US10464781B2 - Method for operating an elevator system - Google Patents

Method for operating an elevator system Download PDF

Info

Publication number
US10464781B2
US10464781B2 US15/529,992 US201515529992A US10464781B2 US 10464781 B2 US10464781 B2 US 10464781B2 US 201515529992 A US201515529992 A US 201515529992A US 10464781 B2 US10464781 B2 US 10464781B2
Authority
US
United States
Prior art keywords
elevator
assigned
elevator shafts
travel direction
shafts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related, expires
Application number
US15/529,992
Other languages
English (en)
Other versions
US20170313545A1 (en
Inventor
Stefan Gerstenmeyer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TK Elevator Innovation and Operations GmbH
Original Assignee
ThyssenKrupp AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ThyssenKrupp AG filed Critical ThyssenKrupp AG
Assigned to THYSSENKRUPP ELEVATOR AG, THYSSENKRUPP AG reassignment THYSSENKRUPP ELEVATOR AG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: Gerstenmeyer, Stefan
Publication of US20170313545A1 publication Critical patent/US20170313545A1/en
Application granted granted Critical
Publication of US10464781B2 publication Critical patent/US10464781B2/en
Assigned to THYSSENKRUPP ELEVATOR INNOVATION AND OPERATIONS AG reassignment THYSSENKRUPP ELEVATOR INNOVATION AND OPERATIONS AG CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: THYSSENKRUPP ELEVATOR AG
Assigned to THYSSENKRUPP ELEVATOR INNOVATION AND OPERATIONS GMBH reassignment THYSSENKRUPP ELEVATOR INNOVATION AND OPERATIONS GMBH CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: THYSSENKRUPP ELEVATOR INNOVATION AND OPERATIONS AG
Assigned to THYSSENKRUPP ELEVATOR INNOVATION AND OPERTIONS GMBH reassignment THYSSENKRUPP ELEVATOR INNOVATION AND OPERTIONS GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: THYSSENKRUPP AG
Assigned to THYSSENKRUPP ELEVATOR INNOVATION AND OPERATIONS GMBH reassignment THYSSENKRUPP ELEVATOR INNOVATION AND OPERATIONS GMBH CORRECTIVE ASSIGNMENT TO CORRECT THE MISSPELLED ASSIGNEE NAME INSIDE THE ASSIGNMENT DOCUMENT TO "THYSSENKRUPP ELEVATOR INNOVATION AND OPERATIONS GMBH." PREVIOUSLY RECORDED ON REEL 053144 FRAME 0238. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT. Assignors: THYSSENKRUPP AG
Expired - Fee Related legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/24Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration
    • B66B1/2408Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration where the allocation of a call to an elevator car is of importance, i.e. by means of a supervisory or group controller
    • B66B1/2466For elevator systems with multiple shafts and multiple cars per shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/24Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration
    • B66B1/2408Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration where the allocation of a call to an elevator car is of importance, i.e. by means of a supervisory or group controller
    • B66B1/2491For elevator systems with lateral transfers of cars or cabins between hoistways
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B9/00Kinds or types of lifts in, or associated with, buildings or other structures
    • B66B9/003Kinds or types of lifts in, or associated with, buildings or other structures for lateral transfer of car or frame, e.g. between vertical hoistways or to/from a parking position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B2201/00Aspects of control systems of elevators
    • B66B2201/40Details of the change of control mode
    • B66B2201/401Details of the change of control mode by time of the day
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B2201/00Aspects of control systems of elevators
    • B66B2201/40Details of the change of control mode
    • B66B2201/402Details of the change of control mode by historical, statistical or predicted traffic data, e.g. by learning

