WO2017169440A1 - 感放射線性組成物及びパターン形成方法 - Google Patents

感放射線性組成物及びパターン形成方法 Download PDF

Info

Publication number
WO2017169440A1
WO2017169440A1 PCT/JP2017/007484 JP2017007484W WO2017169440A1 WO 2017169440 A1 WO2017169440 A1 WO 2017169440A1 JP 2017007484 W JP2017007484 W JP 2017007484W WO 2017169440 A1 WO2017169440 A1 WO 2017169440A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
radiation
sensitive composition
acid
atom
Prior art date
Application number
PCT/JP2017/007484
Other languages
English (en)
French (fr)
Inventor
一樹 笠原
コズマ ヴァシリキ
ユ ムフェイ
ピー. ジャンネリス エマニュエル
ケー. オーバー クリストファー
Original Assignee
Jsr株式会社
コーネル ユニバーシティー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社, コーネル ユニバーシティー filed Critical Jsr株式会社
Priority to JP2018508811A priority Critical patent/JPWO2017169440A1/ja
Priority to KR1020187027321A priority patent/KR20180121550A/ko
Publication of WO2017169440A1 publication Critical patent/WO2017169440A1/ja
Priority to US16/145,499 priority patent/US20190033713A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0042Photosensitive materials with inorganic or organometallic light-sensitive compounds not otherwise provided for, e.g. inorganic resists
    • G03F7/0043Chalcogenides; Silicon, germanium, arsenic or derivatives thereof; Metals, oxides or alloys thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0045Photosensitive materials with organic non-macromolecular light-sensitive compounds not otherwise provided for, e.g. dissolution inhibitors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/16Coating processes; Apparatus therefor
    • G03F7/162Coating on a rotating support, e.g. using a whirler or a spinner
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/16Coating processes; Apparatus therefor
    • G03F7/168Finishing the coated layer, e.g. drying, baking, soaking
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • G03F7/2004Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image characterised by the use of a particular light source, e.g. fluorescent lamps or deep UV light
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2037Exposure with X-ray radiation or corpuscular radiation, through a mask with a pattern opaque to that radiation
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/30Imagewise removal using liquid means
    • G03F7/32Liquid compositions therefor, e.g. developers
    • G03F7/322Aqueous alkaline compositions
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/30Imagewise removal using liquid means
    • G03F7/32Liquid compositions therefor, e.g. developers
    • G03F7/325Non-aqueous compositions

