US10563359B2 - Concrete based reinforced road structure covered by asphalt - Google Patents
Concrete based reinforced road structure covered by asphalt Download PDFInfo
- Publication number
- US10563359B2 US10563359B2 US16/337,132 US201716337132A US10563359B2 US 10563359 B2 US10563359 B2 US 10563359B2 US 201716337132 A US201716337132 A US 201716337132A US 10563359 B2 US10563359 B2 US 10563359B2
- Authority
- US
- United States
- Prior art keywords
- support elements
- basic layer
- road structure
- layer
- concrete
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000010426 asphalt Substances 0.000 title claims abstract description 44
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 8
- 229910000831 Steel Inorganic materials 0.000 claims description 5
- 235000011837 pasties Nutrition 0.000 claims description 5
- 239000010959 steel Substances 0.000 claims description 5
- 229910052742 iron Inorganic materials 0.000 claims description 4
- 239000004575 stone Substances 0.000 claims description 4
- 239000000463 material Substances 0.000 description 8
- 230000000694 effects Effects 0.000 description 6
- 230000002787 reinforcement Effects 0.000 description 6
- 238000006073 displacement reaction Methods 0.000 description 5
- 238000005452 bending Methods 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 235000019994 cava Nutrition 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000002226 simultaneous effect Effects 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01C—CONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
- E01C7/00—Coherent pavings made in situ
- E01C7/08—Coherent pavings made in situ made of road-metal and binders
- E01C7/32—Coherent pavings made in situ made of road-metal and binders of courses of different kind made in situ
- E01C7/325—Joining different layers, e.g. by adhesive layers; Intermediate layers, e.g. for the escape of water vapour, for spreading stresses
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01C—CONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
- E01C11/00—Details of pavings
- E01C11/16—Reinforcements
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01C—CONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
- E01C3/00—Foundations for pavings
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01C—CONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
- E01C7/00—Coherent pavings made in situ
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01C—CONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
- E01C7/00—Coherent pavings made in situ
- E01C7/08—Coherent pavings made in situ made of road-metal and binders
- E01C7/10—Coherent pavings made in situ made of road-metal and binders of road-metal and cement or like binders
- E01C7/14—Concrete paving
- E01C7/145—Sliding coverings, underlayers or intermediate layers ; Isolating or separating intermediate layers; Transmission of shearing force in horizontal intermediate planes, e.g. by protrusions, by inlays
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01C—CONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
- E01C7/00—Coherent pavings made in situ
- E01C7/08—Coherent pavings made in situ made of road-metal and binders
- E01C7/18—Coherent pavings made in situ made of road-metal and binders of road-metal and bituminous binders
- E01C7/185—Isolating, separating or connecting intermediate layers, e.g. adhesive layers; Transmission of shearing force in horizontal intermediate planes, e.g. by protrusions
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01C—CONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
- E01C2201/00—Paving elements
- E01C2201/16—Elements joined together
- E01C2201/167—Elements joined together by reinforcement or mesh
Definitions
- the invention relates to a concrete based reinforced road structure covered by asphalt that comprises a basic layer made of concrete with a substantially horizontal upper surface and placed directly or through a subconstruction on the ground and at least one mould cover layer thereon made of asphalt, and support elements positioned between the basic layer and the cover layer.
- This structure is capable of preventing or decreasing deformations in the asphalt layer under thermal effects and load coming from traffic.
- load bearing roads comprise several layers wherein the lower layer comprises at least one concrete base designed to resist the load and this is covered by one or more mould asphalt layer.
- the asphalt layer that comprises elastic bitumen as binding material has physical and mechanical properties which substantially change within the temperature range characteristic to the temperate global zone. Because during the sudden temperature changes in summer owing to the fast relaxation of asphalt and the distribution of the generated tensions in all directions no substantial thermal pressure or pulling tensions will take peace. The typical result will be the rutting or cave-ins of the pavement caused by the load of tires of heavy commercial vehicles i.e. by the uneven compression of the asphalt. In case of sudden drops of the temperature in winter the damages of the asphalt come from thermal cracks.