Definitions

  • the present disclosure relates to a method for operating an elevator system as well as a corresponding elevator system.
  • High-rise buildings and buildings comprising a plurality of floors require complex elevator systems in order to handle all transport processes as effectively as possible.
  • a multitude of users wants to be transported from the ground floor of the building to the different floors of the building.
  • a multitude of users for example, is to be transported from the different floors to the ground floor.
  • Elevator systems for such purposes are known.
  • Single-car systems or one-car systems, respectively, have for example one car in an elevator shaft.
  • Double-decker car systems have two cars in an elevator shaft. These two cars of a double-decker car system are fixedly connected to one another for the most part and cannot be moved independently from one another for the most part.
  • Multi-car systems have at least two cars in an elevator shaft. These cars of a multi-car system can be moved independently from one another.
  • Such multi-car systems comprising two cars, which can be moved independently from one another in an elevator shaft, are sold by applicant under the name “TWIN”.
  • a shaft-changing multi-car system thereby comprises a plurality of cars, which can be moved in a group of elevator shafts.
  • the cars can hereby not only be moved vertically back and forth in the individual elevator shafts, but also horizontally between the individual elevator shafts.
  • Cars of a shaft-changing multi-car system are thus not fixedly bound to an elevator shaft, as is the case in single-car systems or common multi-car systems.
  • the cars of a shaft-changing multi-car system can in particular change between the elevator shafts at an upper and/or at a lower end of the elevator shafts.
  • corresponding changing mechanisms are provided.
  • the shaft-changing multi-car system comprises more than two elevator shafts, the individual cars can in particular change between all of these elevator shafts. Such a change of cars between elevator shafts can thereby be carried out for example only between adjacent elevator shafts or in particular also flexibly between non-adjacent elevator shafts.
  • An elevator system comprising individually movable elevator cars is known from EP 1 619 157 B1, in which elevator cars can change between individual shafts.
  • the invention at hand seeks to improve the effectiveness of shaft-changing multi-car systems.
  • the invention proposes a method for operating an elevator system, which is embodied as a shaft-changing multi-car system, in the case of which a number of cars is assigned to at least three elevator shafts, wherein the cars can be moved in upwards direction and downwards direction inside the individual elevator shafts, as well as between the individual elevator shafts, comprising the following steps:
  • steps b) and c) repeating steps b) and c) for further elevator shafts, until a desired number of elevator shafts or all elevator shafts have an assignment of a travel direction UP or DOWN, which is opposite to the assignment during the first operating state, for providing a second operating state.
  • a successive reversal of the travel directions assigned to the individual elevator shafts is carried out advantageously.
  • a reversal of the direction for the individual shafts thus advantageously takes place in succession.
  • a reversal of the direction of the individual cars in particular takes place individually and in succession.
  • the invention further proposes an elevator system, which is embodied as a shaft-changing multi-car system, in the case of which a number of cars is assigned to at least three elevator shafts, wherein the cars can be moved in upwards direction and downwards direction inside the individual elevator shafts, as well as the individual elevator shafts, comprising:
  • c) means for reversing the assignment of the travel direction in this one shaft or this partial quantity of the at least three elevator shafts such that all cars, which are located in this one elevator shaft or the partial quantity of the at least three elevator shafts, move only in one travel direction, which is opposite to the travel direction thereof in the first operating state,
  • d) means for repeating the steps b) and c) for further elevator shafts, until a desired number of elevator shafts or all elevator shafts have an assignment of a travel direction UP or DOWN, which is opposite to the original assignment according to feature a).
  • the means are set up such that a reversing of the travel directions assigned to the individual elevator shafts is carried out successively, in order to get from the first operating state to the second operating state. It is in particular further provided that the means are advantageously further embodied such that the reversal of the direction of individual cars takes place individually and in succession. A reversal of the direction of the individual shafts in particular takes place in succession accordingly.
  • an elevator system is enabled to change between different operating states in a highly effective manner. It is important to point out that the used wording that cars, which are located in a respective elevator shaft, can move only in upwards direction or downwards direction, respectively, covers that these cars can also stop on a corresponding floor, for example in the event that a car is called by a user. Only a moving of the car in the direction opposite to the assigned travel direction is impossible.
