TWI829968B - 用於基板表面處理之方法及裝置 - Google Patents

用於基板表面處理之方法及裝置 Download PDF

Info

Publication number
TWI829968B
TWI829968B TW109134182A TW109134182A TWI829968B TW I829968 B TWI829968 B TW I829968B TW 109134182 A TW109134182 A TW 109134182A TW 109134182 A TW109134182 A TW 109134182A TW I829968 B TWI829968 B TW I829968B
Authority
TW
Taiwan
Prior art keywords
substrate
substrate surface
ion
ion beam
less
Prior art date
Application number
TW109134182A
Other languages
English (en)
Other versions
TW202106901A (zh
Inventor
奈斯爾 瑞札克
Original Assignee
奧地利商Ev集團E塔那有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 奧地利商Ev集團E塔那有限公司 filed Critical 奧地利商Ev集團E塔那有限公司
Publication of TW202106901A publication Critical patent/TW202106901A/zh
Application granted granted Critical
Publication of TWI829968B publication Critical patent/TWI829968B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02043Cleaning before device manufacture, i.e. Begin-Of-Line process
    • H01L21/02046Dry cleaning only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • C23C14/022Cleaning or etching treatments by means of bombardment with energetic particles or radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02299Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment
    • H01L21/02312Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment treatment by exposure to a gas or vapour
    • H01L21/02315Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment treatment by exposure to a gas or vapour treatment by exposure to a plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02337Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour
    • H01L21/0234Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour treatment by exposure to a plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67069Apparatus for fluid treatment for etching for drying etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/06Sources
    • H01J2237/08Ion sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/31Processing objects on a macro-scale
    • H01J2237/3132Evaporating
    • H01J2237/3137Plasma-assisted co-operation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/31Processing objects on a macro-scale
    • H01J2237/3151Etching

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Drying Of Semiconductors (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Physical Vapour Deposition (AREA)
  • Cleaning In General (AREA)

Abstract

本發明係關於用於基板之基板表面之該表面處理之方法,具有以下步驟: -   將該基板表面配置於製程腔室中, -   使用由離子束源產生且瞄準該基板表面之離子束轟擊該基板表面以自該基板表面移除雜質,藉此該離子束具有第一分量, 將第二分量引入至該製程腔室中以結合該等經移除雜質。 此外,本發明係關於用於基板之基板表面之該表面處理之裝置,其具有: 製程腔室,其用於接收該基板, 離子束源,其用於產生具有第一分量且瞄準該基板表面以自該基板表面移除雜質之離子束, 構件,其將第二分量引入至該製程腔室中以結合該等經移除雜質。