Definitions

  • the present invention relates to a radiation-sensitive composition and a pattern forming method.
  • Common radiation-sensitive compositions used for fine processing by lithography are irradiation with far-ultraviolet rays such as ArF excimer laser light and KrF excimer laser light, electromagnetic waves such as extreme ultraviolet rays (EUV), and charged particle beams such as electron beams.
  • An acid is generated in the exposed portion, and a chemical reaction using this acid as a catalyst causes a difference in dissolution rate in the developer between the exposed portion and the unexposed portion, thereby forming a pattern on the substrate.
  • the formed pattern can be used as a mask or the like in substrate processing.
  • Such a radiation-sensitive composition is required to improve resist performance as the processing technique becomes finer.
  • the types of polymers, acid generators, and other components used in the composition, the molecular structure, and the like have been studied, and further their combinations have been studied in detail (Japanese Patent Laid-Open No. 11-125907, (See JP-A-8-146610 and JP-A-2000-298347).
  • pattern miniaturization has progressed to the level of 40 nm or less at present, but the radiation-sensitive composition is required to have higher resist performance, and in particular, a pattern with excellent resolution can be formed with high sensitivity. Is required.
  • the present invention has been made based on the above-described circumstances, and an object thereof is to provide a radiation-sensitive composition and a pattern forming method capable of forming a pattern having excellent resolution with high sensitivity.
  • the invention made in order to solve the above-mentioned problem is a metal-containing component (hereinafter referred to as “[A] metal-containing component”) including particles mainly composed of a metal oxide (hereinafter also referred to as “[x] particles”). And an organic solvent (hereinafter also referred to as “[B] organic solvent”), and the [A] metal-containing component contains two or more metal atoms, It is a radiation sensitive composition whose content rate of the said metal atom with respect to the sum total of a metal atom is 50 atomic% or more.
  • Another invention made in order to solve the above-described problems includes a step of forming a film by coating the radiation-sensitive composition on a substrate, a step of exposing the film, and developing the exposed film.
  • a pattern forming method is also possible.
  • metal oxide refers to a compound containing at least a metal atom and an oxygen atom.
  • the “main component” is a component having the largest content, for example, a component having a content of 50% by mass or more.
  • Particle refers to a substance having an average particle diameter of, for example, 1 nm or more.
  • Semimetal atom refers to boron, silicon, germanium and arsenic.
  • a pattern having excellent resolution can be formed with high sensitivity. Accordingly, these can be suitably used for semiconductor device processing processes and the like that are expected to be further miniaturized in the future.
  • the radiation-sensitive composition contains [A] a metal-containing component and [B] an organic solvent.
  • the radiation-sensitive composition may contain a [C] radiation-sensitive acid generator (hereinafter also referred to as “[C] acid generator”) as a suitable component, and the range that does not impair the effects of the present invention. In addition, you may contain another arbitrary component.
  • the content rate of the said metal atom with respect to the sum total of the metal atom and metalloid atom in the said radiation sensitive composition is 50 atomic% or more.
  • the radiation-sensitive composition contains [A] a metal-containing component and [B] an organic solvent, [A] the metal-containing component contains [x] particles, and contains two or more metal atoms, When the content of the metal atom relative to the total of metal atoms and metalloid atoms in the composition is equal to or higher than the lower limit, a pattern with excellent resolution can be formed with high sensitivity.
  • the reason why the radiation-sensitive composition has the above-described configuration provides the above-mentioned effect is not necessarily clear, but can be estimated as follows, for example.
  • the metal atom contained in the [A] metal-containing component absorbs exposure light and secondary electrons are emitted, and the structure of the [A] metal-containing component in the exposed area is changed by the action of the secondary electrons and the development. It is considered that the pattern can be formed with high sensitivity by changing the solubility in the liquid. Further, since the [A] metal-containing component contains two or more kinds of metal atoms, the symmetry of the [A] metal-containing component such as [x] particles is lowered, and as a result, an amorphous state suitable for lithography. It is thought that it is easy to maintain the image and can exhibit excellent resolution.
  • the content rate of the said metal atom with respect to the sum total of the metal atom and metalloid atom in the said radiation sensitive composition it is 50 atomic%, 70 atomic% is preferable, 90 atomic% is more preferable, 99 atomic% Is more preferable.
  • the content of the metal atom may be 100 atomic%.
  • the metal-containing component is a component containing [x] particles and containing two or more metal atoms.
  • the metal-containing component may include only [x] particles as a component containing a metal atom, and other than [x] particles (hereinafter referred to as components other than [x] particles) , Also referred to as “[y] component”).
  • the metal-containing component contains only [x] particles, the [x] particles contain two or more kinds of metal atoms.
  • the metal-containing component includes an [x] particle and a [y] component
  • the [x] particle and the [y] component each include one or more metal atoms
  • the [x] particle and the [y] component As a whole, it contains two or more metals.
  • examples of the form of the [A] metal-containing component include (i) and (ii) below.
  • (I) Includes only [x] particles having two or more metal atoms.
  • (Ii) [x] particles having one or more types of metal atoms and [y] components having one or more types of metal atoms, and the [x] particles and the [y] components as a whole include two or more types of metals including.
  • (A) is preferable from the viewpoint that the symmetry in the [A] metal-containing component can be further reduced, and the sensitivity and resolution of the radiation-sensitive composition can be further improved.
  • Examples of metal atoms contained in the metal-containing component include Group 3 to Group 16 metal atoms.
  • Examples of Group 3 metal atoms include scandium, yttrium, lanthanum, cerium, and the like.
  • Examples of Group 4 metal atoms include titanium, zirconium, hafnium, and the like.
  • Examples of Group 5 metal atoms include vanadium, niobium, and tantalum.
  • Examples of Group 6 metal atoms include chromium, molybdenum, and tungsten.
  • Examples of Group 7 metal atoms include manganese and rhenium.
  • Group 8 metal atoms include iron, ruthenium, osmium, Examples of Group 9 metal atoms include cobalt, rhodium, iridium, Group 10 metal atoms include nickel, palladium, platinum, and the like. Examples of Group 11 metal atoms include copper, silver, and gold. Group 12 metal atoms include zinc, cadmium, mercury, etc. Examples of Group 13 metal atoms include aluminum, gallium, and indium. Group 14 metal atoms include germanium, tin, lead, etc. Antimony, bismuth, etc. as group 15 metal atoms, Examples of the Group 16 metal atom include tellurium.
  • metal atoms contained in the metal-containing component are Group 3, Group 4, Group 9, Group 10, Group 11, Group 12, Group 13, Group 14, Group 15 and Group 16 metal atoms are preferred, with lanthanum, yttrium, titanium, zirconium, hafnium, cobalt, nickel, platinum, copper, silver, zinc, indium, tin, antimony, bismuth and tellurium being more preferred.
  • the metal-containing component contains the metal atom, the generation of secondary electrons can be more effectively promoted, and the exposed portion and the unexposed portion of the film formed by the radiation-sensitive composition can be used. The contrast of the dissolution rate with respect to the developer can be further improved.
  • the two or more metal atoms contained in the metal-containing component are one or more first metal atoms selected from titanium, zirconium, hafnium, zinc, tin and indium (hereinafter “metal atom (1)”) And a combination of at least one second metal atom selected from lanthanum and yttrium (hereinafter also referred to as “metal atom (2)”) is preferable.
  • metal atom (1) a combination of at least one second metal atom selected from lanthanum and yttrium
  • metal atom (2) lanthanum and yttrium
  • the metal atom (1) a combination containing at least one selected from zirconium and hafnium is preferable, and a combination of zirconium and lanthanum and a combination of hafnium and yttrium are more preferable.
  • the content rate of a metal atom (2) 1 atomic% is preferable with respect to the sum total of a metal atom (1) and a metal atom (2), 3 atomic% is more preferable, and 5 atomic% is More preferred is 10 atomic%.
  • As an upper limit of the said content rate 50 atomic% is preferable, 40 atomic% is more preferable, 30 atomic% is further more preferable, 25 atomic% is especially preferable.
  • the two or more metal atoms contained in the metal-containing component are selected from titanium, cobalt, nickel, copper, silver, platinum, zirconium, zinc, tin, indium, tellurium, bismuth, antimony, and hafnium.
  • a third metal atom (hereinafter also referred to as “metal atom (3)”) which is a species or more is preferable, and two or more types selected from zirconium, zinc, tin, indium and hafnium are more preferable.
  • metal atom (3) which is a species or more is preferable, and two or more types selected from zirconium, zinc, tin, indium and hafnium are more preferable.
  • the content rate of a metal atom (3) 50 atomic% is preferable with respect to all the metal atoms in the said radiation sensitive composition, 60 atomic% is more preferable, and 70 atomic% is further more preferable. .
  • As an upper limit of the said content rate it is 100 atomic%, for example.
  • [[X] particles] [X] Particles are particles whose main component is a metal oxide.
  • grains have a metal oxide as a main component, it has contributed also to the improvement of the etching tolerance of the pattern formed from the said radiation sensitive composition.
  • the lower limit of the average particle diameter of [x] particles is preferably 1.1 nm, and more preferably 1.2 nm.
  • the upper limit of the average particle diameter is preferably 20 nm, more preferably 10 nm, still more preferably 3.0 nm, and particularly preferably 2.5 nm.
  • Metal oxide examples of the metal atom constituting the metal oxide contained in the [x] particles include those exemplified as the metal atom constituting the above-mentioned [A] metal-containing component.
  • the metal oxide may contain other atoms other than metal atoms and oxygen atoms.
  • the other atoms include metalloid atoms such as boron and germanium, carbon atoms, hydrogen atoms, nitrogen atoms, phosphorus atoms, sulfur atoms, and halogen atoms.
  • the content (mass%) of the metalloid atom in the metal oxide is usually smaller than the metal atom content.
  • the lower limit of the total content of metal atoms and oxygen atoms in the metal oxide is preferably 30% by mass, more preferably 50% by mass, further preferably 70% by mass, and particularly preferably 90% by mass.
  • the upper limit of the total content of the metal atoms and oxygen atoms is preferably 99.9% by mass.
  • organic acid refers to an organic compound that exhibits acidity
  • organic compound refers to a compound having at least one carbon atom.
  • the particles contain a metal oxide composed of a metal atom and an [a] organic acid, thereby further improving the sensitivity and resolution of the radiation-sensitive composition.
  • the reason why the radiation-sensitive composition has the above-described configuration provides the above-mentioned effect is not necessarily clear, but can be estimated as follows, for example. That is, it is considered that the [a] organic acid is present in the vicinity of the surface of the [x] particle due to the interaction with the metal atom, thereby improving the dispersibility of the [x] particle in the solvent. As a result, it is considered that the sensitivity of the radiation-sensitive composition is further improved.
  • the lower limit of the pKa of the organic acid is preferably 0, more preferably 1, more preferably 1.5, and particularly preferably 3.
  • the upper limit of the pKa is preferably 7, more preferably 6, more preferably 5.5, and particularly preferably 5.
  • the pKa of the [a] organic acid means the first acid dissociation constant, that is, the logarithmic value of the dissociation constant with respect to the dissociation of the first proton.
  • the organic acid may be a low molecular compound or a high molecular compound, but a low molecular compound is preferable from the viewpoint of adjusting the interaction with the metal atom to a moderately weak one.
  • the low molecular compound means a compound having a molecular weight of 1,500 or less
  • the high molecular compound means a compound having a molecular weight of more than 1,500.
  • the lower limit of the molecular weight of the organic acid is preferably 50, more preferably 80.
  • the upper limit of the molecular weight is preferably 1,000, more preferably 500, still more preferably 400, and particularly preferably 300.
  • the dispersibility of the [x] particles can be adjusted to a more appropriate one.
  • the sensitivity and resolution of the radiation-sensitive composition can be improved. It can be improved.
  • organic acid examples include carboxylic acid, sulfonic acid, sulfinic acid, organic phosphinic acid, organic phosphonic acid, phenols, enol, thiol, acid imide, oxime, sulfonamide and the like.
  • carboxylic acid examples include formic acid, acetic acid, propionic acid, butanoic acid, pentanoic acid, hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, 2-ethylhexanoic acid, oleic acid, acrylic acid, methacrylic acid, trans-2,3-dimethylacrylic acid, stearic acid, linoleic acid, linolenic acid, arachidonic acid, salicylic acid, benzoic acid, p-aminobenzoic acid, monochloroacetic acid, dichloroacetic acid, trichloroacetic acid, trifluoroacetic acid, pentafluoropropionic acid Monocarboxylic acids such as gallic acid and shikimic acid; Dicarboxylic acids such as oxalic acid, malonic acid, maleic acid, methylmalonic acid, fumaric acid, a
  • sulfonic acid examples include benzenesulfonic acid and p-toluenesulfonic acid.
  • sulfinic acid examples include benzenesulfinic acid and p-toluenesulfinic acid.
  • organic phosphinic acid examples include diethylphosphinic acid, methylphenylphosphinic acid, diphenylphosphinic acid and the like.
  • organic phosphonic acid examples include methylphosphonic acid, ethylphosphonic acid, t-butylphosphonic acid, cyclohexylphosphonic acid, and phenylphosphonic acid.
  • phenols examples include monovalent phenols such as phenol, cresol, 2,6-xylenol, and naphthol; Divalent phenols such as catechol, resorcinol, hydroquinone, 1,2-naphthalenediol; Examples thereof include trivalent or higher phenols such as pyrogallol and 2,3,6-naphthalenetriol.
  • Examples of the enol include 2-hydroxy-3-methyl-2-butene and 3-hydroxy-4-methyl-3-hexene.
  • Examples of the thiol include mercaptoethanol and mercaptopropanol.
  • the acid imide examples include carboxylic acid imides such as maleimide and succinimide; Examples thereof include sulfonic acid imides such as di (trifluoromethanesulfonic acid) imide and di (pentafluoroethanesulfonic acid) imide.
  • Examples of the oxime include aldoximes such as benzaldoxime and salicylaldoxime; Examples thereof include ketoximes such as diethyl ketoxime, methyl ethyl ketoxime, and cyclohexanone oxime.
  • sulfonamide examples include methylsulfonamide, ethylsulfonamide, benzenesulfonamide, and toluenesulfonamide.
  • the organic acid is preferably a carboxylic acid, more preferably a monocarboxylic acid, and even more preferably methacrylic acid and benzoic acid from the viewpoint of further improving the sensitivity and resolution of the radiation-sensitive composition.
  • the metal oxide comprised by a metal atom and [a] organic acid is preferable,
  • the metal oxide comprised by 2 or more types of metal atoms and [a] organic acid is more preferable, zinc or More preferred is a metal oxide composed of hafnium, zinc, indium or tin, and methacrylic acid or benzoic acid, and a metal oxide composed of zirconium, zinc, indium or tin and methacrylic acid, hafnium, Particularly preferred is a metal oxide composed of zinc, indium or tin and benzoic acid.
  • the lower limit of the metal oxide content in the [x] particles is preferably 60% by mass, more preferably 80% by mass, and still more preferably 95% by mass. Moreover, 100 mass% may be sufficient as the content rate of the said metal oxide.
  • the sensitivity and resolution of the said radiation sensitive composition can be improved more.
  • the said radiation sensitive composition may contain only 1 type of the said metal oxide, and may contain 2 or more types.
  • the lower limit of the content of [a] organic acid in the [x] particles is preferably 1% by mass. 5 mass% is more preferable and 10 mass% is further more preferable.
  • an upper limit of the content rate of [a] organic acid 90 mass% is preferable, 70 mass% is more preferable, and 50 mass% is further more preferable.
  • the [x] particles may contain only one type of [a] organic acid, or may contain two or more types.
  • the lower limit of the content of the [x] particles with respect to the [A] metal-containing component is preferably 10% by mass, more preferably 50% by mass, further preferably 70% by mass, and particularly preferably 85% by mass.
  • the upper limit of the content of the [x] particles with respect to the [A] metal-containing component is preferably 99% by mass, more preferably 95% by mass.
  • the [x] particles can be obtained, for example, by [b] a method of performing a hydrolytic condensation reaction using a metal-containing compound, or [b] a method of performing a ligand exchange reaction using a metal-containing compound.
  • the “hydrolysis condensation reaction” means that [b] the hydrolyzable group of the metal-containing compound is hydrolyzed to be converted to —OH, and the obtained two —OH are dehydrated and condensed to —O— Refers to the reaction in which is formed.
  • the metal-containing compound includes a metal compound (I) having a hydrolyzable group, a hydrolyzate of the metal compound (I) having a hydrolyzable group, and a hydrolysis of the metal compound (I) having a hydrolyzable group. It is a condensate or a combination thereof.
  • Metal compound (I) can be used individually by 1 type or in combination of 2 or more types.
  • hydrolyzable group examples include a halogen atom, an alkoxy group, and an acyloxy group.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • alkoxy group examples include a methoxy group, an ethoxy group, an n-propoxy group, an i-propoxy group, and a butoxy group.
  • acyloxy group examples include an acetoxy group, an ethylyloxy group, a propionyloxy group, a butyryloxy group, a t-butyryloxy group, a t-amylyloxy group, an n-hexane carbonyloxy group, and an n-octane carbonyloxy group.
  • an alkoxy group and an acyloxy group are preferable, and an isopropoxy group and an acetoxy group are more preferable.
  • the hydrolysis condensate of the metal compound (I) has a hydrolyzable group unless the effects of the present invention are impaired. It may be a hydrolysis-condensation product of the metal (I) having and a compound containing a metalloid atom. That is, the hydrolysis condensate of metal compound (I) may contain a metalloid atom within a range not impairing the effects of the present invention. Examples of the metalloid atom include boron, germanium, antimony, and arsenic.
  • the content rate of the metalloid atom in the hydrolysis condensate of metal compound (I) is usually less than 50 atomic% with respect to the total of metal atoms and metalloid atoms in the hydrolysis condensate.
  • As an upper limit of the content rate of the said half-metal atom 30 atomic% is preferable with respect to the sum total of the metal atom and half-metal atom in the said hydrolysis-condensation product, and 10 atomic% is more preferable.
  • Examples of the metal compound (I) include a compound represented by the following formula (1) (hereinafter also referred to as “metal compound (I-1)”).
  • metal compound (I-1) a compound represented by the following formula (1)
  • a stable metal oxide can be formed, and as a result, the sensitivity and resolution of the radiation-sensitive composition can be further improved.
  • M is a metal atom.
  • L is a ligand.
  • a is an integer of 0-2.
  • Y is a hydrolyzable group selected from a halogen atom, an alkoxy group and an acyloxy group.
  • b is an integer of 2 to 6.
  • a plurality of Y may be the same or different.
  • L is a ligand not corresponding to Y.
  • Examples of the metal atom represented by M include the same metal atoms as exemplified as the metal atoms constituting the metal oxide contained in the [x] particles.
  • Examples of the ligand represented by L include a monodentate ligand and a polydentate ligand.
  • Examples of the monodentate ligand include hydroxo ligand, carboxy ligand, amide ligand, ammonia and the like.
  • amide ligand examples include unsubstituted amide ligand (NH 2 ), methylamide ligand (NHMe), dimethylamide ligand (NMe 2 ), diethylamide ligand (NEt 2 ), and dipropylamide. And a ligand (NPr 2 ).
  • polydentate ligand examples include hydroxy acid ester, ⁇ -diketone, ⁇ -keto ester, ⁇ -dicarboxylic acid ester, hydrocarbon having ⁇ bond, and diphosphine.
  • hydroxy acid ester examples include glycolic acid ester, lactic acid ester, 2-hydroxycyclohexane-1-carboxylic acid ester, and salicylic acid ester.
  • Examples of the ⁇ -diketone include 2,4-pentanedione, 3-methyl-2,4-pentanedione, 3-ethyl-2,4-pentanedione, and the like.
  • ⁇ -ketoester examples include acetoacetate ester, ⁇ -alkyl substituted acetoacetate ester, ⁇ -ketopentanoic acid ester, benzoyl acetate ester, 1,3-acetone dicarboxylic acid ester and the like.
  • Examples of the ⁇ -dicarboxylic acid ester include malonic acid diester, ⁇ -alkyl substituted malonic acid diester, ⁇ -cycloalkyl substituted malonic acid diester, ⁇ -aryl substituted malonic acid diester, and the like.
  • hydrocarbon having a ⁇ bond examples include chain olefins such as ethylene and propylene; Cyclic olefins such as cyclopentene, cyclohexene, norbornene; Chain dienes such as butadiene and isoprene; Cyclic dienes such as cyclopentadiene, methylcyclopentadiene, pentamethylcyclopentadiene, cyclohexadiene, norbornadiene; Examples thereof include aromatic hydrocarbons such as benzene, toluene, xylene, hexamethylbenzene, naphthalene, and indene.
  • chain olefins such as ethylene and propylene
  • Cyclic olefins such as cyclopentene, cyclohexene, norbornene
  • Chain dienes such as butadiene and isoprene
  • Cyclic dienes such as cyclopentadiene, methylcyclopen
  • diphosphine examples include 1,1-bis (diphenylphosphino) methane, 1,2-bis (diphenylphosphino) ethane, 1,3-bis (diphenylphosphino) propane, and 2,2′-bis (diphenyl). Phosphino) -1,1′-binaphthyl, 1,1′-bis (diphenylphosphino) ferrocene and the like.