- the road In addition to thermal and mechanical pressure loads the road is also exposed to bending loads coming from the through going traffic. This load component depends also on the thermal effects. Owing to the changing mechanical properties of the asphalt with time the bending type load will be the greater when the layers that constitute the road structure cannot cooperate because bending and pulling tensions can emerge therein which might be greater than the tension strength of the material of the given layer against pulling.
- the main reason of the aforementioned triple problems lies in that there is no appropriately strong binding between the base layer made of concrete that has the task of receiving and resisting the load and the asphalt cover layer thereon therefore in most of the cases the asphalt layer gets displaced on the concrete or being cracked without displacement.
- a common drawback of such solutions is that the formation of a spatially structured upper surface for the base layer can be provided only by using very big tools and this is an expensive job, and water can collect in the deeper parts of the grooves which when getting frozen causes cracks, furthermore the grooves have generally a single main direction and the protection against displacement is efficient only normal to this direction, although the aforementioned loads can come from any direction.
- the object of the present invention is to provide a reinforced road structure that has a concrete base and a mould asphalt layer thereon which can provide and efficient protection against all the three listed deforming load effects and can prevent the asphalt layer(s) from being displaced relative to the concrete base layer.
- a concrete based reinforced road structure covered by asphalt that comprises a basic layer made of concrete with a substantially horizontal upper surface and placed directly or through a subconstruction on the ground and at least one mould cover layer thereon made of asphalt, and support elements positioned between the basic layer and the cover layer, and according to the invention the support elements are inserted in a predetermined depth in the basic layer prior to the setting thereof so that they are partially projecting out of the basic layer in normal direction to the upper surface, and the projecting portion provides protection to the cover layer against being displaced relative to the basic layer under loads to which the road is exposed, and the support elements are flat stripes with walls being substantially normal to the surface of the basic layer and comprising subsequent sections with differing directions to form respective meandering lines.
- the meandering stripes formed of the support elements are extending beside each other so that along certain sections they are interconnected to form together an array of closed shapes.
- closed shape is triangle, square, circle or hexagon.
- the cover layer comprises gravel pieces made of stone, and the support elements extend out from the upper surface of the basic layer at least as high as the half of the average size of said gravel pieces.
- the upper sides of the support elements have a wider upper rim, and it is more preferred if such wider rims are provided also on their lower edges.
- the support elements are arranged beside each other to form respective regular shapes which are connected to each other.
- FIG. 1 shows a preferred embodiment of the road structure according to the invention in half ready state in a stepped section
- FIG. 2 shows an enlarged detail similar to FIG. 1 ;
- FIG. 3 shows the enlarged cross sectional profile of a preferred embodiment of the support elements 3 ;
- FIG. 4 shows an alternative design of the support elements 3 ;
- FIG. 5 shows the enlarged cross sectional view of the road structure.
- FIG. 1 shows the simplified stepped sectional view of the first embodiment of the road structure according to the invention in which at the bottom a solid basic layer 1 is arranged made of concrete. Below the basic layer 1 the ground is prepared for instance by compaction or with a different way or there can be a coarser grained concrete.
- the basic layer 1 has a design which can take and resist taking static and dynamic loads typically present at the road under construction, and the basic layer 1 has preferably a planar or slightly bowed upper surface which is preferred for leading water away and for its much cheaper manufacture as if it was an articulated structure.
- the basic layer 1 is preferably strengthened by a steel reinforcement which need not be indicated separately as it is not required for understanding the present invention.
- an asphalt cover layer 2 is provided on the top of the basic layer 1 by moulding.
- the asphalt layer 2 comprises as shown in the sectional view of FIG. 5 gravel with small pieces of different size and bitumen that fills the gaps between the pieces.
- FIG. 1 the cover layer 2 has been shown in a partially removed state for the sake of illustrating the structure prior to the placement of the cover layer 2 .
- support elements 3 are positioned from above which have special shape and layout as illustrated in FIG. 1 in such a way that the support elements 3 extend out from the upper surface of the basic layer 1 in a predetermined height normal to the surface, whereas the support elements 3 are at the same time sunken in a predetermined depth also in the basic layer 1 .