Description

用於基板表面處理之方法及裝置
本發明係關於根據專利請求項1之一方法以及根據專利請求項9之一對應裝置。
在半導體產業中,不同濕化學蝕刻方法及/或乾蝕刻方法用於表面處理,尤其用於表面清潔及表面活化。最顯著的,此等協助原生表面氧化物及/或碳化合物之移除。濕化學蝕刻方法與乾蝕刻方法之間之顯著差異係使用之清潔劑之物理狀態。在一濕化學蝕刻方法之情況中,使用液體以清潔基板表面;在一乾蝕刻方法中,使用氣體或電漿以完成此。濕化學蝕刻方法在若干情況中仍係正當的;然而,近年來,其等在許多其它領域中已由乾蝕刻系統取代。
對於乾蝕刻,主要使用電漿系統或離子濺射系統。 將一「電漿系統」理解為可產生一準中性氣體(一所謂電漿)之一系統。藉由在兩個電極之間施加一電壓,程序氣體經電離且形成一電離、準中性氣體(所謂電漿)。此等系統被稱為「電容耦合電漿」(CCP)電漿系統。亦可設想藉由所謂「感應耦合電漿」(ICP)電漿系統中之磁性裝置產生電漿。在此情況中,使用電磁感應以製造一電漿。此外,仍存在用於產生電漿之其他方法;此處不詳細闡述此等方法。在下文中做出之陳述通常應用至全部電漿系統,然而,將在CCP電漿系統之幫助下描述,因為此之建構相對簡單。 藉由其顯著特性,此電漿作用於較佳定位於兩個電極之一者之上或附近之一基板之表面上。一般言之,可使用惰性或反應性程序氣體。在一電漿系統之情況中,預設兩個電極之間之電壓、氣體組合物及氣壓。低溫電漿藉此在高於一臨界壓力點火。此臨界壓力相較於一高真空腔室中之壓力係大的,但小於1巴。低溫電漿主要由氧、氮、惰性氣體或更複雜的有機氣態化合物構成。此等透過離子轟擊物理且透過電漿中產生之基團化學使基板表面改質(來源:S. Vallon、A. Hofrichter等人,《Journal of Adhesion Science and Technology》,(1996)第10卷,第12期,第1287頁)。首要地,將物理改質歸於高速度及氣體及電漿原子與基板表面之原子之間之伴隨衝擊能。 在另一方面,離子濺射系統具有一離子源及一加速單元。在離子源中,經由加速單元在基板表面之方向中電離且加速一程序氣體。經加速離子形成具有一平均直徑、一對應發散或會聚及一能量密度之所謂離子束。當離子之動能大於或至少等於雜質與基板表面之間之結合能時,加速離子可自基板表面鬆開雜質。然而,在此程序中,離子之動能亦可影響基板表面自身。此操縱顯現在基板表面之微結構之改變中,點缺陷之產生中、晶格中之併入離子、塑膠變形等。 雜質之移除稱為濺射。為了完整,應注意,原子在表面上之分離程序亦可稱為濺射。然而,在下文中,濺射將僅指原子之移除。 一技術問題在於在給定環境條件中,可發生基板上之雜質(其等待移除)與離子之間之一反應而不自基板表面移除雜質。此外,離子通常亦與待清潔且定位於待移除之雜質下方之基底材料反應。此導致一非均質移除,且因此導致表面粗糙度之一增加。 此外,經常發生基板之表面上之氣體及電漿原子之吸附。 根據當前最先進技術,主要使用以下方法完成(尤其)藉由氫移除雜質:電漿程序 1.藉由一氫電漿照射基板表面。藉此通常藉由電漿而大幅增加表面之溫度。一般言之,對於不同材料使用不同電漿程序。對於InPut,使用(例如)一所謂ECR (電子迴旋共振)電漿(來源:A. J. Nelson、S. Frigo、D. Mancini及R. Rosenberg,J. Appl. Phys. 70, 5619 (1991))。在藉由一RF (射頻)電漿之氫照射之後在380°C之一溫度下大約30分鐘之後觀察自GaAs之移除全部表面雜質(來源:S.W. Robey及K. Sinniah,J. Appl. Phys. 88, 2994 (2000))。對於CuInSe2 ,描述(例如)透過在200°C之一樣品溫度下使用一氫ECR電漿移除表面氧化物。(來源:A. J. Nelson、S. P. Frigo及R.  Rosenberg,J. Appl. Phys. 73, 8561 (1993))。 2.在氫分子之作用之下,在一真空中將基板表面加熱至大於500°C。在GaAs之情況下,需要(例如)高達兩個小時之一清潔時間(來源:DE 100 48 374 A1)。 3.在一真空中使用氫原子加熱基板表面。在GaAs之情況下,此較佳發生於(例如) 350°C與400°C之間之一溫度範圍中。在參考文獻中全面詳述此方法(來源:Y. Ide及M. Yamada,J. Vac. Sci. Technol. A 12, 1858 (1994)或T. Akatsu、A. Plößl、H. Stenzel及U. Gösele,J. Appl. Phys. 86, 7146 (1999)及DE 100 48 374 A1)。離子束程序 透過使用一離子束程序之惰性氣體(Ar、N2 、氙、…)移除表面雜質主要係基於一純濺射移除之基礎(來源:J. G. C. Labanda、S. A. Barnett及L. Hultman「Sputter cleaning and smoothening of GaAs(001) using glancing-angle ion bombardment」,Appl. Phys. Lett. 66, 3114 (1995))。另一方面,使用之反應性氣體(H2 、O2 、N2 、CF5 )主要係基於程序氣體與表面雜質之一化學反應及隨後移除之反應產物(解吸附、部分熱刺激或藉由離子轟擊刺激)。氫結果係用於移除半導體之表面上之多種表面氧化物及碳雜質之一較佳程序氣體(來源:DE 10 210 253 A1)。 具名最先進技術之表面清潔方法通常備製用於隨後程序之基板表面。隨後程序係(例如)使用一光阻劑之一塗佈,藉由諸如PVD (物理氣相沈積)或CVD (化學氣相沈積)之一氣相沈積程序之一或多個原子或分子之一沈積。 歸因於離子,表面缺陷首要地產生於半導體材料中,該等缺陷可嚴重削弱組件之電功能。此外,在當前最先進技術中,出現之根本問題為電漿系統及濺射系統總是使基板表面根本上改質,且通常損害基板表面。 當電漿程序或離子濺射程序用於清潔或活化Si、SiC、石英或3A至5B半導體表面時,(例如)額外損害作為一實質上缺點發生於半導體之表面上(例如,粗糙度、金屬相之形成、氧化物層生長、一薄水膜之形成)。公認地,多數雜質之可驗證的有效表面清潔係透過使用電漿系統而發生;然而,尤其在有機組分之情況下,此清潔方法不足夠完全移除有機連接變得顯而易見。 當使用電漿系統時損害之產生之主要原因本質上為電漿與半導體表面之間之直接接觸以及電漿組分(例如,離子、基團及高度激發之分子/原子、電子及UV光子)與基板表面上之原子之間之所得交互作用。特定言之,一電漿之高度激發且因此高度高能粒子或離子或一離子濺射系統之粒子或離子高度可能產生基板表面之不利損害程序,尤其一高度敏感半導體表面。 使用氧、氮、惰性氣體或更複雜的有機氣態化合物產生之低溫電漿透過離子轟擊以及透過使用存在於電漿中之基團之表面反應而使基板表面改質(來源:K. Harth、Hibst、H.「Surface and Coatings technology (1993)」,第59卷,第1至3期,第350頁)。另外,吸收表面上之氣體原子(來源:K. Scheerschmidt、D. Conrad、A. Belov、H. Stenzel「UHV-Silicon Wafer Bonding at Room temperature: Molecular Dynamics and Experiment」,《Proc. 4. Int. Symp. on Semiconductor Wafer Bonding》1997年9月,法國,巴黎,第381頁)。 用於在一真空中在原子或分子氫之影響下清潔半導體表面之方法之重要缺點為需要高溫且溫度通常位於400°C與500°C之間(見:DE 100 48 374 A1)。需要高程序溫度以實現氫與雜質之間之一有效反應及所得反應產物之部分之解吸附。 用於使用分子及/或原子氫清潔半導體表面之所述當前最先進技術方法之一進一步缺點為長程序時間。在分子氫之情況中,此等總計為至少兩個小時(見:DE 100 48 374 A1)。 根據本發明之來自專利說明書DE 102 10 253 A1之實施例之使用不足夠有效,此係因為藉由Si、SiO2 、SiC石英及微晶玻璃之氫離子透過一純化學程序而移除雜質不導致完全移除。 因此本發明之目的為建立一種新方法,該新方法允許移除基板(尤其半導體)之表面上之化學雜質或破壞性基板表面層(例如,包含天然氧化物之氧化物、碳及碳化合物),而於基板表面上或內不產生額外損害(例如,表面粗糙度增加、化學計量改變及晶格損害),對於基板表面具有最少的可能損害。 使用技術方案1之特性完成此目的。在附屬請求項中給出本發明之進一步有利實施例。在說明書、申請專利範圍及/或圖式中給出之特性之至少兩者之全部組合亦落於本發明之範疇內。在給定值範圍之情況下,位於給定限制內之值亦應考慮為邊界值且應在任何組合中可申請。 本發明之基本理念係在在一製程腔室中使用一定向離子束進一步處理之前清除一基板之基板表面雜質,藉此離子束具有一第一(尤其為氣態)分量及一第二(尤其為氣態)分量或將一工作氣體饋入至製程腔室中。第二分量係用以結合分離之雜質。較佳地,第二分量經引導具有一流速通過製程腔室以將雜質攜載至製程腔室之外。 根據本發明,尤其氣體混合物或純氣體(尤其純惰性氣體)被歸類為「第一分量」或「第二分量」下。 換言之,本發明係關於用於在室溫下(RT )或非常低的溫度下透過使用特定低能離子濺射及/或成形氣體而自不同材料(尤其係半導體材料)移除表面雜質之一方法及一系統。溫度藉此係小於500°C、較佳小於300°C、更較佳小於100°C且最較佳為室溫。 成形氣體較佳具有大於20百分比之一氫含量。將「成形氣體」理解為較佳指由氬(Ar)及氫(H2 )組成之氣體混合物或由氮(N2 )及氫(H2 )組成之氣體離子混合物。然而,可設想成形氣體僅由一單一氣體組分(尤其僅由氬或僅由氫)構成。 因此,本發明尤其係關於在最低可能之溫度下(較佳在室溫下)清除一基板表面污染而不損害基板表面之一方法及一系統。該方法較佳可應用於經濟地清潔半導體及半導體結構。較佳地,使用根據本發明之系統及方法以備製用於為一隨後接合(尤其一永久接合)之基板表面。 較佳實施例使用寬帶離子束用於表面清潔該基板表面。 在一有利實施例中,未完全完成而是選擇性完成表面清潔。此實施例尤其用於光學器件、光電子學及感測器之領域中以純粹清潔基板表面之經界定/預定區域。藉此透過直接透過聚焦而產生之窄帶離子束或透過藉由一孔隙自一寬帶離子束產生之一窄帶離子束而發生選擇性表面清潔。根據本發明之一進一步可能性將係使用一對應曝露且化學處理之光阻劑來遮蔽基板。光阻劑接著充當一正或負遮罩。根據本發明之一進一步可能性將係一機械陰影遮罩之使用。 根據本發明之一概念尤其係透過一離子源(尤其透過一寬束離子源)加速第一分量之離子至基板表面上。另外,使用一成形氣體(或更較佳使用純氮)作為第二分量沖洗製程腔室。亦可設想尤其經由與樣品固持器接觸之基板之加熱(較佳盡可能小)。當使用寬束離子源時,可藉由使用低能離子(<1000 eV)而移除基板上之化學污染(原生氧化物、碳、雜質)而無對基板表面之有害效應。使用一寬束離子源之一進一步優點在於清潔基板表面之一非常大部分(在一極端情況中,整個基板表面)。 特定言之,一低能離子濺射系統之使用成為本發明之基礎;此系統射出離子至一基板表面上。較佳在一寬帶離子束中將離子射出至基板表面上。將一「寬帶離子束」理解為指其之平均直徑位於基板之直徑之範圍中之一離子束。藉此,離子束直徑與基板之直徑之間之比率尤其大於1/100,較佳大於1/10,更較佳大於1/2,且最較佳等於1。寬帶離子束較佳覆蓋整個基板表面。 