  • halogen atom, alkoxy group and acyloxy group represented by Y can be the same as those described for the hydrolyzable group.
  • B is preferably 3 or 4, more preferably 4.
  • the metal-containing compound is preferably a metal alkoxide that is neither hydrolyzed nor hydrolyzed and a metal acyloxide that is neither hydrolyzed nor hydrolyzed.
  • Metal-containing compounds include zirconium (IV) n-butoxide, zirconium (IV) n-propoxide, zirconium (IV) isopropoxide, hafnium (IV) ethoxide, indium (III) isopropoxide, hafnium ( IV) Isopropoxide, tantalum (V) ethoxide, tungsten (V) methoxide, tungsten (VI) ethoxide, iron chloride, zinc (II) isopropoxide, zinc acetate dihydrate, titanium (IV) n-butoxide, Titanium (IV) n-propoxide, Zirconium (IV) di-n-butoxide bis (2,4-pentanedionate), Titanium (IV) tri-n-butoxide stearate, bis (cyclopentadienyl) Hafnium (IV) dichloride, bis (cyclopentadienyl) Ngsten (IV) dichloride, di
  • zirconium (IV) isopropoxide hafnium (IV) isopropoxide, zinc (II) isopropoxide, indium (III) isopropoxide, tin (IV) isopropoxide, lanthanum oxide (III) And yttrium oxide (III) is preferred.
  • Examples of a method for performing a hydrolysis-condensation reaction using a metal-containing compound include a method in which a [b] metal-containing compound is subjected to a hydrolysis-condensation reaction in a solvent containing water. In this case, you may add the other compound which has a hydrolysable group as needed.
  • the lower limit of the amount of water used for this hydrolysis-condensation reaction is preferably 0.2-fold mol, more preferably 1-fold mol, and 3-fold mol based on the hydrolyzable group of [b] metal-containing compound. Further preferred.
  • the upper limit of the amount of water is preferably 20 times mol, more preferably 15 times mol, and even more preferably 10 times mol.
  • Examples of a method for performing a ligand exchange reaction using a metal-containing compound include a method of mixing [b] a metal-containing compound and [a] an organic acid. In this case, it may be mixed in a solvent or may be mixed without using a solvent. Moreover, in the said mixing, you may add bases, such as a triethylamine, as needed. The amount of the base added is, for example, from 1 part by mass to 200 parts by mass with respect to 100 parts by mass of the total amount of [b] metal-containing compound and [a] organic acid.
  • [A] When using [a] organic acid for the synthesis
  • the upper limit of the amount [a] of the organic acid used is preferably 1,000 parts by weight, more preferably 700 parts by weight, and even more preferably 200 parts by weight with respect to 100 parts by weight of the [b] metal-containing compound. 100 parts by mass is particularly preferred.
  • the usage-amount of said [a] organic acid into the said range By making the usage-amount of said [a] organic acid into the said range, the content rate of [a] organic acid in the [x] particle
  • a compound that can be a multidentate ligand represented by L in the compound of the above formula (1) or a cross-linked ligand A compound that can be a ligand may be added.
  • the compound that can be a bridging ligand include compounds having a plurality of hydroxy groups, isocyanate groups, amino groups, ester groups, and amide groups.
  • the solvent used for the synthesis reaction of [x] particles is not particularly limited, and for example, the same solvent as exemplified as the [B] organic solvent described later can be used.
  • alcohol solvents, ether solvents, ester solvents and hydrocarbon solvents are preferable, alcohol solvents, ether solvents and ester solvents are more preferable, polyhydric alcohol partial ether solvents, monocarboxylic acids.
  • Ester solvents and cyclic ether solvents are more preferred, with propylene glycol monoethyl ether, ethyl acetate and tetrahydrofuran being particularly preferred.
  • the solvent used may be removed after the reaction, but may be used as it is as the [B] organic solvent of the radiation-sensitive composition without being removed after the reaction. it can.
  • the lower limit of the temperature for the synthesis reaction of [x] particles is preferably 0 ° C, more preferably 10 ° C.
  • 150 degreeC is preferable and 100 degreeC is more preferable.
  • the lower limit of the synthesis reaction time of [x] particles is preferably 1 minute, more preferably 10 minutes, and even more preferably 1 hour.
  • the upper limit of the time is preferably 100 hours, more preferably 50 hours, and even more preferably 10 hours.
  • the [y] component is a [A] metal-containing component other than [x] particles.
  • Examples of the [y] component include complexes containing metal atoms, metal salts, and the like.
  • Examples of the complex include a compound having a metal atom and a ligand.
  • Examples of the ligand include those similar to the ligand represented by L of the metal compound (I-1).
  • Examples of the metal salt include compounds having a metal cation and an anion.
  • Examples of the anion include a sulfate anion, a sulfonate anion, a nitrate anion, a phosphate anion, a sulfonimide anion, and a halide anion.
  • Examples of the halide anion include a fluoride anion, a chloride anion, a bromide anion, and an iodide anion.
  • the lower limit of the content of the [y] component is preferably 1 part by mass and more preferably 10 parts by mass with respect to 100 parts by mass of the [x] particles. 3 parts by mass is more preferable, and 50 parts by mass is particularly preferable. As an upper limit of the said content, 500 mass parts is preferable, 300 mass parts is more preferable, 200 mass parts is more preferable, 100 mass parts is especially preferable.
  • the radiation-sensitive composition may contain only one [y] component or two or more.
  • the lower limit of the content of the metal-containing component is preferably 70% by mass, more preferably 80% by mass, and still more preferably 85% by mass with respect to the total solid content in the radiation-sensitive composition.
  • 100 mass% is preferable, 99 mass% is more preferable, and 95 mass% is further more preferable.
  • the “solid content” in the radiation-sensitive composition refers to the sum of components other than [B] organic solvent.
  • Organic solvent is not particularly limited as long as it is a solvent that can dissolve or disperse at least the [A] metal-containing component and optional components contained as necessary. These may use 1 type and may use 2 or more types together.
  • organic solvent examples include alcohol solvents, ether solvents, ketone organic solvents, amide solvents, ester organic solvents, hydrocarbon solvents, and the like.
  • alcohol solvents examples include aliphatic monoalcohol solvents having 1 to 18 carbon atoms such as 4-methyl-2-pentanol and n-hexanol; An alicyclic monoalcohol solvent having 3 to 18 carbon atoms such as cyclohexanol; A polyhydric alcohol solvent having 2 to 18 carbon atoms such as 1,2-propylene glycol; Examples thereof include polyhydric alcohol partial ether solvents having 3 to 19 carbon atoms such as propylene glycol monomethyl ether.
  • ether solvents include dialkyl ether solvents such as diethyl ether, dipropyl ether, dibutyl ether, dipentyl ether, diisoamyl ether, dihexyl ether, and diheptyl ether; Cyclic ether solvents such as tetrahydrofuran and tetrahydropyran; And aromatic ring-containing ether solvents such as diphenyl ether and anisole.
  • dialkyl ether solvents such as diethyl ether, dipropyl ether, dibutyl ether, dipentyl ether, diisoamyl ether, dihexyl ether, and diheptyl ether
  • Cyclic ether solvents such as tetrahydrofuran and tetrahydropyran
  • aromatic ring-containing ether solvents such as diphenyl ether and anisole.
  • ketone solvent examples include acetone, methyl ethyl ketone, methyl-n-propyl ketone, methyl-n-butyl ketone, diethyl ketone, methyl-iso-butyl ketone, 2-heptanone, ethyl-n-butyl ketone, methyl-n-hexyl ketone, Chain ketone solvents such as di-iso-butyl ketone and trimethylnonanone: Cyclic ketone solvents such as cyclopentanone, cyclohexanone, cycloheptanone, cyclooctanone and methylcyclohexanone: Examples include 2,4-pentanedione, acetonylacetone, acetophenone, and the like.
  • amide solvent examples include cyclic amide solvents such as N, N′-dimethylimidazolidinone and N-methylpyrrolidone; Examples thereof include chain amide solvents such as N-methylformamide, N, N-dimethylformamide, N, N-diethylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, and N-methylpropionamide.
  • cyclic amide solvents such as N, N′-dimethylimidazolidinone and N-methylpyrrolidone
  • chain amide solvents such as N-methylformamide, N, N-dimethylformamide, N, N-diethylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, and N-methylpropionamide.
  • ester solvents include monocarboxylic acid ester solvents such as n-butyl acetate and ethyl lactate; Polyhydric alcohol carboxylate solvents such as propylene glycol acetate; Polyhydric alcohol partial ether carboxylate solvents such as propylene glycol monomethyl ether acetate; Polycarboxylic acid diester solvents such as diethyl oxalate; Examples thereof include carbonate solvents such as dimethyl carbonate and diethyl carbonate.
  • monocarboxylic acid ester solvents such as n-butyl acetate and ethyl lactate
  • Polyhydric alcohol carboxylate solvents such as propylene glycol acetate
  • Polyhydric alcohol partial ether carboxylate solvents such as propylene glycol monomethyl ether acetate
  • Polycarboxylic acid diester solvents such as diethyl oxalate
  • Examples thereof include carbonate solvents such as dimethyl carbonate and diethyl carbonate.
  • hydrocarbon solvent examples include aliphatic hydrocarbon solvents having 5 to 12 carbon atoms such as n-pentane and n-hexane; Examples thereof include aromatic hydrocarbon solvents having 6 to 16 carbon atoms such as toluene and xylene.
  • alcohol solvents, ester solvents and ketone solvents are preferred, polyhydric alcohol partial ether solvents, polyhydric alcohol partial ether carboxylate solvents and cyclic ketone solvents are more preferred, polyhydric alcohol partial ethers.
  • a solvent and a polyhydric alcohol partial ether carboxylate solvent are more preferable, and propylene glycol monomethyl ether and propylene glycol monomethyl ether acetate are particularly preferable.
  • the [C] radiation sensitive acid generator (hereinafter referred to as “[C] acid generator”), which is a suitable component of the radiation sensitive composition, is a component that generates an acid upon irradiation with radiation.
  • the [C] acid generator is contained in the radiation-sensitive composition in the form of a low-molecular compound (hereinafter also referred to as “[C] acid generator” as appropriate), and a part of the [A] metal-containing component.
  • Examples of the [C] acid generator include onium salt compounds, N-sulfonyloxyimide compounds, halogen-containing compounds, diazoketone compounds, and the like.
  • onium salt compounds examples include sulfonium salts, tetrahydrothiophenium salts, iodonium salts, phosphonium salts, diazonium salts, pyridinium salts, and the like.
  • sulfonium salt examples include triphenylsulfonium trifluoromethanesulfonate, triphenylsulfonium nonafluoro-n-butanesulfonate, triphenylsulfonium perfluoro-n-octanesulfonate, triphenylsulfonium 2-bicyclo [2.2.1] hept- 2-yl-1,1,2,2-tetrafluoroethanesulfonate, triphenylsulfonium camphorsulfonate, 4-cyclohexylphenyldiphenylsulfonium trifluoromethanesulfonate, 4-cyclohexylphenyldiphenylsulfonium nonafluoro-n-butanesulfonate, 4-cyclohexyl Phenyldiphenylsulfonium perfluoro-n-octanesulfonate, 4-cyclohexylphen
  • tetrahydrothiophenium salt examples include 1- (4-n-butoxynaphthalen-1-yl) tetrahydrothiophenium trifluoromethanesulfonate, 1- (4-n-butoxynaphthalen-1-yl) tetrahydrothiophenium nona.
  • iodonium salt examples include diphenyliodonium trifluoromethanesulfonate, diphenyliodonium nonafluoro-n-butanesulfonate, diphenyliodonium perfluoro-n-octanesulfonate, diphenyliodonium 2-bicyclo [2.2.1] hept-2-yl- 1,1,2,2-tetrafluoroethanesulfonate, diphenyliodonium camphorsulfonate, bis (4-tert-butylphenyl) iodonium trifluoromethanesulfonate, bis (4-tert-butylphenyl) iodonium nonafluoro-n-butanesulfonate, Bis (4-t-butylphenyl) iodonium perfluoro-n-octanesulfonate, bis (4-t-butylphenyl) iodonium 2-bic
  • N-sulfonyloxyimide compound examples include N- (trifluoromethanesulfonyloxy) -1,8-naphthalimide, N- (trifluoromethanesulfonyloxy) bicyclo [2.2.1] hept-5-ene-2, 3-dicarboximide, N- (trifluoromethanesulfonyloxy) -1,8-naphthalimide, N- (nonafluoro-n-butanesulfonyloxy) bicyclo [2.2.1] hept-5-ene-2,3 -Dicarboximide, N- (perfluoro-n-octanesulfonyloxy) -1,8-naphthalimide, N- (perfluoro-n-octanesulfonyloxy) bicyclo [2.2.1] hept-5-ene -2,3-dicarboximide, N- (2-bicyclo [2.2.1] hept-2,
  • the acid generator is preferably an onium salt compound and an N-sulfonyloxyimide compound, more preferably a sulfonium salt and an N-sulfonyloxyimide compound, and a triphenylsulfonium salt and an N-sulfonyloxy-1,8-naphthal.
  • Phthalimide is more preferred, with triphenylsulfonium trifluoromethanesulfonate and N- (trifluoromethanesulfonyloxy) -1,8-naphthalimide being particularly preferred.
  • the said radiation sensitive composition contains a [C] acid generator as a [C] acid generator, as a minimum of content of a [C] acid generator, with respect to 100 mass parts of [A] metal containing components 0.1 parts by mass is preferable, 0.5 parts by mass is more preferable, 1 part by mass is further preferable, and 3 parts by mass is particularly preferable. As an upper limit of the said content, 50 mass parts is preferable, 30 mass parts is more preferable, 20 mass parts is further more preferable, 15 mass parts is especially preferable. [C] By making content of an acid generator into the said range, the sensitivity and resolution of the said radiation sensitive composition can further be improved. [C] The acid generator may be used alone or in combination of two or more.
  • the radiation-sensitive composition may contain other optional components such as a compound that can be a ligand and a surfactant. Each of these other optional components may be used alone or in combination of two or more.
  • Compound that can be a ligand examples include a compound that can be a multidentate ligand or a bridging ligand (hereinafter also referred to as “compound (II)”). Examples of the compound (II) include the same compounds as those exemplified as compounds that may be added during the hydrolysis condensation reaction in the method of synthesizing [x] particles.
  • the said radiation sensitive composition contains compound (II), as an upper limit of content of compound (II) with respect to the total solid in the said radiation sensitive composition, 10 mass% is preferable, and 3 mass% is More preferred is 1% by mass.
  • the surfactant used in the radiation-sensitive composition is a component that exhibits an effect of improving coatability, striation and the like.
  • the surfactant include polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene oleyl ether, polyoxyethylene n-octylphenyl ether, polyoxyethylene n-nonylphenyl ether, polyethylene glycol dilaurate, polyethylene glycol Nonionic surfactants such as distearate are listed.
  • Examples of commercially available surfactants include KP341 (Shin-Etsu Chemical Co., Ltd.), Polyflow No. 75, no.
  • the radiation-sensitive composition was obtained, for example, by mixing [A] a metal-containing component, [B] an organic solvent, and, if necessary, optional components such as a [C] acid generator in a predetermined ratio. It can be prepared by filtering the mixture with a filter having a pore size of about 0.2 ⁇ m.
  • a filter having a pore size of about 0.2 ⁇ m As a minimum of solid content concentration of the radiation sensitive composition, 0.1 mass% is preferred, 0.5 mass% is more preferred, 1 mass% is still more preferred, and 3 mass% is especially preferred.
  • the upper limit of the solid content concentration is preferably 50% by mass, more preferably 30% by mass, further preferably 15% by mass, and particularly preferably 7% by mass.
  • the pattern forming method includes a step of forming a film by coating the radiation-sensitive composition on a substrate (hereinafter also referred to as “coating step”) and a step of exposing the film (hereinafter referred to as “exposure step”). And a step of developing the exposed film (hereinafter also referred to as “developing step”).
  • coating step a step of forming a film by coating the radiation-sensitive composition on a substrate
  • exposure step a step of exposing the film
  • developing step a step of developing the exposed film
  • the radiation-sensitive composition is applied to the substrate to form a film.
  • the solvent or the like of the radiation-sensitive composition is volatilized by pre-baking (PB) as necessary.
  • PB pre-baking
  • the method for applying the radiation-sensitive composition to the substrate is not particularly limited, and appropriate application means such as spin coating, cast coating, roll coating, etc. can be employed.
  • the substrate include a silicon wafer and a wafer coated with aluminum.
  • an organic or inorganic antireflection film may be formed on the substrate.
  • the lower limit of the average thickness of the film formed in this step is preferably 1 nm, more preferably 5 nm, still more preferably 10 nm, and particularly preferably 20 nm.
  • the upper limit of the average thickness is preferably 1,000 nm, more preferably 200 nm, still more preferably 100 nm, and particularly preferably 70 nm.
  • the lower limit of the PB temperature is usually 60 ° C, preferably 80 ° C.
  • As an upper limit of PB temperature it is 140 degreeC normally and 120 degreeC is preferable.
  • the lower limit of the PB time is usually 5 seconds, and preferably 10 seconds.
  • the upper limit of the PB time is usually 600 seconds, and preferably 300 seconds.
  • a protective film can be provided on the formed film, for example, in order to prevent the influence of basic impurities contained in the environmental atmosphere. Further, as described later, when immersion exposure is performed in the exposure step, an immersion protective film may be provided on the formed film in order to avoid direct contact between the immersion medium and the film.
  • the film obtained by coating is exposed.
  • the film is irradiated with radiation through a mask having a predetermined pattern.
  • radiation irradiation through an immersion medium such as water, that is, immersion exposure may be employed as necessary.
  • radiation to be exposed include visible light, ultraviolet light, far ultraviolet light, EUV (wavelength 13.5 nm), electromagnetic waves such as X-rays and ⁇ -rays, and charged particle beams such as electron beams and ⁇ -rays.
  • EUV and an electron beam are preferable from the viewpoint of increasing secondary electrons generated from the [A] metal-containing component that has absorbed radiation.
  • the exposed film is developed using a developer.
  • a developer examples include an alkaline aqueous solution and an organic solvent-containing solution.
  • an organic solvent-containing solution is preferable from the viewpoint of developability and the like.
  • alkaline aqueous solution examples include sodium hydroxide, potassium hydroxide, sodium carbonate, sodium silicate, sodium metasilicate, ammonia, ethylamine, n-propylamine, diethylamine, di-n-propylamine, triethylamine, methyldiethylamine, ethyl Dimethylamine, triethanolamine, tetramethylammonium hydroxide (TMAH), pyrrole, piperidine, choline, 1,8-diazabicyclo- [5.4.0] -7-undecene, 1,5-diazabicyclo- [4.3 0.0] -5-nonene, and an alkaline aqueous solution in which at least one kind is dissolved.
  • TMAH tetramethylammonium hydroxide
  • the lower limit of the content of the alkaline compound in the alkaline aqueous solution is preferably 0.1% by mass, more preferably 0.5% by mass, and even more preferably 1% by mass.
  • 20 mass% is preferable, 10 mass% is more preferable, and 5 mass% is further more preferable.
  • TMAH aqueous solution As the alkaline aqueous solution, a TMAH aqueous solution is preferable, and a 2.38% by mass TMAH aqueous solution is more preferable.
  • organic solvent in the organic solvent-containing liquid examples include the same organic solvents exemplified as the [B] organic solvent of the radiation-sensitive composition. Of these, ester solvents are preferred, and butyl acetate is more preferred.
  • the lower limit of the content of the organic solvent in the organic solvent-containing liquid is preferably 80% by mass, more preferably 90% by mass, further preferably 95% by mass, and particularly preferably 99% by mass.
  • a surfactant may be added to the developer as necessary.
  • a surfactant for example, an ionic or nonionic fluorine-based surfactant, a silicone-based surfactant, or the like can be used.
  • a developing method for example, a method in which a substrate is immersed in a tank filled with a developer for a certain period of time (dip method), a method in which the developer is raised on the surface of the substrate by surface tension and is left stationary for a certain time (paddle method) ), A method of spraying the developer on the substrate surface (spray method), a method of continuously applying the developer while scanning the developer coating nozzle on the substrate rotating at a constant speed (dynamic dispensing method) Etc.
  • the substrate after the development is preferably rinsed with a rinse liquid such as water or alcohol and then dried.
  • a rinse liquid such as water or alcohol
  • the rinsing method for example, a method of continuously applying a rinsing liquid onto a substrate rotating at a constant speed (rotary coating method), a method of immersing the substrate in a tank filled with the rinsing liquid for a certain period of time (dip method) ), A method (spray method) of spraying a rinse liquid on the substrate surface, and the like.
  • B-1 Propylene glycol monomethyl ether acetate
  • B-2 Propylene glycol monoethyl ether
  • C-1 N- (trifluoromethylsulfonyloxy) -1,8-naphthalimide
  • C-2 Triphenylsulfonium trifluoromethanesulfonate
  • sensitivity Optimum exposure dose for forming a line-and-space pattern (1L1S) having a line width of 100 nm and a space portion having a spacing of 100 nm formed by adjacent line portions with a one-to-one line width This optimum exposure amount was defined as sensitivity ( ⁇ C / cm 2 ).
  • the half pitch was defined as the limit resolution (nm).
  • the lithography performance, particularly the resolution, of the radiation-sensitive composition containing the metal-containing component [A] was improved by mixing different metals. This is considered to be because, for example, the symmetry of [x] particles containing a metal oxide as a main component is lost, and an amorphous state suitable for lithography is easily maintained.
  • electron beam exposure is known to exhibit the same tendency as in EUV exposure. Therefore, even in the case of EUV exposure, the radiation-sensitive composition of the present invention has high resolution. And it is estimated that the sensitivity is excellent.
  • the sensitivity improvement in EUV exposure can also be expected by mixing metals known to easily absorb EUV light such as zinc, indium and tin.
  • a resist pattern having excellent resolution can be formed with high sensitivity. Accordingly, these can be suitably used for semiconductor device processing processes and the like that are expected to be further miniaturized in the future.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Materials For Photolithography (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

