TWI828613B - 用於在殺真菌素鏈黴菌之基因工程改造品系中增強生產持久殺菌素之組成物及方法 - Google Patents

用於在殺真菌素鏈黴菌之基因工程改造品系中增強生產持久殺菌素之組成物及方法 Download PDF

Info

Publication number
TWI828613B
TWI828613B TW106142750A TW106142750A TWI828613B TW I828613 B TWI828613 B TW I828613B TW 106142750 A TW106142750 A TW 106142750A TW 106142750 A TW106142750 A TW 106142750A TW I828613 B TWI828613 B TW I828613B
Authority
TW
Taiwan
Prior art keywords
streptomyces
production
seq
persistent
orf24
Prior art date
Application number
TW106142750A
Other languages
English (en)
Other versions
TW201827591A (zh
Inventor
T 馬克 扎布里斯基
希厚 銀
Original Assignee
奧勒岡州立大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 奧勒岡州立大學 filed Critical 奧勒岡州立大學
Publication of TW201827591A publication Critical patent/TW201827591A/zh
Application granted granted Critical
Publication of TWI828613B publication Critical patent/TWI828613B/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/36Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Actinomyces; from Streptomyces (G)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • C12N15/71Expression systems using regulatory sequences derived from the trp-operon
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • C12N15/76Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Actinomyces; for Streptomyces
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/02Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/465Streptomyces

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)

Abstract

本文之揭露內容描述用於在殺真菌素鏈黴菌之基因工程改造品系中增強生產持久殺菌素的組成物及方法。特別地,本文之揭露內容描述基因操作與來自殺真菌素鏈黴菌的持久殺菌素(安來黴素(enramycin))生物合成基因簇連結的調節性基因orf24orf18以產生以較大的產率生產持久殺菌素的載體構築體和重組品系。