- the support elements 3 are made preferably but not necessarily from iron, steel, or they can be made from a material designed to take the expected load. This task can also be taken by an appropriately chosen plastic material.
- FIG. 2 shows the design of a preferred embodiment of the support elements 3 in an enlarged view, in which the support elements 3 have the shape of stripes formed of half hexagons positioned normal to the surface and arranged opposite to each other and they are connected to each other at their contacting surface areas by means of bolts, rivets or by welding, whereby they constitute a closed arrangement of stable closed polygons e.g. form hexagonal grids that extend out of the surface to a predetermined height.
- This design is preferred because the closed polygons are interconnected with force fitting attachments, whereby they can resist forces coming from any direction that act on the cover layer 2 mould later thereon, whereby they prevent any displacement of the asphalt.
- the support elements 3 comprise respective openings made close to the height of the upper surface of the basic layer 1 which have been cut out of the material of the support elements 3 and bent outwardly relative to the original plane of the stripes (which plane is now vertical) to form tabs 4 that provide increased horizontal surfaces that prevent the support element 3 from being immersed in the material of the basic layer 1 when it is still in pasty state.
- the presence of the tabs 4 and the associated opening is also preferred because in this way in spite of the presence of the support elements 3 there will be a free flow of water through the openings of the support elements 3 , and when the cover layer 2 is mould bitumen can flow in the openings causing a further stabilizing effect for the cover layer 2 .
- FIG. 3 shows that in a preferred embodiment the stripes constituting the support elements 3 have an upper rim 5 with rounded and increased cross section i.e. the stripes do not have sharp edges but upper surfaces with an increased thickness.
- the support elements 3 have a symmetric cross section i.e. provided with a similarly wide lower rim 5 as it is shown in FIG. 3 which reinforces their sit in the basic layer 1 .
- FIG. 4 shows stripes 6 (or straps) which constitute the support elements 3 positioned in a spaced arrangement to illustrate that the formation of a closed structure defining holes is not an indispensable condition because the stripes 6 with their meandering lines can be sufficiently stable after the setting of the basic layer 1 in which their lower parts are inserted. In case of roads designed for lower load such an open design can also provide the required stability. If needed, the support elements 3 can also be made as stripes without having the widened rims 5 positioned normal to their plane surfaces in the basic layer 1 .
- FIG. 5 showing the cross section of the road after it has been finished.
- the cover layer 2 will be positioned from above by moulding in a soft, pasty state.
- the height of the projection of the support elements 3 above the basic layer 1 is not critical, whereas it is preferred if this height is at least as high as the half of the average size of the stone pieces 7 that constitute the gravel in the cover layer 1 so that the walls of the support elements 3 can provide sufficient resistance against the pressure of these pieces 7 .
- the depth in which the support elements 3 should be inserted in the basic layer 1 can be determined only in the knowledge of the required loadability, but it is also preferred if the depth is at least the half of the average size of the gravel pieces in the basic layer 1 .
- FIG. 5 shows the support elements 3 with different projecting heights. In any given actual embodiment only a single projecting height is chosen.