本発明は、金属酸化物を主成分とする粒子を含む金属含有成分と有機溶媒とを含有し、上記金属含有成分が、2種以上の金属原子を含み、組成物中の上記金属原子及び半金属原子の合計に対する上記金属原子の含有率が50原子%以上である感放射線性組成物である。上記金属含有成分が、チタン、ジルコニウム、ハフニウム、亜鉛、スズ及びインジウムから選ばれる1種以上である第1金属原子と、ランタン及びイットリウムから選ばれる1種以上である第2金属原子とを含むことが好ましい。

Description

感放射線性組成物及びパターン形成方法
 本発明は、感放射線性組成物及びパターン形成方法に関する。
 リソグラフィーによる微細加工に用いられる一般的な感放射線性組成物は、ArFエキシマレーザー光、KrFエキシマレーザー光等の遠紫外線、極端紫外線(EUV)等の電磁波、電子線等の荷電粒子線などの照射により露光部に酸を発生させ、この酸を触媒とする化学反応により露光部及び未露光部で現像液に対する溶解速度に差を生じさせ、基板上にパターンを形成する。形成されたパターンは、基板加工におけるマスク等として用いることができる。
 かかる感放射線性組成物には、加工技術の微細化に伴ってレジスト性能を向上させることが要求される。この要求に対し、組成物に用いられる重合体、酸発生剤、その他の成分の種類、分子構造等が検討され、さらにその組み合わせについても詳細に検討されている(特開平11-125907号公報、特開平8-146610号公報及び特開2000-298347号公報参照)。
特開平11-125907号公報 特開平8-146610号公報 特開2000-298347号公報
 これにより、現状、パターンの微細化は線幅40nm以下のレベルまで進展しているが、感放射線性組成物には、さらに高いレジスト性能が求められ、特に解像度に優れるパターンを高感度で形成できることが求められている。
 本発明は、上述のような事情に基づいてなされたものであり、その目的は、解像度に優れるパターンを高感度で形成できる感放射線性組成物及びパターン形成方法を提供することにある。
 上記課題を解決するためになされた発明は、金属酸化物を主成分とする粒子(以下、「[x]粒子」ともいう)を含む金属含有成分(以下、「[A]金属含有成分」ともいう)と有機溶媒(以下、「[B]有機溶媒」ともいう)とを含有し、上記[A]金属含有成分が、2種以上の金属原子を含み、組成物中の上記金属原子及び半金属原子の合計に対する上記金属原子の含有率が50原子%以上である感放射線性組成物である。
 上記課題を解決するためになされた別の発明は、基板に当該感放射線性組成物を塗工することにより膜を形成する工程と、上記膜を露光する工程と、上記露光された膜を現像する工程とを備えるパターン形成方法である。
 ここで、「金属酸化物」とは、少なくとも金属原子及び酸素原子を含む化合物をいう。「主成分」とは、最も含有量の多い成分であり、例えば含有量が50質量%以上の成分を指す。「粒子」とは、例えば平均粒子径が1nm以上の物質を指す。「半金属原子」とは、ホウ素、ケイ素、ゲルマニウム及びヒ素を指す。
 本発明の感放射線性組成物及びパターン形成方法によれば、解像度に優れるパターンを高感度で形成できる。従って、これらは今後ますます微細化が進行すると予想される半導体デバイスの加工プロセス等に好適に用いることができる。
<感放射線性組成物>
 当該感放射線性組成物は、[A]金属含有成分と[B]有機溶媒とを含有する。当該感放射線性組成物は、好適成分として、[C]感放射線性酸発生体(以下、「[C]酸発生体」ともいう)を含有してもよく、本発明の効果を損なわない範囲において、その他の任意成分を含有してもよい。当該感放射線性組成物中の金属原子及び半金属原子の合計に対する上記金属原子の含有率は、50原子%以上である。
 当該感放射線性組成物は、[A]金属含有成分と[B]有機溶媒とを含有し、[A]金属含有成分が[x]粒子を含み、かつ2種以上の金属原子を含み、また、組成物中の金属原子及び半金属原子の合計に対する上記金属原子の含有率が上記下限以上であることで、解像度に優れるパターンを高感度で形成できる。当該感放射線性組成物が上記構成を有することで上記効果を奏する理由については必ずしも明確ではないが、例えば以下のように推察できる。すなわち、[A]金属含有成分が含む金属原子が露光光を吸収して二次電子が放出され、この二次電子等の作用により露光部における[A]金属含有成分が構造変化して、現像液への溶解性が変化することにより、高感度でパターンを形成することができると考えられる。また、[A]金属含有成分が2種以上の金属原子を含むことで、[x]粒子等の[A]金属含有成分の対称性が低下し、その結果、リソグラフィーに適した非晶質状態を維持し易くなり、優れた解像度を発揮できると考えられる。
 当該感放射線性組成物中の金属原子及び半金属原子の合計に対する上記金属原子の含有率の下限としては、50原子%であり、70原子%が好ましく、90原子%がより好ましく、99原子%がさらに好ましい。上記金属原子の含有率を上記下限以上とすることで、[A]金属含有成分に含まれる金属原子による二次電子の生成をより効果的に促進することができ、その結果、当該感放射線性組成物の感度及び解像性をより向上できる。なお、上記金属原子の含有率は、100原子%であってもよい。
<[A]金属含有成分>
 [A]金属含有成分は、[x]粒子を含み、かつ2種以上の金属原子を含む成分である。[A]金属含有成分としては、金属原子を含む成分として[x]粒子のみを含むものであってもよく、[x]粒子以外に金属原子を含む成分として[x]粒子以外の成分(以下、「[y]成分」ともいう)を含むものであってもよい。[A]金属含有成分が[x]粒子のみを含む場合、[x]粒子は2種以上の金属原子を含む。[A]金属含有成分が[x]粒子及び[y]成分を含む場合、[x]粒子及び[y]成分はそれぞれ1種以上の金属原子を含み、[x]粒子及び[y]成分の全体として2種以上の金属を含む。
 すなわち、[A]金属含有成分の形態としては、例えば下記(i)、(ii)等が挙げられる。
 (i)2種以上の金属原子を有する[x]粒子のみを含む。
 (ii)1種以上の金属原子を有する[x]粒子と、1種以上の金属原子を有する[y]成分とを含み、[x]粒子及び[y]成分の全体として2種以上の金属を含む。これらの中で、[A]金属含有成分における対称性をより低下させることができ、当該感放射線性組成物の感度及び解像性をより向上できる観点から、上記(i)が好ましい。
 [A]金属含有成分が含む金属原子としては、例えば第3族~第16族の金属原子等が挙げられる。
 第3族の金属原子としては、例えばスカンジウム、イットリウム、ランタン、セリウム等が、
 第4族の金属原子としては、例えばチタン、ジルコニウム、ハフニウム等が、
 第5族の金属原子としては、例えばバナジウム、ニオブ、タンタル等が、
 第6族の金属原子としては、例えばクロム、モリブデン、タングステン等が、
 第7族の金属原子としては、マンガン、レニウム等が、
 第8族の金属原子としては、鉄、ルテニウム、オスミウム等が、
 第9族の金属原子としては、コバルト、ロジウム、イリジウム等が、
 第10族の金属原子としては、ニッケル、パラジウム、白金等が、
 第11族の金属原子としては、銅、銀、金等が、
 第12族の金属原子としては、亜鉛、カドミウム、水銀等が、
 第13族の金属原子としては、アルミニウム、ガリウム、インジウム等が、
 第14族の金属原子としては、ゲルマニウム、スズ、鉛等が、
 第15族の金属原子としては、アンチモン、ビスマス等が、
 第16族の金属原子としては、テルル等が挙げられる。
 これらの中で、[A]金属含有成分が含む金属原子としては、第3族、第4族、第9族、第10族、第11族、第12族、第13族、第14族、第15族及び第16族の金属原子が好ましく、ランタン、イットリウム、チタン、ジルコニウム、ハフニウム、コバルト、ニッケル、白金、銅、銀、亜鉛、インジウム、スズ、アンチモン、ビスマス及びテルルがより好ましい。[A]金属含有成分は、上記金属原子を含むことで、二次電子の生成をより効果的に促進でき、また、当該感放射線性組成物により形成される膜の露光部及び未露光部での現像液に対する溶解速度のコントラストをより向上できる。
 [A]金属含有成分が含む2種以上の金属原子としては、チタン、ジルコニウム、ハフニウム、亜鉛、スズ及びインジウムから選ばれる1種以上である第1金属原子(以下、「金属原子(1)」ともいう)と、ランタン及びイットリウムから選ばれる1種以上である第2金属原子(以下、「金属原子(2)」ともいう)との組み合わせが好ましい。[A]金属含有成分が含む金属原子を上記組み合わせとすることで、[A]金属含有成分における対称性がより低下すると考えられ、その結果、当該感放射線性組成物の感度及び解像性をより向上させることができる。これらの中でも、金属原子(1)として、ジルコニウム及びハフニウムから選ばれる1種以上を含む組み合わせが好ましく、ジルコニウムとランタンとの組み合わせ及びハフニウムとイットリウムとの組み合わせがより好ましい。
 この場合、金属原子(2)の含有率の下限としては、金属原子(1)及び金属原子(2)の合計に対して、1原子%が好ましく、3原子%がより好ましく、5原子%がさらに好ましく、10原子%が特に好ましい。上記含有率の上限としては、50原子%が好ましく、40原子%がより好ましく、30原子%がさらに好ましく、25原子%が特に好ましい。金属原子(2)の含有率を上記範囲とすることで、[A]金属含有成分における対称性がさらに低下すると考えられ、その結果、当該感放射線性組成物の感度及び解像性をさらに向上させることができる。
 また、[A]金属含有成分が含む2種以上の金属原子としては、チタン、コバルト、ニッケル、銅、銀、白金、ジルコニウム、亜鉛、スズ、インジウム、テルル、ビスマス、アンチモン及びハフニウムから選ばれる2種以上である第3金属原子(以下、「金属原子(3)」ともいう)も好ましく、ジルコニウム、亜鉛、スズ、インジウム及びハフニウムから選ばれる2種以上がより好ましい。[A]金属含有成分が含む金属原子を上記組み合わせとすることで、[A]金属含有成分における対称性がより低下すると考えられ、その結果、当該感放射線性組成物の感度及び解像性をより向上させることができる。金属原子(3)としては、これらの中でも、ジルコニウム又はハフニウムと、亜鉛、インジウム又はスズとの組み合わせが好ましい。
 この場合、金属原子(3)の含有率の下限としては、当該感放射線性組成物中の全金属原子に対して、50原子%が好ましく、60原子%がより好ましく、70原子%がさらに好ましい。上記含有率の上限としては、例えば100原子%である。金属原子(3)の含有率を上記範囲とすることで、[A]金属含有成分における対称性がさらに低下すると考えられ、その結果、当該感放射線性組成物の感度及び解像性をさらに向上させることができる。
 次に、[x]粒子及び[y]成分について説明する。
[[x]粒子]
 [x]粒子は、金属酸化物を主成分とする粒子である。なお、[x]粒子は、金属酸化物を主成分とするので、当該感放射線性組成物から形成されるパターンのエッチング耐性の向上にも寄与している。
 [x]粒子の平均粒子径の下限としては、1.1nmが好ましく、1.2nmがより好ましい。一方、上記平均粒子径の上限としては、20nmが好ましく、10nmがより好ましく、3.0nmがさらに好ましく、2.5nmが特に好ましい。[x]粒子の平均粒子径を上記範囲とすることで、[x]粒子による二次電子の発生をより効果的に促進でき、その結果、当該感放射線性組成物の感度及び解像性をより向上できる。ここで、「平均粒子径」とは、光散乱測定装置を用いたDLS(Dynamic Light Scattering)法で測定される散乱光強度基準の調和平均粒子径をいう。
(金属酸化物)
 [x]粒子の含む金属酸化物を構成する金属原子としては、上述の[A]金属含有成分を構成する金属原子として例示したもの等が挙げられる。
 上記金属酸化物は、金属原子及び酸素原子以外のその他の原子を含んでもよい。上記その他の原子としては、例えばホウ素、ゲルマニウム等の半金属原子や、炭素原子、水素原子、窒素原子、リン原子、硫黄原子、ハロゲン原子などが挙げられる。但し、上記金属酸化物が半金属原子を含む場合、上記金属酸化物における半金属原子の含有率(質量%)は、通常金属原子の含有率よりも小さい。
 上記金属酸化物における金属原子及び酸素原子の合計含有率の下限としては、30質量%が好ましく、50質量%がより好ましく、70質量%がさらに好ましく、90質量%が特に好ましい。一方、上記金属原子及び酸素原子の合計含有率の上限としては、99.9質量%が好ましい。上記金属原子及び酸素原子の合計含有率を上記範囲とすることで、[x]粒子による二次電子の発生をより効果的に促進でき、その結果、当該感放射線性組成物の感度をより向上できる。なお、上記金属原子及び酸素原子の合計含有率は、100質量%であってもよい。
 上記金属酸化物を構成する金属原子以外の成分としては、[a]有機酸が好ましい。ここで、「有機酸」とは、酸性を示す有機化合物をいい、「有機化合物」とは、少なくとも1個の炭素原子を有する化合物をいう。
 [x]粒子が、金属原子及び[a]有機酸により構成される金属酸化物を含有することで、当該感放射線性組成物の感度及び解像性がより向上する。当該感放射線性組成物が上記構成を有することで上記効果を奏する理由については必ずしも明確ではないが、例えば以下のように推察できる。すなわち、[a]有機酸は、金属原子との相互作用によって[x]粒子の表面付近に存在することで、[x]粒子の溶媒に対する分散性を向上すると考えられる。その結果、当該感放射線性組成物の感度がより向上すると考えられる。
 [a]有機酸のpKaの下限としては0が好ましく、1がより好ましく、1.5がさらに好ましく、3が特に好ましい。一方、上記pKaの上限としては、7が好ましく、6がより好ましく、5.5がさらに好ましく、5が特に好ましい。[a]有機酸のpKaを上記範囲とすることで、金属原子との相互作用を適度に弱いものに調整することができ、その結果、当該感放射線性組成物の感度及び解像性をより向上できる。ここで、[a]有機酸が多価の酸である場合、[a]有機酸のpKaとは、第1酸解離定数、すなわち、1つめのプロトンの解離に対する解離定数の対数値をいう。
 [a]有機酸は、低分子化合物でもよく、高分子化合物でもよいが、金属原子との相互作用をより適度に弱いものに調整する観点から、低分子化合物が好ましい。ここで、低分子化合物とは、分子量が1,500以下の化合物をいい、高分子化合物とは、分子量が1,500超の化合物をいう。[a]有機酸の分子量の下限としては、50が好ましく、80がより好ましい。一方、上記分子量の上限としては、1,000が好ましく、500がより好ましく、400がさらに好ましく、300が特に好ましい。[a]有機酸の分子量を上記範囲とすることで、[x]粒子の分散性をより適度なものに調整することができ、その結果、当該感放射線性組成物の感度及び解像性をより向上できる。
 [a]有機酸としては、例えばカルボン酸、スルホン酸、スルフィン酸、有機ホスフィン酸、有機ホスホン酸、フェノール類、エノール、チオール、酸イミド、オキシム、スルホンアミド等が挙げられる。
 上記カルボン酸としては、例えば
 ギ酸、酢酸、プロピオン酸、ブタン酸、ペンタン酸、ヘキサン酸、ヘプタン酸、オクタン酸、ノナン酸、デカン酸、2-エチルヘキサン酸、オレイン酸、アクリル酸、メタクリル酸、trans-2,3-ジメチルアクリル酸、ステアリン酸、リノール酸、リノレン酸、アラキドン酸、サリチル酸、安息香酸、p-アミノ安息香酸、モノクロロ酢酸、ジクロロ酢酸、トリクロロ酢酸、トリフルオロ酢酸、ペンタフルオロプロピオン酸、没食子酸、シキミ酸等のモノカルボン酸;
 シュウ酸、マロン酸、マレイン酸、メチルマロン酸、フマル酸、アジピン酸、セバシン酸、フタル酸、酒石酸等のジカルボン酸;
 クエン酸等の3以上のカルボキシ基を有するカルボン酸などが挙げられる。
 上記スルホン酸としては、例えばベンゼンスルホン酸、p-トルエンスルホン酸等が挙げられる。
 上記スルフィン酸としては、例えばベンゼンスルフィン酸、p-トルエンスルフィン酸等が挙げられる。
 上記有機ホスフィン酸としては、例えばジエチルホスフィン酸、メチルフェニルホスフィン酸、ジフェニルホスフィン酸等が挙げられる。
 上記有機ホスホン酸としては、例えばメチルホスホン酸、エチルホスホン酸、t-ブチルホスホン酸、シクロヘキシルホスホン酸、フェニルホスホン酸等が挙げられる。
 上記フェノール類としては、例えばフェノール、クレゾール、2,6-キシレノール、ナフトール等の1価のフェノール類;
 カテコール、レゾルシノール、ハイドロキノン、1,2-ナフタレンジオール等の2価のフェノール類;
 ピロガロール、2,3,6-ナフタレントリオール等の3価以上のフェノール類などが挙げられる。
 上記エノールとしては、例えば2-ヒドロキシ-3-メチル-2-ブテン、3-ヒドロキシ-4-メチル-3-ヘキセン等が挙げられる。
 上記チオールとしては、例えばメルカプトエタノール、メルカプトプロパノール等が挙げられる。
 上記酸イミドとしては、例えば
 マレイミド、コハク酸イミド等のカルボン酸イミド;
 ジ(トリフルオロメタンスルホン酸)イミド、ジ(ペンタフルオロエタンスルホン酸)イミド等のスルホン酸イミドなどが挙げられる。
 上記オキシムとしては、例えば
 ベンズアルドキシム、サリチルアルドキシム等のアルドキシム;
 ジエチルケトキシム、メチルエチルケトキシム、シクロヘキサノンオキシム等のケトキシムなどが挙げられる。
 上記スルホンアミドとしては、例えばメチルスルホンアミド、エチルスルホンアミド、ベンゼンスルホンアミド、トルエンスルホンアミド等が挙げられる。
 [a]有機酸としては、当該感放射線性組成物の感度及び解像性をより向上する観点から、カルボン酸が好ましく、モノカルボン酸がより好ましく、メタクリル酸及び安息香酸がさらに好ましい。
 上記金属酸化物としては、金属原子及び[a]有機酸により構成される金属酸化物が好ましく、2種以上の金属原子及び[a]有機酸により構成される金属酸化物がより好ましく、亜鉛又はハフニウムと、亜鉛、インジウム又はスズと、メタクリル酸又は安息香酸とにより構成される金属酸化物がさらに好ましく、ジルコニウムと、亜鉛、インジウム又はスズと、メタクリル酸とにより構成される金属酸化物、ハフニウムと、亜鉛、インジウム又はスズと、安息香酸とにより構成される金属酸化物が特に好ましい。
 [x]粒子における金属酸化物の含有率の下限としては、60質量%が好ましく、80質量%がより好ましく、95質量%がさらに好ましい。また、上記金属酸化物の含有率は、100質量%であってもよい。上記金属酸化物の含有量を上記下限以上とすることで、当該感放射線性組成物の感度及び解像性をより向上できる。但し、当該感放射線性組成物は、上記金属酸化物を1種のみ含有してもよく、2種以上含有してもよい。
 [x]粒子が金属原子及び[a]有機酸により構成される金属酸化物を主成分とする場合、[x]粒子における[a]有機酸の含有率の下限としては、1質量%が好ましく、5質量%がより好ましく、10質量%がさらに好ましい。一方、[a]有機酸の含有率の上限としては、90質量%が好ましく、70質量%がより好ましく、50質量%がさらに好ましい。[a]有機酸の含有率を上記範囲とすることで、[x]粒子の分散性をさらに適度なものに調整することができ、その結果、当該感放射線性組成物の感度及び解像性をより向上できる。[x]粒子は、[a]有機酸を1種のみ含有してもよく、2種以上含有してもよい。