  • control device can be integrated in the overall control of an elevator system, or can also cooperate with a corresponding elevator controller.
  • the invention makes it possible to increase the transportation capacity of an elevator system in a main travel direction, to which the majority of the elevator shafts is assigned at a certain point in time, by minimizing the average cycle time of the cars in the main travel direction.
  • the average cycle time is understood to be the average time, which lapses while two consecutive cars pass a certain floor, for example a main stop, such as, for example, the ground floor stop.
  • the cycle time mainly depends on stop times of the cars on individual floors, wherein the cycle time is increased in particular if different cars are to stop on the same floor.
  • the stop times in particular comprise the time for opening and for closing the respective elevator or car doors, respectively, as well as the time for passengers to enter and exit. Safety distances between individual cars must be considered as well.
  • an exclusive travel direction UP is assigned to a plurality of elevator shafts and that a travel direction DOWN is assigned to a minimum number of elevator shafts
  • an exclusive travel direction DOWN is assigned to a plurality of elevator shafts and that an exclusive travel direction UP is assigned to a minimum number of elevator shafts or vice versa.
  • a movement of cars between the elevator shafts is carried out in an upper and/or a lower area of the respective elevator shafts.
  • Corresponding changing mechanisms are provided for this purpose.
  • the method is used to operate an elevator system comprising at least one group of three elevator shafts, wherein, in the first operating state, an exclusive travel direction UP is assigned to two shafts in each of the at least one group, and a travel direction DOWN is assigned to one elevator shaft, and, in the second operating state, an exclusive travel direction DOWN is assigned to two elevator shafts, and an exclusive travel direction UP is assigned to one elevator shaft.
  • the information YES or NO is assigned to each car such that, in the event the information YES is assigned to a car, this car is available to transport passengers, and that, in the event that NO is assigned to a car, this car is not available to transport passengers.
  • Cars, which do not move in a current main travel direction of the elevator system, can be blocked for a use by passengers by means of this measure. It can thus be ensured that such cars can be transported in a particularly quick manner back into an elevator shaft, to which the main travel direction of the elevator system is assigned. The transportation capacity of the elevator system as a whole can thus be increased.
  • the information YES or NO is advantageously also assigned by means of the control device.
  • this car in the event that NO is assigned to a car, this car can be moved in upwards direction or downward direction, respectively, according to a travel direction, which is assigned to a respective elevator shaft, in which the car is located, but is not available for picking up passengers or users, respectively.
  • a travel direction which is assigned to a respective elevator shaft, in which the car is located, but is not available for picking up passengers or users, respectively.
  • no persons or passengers, respectively will be in this car in the event that NO is assigned to a car. It is possible however, to block such cars only for picking up additional passengers.
  • the state NO is only assigned to a car, if it is located in an elevator shaft, which belongs to a current minimum number of the elevator shafts. It can be ensured herewith that the plurality of the elevator shafts, which advantageously moves in the main travel direction of the elevator system, can be used optimally for transporting passengers.
  • a switchover from a first operating state to a second operating state is made on the basis or in consideration, respectively, of at least a captured information.
  • the captured information can for example be determined or prognosticated traffic volume, whereby this can be determined or prognosticated, respectively, in different ways.
  • corresponding sensors can be provided for this purpose, which capture passengers in individual cars and/or in the vicinity of the elevator system.
  • Isolating devices can furthermore be provided in the vicinity of the elevator system for this purpose. It is also possible to provide an adaptive system in this context.
  • FIG. 1 shows a diagram for illustrating a preferred embodiment of the method according to the invention in a schematic manner
  • FIG. 2 shows a schematic view of a preferred embodiment of an elevator system according to the invention for illustrating a further preferred embodiment of the method according to the invention
  • FIG. 3 shows a further schematic view of a preferred embodiment of an elevator system according to the invention for illustrating a further preferred embodiment of the method according to the invention.
  • FIG. 1 An elevator system comprising three elevator shafts ( 110 , 120 , 130 ) is illustrated in FIG. 1 in a schematic manner and is identified as a whole with 10 .