在基板表面上之離子束之直徑小於基板表面之直徑之範圍內,將根據本發明尤其發生離子束與基板表面之間之一相對移動以到達待清潔之基板表面上之全部位置。較佳地,藉由相對於離子源移動基板樣品固持器而完成相對移動。在此實施例中,可進行基板表面之一特定位置(即,空間解析)清潔。特定言之,此處可設想使用一窄帶離子束,藉此離子束之直徑與基板表面之直徑之間之比率經調整至小於1,較佳小於1/10,更較佳小於1/100,且最較佳小於1/1000。比率越小,一清潔程序之解析度越大,但透過於待清潔之基板上相對移動而清潔一對應區域消耗更長時間。可使用光學元件直接經聚焦或使用遮罩及孔隙技術而自一寬帶離子束產生窄帶離子束。光學元件尤其包括電及/或磁透鏡且被總結為術語「光學器件」。當使用遮罩及孔隙技術時,可較佳使用一自動化單元(尤其一機器人)以使用不同孔隙快速改變遮罩或光闌。亦可設想使用具有一對應小橫截面之一源產生一窄帶離子束。 不管使用之離子束直徑,根據本發明之一態樣尤其在於與一對應成形氣體(尤其一純氬氣或純氫氣(第二分量))搭配之一低能離子濺射系統之使用。成形氣體藉此被用作一程序氣體以在離子濺射系統之離子源中產生離子及/或作為製程腔室中之沖洗氣體。一低能離子濺射系統及一對應成形氣體之根據本發明之組合確保基板無雜質,但未經改質或甚至經損害。根據本發明之態樣因此在於低能離子確實由離子濺射系統加速至基板表面上,但離子之能量不足夠以導致對於基板之任何顯著改質或損害。損害至多非常小且由一深範圍指示,在其內基板之微結構之一改變仍然可驗證。歸因於根據發明之方法及系統之使用,此深度範圍尤其小於10 µm,較佳小於1 µm,更較佳小於100 nm,最較佳小於15 nm,甚至更較佳小於7 nm,甚至更較佳小於3 nm,更較佳小於1.5 nm,且更較佳等於零。因此,在理想情況中,完全無起因於離子轟擊之損害。 具體經調整至雜質及/或基板表面之第一分量(尤其成形氣體)與雜質之經濺射原子/分子反應且根據本發明藉此防止其等再沈積回至基板表面上。如此形成(且由第一分量結合)之化合物較佳由一真空系統吸除或由製程腔室中之陷阱結合使得防止其等再一次沈積於基板表面上。透過製程腔室使用第二分量(尤其一成形氣體、較佳在離子源中電離之相同成形氣體)之一額外沖洗,根據本發明之程序可經最佳化且加速。運用特定優勢,可使用一寬帶離子束以執行一完全清潔。 根據本發明之實施例及系統構成移除表面雜質(尤其含有碳之雜質)之一有效經濟手段。根據本發明之實施例可尤其用於全部類型之基板表面上,但當用於具有非常低粗糙度之基板表面上時尤其有效。粗糙度經指定為平均粗糙度、均方粗糙度或平均化粗糙度。一般言之,對於相同量測截面或經量測表面確定為平均粗糙度、均方粗糙度及平均化粗糙度之值彼此不同,但位於相同範圍中。因此將對於粗糙度之下列值範圍理解為關於平均粗糙度、均方粗糙度或平均化粗糙度之值。根據本發明,粗糙度尤其小於100 µm,較佳小於10 µm,更較佳小於1 µm,最較佳小於100 nm,且最較佳小於10 nm。根據本發明之實施例尤其亦適合於清潔在其上製造光學元件之基板。此外,亦可清潔具有具一相對複雜之表面構形之功能元件(例如繞射光柵、菲涅耳透鏡、MEM裝置及用於固持LED之腔)之基板。 同時,選擇一足夠低之離子動能防止半導體材料中之損害之產生。 在根據本發明之一第一實施例中,根據本發明之系統包括具有考夫曼類型之一額外相關聯之寬束離子源或RF寬離子源之至少一高真空腔室(來源:K. Otte. A. Schindler、F. Bigl及H. Schlemm,Rev. Sci. Instrum.,69, 1499 (1998))。寬帶離子源之直徑係在10 mm與1000 mm之間,較佳在20 mm與800 mm之間,更較佳在30 mm與600 mm之間,且最較佳在40 mm與400 mm之間。 根據一實施例,根據本發明之離子系統可被完全抽空。此類型之製程腔室之一抽空尤其發生在工作氣體或第二分量之引入之前。離子系統可經抽空至小於1巴、較佳小於10-3 毫巴、更較佳小於10- 5 毫巴,最較佳小於10- 7 毫巴,且最佳小於10- 8 毫巴之一壓力。在抽空之後,使用工作氣體沖洗離子系統。發生此沖洗直到達到一工作壓力。 藉此,離子腔室中之工作壓力尤其位於10- 8 毫巴與1巴之間,較佳位於10- 6 毫巴與1巴之間,更較佳位於10- 6 毫巴與1毫巴之間,且最較佳位於10- 5 毫巴與1毫巴之間。 第二分量或工作氣體之工作壓力尤其位於1x10-3 毫巴與8x10- 4 毫巴之間。自1至100 sccm/min (「標準cm3 /min」=「cm3 /min,在標準條件下」)之氣體混合物(氬與氫)、(氮與氫)或純氫之一經控制氣體流經引入至用於清潔基板表面之寬束離子源。在特定實施例中,使用氫(尤其純氫)。 在一第一特定較佳實施例中,基板樣品固持器經安裝且固定於一桌台上,該桌台具有彼此按法線配置之至少一旋轉自由度、較佳至少兩個旋轉自由度,最較佳至少三個旋轉自由度。 在一第二較佳實施例中,基板樣品固持器經安裝且固定於具有多個平移及旋轉自由度之一桌台上。桌台可至少沿著一X及一垂直Y方向移動。較佳地,桌台亦具有在垂直於X及Y方向運行之一Z方向中之一自由度。在一尤其較佳實施例中,桌台具有甚至更多(尤其恰好三個)旋轉自由度。藉此可在製程腔室內往全部方向移動且對準基板樣品固持器。離子之入射角經定義為離子束(更精確地,離子束之中心軸或對稱軸)與至基板表面上之法線之間之角度。離子之入射角可自由調整於0° (垂直入射)與90° (平行入射至基板表面)之間。離子之入射角尤其小於90°、較佳小於70°、更較佳小於50°,最較佳小於30°,且最佳等於0°。由於離子源相對於製程腔室較佳靜態固定,所以藉由旋轉基板,尤其藉由傾斜基板樣品固持器而調整離子之入射角。根據本發明,可設想一可移動離子源(若非較佳);在此情況中,將藉由移動離子源而調整離子之對應入射角。 歸因於使用特別寬帶離子源及事實上使用此類型之離子源可相對同時使用離子照射一基板之整個表面,在特定實施例中,一靜態基板樣品固持器及/或桌台亦係一可能性。 基板樣品固持器與離子源之一出口開口之間之距離尤其小於100 cm,較佳小於80 cm,更較佳小於60 cm,且最較佳小於40 cm。在非常特殊實施例中,可藉由基板至離子源上之出口開口之距離搭配一經正確調整之成形氣體密度而調整基板表面上之離子之能量。為了此目的,提供量測設備以量測距離。 可在清潔程序期間藉由至少一加熱元件(尤其多個加熱元件)將基板樣品固持器加熱至0°C與500°C之間之一溫度。基板溫度(尤其搭配溫度感測器)經設定於0°C與500°C之間,較佳於0°C與400°C之間,更較佳於0°C與300°C之間,最較佳於0°C與200°C之間,且最佳於0°C與250°C之間。 較佳可經由一電腦及/或一微控制器及/或韌體及/或對應軟體控制基板樣品固持器。 特定較佳地,開始位置可經程式化使得基板樣品固持器可完全自動化掃描基板表面之一給定預定區域。藉由如此做,可在推動一按鈕時保存且重新叫用最佳掃描技術。此選項首要地在使用窄帶離子源時很有用,以能夠到達待清潔之基板表面之全部位置。根據本發明,當使用寬帶離子源時,基板樣品固持器在離子輻射期間之一尤其線性及/或旋轉偏移可幫助均化效應。首要地,高頻率線性及旋轉移動在此情況中係有利的。藉此,基板樣品固持器之頻率(因此基板樣品固持器每秒在一任意方向中進行之震盪之量)尤其大於1/100,較佳大於1/10,更較佳大於1,最較佳大於10,且最佳大於100。基板固持器每分鐘之旋轉數目(每分鐘轉數)大於1/10、更較佳大於1,最較佳大於10,且最佳大於100。離子源 根據本發明較佳使用之離子源之內部結構粗略地對應於考夫曼類型。一差異尤其存在於提取格柵系統中。自電漿腔室提取之離子係藉由施加一HF交變磁場(20 MHz)而在額外格柵系統中分離。藉此總透射比粗略係<20%。其對應於1至100 µA/cm2 之一離子電流密度。對於某些使用(對於其等可使用較大電流密度而無質量分離),可使用所謂IS模式(離子源模式)。 在RAH模式中,除了防止離子束中之雜質之外,離子源允許鎖定目標選擇具有某些電荷狀態之特定離子類型。其等之缺點係一較小離子能eV及一較低離子電流密度(在非質量分離IS模式中Eion <800 eV且jion <500 µA/cm2 或在質量分離RAH模式中Eion <500 eV且jion <50 µA/cm2 )。若需離子源之功能性之更確切描述,請查閱相對應文獻(來源:K. Otte. A. Schindler、F. Bigl及H. Schlemm,Rev. Sci. Instrum.,69, 1499 (1998))。 根據本發明,根據一實施例,離子電流自源之離開後立即顯露10-5 µA/cm2 與105 µA/cm2 之間、較佳在10-3 µA/cm2 與103 µA/cm2 之間、且更較佳在1 µA/cm2 與500 µA/cm2 之間之離子電流密度。基板表面上之對應離子電流密度較佳等於離子電流密度。然而,一般言之,一故意及/或意外衰減尤其歸因於離子電流之發散而發生。基板表面處之離子電流之離子電流密度位於10-5 µA/cm2 與105 µA/cm2 之間,較佳位於10-3 µA/cm2 與103 µA/cm2 之間,更較佳位於1 µA/cm2 與500 µA/cm2 之間。工作氣體 ( 第一及 / 或第二分量 ) 尤其以下原子或分子類型被用作一工作氣體: ●成形氣體FG (氬+氫)及/或 ●成形氣體RRG (氫+氬)及/或 ●成形氣體NFG (氬+氮)及/或 ●氫,尤其純氫,及/或 ●氬,尤其純氬。
氣體混合物FG Ar (%) H (%) 氣體混合物RFG H (%) Ar (%) 氣體混合物NFG Ar (%) N2 (%)
FG 0 100 大氣壓(10 sccm) RFG 0 100 大氣壓(10 sccm) NFG 0 100 大氣壓(10 sccm)
FG 1 96 4 RFG 1 100 0 NFG 1 95 5
FG 2 90 10 RFG 2 95 5 NFG 2 90 10
FG 3 80 20 RFG 3 90 10 NFG 3 80 20
FG 4 70 30 RFG 4 70 30 NFG 4 70 30
FG 5 50 50 RFG 5 50 50 NFG 5 50 50
表1:表展示以下三個例示性氣體混合物之一清單:FGx、RFGx及NFGx,其具有氬及氫或氬及氮之其等之各自比例。