 [x]粒子の[A]金属含有成分に対する含有量の下限としては、10質量%が好ましく、50質量%がより好ましく、70質量%がさらに好ましく、85質量%が特に好ましい。一方、[x]粒子の[A]金属含有成分に対する含有量の上限としては、99質量%が好ましく、95質量%がより好ましい。[x]粒子の含有量を上記範囲とすることで、当該感放射線性組成物の感度及び解像性をより向上できる。当該感放射線性組成物は、[x]粒子を1種のみ含有してもよく、2種以上含有してもよい。
[[x]粒子の合成方法]
 [x]粒子は、例えば[b]金属含有化合物を用いて加水分解縮合反応を行う方法、[b]金属含有化合物を用いて配位子交換反応を行う方法等により得ることができる。ここで「加水分解縮合反応」とは、[b]金属含有化合物が有する加水分解性基が加水分解して-OHに変換され、得られた2個の-OHが脱水縮合して-O-が形成される反応をいう。
([b]金属含有化合物)
 [b]金属含有化合物は、加水分解性基を有する金属化合物(I)、加水分解性基を有する金属化合物(I)の加水分解物、加水分解性基を有する金属化合物(I)の加水分解縮合物又はこれらの組み合わせである。金属化合物(I)は、1種単独で又は2種以上組み合わせて使用できる。
 上記加水分解性基としては、例えばハロゲン原子、アルコキシ基、アシロキシ基等が挙げられる。
 上記ハロゲン原子としては、例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
 上記アルコキシ基としては、例えばメトキシ基、エトキシ基、n-プロポキシ基、i-プロポキシ基、ブトキシ基等が挙げられる。
 上記アシロキシ基としては、例えばアセトキシ基、エチリルオキシ基、プロピオニルオキシ基、ブチリルオキシ基、t-ブチリルオキシ基、t-アミリルオキシ基、n-ヘキサンカルボニロキシ基、n-オクタンカルボニロキシ基等が挙げられる。
 上記加水分解性基としては、アルコキシ基及びアシロキシ基が好ましく、イソプロポキシ基及びアセトキシ基がより好ましい。
 [b]金属含有化合物が金属化合物(I)の加水分解縮合物である場合には、この金属化合物(I)の加水分解縮合物は、本発明の効果を損なわない限り、加水分解性基を有する金属(I)と半金属原子を含む化合物との加水分解縮合物であってもよい。すなわち、金属化合物(I)の加水分解縮合物には、本発明の効果を損なわない範囲内で半金属原子が含まれていてもよい。上記半金属原子としては、例えばホウ素、ゲルマニウム、アンチモン、ヒ素等が挙げられる。金属化合物(I)の加水分解縮合物における半金属原子の含有率は、この加水分解縮合物中の金属原子及び半金属原子の合計に対し、通常50原子%未満である。上記半金属原子の含有率の上限としては、上記加水分解縮合物中の金属原子及び半金属原子の合計に対し、30原子%が好ましく、10原子%がより好ましい。
 金属化合物(I)としては、例えば下記式(1)で表される化合物(以下、「金属化合物(I-1)」ともいう)等が挙げられる。このような金属化合物(I-1)を用いることで、安定な金属酸化物を形成でき、その結果、当該感放射線性組成物の感度及び解像性をより向上できる。
Figure JPOXMLDOC01-appb-C000001
 上記式(1)中、Mは、金属原子である。Lは、配位子である。aは、0~2の整数である。aが2の場合、複数のLは同一でも異なっていてもよい。Yは、ハロゲン原子、アルコキシ基及びアシロキシ基から選ばれる加水分解性基である。bは、2~6の整数である。複数のYは同一でも異なっていてもよい。なお、LはYに該当しない配位子である。
 Mで表される金属原子としては、例えば[x]粒子の含む金属酸化物を構成する金属原子として例示したものと同様の金属原子等が挙げられる。
 Lで表される配位子としては、単座配位子及び多座配位子が挙げられる。
 上記単座配位子としては、例えばヒドロキソ配位子、カルボキシ配位子、アミド配位子、アンモニア等が挙げられる。
 上記アミド配位子としては、例えば無置換アミド配位子(NH)、メチルアミド配位子(NHMe)、ジメチルアミド配位子(NMe)、ジエチルアミド配位子(NEt)、ジプロピルアミド配位子(NPr)等が挙げられる。
 上記多座配位子としては、例えばヒドロキシ酸エステル、β-ジケトン、β-ケトエステル、β-ジカルボン酸エステル、π結合を有する炭化水素、ジホスフィン等が挙げられる。
 上記ヒドロキシ酸エステルとしては例えばグリコール酸エステル、乳酸エステル、2-ヒドロキシシクロヘキサン-1-カルボン酸エステル、サリチル酸エステル等が挙げられる。
 上記β-ジケトンとしては、例えば2,4-ペンタンジオン、3-メチル-2,4-ペンタンジオン、3-エチル-2,4-ペンタンジオン等が挙げられる。
 上記β-ケトエステルとしては、例えばアセト酢酸エステル、α-アルキル置換アセト酢酸エステル、β-ケトペンタン酸エステル、ベンゾイル酢酸エステル、1,3-アセトンジカルボン酸エステル等が挙げられる。
 上記β-ジカルボン酸エステルとしては、例えばマロン酸ジエステル、α-アルキル置換マロン酸ジエステル、α-シクロアルキル置換マロン酸ジエステル、α-アリール置換マロン酸ジエステル等が挙げられる。
 上記π結合を有する炭化水素としては、例えば
 エチレン、プロピレン等の鎖状オレフィン;
 シクロペンテン、シクロヘキセン、ノルボルネン等の環状オレフィン;
 ブタジエン、イソプレン等の鎖状ジエン;
 シクロペンタジエン、メチルシクロペンタジエン、ペンタメチルシクロペンタジエン、シクロヘキサジエン、ノルボルナジエン等の環状ジエン;
 ベンゼン、トルエン、キシレン、ヘキサメチルベンゼン、ナフタレン、インデン等の芳香族炭化水素などが挙げられる。
 上記ジホスフィンとしては、例えば1,1-ビス(ジフェニルホスフィノ)メタン、1,2-ビス(ジフェニルホスフィノ)エタン、1,3-ビス(ジフェニルホスフィノ)プロパン、2,2’-ビス(ジフェニルホスフィノ)-1,1’-ビナフチル、1,1’-ビス(ジフェニルホスフィノ)フェロセン等が挙げられる。
 Yで表されるハロゲン原子、アルコキシ基及びアシロキシ基の例示及び好適なものとしては、上記加水分解性基において説明したものと同様とすることができる。
 bとしては、3及び4が好ましく、4がより好ましい。bを上記数値とすることで、[x]粒子における金属酸化物の含有率を高め、[x]粒子による二次電子の発生をより効果的に促進できる。その結果、当該感放射線性組成物の感度をより向上できる。
 [b]金属含有化合物としては、加水分解も加水分解縮合もしていない金属アルコキシド、及び加水分解も加水分解縮合もしていない金属アシロキシドが好ましい。
 [b]金属含有化合物としては、ジルコニウム(IV)n-ブトキシド、ジルコニウム(IV)n-プロポキシド、ジルコニウム(IV)イソプロポキシド、ハフニウム(IV)エトキシド、インジウム(III)イソプロポキシド、ハフニウム(IV)イソプロポキシド、タンタル(V)エトキシド、タングステン(V)メトキシド、タングステン(VI)エトキシド、塩化鉄、亜鉛(II)イソプロポキシド、酢酸亜鉛二水和物、チタン(IV)n-ブトキシド、チタン(IV)n-プロポキシド、ジルコニウム(IV)・ジn-ブトキシド・ビス(2,4-ペンタンジオナート)、チタン(IV)・トリn-ブトキシド・ステアレート、ビス(シクロペンタジエニル)ハフニウム(IV)ジクロリド、ビス(シクロペンタジエニル)タングステン(IV)ジクロリド、ジアセタト[(S)-(-)-2,2’-ビス(ジフェニルホスフィノ)-1,1’-ビナフチル]ルテニウム(II)、ジクロロ[エチレンビス(ジフェニルホスフィン)]コバルト(II)、チタンブトキシドオリゴマー、アミノプロピルトリメトキシチタン(IV)、アミノプロピルトリエトキシジルコニウム(IV)、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシジルコニウム(IV)、γ-グリシドキシプロピルトリメトキシジルコニウム(IV)、3-イソシアノプロピルトリメトキシジルコニウム(IV)、3-イソシアノプロピルトリエトキシジルコニウム(IV)、トリエトキシモノ(アセチルアセトナート)チタン(IV)、トリ-n-プロポキシモノ(アセチルアセトナート)チタン(IV)、トリ-i-プロポキシモノ(アセチルアセトナート)チタン(IV)、トリエトキシモノ(アセチルアセトナート)ジルコニウム(IV)、トリ-n-プロポキシモノ(アセチルアセトナート)ジルコニウム(IV)、トリ-i-プロポキシモノ(アセチルアセトナート)ジルコニウム(IV)、ジイソプロポキシビス(アセチルアセトナート)チタン(IV)、ジn-ブトキシビス(アセチルアセトナート)チタン(IV)、ジn-ブトキシビス(アセチルアセトナート)ジルコニウム(IV)、トリ(3-メタクリロキシプロピル)メトキシジルコニウム(IV)、トリ(3-アクリロキシプロピル)メトキシジルコニウム(IV)、スズ(IV)イソプロポキシド、酸化ランタン(III)、酸化イットリウム(III)等が挙げられる。これらの中で、ジルコニウム(IV)イソプロポキシド、ハフニウム(IV)イソプロポキシド、亜鉛(II)イソプロポキシド、インジウム(III)イソプロポキシド、スズ(IV)イソプロポキシド、酸化ランタン(III)及び酸化イットリウム(III)が好ましい。
 [b]金属含有化合物を用いて加水分解縮合反応を行う方法としては、例えば[b]金属含有化合物を水を含む溶媒中で加水分解縮合反応させる方法等が挙げられる。この場合、必要に応じて加水分解性基を有する他の化合物を添加してもよい。この加水分解縮合反応に用いる水の量の下限としては、[b]金属含有化合物等が有する加水分解性基に対し、0.2倍モルが好ましく、1倍モルがより好ましく、3倍モルがさらに好ましい。上記水の量の上限としては、20倍モルが好ましく、15倍モルがより好ましく、10倍モルがさらに好ましい。加水分解縮合反応における水の量を上記範囲とすることで、得られる[x]粒子における金属酸化物の含有率を高めることができ、その結果、当該感放射線性組成物の感度及び解像性をより向上できる。
 [b]金属含有化合物を用いて配位子交換反応を行う方法としては、例えば[b]金属含有化合物及び[a]有機酸を混合する方法等が挙げられる。この場合、溶媒中で混合してもよく、溶媒を用いずに混合してもよい。また、上記混合では、必要に応じてトリエチルアミン等の塩基を添加してもよい。上記塩基の添加量としては、[b]金属含有化合物及び[a]有機酸の合計使用量100質量部に対し、例えば1質量部以上200質量部以下である。
 [x]粒子の合成に[a]有機酸を用いる場合、上記[a]有機酸の使用量の下限としては、[b]金属含有化合物100質量部に対し、10質量部が好ましく、30質量部がより好ましい。一方、上記[a]有機酸の使用量の上限としては、[b]金属含有化合物100質量部に対し、1,000質量部が好ましく、700質量部がより好ましく、200質量部がさらに好ましく、100質量部が特に好ましい。上記[a]有機酸の使用量を上記範囲とすることで、得られる[x]粒子における[a]有機酸の含有率を適度なものに調整することができ、その結果、当該感放射線性組成物の感度及び解像性をより向上できる。
 [x]粒子の合成反応の際、金属化合物(I)及び[a]有機酸に加えて、上記式(1)の化合物におけるLで表される多座配位子になり得る化合物や架橋配位子になり得る化合物等を添加してもよい。上記架橋配位子になり得る化合物としては、例えば複数個のヒドロキシ基、イソシアネート基、アミノ基、エステル基及びアミド基を有する化合物等が挙げられる。
 [x]粒子の合成反応に用いる溶媒としては、特に限定されず、例えば後述する[B]有機溶媒として例示するものと同様の溶媒を用いることができる。これらの中で、アルコール系溶媒、エーテル系溶媒、エステル系溶媒及び炭化水素系溶媒が好ましく、アルコール系溶媒、エーテル系溶媒及びエステル系溶媒がより好ましく、多価アルコール部分エーテル系溶媒、モノカルボン酸エステル系溶媒及び環状エーテル系溶媒がさらに好ましく、プロピレングリコールモノエチルエーテル、酢酸エチル及びテトラヒドロフランが特に好ましい。
 [x]粒子の合成反応に溶媒を用いる場合、使用した溶媒を反応後に除去してもよいが、反応後に除去することなく、そのまま当該感放射線性組成物の[B]有機溶媒とすることもできる。
 [x]粒子の合成反応の温度の下限としては、0℃が好ましく、10℃がより好ましい。上記温度の上限としては、150℃が好ましく、100℃がより好ましい。
 [x]粒子の合成反応の時間の下限としては、1分が好ましく、10分がより好ましく、1時間がさらに好ましい。上記時間の上限としては、100時間が好ましく、50時間がより好ましく、10時間がさらに好ましい。
[[y]成分]
 [y]成分は、[x]粒子以外の[A]金属含有成分である。[y]成分としては、例えば金属原子を含む錯体、金属塩等が挙げられる。
 上記錯体としては、例えば金属原子と、配位子とを有する化合物等が挙げられる。配位子としては、上記金属化合物(I-1)が有するLで表される配位子と同様のもの等が挙げられる。
 上記金属塩としては、例えば金属カチオンと、アニオンとを有する化合物等が挙げられる。上記アニオンとしては、例えば硫酸アニオン、スルホン酸アニオン、硝酸アニオン、リン酸アニオン、スルホンイミドアニオン、ハロゲン化物アニオン等が挙げられる。ハロゲン化物アニオンとしては、例えばフッ化物アニオン、塩化物アニオン、臭化物アニオン、ヨウ化物アニオン等が挙げられる。
 [A]金属含有成分が[y]成分を含む場合、[y]成分の含有量の下限としては、[x]粒子100質量部に対して、1質量部が好ましく、10質量部がより好ましく、3質量部がさらに好ましく、50質量部が特に好ましい。上記含有量の上限としては、500質量部が好ましく、300質量部がより好ましく、200質量部がより好ましく、100質量部が特に好ましい。[y]成分の含有量を上記範囲とすることで、当該感放射線性組成物の感度及び解像性をより向上できる。当該感放射線性組成物は、[y]成分を1種のみ含有してもよく、2種以上含有してもよい。
 [A]金属含有成分の含有量の下限としては、当該感放射線性組成物中の全固形分に対して、70質量%が好ましく、80質量%がより好ましく、85質量%がさらに好ましい。上記含有量の上限としては、100質量%が好ましく、99質量%がより好ましく、95質量%がさらに好ましい。[A]金属含有成分の含有量を上記範囲とすることで、当該感放射線性組成物の感度及び解像性をより向上できる。当該感放射線性組成物における「固形分」とは、[B]有機溶媒以外の成分の総和をいう。
<[B]有機溶媒>
 [B]有機溶媒は少なくとも[A]金属含有成分、必要に応じて含有される任意成分等を溶解又は分散可能な溶媒であれば特に限定されない。これらは1種を使用してもよく2種以上を併用してもよい。
 [B]有機溶媒としては、例えばアルコール系溶媒、エーテル系溶媒、ケトン系有機溶媒、アミド系溶媒、エステル系有機溶媒、炭化水素系溶媒等が挙げられる。
 アルコール系溶媒としては、例えば
 4-メチル-2-ペンタノール、n-ヘキサノール等の炭素数1~18の脂肪族モノアルコール系溶媒;
 シクロヘキサノール等の炭素数3~18の脂環式モノアルコール系溶媒;
 1,2-プロピレングリコール等の炭素数2~18の多価アルコール系溶媒;
 プロピレングリコールモノメチルエーテル等の炭素数3~19の多価アルコール部分エーテル系溶媒などが挙げられる。
 エーテル系溶媒としては、例えば
 ジエチルエーテル、ジプロピルエーテル、ジブチルエーテル、ジペンチルエーテル、ジイソアミルエーテル、ジヘキシルエーテル、ジヘプチルエーテル等のジアルキルエーテル系溶媒;
 テトラヒドロフラン、テトラヒドロピラン等の環状エーテル系溶媒;
 ジフェニルエーテル、アニソール等の芳香環含有エーテル系溶媒などが挙げられる。
 ケトン系溶媒としては、例えば
 アセトン、メチルエチルケトン、メチル-n-プロピルケトン、メチル-n-ブチルケトン、ジエチルケトン、メチル-iso-ブチルケトン、2-ヘプタノン、エチル-n-ブチルケトン、メチル-n-ヘキシルケトン、ジ-iso-ブチルケトン、トリメチルノナノン等の鎖状ケトン系溶媒:
 シクロペンタノン、シクロヘキサノン、シクロヘプタノン、シクロオクタノン、メチルシクロヘキサノン等の環状ケトン系溶媒:
 2,4-ペンタンジオン、アセトニルアセトン、アセトフェノンなどが挙げられる。
 アミド系溶媒としては、例えば
 N,N’-ジメチルイミダゾリジノン、N-メチルピロリドン等の環状アミド系溶媒;
 N-メチルホルムアミド、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-メチルプロピオンアミド等の鎖状アミド系溶媒などが挙げられる。
 エステル系溶媒としては、例えば
 酢酸n-ブチル、乳酸エチル等のモノカルボン酸エステル系溶媒;
 プロピレングリコールアセテート等の多価アルコールカルボキシレート系溶媒;
 プロピレングリコールモノメチルエーテルアセテート等の多価アルコール部分エーテルカルボキシレート系溶媒;
 シュウ酸ジエチル等の多価カルボン酸ジエステル系溶媒;
 ジメチルカーボネート、ジエチルカーボネート等のカーボネート系溶媒などが挙げられる。
 炭化水素系溶媒としては、例えば
 n-ペンタン、n-ヘキサン等の炭素数5~12の脂肪族炭化水素系溶媒;
 トルエン、キシレン等の炭素数6~16の芳香族炭化水素系溶媒などが挙げられる。
 これらの中で、アルコール系溶媒、エステル系溶媒及びケトン系溶媒が好ましく、多価アルコール部分エーテル系溶媒、多価アルコール部分エーテルカルボキシレート系溶媒及び環状ケトン系溶媒がより好ましく、多価アルコール部分エーテル系溶媒及び多価アルコール部分エーテルカルボキシレート系溶媒がさらに好ましく、プロピレングリコールモノメチルエーテル及びプロピレングリコールモノメチルエーテルアセテートが特に好ましい。
[[C]感放射線性酸発生体]
 当該感放射線性組成物の好適成分である[C]感放射線性酸発生体(以下、「[C]酸発生体」と称する)は、放射線の照射により酸を発生する成分である。当該感放射線性組成物における[C]酸発生体の含有形態としては、低分子化合物の形態(以下、適宜「[C]酸発生剤」ともいう)でも、[A]金属含有成分の一部として組み込まれた形態でも、これらの両方の形態でもよいが、エッチング耐性の観点から、[C]酸発生剤のみを含有することが好ましい。
 [C]酸発生剤としては、例えばオニウム塩化合物、N-スルホニルオキシイミド化合物、ハロゲン含有化合物、ジアゾケトン化合物等が挙げられる。
 オニウム塩化合物としては、例えばスルホニウム塩、テトラヒドロチオフェニウム塩、ヨードニウム塩、ホスホニウム塩、ジアゾニウム塩、ピリジニウム塩等が挙げられる。
 スルホニウム塩としては、例えばトリフェニルスルホニウムトリフルオロメタンスルホネート、トリフェニルスルホニウムノナフルオロ-n-ブタンスルホネート、トリフェニルスルホニウムパーフルオロ-n-オクタンスルホネート、トリフェニルスルホニウム2-ビシクロ[2.2.1]ヘプト-2-イル-1,1,2,2-テトラフルオロエタンスルホネート、トリフェニルスルホニウムカンファースルホネート、4-シクロヘキシルフェニルジフェニルスルホニウムトリフルオロメタンスルホネート、4-シクロヘキシルフェニルジフェニルスルホニウムノナフルオロ-n-ブタンスルホネート、4-シクロヘキシルフェニルジフェニルスルホニウムパーフルオロ-n-オクタンスルホネート、4-シクロヘキシルフェニルジフェニルスルホニウム2-ビシクロ[2.2.1]ヘプト-2-イル-1,1,2,2-テトラフルオロエタンスルホネート、4-シクロヘキシルフェニルジフェニルスルホニウムカンファースルホネート、4-メタンスルホニルフェニルジフェニルスルホニウムトリフルオロメタンスルホネート、4-メタンスルホニルフェニルジフェニルスルホニウムノナフルオロ-n-ブタンスルホネート、4-メタンスルホニルフェニルジフェニルスルホニウムパーフルオロ-n-オクタンスルホネート、4-メタンスルホニルフェニルジフェニルスルホニウム2-ビシクロ[2.2.1]ヘプト-2-イル-1,1,2,2-テトラフルオロエタンスルホネート、4-メタンスルホニルフェニルジフェニルスルホニウムカンファースルホネート、トリフェニルホスホニウム1,1,2,2-テトラフルオロ-6-(1-アダマンタンカルボニロキシ)-ヘキサン-1-スルホネート、トリフェニルスルホニウム2-(1-アダマンチル)-1,1-ジフルオロエタンスルホネート、トリフェニルスルホニウム2-(アダマンタン-1-イルカルボニルオキシ)-1,1,3,3,3-ペンタフルオロプロパン-1-スルホネート等が挙げられる。