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Road Paving Structures (AREA)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
HU1600554 | 2016-09-28 | ||
HUP1600554 | 2016-09-28 | ||
HU1600554A HUP1600554A2 (en) | 2016-09-28 | 2016-09-28 | Reinforced pavement structure and procedure for the production of said structure |
PCT/HU2017/050041 WO2018060751A1 (en) | 2016-09-28 | 2017-09-25 | Concrete based reinforced road structure covered by asphalt |
Publications (2)
Publication Number | Publication Date |
---|---|
US20190226157A1 US20190226157A1 (en) | 2019-07-25 |
US10563359B2 true US10563359B2 (en) | 2020-02-18 |
Family
ID=89992265
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/337,132 Active US10563359B2 (en) | 2016-09-28 | 2017-09-25 | Concrete based reinforced road structure covered by asphalt |
Country Status (19)
Country | Link |
---|---|
US (1) | US10563359B2 (pt) |
EP (1) | EP3519630B1 (pt) |
JP (1) | JP2019529754A (pt) |
KR (1) | KR20190058592A (pt) |
CN (1) | CN109996923A (pt) |
AR (1) | AR109606A1 (pt) |
AU (1) | AU2017334303A1 (pt) |
BR (1) | BR112019006000A2 (pt) |
CA (1) | CA3042609A1 (pt) |
DK (1) | DK3519630T3 (pt) |
ES (1) | ES2845155T3 (pt) |
HR (1) | HRP20210026T1 (pt) |
HU (2) | HUP1600554A2 (pt) |
MY (1) | MY194744A (pt) |
PL (1) | PL3519630T3 (pt) |
PT (1) | PT3519630T (pt) |
RS (1) | RS61402B1 (pt) |
TW (1) | TW201816231A (pt) |
WO (1) | WO2018060751A1 (pt) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108867234B (zh) * | 2018-07-13 | 2021-03-12 | 阜阳师范学院 | 一种耐久型沥青路面结构 |
CN111764218B (zh) * | 2020-05-22 | 2022-05-13 | 广州城建职业学院 | 一种架空式人行道地砖铺设结构 |
DE102020115998A1 (de) | 2020-06-17 | 2021-12-23 | Tk Elevator Innovation And Operations Gmbh | Aufzugsanlage |
CN112681047A (zh) * | 2020-09-17 | 2021-04-20 | 湖北楚交科交通科技股份有限公司 | 一种白改黑基层柔性均质化处治技术 |
CN112411293A (zh) * | 2020-10-30 | 2021-02-26 | 王克瑶 | 一种市政公路路面结构及路面基层的抗压方法 |
CN113215937B (zh) * | 2021-05-21 | 2022-10-21 | 中铁二局集团有限公司 | 一种隧道混凝土基层的施工方法 |
CN113652917B (zh) * | 2021-06-30 | 2023-03-10 | 济南黄河路桥建设集团有限公司 | 一种公交车站路面结构施工方法 |
Citations (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1983412A (en) * | 1930-06-05 | 1934-12-04 | Smith Corp A O | Sheet metal pavement grid and method of making the same |
US1994930A (en) * | 1931-10-15 | 1935-03-19 | Carl C H Tommerup | Paving means |
US2912910A (en) * | 1953-08-05 | 1959-11-17 | Acme Steel Co | Beach landing mat |
US3033086A (en) * | 1957-04-17 | 1962-05-08 | Causeway Reinforcement Ltd | Reinforcement for mastics, mortar and the like |
US3870422A (en) * | 1974-06-07 | 1975-03-11 | Medico Christine | Porous pavement |
US3909144A (en) * | 1972-07-26 | 1975-09-30 | Villadsens Fab As Jens | Plastic sheet materials and structures containing the same |
US4142821A (en) * | 1975-10-16 | 1979-03-06 | Doering Erich | Ground stabilization arrangement for dam embankments and other terrain slopes and the like |
US4594022A (en) * | 1984-05-23 | 1986-06-10 | Mp Materials Corporation | Paving method and pavement construction for concentrating microwave heating within pavement material |
US4856930A (en) | 1987-05-21 | 1989-08-15 | Denning Gary R | Pavement and methods for producing and resurfacing pavement |
US4909662A (en) * | 1989-01-13 | 1990-03-20 | Baker Robert L | Roadway and method of construction |