根據本發明之系統 在此段落中,描述用於藉由成形氣體RFGx (氫含量100%至50%,其中氬自0%至50%)清潔基板表面之方法。根據本發明之系統包括一離子束源及具有一選用加熱元件之一基板樣品固持器。基板固定於基板樣品固持器上。為了操作離子源,引入經控制量之成形氣體。 氣體流尤其經設定於0.001與100,000 sccm/min之間,較佳於0.01與10,000 sccm/min之間,更較佳於0.1與1000 sccm/min之間,且最較佳於1與100 sccm/min之間。製程腔室中之壓力取決於經使用之氣體類型以及經使用之泵系統;不管此,製程腔室中之壓力經設定於10-8 毫巴與1巴之間,較佳於10- 7 毫巴與10- 2 巴之間,且更較佳於10- 6 毫巴與10- 3 巴之間。離子源與基板表面之間之電位差尤其經設定於1 V與5000 V之間、較佳在30 V與2500 V之間,且最較佳在50 V與800 V之間。基板上之離子束電流密度尤其位於0.001與5000 µA/cm2 之間,較佳於0.01與2500 µA/cm2 之間,更較佳於0.1與1000 µA/cm2 之間,且最較佳於1與500 µA/cm2 之間之範圍中。較佳地,使用小於50°、較佳小於40°、更較佳小於30°、且最較佳小於22°之離子之一入射角。基板表面之曝露時間及加熱尤其取決於經使用之半導體材料之類型及表面上之污染層之厚度。自基板至離子源之距離尤其經設定於1與100 cm之間,較佳於10與80 cm之間,更較佳於20與50 cm之間,且最較佳於約30 cm處(自離子源之出口開口量測)。基板表面之加熱至一特定溫度亦取決於經使用之半導體材料之類型。氫之鈍化效應通常且在最簡單之情況中由以下化學反應描述(來源:A. J. Pearton及J. W. Lee,第61卷,由N. H. Nickel編輯(Academic press, San Diego)第442頁(1999)): D+ + H- → {DH}0 或A- + H+ → {AH}0 , 其中D+ 表示一電離施體且A- 表示一電離受體。 Ar + e- → Ar + 2e 在根據本發明之一特定實施例中,多個離子源可附接至製程腔室,尤其一高真空離子腔室,尤其多於1個,較佳多於2個,且更較佳多於3個。藉由使用多個離子源,可在一方面上升且更佳控制基板之表面上之離子密度。此外,多個離子源容許使用在生產期間彼此分離存在且僅在離開離子源之後(尤其僅在基板表面處或基板表面不久之前)會合之若干不同離子類型。根據本發明之方法可用於清潔全部類型之基板表面。然而,特定較佳地,該方法適合於清潔由以下材料/材料組合製成之基板表面: ■矽、熱氧化矽、石英、微晶玻璃、碳化矽、鉬及/或3A至5B半導體材料, ■用於特別使用: ○直接晶圓結合期間之均質半導體結構及/或 ○GaAs/GaAs、InP/InP、Ge/Ge、Si/Si、Si、SiO2 及/或 ○直接晶圓結合期間之異質半導體結構及/或 ○GaAs/InP、GaAs/Ge、GaAs/Si、Ge/Si、Ge/InP、InP/Si及/或 ○金屬及/或 ○Cu、Al、W、Mo、Ag、Au、Pt、Zn、Ni、Co及/或 ○合金及/或 ○任意材料,尤其前述材料之一組合 在根據本發明清潔基板表面之後,可將其等遞送至一進一步處理步驟。可設想如同壓印程序或微影之微影程序、塗佈程序、蝕刻程序、濕化學清潔程序及/或真空沈積程序。根據本發明較佳之真空沈積程序尤其包含: ·物理氣相沈積(PVD) ·化學氣相沈積(CVD) ·分子束磊晶(MPE) ·電漿輔助化學氣相沈積(PECVD) ·電漿輔助物理氣相沈積(PEPVD) ·原子層沈積(ALD) 搭配特殊偏好,根據本發明之方法適合於清潔備製中之基板表面,用於為與一第二基板之一第二基板表面之一隨後結合程序。首要地,在如同一金屬結合程序或一熔融結合程序之一永久結合程序中,兩個基板表面將都較佳具有一極高之純度及平度,以實現兩個基板表面之一良好連接。任何類型之雜質斷然抑制結合程序。將使用/較佳使用相同方法清潔第二基板表面。搭配特殊偏好,此係一直接結合。當結合根據本發明處理之兩個金屬表面時,一永久結合係結果(較佳自動化)。使用如同(例如)矽或氧化矽之基板表面,亦可首要地發生一所謂預結合,該預結合藉由一隨後熱處理程序而轉換成一永久結合。預結合之產生較佳在室溫下發生。在一尤其優先實施例中,基板表面如此純以至於產生永久結合所需之溫度可減小至一最小值。在最理想之情況中,對於全部類型之基板表面之永久結合之產生立即發生且無一預結合步驟,尤其無一額外熱處理步驟。 將一「直接結合」理解為指兩個基板表面單獨透過共價(原子)鍵之接合。在一第一步驟中,發生由凡得瓦力引發之特徵為兩個基板表面之間之一仍可逆(即,可釋放)連接之一所謂預結合之形成。若兩個基板表面首要地經由一預結合連接至彼此,則至少其等不再可能進一步或再次經污染。預結合可隨後透過熱處理而經轉換成一永久(即,不可逆)不可釋放直接結合。直接結合特徵尤其為基板表面之間之共價鍵之形成。此等共價鍵尤其為共價Si-Si鍵或Si-O鍵。結果,根據本發明之所述實施例及系統首要地用於其中至少兩個基板必須彼此結合之一程序中。搭配特殊偏好,根據本發明之系統因此係一真空叢集、更較佳一高真空叢集且最較佳一極高真空叢集之一部分,且首要地用於與一對準系統及/或一結合器組合之相同者中以在一對應程序中清潔基板且使其等為一結合做備製。在提及之真空叢集之一者中之壓力尤其小於1巴、較佳小於10-1 毫巴、更較佳小於10- 3 毫巴、更較佳小於10- 5 毫巴,且最佳小於10- 8 毫巴。 根據本發明之方法亦可用於清潔藉由一金屬結合、尤其一擴散結合、一共晶結合、一陽極結合或另一任意結合而結合在一起之基板之表面。特定言之,根據本發明之方法因此亦可用於清潔金屬及/或陶瓷表面。 根據本發明之系統尤其較佳用於清潔藉由一對準器在相同真空叢集內朝向彼此對準且藉由一結合器結合在一起之基板之表面。此等對準器可(例如)係如同AT 405 775 B、PCT/EP 2013/062473或PCT/EP 2013/075831中之對準器,在參考此等之範圍中。搭配特殊偏好,藉由磁性元件而將基板固定於對準器與結合器之間。在專利申請PCT/EP 2013/056620中廣泛提及一此固定裝置,在參考此等之範圍中。待清潔之表面之實例 在以下段落中,指定多種最佳參數設定,在提及之基板表面之情況中,該等參數設定導致完全移除雜質(尤其含有碳之雜質及原生氧化物)。GaAs 基板表面 在GaAs表面之情況中,根據本發明之程序主要(但不純粹)用於氧化物移除。 用於GaAs表面之工作氣體係成形氣體混合物RFG1 (100%氫)或RFG2 (見表1)。藉此,離子能位於100 eV與500 eV之間、較佳位於200 eV與400 eV之間,且最較佳恰好位於300 eV處。電流密度位於2.5 µA/cm2 與6.5 µA/cm2 之間,較佳位於3.5 µA/cm2 與5.5 µA/cm2 之間,且最較佳恰好位於4.5 µA/cm2 處。基板表面之溫度位於100°C與200°C之間,較佳位於125°C與175°C之間,且最較佳恰好位於150°C處。基板表面之處理之持續時間總計為多於10秒,較佳多於50秒,更較佳多於100秒,且最較佳多於300秒。電漿之離子劑量位於1012 離子/平方公分與101 6 離子/平方公分之間,較佳位於101 3 離子/平方公分與101 5 離子/平方公分之間,且最較佳恰好位於1.5x1014 離子/平方公分處。 透過H離子轟擊之GaAs表面之氧化物移除之機構可能基於氫離子或氫基團與氧化砷之化學反應。所得氧化砷在真空下蒸發。對應化學反應為: 此處,χ係3或5,對應於GaAs表面上之砷之不同氧化物。電子來自一中和劑或「無電位探針」之傳導帶(來源:E. Petit、F. Houzay及J. Moison,J. Vac. Sci. Technol. A 10, 2172 (1992))。 當清潔氧化鎵時預期一對應程序。 Ga2 O之昇華亦係用於自基板表面移除Ga-氧化物之決定性步驟。亦可設想,在低溫下,尤其在低於200°C之溫度下,不發生Ga2 O之昇華;而是,發生經由氫原子之砷化鎵之一縮減。結果形成鎵及水,水對應地蒸發。 Ge 基板表面 根據本發明之程序在鍺表面之情況中主要用於氧化物移除及用於清潔有機化合物。 用於Ge表面之工作氣體係成形氣體混合物RFG1、RFG3、RFG4及RFG5 (見表1)。離子能尤其位於100 eV與800 eV之間、較佳位於150 eV與400 eV之間,且最較佳恰好位於350 eV、200 eV、400 eV處(見表2)。電流密度位於4.5 µA/cm2 與8.5 µA/cm2 之間,較佳位於5.5 µA/cm2 與7.5 µA/cm2 之間,且最較佳恰好位於6.5 µA/cm2 處。基板表面之溫度優先位於275°C與350°C之間,較佳位於300°C與325°C之間,且最較佳恰好位於300°C處。基板表面之處理之持續時間總計為多於10秒,較佳多於300秒,更較佳多於600秒,且最較佳多於1200秒。電漿之離子劑量尤其位於1012 離子/平方公分與101 6 離子/平方公分之間,更較佳位於101 3 離子/平方公分與101 5 離子/平方公分之間,且最較佳恰好位於5x1014 離子/平方公分處。
工作氣體 離子能 電流密度 基板溫度 轟擊時間
RFG1 350 eV 4.5 µA/cm2 350°C 25分鐘
RFG2 300 eV 4.5 µA/cm2 200°C 8分鐘
RFG3 300 eV 4.5 µA/cm2 150°C 4至5分鐘
RFG5 500 eV 500 µA/cm2 RT°C 5分鐘
表2:關於不同氣體混合物之用於清潔一鍺基板表面之較佳程序參數
根據表2之程序參數,透過離子轟擊完成自Ge表面完全移除原生氧化物及碳下至相對小量(<1%),原生氧化物及碳亦可由製程腔室中之雜質導致。若表面溫度自室溫上升至約350°C,則可自鍺基板表面完全移除碳及氧化物層。關於經由氫離子束移除氧化鍺之可能化學反應可如下描述: InP 基板表面 根據本發明之程序在InP表面之情況中主要(但不純粹)用於氧化物移除。 用於InP表面之工作氣體係成形氣體混合物RFG1、RFG3及NFG5 (50%氮+50%氬)。離子能位於100 eV與500 eV之間,較佳位於200 eV與400 eV之間,且最較佳恰好位於300 eV處。電流密度位於2.5 µA/cm2 與6.5 µA/cm2 之間,較佳位於3.5 µA/cm2 與5.5 µA/cm2 之間,且最較佳恰好位於4.5 µA/cm2 處。基板表面之溫度位於125°C與225°C之間,較佳位於150°C與200°C之間,且最較佳恰好位於175°C處。基板表面之處理之持續時間總計為多於10秒,較佳多於100秒,更較佳多於300秒,且最較佳多於600秒。電漿之離子劑量位於1012 離子/平方公分與101 6 離子/平方公分之間,更較佳位於101 3 離子/平方公分與101 5 離子/平方公分之間,且最較佳恰好位於1.5x1014 離子/平方公分處。
工作氣體 離子能 電流密度 基板溫度 轟擊時間
RFG1 300 eV 4.5 µA/cm2 175°C 10分鐘
RFG3 200 eV 4.5 µA/cm2 200°C 5分鐘
NFG5 200 eV 4.5 µA/cm2 150°C 2分鐘
表3:關於不同氣體混合物之用於清潔一InP基板表面之較佳程序參數
Si 基板表面 用於矽表面之工作氣體係成形氣體混合物FG0、FG1、FG3、RFG5及NFG3 (見表1)。離子能位於150 eV與800 eV之間,較佳位於150 eV與500 eV之間,且最較佳恰好位於500 eV處。電流密度位於20 µA/cm2 與70 µA/cm2 之間,較佳位於30 µA/cm2 與60 µA/cm2 之間,且最較佳恰好位於40 µA/cm2 與50 µA/cm2 之間。基板表面之溫度位於300°C與400°C之間,較佳位於325°C與375°C之間,且最較佳恰好位於350°C處。基板表面之處理之持續時間總計為多於10秒,較佳多於50秒,更較佳多於100秒,且最較佳多於300秒。電漿之離子劑量位於101 3 離子/平方公分與101 7 離子/平方公分之間,更較佳位於101 4 離子/平方公分與101 6 離子/平方公分之間,且最較佳恰好位於1.5x101 5 離子/平方公分處。
工作氣體 離子能 電流密度 基板溫度 轟擊時間
FG0 300 eV 5 mA/cm2 300°C 1分鐘
FG1 300 eV 500 µA/cm2 300°C 3分鐘
FG3 200 eV 5 mA/cm2 150°C 0.5 – 1分鐘
RFG1 300 eV 35 µA/cm2 350°C 5分鐘
RFG5 500 eV 500 µA/cm2 RT 4分鐘
NFG2 500 eV 5mA/cm2 RT ?
表4:關於不同氣體混合物之用於清潔一矽基板表面之較佳程序參數