 テトラヒドロチオフェニウム塩としては、例えば1-(4-n-ブトキシナフタレン-1-イル)テトラヒドロチオフェニウムトリフルオロメタンスルホネート、1-(4-n-ブトキシナフタレン-1-イル)テトラヒドロチオフェニウムノナフルオロ-n-ブタンスルホネート、1-(4-n-ブトキシナフタレン-1-イル)テトラヒドロチオフェニウムパーフルオロ-n-オクタンスルホネート、1-(4-n-ブトキシナフタレン-1-イル)テトラヒドロチオフェニウム2-ビシクロ[2.2.1]ヘプト-2-イル-1,1,2,2-テトラフルオロエタンスルホネート、1-(4-n-ブトキシナフタレン-1-イル)テトラヒドロチオフェニウムカンファースルホネート、1-(4-n-ブトキシナフタレン-1-イル)テトラヒドロチオフェニウムヘキサフルオロプロピレンスルホンイミド、1-(6-n-ブトキシナフタレン-2-イル)テトラヒドロチオフェニウムトリフルオロメタンスルホネート、1-(6-n-ブトキシナフタレン-2-イル)テトラヒドロチオフェニウムノナフルオロ-n-ブタンスルホネート、1-(6-n-ブトキシナフタレン-2-イル)テトラヒドロチオフェニウムパーフルオロ-n-オクタンスルホネート、1-(6-n-ブトキシナフタレン-2-イル)テトラヒドロチオフェニウム2-ビシクロ[2.2.1]ヘプト-2-イル-1,1,2,2-テトラフルオロエタンスルホネート、1-(6-n-ブトキシナフタレン-2-イル)テトラヒドロチオフェニウムカンファースルホネート、1-(6-n-ブトキシナフタレン-2-イル)テトラヒドロチオフェニウムヘキサフルオロプロピレンスルホンイミド、1-(3,5-ジメチル-4-ヒドロキシフェニル)テトラヒドロチオフェニウムトリフルオロメタンスルホネート、1-(3,5-ジメチル-4-ヒドロキシフェニル)テトラヒドロチオフェニウムノナフルオロ-n-ブタンスルホネート、1-(3,5-ジメチル-4-ヒドロキシフェニル)テトラヒドロチオフェニウムパーフルオロ-n-オクタンスルホネート、1-(3,5-ジメチル-4-ヒドロキシフェニル)テトラヒドロチオフェニウム2-ビシクロ[2.2.1]ヘプト-2-イル-1,1,2,2-テトラフルオロエタンスルホネート、1-(3,5-ジメチル-4-ヒドロキシフェニル)テトラヒドロチオフェニウムカンファースルホネート、1-(3,5-ジメチル-4-ヒドロキシフェニル)テトラヒドロチオフェニウムテトラヒドロチオフェニウムヘキサフルオロプロピレンスルホンイミド等が挙げられる。
 ヨードニウム塩としては、例えばジフェニルヨードニウムトリフルオロメタンスルホネート、ジフェニルヨードニウムノナフルオロ-n-ブタンスルホネート、ジフェニルヨードニウムパーフルオロ-n-オクタンスルホネート、ジフェニルヨードニウム2-ビシクロ[2.2.1]ヘプト-2-イル-1,1,2,2-テトラフルオロエタンスルホネート、ジフェニルヨードニウムカンファースルホネート、ビス(4-t-ブチルフェニル)ヨードニウムトリフルオロメタンスルホネート、ビス(4-t-ブチルフェニル)ヨードニウムノナフルオロ-n-ブタンスルホネート、ビス(4-t-ブチルフェニル)ヨードニウムパーフルオロ-n-オクタンスルホネート、ビス(4-t-ブチルフェニル)ヨードニウム2-ビシクロ[2.2.1]ヘプト-2-イル-1,1,2,2-テトラフルオロエタンスルホネート、ビス(4-t-ブチルフェニル)ヨードニウムカンファースルホネート等が挙げられる。
 N-スルホニルオキシイミド化合物としては、例えばN-(トリフルオロメタンスルホニルオキシ)-1,8-ナフタルイミド、N-(トリフルオロメタンスルホニルオキシ)ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(トリフルオロメタンスルホニルオキシ)-1,8-ナフタルイミド、N-(ノナフルオロ-n-ブタンスルホニルオキシ)ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(パーフルオロ-n-オクタンスルホニルオキシ)-1,8-ナフタルイミド、N-(パーフルオロ-n-オクタンスルホニルオキシ)ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(2-ビシクロ[2.2.1]ヘプト-2-イル-1,1,2,2-テトラフルオロエタンスルホニルオキシ)ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(2-(3-テトラシクロ[4.4.0.12,5.17,10]ドデカニル)-1,1-ジフルオロエタンスルホニルオキシ)ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(カンファースルホニルオキシ)ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド等が挙げられる。
 [C]酸発生剤としては、オニウム塩化合物及びN-スルホニルオキシイミド化合物が好ましく、スルホニウム塩及びN-スルホニルオキシイミド化合物がより好ましく、トリフェニルスルホニウム塩及びN-スルホニルオキシ-1,8-ナフタルイミドがさらに好ましく、トリフェニルスルホニウムトリフルオロメタンスルホネート及びN-(トリフルオロメタンスルホニルオキシ)-1,8-ナフタルイミドが特に好ましい。
 当該感放射線性組成物が[C]酸発生体として[C]酸発生剤を含有する場合、[C]酸発生剤の含有量の下限としては、[A]金属含有成分100質量部に対して、0.1質量部が好ましく、0.5質量部がより好ましく、1質量部がさらに好ましく、3質量部が特に好ましい。上記含有量の上限としては、50質量部が好ましく、30質量部がより好ましく、20質量部がさらに好ましく、15質量部が特に好ましい。[C]酸発生剤の含有量を上記範囲とすることで、当該感放射線性組成物の感度及び解像性をさらに向上させることができる。[C]酸発生体は、1種単独で使用してもよく、2種以上を併用してもよい。
[その他の任意成分]
 当該感放射線性組成物は、[A]~[C]成分以外にも、配位子となり得る化合物、界面活性剤等のその他の任意成分を含有してもよい。これらのその他の任意成分はそれぞれ1種又は2種以上を用いてもよい。
[配位子となり得る化合物]
 当該感放射線性組成物に用いる上記配位子となり得る化合物としては、例えば多座配位子又は架橋配位子となり得る化合物(以下、「化合物(II)」ともいう)等が挙げられる。化合物(II)としては、例えば[x]粒子の合成方法において加水分解縮合反応の際に添加してもよい化合物として例示した化合物と同様のもの等が挙げられる。
 当該感放射線性組成物が化合物(II)を含有する場合、当該感放射線性組成物中の全固形分に対する化合物(II)の含有量の上限としては、10質量%が好ましく、3質量%がより好ましく、1質量%がさらに好ましい。
 当該感放射線性組成物に用いる界面活性剤は、塗布性、ストリエーション等を改良する作用を示す成分である。上記界面活性剤としては、例えばポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンn-オクチルフェニルエーテル、ポリオキシエチレンn-ノニルフェニルエーテル、ポリエチレングリコールジラウレート、ポリエチレングリコールジステアレート等のノニオン系界面活性剤などが挙げられる。また、上記界面活性剤の市販品としては、例えばKP341(信越化学工業社)、ポリフローNo.75、同No.95(以上、共栄社化学社)、エフトップEF301、同EF303、同EF352(以上、トーケムプロダクツ社)、メガファックF171、同F173(以上、DIC社)、フロラードFC430、同FC431(以上、住友スリーエム社)、アサヒガードAG710、サーフロンS-382、同SC-101、同SC-102、同SC-103、同SC-104、同SC-105、同SC-106(以上、旭硝子社)などが挙げられる。
<感放射線性組成物の調製>
 当該感放射線性組成物は、例えば[A]金属含有成分、[B]有機溶媒及び必要に応じて[C]酸発生体等の任意成分を所定の割合で混合し、好ましくは、得られた混合物を孔径0.2μm程度のフィルターでろ過することにより調製できる。当該感放射線性組成物の固形分濃度の下限としては、0.1質量%が好ましく、0.5質量%がより好ましく、1質量%がさらに好ましく、3質量%が特に好ましい。一方、上記固形分濃度の上限としては、50質量%が好ましく、30質量%がより好ましく、15質量%がさらに好ましく、7質量%が特に好ましい。
<パターン形成方法>
 当該パターン形成方法は、基板に当該感放射線性組成物を塗工することにより膜を形成する工程(以下、「塗工工程」ともいう)と、上記膜を露光する工程(以下、「露光工程」ともいう)と、上記露光された膜を現像する工程(以下、「現像工程」ともいう)とを備える。当該パターン形成方法によれば、上述の当該感放射線性組成物を用いているので、解像度に優れるパターンを高感度で形成できる。以下、各工程について説明する。
[塗工工程]
 本工程では、基板に当該感放射線性組成物を塗工し、膜を形成する。具体的には、得られる膜が所望の厚さとなるように当該感放射線性組成物を塗工した後、必要に応じてプレベーク(PB)によって当該感放射線性組成物の溶媒等を揮発させることで膜を形成する。当該感放射線性組成物を基板に塗工する方法としては、特に限定されないが、例えば回転塗布、流延塗布、ロール塗布等の適宜の塗布手段を採用できる。上記基板としては、例えばシリコンウエハ、アルミニウムで被覆されたウエハ等が挙げられる。なお、感放射線性組成物の潜在能力を最大限に引き出すため、有機系又は無機系の反射防止膜を基板上に形成してもよい。
 本工程で形成する膜の平均厚さの下限としては、1nmが好ましく、5nmがより好ましく、10nmがさらに好ましく、20nmが特に好ましい。一方、上記平均厚さの上限としては、1,000nmが好ましく、200nmがより好ましく、100nmがさらに好ましく、70nmが特に好ましい。
 PB温度の下限としては、通常60℃であり、80℃が好ましい。PB温度の上限としては、通常140℃であり、120℃が好ましい。PB時間の下限としては、通常5秒であり、10秒が好ましい。PB時間の上限としては、通常600秒であり、300秒が好ましい。
 本工程では、環境雰囲気中に含まれる塩基性不純物等の影響を防止するため、例えば形成した膜上に保護膜を設けることもできる。また、後述するように露光工程で液浸露光を行う場合は、液浸媒体と膜との直接的な接触を避けるため、形成した膜上に液浸用保護膜を設けてもよい。
[露光工程]
 本工程では、塗工により得られた膜を露光する。具体的には、例えば所定のパターンを有するマスクを介して上記膜に放射線を照射する。本工程では、必要に応じ、水等の液浸媒体を介した放射線の照射、つまり液浸露光を採用してもよい。露光する放射線としては、例えば可視光線、紫外線、遠紫外線、EUV(波長13.5nm)、X線、γ線等の電磁波;電子線、α線等の荷電粒子線などが挙げられる。これらの中で、放射線を吸収した[A]金属含有成分から発生する二次電子を増加させる観点から、EUV及び電子線が好ましい。
[現像工程]
 本工程では、現像液を用い、露光された膜を現像する。これにより、所定パターンが形成される。上記現像液としては、例えばアルカリ水溶液、有機溶媒含有液等が挙げられる。上記現像液としてでは、現像性等の観点から、有機溶媒含有液が好ましい。
 上記アルカリ水溶液としては、例えば水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、ケイ酸ナトリウム、メタケイ酸ナトリウム、アンモニア、エチルアミン、n-プロピルアミン、ジエチルアミン、ジ-n-プロピルアミン、トリエチルアミン、メチルジエチルアミン、エチルジメチルアミン、トリエタノールアミン、テトラメチルアンモニウムヒドロキシド(TMAH)、ピロール、ピペリジン、コリン、1,8-ジアザビシクロ-[5.4.0]-7-ウンデセン、1,5-ジアザビシクロ-[4.3.0]-5-ノネン等のアルカリ性化合物のうち少なくとも1種を溶解させたアルカリ水溶液などが挙げられる。
 上記アルカリ水溶液におけるアルカリ性化合物の含有量の下限としては、0.1質量%が好ましく、0.5質量%がより好ましく、1質量%がさらに好ましい。上記含有量の上限としては、20質量%が好ましく、10質量%がより好ましく、5質量%がさらに好ましい。
 上記アルカリ水溶液としては、TMAH水溶液が好ましく、2.38質量%TMAH水溶液がより好ましい。
 上記有機溶媒含有液中の有機溶媒としては、例えば当該感放射線性組成物の[B]有機溶媒として例示した有機溶媒と同様のもの等が挙げられる。これらの中で、エステル系溶媒が好ましく、酢酸ブチルがより好ましい。
 上記有機溶媒含有液における有機溶媒の含有量の下限としては、80質量%が好ましく、90質量%がより好ましく、95質量%がさらに好ましく、99質量%が特に好ましい。上記有機溶媒の含有量を上記範囲とすることで、露光部及び未露光部での現像液に対する溶解速度のコントラストをより向上できる。なお、上記有機溶媒含有液の有機溶媒以外の成分としては、例えば水、シリコーンオイル等が挙げられる。
 上記現像液には、必要に応じて界面活性剤を適当量添加してもよい。上記界面活性剤としては例えばイオン性又は非イオン性のフッ素系界面活性剤、シリコーン系の界面活性剤等を用いることができる。
 現像方法としては、例えば現像液が満たされた槽中に基板を一定時間浸漬する方法(ディップ法)、基板表面に現像液を表面張力によって盛り上げて一定時間静止することで現像する方法(パドル法)、基板表面に現像液を噴霧する方法(スプレー法)、一定速度で回転している基板上に一定速度で現像液塗出ノズルをスキャンしながら現像液を塗出しつづける方法(ダイナミックディスペンス法)等が挙げられる。
 上記現像後の基板は、水、アルコール等のリンス液を用いてリンスした後、乾燥させることが好ましい。上記リンスの方法としては、例えば一定速度で回転している基板上にリンス液を塗出しつづける方法(回転塗布法)、リンス液が満たされた槽中に基板を一定時間浸漬する方法(ディップ法)、基板表面にリンス液を噴霧する方法(スプレー法)等が挙げられる。
 以下、本発明を実施例に基づいて具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
<[A]金属含有成分の合成>
 [A]金属含有成分の合成に用いた[a]有機酸及び[b]金属含有化合物を以下に示す。
[[a]有機酸]
 a-1:メタクリル酸(pKa:4.66)
 a-2:安息香酸(pKa:4.21)
[[b]金属含有化合物]
 b-1:ジルコニウム(IV)イソプロポキシド
 b-2:ハフニウム(IV)イソプロポキシド
 b-3:亜鉛(II)イソプロポキシド
 b-4:インジウム(III)イソプロポキシド
 b-5:スズ(IV)イソプロポキシド
 b-6:酸化ランタン(III)
 b-7:酸化イットリウム(III)
 以下の合成例1~10に示すように、[a]有機酸と[b]金属含有化合物とを、溶媒の存在下又は非存在下で混合することにより、2種又は1種の金属原子を含み、金属酸化物を主成分とする粒子を含有する[A]金属含有成分を合成した。合成した金属含有成分(A-1)~(A-10)について、光散乱測定装置を用いたDLS法で平均粒子径を測定し、1.5nm~3.0nmの範囲であることを確認した。
[合成例1]
 上記化合物(a-1)8g及び(b-1)1.5gを混合して、65℃で21時間加熱した。反応溶液を超純水及びアセトンで洗浄して、金属含有成分(A-1)を得た。
[合成例2]
 上記化合物(a-2)2.5g及び(b-2)1.5gをテトラヒドロフラン(THF)に溶解して、65℃で21時間加熱した。反応溶液を超純水及びアセトンで洗浄して、金属含有成分(A-2)を得た。
[合成例3]
 上記化合物(a-1)8g、(b-1)0.7g及び(b-3)0.7gを混合して、65℃で18時間加熱した。反応溶液を超純水及びアセトンで洗浄して、金属含有成分(A-3)を得た。
[合成例4]
 上記化合物(a-1)8g、(b-1)0.7g及び(b-4)0.7gを混合して、65℃で6時間加熱した。反応溶液を超純水及びアセトンで洗浄して、金属含有成分(A-4)を得た。
[合成例5]
 上記化合物(a-2)2.5g、(b-1)0.7g及び(b-5)0.7gをTHFに溶解して、65℃で6時間加熱した。反応溶液を超純水及びアセトンで洗浄して、金属含有成分(A-5)を得た。
[合成例6]
 上記化合物(a-1)8g、(b-2)0.7g及び(b-3)0.7gを混合して、65℃で18時間加熱した。反応溶液を超純水及びアセトンで洗浄して、金属含有成分(A-6)を得た。
[合成例7]
 上記化合物(a-2)2.5g、(b-2)0.7g及び(b-4)0.7gをTHFに溶解して、65℃で6時間加熱した。反応溶液を超純水及びアセトンで洗浄して、金属含有成分(A-7)を得た。
[合成例8]
 上記化合物(a-1)8g、(b-2)0.7g及び(b-5)0.7gを混合して、65℃で6時間加熱した。反応溶液を超純水及びアセトンで洗浄して、金属含有成分(A-8)を得た。
[合成例9]
 上記化合物(a-1)8g、(b-1)1.5g及び(b-6)0.2gを混合して、65℃で21時間加熱した。反応溶液を超純水及びアセトンで洗浄して、金属含有成分(A-9)を得た。
[合成例10]
 上記化合物(a-2)2.5g、(b-2)1.5g及び(b-7)0.2gをTHFに溶解して、65℃で21時間加熱した。反応溶液を超純水及びアセトンで洗浄して、金属含有成分(A-10)を得た。
<感放射線性組成物の調製>
 感放射線性組成物の調製に用いた[B]有機溶媒及び[C]酸発生剤を以下に示す。
([B]有機溶媒)
 B-1:プロピレングリコールモノメチルエーテルアセテート
 B-2:プロピレングリコールモノエチルエーテル
([C]酸発生剤)
 C-1:N-(トリフルオロメチルスルホニルオキシ)-1,8-ナフタルイミド
 C-2:トリフェニルスルホニウムトリフルオロメタンスルホネート
[比較例1]
 [A]金属含有成分としての(A-1)100質量部(固形分としての質量部)、[B]有機溶媒としての(B-1)及び[C]酸発生剤としての(C-1)5質量部を混合し、固形分濃度5質量%の混合液とし、得られた混合液を孔径0.20μmのメンブランフィルターでろ過し、感放射線性組成物(R-1)を調製した。
[比較例2及び実施例1~8]
 下記表1に示す種類及び含有量の各成分を用いた以外は比較例1と同様に操作して感放射線性組成物(R-2)~(R-10)を調製した。
Figure JPOXMLDOC01-appb-T000002
 