Description

用於在殺真菌素鏈黴菌之基因工程改造品系中增強生產持久殺菌素之組成物及方法 相關申請案之交互參照
本申請案主張U.S.臨時專利申請案編號62/430,838(2016年12月6日提申)和62/479,087(2017年3月30日提申)之早申請日之優先權利益,該等案件之各者特此以其完整內容引引用方式併入本文中。
本文之揭露內容係關於抗生素生物合成,特別係關於用於增強生產持久殺菌素的組成物及方法。
多重抗藥性細菌感染之全球湧現已造成龐大的保健花費且已變成大眾健康的主要威脅。為保持領先於抗細菌藥物抗性之發展,對於鑑認新抗生素以及以更具成本效益的方式生產如此抗生素的方法有需求。
本文之揭露內容克服與在殺真菌素鏈黴菌之野生型品系中持久 殺菌素(安來黴素(enramycin))之生產有限有關的問題以及透過染色體之常規放射線和化學介導性誘發突變和連續數回合的突變株之挑選開發的產業品系中的生產限制以生產增高水平的所欲持久殺菌素胜肽抗生素。於本文中揭露者係基因操作與來自殺真菌素鏈黴菌的持久殺菌素(安來黴素)生物合成基因簇連結的調節性基因orf24orf18以產生以較大的產率生產此胜肽抗生素的重組載體和品系。重組品系係於野生型生產株殺真菌素鏈黴菌B-5477(ATCC 21013)和源自野生型品系且目前用於持久殺菌素之工業生產的殺真菌素鏈黴菌BM38-2(ATCC PTA-122342)兩者中構築。於野生型生物體中,質體pXY152-endorf24(其驅動orf24之第二個複本之過度表現)之位置專一性整合產生品系SfpXY152endorf24。經誘變F型黏接質體pXYF24D3至野生型染色體之整合以orf18之經破壞複本置換天然orf18並產生突變株SfpXYF24D3。於商業生產株殺真菌素鏈黴菌BM38-2(ATCC PTA-122342)中運作,質體pXY152-endorf24之整合產生重組品系殺真菌素鏈黴菌BM38-2.24/16。為產生缺乏功能性orf18的源自BM38-2(ATCC PTA-122342)的品系,構築質體pKS-T-orf18pfrd-AmR以缺失orf18和位於其側翼的區域,以阿普拉黴素(apramycin)抗性標記置換此區域並產生重組品系殺真菌素鏈黴菌BM38-2.18pfrd-AmR。該等經基因操作的品系被展示會以範圍在各自的親本品系之1.2至4.6倍高的產率生產持久殺菌素。來自該等重組品系的提高的持久殺菌素產率提供更具成本效益的持久殺菌素之生產。
本文之揭露內容之上述和其他特徵和優點基於以下詳細描述(其參照所附圖式進行)會變得更明顯。
圖1提供持久殺菌素A和B之化學結構。
圖2係整合型表現質體pXY152-endorf24之圖。
圖3係基因缺失質體pXY300-orf18ifd之圖。
圖4係基因缺失質體pKS-T-orf18ifd之圖。
圖5係基因缺失質體pKS-T-orf18pfrd-AmR之圖。
圖6係基因缺失質體pKS-orf18ifd-T-AmR(NS)之圖。
圖7係整合型表現質體pXY152-endorf24-camtsr之圖。
圖8係整合型表現質體pXY152-endorf24-blatsr之圖。
圖9提供鏈黴素活化子StrR蛋白質(SEQ ID NO:25)與Orf24(SEQ ID NO:26)的排比。
圖10A和10B係質體pKS-T-orf18pfrd-AmR(a)和pXY300-orf18ifd(b)之插入物之圖。於構築體pXY30-orf18ifd中,orf18之核苷酸位置25795至26450的內部序列(GenBank登錄號DQ403252)被缺失並以PacI限制位(TTAATTAA)置換(圖10B)。所得的經框內缺失的orf18(GTGTTTAATTAATGA(SEQ ID NO:27))可被轉譯成一個三胺基酸胜肽(VFN)。通常,任何超過orf18之長度的內部框內缺失應由於其之不完整性而造成Orf18之無效功能。
圖11 Orf24與六個來自放線菌的功能特徵經界定的類StrR途徑專一性活化子異種同源物蛋白質之排比。來自殺真菌素鏈黴菌持久殺菌素生物合成基因簇的Orf24(GenBank登錄號DQ403252;SEQ ID NO:26);來自灰色鏈黴菌鏈黴素生物合成基因簇的StrR(GenBank登錄號Y00459;SEQ ID NO:25);來自Actinoplanes teichomyceticus替考拉寧(teicoplanin)基因簇的Tei15*(GenBank登錄號AJ632270;SEQ ID NO:32);來自巴爾赫黴素無枝酸菌(Amycolatopsis balhimycina)品系DSM 5908生物合成基因簇的Bbr(GenBank登錄號Y16952;SEQ ID NO:28);來自春日黴素鏈黴菌(S.kasugaensis)春日黴素基因簇的KasT(GenBank登錄號BAF79690;SEQ ID NO:29);來自雪白鏈黴菌(S.niveus)品系NCIMB 9219新生黴素生物合成基因簇的NovG(GenBank登錄號AF170880; SEQ ID NO:30);來自球孢鏈黴菌(S.globisporus)C-1027生物合成基因簇的SgcR1(GenBank登錄號AY048670;SEQ ID NO:31)。完全相同的胺基酸(*),保守性胺基酸(.)和高度保守性胺基酸取代(:)。如StrR的DNA結合性蛋白質之保守的螺旋-轉折-螺旋(HTH)模體特徵被加底線。
圖12 Orf18(SEQ ID NO:36)與其他功能特徵經界定的反應調節子異種同源物的排比。SCO1745/AbrA2:天藍色鏈黴菌(S.coelicolor)A3(2)二組份反應調節子(GenBank登錄號CAB50960;SEQ ID NO:33)。SCO3226/AbsA2:天藍色鏈黴菌A3(2)二組份反應調節子(GenBank登錄號AAB08053;SEQ ID NO:34)。SCO3818:天藍色鏈黴菌A3(2)二組份系統反應轉錄調節子(GenBank登錄號CAB46941;SEQ ID NO:35)。
序列表
於本文和所附序列表中列出的核酸和胺基酸序列係使用用於核苷酸鹼基的標準字母縮寫和用於胺基酸的三字母碼顯示,如於37 C.F.R.1.822中規定地。僅顯示核酸序列之一股,但將互補股理解成藉由以任何方式參照所顯示的股而被包含。於所附序列表中:
SEQ ID NO:1和2係用於產生質體pXY152-endorf24之插入物的寡核苷酸引子。
SEQ ID NO:3係質體pXY152-endorf24之核酸序列。
SEQ ID NO:4-7係用於產生質體pXY300-orf18ifd之插入物的寡核苷酸引子。
SEQ ID NO:8係質體pXY300-orf18ifd之核酸序列。
SEQ ID NO:9和10係用於產生質體pKS-T-orf18pfrd之oriT片段 的寡核苷酸引子。
SEQ ID NO:11係質體pKS-T-orf18pfrd的核酸序列。
SEQ ID NO:12和13係用於產生質體pKS-T-orf18pfrd-AmR之amR片段的寡核苷酸引子。
SEQ ID NO:14係質體pKS-T-orf18pfrd-AmR的核酸序列。
SEQ ID NO:15-18係用於產生質體pKS-orf18ifd-T-AmR(NS)之oriTamR片段的寡核苷酸引子。
SEQ ID NO:19係質體pKS-orf18ifd-T-AmR(NS)的核酸序列。
SEQ ID NO:20係質體pXY152-endorf24-camtsr的核酸序列。
SEQ ID NO:21和22係用於產生質體pXY152-endorf24-blatsr之bla片段的寡核苷酸引子。
SEQ ID NO:23係質體pXY152-endorf24-blatsr的核酸序列。
SEQ ID NO:24係對應於阿普拉黴素抗性基因之區域的寡核苷酸引子。
SEQ ID NO:25係鏈黴素活化子StrR蛋白質之胺基酸序列。
SEQ ID NO:26係由ORF24編碼的胺基酸序列。
SEQ ID NO:27係闡明orf18中的框內缺失的核酸序列。
SEQ ID NO:28係Bbr插入物之胺基酸序列。
SEQ ID NO:29係KasT插入物之胺基酸序列。
SEQ ID NO:30係NovG插入物之胺基酸序列。
SEQ ID NO:31係SgcR1插入物之胺基酸序列。
SEQ ID NO:32係Teil5*插入物之胺基酸序列。
SEQ ID NO:33係來自天藍色鏈黴菌A3(2)的反應調節子異種同源物SCO1745/AbrA2之胺基酸序列(GenBank登錄號CAB50960)。
SEQ ID NO:34係來自天藍色鏈黴菌A3(2)的反應調節子異種同源物SCO/3226/AbsA2之胺基酸序列(GenBank登錄號AAB08053)。
SEQ ID NO:35係來自天藍色鏈黴菌A3(2)的反應調節子異種同源物SCO3818之胺基酸序列(GenBank登錄號CAB46941)。
SEQ ID NO:36係由ORF18編碼的胺基酸序列。
SEQ ID NO:37orf18的核酸序列。
SEQ ID NO:38orf24的核酸序列。
SEQ ID NO:39係具有位於核苷酸位置23109至24044的orf24的F型黏接質體pXYF148的核酸序列)。
SEQ ID NO:40係具有位於核苷酸位置31091-31753的orf18的F型黏接質體pXYF24的核酸序列)。
一些實施方式之詳細描述 I.引言
持久殺菌素(圖1)(亦稱為安來黴素)係由土壤細菌殺真菌素鏈黴菌B-5477(ATCC 21013)生產的17個胺基酸脂酯肽抗生素。該胜肽主要係以持久殺菌素A和B(其等差異在於所附脂質鏈之長度中的一個碳)之混合物的形式自發酵培養液和菌絲體分離。結構上,該等持久殺菌素差異在於透過醯胺連接接附至天門冬胺酸殘基的C12或C13 2Z,4E分支脂肪酸部分、和數目眾多的非成蛋白質性胺基酸殘基(諸如enduracididine(End)、4-羥基苯基甘胺酸(Hpg)、3,5-二氯-4-羥基苯基甘胺酸(Dpg)、瓜胺酸(Cit)和烏胺酸(Orn))之存在(參照圖1)。17個胺基酸中的七個具有D組態且該等殘基中的六個係Hpg或氯化衍生物Dpg。
持久殺菌素(為單純之目的,該等胜肽會以單數稱之)展現有力 的對抗廣譜的革蘭氏陽性生物體(包括二甲苯青黴素抗性金黃色葡萄球菌(MRSA)和萬古黴素抗性腸球菌(VRE))的試管內和活體內抗細菌活性。最小抑制濃度(MIC)低至0.05μg/mL且其功效係殺菌的。使用自種種病理產物收集且包括40% MRSA的100個金黃色葡萄球菌之品系的研究建立了範圍在0.09至0.56μg/mL的MIC,而無品系能夠於暴露至1μg/mL下存活。相較之下,典型的萬古黴素對於金黃色葡萄球菌之敏感性品系的MIC範圍在0.5至2μg/mL。此外,持久殺菌素具有卓越的毒物學輪廓。於小鼠、兔、狗和猴子之研究中,急性LD50係:靜脈內,30-125mg/kg;腹膜內,750-910mg/kg;皮下、肌肉內(im.)或口服,>5-10g/kg。於相同的研究中,發現接受持久殺菌素i.m.共6個月的猴子和類似地給藥共12個月的大鼠僅於注射位置有局部發炎。於人類,持久殺菌素被i.m.投予(100mg每12個小時)至20名被MRSA感染的住院成年患者。該胜肽被報導無副作用且亦對於治療由MRSA造成的尿路和皮膚感染(但非慢性骨骼感染)係高度有效的(Peromet等人,Chemotherapy 19:53-61,1973)。
持久殺菌素藉由與胞外脂質II(細菌細胞壁結構之前驅物)複合而抑制細菌肽聚醣細胞壁生物合成。脂質II複合之位置與萬古黴素所辨識的位置不同且負責持久殺菌素對抗萬古黴素抗性生物體的作用。迄今,並無記錄顯示持久殺菌素與任何臨床上使用的抗生素有交叉抗性且無證據顯示有發展出的、後天的或可轉移的抗性。任何可轉移的抗性機制之已知形式之不存在、口服生體可用率之缺乏、其低毒性、和針對芽胞梭菌屬物種的卓越活性已使持久殺菌素成為用作為用於控制芽胞梭菌腸炎的家禽飼料添加物的關鍵商業胜肽抗生素。
為獲得可供應商業使用所需的該等胜肽之量的生產性生物體之品系,日本Takeda動物保健(現為Intervet/Merck動物保健之部分)使殺真菌素鏈黴菌B-5477經歷種種傳統品系改善方法並挑選以較高產率生產持久殺菌素的突 變株。持久殺菌素之漸增的全世界市場已驅動進一步改善此抗生素於BM38-2(ATCC PTA-122342)中的產率的努力。隨著持久殺菌素生物合成基因簇之基因序列(GenBank登錄號DQ403252,其特此如於2006年10月3日在全球資訊網上可得者以引用方式併入)變得可得,BM38-2(ATCC PTA-122342)可作用於與該基因簇連結的調節性基因之標靶性基因操作的起始品系之用並構成本文之揭露內容之基礎。本文中揭露到orf18之產物對於持久殺菌素生產具有負向功效而orf24基因產物對於持久殺菌素生產具有正向功效並揭露到源於殺真菌素鏈黴菌野生型和BM38-2(ATCC PTA-122342)生物體兩者且利用此等調節性功效的重組品系以提高的產率生產持久殺菌素。此外,於本文中揭露者係分別基於pBluescript II KS和pSET152的新穎基因置換和整合型表現載體。
II.縮寫和術語
a.縮寫
AA:胺基酸
Am:阿普拉黴素
AmR:阿普拉黴素抗性標記
amRp:天然阿普拉黴素抗性啟動子
ATCC:美國菌種保存中心
bla:胺苄青黴素抗性基因
BLAST:基本局部排比搜尋工具
cam:氯黴素抗性基因
CFU菌落形成單位
CTAB:溴化鯨蠟基三甲基銨
Cit:L-瓜胺酸
Dpg:3,5-二氯-L-4-羥基苯基甘胺酸
EDTA:乙二胺四乙酸二鈉
End:enduracididine
Enradin:持久殺菌素,安來黴素
EPM:持久殺菌素生產培養基
Hpg:D-和L-4-羥基苯基甘胺酸
HPLC:高效能液相色層分析
HTH:螺旋-轉折-螺旋
IM:肌肉內
ISP2:國際鏈黴菌計畫培養基2
ISP4:國際鏈黴菌計畫培養基4
LB:Luria-Bertani培養液
LD50:致死劑量,LD50代表殺死測試動物之族群之百分之50所需的單獨劑量
MAH:Intervet/Merck動物保健
MeOH:甲醇
MIC:最小抑制濃度,
MRSA:二甲苯青黴素抗性金黃色葡萄球菌
nm:奈米
NRPS:非核糖體性胜肽合成酶
ORF:開讀框
Orn:D-烏胺酸
PCP:肽基攜載蛋白
PCR:聚合酶連鎖反應
Pfrd:Plus側翼區域缺失
SDS:十二烷基硫酸鈉
SNP:單核苷酸多型性
SPD:分光光二極體
TFA:三氟乙酸
TSB:胰蛋白酶大豆培養液
tsr:硫鏈絲菌肽抗性基因
UV:紫外線
VRE:萬古黴素抗性腸球菌
b.術語
除非另外註記,技術術語係根據常規用法使用。分子生物學中的一般術語之定義可於以下者中找到:由牛津大學出版社出版的Benjamin Lewin Genes V,1994(ISBN 0-19-854287-9);由Blackwell Science Ltd.出版的Kendrew等人(編者)The Encyclopedia of Molecular Biology,1994(ISBN 0-632-02182-9);和由VCH Publishers,Inc.出版的Robert A.Meyers(編者)Molecular Biology and Biotechnology:a Comprehensive Desk Reference,1995(ISBN 1-56081-569-8)。
為了幫助本文之揭露內容之種種實施方式之回顧,提供以下特殊術語之說明:
投予:藉由任何途徑投予至動物。用於本文中,投予典型係論及口服投予。
等位基因變體:多肽之交替形式,其特徵為具有一或多個胺基酸之取代、缺失、或添加。於一個實例中,該變體不改變該多肽之生物功能。
擴增:當提及核酸使用時,增加樣本或試樣中的核酸分子之複本 之數目的技術。一個擴增之實例係聚合酶連鎖反應,其中自一對象收集的生物樣本係與一對寡核苷酸引子接觸,該接觸係於允許該等引子與該樣本中的核酸模板雜合的條件下。該等引子係於適合的條件下延伸,自該模板解離,並接著被再黏著、延伸、和解離以擴增該核酸之複本之數目。試管內擴增之產物之特徵可使用標準技術藉由電泳、限制性核酸內切酶剪切模式、寡核苷酸雜合或連接、及/或核酸定序界定。試管內擴增技術之其他實例包括股置換擴增(參見U.S.專利案編號5,744,311);無轉錄等溫擴增(參見U.S.專利案編號6,033,881);修復連鎖反應擴增(參見WO 90/01069);連接酶連鎖反應擴增(參見EP-A-320 308);空隙填充連接酶連鎖反應擴增(參見U.S.專利案編號5,427,930);結合的連接酶偵測和PCR(參見U.S.專利案編號6,027,889);和NASBATM無RNA轉錄擴增(參見U.S.專利案編號6,025,134)。
類似物、衍生物或擬似物:類似物係在化學結構上與親本化合物不同的分子,例如同源物(差異在於化學結構之增加,諸如於烷基鏈之長度的差異)、分子片段、差異在一或多個官能基的結構、及/或於離子化的改變。結構類似物往往係使用定量性結構活性關係(QSAR)使用諸如該等於Remington(The Science and Practice of Pharmacology,第19版(1995),第28章)中揭露的技術找到。當對於原始化合物的改變係實質的或許多增加的改變被組合時,該化合物不再為類似物。例如,雷莫拉寧(ramoplanin)於本文中不被視為持久殺菌素的類似物:雷莫拉寧不具有enduracididine胺基酸、包括不同的胺基酸、且雖然其具有脂質側鏈,其鏈長實質上較短。持久殺菌素之類似物可藉由以下者製備:於構成該等脂酯肽的胺基酸上添加或缺失官能基、藉由以一種胺基酸(除了enduracididine胺基酸外)取代另一種胺基酸或官能基修改和胺基酸取代之組合。例示性持久殺菌素類似物包括四氫持久殺菌素A、四氫持久殺菌素B、去氯持久殺菌素A、和去氯持久殺菌素B。
衍生物係從基礎結構衍生的生物活性分子。擬似物係藉由模擬另一種分子(諸如生物活性分子)之結構而模擬如此分子之活性的分子。因此,術語「擬似物」指出與活性有關的明確結構。
抗生素:由某些真菌、細菌、和其他生物體生產或自某些真菌、細菌、和其他生物體衍生且可摧毀其他微生物或抑制其他微生物之生長的物質(例如持久殺菌素、青黴素或鏈黴素)。
反義、正義、和反基因(antigene):雙股DNA(dsDNA)具有二個股:5'→3'股,其被稱為正股、和3'→5'股(逆向互補物),其被被稱為負股。因為RNA聚合酶以5'→3'方向添加核酸,DNA之負股於轉錄之期間作RNA之模板之用。因此,所形成的RNA會具有與負股互補且與正股完全相同(除了U取代T外)的序列。反義分子係可專一性地與RNA或正股DNA雜合或與RNA或正股DNA專一性地互補的分子。正義分子係可專一性地與DNA之負股雜合或與DNA之負股專一性地互補的分子。反基因分子係與dsDNA目標互補的反義或正義分子。於一個實施方式中,反義分子專一性地與目標mRNA雜合並抑制目標mRNA之轉錄。
結合或穩定結合:若結合係可偵測時,一分子(諸如寡核苷酸或蛋白質)與目標分子(諸如目標核酸或蛋白質)結合或穩定結合。於一個實例中,若足夠量的寡核苷酸與其目標核酸形成鹼基對或雜合以允許該結合之偵測,則該寡核苷酸與其目標核酸結合或穩定結合。結合可藉由目標物:寡核苷酸複合物之物理或功能特性偵測。目標物和寡核苷酸間的結合可藉由任何所屬技術領域中具有通常知識者已知的程序(包括功能和物理結合分析兩者)偵測。結合可藉由測定結合對於生物合成程序(諸如基因之表現、DNA複製、轉錄、轉譯和類似者)是否具有可觀察到的功效而功能性地偵測。
偵測DNA或RNA之互補股之結合的物理方法於所屬技術領域中 係廣為人知的,且包括諸如以下者的方法:DNA水解酶I或化學足跡分析、凝膠位移和親和力剪切分析、北方印漬術、點漬術和光吸收偵測程序。例如,一個因為極為簡單且可靠而被廣為使用的方法涉及隨著溫度緩慢增加於220至300nm下觀察含有寡核苷酸(或類似物)和目標核酸的溶液之光吸收之改變。若該寡核苷酸或類似物已與其目標結合,則隨著寡核苷酸(或類似物)和其目標物彼此解離(或解鏈)於特徵溫度有吸收之即刻增加。
寡聚物和其目標核酸間的結合之特徵時常藉由該寡聚物之50%自其目標解鏈的溫度(Tm)界定。更高的Tm意謂相較於具有較低Tm的複合物更強或更穩定的複合物。
一蛋白質和其目標蛋白質(諸如針對抗原的抗體)間的結合之特徵時常藉由測定結合親和力來界定。於一個實施方式中,親和力係藉由由Frankel等人,Mol.Immunol.,16:101-106,1979描述的Scatchard方法之修改方法計算。於另一個實施方式中,結合親和力係藉由比結合劑受體解離速率測量。於又另一個實施方式中,高結合親和力係藉由競爭放射免疫分析測量。於數個實例中,高結合親和力係至少約1 x 10-8M。於其他實施方式中,高結合親和力係至少約1.5 x 10-8、至少約2.0 x 10-8、至少約2.5 x 10-8、至少約3.0 x 10-8、至少約3.5 x 10-8、至少約4.0 x 10-8、至少約4.5 x 10-8、或至少約5.0 x 10-8M。
生物功能:多肽於其天然所存在之細胞中的一或多種功能。多肽可具有超過一種生物功能。
cDNA(互補DNA):缺乏內部非編碼性節段(內含子)和轉錄調節性序列的DNA之片段。cDNA亦可含有於相對應的RNA分子中負責轉譯控制的非轉譯區域(UTR)。cDNA係於實驗室中藉由自從細胞萃取的傳訊RNA逆轉錄而合成。
保守性取代:不實質上改變分子之活性(專一性或結合親和力) 的胺基酸取代。典型的保守性胺基酸取代涉及以具有類似的化學特性(例如電荷或疏水性)的胺基酸取代另一種胺基酸。以下表格顯示例示性保守性胺基酸取代:
Figure 106142750-A0202-12-0014-1
對照組殺真菌素鏈黴菌品系:天然存在的野生型品系,殺真菌素鏈黴菌ATCC21013。
DNA(去氧核糖核酸):包含大部分活生物體的遺傳物質的長鏈聚合物(一些病毒具有包含核糖核酸(RNA)的基因)。DNA聚合物中的重複單元係四種不同的核苷酸,其等各自包含四種鹼基(腺嘌呤、鳥糞嘌呤、胞嘧啶和胸腺嘧啶)之一,該等鹼基與去氧核糖結合,且磷酸基團接附至該去氧核糖。核苷酸之三聯組(被稱為密碼子)編碼多肽中的各個胺基酸。術語密碼子亦被 用於DNA序列被轉錄成其的mRNA中的三個核苷酸之相對應的(和互補的)序列。
除非另外具體指明,任何提及DNA分子時係意欲包括該DNA分子之逆向互補物。除了本文之原文要求為單股時外,DNA分子(雖然被寫成僅描繪單股)涵蓋雙股DNA分子之兩股。因此,提及編碼特定蛋白質(或其片段)的核酸分子時涵蓋正義股和其逆向互補物兩者。因此,例如,從所揭露的核酸分子之逆向互補物序列產生探針或引子係適當的。
域:分子(諸如蛋白質或核酸)之部分,其於結構及/或功能性上與該分子之另一部份不同。
編碼:若一多核苷酸於其天然態或當以對所屬技術領域中具有通常知識者而言係廣為人知的方法操作時可被轉錄及/或轉譯以生產一多肽或其片段之mRNA及/或該多肽或其片段,則該多核苷酸被稱為「編碼」該多肽。反義股係如此核酸之互補物,且編碼序列可自其推演。
持久殺菌素:持久殺菌素A和B係於1960年代晚期自土壤細菌殺真菌素鏈黴菌B-5477(ATCC 21013)之發酵發現的17個胺基酸的脂酯肽。A和B胜肽係同源物,其等差異在於所附脂質鏈之長度中的一個碳。結構上,該等持久殺菌素差異在於C12或C13 2Z,4E分支脂肪酸部分和數目眾多的非成蛋白質性胺基酸殘基(諸如enduracididine(End)、4-羥基苯基甘胺酸(Hpg)、3,5-二氯-4-羥基苯基甘胺酸(Dpg)、瓜胺酸(Cit)和烏胺酸(Orn))之存在。17個胺基酸中的七個具有D組態且該等殘基中的六個係Hpg或氯化衍生物Dpg。
多肽之功能性片段和變體:所包括者係該等維持親本多肽之一或多種功能的片段和變體。咸認可到編碼多肽的基因或cDNA可被顯著地突變而無實質上改變一或多種該多肽之功能。首先,基因密碼係簡併的,且因此不同的密碼子編碼相同的胺基酸。其次,即使於導入胺基酸取代時,該突變可係保守 性的且對蛋白質之一或多種必要功能不具有具體影響。參見Stryer Biochemistry第3版,(c)1988。第三,多肽鏈之部分可被缺失而不損害或消除其所有功能。第四,可於該多肽鏈中作插入或添加,例如添加表位標籤,而不損害或消除其功能(Ausubel等人J.Immunol.159(5):2502-12,1997)。其他可作而不會實質上損害多肽之一或多種功能的修改包括(例如)活體內或試管內化學和生物化學修改或非通常胺基酸之併入。如此修改包括(例如)鯨蠟基化、羧化、磷酸化、醣化、泛蛋白化、標記,例如使用放射核酸化物、和種種酵素性修改,如所屬技術領域中具有通常知識者會輕易認知到的。各種各樣用於標記多肽的方法和可用於如此目的的標記包括放射性同位素,諸如32P、與經標記的特殊結合伙伴(例如抗體)結合或被其結合的配體、螢光團、化學發光劑、酵素、和抗配體(antiligand)。功能性片段和變體可係各種長度。例如,一些片段具有至少10、25、50、75、100、200、或更多個胺基酸殘基。
有效量:所指明的化合物或組成物之量或濃度,其足以於一對象中達成所欲功效。有效量可至少部分取決於欲治療的動物之物種、該動物之大小、及/或所欲的功效之特性。
基因簇:一組在染色體上聚集在一起的基因元件,其等之蛋白質產物具有相關的功能,諸如形成天然產物生物合成途徑。
異源:當其係關於核酸序列(諸如編碼序列和控制序列)時,「異源」表示正常不與一重組構築體之區域連結及/或正常不與特殊細胞連結的序列。因此,核酸構築體之「異源」區域係核酸之可鑑認的節段,其位在另一個核酸分子內或接附至另一個核酸分子,該節段於自然中未被發現與該其他分子連結。例如,構築體之異源區域可包括編碼序列,其側翼為於自然中未被發現與該編碼序列連結的序列。異源編碼序列之另一個實例係其中該編碼序列本身於自然中未被發現的構築體(例如具有與天然基因不同的密碼子的合成性序 列)。類似地,使用正常不在其中存在的構築體轉形的宿主細胞對於本文之揭露內容之目的而言會被視為異源。