氧化矽之移除較佳由以下反應方程式描述: SiO2 基板表面 用於熱氧化矽之工作氣體係成形氣體混合物FG0、FG2及FG5 (見表1)。離子能位於150 eV與800 eV之間,較佳位於475 eV與525 eV之間,且最較佳恰好位於500 eV處。電流密度位於20 µA/cm2 與70 µA/cm2 之間,較佳位於30 µA/cm2 與60 µA/cm2 之間,且最較佳恰好位於40 µA/cm2 與50 µA/cm2 之間。基板表面之溫度位於300°C與400°C之間,較佳位於325°C與375°C之間,且最較佳恰好位於350°C處。基板表面之處理之持續時間總計為多於10秒,較佳多於50秒,更較佳多於100秒,且最較佳多於300秒。電漿之離子劑量位於101 3 離子/平方公分與101 7 離子/平方公分之間,更較佳位於101 4 離子/平方公分與101 6 離子/平方公分之間,且最較佳恰好位於1.5x101 5 離子/平方公分處。
工作氣體 離子能 電流密度 基板溫度 轟擊時間
FG0 500 eV 5 mA/cm2 300°C 1分鐘
FG2 500 eV 400 µA/cm2 150°C 50秒
FG5 500 eV 500 µA/cm2 RT 4分鐘
表5:關於不同氣體混合物之用於清潔一氧化矽基板基板表面之較佳程序參數
氧化矽之移除較佳由以下反應方程式描述: 微晶玻璃 ( AlSiO2 ) 表面 用於鋁矽氧化物之工作氣體係成形氣體混合物FG5 (50%氬及50%氫)(見表1)。離子能位於450 eV與550 eV之間,較佳位於475 eV與525 eV之間,且最較佳恰好位於500 eV處。電流密度位於5 µA/cm2 與500 µA/cm2 之間,較佳位於30 µA/cm2 與60 µA/cm2 之間,且最較佳恰好位於500 µA/cm2 處。基板表面之溫度位於RT與400°C之間,且最較佳恰好位於RT處。基板表面之處理之持續時間總計為多於10秒,較佳多於50秒,更較佳多於100秒,且最較佳恰好在120秒處。電漿之離子劑量位於101 3 離子/平方公分與101 7 離子/平方公分之間,更較佳位於101 4 離子/平方公分與101 6 離子/平方公分之間,且最較佳恰好位於1.5x101 5 離子/平方公分處。 在根據本發明之處理之前及之後在X射線光電子能譜法(XPS)之幫助下發生基板表面之量化。根據本發明之程序之一般描述 可尤其如下控制根據本發明之程序: 尤其為成形氣體、甚至更較佳僅包括一分量(最較佳為氬)之一第一氣體在一離子源中經電離且藉由一加速單元而加速至一基板表面之一點上。藉由較佳使用一寬帶離子束,離子束尤其覆蓋整個表面。第一分量遇到基板表面上之一未污染部位且經彈性散射(且因此不導致對於基板表面之任何改質/損害,且藉此亦不導致一物理及/或化學改變);或在第二可設想之情況中,第一分量遇到一雜質。根據本發明,雜質與基板表面之間之結合能尤其重複多次經設定低於改變基板表面自身所需之能量。替代地或另外,雜質與基板表面之間之結合能尤其重複多次經設定小於第一分量之動能。此分量因此能夠自基板表面移除雜質而不損害基板表面自身。在根據本發明之一第二步驟中,尤其為一成形氣體、甚至更較佳僅包括一分量、較佳為氫之一第二氣體用於將大氣中之被濺除之雜質轉換成不再如此容易沈積於基板表面上之一更少有害化合物。此化合物較佳係在適當環境中呈一氣態狀態存在且因此可經攜載至製程腔室之外之一化合物。在一特殊實施例中,在離子源中產生之氣體可與將雜質轉換成不再如此容易沈積於基板表面上之一更少有害化合物之第二氣體相同。 此外,揭示根據本發明之一系統,在該系統之幫助下可盡可能有效地應用根據本發明之方法。根據本發明之系統包括至少一離子源、至少一製程腔室、將一工作氣體引導至工作腔室之至少一閥,以及用於固定且尤其移動基板之一基板樣品固持器。根據本發明之系統較佳係一叢集之部分、更較佳係一高真空叢集之部分、且最較佳係一極高真空叢集之部分。在指定真空叢集之一者中之壓力尤其小於1巴,較佳小於10-1 毫巴,更較佳小於10- 3 毫巴,最較佳小於10- 5 毫巴,且最佳小於10- 8 毫巴。在一尤其較佳實施例中,根據本發明之實施例首要地搭配一結合器及/或一對準器一起使用以使基板彼此結合。 此外,揭示一基板作為根據本發明之一產品,該產品特徵為一極高表面純度及一非常標稱損害之表面積。表面純度藉此由雜質原子比基板表面原子之數目之比率而指定。表面純度因此係一無量綱比率。較佳地,因此呈ppm (百萬分率)、ppb (十億分率)或ppt (萬億分率)給出此非常小之數目。在根據本發明之清潔程序之前,雜質可覆蓋整個基板表面,藉此在上文中界定之表面純度將大於或等於1。藉由使用根據本發明之方法,相應地減小表面雜質。在使用根據本發明之方法之後,基板表面之雜質小於1 (106 ppm),較佳小於10-3 (1000 ppm),更較佳小於10-6 (1 ppm),更較佳小於10-9 (1 ppt),尤其較佳0。 損害之強度最佳由深度範圍指示,在該深度範圍內在基板之微結構中之一改變仍可偵測。歸因於使用根據本發明之方法及系統,此深度範圍小於10 µm,較佳小於1 µm,更較佳小於100 nm,最較佳小於10 nm,最佳小於1 nm,且然而尤其最較為零。因此在理想情況中,完全不發生歸因於離子轟擊之損害。可藉由比較使用根據本發明之方法處理之一第一基板之表面或近表面區域之微結構與未使用根據本發明之方法處理之一第二基板(但其較佳來自相同批次)之表面或近表面區域之微結構而完成此損害之偵測。微結構藉此較佳係使用TEM (透射電子顯微鏡術)及/或AFM (原子力顯微鏡術)及/或SEM (掃描電子顯微鏡術)及/或X射線散射及/或電子散射檢查。 在圖式輔助下,自以下較佳實施例實例之描述,本發明之進一步優點、特徵及細節將變得清晰。 在圖式中,使用相同參考符號標記相等或有效相等之特徵。 圖1展示根據本發明之一第一較佳實施例,其包括一離子濺射系統1,該離子濺射系統1具有產生一離子束3 (尤其一寬帶離子束)之一離子源2。此束遇到已固定於一基板樣品固持器5上之一基板7之基板表面7o。基板樣品固持器5已固定於一桌台4上且較佳可交換。可藉由一機器人經由一閘9而將基板7載入至製程腔室8中。可使用一程序氣體經由一閥6而抽空及/或沖洗製程腔室8。因為桌台4能夠在x及/或y及/或z方向中或繞x及/或y及/或z軸平移及/或旋轉移動,所以基板表面7o可配置於相對於離子束3之任何任意位置及定向中。 程序氣體較佳係由離子源2使用以產生離子束3之相同成形氣體。 圖2展示包括一離子濺射系統1’,由一第二離子源2’擴展之一第二實施例。第二離子源2’可用於將一第二成形氣體引入至製程腔室8中或確保離子束3經由離子束3’之目標操縱。例如可設想藉由在第二離子源2’中產生之一第二離子氣體來減小或氧化第一離子源2之離子束3中的離子,而藉由離子束3’操縱離子束3中之離子密度。亦可設想離子源2’為一電子源,在該電子源之幫助下在離子束3處射出電子。離子源3’之電子接著減小離子束3之帶正電荷之離子。藉由高離子密度,可發生離子束3之離子之氧化水平中之一增加;離子因此更帶負電荷。 圖3展示根據本發明之類似於圖1之一第三實施例,其包括一離子濺射系統1’’,其中一離子源2’’使用一窄帶離子束3’’以根據本發明執行基板表面7o之清潔。為了到達基板表面7o上之全部所欲點,基板範本固持器5與基板7一起相對於離子束3’’移動。在此實施例中亦可設想使用至少一進一步離子源2’。 圖4展示根據本發明之類似於圖2及圖3之一第四實施例,其包括一離子濺射系統1’,其中離子源2在一孔隙10上方產生一寬帶離子束3。孔隙10將寬帶離子束3轉換成一窄帶離子束3’’。在根據本發明之此實施例中,第二離子源2’不僅用於操縱離子束3’’,而且尤其較佳首要地結合自孔隙10分離之雜質。此等雜質將以其他方式沈積於基板7上且污染基板7。因為在圖4中描繪之一離子源2、一寬帶離子束3及一孔隙10之組合經常用於產生對應窄帶離子束3’’,所以根據本發明之此實施例擁有適當高技術及經濟關聯性。孔隙10尤其由碳或含有碳之材料製成且因此對應地極大涉及基板7之一尤其有機污染。然而,藉由使用根據本發明之實施例且在尤其經組態為一離子槍之第二離子源2’及/或經引入之成形氣體之幫助下,可主要防止或甚至完全排除藉由孔隙10沈積雜質。第二離子源2’之離子束3’在孔隙10之一適當定位之情況下亦可採用於孔隙10與第一離子源2之間,指在寬帶離子束3之區域中。在一異常較佳實施例中,離子源2’可經樞轉使得離子束3’可採用於孔隙10上方及下方兩者。當然,離子束3’亦可進一步用於清潔基板表面7o。為了到達基板表面7o上之全部所要點,基板樣品固持器5可再一次與基板7一起相對於離子束3’’移動。 圖5展示一XPS (X射線光電子能譜法)量測之一科學圖式,其中一GaAs基板表面7o上之鎵、砷、碳及氧之原子濃度被描繪為依據使用根據本發明之成形氣體混合物及根據本發明之離子濺射系統之轟擊時間而變化。氧及碳濃度之減小以及鎵及砷濃度之相關聯之增加顯著可辨別。應注意,此處呈現之清潔程序使此等結果在極低溫度下且在一非常短量之時間中變得可能以及無對基板表面之任何顯著損害。特定言之,將「顯著損害」理解為指在一深度範圍內之微結構中之一改變。深度範圍尤其小於15 nm,較佳小於7 nm,更較佳小於3 nm,且最較佳小於1.5 nm。 圖6a展示兩個強度光譜之一XPS (X射線光電子能譜法)量測之一科學圖式。上部強度光譜透過特性強度量變曲線展示氧及碳以及矽之存在。在於根據本發明之矽表面之清潔之後記錄之下部強度光譜中,特性氧及碳量變曲線已消失。圖6b及圖6c展示在根據本發明之方法之使用之前及之後在檢查下之基板表面之一AFM (原子力顯微鏡術)記錄。經由碳雜質之移除以及氧化物之移除之粗糙度之縮減清晰可辨別。雖然使用離子濺射技術,但根據本發明之方法不因此導致表面之一粗糙化,而根除雜質且最佳備製基板表面以供一進一步程序步驟使用。 圖7展示三個強度光譜之一XPS (X射線光電子能譜法)量測之一科學圖式。上部強度光譜展示二氧化矽之碳以及氧之存在。在一第一試驗中,嘗試使用純氬移除碳。在使用純氬之離子轟擊之後,記錄第二強度量變曲線(在中間)。在第二強度量變曲線中,碳濃度中之一增加顯著可辨別。碳濃度中之增加可具有許多原因。然而重要的是碳來自製程腔室8。碳累積於製程腔室8、處沈積於壁上之碳,經由離子濺射系統之部件而引入或透過閘而引入。僅基板表面7o藉由使用根據本發明之技術結合根據本發明之成形氣體之根據本發明之一處理產生已除去碳之一基板表面,如在第三(下部)強度量變曲線中自相同波長處無碳量變曲線可見。 類似考慮適用於根據圖8在微晶玻璃上實施之試驗。 圖9最後展示一金表面上碳之移除。此展示根據本發明之系統及方法亦最佳適合於清潔金屬表面。搭配特殊偏好,根據本發明之方法亦可用於清潔如同銅之金屬表面以在一進一步程序步驟中結合其等。
1:離子濺射系統 1’:離子濺射系統 1’’:離子濺射系統 2:離子源 2’:離子源 2’’:離子源 3:離子束 3’:離子束 3’’:離子束 4:桌台 5:基板樣品固持器 6:閥 7:基板 7o:基板表面 8:製程腔室 9:閘 10:孔隙
圖1展示根據本發明之一第一實施例之一示意性描述, 圖2展示根據本發明之一第二實施例之一示意性描述, 圖3展示根據本發明之一第三實施例之一示意性描述, 圖4展示根據本發明之一第四實施例之一示意性描述, 圖5展示多個原子對處理時間之濃度相依性之一科學圖式, 圖6a展示一XPS信號對關於材料矽之波長之強度相依性之一科學圖式, 圖6b展示一基板表面在根據本發明之處理之前之一微觀表面影像, 圖6c展示一基板表面在根據本發明之處理之後之一微觀表面影像, 圖7展示一XPS信號對關於材料氧化矽之波長之強度相依性之一科學圖式, 圖8展示一XPS信號對關於材料微晶玻璃之波長之強度相依性之一科學圖式, 圖9展示一XPS信號對材料金之波長之強度相依性之一科學圖式。
1:離子濺射系統
2:離子源
3:離子束
4:桌台
5:基板樣品固持器
6:閥
7:基板
7o:基板表面
8:製程腔室
9:閘