<パターンの形成>
[比較例1]
 簡易スピンコーターで、シリコンウエハ上に上記調製した感放射線性組成物(R-1)をスピンコートした後、100℃、60秒間の条件でPBを行い、平均厚さ50nmの膜を形成した。次に、電子線描画装置(日本電子社の「JBX-9500FS」)を用いて電子線を照射し、パターニングを行った。電子線の照射後、有機溶媒を用いて現像した後、乾燥して、ネガ型パターンを形成した。
[比較例2及び実施例1~8]
 下記表2に示す感放射線性組成物を用いた以外は、比較例1と同様に操作して、ネガ型パターンを形成した。
<評価>
 上記形成した各パターンについて、下記に示す方法により感度及び限界解像度(解像性)についての評価を行った。評価結果を表2に合わせて示す。
[感度]
 線幅100nmのライン部と、隣り合うライン部によって形成される間隔が100nmのスペース部とからなるライン・アンド・スペースパターン(1L1S)を1対1の線幅に形成する露光量を最適露光量とし、この最適露光量を感度(μC/cm)とした。
[限界解像度]
 各種線幅のライン・アンド・スペースパターン(1L1S)を形成し、1対1の線幅が保持されていたライン・アンド・スペースパターンの中でライン幅及びスペース幅の合計が最小であったパターンのハーフピッチを限界解像度(nm)とした。
Figure JPOXMLDOC01-appb-T000003
 表2の結果から、異金属を混合することで[A]金属含有成分を含有する感放射線性組成物のリソグラフィー性能、特に解像度が向上することが確認された。これは、例えば金属酸化物を主成分とする[x]粒子の対称性が崩れて、リソグラフィーに適した非晶質状態を維持しやすくなるためと考えられる。なお、一般的に電子線露光によればEUV露光の場合と同様の傾向を示すことが知られており、従って、EUV露光の場合においても、本発明の感放射線性組成物は、解像性及び感度に優れることが推測される。また、亜鉛、インジウム及びスズといったEUV光を吸収しやすいことが知られている金属を混合することで、EUV露光における感度向上も期待できる。
 本発明の感放射線性組成物及びパターン形成方法によれば、解像度に優れるレジストパターンを高感度で形成できる。従って、これらは今後ますます微細化が進行すると予想される半導体デバイスの加工プロセス等に好適に用いることができる。
 