  • the elevator system 10 is embodied as shaft-changing multi-car system. This means that cars, which can be moved in the individual elevator shafts ( 110 , 120 , 130 ), can also be moved between the individual elevator shafts ( 110 , 120 , 130 ). To simplify the diagram, the individual cars are not illustrated in FIG. 1 .
  • the elevator system comprises a control device, which is illustrated schematically and which is identified with 160 .
  • more cars than elevator shafts are provided.
  • two or more cars can be provided per elevator shaft, wherein for example more than two or less than two cars can also be located in a certain shaft at certain times.
  • Such an elevator system 10 comprises at least two changing mechanisms, by means of which the respective cars can be moved between the elevator shafts ( 110 , 120 , 130 ).
  • These changing mechanisms are preferably provided in an upper area, in particular the top floor, and the lower area, in particular the lowermost floor or the ground floor, respectively. However, it is also possible to provide such changing mechanisms on any floors.
  • the elevator system 10 is able to assign a travel direction in upwards direction (hereinafter identified as travel direction UP) to a plurality of elevator shafts, and to assign a travel direction in downwards direction (hereinafter identified as travel direction DOWN) to a corresponding minimum number of elevator shafts, or vice versa.
  • travel direction UP travel direction in upwards direction
  • travel direction DOWN travel direction in downwards direction
  • FIG. 1 state A, thus illustrates a first operating state, in which a travel direction UP is assigned to the two outer elevator shafts 110 , 130 , and in which a travel direction DOWN is assigned to the elevator shaft 120 , which is located in the middle.
  • the cars located in the elevator shafts 110 , 130 hereby move in upwards direction, and are moved into the middle elevator shaft 120 by means of the corresponding changing mechanism when the top floor has been reached, and are moved in downwards direction in said middle elevator shaft.
  • the cars are moved, in turn, into one of the outer elevator shafts 110 , 130 by means of a corresponding changing mechanism, where an upwards movement takes place again.
  • the cars arriving on the lowermost floor are moved alternately into the (left) elevator shaft 110 and the (right) elevator shaft 130 .
  • the first operating state illustrated as state A is in particular suitable for a morning operation, during which many passengers enter a high-rise building and need to be moved to different floors or for example also to a top floor, for example a transfer floor.
  • a second operating state in which the assignment of the travel directions to the elevator shafts 110 , 120 , 130 is exactly reversed, in which the travel direction DOWN is thus assigned to the outer elevator shafts 110 , 130 , and in which the travel direction UP is assigned to the middle elevator shaft, is illustrated as state G.
  • This second operating state is in particular suitable for times, in which more passengers leave a high-rise building, than new passengers enter, thus for example for after-work situations.
  • the invention proposes a successive reversal of the travel directions, which are assigned to the individual elevator shafts, as will be explained below.
  • State B can be brought about for example in that passengers, who stay in a car located in the elevator shaft 130 , are notified that they must exit and must continue their ride in a different car, for example a car in the elevator shaft 110 .
  • the state B can also be brought about in that the assignment of the travel direction in the elevator shaft 130 is cancelled only when all passengers, who stay in a car in the elevator shaft 130 , have reached their target floors. This can in particular also take place successively, in that a car, for example, which has reached the target floor of a passenger in elevator shaft 130 , is thus blocked for further rides, until all passengers in cars, which are located in elevator shaft 130 , have reached their target floor.
  • the elevator shaft 110 is available for upwards rides, and the elevator shaft 120 , is available for downwards rides.
  • a subsequent step the assignment of the travel direction UP of the middle elevator shaft 120 is cancelled.
  • state D the travel directions, which were most recently assigned to the elevator shafts 110 , 130 , are maintained, at least one elevator shaft, in which rides in upwards direction are possible, and least one elevator shaft, in which rides in downwards direction are possible, is also maintained in this state D.
  • state D it may be necessary to relocate or to move cars, respectively, between two non-adjacent elevator shafts.
  • the travel direction assigned to the middle shaft 120 is reversed, so that, according to state E, the elevator shaft 120 now has an assigned travel direction UP.
  • control device 160 which is assigned to the elevator system.
  • a control device can learn certain traffic patterns or profiles, respectively, or can optimize them in the further course, for example by inputting or learning corresponding information relating to main traffic volume or main travel directions, respectively, at certain times of a day and/or week.