Claims (13)

  1. 一種用於一基板之一基板表面之表面處理之方法,該方法包含:將該基板表面配置於一製程腔室中;使用一離子束轟擊該基板表面以自該基板表面移除雜質,該離子束具有小於1000eV之一離子能量及一第一組分(component),該離子束由一離子束源產生且瞄準該基板表面;及將一第二組分引入至該製程腔室中以結合該等經移除雜質,其中由轟擊該基板表面所導致之該基板之一微結構之一改變係在該基板之一深度範圍內,該基板之該深度範圍係小於10μm。
  2. 如請求項1之方法,其中該深度範圍小於15nm。
  3. 如請求項1之方法,其中該深度範圍小於1.5nm。
  4. 如請求項1之方法,其中該製程腔室之一溫度小於100℃。
  5. 如請求項1之方法,其中該製程腔室之一溫度係在室溫。
  6. 一種用於一基板之一基板表面之表面處理之裝置,該裝置包含: 一製程腔室,該基板表面配置於其中;一離子束源,其經組態以產生具有小於1000eV之一離子能量之一離子束且瞄準該離子束於該基板表面,該離子束經組態以轟擊該基板表面以自該基板表面移除雜質,使得對該基板之一可驗證的微結構改變被限制到小於10μm之一深度範圍,該離子束具有一第一組分;及用於將一第二組分引入至該製程腔室中以結合該等經移除雜質的構件。
  7. 如請求項6之裝置,其中該深度範圍小於15nm。
  8. 如請求項6之裝置,其中該深度範圍小於1.5nm。
  9. 如請求項6之裝置,其中該製程腔室之一溫度小於100℃。
  10. 如請求項6之裝置,其中該製程腔室之一溫度係為室溫。
  11. 一種用於一基板之一基板表面之表面處理之裝置,該裝置包含:一製程腔室,該基板表面配置於其中;一離子束源,其具有一出口開口,該離子束源經組態以產生具有小於1000eV之一離子能量之一離子束且將該離子束瞄準於該基板表面,該離子束經組態以轟擊該基板表面以自該基板表面移除雜質,使得由轟擊該基板表面所導致之該基板之一微結 構之一改變係在該基板之一深度範圍內,該基板之該深度範圍係小於10μm,該離子束具有一第一組分;及用於將一第二組分引入至該製程腔室中以結合該等經移除雜質的構件,其中該出口開口及該基板之間之一距離係在1cm至100cm之一範圍內。
  12. 如請求項11之裝置,其中該出口開口及該基板之間之該距離係在10cm至80cm之一範圍內。
  13. 如請求項11之裝置,其中該出口開口及該基板之間之該距離係在20cm至50cm之一範圍內。
TW109134182A 2014-04-01 2015-03-05 用於基板表面處理之方法及裝置 TWI829968B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
WOPCT/EP2014/056545 2014-04-01
PCT/EP2014/056545 WO2015149846A1 (de) 2014-04-01 2014-04-01 Verfahren und vorrichtung zur oberflächenbehandlung von substraten