同源胺基酸序列:任何(全部或部分)由與該等編碼性區域核酸序列之任何部分雜合的核酸序列編碼的多肽。同源胺基酸序列係與在序列表中顯示的胺基酸序列差異在於一或多個保守性胺基酸取代者。如此序列亦涵蓋等位基因變體(於以上定義)以及保留該多肽之功能特徵的含有缺失或插入的序列。較佳地,如此序列與該等胺基酸序列之任一者係至少75%,更佳係80%,更佳係85%,更佳係90%,更佳係95%,且最佳係98%相同的。
同源胺基酸序列包括與序列表之胺基酸序列完全相同或實質上完全相同的序列。使用「實質上完全相同的胺基酸序列」時,其係意謂與參考胺基酸序列係至少90%,較佳係95%,更佳係97%,且最佳係99%相同且較佳與參考序列差異大多數為保守性胺基酸取代的序列。與本發明之此方面一致,具有與序列表之胺基酸序列之任一者同源的序列的多肽包括天然存在的等位基因變體、以及保留任何於本文中揭露的序列之多肽之固有特徵的突變株或任何其他非天然存在的變體。同源性可使用序列分析軟體(諸如威斯康辛大學生物技術中心遺傳學電腦組(1710大學大道,麥迪遜,Wl 53705)之序列分析套裝軟體)測量。可排比胺基酸序列以最大化一致性。亦可人工地將空隙導入至序列中以達到最理想的排比。一旦已設置出最理想的排比,同源性之程度係藉由記錄其中兩個序列之胺基酸係完全相同的位置之所有者(相對於位置之總數)來建立。同源性多核苷酸序列係以類似的方式定義。較佳地,同源的序列係與該等編碼性序列之任一者至少45%、50%、60%、70%、75%、80%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或完全相同者。
雜合:寡核苷酸和其他核酸藉由互補鹼基間的氫鍵結(其包括 Watson-Crick、Hoogsteen或逆Hoogsteen氫鍵結)雜合。一般而言,核酸由為嘧啶(胞嘧啶(C)、尿嘧啶(U)、和胸腺嘧啶(T))或嘌呤(腺嘌呤(A)和鳥糞嘌呤(G))的含氮鹼基所組成。此等含氮鹼基於嘧啶和嘌呤間形成氫鍵,且該嘧啶與該嘌呤間的鍵結被稱為鹼基對。更具體地,A會與T或U氫鍵結,且G會與C氫鍵結。互補係論及在二個不同核酸序列或相同核酸序列之二個不同區域間存在的鹼基對。
可專一性地雜合的和專一性地互補的係指出以下者的術語:足以使得在第一核酸(諸如寡核苷酸)和DNA或RNA目標間存在穩定且專一性的結合的互補性程度。該第一核酸(諸如寡核苷酸)不需與其目標序列100%互補以為可專一性地雜合的。當有足以於其中專一性結合係所欲的條件下避免第一核酸(諸如寡核苷酸)與非目標序列之非專一性結合的互補性程度時,該第一核酸(諸如寡核苷酸)係可專一性地雜合的。如此結合被稱為專一性雜合。
造成特殊嚴苛程度的雜合條件會基於所選的雜合方法之性質和雜合的核酸序列之組成和長度而變化。一般而言,雜合之溫度和雜合緩衝液之離子力(特別是Na+濃度)會決定雜合之嚴苛度,雖然洗滌次數亦會影響嚴苛度。關於達到特定嚴苛程度所需的雜合條件的計算係由Sambrook等人(編者)Molecular Cloning:A Laboratory Manual,第2版,vol.1-3,冷泉港實驗室出版社,冷泉港,NY,1989,第9和11章討論。
以下者係例示性的雜合條件組且非意欲為限制性。
極高嚴苛度(偵測共有90%序列一致性的序列)
雜合:5x SSC,於65EC下共16小時
洗滌二次:2x SSC,各於室溫(RT)下共15分鐘
洗滌二次:0.5x SSC,各於65EC下共20分鐘
高嚴苛度(偵測共有80%或更大的序列一致性的序列)
雜合:5x-6x SSC,於65EC-70EC下共16-20小時
洗滌二次:2x SSC,各於RT下共5-20分鐘
洗滌二次:1x SSC,各於55EC-70EC下共30分鐘
低嚴苛度(偵測共有大於50%序列一致性的序列)
雜合:6x SSC,於RT至55EC下共16-20小時
洗滌至少二次:2x-3x SSC,各於RT至55EC下共20-30分鐘。
經分離的:經分離的生物組份(諸如核酸分子或蛋白質)係已實質上自其他生物體之細胞(於其中該組份天然存在其中)中的生物組份(諸如其他染色體和染色體外DNA和RNA、蛋白質和胞器)分離或純化者。關於核酸及/或多肽,該術語可係論及側翼不再是於自然中典型位於其等之側翼的序列的核酸或多肽。已經分離的核酸和蛋白質包括藉由標準純化方法純化的核酸和蛋白質。該術語亦包含藉由在宿主細胞中重組表現製備的核酸和蛋白質以及化學合成的核酸。
突變:造成細胞或生物體之遺傳物質(通常係DNA或RNA)之序列改變的過程。突變可使用所屬技術領域中廣為人知的分子技術(例如定點誘發突變、PCR誘發突變和其他)故意地導入至遺傳物質中。
非核糖體性胜肽(NRP):一類次級代謝物,其等通常由微生物(諸如細菌和真菌)生產。與在核糖體上合成的多肽不同,此等胜肽係由非核糖體性胜肽合成酶(NRPS)自胺基酸合成。
非核糖體性胜肽主鏈組裝:非核糖體性胜肽生物合成中的第二步驟,其包括胜肽序列之醯胺鍵形成(縮合)。
非核糖體性胜肽合成酶(NRPS):一種大型多功能蛋白質,其藉由非核糖體性機制(往往以硫模板合成為人所知)合成多肽(Kleinkauf和von Doehren Ann.Rev.Microbiol.41:259-289,1987)。如此非核糖體性多肽可具有線性、環狀、或分支的環狀結構且往往含有蛋白質中不存在的胺基酸或透過甲基化或表異構化修改的胺基酸。於特殊實例中,NRPS生產二肽。
非核糖體性胜肽剪裁:非核糖體性胜肽生物合成中的第三步驟。存在有數目眾多的在非核糖體性胜肽中找到的新穎前驅物胺基酸且此等建構組元之許多者係於接附至特化蛋白質之PCP域或NRPS時形成或被修改。此合成後修改可於胜肽主鏈之醯胺鍵形成後發生。例示性修改包括α-碳表異構化、N-甲基化、Cys或Ser/Thr殘基變成噻唑啉和
Figure 106142750-A0202-12-0020-127
唑啉的雜環化、和側鏈鹵化或羥化。其他修改(諸如氧化、烷化、醯化和醣化)可於初生胜肽自NRPS複合物釋放後發生且往往對於完整生物活性而言係必須的。
非核糖體性前驅物胺基酸生物合成:非核糖體性胜肽生物合成中的第一步驟。非核糖體性胜肽往往具有在核糖體上組裝的胜肽和蛋白質中未找到的胺基酸。此等非成蛋白質胺基酸促成此等胜肽之多樣性且往往於其等之生物活性中扮演某種角色。此等胺基酸之生物合成可透過與蛋白質結合的中間物或呈自由可溶性物種發生。
核酸:呈單股或雙股形式的去氧核糖核苷酸或核糖核苷酸聚合物,且除非另外限制,涵蓋以與天然存在的核苷酸類似的方式與核酸雜合的天然核苷酸之已知類似物。
核苷酸:此術語包括(但不限於)包括與糖連接的鹼基(諸如嘧啶、嘌呤或其合成性類似物)或與胺基酸連接的鹼基(如於胜肽核酸中)的單體。核苷酸係多核苷酸中的一個單體。核苷酸序列係論及多核苷酸中的鹼基之序列。
寡核苷酸:藉由天然磷酸二酯鍵連接的複數個連接在一起的核苷酸,其長度介於約6個和約300個核苷酸。寡核苷酸類似物係論及功能上類似於寡核苷酸但具有非天然存在的部分的部分。例如,寡核苷酸類似物可含有非天然存在的部分,諸如經改變的糖部分或糖間連接,諸如硫代磷酸酯寡去氧核苷酸。天然存在的多核苷酸之功能性類似物可與RNA或DNA結合,且包括胜肽核酸分子。
特殊寡核苷酸和寡核苷酸類似物可包括長度上至多達約200個核苷酸的線性序列,例如係至少6個鹼基,例如至少8、10、15、20、25、30、35、40、45、50、100或甚至200個鹼基長、或約6個至約50個鹼基,例如約10-25個鹼基,諸如12、15、或20個鹼基的序列(諸如DNA或RNA)。
開讀框(ORF):編碼胺基酸而無任何內部終止密碼子的一系列核苷酸三聯組(密碼子)。此等序列通常可被轉譯成胜肽。例如,ORF、開讀框、和持久殺菌素ORF係論及如自殺真菌素鏈黴菌分離的持久殺菌素生物合成基因簇中的開讀框。該術語亦包含如於其他持久殺菌素合成性生物體中存在的相同ORF。該術語涵蓋等位基因變體和單核苷酸多型性(SNP)。於某些實例中,術語持久殺菌素ORF係與由持久殺菌素ORF編碼的多肽同義地使用且可包括於該多肽中的保守性取代。特定用法基於前後文會很清楚。
被無效化的開讀框係已透過該編碼序列中的更多個核苷酸之一之缺失、插入或突變而變得非功能性的開讀框。
包含經減弱開讀框-18(orf18)的殺真菌素鏈黴菌係相較於野生型殺真菌素鏈黴菌具有orf18之基因產物之生物功能之減弱(諸如2倍減弱、或甚至完全喪失)的生物體,該減弱係例如透過orf18之基因修改,包括orf18被如以下例示地無效化、及/或透過調節性操作,例如造成orf18基因產物之表現之減弱的編碼ORF18的基因之非編碼性區域之修改、插入、移除、及/或置換。例 如,orf18之野生型啟動子可被修改以實質上減弱orf18之轉錄。
包含經增強開讀框-24(orf24)的殺真菌素鏈黴菌係相較於野生型殺真菌素鏈黴菌具有orf24之基因產物之生物功能之增加(諸如2倍增加或更多)的生物體,該增加係例如透過增強orf24之基因產物之生物功能的orf24之基因修改及/或藉由調節性操作,例如造成orf24基因產物之表現之增加的編碼ORF24的基因之非編碼性區域之修改、插入、移除、及/或置換。例如,以增強orf24之轉錄的強力持續型啟動子置換orf24之野生型啟動子,如以下例示地。
經修改的基因:相較於在天然存在的(野生型)基因中找到者含有修改的基因序列。
可操作地連接:當一核酸序列係功能性關連地與一第二核酸序列置於一起時,則該第一核酸序列係可操作地連接至該第二核酸序列。例如,若一啟動子影響一編碼序列之轉錄或表現,則該啟動子係可操作地連接至該編碼序列。一般而言,可操作地連接的DNA序列係毗鄰的且(當必須連接二個蛋白質編碼性區域時)在相同的讀框中。
異種同源物:若兩個核酸或胺基酸序列共有共同的祖先序列且於帶有該祖先序列的物種分化成二個物種時分歧,則其等係彼此之異種同源物。異種同源序列亦係同源的序列。
多肽:其中其單體係透過醯胺鍵連接在一起的胺基酸殘基的聚合物。當該等胺基酸係α-胺基酸時,可使用L-光學異構物或D-光學異構物,且L-異構物於一些實例中係較佳的。術語多肽或蛋白質用於本文涵蓋任何胺基酸序列且包括經修改的序列,諸如醣蛋白。術語多肽特別意欲涵蓋天然存在的蛋白質(無論是由核糖體性或非核糖體性機制生產)、以及該等重組或合成地生產者。
術語多肽片段係論及展現至少一個有用的表位的多肽之部分。語詞多肽之功能性片段係論及保留以下者的所有多肽之片段:該片段自其衍生的 多肽之活性(諸如生物活性)或活性之可測量的部分。片段(例如)之大小可多變,從小至能夠結合抗體分子的表位的多肽片段到能夠參與細胞內的特徵誘導或表型改變之規劃的大型多肽。
術語實質上經純化的多肽用於本文係論及實質上不含其他蛋白質、脂質、碳水化合物或其他其天然與之連結的物質的多肽。於一個實施方式中,該多肽係至少50%,例如至少80%無其他蛋白質、脂質、碳水化合物或其他其天然與之連結的物質。於另一個實施方式中,該多肽係至少90%無其他蛋白質、脂質、碳水化合物或其他其天然與之連結的物質。於又另一個實施方式中,該多肽係至少95%無其他蛋白質、脂質、碳水化合物或其他其天然與之連結的物質。
探針和引子:核酸探針和引子可基於在本文之揭露內容中提供的核酸分子輕易地製備。探針包含接附至可偵測的標記或報導分子的經分離的核酸。典型的標記包括放射性同位素、酵素受質、共因子、配體、化學發光或螢光劑、不全抗原、和酵素。用於標記的方法和適用於種種目的的標記之選擇之指引係於(例如)以下者中討論:Sambrook等人(於Molecular Cloning:A Laboratory Manual,CSHL,紐約,1989)和Ausubel等人(於Current Protocols in Molecular Biology,Greene Publ.Assoc.and Wiley-Intersciences,1992)。
引子係短核酸分子,較佳係DNA寡核苷酸,長度10個核苷酸或更長。更佳地,更長的DNA寡核苷酸可係長度約15、17、20、或23個核苷酸或更長。引子可藉由核酸雜合黏著至互補的目標DNA股以於該引子和該目標DNA股間形成雜合物,且接著該引子藉由DNA聚合酶酵素沿著該目標DNA股延伸。可將引子對用於核酸序列之擴增,例如藉由聚合酶連鎖反應(PCR)或其他所屬技術領域中已知的核酸擴增方法。
用於製備和使用探針和引子的方法係於(例如)以下者中描述: Sambrook等人(於Molecular Cloning:A Laboratory Manual,CSHL,紐約,1989)、Ausubel等人(於Current Protocols in Molecular Biology,Greene Publ.Assoc.and Wiley-Intersciences,1992)、和Innis等人(PCR Protocols,A Guide to Methods and Applications,Academic Press,Inc.,聖地牙哥,CA,1990)。PCR引子對可自已知的序列衍生,其例如係藉由使用意欲用於該目的的電腦程式,諸如Primer(第0.5版,© 1991,Whitehead Institute for Biomedical Research,劍橋,MA)。特殊探針或引子之專一性隨著其長度增加而增加。因此,為了獲得較大的專一性,可選擇包含至少17、20、23、25、30、35、40、45、50或更多個所欲核苷酸序列之連續的核苷酸的探針和引子。
蛋白質:由基因表現且由胺基酸構成的生物分子。
經純化的:術語經純化的不要求絕對純;反之,其係意欲作為相對的術語。因此,例如,經純化的蛋白質製劑係其中所提及的蛋白質相較於該蛋白質於其細胞內天然環境中者更純者。
重組的:具有非天然存在的序列或具有藉由人工組合兩個否則分開的序列之節段而製造的序列的核酸。此人工組合可藉由化學合成來實現或(更常地)藉由人工操作(例如藉由基因工程技術)分開的核酸之節段來實現。「重組的」亦係用於描述已經人工地操作但含有與在該基因自其分離的生物體中找到者相同的控制序列和編碼性區域的核酸分子。
調節抗生素生產:造成抗生素生產之量、種類或質之改變(諸如增加或減少)。於本文中揭露者係具有增強持久殺菌素生產的殺真菌素鏈黴菌之重組品系。
序列一致性:二個核酸序列間或二個胺基酸序列間的類似性係以該等序列間共有的序列一致性之水平來表現。序列一致性典型地係以百分比一致性表現;該百分比越高,該二個序列越類似。
用於排比序列以供比較的方法於所屬技術領域中係廣為人知的。種種程式和排比運算法係於以下者中描述:Smith和Waterman,Adv.Appl.Math.2:482,1981;Needleman和Wunsch,J.Mol.Biol.48:443,1970;Pearson和Lipman,Proc.Natl.Acad.Sci.USA 85:2444,1988;Higgins和Sharp,Gene 73:237-244,1988;Higgins和Sharp,CABIOS 5:151-153,1989;Corpet等人,Nucleic Acids Research 16:10881-10890,1988;Huang、等人,Computer Applications in the Biosciences 8:155-165,1992;Pearson等人,Methods in Molecular Biology 24:307-331,1994;Tatiana等人,(1999),FEMS Microbiol.Lett.,174:247-250,1999。Altschul等人提出序列排比方法和同源性計算之詳細考慮(J.Mol.Biol.215:403-410,1990)。
國家生物技術資訊中心(NCBI)基本局部排比搜尋工具(BLASTTM,Altschul等人J.Mol.Biol.215:403-410,1990)可自數個來源(包括國家生物技術資訊中心(NCBI,貝什斯達,MD)和線上獲得,以連結序列分析程式blastp、blastn、blastx、tblastn和tblastx使用。如何使用此程式測定序列一致性的描述可於線上在BLASTTM之幫助章節下獲得。
對於大於約30個胺基酸的胺基酸序列之比較,利用BLASTTM(Blastp)程式之「Blast 2個序列(Blast 2 sequences)」功能,使用設至預設參數的預設BLOSUM62矩陣(打開空隙之代價[預設=5];延伸空隙之代價[預設=2];錯配之罰分[預設=-3];匹配之獎分[預設=1];期望值(E)[預設=10.0];序列長度[預設=3];單行描述之數目(V)[預設=100];顯示的排比之數目(B)[預設=100])。當排比短胜肽(少於約30個胺基酸)時,排比應使用Blast 2序列功能執行,利用設至預設參數的PAM30矩陣(打開空隙9、延伸空隙1罰分)。與參考序列有甚至更大類似性的蛋白質(或核酸)當藉由此方法分析時會顯示增加的百分比一致性,諸如至少50%、至少60%、至少70%、至少80%、至少85%、 至少90%、或至少95%序列一致性。
對於核酸序列之比較,利用BLASTTM(Blastn)程式之「Blast 2序列」功能,使用設至預設參數的預設BLOSUM62矩陣(打開空隙之代價[預設=11];延伸空隙之代價[預設=1];期望值(E)[預設=10.0];序列長度[預設=11];單行描述之數目(V)[預設=100];顯示的排比之數目(B)[預設=100])。與參考序列有甚至更大的類似性的核酸序列當藉由此方法分析時會顯示增加的百分比一致性,諸如至少60%、至少70%、至少75%、至少80%、至少85%、至少90%、至少95%、或至少98%序列一致性。
指出二個核酸分子密切相關的另一種指標係該二個分子於嚴苛條件下彼此雜合(參見以上「雜合」)。
不顯示高程度的一致性的核酸序列可仍舊編碼類似的胺基酸序列,而此係由於基因密碼之簡併。咸瞭解可使用此簡併性作核酸序列之改變以產生所有皆編碼實質上相同的蛋白質的多個核酸分子。
經轉染的:核酸分子藉其被導入至細胞中的程序(例如藉由分子生物學技術),其造成經轉染的(或經轉形的)細胞。用於本文中,術語轉染涵蓋所有核酸分子可藉其被導入至如此細胞中的技術,包括以病毒載體轉導、以質體載體轉染、和藉由電穿孔、脂染(lipofection)、和粒子槍加速導入DNA。
經轉形的:經轉形的細胞係已藉由分子生物學技術將核酸分子導入至其的細胞。該術語涵蓋所有核酸分子可藉其被導入至如此細胞中的技術,包括以病毒載體轉染、以質體載體轉形、和藉由電穿孔、脂染、和粒子槍加速導入裸DNA。
轉位子:一種移動的基因元件,其於兩端具有幾乎完全相同的重複序列,且至少含有編碼轉位酶(於DNA序列中插入該轉位子所需的酵素)的基因。轉位子可被整合至細胞之基因體中的不同位置內、或試管內在經分離的 質體、黏接質體、或F型黏接質體DNA模板上。轉位子亦可含有除了該等插入所需者以外的基因。
載體:被導入至宿主細胞中並藉此製造經轉染宿主細胞的核酸分子。重組DNA載體係具有重組DNA的載體。載體可包括允許其在宿主細胞中複製的核酸序列,諸如複製起點。載體亦可包括一或多個可篩選標記基因和其他所屬技術領域中已知的基因元件。病毒載體係具有至少一些源自一或多種病毒的核酸序列的重組DNA載體。質體係載體。
除非另外說明,所有本文中使用的技術和科學術語具有與本文之揭露內容所屬技術領域中具有通常知識者所一般瞭解者相同的意義。單數術語「一(a)」、「一(an)」、和「該(the)」包括複數指示物,除非前後文清楚指出其他者。類似地,字詞「或」係意欲包括「和」,除非前後文清楚指出其他者。應進一步瞭解對於核酸或多肽給出的所有鹼基大小或胺基酸長度、和所有分子量或分子質量係大約的,且係提供以用於描述。雖然於實施或測試本文之揭露內容可使用與於本文中描述者類似或同等的方法和材料,適合的方法和材料係於以下描述。術語「包含」意謂「包括」。若有矛盾,應以本說明書(包括術語之說明)為準。此外,材料、方法、和實例僅僅係闡明性且非意欲為限制性。
用於實施所揭露的實施方式的適合方法和材料係於以下描述。此外,於執行所揭露的實施方式時可使用任何對於具有通常知識者而言係廣為人知的適合的方法或技術。一些可於本文之揭露內容中應用的常規方法和技術係於(例如)以下者中描述:Sambrook等人,Molecular Cloning:A Laboratory Manual,第2版,冷泉港實驗室出版社,1989;Sambrook等人,Molecular Cloning:A Laboratory Manual,第3版,冷泉港出版社,2001;Ausubel等人,Current Protocols in Molecular Biology,Greene Publishing Associates,1992(和至2000的增刊); Ausubel等人,Short Protocols in Molecular Biology:A Compendium of Methods from Current Protocols in Molecular Biology,第4版,Wiley & Sons,1999;Harlow和Lane,Antibodies:A Laboratory Manual,冷泉港實驗室出版社,1990;Harlow和Lane,Using Antibodies:A Laboratory Manual,冷泉港實驗室出版社,1999;和Kieser,T.、Bibb,M.J.、Buttner,M.J.、Chater,K.F.、和Hopwood,D.A.:Practical Streptomyces genetics,John Innes Centre,Norwich Research Park,Colney,Norwich NR4 &UH,英格蘭,2000。
本文中提及的所有出版品、專利申請案、專利案、和其他參考文獻皆以其等之完整內容以引用方式併入。若有矛盾,以本說明書(包括術語之說明)為準。此外,材料、方法、和實例僅僅係闡明性且非意欲為限制性。
III.殺真菌素鏈黴菌之經工程改造重組表現載體
於本文中揭露者係經工程改造的重組殺真菌素鏈黴菌表現質體載體。於一些實施方式中,經工程改造的重組殺真菌素鏈黴菌載體包含至少一個所選殺真菌素鏈黴菌之開讀框。於一些實施方式中,經工程改造的重組殺真菌素鏈黴菌載體包含至少一個在啟動子的控制下表現的所選殺真菌素鏈黴菌之開讀框。於一些實例中,該啟動子係強力持續型鏈黴菌啟動子,其於該載體係在殺真菌素鏈黴菌之品系中表現時造成增強的持久殺菌素之生產。於一些實施方式中,該開讀框係可操作地連接至異源啟動子而非其本身的天然啟動子。例如,其可係可操作地連接至持續型啟動子,諸如強力持續型表現啟動子或可誘導型啟動子。於一些實例中,該強力持續型啟動子係來自紅黴素生產株的ermE*p。於一些實例中,該可誘導型啟動子係tipA。於一些實例中,利用P(nitA)-NitR系統(Herai S、Hashimoto Y、Higashibata H、Maseda H、Ikeda H、Omura S、Kobayashi M,Proc Nat1 Acad Sci U S A.2004.101(39):14031-5)或鏈黴 菌啟動子SF14。於一些實例中,利用阿普拉黴素抗性基因之天然啟動子(amRp)。於一些實例中,利用P hrdB 、P tcp830 、P SF14 、P ermE*及/或P neos
於一些實施方式中,該經工程改造的重組載體包含開讀框orf 24(SEQ ID NO:38)及/或已被無效化的開讀框orf18(SEQ ID NO:37)。於一些實例中,該開讀框orf18(SEQ ID NO:37)係藉由框內缺失、框移及/或點突變無效化。
於一些實施方式中,該經工程改造的重組載體包含來自殺真菌素鏈黴菌之持久殺菌素基因簇的開讀框orf24。於一些實例中,該開讀框orf24(SEQ ID NO:38)係可操作地連接至異源啟動子。例如,其係連接至強力持續型啟動子,諸如ermE*p。於其他實例中,該開讀框orf24係可操作地連接至啟動子tipA、SF14、amRp、P hrdB 、P tcp830 、P SF14 、P ermE*及/或P neos
於另一個實施方式中,經工程改造的重組載體包含位於持久殺菌素基因簇之上游區域的開讀框orf18。該開讀框orf18(SEQ ID NO:37)係藉由插入性破壞、框內缺失、框移及/或點突變無效化。於一些實例中,該開讀框orf18係藉由框內缺失(諸如在圖9B中闡明的框內缺失)無效化。於一個實例中,該開讀框orf18(SEQ ID NO:37)係藉由框內缺失無效化。例如,該開讀框orf18(SEQ ID NO:37)係藉由orf18(SEQ ID NO:37)之核酸5至660之框內缺失無效化。通常,任何在orf18上的內部框內缺失造成無效的Orf18之功能(由於其不完整性)。於一些實例中,該框內缺失包括orf18(SEQ ID NO:37)中至少3個核酸(諸如至少3個核酸,包括orf18(SEQ ID NO:37)之核酸5至660間的3、6、9、12、15、18、21、24、27、30、33、36、39、42、45、48、51、54、57、60、63、66、69、72、75、78、81、84、87、90、93、96、99、102、105、108、111、114、117、120、123、126、129、132、135、138、141、144、147、150、153、156、159、162、165、168、171、174、177、180、183、186、189、192、195、 198、201、204、207、210、213、216、219、221、224、227、230、233、236、239、242、245、248、251、254、257、260、263、266、269、272、275、278、281、284、287、290、293、296、299、302、305、308、311、314、317、320、323、326、329、332、335、338、341、344、347、350、353、356、359、362、365、368、371、374、377、380、383、386、389、392、395、398、401、404、407、410、413、416、419、421、424、427、430、433、436、439、442、445、448、451、454、457、460、463、466、469、472、475、478、481、484、487、490、493、496、499、502、505、508、511、514、517、520、523、526、529、532、535、538、541、544、547、550、553、556、559、562、565、568、571、574、577、580、583、586、589、592、595、598、601、604、607、610、613、616、619、621、624、627、630、633、636、639、642、645、648、651、或654個核酸)之缺失。