US5009543A (en) | 1989-07-25 | 1991-04-23 | High Technologies, Inc. | Reinforced asphalt concrete and structure for producing same |
US5123778A (en) * | 1990-09-26 | 1992-06-23 | Bohnhoff William W | Method of paving |
US5249883A (en) | 1992-03-26 | 1993-10-05 | Husky Oil Operations Ltd. | Metal plate/asphalt pavement |
US5749787A (en) * | 1994-01-19 | 1998-05-12 | Werner A. Jank | Floor cover, especially sports field cover |
US7210876B2 (en) * | 2005-05-20 | 2007-05-01 | National Diversified Sales, Inc. | Rollable load bearing mat for turf areas |
US7232276B2 (en) | 1999-12-17 | 2007-06-19 | Mitsui Chemicals, Inc. | Road reinforcement sheet, structure of asphalt reinforced pavement and method for paving road |
CN101109168A (zh) | 2007-08-16 | 2008-01-23 | 西安公路养护技术工程研究中心有限公司 | 高等级公路沥青路面面层层间处理方法 |
US20080152436A1 (en) | 2004-12-23 | 2008-06-26 | Fortatech Ag | Grid-Shaped Mat |
US7501174B2 (en) * | 2007-03-01 | 2009-03-10 | Prs Mediterranean Ltd. | High performance geosynthetic article |
US7815395B1 (en) * | 2009-04-08 | 2010-10-19 | Airfield Systems, L.L.C | Subsurface drainage system and drain structure therefor |
CN102418309A (zh) | 2011-09-16 | 2012-04-18 | 贺雨田 | 一种层间嵌入式路面结构 |
US20130101349A1 (en) * | 2011-10-14 | 2013-04-25 | Tensar International | Geogrid reinforced compactable asphaltic concrete composite, and method of forming the composite |
CN204662194U (zh) | 2015-05-18 | 2015-09-23 | 长安大学 | 一种植石式层间处治方法铺筑的复合路面 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU996602A1 (ru) * | 1979-02-19 | 1983-02-15 | Государственный Проектно-Изыскательский И Научно-Исследовательский Институт Гражданской Авиации "Аэропроект" | Монолитное бетонное покрытие дорог или аэродромов |
JPS58180902U (ja) * | 1982-05-25 | 1983-12-02 | 株式会社エ−ビ−シ−商会 | 床面等の補強用格子体 |
JPS59173706U (ja) * | 1983-05-09 | 1984-11-20 | 中村 佳明 | 路面舗装用補強材 |
US4797026A (en) * | 1984-05-09 | 1989-01-10 | The United States Of America As Represented By The Secretary Of The Army | Expandable sand-grid for stabilizing an undersurface |
FR2661433B1 (fr) * | 1990-04-26 | 1994-06-03 | Scerer | Dalle de chaussee d'un pont, notamment de grande portee. |
JPH04330102A (ja) * | 1991-05-01 | 1992-11-18 | Kensetsu Kikaku Consultant:Kk | 道路用透水性補強舗装 |
JP2000027106A (ja) * | 1998-07-14 | 2000-01-25 | Osada Giken Kk | 道路の舗装方法 |
CN101487216B (zh) * | 2009-01-13 | 2011-06-08 | 深圳市市政工程总公司 | 提高沥青面层与水泥稳定基层界面连接强度的结构和方法 |
JP6057821B2 (ja) * | 2013-04-18 | 2017-01-11 | Jxエネルギー株式会社 | ジオシンセティックス |
CN204960240U (zh) * | 2015-07-16 | 2016-01-13 | 上海市园林设计院有限公司 | 一种防止铺装面层开裂的构造 |
CN205368928U (zh) * | 2016-01-22 | 2016-07-06 | 山西大学 | 用于水泥混凝土路面改造的沥青路面结构 |
CN105756270B (zh) * | 2016-04-02 | 2018-08-14 | 张波 | 波浪形钢板式叠合板构件 |
-
2016
- 2016-09-28 HU HU1600554A patent/HUP1600554A2/hu unknown
-
2017
- 2017-09-25 ES ES17792176T patent/ES2845155T3/es active Active
- 2017-09-25 WO PCT/HU2017/050041 patent/WO2018060751A1/en unknown
- 2017-09-25 DK DK17792176.4T patent/DK3519630T3/da active
- 2017-09-25 JP JP2019517789A patent/JP2019529754A/ja active Pending
- 2017-09-25 KR KR1020197012080A patent/KR20190058592A/ko not_active Application Discontinuation
- 2017-09-25 CN CN201780067060.7A patent/CN109996923A/zh active Pending