Publications (2)

Publication Number Publication Date
TW202106901A TW202106901A (zh) 2021-02-16
TWI829968B true TWI829968B (zh) 2024-01-21

Family

ID=50439364

Family Applications (2)

Application Number Title Priority Date Filing Date
TW104107085A TWI709652B (zh) 2014-04-01 2015-03-05 用於基板表面處理之方法及裝置
TW109134182A TWI829968B (zh) 2014-04-01 2015-03-05 用於基板表面處理之方法及裝置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW104107085A TWI709652B (zh) 2014-04-01 2015-03-05 用於基板表面處理之方法及裝置

Country Status (8)

Country Link
US (3) US9960030B2 (zh)
EP (2) EP3127141B1 (zh)
JP (1) JP6456400B2 (zh)
KR (2) KR102306979B1 (zh)
CN (3) CN106463342B (zh)
SG (1) SG11201607719TA (zh)
TW (2) TWI709652B (zh)
WO (1) WO2015149846A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9555441B2 (en) * 2013-05-03 2017-01-31 Abb Schweiz Ag Dynamic synchronized masking and coating
JP2017523603A (ja) 2014-06-24 2017-08-17 エーファウ・グループ・エー・タルナー・ゲーエムベーハー 基板を表面処理するための方法及び装置
CN113410128A (zh) 2014-12-23 2021-09-17 Ev 集团 E·索尔纳有限责任公司 用于预固定衬底的方法和装置
JP6388272B1 (ja) * 2016-11-07 2018-09-12 ボンドテック株式会社 基板接合方法、基板接合システムおよび親水化処理装置の制御方法
SG11201906390SA (en) 2017-02-21 2019-08-27 Ev Group E Thallner Gmbh Method and device for bonding substrates
DE112018006577T5 (de) * 2018-02-28 2020-11-12 Hitachi High-Tech Corporation Ionenfräsvorrichtung und Ionenquellen-Justierverfahren für Ionenfräsvorrichtung
US11742231B2 (en) * 2019-10-18 2023-08-29 Taiwan Semiconductor Manufacturing Co., Ltd. Movable wafer holder for film deposition chamber having six degrees of freedom
CN112975117B (zh) * 2020-08-27 2022-09-13 重庆康佳光电技术研究院有限公司 一种激光剥离方法及装置
KR102445655B1 (ko) * 2022-04-14 2022-09-23 주식회사 위드텍 열탈착을 이용한 분석 자동화 시스템 및 이를 이용한 분석 방법

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4142958A (en) * 1978-04-13 1979-03-06 Litton Systems, Inc. Method for fabricating multi-layer optical films
US4547432A (en) * 1984-07-31 1985-10-15 The United States Of America As Represented By The United States Department Of Energy Method of bonding silver to glass and mirrors produced according to this method
JPS61160938A (ja) * 1985-01-09 1986-07-21 Nec Corp ドライエツチング後Si表面の損傷除去方法
TW201118050A (en) * 2009-11-24 2011-06-01 Taiwan Hi Tech Corp A high temperature pretreatment method on surface of glass substrate for anti-reflection film
TW201207919A (en) * 2007-12-21 2012-02-16 Applied Materials Inc Removal of surface dopants from a substrate
TW201318056A (zh) * 2011-09-21 2013-05-01 Tokyo Electron Ltd 蝕刻方法、蝕刻裝置及記憶媒體
TW201327666A (zh) * 2011-09-01 2013-07-01 Tel Epion Inc 用以達成多種材料之目標蝕刻處理指標的氣體團簇離子束蝕刻方法