於相關的實施方式中,經工程改造的重組質體載體涉及二或多個來自持久殺菌素基因簇及/或位於該基因簇之側翼的區域或來自其他放線菌品系的開讀框。該二或多個開讀框可係連接至單一啟動子。供選擇地,其等可係可操作地連接至二個不同的啟動子。該二個啟動子可係相同類型的啟動子。供選擇地,其等可係二種不同類型的啟動子。
於進一步的實施方式中,可於該殺真菌素鏈黴菌之工程改造品系中導入可增強持久殺菌素生產的另外或供選擇的開讀框或使之失活。
於一些實例中,該重組質體係pXY152-endorf24(SEQ ID NO:3)。於一些實例中,該重組質體係pXY300-orf18ifd(SEQ ID NO:8)。於一些實例中,該重組質體係pKS-T-orf18ifd(SEQ ID NO:11)。於一些實例中,該重組質體係pKS-T-orf18pfrd-AmR(SEQ ID NO:14)。於一些實例中,該重組質體係pKS-orf18ifd-T-AmR(NS)(SEQ ID NO:19)。於一些實例中,該重組質體係 pXY152-endorf24-camtsr(SEQ ID NO:20)。於一些實例中,該重組質體係pXY152-endorf24-blatsr(SEQ ID NO:23)。
IV.殺真菌素鏈黴菌之工程改造重組品系
於本文中揭露者係相較於對照組品系(諸如野生型殺真菌素鏈黴菌品系或產業親本品系)能夠生產增加的持久殺菌素的殺真菌素鏈黴菌之工程改造重組品系。於一些實施方式中,殺真菌素鏈黴菌之工程改造重組品系包含至少一個來自殺真菌素鏈黴菌被導入至染色體上且在於該工程改造品系中造成增強的持久殺菌素之生產的啟動子(諸如強力持續型鏈黴菌啟動子)的控制下表現的所選開讀框。於一些實施方式中,所導入的開讀框於該殺真菌素鏈黴菌中的表現係由異源啟動子而非其本身的天然啟動子驅動。例如,其可係可操作地連接至持續型啟動子,諸如強力持續型表現啟動子或可誘導型啟動子。於一些實例中,該強力持續型啟動子係來自紅黴素生產株的ermE*p。於一些實例中,該可誘導型啟動子係tipA。於一些實例中,利用P(nitA)-NitR系統(參見Herai S、Hashimoto Y、Higashibata H、Maseda H、Ikeda H、Omura S、Kobayashi M,Proc Natl Acad Sci U S A.,2004.101(39):14031-5)或鏈黴菌啟動子SF14。於一些實例中,該持續型表現啟動子係amRp。於一些實例中,利用P hrdB 、P tcp830 、P SF14 、P ermE*及/或Pneos啟動子。
於一些實施方式中,該工程改造品系包含來自殺真菌素鏈黴菌之持久殺菌素基因簇的開讀框orf24。於一些實例中,該開讀框orf24係可操作地連接至異源啟動子。例如,其係連接至強力持續型啟動子,諸如ermE*p。於其他實例中,該開讀框orf24係可操作地連接至啟動子tipA、SF14、amRp、P hrdB 、P tcp830 、P SF14 、P ermE*及/或Pneos
於另一個實施方式中,該工程改造品系與位於持久殺菌素基因簇 之上游區域的開讀框orf18相關。該開讀框orf18係藉由插入性破壞、框內缺失、框移及/或點突變無效化。於一些實例中,該開讀框orf18係藉由框內缺失(諸如於圖9B中闡明的框內缺失)無效化。於一個實例中,該開讀框orf18(SEQ ID NO:37)係藉由框內缺失無效化。例如,該開讀框orf18(SEQ ID NO:37)係藉由(SEQ ID NO:37)之核酸5至660之框內缺失無效化。通常,任何在orf18上的內部框內缺失應造成Orf18之無效化功能(由於其之不完整性)。
於相關的實施方式中,該工程改造品系涉及二或多個來自持久殺菌素基因簇及/或位於該基因簇之側翼的區域或來自其他放線菌品系的開讀框。該二或多個開讀框可係連接至單一啟動子。供選擇地,其等可係可操作地連接至二個不同的啟動子。該二個啟動子可係相同類型的啟動子。供選擇地,其等可係二種不同類型的啟動子。
於進一步的實施方式中,可於該殺真菌素鏈黴菌之工程改造品系中導入可增強持久殺菌素生產的另外或供選擇的開讀框或使之失活。
於一些實施方式中,該殺真菌素鏈黴菌之工程改造品系係源自野生型親本品系,諸如(但不限於)殺真菌素鏈黴菌美國組織培養公司(ATCC)21013。於其他實施方式中,該殺真菌素鏈黴菌之工程改造品系係源自產業親本品系,諸如(但不限於)BM38-2(ATCC PTA-122342)。於其他實施方式中,該殺真菌素鏈黴菌之工程改造品系係源自常規突變株品系,諸如(但不限於)殺真菌素鏈黴菌ATCC 31729、殺真菌素鏈黴菌ATCC 31730和殺真菌素鏈黴菌ATCC 31731。
於一些實施方式中,增強的持久殺菌素之生產係相較於對照組殺真菌素鏈黴菌品系於持久殺菌素生產的至少1.2倍增加,諸如至少1.5倍、至少2倍、至少2.5倍、至少3倍、至少3.5倍、至少4倍、至少4.5倍增加,包括(但不限於)1.2至10倍增加、1.2至4.6倍增加、2至5倍增加,諸如1.2、1.3、1.4、1.5、1.6、 1.7、1.8、1.9、2.0、2.1、2.2、2.3、2.4、2.5、2.6、2.7、2.8、2.9、3.0、3.1、3.2、3.3、3.4、3.5、3.6、3.7、3.8、3.9、4.0、4.1、4.2、4.3、4.4、4.5、4.6、4.7、4.8、4.9、5.0、5.5、6.0、6.5、7.0、7.5、8.0、8.5、9.0、9.5和10倍增加。於一些實施方式中,該對照組殺真菌素鏈黴菌品系係野生型殺真菌素鏈黴菌品系,其包括(但不限於)殺真菌素鏈黴菌美國組織培養公司(ATCC)21013或產業親本品系,諸如(但不限於)BM38-2(ATCC PTA-122342)、或常規突變株品系,諸如(但不限於)殺真菌素鏈黴菌ATCC 31729、殺真菌素鏈黴菌ATCC 31730和殺真菌素鏈黴菌ATCC 31731。於一個實例中,該對照組係殺真菌素鏈黴菌ATCC 21013且該增強的持久殺菌素生產之增加係至少1.2倍增加,諸如1.2至4.6倍增加。於一個實例中,該對照組係殺真菌素鏈黴菌BM38-2(ATCC PTA-122342)且該增強的持久殺菌素生產之增加係至少1.2倍增加,諸如1.2至4.6倍增加。
V.殺真菌素鏈黴菌之工程改造重組品系之構築
於實施方式中,殺真菌素鏈黴菌之重組品系可藉由將包含至少一個持久殺菌素生產增強性開讀框的重組質體整合入殺真菌素鏈黴菌之親本品系之染色體中來構築。該整合型結合型載體可具有(或可經工程改造以具有)強力持續型鏈黴菌啟動子。於一些實施方式中,該質體可缺乏鏈黴菌複製子且可藉由位置專一性單交叉同源重組整合入染色體中。於其他實施方式中,該質體可呈自由的質體。於一些實施方式中,結合型載體可經工程改造,其中其質體插入物帶有於雙重交叉同源重組後可被整合入染色體中的部分或完全缺失的目標基因(和其側翼區域)以產生框內缺失突變株。
VI.持久殺菌素自殺真菌素鏈黴菌之工程改造重組品系的生產
由本文之揭露內容提供的殺真菌素鏈黴菌之工程改造重組品系 提供生產增高水平的持久殺菌素的方法。此所屬技術領域中的技術進步允許顯著的與持久殺菌素之生產有關的成本之節省。於一些實例中,生產持久殺菌素的方法包含於足以生產持久殺菌素的條件下培養所揭露的殺真菌素鏈黴菌之重組品系。於一些實例中,該方法進一步包含於培養後自培養基分離持久殺菌素。於一些實例中,該方法進一步包含測定所生產的持久殺菌素之抗細菌活性,諸如藉由HPLC分析或使用金黃色葡萄球菌ATCC 29213或枯草芽孢桿菌ATCC 6633作為指示性微生物的生物分析。
於一些實例中,持久殺菌素係藉由所揭露的殺真菌素鏈黴菌品系藉由利用先前針對持久殺菌素之生產描述的發酵條件生產(Higashide等人J.Antibiot.21:126-137,1968)。於生產後,該等化合物可被純化及/或分析,包括HPLC分析,如於實施例1中描述的。生產持久殺菌素和自生長培養基收穫此化合物的方法可於美國專利案4,465,771(其特此以其完整內容以引用方式併入)中找到。
於一些實例中,所揭露的殺真菌素鏈黴菌品系係在胰蛋白酶大豆培養液(TSB)中在搖晃器上培養(諸如於225rpm和30℃下共48小時)並接著被轉移至持久殺菌素生產培養基(EPM,以下表1)共一段時間以用於連續發酵,諸如共至少五日且至多達十一日,包括5、6、7、8、9、10或11日的連續發酵。於一些實例中,持久殺菌素透過野生型和衍生品系的生產係在自動發酵槽中執行。
Figure 106142750-A0202-12-0035-2
於一些實例中,殺真菌素鏈黴菌生質係在具有監視並控制pH、溫度、氧氣、通氣、攪動的系統的深槽衛生設計工業發酵槽中藉由發酵程序生產。例如,殺真菌素鏈黴菌之各發酵批次係從儲存在安全處並保持在低溫環境中的生產種菌之經定性且受控的工作種菌儲備物起始。
於一些實例中,該發酵程序係以一或多個階段(諸如按三階段)發生且下游可視需要地接著進一步的處理:
第I階段:
使用經定性已建立的工作種菌培養物以開始發酵批次。自低溫儲存取回一至五小瓶的冷凍種菌小瓶並自然解凍或置於水浴中於28℃-32℃下解凍直到內含物解凍。將經解凍的培養物無菌地轉移至保持在室溫下的無菌水中並溫和地混合以再懸浮該培養物。
第II階段:
將經再懸浮的培養物無菌地轉移至0.005m3-0.05m3種菌培養基中。該種菌培養基係由以下者構成:葡萄糖(0.1-1.0g/L)、糊精(0.1-3g/L)、 玉米浸液(0-5.0mL/L)、大豆粉(1-5.0g/L)、硫酸銨(0.1-0-0.5g/L)、磷酸單鉀(0.13-0.54g/L)、硫酸亞鐵(0.00-0.5g/L)、氫氧化鉀(0.13mL/L)、碳酸鈣(1-2g/L)、基於聚矽氧的消泡劑(0.1mL/L)、足量的水。將培養基於125℃-128℃滅菌共30-45分鐘並接著冷卻至28℃-32℃。使用無菌水將培養基之體積調整至所欲的工作體積。將pH調整至6.5-7.0。
種菌放大循環之操作參數包括:28℃±2℃之培養溫度、1.0±0.5kg/cm2的內部壓力、3±2Nm3/min的通氣速率、和大約80rpm的攪動速率,取決於容器之大小和形狀。監視但不控制pH、氧消耗和黏度。使培養物生長共40-80小時,之後將其轉移至主要生產發酵槽中。於轉移時黏度範圍應在200-600cps,且pH係應
Figure 106142750-A0202-12-0036-128
6.0,且應有氧消耗之增加。將種菌培養物無菌地轉移至主發酵培養基中以完成發酵循環。
第III階段:
生產發酵槽培養基(10m3-250m3)組成物包括天然和化學組份,諸如玉米粉(13.0-15.0w/v%)、玉米蛋白粗粉(3.0-6.0w/v%)、棉籽粉(0.1-0.3w/v%)、玉米浸液(0.1-0.6v/v%)、氯化鈉(0.3w/v%)、硫酸銨(0.25-0.6w/v%)、乳酸(0-0.5v/v%)、氯化鋅(0.01w/v%)、硫酸亞鐵(0.0-0.02w/v%)、氫氧化鉀(0.20-0.5v/v%)、硫酸鈣(0.0-0.5w/v%)、碳酸鈣(0.5w/v%)、澱粉酶(0.02-0.06w/v%)、氫氧化鉀(0.05v/v%)、植物油(0.5-2.0v/v%)、消泡劑、和足量的水。該等成分係根據所列順序添加。將水加至該等成分,接著加熱至70-90℃以允許該酵素於溫度下分解複合碳水化合物共15分鐘。添加剩下的成分,將pH調整至6.6-6.8,並添加足量的水,於125℃-128℃下滅菌共25-50分鐘以滅菌該培養基。將該培養基冷卻至25℃-32℃,和添加水至足量,工作體積。
將內容物自種菌發酵槽轉移至主發酵培養基中並將發酵槽設成以下條件:溫度28℃±3℃、通氣速率20-60Nm3/min、內部壓力0.1-1.0kg/cm2、 攪動速率等於約1.85kW/m3。按需要調整通氣速率、內部壓力和攪動速率以確保溶解的氧並非速率限制性限定子。於整個循環小心地控制起泡以預防污染或流出。於氧需求增加後開始控制pH。於整個發酵循環控制及/或監視以下參數:pH、通氣、溶解的氧、CO2、黏度、純度、攪動速率、內部壓力、和殘糖。將pH維持在6.8直到細菌生長停止,接著允許pH自然地改變直到收穫。典型的發酵循環係210-300小時。當效價大於5,000μl/L、pH升至7.5或更高、黏度減低、和氧需求停止時,可收穫培養物。
藉由將培養物加熱至70℃共30分鐘以使細菌失活來收穫發酵,並接著將收穫液冷卻至25℃-32℃。
於一些實例中,下游加工包括自生質移除水、乾燥生質和將乾生質調配成預混物。
生物材料之寄存
以下生物材料已按布達佩斯條約之條款寄存在美國菌種保存中心,並得到以下登錄號:
Figure 106142750-A0202-12-0037-3
以上品系已在確保以下者的條件下寄存:於此專利申請案之繫屬期間由專利和商標主管根據37 C.F.R.§1.14和35 U.S.C.§122判定為有資格者可獲得該培養物。該等寄存物代表所寄存品系之實質上純的培養物。該等寄存物在於其標的申請案之對應案或其子案被提申的國家中按照外國專利法要求係可 得的。然而應瞭解到寄存物之可獲得性不構成減損由政府行為頒予的專利權的實施標的發明之許可。
以下提供非限制性實施例以闡明某些特殊特徵及/或實施方式。此等實施例不應被解釋成將本文之揭露內容限制至所描述的特殊特徵或實施方式。
實施例 實施例1
用於增強的持久殺菌素生產的材料和方法
此實例提供用於增強的持久殺菌素生產的代表性方法。
細菌品系、質體、F型黏接質體和培養條件。
殺真菌素鏈黴菌B-5477(ATCC 21013)和大腸桿菌S17-1(ATCC 47055)係自ATCC購買。殺真菌素鏈黴菌品系BM38-2(ATCC PTA-122342)和持久殺菌素A和B之標準品係由Intervet/Merck動物保健(MAH)提供。將大腸桿菌品系DH5α(Life Technologies,Inc.)、EPI300(Epicentre)和XL10-Gold(Stratagene)用作為大腸桿菌質體、F型黏接質體和大腸桿菌-鏈黴菌穿梭載體之宿主。質體pSET152(Bierman等人,Gene 116:43-49,1992,其特此以其完整內容以引用方式併入)和pIJ773係由Keith Chater教授(JIC,諾里治,UK)提供。帶有ermE*p啟動子的質體pWHM860係由Bradley Moore教授(UCSD,聖地牙哥)提供。ISP2(DifcoTM ISP培養基2)、ISP4和TSB(BactoTM胰蛋白酶大豆培養液)係自VWR購買。用於PCR和DNA定序的引子係由Fisher和Sigma-Aldrich合成。用於生長殺真菌素鏈黴菌的培養基和培養條件係由Higashide等人(Journal of Antibiotics,21:126-137,1968)描述。所有的大腸桿菌程序皆係根據標準方案執 行。
DNA分離和操作。
為自殺真菌素鏈黴菌B-5477、BM38-2(ATCC PTA-122342)和衍生重組和突變株品系製備基因體DNA以用於定序、F型黏接質體文庫構築、次選殖和PCR,接種來自個別品系的新鮮收穫的孢子並使其生長在100mL補充有5mM MgCl2和0.5%甘胺酸的TSB液體培養基中。代表性培養物係於500mL錐形瓶中在旋轉搖晃培養器上於225rpm和30℃下進行共48至72小時。菌絲細胞係藉由於4000rpm和4℃下離心共15分鐘來收穫。丟棄上清液並將沈澱小丸連續以10.3%蔗糖洗滌一次和以10mM Tris-HCl和1mM乙二胺四乙酸二鈉(EDTA),pH 8.0(TE緩衝液)洗滌二次。將潮濕的細胞,等於80μL水的體積配至1.5mL無菌微量離心管中。於添加300μL的溶胞溶液(其含有200μL的10mM Tris-HCl和1mM EDTA,pH 8.0和0.3M蔗糖(TES緩衝液)、50μL的0.5M EDTA、50μL的lysozyme(50mg/mL))後,將管子於37℃下培養共30至60分鐘直到溶液變得黏稠。接著,將5μL的蛋白酶K(20mg/mL)和180μL的10%十二烷基硫酸鈉(SDS)加至各管。於溫和但徹底的混合後,將溶液於37℃下培養共90分鐘。接著,添加80μL的10%溴化鯨蠟基三甲基銨(CTAB)。於徹底的混合後,將管子於65℃下培養共10分鐘。將溶液以600μL的酚/氯仿/異戊醇(25/24/1)萃取二次。回收於上面的水相中的基因體DNA並以0.6體積的異丙醇沈澱之。將所收穫的基因體DNA以70%乙醇洗滌二次。於在室溫下乾燥共10分鐘後,將基因體DNA溶解在50至100μL的無菌水中。基因體DNA製劑之高品質係藉由以HindIII和Sau3AI消化(其藉由0.8%瓊脂糖凝膠電泳顯示完全消化且無未經消化的基因體DNA之降解)確認。倒在一起的基因體DNA係進一步以RNA酶消化以移除RNA污染。基因體DNA之純度和量係以Nanodrop分光光度計測定。執行包括瓊脂糖凝膠電泳的一般鏈黴菌DNA操作並使用QIAprep離心微製備套組(Qiagen)以自 大腸桿菌品系製備質體和F型黏接質體。限制性核酸內切酶、DNA連接酶、DNA聚合酶、轉位酶、Klenow酵素、鹼性磷酸酯酶和連接酶係自Biolabs、Invitrogen、Epicentre和Roche購買,並根據製造商之建議使用。DNA片段係使用QIAquick凝膠萃取套組純化。
PCR。
如下進行菌落PCR:將來自個別突變株候選菌落的孢子接種在TSB液體培養物中。於生長共48至72小時後,藉由離心收穫菌絲體並將其以TE緩衝液(10mM Tris、1mM EDTA),pH 8.0洗滌二次。將菌絲體再懸浮在無菌H2O中並用作為PCR反應混合物中的模板,該PCR反應混合物最終體積100μL且含有60μL的菌絲體、150pmol的各個引子、20μL的5XAccuPrime富GC緩衝液A(Invitrogen)、和1μL來自Expand長模板PCR系統(Roche)的Polymix(於80℃下添加)。如下執行PCR:1個於95℃下共3分鐘的循環、30個於95℃下共1分鐘、於55℃下共1分鐘、和於72℃下共2分鐘的循環。反應係以一個於72℃下共10分鐘的延伸循環終止。PCR產物係以凝膠純化並定序列。一般PCR係如以上描述類似地進行,除了將所分離的基因體DNA、質體/F型黏接質體DNA用作為模板而非直接使用自菌絲菌落釋放而無先行純化的DNA。
整合型表現質體pXY152-endorf24之構築
為了在殺真菌素鏈黴菌野生型和BM38-2(ATCC PTA-122342)品系中異位地表現來自持久殺菌素基因簇的推定的調節性基因orf24,將orf24選殖入源自pXY152aR20(Yin等人,J.Natural Products,73:583-589,2010,其特此以其完整內容以引用方式併入)的整合型質體pXY152中orf24係自殺真菌素鏈黴菌基因體DNA使用正向引子(End24Ndpf:5'-CCACCACATATGGAAATAAGTTCGCTCTCCA-3'(SEQ ID NO:1,NdeI位置以粗體顯示)和逆向引子 (End24ERpr:5'-GTGTGTGAATTCCTCGTTCACCCGGCCAGATG-3'(SEQ ID NO:2,EcoRI位置以粗體顯示)來PCR擴增。以NdeI和EcoRI消化PCR產物。接著使經凝膠純化的orf24片段與經類似地限制處理的載體pXY152連接。將所得的質體命名為pXY152-endorf24(圖2;SEQ ID NO:3)。藉由定序確認orf24插入物無錯誤。
用於orf18之框內缺失的質體pXY300-orf18ifd之構築
pXY300-orf18ifd係藉由將二個位於orf18之側翼和預定被缺失的片段選殖入pXY300(其係含有用於在殺真菌素鏈黴菌中篩選的硫鏈絲菌肽抗性基因(tsr)的大腸桿菌-鏈黴菌穿梭型結合型溫度敏感性載體)中來構築。位於orf18側翼的「上游」2kb和「下游」2kb側翼序列(分別被命名為orf18ifdNP和orf18ifdPH)係藉由PCR使用殺真菌素鏈黴菌基因體DNA作為模板和二組引子產生。片段orf18ifdPH係藉由使用正向和逆向引子(Ifdenorf18pf1,5'-TTATTGAAGCTTGCCGGGGCCGACGCGGCGGGCGGCCT-3'(SEQ ID NO:4)、Ifdendorf18pr1,5'-GTTGTTTTAATTAAACACCAGGCCTCCTGGGGTG-3'(SEQ ID NO:5),HindIII和PacI位置加粗體)擴增。片段orf18ifdNP係藉由使用正向和逆向引子(Ifdendorf18pf2,5'-TTTATATTAATTAATGACCCTTCCGTCCCGCCCCCGAT-3'(SEQ ID NO:6)、Ifdendorf18pr2,5'-TTTGGTGCTAGCTGGTCGTGGCGCTGTTCC-3'(SEQ ID NO:7),PacI和NheI位置加粗體)擴增。將此二個PCR片段適當地限制處理並同時與藉由以NheI和HindIII消化製備的pXY300載體連接,以產生質體pXY300-orf18ifd(圖3;SEQ ID NO:8)。pXY300-orf18ifd之無錯誤框內缺失插入物係藉由定序確認。
用於orf18和其側翼區域之缺失的質體pKS-T-orf18pfrd-AmR之構築。
oriT片段係藉由PCR自質體pIJ773使用正向引子(Oritnhexbahd3f, 5'-AGCACAGCTAGCTTCTAGAAGCTTCATTCAAAGGCCGGCA-3'(SEQ ID NO:9)HindIII位置以粗體顯示)和逆向引子(Oriterlpstxhor,5'-GCCAGTGAATTCTGCAGCTCGAGCAGAGCAGGATTCCCGTTGA-3'(SEQ ID NO:10),XhoI位置以粗體顯示)擴增。oriT片段係以HindIII和XhoI消化、經凝膠純化並接著與經類似地限制處理的載體pBluescript II KS衍生物連接以產生質體pKS-T(Alting-Mees和Short,Nucleic acids Research,17:9494,1989)。質體pXY300-orf18ifd之插入物係藉由用NheI和HindIII消化來切下、經凝膠純化並接著與以NheI和HindIII線性化的質體pKS-T連接以提供質體pKS-T-orf18ifd(圖4;SEQ ID NO:11)。帶有aac(3)IV,阿普拉黴素抗性基因(amR)的1kb片段係自pIJ773使用正向引子(ApraNcoIpf,5’-GAATGGCCATGGTTCATGTGCAGCTCCAT-3’(SEQ ID NO:12),NcoI位置以粗體顯示)和逆向引子(ApraBamHIpr,5’-TCTCGAGGATCCGAATAGGAACTTCGGAAT-3’(SEQ ID NO:13),BamHI位置以粗體顯示)擴增。片段AmR和質體pKS-T-orf18ifd使用NcoI和BamHI的消化製備出用於連接的插入物和載體兩者。將所得的質體命名為pKS-T-orf18pfrd-AmR(圖5;SEQ ID NO:14)。
用於orf18之框內缺失的質體pKS-T-orf18ifd-AmR(NS)之構築。
pXY300-orf18ifd之插入物係藉由用NheI和HindIII消化來切下、經凝膠純化並接著與經SpeI和HindIII線性化的載體pBluescript II KS連接以產生質體pKS-orf18ifd。oriT片段係藉由PCR使用正向引子(Oritnhexbahd3f,5’-AGCACAGCTAGCTTCTAGAAGCTTCATTCAAAGGCCGGCA-3’(SEQ ID NO:15),HindIII位置以粗體顯示)和逆向引子(oriTXhNdSpr,5’-AGGCAGCTCGAGCATATGACTAGTCAGAGCAGGATTCCCGTTGA-3’(SEQ ID NO:16),XhoI、NdeI和SpeI位置加粗體)擴增。oriT片段係以XhoI和 HindIII消化、經凝膠純化並接著與經類似地限制處理的質體pKS-orf18ifd連接以獲得質體pKS-orf18ifd-T。帶有賦予阿普拉黴素抗性(AmR)的aac(3)IV基因的1kb片段係自pIJ773藉由PCR使用正向引子(Aprandepf,5’-GAATGGCATATGGTTCATGTGCAGCTCCAT-3’(SEQ ID NO:17),NdeI位置以粗體顯示)和逆向引子(ApraSpeIpr,5’-TCTAGAACTAGTGAATAGGAACTTCGGAAT-3’(SEQ ID NO:18),SpeI位置以粗體顯示)擴增。質體pKS-orf18ifd-T係藉由以NdeI和SpeI消化來線性化並接著與經類似地限制處理的片段AmR連接以產生質體pKS-orf18ifd-T-AmR(NS)(圖6;SEQ ID NO:19)。
屬間接合、基於pXY300的和基於pKS的基因破壞程序。
基因破壞質體係藉由轉形個別地導入至大腸桿菌S17-1中並接著透過接合轉移至殺真菌素鏈黴菌或其衍生物。簡言之,使新鮮收穫的殺真菌素鏈黴菌孢子預萌發並使大腸桿菌S17-1細胞於37℃下在超級培養液(Terrific broth)中生長過夜。製作經萌發孢子懸浮液之系列稀釋並使100mL的各稀釋與等體積的帶有基於pXY300的破壞質體的大腸桿菌S17-1混合。將溶液塗盤至ISP4瓊脂盤上及加入10mM MgCl2並於30或37℃下培養共22小時。將各盤上以3mL含有
Figure 106142750-A0202-12-0043-129
