리간드들을 갖는 메탈 퍼옥소 화합물들
US20130224652A1 (en) 2012-02-27 2013-08-29 International Business Machines Corporation Metal peroxo compounds with organic co-ligands for electron beam, deep uv and extreme uv photoresist applications
US20160116839A1 (en) 2014-10-23 2016-04-28 Inpria Corporation Organometallic solution based high resolution patterning compositions and corresponding methods
JP2018502173A (ja) 2014-10-23 2018-01-25 インプリア・コーポレイションInpria Corporation 有機金属溶液に基づいた高解像度パターニング組成物および対応する方法
WO2016140057A1 (ja) 2015-03-05 2016-09-09 Jsr株式会社 感放射線性組成物及びパターン形成方法
KR20170132726A (ko) 2015-04-01 2017-12-04 도레이 카부시키가이샤 감광성 수지 조성물, 도전성 패턴의 제조 방법, 기판, 터치패널 및 디스플레이
US20160310944A1 (en) 2015-04-21 2016-10-27 Jsr Corporation Method of producing microfluidic device, microfluidic device, and photosensitive resin composition
TWI684068B (zh) 2015-04-21 2020-02-01 日商Jsr股份有限公司 微流體裝置的製造方法、微流體裝置及微流體裝置製造用感光性樹脂組成物
US20170052449A1 (en) 2015-08-20 2017-02-23 Osaka University Chemically amplified resist material, pattern-forming method, compound, and production method of compound
KR20170022945A (ko) 2015-08-20 2017-03-02 고꾸리쯔 다이가꾸 호우징 오사까 다이가꾸 화학 증폭형 레지스트 재료, 패턴 형성 방법, 화합물 및 화합물의 제조 방법
US20170102612A1 (en) 2015-10-13 2017-04-13 Inpria Corporation Organotin oxide hydroxide patterning compositions, precursors, and patterning
CN108351594A (zh) 2015-10-13 2018-07-31 因普里亚公司 有机锡氧化物氢氧化物图案化组合物、前驱物及图案化
JP2019500490A (ja) 2015-10-13 2019-01-10 インプリア・コーポレイションInpria Corporation 有機スズオキシドヒドロキシドのパターン形成組成物、前駆体およびパターン形成
WO2017169440A1 (ja) 2016-03-28 2017-10-05 Jsr株式会社 感放射線性組成物及びパターン形成方法
US20190033713A1 (en) 2016-03-28 2019-01-31 Jsr Corporation Radiation-sensitive composition and pattern-forming method
JP2017207532A (ja) 2016-05-16 2017-11-24 東洋合成工業株式会社 レジスト組成物及びそれを用いたデバイスの製造方法
JP2018017780A (ja) 2016-07-25 2018-02-01 Jsr株式会社 感放射線性組成物及びパターン形成方法
US20180046086A1 (en) 2016-08-12 2018-02-15 Inpria Corporation Methods of reducing metal residue in edge bead region from metal-containing resists
WO2018043506A1 (ja) 2016-08-29 2018-03-08 Jsr株式会社 感放射線性組成物及びパターン形成方法
WO2018168221A1 (ja) 2017-03-13 2018-09-20 Jsr株式会社 感放射線性組成物及びパターン形成方法
WO2018179704A1 (ja) 2017-03-27 2018-10-04 Jsr株式会社 パターン形成方法
TW201920214A (zh) 2017-08-02 2019-06-01 加拿大商海星化工無限責任公司 有機金屬化合物及用於沉積高純度氧化錫的方法
US20190337969A1 (en) 2017-08-02 2019-11-07 Seastar Chemicals Inc. Organometallic compounds and methods for the deposition of high purity tin oxide
TW201924927A (zh) 2017-11-17 2019-07-01 日商三井化學股份有限公司 半導體元件中間體、含金屬膜形成用組成物、半導體元件中間體的製造方法、半導體元件的製造方法
US20190384171A1 (en) 2018-06-15 2019-12-19 Taiwan Semiconductor Manufacturing Co., Ltd. Photoresist composition and method of forming photoresist pattern
KR20200005370A (ko) 2018-07-06 2020-01-15 삼성에스디아이 주식회사 반도체 레지스트용 조성물 및 이를 이용한 패턴 형성 방법
JP2020021071A (ja) 2018-07-31 2020-02-06 三星エスディアイ株式会社Samsung SDI Co., Ltd. 半導体レジスト用組成物およびこれを用いたパターン形成方法
US20200041901A1 (en) 2018-07-31 2020-02-06 Samsung Sdi Co., Ltd. Semiconductor resist composition, and method of forming patterns using the composition
US20200041896A1 (en) 2018-07-31 2020-02-06 Samsung Sdi Co., Ltd. Semiconductor resist composition, and method of forming patterns using the composition
TW202007691A (zh) 2018-07-31 2020-02-16 南韓商三星Sdi股份有限公司 半導體抗蝕劑組成物及使用所述組成物形成圖案的方法及系統
US20200117085A1 (en) * 2018-07-31 2020-04-16 Samsung Sdi Co., Ltd. Semiconductor resist composition, and method of forming patterns using the composition
KR20200018080A (ko) 2018-08-10 2020-02-19 삼성에스디아이 주식회사 반도체 레지스트용 조성물 및 이를 이용한 패턴 형성 방법
US20210311387A1 (en) * 2020-04-02 2021-10-07 Samsung Sdi Co., Ltd. Semiconductor photoresist composition and method of forming patterns using the composition
US20210356861A1 (en) * 2020-05-12 2021-11-18 Samsung Sdi Co., Ltd. Semiconductor photoresist composition and method of forming patterns using the composition