  • the elevator can be equipped for example with sensors, via which e.g. a number of passengers in a car or in a building can be determined, call input devices or additional capturing means for passengers, such as, for instance, cameras, isolating devices, etc.
  • Corresponding main travel directions prognosticated by a control device for example according to the first operating state (state A) in upwards direction or according to the second operating state (state G) in downwards direction, respectively, can be learned or adjusted accordingly, respectively, by the elevator controller, so that the elevator controller can reverse the main travel direction at certain times, as described explicitly above with reference to FIG. 1 .
  • Such a method or elevator system, respectively, can be optimized further in that for example interfaces for user inputs, in particular call inputs and/or display devices for displaying information for passengers, are used. It is thus possible to recognize or to optimize for example passenger behaviors early on. For example, a current operating state can further be displayed through this. For example, it is also possible to display expected arrival times and cars or elevator shafts, respectively, which are to preferably be used, to the users or passengers, respectively, so that an efficient passenger transport can be made available.
  • FIGS. 2 and 3 which will be described below in a partially comprehensive manner, illustrate a number of cars, wherein the cars are each identified with 100 .
  • the elevator systems which, in turn, are identified with 10 , are also embodied here as shaft-changing multi-car systems.
  • a total of 11 cars 100 for three elevator shafts 110 , 120 , 130 are provided.
  • a total of 15 cars 100 are provided for a total of five elevator shafts 110 , 120 , 130 , 140 , 150 .
  • the assignment of respective travel directions UP or DOWN, respectively, can be seen by means of corresponding arrows.
  • Curved arrows furthermore symbolize that the individual cars can be moved between the individual elevator shafts by means of changing mechanisms.
  • FIG. 2 illustrates an operating state according to the first operating state (state A) of FIG. 1 .
  • the main travel direction is thus the upwards direction here.
  • an average travel time of a car 100 in an elevator shaft 110 or 130 from the lowermost floor 111 to the top floor 121 , where the cars are horizontally moved into the elevator shaft 120 by means of a changing mechanism is significantly longer than the duration of a downwards ride from the top floor 121 to the lowermost floor 111 .
  • the transportation capacity of the elevator system as a whole can thus be increased in that a portion of the cars 100 , which move in downwards direction in the elevator shaft 120 , is not available for passenger traffic.
  • the elevator controller 160 can assign information YES or NO to every car 100 , which is located in the elevator shaft 120 , wherein the assignment of this information determines, whether the respective car is available for the passenger traffic or for calls, respectively, in a travel direction DOWN.
  • the average cycle time thus the time between two consecutive cars at a location, for example, a main stop, is reduced, so that the time for an up and down movement of a car can be reduced as a whole.
  • the efficiency or transportation capacity, respectively, of the system as a whole is thus increased.
  • control system can make this decision by means of different information, for example learning system, sensors, isolating devices, etc.
  • FIG. 3 A corresponding handling is possible according to the embodiment of FIG. 3 , wherein, as mentioned, five elevator shafts 110 - 150 are provided here. It can be seen that the main travel direction is the upwards direction here, to which three elevator shafts 110 , 130 , 150 are assigned. As described, YES or NO information, respectively, can also be assigned here in particular to the cars, which move in downwards direction through the elevator shafts 120 , 140 in an advantageous manner.
  • the illustrated elevator systems are able to compensate the malfunction of one or a plurality of elevator shafts in a particularly efficient manner, and to switch over between different operating states, which are caused by a malfunction of an elevator shaft.
  • the method according to the invention can be used in a particularly advantageous manner in connection with so-called shuttle elevators.
  • shuttle elevators serve to transport passengers across a plurality of floors without stopover.
  • Typical shuttle elevators run between a ground floor and a connecting floor in a higher area of a high-rise building. If the main traffic direction in the morning, for example, is the upwards direction, it can be ensued according to the invention that cars moving in downwards movement can be made available for the shuttle operation in upwards direction again in a highly effective manner.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Structural Engineering (AREA)
  • Elevator Control (AREA)
US15/529,992 2014-11-27 2015-11-10 Method for operating an elevator system Expired - Fee Related US10464781B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102014224323 2014-11-27
DE102014224323.8A DE102014224323A1 (de) 2014-11-27 2014-11-27 Verfahren zum Betreiben eines Aufzugssystems
DE102014224323.8 2014-11-27
PCT/EP2015/076142 WO2016083116A1 (fr) 2014-11-27 2015-11-10 Procédé permettant de faire fonctionner un système d'ascenseur