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6187338A (ja) 1984-10-05 1986-05-02 Nec Corp 多重ビ−ム照射Si表面ドライ洗浄法
JPS6187338U (zh) 1984-11-14 1986-06-07
JPS6423538A (en) * 1987-07-20 1989-01-26 Nec Corp Method and equipment for manufacturing semiconductor device
JPH0513394A (ja) * 1991-07-02 1993-01-22 Nissin Electric Co Ltd 基体の膜形成面清浄化方法
US5616179A (en) * 1993-12-21 1997-04-01 Commonwealth Scientific Corporation Process for deposition of diamondlike, electrically conductive and electron-emissive carbon-based films
AT405775B (de) 1998-01-13 1999-11-25 Thallner Erich Verfahren und vorrichtung zum ausgerichteten zusammenführen von scheibenförmigen halbleitersubstraten
GB9822294D0 (en) * 1998-10-14 1998-12-09 Univ Birmingham Contaminant removal method
KR100829288B1 (ko) 1998-12-11 2008-05-13 서페이스 테크놀로지 시스템스 피엘씨 플라즈마 처리장치
SE9903213D0 (sv) 1999-06-21 1999-09-10 Carl Fredrik Carlstroem Dry etching process of compound semiconductor materials
DE10048374B4 (de) 1999-10-01 2009-06-10 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Verfahren zum großflächigen Verbinden von Verbindungshalbleitermaterialien
US6758223B1 (en) * 2000-06-23 2004-07-06 Infineon Technologies Ag Plasma RIE polymer removal
US6319842B1 (en) * 2001-01-02 2001-11-20 Novellus Systems Incorporated Method of cleansing vias in semiconductor wafer having metal conductive layer
US6554950B2 (en) 2001-01-16 2003-04-29 Applied Materials, Inc. Method and apparatus for removal of surface contaminants from substrates in vacuum applications
JP2002279002A (ja) 2001-03-22 2002-09-27 Fujitsu Denso Ltd 図面管理システム及び図面管理方法
DE10210253A1 (de) 2002-03-10 2003-10-02 Inst Oberflaechenmodifizierung Verfahren zur Reinigung von Halbleiteroberflächen
KR100781719B1 (ko) 2004-04-20 2007-12-03 학교법인 포항공과대학교 이온빔 식각을 이용한 쌍곡면 드럼형 소자의 제조방법
TWI287816B (en) * 2004-07-22 2007-10-01 Asia Optical Co Inc Improved ion source with particular grid assembly
US7838083B1 (en) * 2005-01-28 2010-11-23 Sandia Corporation Ion beam assisted deposition of thermal barrier coatings
US8052799B2 (en) * 2006-10-12 2011-11-08 International Business Machines Corporation By-product collecting processes for cleaning processes
JP5044813B2 (ja) * 2007-02-19 2012-10-10 エスアイアイ・ナノテクノロジー株式会社 集束イオンビーム装置及び荷電粒子光学系の調整方法
JP2008227283A (ja) * 2007-03-14 2008-09-25 Mitsui Eng & Shipbuild Co Ltd SiCパーティクルモニタウエハの製造方法
KR101436116B1 (ko) * 2007-04-27 2014-09-01 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Soi 기판 및 그 제조 방법, 및 반도체 장치
US20080287323A1 (en) 2007-05-16 2008-11-20 Leiming Li Treatment and Reuse of Oilfield Produced Water
KR20100032865A (ko) * 2007-06-29 2010-03-26 아사히 가라스 가부시키가이샤 유리 기판 표면으로부터 이물질을 제거하는 방법 및 유리 기판 표면을 가공하는 방법
JP4593601B2 (ja) 2007-08-03 2010-12-08 キヤノンアネルバ株式会社 汚染物質除去方法、半導体製造方法、及び薄膜形成加工装置
KR20090102547A (ko) * 2008-03-26 2009-09-30 주식회사 하이닉스반도체 불순물 제거 방법
JP5355928B2 (ja) * 2008-05-09 2013-11-27 株式会社半導体エネルギー研究所 貼り合わせ法による半導体基板の製造方法
SG183670A1 (en) * 2009-04-22 2012-09-27 Semiconductor Energy Lab Method of manufacturing soi substrate
CN101957554A (zh) * 2009-07-14 2011-01-26 中芯国际集成电路制造(上海)有限公司 去除光罩上的保护膜胶的方法
WO2014154272A1 (de) 2013-03-27 2014-10-02 Ev Group E. Thallner Gmbh Aufnahmeeinrichtung, vorrichtung und verfahren zur handhabung von substratstapeln
CN105283950B (zh) 2013-06-17 2018-03-13 Ev 集团 E·索尔纳有限责任公司 用于衬底对准的装置及方法
CN105247670B (zh) 2013-12-06 2018-06-12 Ev 集团 E·索尔纳有限责任公司 用于对齐衬底的装置和方法
JP6187338B2 (ja) 2014-03-14 2017-08-30 富士ゼロックス株式会社 定着装置、画像形成装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4142958A (en) * 1978-04-13 1979-03-06 Litton Systems, Inc. Method for fabricating multi-layer optical films
US4547432A (en) * 1984-07-31 1985-10-15 The United States Of America As Represented By The United States Department Of Energy Method of bonding silver to glass and mirrors produced according to this method
JPS61160938A (ja) * 1985-01-09 1986-07-21 Nec Corp ドライエツチング後Si表面の損傷除去方法
TW201207919A (en) * 2007-12-21 2012-02-16 Applied Materials Inc Removal of surface dopants from a substrate
TW201118050A (en) * 2009-11-24 2011-06-01 Taiwan Hi Tech Corp A high temperature pretreatment method on surface of glass substrate for anti-reflection film
TW201327666A (zh) * 2011-09-01 2013-07-01 Tel Epion Inc 用以達成多種材料之目標蝕刻處理指標的氣體團簇離子束蝕刻方法
TW201318056A (zh) * 2011-09-21 2013-05-01 Tokyo Electron Ltd 蝕刻方法、蝕刻裝置及記憶媒體

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
期刊 N.Razek Ultra-high vacuum direct bonding of a p–n junction GaAs wafer using low-energy hydrogen ionbeam surface cleaning Vacuum Vol. 81 Elsevier 2007/03/30 974-978 *

Also Published As

Publication number Publication date
CN111326405A (zh) 2020-06-23
TW201600619A (zh) 2016-01-01
TWI709652B (zh) 2020-11-11
US11901172B2 (en) 2024-02-13
CN106463342A (zh) 2017-02-22
JP6456400B2 (ja) 2019-01-23
US20210125821A1 (en) 2021-04-29
JP2017513216A (ja) 2017-05-25
KR102306979B1 (ko) 2021-09-30
KR102203973B1 (ko) 2021-01-18
EP3127141B1 (de) 2021-03-24
SG11201607719TA (en) 2016-11-29
CN111261498A (zh) 2020-06-09
US20180204717A1 (en) 2018-07-19
US10867783B2 (en) 2020-12-15
US20170069483A1 (en) 2017-03-09
US9960030B2 (en) 2018-05-01
CN106463342B (zh) 2020-04-03
KR20160140620A (ko) 2016-12-07
EP3127141A1 (de) 2017-02-08
EP3859766A1 (de) 2021-08-04
KR20210007039A (ko) 2021-01-19
TW202106901A (zh) 2021-02-16
WO2015149846A1 (de) 2015-10-08

Similar Documents

Publication Publication Date Title
TWI829968B (zh) 用於基板表面處理之方法及裝置
TWI715872B (zh) 利用有機基之矽或矽鍺表面的表面處理
JP5574586B2 (ja) 基板構造及びその形成方法
TWI803449B (zh) 用於使用基於氣體簇離子束技術之中性束處理的超淺蝕刻之方法及藉其製造之物件
JP2016103632A (ja) エネルギー吸収体ガスへの衝突共鳴エネルギー伝達によるプラズマのvuv放出の調節
JPH03257182A (ja) 表面加工装置
KR20140053842A (ko) 접합면 제작 방법, 접합 기판, 기판 접합 방법, 접합면 제작 장치 및 기판 접합체
WO2020217266A1 (ja) プラズマ処理方法およびプラズマ処理装置
JPH0622222B2 (ja) 光処理装置
US20200190669A1 (en) Nanofabrication using a new class of electron beam induced surface processing techniques
Kondou et al. Nanoadhesion layer for enhanced Si–Si and Si–SiN wafer bonding
JP6726264B2 (ja) 基板を表面処理する方法及び装置
Kondou et al. Room-temperature si-si and si-sin wafer bonding
US20220328292A1 (en) Remote plasma ultraviolet enhanced deposition
JPH02183530A (ja) 半導体素子の作製方法
Ito et al. Effects of hydrogen on plasma etching for silicon and silicon nitride
Neumann et al. Evaluating advanced fuel candidates in surface cleaning of optics by plasma exposure (SCOPE)
Saris Surface Science and Semiconductor Processing