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
Anderson, Christopher N. et al., "The Sematech Berkeley MET: extending EUV learning down to 16-nm half pitch", Proc. of SPIE 7969, Extreme Ultraviolet (EUV) Lithography II, 79690R, Apr. 5, 2011, 6pp.
Japanese Office Action for JP Application No. 2021-056503 dated Mar. 29, 2022, 3 pages.
JPO Office action dated May 25, 2021 issued in corresponding JP Application No. 2020-080534, 4 pages.
Notice of Reason for Rejection for JP Application No. 2021-078454 dated Jun. 7, 2022, 3 pages.
Okamoto, Hiroshi et al., "Peroxypolytungstic acids: A new inorganic resist material", Applied Physics Letters, Aug. 4, 1986, 49 (5), pp. 298-300.
Stowers, Jason K. et al., "Directly patterned inorganic hardmaskfor EUV lithography,", Proc. of SPIE, vol. 7969, Extreme Ultraviolet (EUV) Lithography II, 796915, 2011, 11pp.
Taiwanese Office Action dated Nov. 8, 2021, in Taiwanese Patent Application No. 109114182 and accompanying Search Report (6 pages).
Taiwanese Office Action for TW Application No. 110111615 dated Apr. 29, 2022, 5 pages.
TW Office Action and Search Report dated Nov. 16, 2021 in corresponding Taiwanese Patent Application No. 110116951, 7 pages.
U.S. Restriction Requirement dated Jan. 3, 2023, issued in U.S. Appl. No. 17/306,820 (6 pages).

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210311387A1 (en) * 2020-04-02 2021-10-07 Samsung Sdi Co., Ltd. Semiconductor photoresist composition and method of forming patterns using the composition
US20220194968A1 (en) * 2020-12-18 2022-06-23 Samsung Sdi Co., Ltd. Semiconductor photoresist composition, method for preparing thereof and method of forming patterns using the composition

Also Published As

Publication number Publication date
JP2020184074A (ja) 2020-11-12
US20200348591A1 (en) 2020-11-05
CN111856879A (zh) 2020-10-30
JP7025474B2 (ja) 2022-02-24

Similar Documents

Publication Publication Date Title
US11789362B2 (en) Semiconductor resist composition, and method of forming patterns using the composition
US11609494B2 (en) Semiconductor photoresist composition and method of forming patterns using the composition
US20210311387A1 (en) Semiconductor photoresist composition and method of forming patterns using the composition
TWI772785B (zh) 半導體光阻組成物及使用組成物形成圖案的方法
US11092890B2 (en) Semiconductor resist composition, and method of forming patterns using the composition
US20210356861A1 (en) Semiconductor photoresist composition and method of forming patterns using the composition
KR20220088011A (ko) 반도체 포토레지스트용 조성물, 이의 제조 방법 및 이를 이용한 패턴 형성 방법
US11415885B2 (en) Semiconductor photoresist composition, and method of forming patterns using the composition
KR102577300B1 (ko) 반도체 포토레지스트용 조성물 및 이를 이용한 패턴 형성 방법
US20240027899A1 (en) Semiconductor photoresist composition and method of forming patterns using the composition
US20230223262A1 (en) Composition for semiconductor photoresist, and pattern formation method using same
KR102577299B1 (ko) 반도체 포토레지스트용 조성물 및 이를 이용한 패턴 형성 방법
KR102573328B1 (ko) 반도체 포토레지스트용 조성물 및 이를 이용한 패턴 형성 방법
US20240168375A1 (en) Semiconductor photoresist composition and method of forming patters using the composition
KR102706491B1 (ko) 반도체 포토레지스트용 조성물 및 이를 이용한 패턴 형성 방법
CN111856879B (zh) 半导体光致抗蚀剂组合物及使用组合物形成图案的方法
KR102678333B1 (ko) 반도체 포토레지스트용 조성물 및 이를 이용한 패턴 형성 방법
KR20240040479A (ko) 반도체 포토레지스트용 조성물 및 이를 이용한 패턴 형성 방법
KR20240025957A (ko) 반도체 포토레지스트용 조성물 및 이를 이용한 패턴 형성 방법
KR20240071798A (ko) 반도체 포토레지스트용 조성물 및 이를 이용한 패턴 형성 방법
KR20210060219A (ko) 반도체 포토 레지스트용 조성물 및 이를 이용한 패턴 형성 방법

Legal Events

Date Code Title Description
AS Assignment

Owner name: SAMSUNG SDI CO., LTD., KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KIM, JAEHYUN;MOON, KYUNG SOO;CHAE, SEUNGYONG;AND OTHERS;REEL/FRAME:052505/0398

Effective date: 20200401

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STCF Information on status: patent grant

Free format text: PATENTED CASE