Publications (2)

Publication Number Publication Date
US20170313545A1 US20170313545A1 (en) 2017-11-02
US10464781B2 true US10464781B2 (en) 2019-11-05

Family

ID=54540069

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/529,992 Expired - Fee Related US10464781B2 (en) 2014-11-27 2015-11-10 Method for operating an elevator system

Country Status (6)

Country Link
US (1) US10464781B2 (fr)
EP (1) EP3224172B1 (fr)
KR (1) KR20170089860A (fr)
CN (1) CN107207182B (fr)
DE (1) DE102014224323A1 (fr)
WO (1) WO2016083116A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190389699A1 (en) * 2017-01-30 2019-12-26 Otis Elevator Company System and method for resilient design and operation of elevator system

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014224323A1 (de) * 2014-11-27 2016-06-02 Thyssenkrupp Ag Verfahren zum Betreiben eines Aufzugssystems
WO2016100609A1 (fr) * 2014-12-17 2016-06-23 Otis Elevator Company Système d'ascenseur multi-cabines configurable
DE102017113562A1 (de) 2017-06-20 2018-12-20 Thyssenkrupp Ag Fahrkorb mit Rollenführung für ein Aufzugssystem
DE102017126905A1 (de) 2017-11-15 2019-05-16 Thyssenkrupp Ag Aufzugsystem mit einer Versorgungsvorrichtung zum Befüllen eines Tanks eines Fahrkorbs mit einem Fluid
DE102017127730A1 (de) 2017-11-23 2019-05-23 Thyssenkrupp Ag Fahrkorbkomponente für einen Fahrkorb eines Aufzugssystems mit Hohlraum als Druckspeicher für ein unter Druck stehendes Fluid
DE102017131449A1 (de) 2017-12-29 2019-07-04 Thyssenkrupp Ag Aufzugsystem mit einem Servicefahrzeug zur Entnahme eines Fahrkorbs
DE102018201757A1 (de) * 2018-02-06 2019-08-08 Thyssenkrupp Ag Personenfördervorrichtung mit vorgegebener Fahrtrichtung
DE102018205151A1 (de) * 2018-04-05 2019-10-10 Thyssenkrupp Ag Verfahren zum Betreiben einer Aufzugsanlage
DE102018120386A1 (de) * 2018-08-21 2020-02-27 Thyssenkrupp Ag Aufzugsystem mit einem ersten Teilaufzugsystem und einem zweiten Teilaufzugsystem
DE102018120658A1 (de) 2018-08-23 2020-02-27 Thyssenkrupp Ag Verfahren zum Betreiben eines Aufzugsystems
DE102018123979A1 (de) * 2018-09-27 2020-04-02 Thyssenkrupp Ag Aufzugsystem
JP7373433B2 (ja) * 2020-02-26 2023-11-02 株式会社日立製作所 エレベータ制御システムおよびエレベータ制御方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3317005A (en) 1965-04-21 1967-05-02 Arthur H Kehoe Elevator system
JPH07206282A (ja) 1994-01-20 1995-08-08 Hitachi Ltd 昇降機システム
DE20206290U1 (de) 2002-04-20 2002-08-22 Mueller Wolfgang T Mehrfachschacht mit Umsetzeinrichtung, insbesondere für Liftmobile
US20030217893A1 (en) * 2002-05-27 2003-11-27 Thomas Dunser Elevator installation comprising a number of individually propelled cars in at least three adjacent hoistways
CN1721311A (zh) 2004-07-15 2006-01-18 因温特奥股份公司 具至少三个相互并列设置的垂直电梯竖井的电梯设备及控制其的方法
EP1616832A2 (fr) 2004-07-15 2006-01-18 Inventio Ag Système d' ascenseur avec au moins trois cages verticales adjointes et la gérance d'un tel système
EP1619157A1 (fr) 2004-07-22 2006-01-25 Inventio Ag Système d'ascenseurs avec cabines indépendantes et méthode pour contrôler leur déplacement
US20110272220A1 (en) * 2008-12-26 2011-11-10 Miroslav Kostka Elevator control of an elevator installation
WO2012154178A1 (fr) 2011-05-11 2012-11-15 Otis Elevator Company Système de transport de circulation
WO2015084367A1 (fr) 2013-12-05 2015-06-11 Otis Elevator Company Ascenseur sans câble à haute vitesse comprenant un nombre différent de cages d'ascenseur pour un déplacement vers le haut et pour un déplacement vers le bas dans un groupe
US20170313545A1 (en) * 2014-11-27 2017-11-02 Thyssenkrupp Elevator Ag Method for operating an elevator system
US20180127242A1 (en) * 2016-11-07 2018-05-10 Otis Elevator Company Modular transfer station
US20180215581A1 (en) * 2017-01-30 2018-08-02 Otis Elevator Company System and method for resilient design and operation of elevator system