Claims (11)

  1.  金属酸化物を主成分とする粒子を含む金属含有成分と
     有機溶媒と
    を含有し、
     上記金属含有成分が、2種以上の金属原子を含み、
     組成物中の上記金属原子及び半金属原子の合計に対する上記金属原子の含有率が50原子%以上である感放射線性組成物。
  2.  上記金属含有成分が、チタン、ジルコニウム、ハフニウム、亜鉛、スズ及びインジウムから選ばれる1種以上である第1金属原子と、ランタン及びイットリウムから選ばれる1種以上である第2金属原子とを含む請求項1に記載の感放射線性組成物。
  3.  上記第1金属原子及び上記第2金属原子の合計に対する上記第2金属原子の含有率が、1原子%以上30原子%以下である請求項2に記載の感放射線性組成物。
  4.  上記金属含有成分が、チタン、コバルト、ニッケル、銅、銀、白金、ジルコニウム、亜鉛、スズ、インジウム、テルル、ビスマス、アンチモン及びハフニウムから選ばれる2種以上である第3金属原子を含む請求項1に記載の感放射線性組成物。
  5.  組成物中の全金属原子に対する上記第3金属原子の含有率が、50原子%以上である請求項4に記載の感放射線性組成物。
  6.  感放射線性酸発生体をさらに含有する請求項1から請求項5のいずれか1項に記載の感放射線性組成物。
  7.  上記粒子の平均粒子径が20nm以下である請求項1から請求項6のいずれか1項に記載の感放射線性組成物。
  8.  基板に請求項1から請求項7のいずれか1項に記載の感放射線性組成物を塗工することにより膜を形成する工程と、
     上記膜を露光する工程と、
     上記露光された膜を現像する工程と
    を備えるパターン形成方法。
  9.  上記現像工程で用いる現像液が有機溶媒含有液である請求項8に記載のパターン形成方法。
  10.  上記現像工程で用いる現像液がアルカリ水溶液である請求項8に記載のパターン形成方法。
  11.  上記露光工程で用いる放射線が極端紫外線又は電子線である請求項8、請求項9又は請求項10に記載のパターン形成方法。
     
PCT/JP2017/007484 2016-03-28 2017-02-27 感放射線性組成物及びパターン形成方法 WO2017169440A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018508811A JPWO2017169440A1 (ja) 2016-03-28 2017-02-27 感放射線性組成物及びパターン形成方法
KR1020187027321A KR20180121550A (ko) 2016-03-28 2017-02-27 감방사선성 조성물 및 패턴 형성 방법
US16/145,499 US20190033713A1 (en) 2016-03-28 2018-09-28 Radiation-sensitive composition and pattern-forming method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662314019P 2016-03-28 2016-03-28
US62/314,019 2016-03-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/145,499 Continuation US20190033713A1 (en) 2016-03-28 2018-09-28 Radiation-sensitive composition and pattern-forming method

Publications (1)

Publication Number Publication Date
WO2017169440A1 true WO2017169440A1 (ja) 2017-10-05

Family

ID=59963946

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/007484 WO2017169440A1 (ja) 2016-03-28 2017-02-27 感放射線性組成物及びパターン形成方法

Country Status (4)

Country Link
US (1) US20190033713A1 (ja)
JP (1) JPWO2017169440A1 (ja)
KR (1) KR20180121550A (ja)
WO (1) WO2017169440A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190033713A1 (en) * 2016-03-28 2019-01-31 Jsr Corporation Radiation-sensitive composition and pattern-forming method
JP2020520469A (ja) * 2017-04-18 2020-07-09 ザ・ユニバーシティ・オブ・シカゴThe University Of Chicago 光活性無機リガンドでキャップされた無機ナノ結晶
JP2020184074A (ja) * 2019-04-30 2020-11-12 三星エスディアイ株式会社Samsung SDI Co., Ltd. 半導体フォトレジスト用組成物およびこれを用いたパターン形成方法
JP2021162865A (ja) * 2020-04-02 2021-10-11 三星エスディアイ株式会社Samsung SDI Co., Ltd. 半導体フォトレジスト用組成物およびこれを利用したパターン形成方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102606844B1 (ko) * 2019-04-30 2023-11-27 삼성에스디아이 주식회사 반도체 포토 레지스트용 조성물 및 이를 이용한 패턴 형성 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09169098A (ja) * 1995-10-20 1997-06-30 Eastman Kodak Co 平版印刷方法
JP2001018354A (ja) * 1999-07-07 2001-01-23 Fuji Photo Film Co Ltd 画像形成方法、画像形成材料の再生方法および平版印刷版の製版方法
JP2007025678A (ja) * 2005-07-19 2007-02-01 Dongjin Semichem Co Ltd 有機無機複合感光性樹脂組成物、tft型液晶表示素子及びそのパターン形成方法
JP2008242461A (ja) * 2007-03-26 2008-10-09 Samsung Sdi Co Ltd 感光性ペースト組成物
JP2015157807A (ja) * 2014-02-14 2015-09-03 コーネル ユニバーシティCornell University 金属酸化物ナノ粒子およびフォトレジスト組成物

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9696624B2 (en) * 2015-07-29 2017-07-04 Rohm And Haas Electronic Materials Llc Nanoparticle-polymer resists
US10120277B2 (en) * 2016-02-19 2018-11-06 Jsr Corporation Radiation-sensitive composition and pattern-forming method
KR20180121550A (ko) * 2016-03-28 2018-11-07 제이에스알 가부시끼가이샤 감방사선성 조성물 및 패턴 형성 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09169098A (ja) * 1995-10-20 1997-06-30 Eastman Kodak Co 平版印刷方法
JP2001018354A (ja) * 1999-07-07 2001-01-23 Fuji Photo Film Co Ltd 画像形成方法、画像形成材料の再生方法および平版印刷版の製版方法
JP2007025678A (ja) * 2005-07-19 2007-02-01 Dongjin Semichem Co Ltd 有機無機複合感光性樹脂組成物、tft型液晶表示素子及びそのパターン形成方法
JP2008242461A (ja) * 2007-03-26 2008-10-09 Samsung Sdi Co Ltd 感光性ペースト組成物
JP2015157807A (ja) * 2014-02-14 2015-09-03 コーネル ユニバーシティCornell University 金属酸化物ナノ粒子およびフォトレジスト組成物

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190033713A1 (en) * 2016-03-28 2019-01-31 Jsr Corporation Radiation-sensitive composition and pattern-forming method
JP2020520469A (ja) * 2017-04-18 2020-07-09 ザ・ユニバーシティ・オブ・シカゴThe University Of Chicago 光活性無機リガンドでキャップされた無機ナノ結晶
JP7173593B2 (ja) 2017-04-18 2022-11-16 ザ・ユニバーシティ・オブ・シカゴ 光活性無機リガンドでキャップされた無機ナノ結晶
JP2020184074A (ja) * 2019-04-30 2020-11-12 三星エスディアイ株式会社Samsung SDI Co., Ltd. 半導体フォトレジスト用組成物およびこれを用いたパターン形成方法
JP7025474B2 (ja) 2019-04-30 2022-02-24 三星エスディアイ株式会社 半導体フォトレジスト用組成物およびこれを用いたパターン形成方法
US11609494B2 (en) 2019-04-30 2023-03-21 Samsung Sdi Co., Ltd. Semiconductor photoresist composition and method of forming patterns using the composition
JP2021162865A (ja) * 2020-04-02 2021-10-11 三星エスディアイ株式会社Samsung SDI Co., Ltd. 半導体フォトレジスト用組成物およびこれを利用したパターン形成方法
JP7168715B2 (ja) 2020-04-02 2022-11-09 三星エスディアイ株式会社 半導体フォトレジスト用組成物およびこれを利用したパターン形成方法

Also Published As

Publication number Publication date
KR20180121550A (ko) 2018-11-07
US20190033713A1 (en) 2019-01-31
JPWO2017169440A1 (ja) 2019-02-14

Similar Documents

Publication Publication Date Title
JP6666564B2 (ja) 感放射線性組成物及びパターン形成方法
US10120277B2 (en) Radiation-sensitive composition and pattern-forming method
JP6572899B2 (ja) パターン形成方法
US10108088B2 (en) Radiation-sensitive composition and pattern-forming method
WO2017169440A1 (ja) 感放射線性組成物及びパターン形成方法
JP6572898B2 (ja) パターン形成方法
US20200004144A1 (en) Radiation-sensitive composition and pattern-forming method
JP7327392B2 (ja) パターン形成方法及び感放射線性組成物
WO2018043506A1 (ja) 感放射線性組成物及びパターン形成方法
JP2018017780A (ja) 感放射線性組成物及びパターン形成方法
US20190258161A1 (en) Radiation-sensitive composition and pattern-forming method
JP2018116160A (ja) 感放射線性組成物及びパターン形成方法
US20190094691A1 (en) Radiation-sensitive composition and pattern-forming method
WO2019220878A1 (ja) 感放射線性組成物及びパターン形成方法
US20180356725A1 (en) Radiation-sensitive composition and pattern-forming method
JP2019144553A (ja) 感放射線性組成物及びパターン形成方法
JP7071660B2 (ja) 感放射線性組成物及びレジストパターン形成方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187027321

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2018508811

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17773985

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17773985

Country of ref document: EP

Kind code of ref document: A1