啶酮酸鈉和阿普拉黴素(0.5mg/mL)的軟營養瓊脂覆蓋並進一步於30℃下培養共約一週。存活抗生素篩選的經分離接合後體係藉由在補充有
Figure 106142750-A0202-12-0043-130
啶酮酸鈉和阿普拉黴素(各50μg/mL)的ISP4瓊脂盤上畫線來純化。
為使用基於pXY300的質體進行基因破壞研究,首先將接合後體於30℃下在含有阿普拉黴素(5μg/mL)的TSB液體培養基中培養共24小時,之後收穫菌絲體、使其均質化並用其接種補充有阿普拉黴素(5μg/mL)的TSB液體培養基。於在40℃下培養3-6日後,均質化菌絲體並將其塗盤至含有阿普拉黴素(50μg mL)的ISP4瓊脂盤上並於30℃下培養共一週。自隨機挑選的個別存 活的菌落分離基因體DNA並藉由PCR或南方印漬分析以確認單或雙交叉破壞已發生。對於基於pKS的基因破壞和框內缺失質體,使接合後體通過連續三回合用於無加入任何抗生素篩選的孢子形成的在ISP4瓊脂盤上的培養以刺激轉換成雙交叉重組物。基於pKS的接合後體未被通過40℃溫度篩選。所有突變株之正確構築係藉由PCR及/或南方印漬分析確認。
整合型表現質體pXY152-endorf24-camtsr和pXY152-endorf24-blatsr之構築。
為在帶有orf18和其側翼區域之缺失的阿普拉黴素抗性突變株中異位地表現orf24,設計整合型表現質體pXY152-endorf24-blatsr。為構築此質體,帶有氯黴素抗性基因和硫鏈絲菌肽抗性基因(tsr)的匣(camtsr)係自質體pUC57衍生物藉由以SacI和NheI消化切下。接著使camtsr匣與經SacI和NheI線性化的質體pXY152-endorf24連接以產生新構築體pXY152-endorf24-camtsr(圖7;SEQ ID NO:20)。將胺苄青黴素抗性基因(bla)自pBluescript KSPCR使用正向引子(amp2956SwaIpf,5'-GTGGCAATTTAAATGGAAATGTGCGCGGAA-3'(SEQ ID NO:21),SwaI位置以粗體顯示)和逆向引子(amp1973SacIpr,5'-TATATAGAGCTCAACTTGGTCTGACAGTTAC-3'(SEQ ID NO:22),SacI位置以粗體顯示)擴增。接著將bla選殖入pXY152-endorf24-camtsr之SacI和SwaI位置中以以blatsr置換匣camtsr。將所得的結合型表現質體命名為pXY152-endorf24-blatsr(FIG.8;SEQ ID NO:23)。
用於試管內轉位子突變的Tn5AT匣之構築
設計Tn5AT匣以組合三個基因元件:轉位子Tn5、oriTaac3(IV)。Tn5被Tn5轉位酶(Epicentre)專一且唯一地辨識並被輕易地插入至選殖入大腸桿菌質體和F型黏接質體中的高G+C鏈黴菌DNA中(亦參見美國專利案編號8,188,245,其特此以引用方式併入)。oriT對於DNA自大腸桿菌S17-1至鏈黴菌之結合型轉移而言係需要的且aac(3)IV係賦予阿普拉黴素抗性的大腸桿菌- 鏈黴菌雙功能性篩選標記。oriTaac3(IV)兩者皆係自質體pIJ773以XbaI片段的形式切下並接著被選殖入先前以XbaI線性化的轉位子供體質體pMODTM-2(MCS)(Epicentre)中。所得的質體pXYTn5ATa和pXYTn5ATb差異僅在XbaI片段之方向且被用於藉由以PvuII根據製造商之說明書消化來製備Tn5AT匣。
經誘變F型黏接質體pXYF24D3和pXYF148D12之試管內轉位子突變和篩選
為產生帶有持久殺菌素生物合成簇之節段的經隨機誘變的F型黏接質體之文庫以用於基因置換研究,執行F型黏接質體pXYF24和pXYF148之試管內轉位子插入突變研究。二個推定的持久殺菌素生物合成調節性基因(orf18orf24)分別位在F型黏接質體pXYF24和pXYF148之插入物中(GenBank登錄號DQ403252)。於混合以下者後試管內轉位子反應係於37℃下執行共2小時:10μL(0.5μg)F型黏接質體模板DNA、2μL(20ng)Tn5AT匣DNA、2μL 10 x反應緩衝液、1μL Tn5轉位酶和5μL無菌水。大腸桿菌勝任細胞EPI300TM-T1R(Epicentre)使用轉位子反應混合物的轉形係藉由電穿孔執行。經誘變F型黏接質體係在補充有100μg/mL阿普拉黴素的LB瓊脂盤上篩選。將盤子於37℃下培養過夜並隨機地撿取存活的菌落並使其等生長在加有100μg/mL阿普拉黴素的LB液體培養物中。來自此等菌落和對照組F型黏接質體pXYF24或pXYF148的經誘變F型黏接質體DNA係以HindIII消化並藉由在1%瓊脂糖凝膠上電泳分析。Tn5AT匣含有單一HindIII位置,其當針對F型黏接質體插入物上的單一對多重破壞事件作篩選時係有用的。無HindIII位置出現在pXYF24或pXYF148之F型黏接質體插入物中,且僅一個HindIII位置出現在F型黏接質體載體中。因此,以HindIII消化藉由凝膠中的二個條帶之存在輕易地鑑認具有單一的Tn5AT之插入的F型黏接質體。帶有具有單一轉位子插入的經誘變F型黏接質體的菌落被隨機地挑選並生長在LB液體培養物中以允許經破壞基因之F型黏接質體分離和鑑認。篩選係藉由序列分析使用引子5'-AAGGAGAAGAGCCTTCAGAAGGAA-3'(SEQ ID NO: 24)(其對應於阿普拉黴素抗性基因之區域)進行。以此方式,發現F型黏接質體pXYF24D3和pXYF148D12分別具有於核苷酸位置26386插入至orf18中的Tn5AT和於核苷酸位置34333插入至orf24中的Tn5AT(GenBank登錄號DQ403252)。
野生型殺真菌素鏈黴菌ATCC 21013中的orf18orf24之插入性破壞。
將基因置換F型黏接質體pXYF24D3和pXYF148D12藉由電穿孔分別轉形至大腸桿菌S17-1中並接著將其等藉由屬間接合導入至殺真菌素鏈黴菌中(Mazodier等人,J.Bacteriology 171:3583-3585,1989,其特此以其完整內容以引用方式併入)。使存活阿普拉黴素篩擇的接合後體菌落通過連續三回合在ISP2瓊脂盤上無抗生素篩選的孢子形成以藉由雙重交叉同源重組創造穩定的突變株品系。將所得的孢子倒在一起,稀釋並塗盤在補充有50μg/mL阿普拉黴素的ISP2瓊脂盤上以確認阿普拉黴素抗性和以用於種菌培養和持久殺菌素生產發酵。具有殺真菌素鏈黴菌野生型中的orf18之插入性破壞的突變株品系被命名為SfpXYF24D3且具有殺真菌素鏈黴菌野生型中的orf24之插入性破壞的突變株品系被命名為SfpXYF148D12。
持久殺菌素於實驗室規模和於10公升發酵槽中的生產。
用於殺真菌素鏈黴菌野生型BM38-2(ATCC PTA-122342)和衍生品系中的持久殺菌素之生產的實驗室搖瓶發酵條件係如由Higashide等人(J.Antibiotics,21:126-137,1968)描述的,除了於一專利案(US專利案編號4465771)中揭露的持久殺菌素生產培養基外。對於實驗室規模發酵,將5mL TSB用於使用新鮮收穫的鏈黴菌孢子的種菌培養之接種。典型地,5至10mL的種菌培養物在旋轉搖晃器上於225rpm和30℃下培養共48小時並接著被轉移至50mL持久殺菌素生產培養基共10日連續發酵。在密切控制條件下的持久殺菌素藉由野生型和衍生品系的生產亦於10公升自動發酵槽中進行。
Figure 106142750-A0202-12-0047-4
自發酵產物萃取持久殺菌素以用於HPLC分析。
為萃取代謝物以用於持久殺菌素生產之HPLC分析,藉由離心收穫新鮮的菌絲體並將其以去離子水洗滌並再懸浮於5x體積(甲醇水溶液(mL)比菌絲濕重(g)之比例)70%甲醇水溶液(將pH以1N HCl調整至3.5)中。將懸浮液於200rpm及室溫下搖晃過夜並接著於4000rpm和4℃下離心共20分鐘。接著將1.4mL來自各樣本的上清液轉移至個別的1.5mL微量離心管並和於13,000rpm和室溫下離心共10分鐘。使濾液通過0.22μm注射濾器並接著藉由HPLC分析。自於10L發酵槽中生產的菌絲體的代謝物萃取係以等同於實驗室發酵的小規模進行。
HPLC分析和持久殺菌素產率測定。
將50μL如以上描述地製備的HPLC樣本注射至接至Shimadzu HPLC的Gemini C18管柱(5μm,4.6x150mm,Phenomenex,Torrance,CA)上。分離係使用18min逐步線性梯度以溶劑A:水+0.1% TFA和溶劑B:乙腈達成。流率 係1mL/分鐘,以10% B起始,於10min的期間增加至40% B,並接著進一步於8分鐘的期間增加至95% B。200至300nm的UV區域係以SPD M20A光二極體陣列偵測器掃描。持久殺菌素之產率係藉由與從在70%甲醇中的持久殺菌素標準品之儲備溶液構築的標準曲線比較來計算。使用一系列包括2、4、6、8、10和12μg的持久殺菌素的注射使用持久殺菌素A和B於230nm的吸光度面積之和以構築標準曲線。自標準曲線產生回歸方程式並用其計算持久殺菌素產率。
抗細菌活性之評估。
將金黃色葡萄球菌(ATCC 29213)用作為生物分析中的指示性微生物。將細胞用於接種LB培養液,使其於37℃下生長過夜,並接著將100μL的培養物與5mL的頂瓊脂(等體積的營養瓊脂和營養培養液之混合物)混合。使頂瓊脂覆蓋在營養瓊脂盤上,於該盤中距離適當的槽孔係藉由切出瓊脂栓來製造。將持久殺菌素標準品和培養萃取物之等分試樣以20μg/mL的濃度溶解或稀釋於50% MeOH中,並將100μL的各溶液裝載至槽孔中。在於37℃下培養盤子共16小時後,觀察和比較抑制之區域,並將盤子照相或儲存在4℃下。
實施例2
野生型殺真菌素鏈黴菌中的orf18orf24之破壞和對持久殺菌素生產的功效
此實施例描述野生型殺真菌素鏈黴菌中的orf18orf24之破壞和其對持久殺菌素生產的功效。
116,000bp來自野生型殺真菌素鏈黴菌ATCC 21013且帶有持久殺菌素生物合成基因簇和其側翼區域的DNA序列(美國專利案編號8,188,245,其特此以其完整內容以引用方式併入)先前已被鑑認且可於GenBank獲得(登錄號DQ403252)。於其48個經注解的orf中者有八個推定的調節性基因:orf5orf12orf18orf22orf24orf41orf42orf43。為譯解其等之基因產物之各者於持久殺菌素生產的角色,將攜有帶有此等推定的調節性基因的持久殺菌素簇之節段的F型黏接質體插入物使用如於實施例1中描述的阿普拉黴素抗性標記之轉位子介導性插入隨機地突變。
隨後針對在帶有經誘變F型黏接質體的大腸桿菌菌落中的阿普拉黴素抗性和插入位置的篩選鑑認出pXYF24D3帶有經破壞orf18且pXYF148D12帶有經破壞orf24。此等F型黏接質體之各者中的單一插入突變和插入之位置係藉由定序確認。接著將此二個經誘變F型黏接質體個別藉由接合導入至殺真菌素鏈黴菌野生型品系中。接著使顯示阿普拉黴素抗性的接合後體通過三回合在ISP2瓊脂上無加入任何抗生素篩選的孢子形成以促進單交叉同源重組轉換成雙交叉突變。使所得的穩定突變株品系SfpXYF24D3和SfpXYF148D12於持久殺菌素生產培養基(EPM)中以實驗室規模於搖瓶中發酵。來自10日發酵的菌絲體之70%甲醇萃取物之HPLC分析顯示於藉由orf18經破壞品系SfpXYF24D3的持久殺菌素產率的1.3倍之增加和藉由具有經破壞的orf24的品系SfpXYF148D12的持久殺菌素生產之完全喪失。亦針對對於金黃色葡萄球菌的活性評估菌絲體萃取物。orf18破壞株SfpXYF24D3保留針對金黃色葡萄球菌的活性而orf24破壞株SfpXYF148D12喪失針對金黃色葡萄球菌的活性。
實施例3
重組品系SfpXY152-endorf24之構築和對持久殺菌素生產的功效
此實施例描述重組品系SfpXY152-endorf24之構築和此品系生產持久殺菌素的能力。
突變株品系SfpXYF148D12中持久殺菌素生產之喪失指出orf24 之可能的調節角色。使用Orf24蛋白質序列的GenBank資料庫之BLAST搜尋顯示與一涉及鏈黴素生物合成的途徑專一性調節性蛋白質StrR有高序列類似性。Orf24和StrR間的序列排比顯示該等蛋白質共有顯著的類似性(54% aa一致性,圖9)。持久殺菌素生產於orf24破壞後的喪失和與StrR的類似性指出Orf24可於持久殺菌素生產中扮演途徑專一性活化子。
為探究orf24作為正向調節目標之角色以用於品系改善,構築整合型表現質體pXY152-endorf24(圖2)(實施例1)。將質體pXY152-endorf24藉由接合導入至野生型殺真菌素鏈黴菌中並針對阿普拉黴素抗性表型篩選接合後體,導致鑑認出新重組品系SfpXY152-endorf24。隨機挑選至少十個來自此品系的獨立接合後體菌落並純化之。此等菌落品系帶有透過與該質體上的attP位置的單交叉同源重組整合入殺真菌素鏈黴菌染色體上的attB位置中的pXY152-endorf24質體。
為研究由該重組品系生產的代謝物,將來自二個菌落品系的孢子接種至TSB種菌培養物中並接著將其轉移至持久殺菌素生產培養基以用於實驗室規模發酵。所收穫的菌絲體之70%甲醇萃取物之HPLC分析顯示於藉由兩種重組品系的持久殺菌素生產的2倍增加(60mg/L)(相較於野生型品系(30mg/L))。於此等能夠過度表現orf24的菌落品系中觀察到的持久殺菌素之提高的產率進一步證明此基因於持久殺菌素生產中具有的正向調節角色且此等結果與該等從導致持久殺菌素生產之喪失的orf24之破壞獲得者一致。
實施例4
於殺真菌素鏈黴菌BM38-2(ATCC PTA-122342)中過度表現orf24的品系BM38-2.24/16之構築和對持久殺菌素生產的功效
此實施例描述於殺真菌素鏈黴菌BM38-2(ATCC PTA-122342) 中過度表現orf24的品系BM38-2.24/16(ATCC寄存編號PTA-124006)之構築和對持久殺菌素生產的功效。
為進一步探究Orf24之正向調節角色,將質體pXY152-endorf24如以上針對野生型生物體描述地併入至商業生產品系殺真菌素鏈黴菌BM38-2(ATCC PTA-122342)之染色體中。展現阿普拉黴素抗性表型的接合後體之篩選產生一些重組菌落品系,包括殺真菌素鏈黴菌BM38-2.24/16,其能夠於實驗室搖瓶培養中生產至多達200mg/L的提高的持久殺菌素水平(相較於BM38-2(ATCC PTA-122342)的3.3倍增加)。選擇殺真菌素鏈黴菌BM38-2-24/16以用於基於在初步篩選之期間的產率的持久殺菌素生產能力之進一步評估。
於實驗室搖瓶培養中藉由重組品系殺真菌素鏈黴菌BM38-2.24/16的持久殺菌素生產顯示對於相對於BM38-2(ATCC PTA-122342)的顯著改善的明顯潛力且亦觀察到產率大大變化。為於10日生長期間更密切地控制培養條件,包括於搖瓶中不容易控制的pH和溶氧,透過多個於10L發酵槽中的操作評估生產。於此等更密切控制的條件下,產率更一致且三重複10L發酵平均為375mg/mL(BM38-2(ATCC PTA-122342)之4.6倍)。於重組品系殺真菌素鏈黴菌BM38-2.24/16(ATCC寄存編號PTA-124006)中的增加的持久殺菌素產率進一步支持Orf24於持久殺菌素生產中的正向上調角色。
實施例5
缺失突變株品系BM38-1.18pfrd-AmR之構築和其對持久殺菌素生產的功效
此實施例描述缺失突變株品系BM38-2.18pfrd-AmR(ATCC寄存編號PTA-124007)之構築和其對持久殺菌素生產的功效。
orf18係位於持久殺菌素生物合成基因簇之上游區域(GenBank登錄號DQ403252)。Orf18於持久殺菌素生產中似乎具有負面角色,因為突變株品系SfpXYF24D3中的基因之插入性破壞提高持久殺菌素之產率。基於此觀察結果,設計構築體以用於缺失單單orf18orf18和其側翼區域之部分。為了此目的,構築質體pKS-T-orf18pfrd-AmR(圖5)。此pKS載體衍生性質體不具有鏈黴菌複製子亦不具有用於整合至鏈黴菌染色體中的元件。其僅可藉由雙重交叉同源重組交換其插入物與宿主染色體中的DNA之限定的節段。此質體之插入圖係於圖10顯示。orf18和其側翼區域(其等含有完整的orf19和編碼orf17之N端部分的區域)於質體pKS-T-orf18pfrd-AmR中被缺失。其1-kb左臂含有編碼orf17之C端部分的區域和其下游區域且其1-kb右臂含有編碼N端區域的orf20之部分節段。因此,於雙重交叉同源重組後的缺失造成其中整個orf18加上orf19和編碼orf17之N端部分的區域被缺失並被阿普拉黴素抗性基因置換的重組品系。
質體pKS-T-orf18pfrd-AmR被結合性地導入至殺真菌素鏈黴菌BM38-2(ATCC PTA-122342)中和單一和雙重交叉同源重組係在ISP4瓊脂盤上在無阿普拉黴素補充下促進。能夠存活隨後的阿普拉黴素篩選的接合後體被純化且此新重組品系被命名為BM38-2.18pfrd-AmR(ATCC寄存編號PTA-124007)。將來自此品系的孢子接種至TSB培養基中以用於種菌培養並接著將其轉移至持久殺菌素生產培養基中。於10日發酵後,收穫菌絲體,加工之並藉由HPLC分析。相較於親本品系BM38-2(ATCC PTA-122342),自此等實驗室規模發酵觀察到於持久殺菌素生產的1.2倍之增加。於產率的相對增加係類似於使用野生型衍生性品系SfpXYF24D3觀察到者且該等結果意謂orf19orf17(其等位於orf18之側翼且於BM38-2.18pfrd-AmR之構築中被影響)對持久殺菌素生產的影響很小或無影響。因此,重組品系BM38-2.18pfrd-AmR中的增加的持久殺菌素生產係由於Orf18之負向調節角色之消除。
關於使用質體pXY300-orf18ifd於BM38-2(ATCC PTA-122342)中的單單orf18之缺失,於陽性篩選具有硫鏈絲菌肽抗性標記的接合後體和單一/雙重突變株遇到困難。因此,使用另外的載體pBluescript KS II以構築無標記基因置換遞送質體,諸如pKS-T-orf18ifd(圖4)或pKS-orf18ifd-T、pKS-orf18ifd-T-AmR(NS)(阿普拉黴素抗性基因被攜帶在載體上而非插入至orf18中,參見圖6)。
實施例6
pKS衍生性基因失活載體pKS-T-orf18pfrd-AmR系列之開發
此實施例描述pKS衍生性基因失活載體pKS-T-orf18pfrd-AmR系列之開發。
開發一系列的pKS衍生性基因失活載體(圖4、5和6),其等具有接合功能且不需要透過高溫篩選來傳遞轉形株以消除該質體(如一些其他基因破壞載體(disruption vector)所需的)。此等pKS衍生性載體帶有非鏈黴菌複製子,其允許於大腸桿菌中的複製和可於鏈黴菌和大腸桿菌中以阿普拉黴素抗性標記或於大腸桿菌中以胺苄青黴素維持和篩選。其等於大腸桿菌中製造許多重組質體之穩定複本以用於接合且其等已使用數種可便利地用於將目標DNA組裝至該質體中以用於插入性基因破壞和框內缺失研究的於鏈黴菌DNA中找到的罕見且獨特的限制位(諸如PacI、HindIII、NheI、和XbaI)設計。
實施例7
pSET152衍生性整合型基因表現載體pXY152-endorf24-camtsr和pXY152-endorf24-blatsr之開發
此實施例描述pSET152衍生性整合型基因表現載體pXY152-endorf24-camtsr(SEQ ID NO:20)和pXY152-endorf24-blatsr(SEQ ID NO:23)之開發。
開發二種新載體pXY152-endorf24-camtsr(圖7)和pXY152-endorf24-blatsr(圖8)。其等與載體pSET152(最廣泛使用的用於鏈黴菌基因表現和互補作用的整合型載體)相似具有接合性和整合性功能。此二載體皆帶有數個於鏈黴菌DNA中罕見的限制位以用於該表現構築體之便利選殖和組裝。載體pXY152-endorf24-camtsr可於大腸桿菌中以12.5μg/mL的氯黴素和於鏈黴菌中以50μg/mL的硫鏈絲菌肽維持和篩選。載體pXY152-endorf24-blatsr可於大腸桿菌中以胺苄青黴素和於鏈黴菌中以硫鏈絲菌肽維持和篩選。
實施例1-6之總結:
用於品系改善的鏈黴菌調節性基因和生物合成基因之基因操作
於數目眾多的天然產物之微生物生產株中,大約75%的已知微生物抗生素係由放線菌生產。鏈黴菌(一些革蘭氏陽性絲狀土壤細菌)係放線菌家族之成員且以其等生產大量功能多變且結構多變的醫藥和生物活性次級代謝物之無與倫比的能力聞名。由聚乙醯合酶(PKS)生產的聚乙醯和由非核糖體性胜肽合成酶(NRPS)製造的胜肽天然產物係代表者。
對於天然產物抗生素生物合成的研究有一些共同的挑戰:首先,如何克服由野生型或基因工程改造品系生產的親本或結構經修改的化合物之典型低產量;其次,如何活化該等從基因體序列鑑認的許多潛在的或孤兒次級代謝物生物合成途徑以使得其等之產物之生物功能可被研究。過去幾十年來於天然產物抗生素生物合成之研究的進展已指出次級代謝物之生產係由許多途徑調 節。例如,前驅物和結構組裝生物合成基因(諸如PKS和NRPS)、調節性基因和自我抗性基因可在細菌染色體上成簇。抗生素生產可由途徑專一性調節性基因(包括活化子及/或抑制子、多效性異位調節性基因、和二組份調節性系統)調節。於此等調節性基因或系統之任何者發生的突變可增加、減少或完全消除抗生素生產。潛在的生物合成途徑可藉由導致先前未知的產物之生產的無法預期的突變活化。
品系改善可於抗生素或其他微生物次級代謝物之具成本效益的工業規模生產扮演重要的角色。能夠生產增加產量的特殊代謝物的突變株品系可透過隨機突變或藉由特殊基因之靶向性破壞或藉由導入消除生物合成途徑中的瓶頸的基因產生。已證實基因操作正向和負向調節性基因以及生物合成基因以產生目標次級代謝物之超高生產為有力且高度成功的放線菌品系改善之策略。
於本文之揭露內容中,展示了orf24對持久殺菌素生產的正向調節角色和orf18對持久殺菌素生產的負向調節角色。orf24之靶向性插入失活造成重組品系SfpXYF148D12中持久殺菌素生產之完全喪失。隨後orf24於重組品系SfpXY152-endorf24和BM38-2.24/16中在強力持續型啟動子ermE*p控制下的過度表現導致於持久殺菌素產率大約2至4.6倍的增加。orf18和其側翼區域(包括整個orf19orf17之部分)之缺失增加持久殺菌素產率達1.2倍。此等結果提供支持orf24orf18分別於持久殺菌素生物合成中扮演正向活化子和負向抑制子之角色的強力基因證據。
Orf24異種同源物已從其他抗生素生物合成途徑功能性地確認
使用Orf24蛋白質序列對GenBank資料庫的BLAST查詢顯示數百個命中(GenBank登錄號DQ403252)。許多者顯示極高的胺基酸類似性(60%至99%一致性)且被注解成胺基糖苷抗生素鏈黴素之生物合成中的轉錄調節子。然 而此群基因中無一者具有已實驗驗證的功能。BLAST結果之分析鑑認出數種相關的蛋白質,其等與功能特徵被界定的Orf24共有低類似性(超過40%但低於60% aa一致性)。此等包括特徵已被充分界定的蛋白質StrR,其與Orf24共有較低但顯著的類似性(於311 aa重疊中的54% aa一致性)。StrR已於基因上和生物化學上被展現於灰色鏈黴菌中發揮鏈黴素生物合成基因之表現之途徑專一性正向活化子的功能。StrR代表一個途徑專一性活化子之家族,其等中之少數者之特徵已於基因操作或生物化學研究中界定。圖11顯示Orf24與六個功能上經確認的放線菌類StrR蛋白質的排比。典型且高度保守的螺旋-轉折-螺旋(HTH)DNA結合域於所有七種蛋白質中皆存在,如於圖11中加加底線者。Orf24亦與Teil15*共有顯著的序列類似性(54% aa一致性),而Teil15*係控制非核糖體性地產生的醣肽抗生素替考拉寧之生物合成的途徑專一性活化子。Tei15*正向地調節替考拉寧簇中至少17個基因之轉錄。野生型Actinoplanes teichomyceticus生產約100mg/L的替考拉寧而源自親本A.teichomyceticus且帶有在不同的啟動子控制下表現的tei15*的基因重組品系就ermE*p啟動子而言將替考拉寧產率增加至1g/L且就天然阿普拉黴素抗性基因啟動子而言將替考拉寧產率增加至4g/L。
如於圖11中闡明的,Orf24亦與來自巴爾赫黴素(balhimycin)醣肽抗生素生物合成簇的Bbr共有顯著的序列類似性(54% aa一致性);與控制胺基糖苷抗生素春日黴素生物合成基因之表現的KasT共有顯著的序列類似性(50% aa一致性);且與涉及新生黴素生物合成的途徑專一性活化子NovG共有顯著的序列類似性(45% aa一致性)。ΔnovG突變株相較於野生型僅生產2%的量的新生黴素而novG自重組品系中的多複本質體的過度表現於新生黴素生產導致三倍增加。Orf24亦與SgcR1共有42% aa一致性,而SgcR1係已實驗上確認係涉及於球孢鏈黴菌中的抗腫瘤抗生素C-1027之生產的四個調節子基因(sgcR1sgcR2sgcR3sgcR)之一。sgcR1於球孢鏈黴菌SB1022之過度表現相較於野生型品系 增加C-1027產率大約七倍。正向調節子sgcR3於重組品系中的過度表現造成於C-1027生產的30-40%增加。相反地,負向調節子sgcR之失活導致增加C-1027和七烯生產二者。此外,sgcR1ΔsgcR突變株品系中的過度表現導致C-1027生產之約七倍增加。sgcR3藉由於C-1027生產之階層調節中控制sgcR1sgcR2而佔據較高階的調節。總之,orf24之破壞和表現功效和Orf24與其他功能特徵經界定的異種同源物之比較指出Orf24於持久殺菌素生產中扮演途徑專一性正向調節子/活化子。
Orf18係推定的非典型孤兒反應調節子且與功能上經確認的異種同源物排比