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3317005A (en) 1965-04-21 1967-05-02 Arthur H Kehoe Elevator system
JPH07206282A (ja) 1994-01-20 1995-08-08 Hitachi Ltd 昇降機システム
DE20206290U1 (de) 2002-04-20 2002-08-22 Mueller Wolfgang T Mehrfachschacht mit Umsetzeinrichtung, insbesondere für Liftmobile
US20030217893A1 (en) * 2002-05-27 2003-11-27 Thomas Dunser Elevator installation comprising a number of individually propelled cars in at least three adjacent hoistways
CN1721311A (zh) 2004-07-15 2006-01-18 因温特奥股份公司 具至少三个相互并列设置的垂直电梯竖井的电梯设备及控制其的方法
EP1616832A2 (fr) 2004-07-15 2006-01-18 Inventio Ag Système d' ascenseur avec au moins trois cages verticales adjointes et la gérance d'un tel système
US20060011420A1 (en) * 2004-07-15 2006-01-19 Inventio Ag Elevator installation with at least three vertical elevator shafts arranged adjacent to one another and method for operating such a elevator shaft
US7621376B2 (en) * 2004-07-15 2009-11-24 Inventio Ag Elevator installation and method for operating a vertical elevator shafts arranged adjacent to one another
EP1619157A1 (fr) 2004-07-22 2006-01-25 Inventio Ag Système d'ascenseurs avec cabines indépendantes et méthode pour contrôler leur déplacement
US20120012427A1 (en) * 2008-12-26 2012-01-19 Miroslav Kostka Elevator control of an elevator installation
US20110272220A1 (en) * 2008-12-26 2011-11-10 Miroslav Kostka Elevator control of an elevator installation
US8739936B2 (en) * 2008-12-26 2014-06-03 Inventio Ag Elevator control of an elevator installation
US8827043B2 (en) * 2008-12-26 2014-09-09 Inventio Ag Elevator control and method for independently movable cars in a common shaft
WO2012154178A1 (fr) 2011-05-11 2012-11-15 Otis Elevator Company Système de transport de circulation
CN103502133A (zh) 2011-05-11 2014-01-08 奥的斯电梯公司 循环输送系统
KR20140021674A (ko) 2011-05-11 2014-02-20 오티스 엘리베이터 컴파니 순환식 운송 시스템
US20140190774A1 (en) 2011-05-11 2014-07-10 Otis Elevator Company Circulation transport system
WO2015084367A1 (fr) 2013-12-05 2015-06-11 Otis Elevator Company Ascenseur sans câble à haute vitesse comprenant un nombre différent de cages d'ascenseur pour un déplacement vers le haut et pour un déplacement vers le bas dans un groupe
US20170313545A1 (en) * 2014-11-27 2017-11-02 Thyssenkrupp Elevator Ag Method for operating an elevator system
US20180127242A1 (en) * 2016-11-07 2018-05-10 Otis Elevator Company Modular transfer station
US20180215581A1 (en) * 2017-01-30 2018-08-02 Otis Elevator Company System and method for resilient design and operation of elevator system

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Chinese Office Action for CN Application No. 201580062423.9 dated Sep. 4, 2018, 6 pages.
International Search Report and Written Opinion for International Application No. PCT/EP2015/076142 dated Feb. 19, 2016, 3 pages.
Korean Office Action for KR Application No. 10-2017-7014527 dated Nov. 26, 2018 with English translation, 12 pages.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190389699A1 (en) * 2017-01-30 2019-12-26 Otis Elevator Company System and method for resilient design and operation of elevator system