- 2017-09-25 EP EP17792176.4A patent/EP3519630B1/en active Active
- 2017-09-25 MY MYPI2019001362A patent/MY194744A/en unknown
- 2017-09-25 HU HUE17792176A patent/HUE052651T2/hu unknown
- 2017-09-25 PT PT177921764T patent/PT3519630T/pt unknown
- 2017-09-25 AU AU2017334303A patent/AU2017334303A1/en not_active Abandoned
- 2017-09-25 RS RS20210020A patent/RS61402B1/sr unknown
- 2017-09-25 CA CA3042609A patent/CA3042609A1/en not_active Abandoned
- 2017-09-25 BR BR112019006000A patent/BR112019006000A2/pt not_active IP Right Cessation
- 2017-09-25 PL PL17792176T patent/PL3519630T3/pl unknown
- 2017-09-25 US US16/337,132 patent/US10563359B2/en active Active
- 2017-09-27 AR ARP170102678A patent/AR109606A1/es active IP Right Grant
- 2017-09-27 TW TW106133200A patent/TW201816231A/zh unknown
-
2021
- 2021-01-07 HR HRP20210026TT patent/HRP20210026T1/hr unknown
Patent Citations (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1983412A (en) * | 1930-06-05 | 1934-12-04 | Smith Corp A O | Sheet metal pavement grid and method of making the same |
US1994930A (en) * | 1931-10-15 | 1935-03-19 | Carl C H Tommerup | Paving means |
US2912910A (en) * | 1953-08-05 | 1959-11-17 | Acme Steel Co | Beach landing mat |
US3033086A (en) * | 1957-04-17 | 1962-05-08 | Causeway Reinforcement Ltd | Reinforcement for mastics, mortar and the like |
US3909144A (en) * | 1972-07-26 | 1975-09-30 | Villadsens Fab As Jens | Plastic sheet materials and structures containing the same |
US3870422A (en) * | 1974-06-07 | 1975-03-11 | Medico Christine | Porous pavement |
US4142821A (en) * | 1975-10-16 | 1979-03-06 | Doering Erich | Ground stabilization arrangement for dam embankments and other terrain slopes and the like |
US4594022A (en) * | 1984-05-23 | 1986-06-10 | Mp Materials Corporation | Paving method and pavement construction for concentrating microwave heating within pavement material |
US4856930A (en) | 1987-05-21 | 1989-08-15 | Denning Gary R | Pavement and methods for producing and resurfacing pavement |
US4909662A (en) * | 1989-01-13 | 1990-03-20 | Baker Robert L | Roadway and method of construction |
US5009543A (en) | 1989-07-25 | 1991-04-23 | High Technologies, Inc. | Reinforced asphalt concrete and structure for producing same |
US5123778A (en) * | 1990-09-26 | 1992-06-23 | Bohnhoff William W | Method of paving |
US5249883A (en) | 1992-03-26 | 1993-10-05 | Husky Oil Operations Ltd. | Metal plate/asphalt pavement |
US5749787A (en) * | 1994-01-19 | 1998-05-12 | Werner A. Jank | Floor cover, especially sports field cover |
US7232276B2 (en) | 1999-12-17 | 2007-06-19 | Mitsui Chemicals, Inc. | Road reinforcement sheet, structure of asphalt reinforced pavement and method for paving road |
US20080152436A1 (en) | 2004-12-23 | 2008-06-26 | Fortatech Ag | Grid-Shaped Mat |
US7210876B2 (en) * | 2005-05-20 | 2007-05-01 | National Diversified Sales, Inc. | Rollable load bearing mat for turf areas |
US7501174B2 (en) * | 2007-03-01 | 2009-03-10 | Prs Mediterranean Ltd. | High performance geosynthetic article |
CN101109168A (zh) | 2007-08-16 | 2008-01-23 | 西安公路养护技术工程研究中心有限公司 | 高等级公路沥青路面面层层间处理方法 |
US7815395B1 (en) * | 2009-04-08 | 2010-10-19 | Airfield Systems, L.L.C | Subsurface drainage system and drain structure therefor |