抗生素於鏈黴菌屬物種中的生產係由限制許多野生型抗生素生產株產生對於大規模具成本效益的工業生產而言為所需的產率的能力的複雜基因網路緊密地調節。一個重要的調節機制係二組份訊號轉導系統。二組份系統包括感應激酶和同源反應調節子。該感應激酶對特殊外在環境刺激/訊號(諸如壓力、營養和化學物、等等)反應並接著將該訊號傳遞至觸發並活化目標基因之轉錄的細胞質反應調節子。未與感應激酶配對的反應調節子被命名為孤兒反應調節子。
二組份系統和孤兒反應調節子於鏈黴菌基因體中存在且可起作用以抑制次級代謝物生產。於來自殺真菌素鏈黴菌的持久殺菌素基因簇中,orf18編碼推定的孤兒反應調節子,其與三種其他特徵經界定的鏈黴菌反應調節子(包括一個來自天藍色鏈黴菌的孤兒反應調節子SCO3818)共有低至中度的序列類似性(圖12)。Orf18相較於其他所排比的蛋白質具有較長的N端序列且似乎為非典型的孤兒反應調節子,因為Orf18中於位置118(相對於通常位置105)缺乏高度保守的離胺酸且係以蘇胺酸置換。該離胺酸被提出為對於磷酸化口袋之形成係所需的。
僅有一些鏈黴菌反應調節子之特徵已於功能上界定。天藍色鏈黴 菌基因體含有總共五個非典型的和七個典型的孤兒反應調節子。Orf18與AbsA2於191 aa重疊共有26% aa一致性。AbsA2於天藍色鏈黴菌的缺失造成二種抗生素放線菌紫素和十一基靈菌紅素之增加的生產。Orf18與SCO3818於176 aa重疊顯示32% aa一致性。sco3818之缺失導致放線菌紫素之增強生產。Orf18與SCO1745(AbrA2)於166個重疊aa共有29% aa一致性。含AbrA2反應調節子操縱子之缺失於重組品系天藍色鏈黴菌M145相較於野生型生產株造成抗腫瘤抗生素oviedomycin之100%增加。所觀察到的Orf18於持久殺菌素生產中的負向調節角色與所展示的相關負向調節子之活性一致(圖12)。此外,注意到Orf18於BLAST搜尋中與轉錄調節子之LuxR家族之成員共有最高的蛋白質序列類似性。
突變株BM38-1.orf18pfrd-AmR中的極性效應之缺乏
突變株BM38-1.18pfrd-AmR品系中的經缺失區域涉及三個基因,orf18、編碼位於orf18之下游的or17之N端部分的區域、和整個位於orf18之上游的orf19(圖5和10)。預期orf17會編碼對於持久殺菌素之生物合成或調節明顯無功能的核糖核酸酶。此外,置換orf18和其之側翼區域的阿普拉黴素抗性基因與orf17係分歧地轉錄且不應導致任何阿普拉黴素抗性基因啟動子的通讀事件。因此,應無導因於orf17之部分缺失的極性效應。
orf19orf18係以相同方向轉錄和轉譯。此基因被注解為編碼未知功能的蛋白質。帶有單單orf18之破壞的突變株品系SfpXYF24D3和帶有orf18orf19兩者之缺失的突變株BM38-1.18pfrd-AmR對於持久殺菌素生產具有類似的增強功效,而此意謂orf19於持久殺菌素生產中不具角色或僅具可忽視的角色。基因orf20係位於orf19之上游且以與所插入的阿普拉黴素抗性標記相同的方向轉錄和轉譯(圖10)orf20於BM38-1.18pfrd-AmR中仍係完整的且其產物明顯於持久殺菌素生產中不具有角色。因此不認為任何對於orf20之表現的極性效應係BM38-1.18pfrd-AmR中的增強的持久殺菌素生產之原因。
實施例7
orf24及/或orf18用於增強的持久殺菌素生產性品系之進一步應用和操作
除了以上提供的實施例以外,存在有其他利用orf24orf18之調節角色以改善持久殺菌素生產的可能方式。
i.orf24在另外的持續型或可誘導型過度表現啟動子下的表現
構築pXY152-endorf24(於圖2顯示)以用於orf24ermE*p(廣泛使用的鏈黴菌強力持續型表現啟動子)的控制下的整合型異位表現。orf24之過度表現亦可由其他持續型或可誘導型啟動子驅動。tipA啟動子係硫鏈絲菌肽可誘導型過度表現鏈黴菌啟動子。已開發出含多複本tipA啟動子的大腸桿菌-鏈黴菌穿梭質體pXY200,其已被成功地用於鏈黴菌基因之過度表現。對於與本文之揭露內容相關的應用,可將tipA啟動子自pXY200切下並選殖入pXY152中以置換ermE*p並驅動orf24之表現。同樣地,可將orf24輕易地從pXY152-endorf24轉移至pXY200以用於基於質體的表現。其他啟動子選擇包括(但不限於)P(nitA)-NitR系統和鏈黴菌啟動子SF14。最近,已將整合型質體pKC1139和阿普拉黴素抗性基因之天然啟動子成功地用於表現調節性基因以用於胜肽抗生素替考拉寧之超高生產。調節性基因sanG編碼用於nikkomycin之生產的途徑專一性活化子。額外複本的sanG在五種不同的啟動子(P hrdB 、P tcp830 、P SF14 、P ermE*和Pneos)之控制下的表現導致分別達69%、51%、26%、22%、和13%的於nikkomycin產率的增加(參見Du等人,Applied Microbiology and Biotechnology 97:6383-6396,2013)。
ii.具有orf18之缺失和orf24之過度表現的殺真菌素鏈黴菌之雙重突變株品系
由於orf18缺失突變株和orf24過度表現品系兩者展現增加的持久殺菌素生產,可產生含有該兩者的雙重突變株並觀察是否對此胜肽抗生素之產率有累加功效。該雙重突變株可藉由將過度表現質體pXY152-endorf24-blatsr(圖 8)導入至突變株BM38-2.18pfrd-AmR中來創造。pXY152-endorf24-blatsr係帶有用於在鏈黴菌中篩選的硫鏈絲菌肽抗性基因(tsr)和用於在大腸桿菌中篩選的胺苄青黴素抗性基因(bla)的結合型整合型質體。因為用於接合的大腸桿菌品系S17-1對於氯黴素(cam)天然有抗性,pXY152-endorf24-camtsr(參見以上)中的氯黴素抗性標記已以胺苄青黴素抗性(bla)置換以篩選S17-1轉形株。供選擇地,可藉由使用不同的結合型大腸桿菌品系ET12567/pUZ8002將pXY152-endorf24-camtsr和衍生物導入至鏈黴菌中。
使用質體pXY152-endorf24-blatsr或pXY152-endorf24-camtsr以將第二個orf24之複本導入至orf18缺陷型突變株中,藉由硫鏈絲菌肽抗性篩選雙重突變株係有可能的。為在BM38-2(ATCC PTA-122342)中產生無效orf18框內缺失突變株,構築質體pXY300-orf18ifd(圖3)和pKS-orf18ifd-T-AmR(NS)(圖6)以用於此目的。pXY300-orf18ifd允許以硫鏈絲菌肽篩選orf18框內缺失突變株而pKS-orf18ifd-T-AmR(NS)使用阿普拉黴素以篩選框內缺失突變株。雖然野生型殺真菌素鏈黴菌之突變株品系可使用硫鏈絲菌肽抗性標記輕易地篩選,於BM38-2(ATCC PTA-122342)品系中使用此抗性標記遇上困難。因此,構築二質體pXY300-orf18ifd和pKS-orf18ifd-T-AmR(NS)以用於相同的目的。
鑑於可將所揭露的發明之原理應用至其的許多可能的實施方式,應認知到所闡明的實施方式僅僅係本發明之較佳實例且不應將其視為限制本發明之範圍。反之,本發明之範圍係由以下申請專範圍界定。吾人因此主張吾人之發明為所有落入此等申請專利範圍之範圍和精神內者。
TW中華民國 財團法人食品工業發展研究所 2018/02/13 BCRC910829
TW中華民國 財團法人食品工業發展研究所 2018/02/13 BCRC910830
US美國 美國典型培養物保藏中心 2017/03/02 PTA-124007
US美國 美國典型培養物保藏中心 2017/03/02 PTA-124006
<110> 奧勒岡州立大學(Oregon State Unversity)
<120> 用於在殺真菌素鏈黴菌之基因工程改造品系中增強生產持久殺菌素之組成物及方法
<130> 127789-236560-P005PCT
<140> TW 106142750
<141> 2017-12-06
<150> US 62/430,838
<151> 2016-12-06
<150> US 62/479,087
<151> 2017-03-30
<160> 40
<170> PatentIn第3.5版
<210> 1
<211> 31
<212> DNA
<213> 人工序列
<220>
<223> 合成的寡核苷酸引子
<400> 1
Figure 106142750-A0305-02-0064-57
<210> 2
<211> 32
<212> DNA
<213> 人工序列
<220>
<223> 合成的寡核苷酸引子
<400> 2
Figure 106142750-A0305-02-0064-58
<210> 3
<211> 6210
<212> DNA
<213> 人工序列
<220>
<223> 合成的質體pXY152-endorf24
<400> 3
Figure 106142750-A0305-02-0065-59
Figure 106142750-A0305-02-0066-1
Figure 106142750-A0305-02-0067-60
Figure 106142750-A0305-02-0068-61
Figure 106142750-A0305-02-0069-64
<210> 4
<211> 38
<212> DNA
<213> 人工序列
<220>
<223> 合成的寡核苷酸引子
<400> 4
Figure 106142750-A0305-02-0069-65
<210> 5
<211> 34
<212> DNA
<213> 人工序列
<220>
<223> 合成的寡核苷酸引子
<400> 5
Figure 106142750-A0305-02-0069-66
<210> 6
<211> 38
<212> DNA
<213> 人工序列
<220>
<223> 合成的寡核苷酸引子
<400> 6
Figure 106142750-A0305-02-0069-67
<210> 7
<211> 30
<212> DNA
<213> 人工序列
<220>
<223> 合成的寡核苷酸引子
<400> 7
Figure 106142750-A0305-02-0070-68
<210> 8
<211> 10670
<212> DNA
<213> 人工序列
<220>
<223> 合成的質體pXY300-orf18ifd
<400> 8
Figure 106142750-A0305-02-0070-69
Figure 106142750-A0305-02-0071-70
Figure 106142750-A0305-02-0072-71
Figure 106142750-A0305-02-0073-72
Figure 106142750-A0305-02-0074-73
Figure 106142750-A0305-02-0075-74
Figure 106142750-A0305-02-0076-75
Figure 106142750-A0305-02-0077-77
<210> 9
<211> 40
<212> DNA
<213> 人工序列
<220>
<223> 合成的寡核苷酸引子
<400> 9
Figure 106142750-A0305-02-0077-78
<210> 10
<211> 43
<212> DNA
<213> 人工序列
<220>
<223> 合成的寡核苷酸引子
<400> 10
Figure 106142750-A0305-02-0077-80
<210> 11
<211> 7173
<212> DNA
<213> 人工序列
<220>
<223> 合成的質體pKS-T-orf18pfrd
<400> 11
Figure 106142750-A0305-02-0078-82
Figure 106142750-A0305-02-0079-83
Figure 106142750-A0305-02-0080-84
Figure 106142750-A0305-02-0081-85
Figure 106142750-A0305-02-0082-86
<210> 12
<211> 29
<212> DNA
<213> 人工序列
<220>
<223> 合成的寡核苷酸引子
<400> 12
Figure 106142750-A0305-02-0083-87
<210> 13
<211> 30
<212> DNA
<213> 人工序列
<220>
<223> 合成的寡核苷酸引子
<400> 13
Figure 106142750-A0305-02-0083-88
<210> 14
<211> 6034
<212> DNA
<213> 人工序列
<220>
<223> 合成的質體pKS-T-orf18pfrd-AmR
<400> 14
Figure 106142750-A0305-02-0083-89
Figure 106142750-A0305-02-0084-90
Figure 106142750-A0305-02-0085-91
Figure 106142750-A0305-02-0086-92
Figure 106142750-A0305-02-0087-93
<210> 15
<211> 40
<212> DNA
<213> 人工序列
<220>
<223> 合成的寡核苷酸引子
<400> 15
Figure 106142750-A0305-02-0087-94
<210> 16
<211> 44
<212> DNA
<213> 人工序列
<220>
<223> 合成的寡核苷酸引子
<400> 16
Figure 106142750-A0305-02-0088-95
<210> 17
<211> 30
<212> DNA
<213> 人工序列
<220>
<223> 合成的寡核苷酸引子
<400> 17
Figure 106142750-A0305-02-0088-96
<210> 18
<211> 30
<212> DNA
<213> 人工序列
<220>
<223> 合成的寡核苷酸引子
<400> 18
Figure 106142750-A0305-02-0088-97
<210> 19
<211> 8113
<212> DNA
<213> 人工序列
<220>
<223> 合成的質體pKS-orf18ifd-T-AmR(NS)
<400> 19
Figure 106142750-A0305-02-0088-98
Figure 106142750-A0305-02-0089-99
Figure 106142750-A0305-02-0090-100
Figure 106142750-A0305-02-0091-101
Figure 106142750-A0305-02-0092-102
Figure 106142750-A0305-02-0093-103
Figure 106142750-A0305-02-0094-104
<210> 20
<211> 7120
<212> DNA
<213> 人工序列
<220>
<223> 合成的質體pXY152-endorf24-camtsr
<400> 20
Figure 106142750-A0305-02-0094-105
Figure 106142750-A0305-02-0095-106
Figure 106142750-A0305-02-0096-107
Figure 106142750-A0305-02-0097-108
Figure 106142750-A0305-02-0098-109
Figure 106142750-A0305-02-0099-110
<210> 21
<211> 30
<212> DNA
<213> 人工序列
<220>
<223> 合成的寡核苷酸引子
<400> 21
Figure 106142750-A0305-02-0099-111
<210> 22
<211> 31
<212> DNA
<213> 人工序列
<220>
<223> 合成的寡核苷酸引子
<400> 22
Figure 106142750-A0305-02-0099-112
<210> 23
<211> 7162
<212> DNA
<213> 人工序列
<220>
<223> 合成的pXY152-endorf24-blatsr
<400> 23
Figure 106142750-A0305-02-0099-113
Figure 106142750-A0305-02-0100-117
Figure 106142750-A0305-02-0101-116
Figure 106142750-A0305-02-0102-118
Figure 106142750-A0305-02-0103-119
Figure 106142750-A0305-02-0104-120
<210> 24
<211> 24
<212> DNA
<213> 人工序列
<220>
<223> 合成的寡核苷酸引子
<400> 24
Figure 106142750-A0305-02-0104-121
<210> 25
<211> 321
<212> PRT
<213> 灰色鏈黴菌
<400> 25
Figure 106142750-A0305-02-0105-122
Figure 106142750-A0305-02-0106-123
<210> 26
<211> 311
<212> PRT
<213> 殺真菌素鏈黴菌
<400> 26
Figure 106142750-A0305-02-0107-124
Figure 106142750-A0305-02-0108-125
<210> 27
<211> 15
<212> DNA
<213> 人工序列
<220>
<223> 合成的寡核苷酸引子
<400> 27
Figure 106142750-A0305-02-0108-126
<210> 28
<211> 321
<212> PRT
<213> 無枝酸菌
<400> 28
Figure 106142750-A0305-02-0108-127
Figure 106142750-A0305-02-0109-128
Figure 106142750-A0305-02-0110-129
<210> 29
<211> 395
<212> PRT
<213> 春日黴素鏈黴菌
<400> 29
Figure 106142750-A0305-02-0110-130
Figure 106142750-A0305-02-0111-131
Figure 106142750-A0305-02-0112-132
<210> 30
<211> 367
<212> PRT
<213> 雪白鏈黴菌
<400> 30
Figure 106142750-A0305-02-0112-133
Figure 106142750-A0305-02-0113-135
Figure 106142750-A0305-02-0114-137
<210> 31
<211> 359
<212> PRT
<213> 球孢鏈黴菌
<400> 31
Figure 106142750-A0305-02-0114-138
Figure 106142750-A0305-02-0115-139
Figure 106142750-A0305-02-0116-140
<210> 32
<211> 329
<212> PRT
<213> Actinoplanes teichomyceticus
<400> 32
Figure 106142750-A0305-02-0116-141
Figure 106142750-A0305-02-0117-142
Figure 106142750-A0305-02-0118-144
<210> 33
<211> 221
<212> PRT
<213> 天藍色鏈黴菌
<400> 33
Figure 106142750-A0305-02-0118-145
Figure 106142750-A0305-02-0119-146
<210> 34
<211> 222
<212> PRT
<213> 天藍色鏈黴菌
<400> 34
Figure 106142750-A0305-02-0119-147
Figure 106142750-A0305-02-0120-149
Figure 106142750-A0305-02-0121-150
<210> 35
<211> 218
<212> PRT
<213> 天藍色鏈黴菌
<400> 35
Figure 106142750-A0305-02-0121-151
Figure 106142750-A0305-02-0122-152
<210> 36
<211> 220
<212> PRT
<213> 殺真菌素鏈黴菌
<400> 36
Figure 106142750-A0305-02-0122-154
Figure 106142750-A0305-02-0123-155
<210> 37
<211> 663
<212> DNA
<213> 殺真菌素鏈黴菌
<400> 37
Figure 106142750-A0305-02-0123-156
Figure 106142750-A0305-02-0124-157
<210> 38
<211> 936
<212> DNA
<213> 殺真菌素鏈黴菌
<400> 38
Figure 106142750-A0305-02-0124-158
<210> 39
<211> 39331
<212> DNA
<213> 人工序列
<220>
<223> 合成的F型黏接質體pXYF148
<400> 39
Figure 106142750-A0305-02-0125-159
Figure 106142750-A0305-02-0126-162
Figure 106142750-A0305-02-0127-3
Figure 106142750-A0305-02-0128-160
Figure 106142750-A0305-02-0129-5
Figure 106142750-A0305-02-0130-6
Figure 106142750-A0305-02-0131-7
Figure 106142750-A0305-02-0132-8
Figure 106142750-A0305-02-0133-9
Figure 106142750-A0305-02-0134-10
Figure 106142750-A0305-02-0135-11
Figure 106142750-A0305-02-0136-12
Figure 106142750-A0305-02-0137-13
Figure 106142750-A0305-02-0138-14
Figure 106142750-A0305-02-0139-15
Figure 106142750-A0305-02-0140-16
Figure 106142750-A0305-02-0141-17
Figure 106142750-A0305-02-0142-18
Figure 106142750-A0305-02-0143-19
Figure 106142750-A0305-02-0144-20
Figure 106142750-A0305-02-0145-21
Figure 106142750-A0305-02-0146-22
Figure 106142750-A0305-02-0147-23
Figure 106142750-A0305-02-0148-24
Figure 106142750-A0305-02-0149-25
Figure 106142750-A0305-02-0150-26
Figure 106142750-A0305-02-0151-163
<210> 40
<211> 40551
<212> DNA
<213> 人工序列
<220>
<223> 合成的F型黏接質體pXYF24
<400> 40
Figure 106142750-A0305-02-0151-164
Figure 106142750-A0305-02-0152-28
Figure 106142750-A0305-02-0153-29
Figure 106142750-A0305-02-0154-30
Figure 106142750-A0305-02-0155-31
Figure 106142750-A0305-02-0156-32
Figure 106142750-A0305-02-0157-33
Figure 106142750-A0305-02-0158-34
Figure 106142750-A0305-02-0159-35
Figure 106142750-A0305-02-0160-36
Figure 106142750-A0305-02-0161-37
Figure 106142750-A0305-02-0162-38
Figure 106142750-A0305-02-0163-39
Figure 106142750-A0305-02-0164-40
Figure 106142750-A0305-02-0165-41
Figure 106142750-A0305-02-0166-42
Figure 106142750-A0305-02-0167-43
Figure 106142750-A0305-02-0168-44
Figure 106142750-A0305-02-0169-45
Figure 106142750-A0305-02-0170-46
Figure 106142750-A0305-02-0171-47
Figure 106142750-A0305-02-0172-48
Figure 106142750-A0305-02-0173-49
Figure 106142750-A0305-02-0174-50
Figure 106142750-A0305-02-0175-51
Figure 106142750-A0305-02-0176-52
Figure 106142750-A0305-02-0177-53
Figure 106142750-A0305-02-0178-56