Also Published As

Publication number Publication date
WO2016083116A1 (fr) 2016-06-02
DE102014224323A1 (de) 2016-06-02
CN107207182A (zh) 2017-09-26
KR20170089860A (ko) 2017-08-04
EP3224172B1 (fr) 2021-09-29
EP3224172A1 (fr) 2017-10-04
US20170313545A1 (en) 2017-11-02
CN107207182B (zh) 2020-03-31

Similar Documents

Publication Publication Date Title
US10464781B2 (en) Method for operating an elevator system
US10526166B2 (en) Method for operating an elevator with multiple shafts and cars
JP5477387B2 (ja) ダブルデッキエレベータ群管理装置
WO2016142968A1 (fr) Dispositif de commande de gestion de groupe pour ascenseurs
US20170233218A1 (en) Method for operating a transport system and corresponding transport system
JP4189013B2 (ja) エレベータの制御装置
CN101920896B (zh) 电梯设备
JP2005119875A (ja) 建物内の区間運転のための昇降機設備、この昇降機設備の区間運転方法、及び、昇降機設備の改良方法
JP5969074B1 (ja) エレベータの群管理制御装置
CN100503409C (zh) 电梯组群管理控制装置
CN110775744B (zh) 多轿厢电梯以及多轿厢电梯控制方法
CN107108149B (zh) 通过电梯控制装置处理呼叫输入的方法和用于执行该方法的电梯设备
CN103663013A (zh) 群管理电梯系统
JP6202213B2 (ja) エレベーターシステム
JP6960463B2 (ja) 渋滞回避運転システム及び方法
JP2011195280A (ja) エレベータの群管理制御装置
JP5921012B1 (ja) エレベータシステム
US20180257906A1 (en) Control method for an elevator control system
CN101641274A (zh) 运行电梯设备的方法以及相应的电梯设备
JP2011131997A (ja) エレベータ運転制御装置及びエレベータ運転制御方法
JP4293631B1 (ja) エレベータシステム
CN111386236A (zh) 基于预计的乘客数的行程规划
JP3378368B2 (ja) ダブルデッキエレベータの運転制御装置
JP4293629B1 (ja) エレベータシステム
JPH07206282A (ja) 昇降機システム

Legal Events

Date Code Title Description
AS Assignment

Owner name: THYSSENKRUPP AG, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GERSTENMEYER, STEFAN;REEL/FRAME:043354/0782

Effective date: 20170801

Owner name: THYSSENKRUPP ELEVATOR AG, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GERSTENMEYER, STEFAN;REEL/FRAME:043354/0782

Effective date: 20170801

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: AWAITING TC RESP, ISSUE FEE PAYMENT RECEIVED

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE

AS Assignment

Owner name: THYSSENKRUPP ELEVATOR INNOVATION AND OPERATIONS AG, GERMANY

Free format text: CHANGE OF NAME;ASSIGNOR:THYSSENKRUPP ELEVATOR AG;REEL/FRAME:052945/0233

Effective date: 20191210

AS Assignment

Owner name: THYSSENKRUPP ELEVATOR INNOVATION AND OPERATIONS GMBH, GERMANY

Free format text: CHANGE OF NAME;ASSIGNOR:THYSSENKRUPP ELEVATOR INNOVATION AND OPERATIONS AG;REEL/FRAME:052963/0497

Effective date: 20200602

AS Assignment

Owner name: THYSSENKRUPP ELEVATOR INNOVATION AND OPERTIONS GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:THYSSENKRUPP AG;REEL/FRAME:053144/0238

Effective date: 20200625

AS Assignment

Owner name: THYSSENKRUPP ELEVATOR INNOVATION AND OPERATIONS GMBH, GERMANY

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE MISSPELLED ASSIGNEE NAME INSIDE THE ASSIGNMENT DOCUMENT TO "THYSSENKRUPP ELEVATOR INNOVATION AND OPERATIONS GMBH." PREVIOUSLY RECORDED ON REEL 053144 FRAME 0238. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNOR:THYSSENKRUPP AG;REEL/FRAME:053264/0547

Effective date: 20200625

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20231105