CN102418309A (zh) | 2011-09-16 | 2012-04-18 | 贺雨田 | 一种层间嵌入式路面结构 |
US20130101349A1 (en) * | 2011-10-14 | 2013-04-25 | Tensar International | Geogrid reinforced compactable asphaltic concrete composite, and method of forming the composite |
CN204662194U (zh) | 2015-05-18 | 2015-09-23 | 长安大学 | 一种植石式层间处治方法铺筑的复合路面 |
Non-Patent Citations (2)
Title |
---|
International Search Report for PCT/HU2017/050041, dated Jan. 16, 2018 (4 pages). |
Written Opinion of the International Searching Authority, dated Jan. 16, 2018 (5 pages). |
Also Published As
Publication number | Publication date |
---|---|
RS61402B1 (sr) | 2021-02-26 |
WO2018060751A1 (en) | 2018-04-05 |
PT3519630T (pt) | 2021-01-14 |
EP3519630B1 (en) | 2020-10-21 |
HUE052651T2 (hu) | 2021-05-28 |
JP2019529754A (ja) | 2019-10-17 |
TW201816231A (zh) | 2018-05-01 |
AU2017334303A1 (en) | 2019-05-02 |
CA3042609A1 (en) | 2018-04-05 |
US20190226157A1 (en) | 2019-07-25 |
BR112019006000A2 (pt) | 2019-07-02 |
DK3519630T3 (da) | 2021-01-18 |
HUP1600554A2 (en) | 2018-05-02 |
EP3519630A1 (en) | 2019-08-07 |
MY194744A (en) | 2022-12-15 |
CN109996923A (zh) | 2019-07-09 |
PL3519630T3 (pl) | 2021-05-17 |
KR20190058592A (ko) | 2019-05-29 |
ES2845155T3 (es) | 2021-07-26 |
HRP20210026T1 (hr) | 2021-03-05 |
AR109606A1 (es) | 2018-12-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10563359B2 (en) | Concrete based reinforced road structure covered by asphalt | |
US7338230B2 (en) | Plate concrete dowel system | |
US7381008B2 (en) | Disk plate concrete dowel system | |
US7314333B2 (en) | Plate concrete dowel system | |
US7604432B2 (en) | Plate concrete dowel system | |
US1557165A (en) | Pavement for highways | |
JP2007138467A (ja) | 高架道路の荷重支持型伸縮装置とその施工法 | |
KR101363394B1 (ko) | 프리캐스트 블록을 이용한 도로포장의 보수공법 | |
JP2018009297A (ja) | 道路構造物と盛土との境界部における道路構造 | |
KR20190112451A (ko) | 탄성보강재를 이용하여 내구성을 향상시킨 신축이음 시공방법 | |
JP7396978B2 (ja) | 複層プレキャスト舗装道路 | |
US3253289A (en) | Bridge floor and wear plate therefor | |
US7874761B2 (en) | Support structure for a soft ground | |
OA19034A (en) | Concrete based reinforced road structure covered by asphalt | |
US2179019A (en) | Construction unit | |
AU2002217375B2 (en) | The construction of roads | |
RU2784849C1 (ru) | Плитка дорожно-тротуарная двухслойная | |
US20230151557A1 (en) | Support product | |
JP4010620B2 (ja) | 路面の凍結抑制構造 | |
AU2002217375A1 (en) | The construction of roads | |
AU2022221468A1 (en) | Support Product | |
AU2018371311A1 (en) | Base for weighing platform assembly | |
JPS6364561B2 (pt) | ||
JPH1143904A (ja) | 道路橋の遊間部の舗装構造及び舗装の補修方法 | |
JPS6253644B2 (pt) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: NOVONOVON ZRT., HUNGARY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CZINTOS, CSONGOR;REEL/FRAME:048716/0041 Effective date: 20190319 |
|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO SMALL (ORIGINAL EVENT CODE: SMAL); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT RECEIVED |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
FEPP | Fee payment procedure |
Free format text: SURCHARGE FOR LATE PAYMENT, SMALL ENTITY (ORIGINAL EVENT CODE: M2554); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2551); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY Year of fee payment: 4 |