Claims (9)

  1. 一種殺真菌素鏈黴菌之重組品系,其包含經增強之編碼SEQ ID NO:26之胺基酸序列的開讀框-24(orf24),其中該orf24連接至持續型啟動子,且其中使用該殺真菌素鏈黴菌之重組品系獲得增強的持久殺菌素生產。
  2. 根據申請專利範圍第1項的重組品系,其中該持續型啟動子係ermE*p。
  3. 根據申請專利範圍第1項的重組品系,其中該經增強orf24增強的方式是藉由過度表現。
  4. 根據申請專利範圍第1項的重組品系,其中該增強的持久殺菌素生產係與對照組殺真菌素鏈黴菌品系殺真菌素鏈黴菌ATCC 21013所獲得的持久殺菌素生產相比。
  5. 根據申請專利範圍第4項的重組品系,其中藉由該重組品系的持久殺菌素生產係藉由所述對照組殺真菌素鏈黴菌的持久殺菌素生產之至少1.2倍大。
  6. 根據申請專利範圍第5項的重組品系,其中藉由該重組品系的持久殺菌素生產係藉由所述對照組殺真菌素鏈黴菌的持久殺菌素生產之1.2至4.6倍大。
  7. 根據申請專利範圍第1項的重組品系,其係BM38-2.24/16(寄存編號BCRC 910830)。
  8. 一種生產持久殺菌素的方法,其包含於足以生產持久殺菌素的條件下在培養基中培養根據申請專利範圍第1-7項中之任一項的殺真菌素鏈黴菌之重組品系,並自培養基分離持久殺菌素。
  9. 一種表現載體,其係選自由SEQ ID NO:3的pXY152-endorf24、SEQ ID NO:20的pXY152-endorf24-camtsr、和SEQ ID NO:23的 pXY152-endorf24-blatsr所組成的群組。
TW106142750A 2016-12-06 2017-12-06 用於在殺真菌素鏈黴菌之基因工程改造品系中增強生產持久殺菌素之組成物及方法 TWI828613B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201662430838P 2016-12-06 2016-12-06
US62/430,838 2016-12-06
US201762479087P 2017-03-30 2017-03-30
US62/479,087 2017-03-30

Publications (2)

Publication Number Publication Date
TW201827591A TW201827591A (zh) 2018-08-01
TWI828613B true TWI828613B (zh) 2024-01-11

Family

ID=60788701

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106142750A TWI828613B (zh) 2016-12-06 2017-12-06 用於在殺真菌素鏈黴菌之基因工程改造品系中增強生產持久殺菌素之組成物及方法

Country Status (12)

Country Link
US (2) US11447530B2 (zh)
JP (1) JP7086984B2 (zh)
CN (1) CN110997700A (zh)
BR (1) BR112019011378A2 (zh)
CO (1) CO2019005761A2 (zh)
MX (2) MX2019006522A (zh)
MY (1) MY200048A (zh)
PE (1) PE20191767A1 (zh)
PH (1) PH12019501228A1 (zh)
TW (1) TWI828613B (zh)
UA (1) UA127452C2 (zh)
WO (1) WO2018106545A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113980881B (zh) * 2021-11-11 2023-09-19 枣庄市杰诺生物酶有限公司 一种高产恩拉霉素的杀真菌素链霉菌工程菌
CN115261258A (zh) * 2022-06-07 2022-11-01 四川汇邦环保科技有限公司 一种降解持久霉素的微生物菌剂

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008054945A2 (en) * 2006-09-29 2008-05-08 State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of Oregon State University Enduracidin biosynthetic gene cluster from streptomyces fungicidicus
CN105039382A (zh) * 2015-01-23 2015-11-11 天津科技大学 一种恩拉霉素高产菌株的构建方法及相关基因

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1617881C2 (de) 1965-10-13 1984-07-05 Takeda Chemical Industries, Ltd., Osaka Antibiotikum Enduracidin und seine Herstellung
JPS6038120B2 (ja) 1980-10-31 1985-08-30 武田薬品工業株式会社 抗生物質エンジユラサイジンの製造法
AU622426B2 (en) 1987-12-11 1992-04-09 Abbott Laboratories Assay using template-dependent nucleic acid probe reorganization
EP0425563B1 (en) 1988-07-20 1996-05-15 David Segev Process for amplifying and detecting nucleic acid sequences
US5427930A (en) 1990-01-26 1995-06-27 Abbott Laboratories Amplification of target nucleic acids using gap filling ligase chain reaction
US5648211A (en) 1994-04-18 1997-07-15 Becton, Dickinson And Company Strand displacement amplification using thermophilic enzymes
ATE209258T1 (de) 1994-07-15 2001-12-15 Akzo Nobel Nv Verwendung von rna-polymerase zur verbesserung von nukeinsaeure-amplifikationsverfahren
AT402203B (de) 1995-06-13 1997-03-25 Himmler Gottfried Dipl Ing Dr Verfahren zur transkriptionsfreien amplifizierung von nucleinsäuren
EP2369007B1 (en) 1996-05-29 2015-07-29 Cornell Research Foundation, Inc. Detection of nucleic acid sequence differences using coupled ligase detection and polymerase chain reactions
CN103374537B (zh) 2012-04-25 2015-01-07 牡丹江佰佳信生物科技有限公司 一种制备恩拉霉素的方法及其生产菌株
CN104131054B (zh) 2014-06-17 2017-02-01 安徽丰原发酵技术工程研究有限公司 一种用于提高恩拉霉素产量的发酵培养基及发酵方法
MY194438A (en) 2016-12-06 2022-11-30 Intervet Int Bv Modified streptomyces fungicidicus isolates and their use

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008054945A2 (en) * 2006-09-29 2008-05-08 State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of Oregon State University Enduracidin biosynthetic gene cluster from streptomyces fungicidicus
CN105039382A (zh) * 2015-01-23 2015-11-11 天津科技大学 一种恩拉霉素高产菌株的构建方法及相关基因

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
期刊 Richard H Baltz, Genetic manipulation of secondary metabolite biosynthesis for improved production in Streptomyces and other actinomycetes. J Ind Microbiol Biotechnol. 43(2-3): 2016 Mar;Epub 2015 Sep 12. 343-370. *

Also Published As

Publication number Publication date
MX2019006522A (es) 2020-02-20
CN110997700A (zh) 2020-04-10
JP7086984B2 (ja) 2022-06-20
WO2018106545A1 (en) 2018-06-14
US20230120672A1 (en) 2023-04-20
MX2023003316A (es) 2023-03-27
UA127452C2 (uk) 2023-08-30
US11858967B2 (en) 2024-01-02
TW201827591A (zh) 2018-08-01
CO2019005761A2 (es) 2019-08-30
PE20191767A1 (es) 2019-12-17
US11447530B2 (en) 2022-09-20
BR112019011378A2 (pt) 2019-10-15
RU2019120981A3 (zh) 2021-08-23
PH12019501228A1 (en) 2019-10-07
JP2020500561A (ja) 2020-01-16
RU2019120981A (ru) 2021-01-12
US20190359659A1 (en) 2019-11-28
MY200048A (en) 2023-12-06

Similar Documents

Publication Publication Date Title
Capstick et al. SapB and the chaplins: connections between morphogenetic proteins in Streptomyces coelicolor
EP2342335B1 (en) Novel gene cluster
US11858967B2 (en) Compositions and methods for enhanced production of enduracidin in a genetically engineered strain of streptomyces fungicidicus
US20070122885A1 (en) Methods of increasing production of secondary metabolites by manipulating metabolic pathways that include methylmalonyl-coa
Bate et al. Differential roles of two SARP‐encoding regulatory genes during tylosin biosynthesis
CN102015756A (zh) Nrps-pks基因簇及其操纵和应用
Kang et al. AdpAlin, a pleiotropic transcriptional regulator, is involved in the cascade regulation of lincomycin biosynthesis in Streptomyces lincolnensis
US20190316160A1 (en) Methods for thaxtomin production and modified streptomyces with increased thaxtomin production
EP1818398A1 (en) Methods and means for metabolic engineering and improved product formation by micro-organisms
Tala et al. Activation of dormant bacterial genes by Nonomuraea sp. strain ATCC 39727 mutant-type RNA polymerase
Carnio et al. Pyridinyl polythiazole class peptide antibiotic micrococcin P1, secreted by foodborne Staphylococcus equorum WS2733, is biosynthesized nonribosomally
US8188245B2 (en) Enduracidin biosynthetic gene cluster from streptomyces fungicidicus
KR20140109922A (ko) 연관된 방선균의 유전적 형질전환을 위한 플라스미드인 액티노플라네스 sp. SE50/110으로부터 유래한 신규한 방선균류 통합 및 접합 인자
Olsthoorn-Tieleman et al. Elongation factor Tu3 (EF-Tu3) from the kirromycin producer Streptomyces ramocissimus is resistant to three classes of EF-Tu-specific inhibitors
Shin et al. Genetic characterization of two S-adenosylmethionine-induced ABC transporters reveals their roles in modulations of secondary metabolism and sporulation in Streptomyces coelicolor M145
Kang et al. Regulator, lin
Mevaere Lasso peptides from Actinobacteria-Chemical diversity and ecological role
Sun Analysis of Spore Shape Determination in Streptomyces
English et al. Transformation of Saccharopolyspora erythraea by electroporation of germinating spores: construction of propionyl Co-A carboxylase mutants
Black et al. Genetic manipulation of myxobacteria
Mikulík et al. Activity of ribosomes and tmRNA of Streptomyces aureofaciens during development and stress conditions induces by changes in temperature and the presence of antibiotics
Öğülür The effects of twelve quorum-sensing gene products on the expression of bacabcde operon in bacillus subtilis
Schully Regulatory intricacies that confer temporal control of conjugation and antibiotic production functions in Streptomyces: new variations on old themes
JP2009502187A (ja) チオコラリンの生合成に関与する遺伝子およびその異種産生
Wang Insights into the Streptomycete conjugation mechanism and interstrain inhibitor production by the sweet potato pathogen Streptomyces ipomoeae