TWI801587B - 遮罩基底、相位轉移遮罩以及半導體元件之製造方法 - Google Patents

遮罩基底、相位轉移遮罩以及半導體元件之製造方法 Download PDF

Info

Publication number
TWI801587B
TWI801587B TW108118002A TW108118002A TWI801587B TW I801587 B TWI801587 B TW I801587B TW 108118002 A TW108118002 A TW 108118002A TW 108118002 A TW108118002 A TW 108118002A TW I801587 B TWI801587 B TW I801587B
Authority
TW
Taiwan
Prior art keywords
layer
film
light
mask
less
Prior art date
Application number
TW108118002A
Other languages
English (en)
Other versions
TW202012164A (zh
Inventor
前田仁
宍戶博明
橋本雅廣
Original Assignee
日商Hoya股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商Hoya股份有限公司 filed Critical 日商Hoya股份有限公司
Publication of TW202012164A publication Critical patent/TW202012164A/zh
Application granted granted Critical
Publication of TWI801587B publication Critical patent/TWI801587B/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/26Phase shift masks [PSM]; PSM blanks; Preparation thereof
    • G03F1/32Attenuating PSM [att-PSM], e.g. halftone PSM or PSM having semi-transparent phase shift portion; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/26Phase shift masks [PSM]; PSM blanks; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/54Absorbers, e.g. of opaque materials
    • G03F1/58Absorbers, e.g. of opaque materials having two or more different absorber layers, e.g. stacked multilayer absorbers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/033Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
    • H01L21/0332Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their composition, e.g. multilayer masks, materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/033Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
    • H01L21/0334Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • H01L21/0337Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane characterised by the process involved to create the mask, e.g. lift-off masks, sidewalls, or to modify the mask, e.g. pre-treatment, post-treatment

Abstract

提供一種遮罩基底,係兼具相對於ArF準分子雷射之曝光光線而以既定穿透率來穿透的功能以及會相對於所穿透之ArF準分子雷射之曝光光線而產生既定相位差的功能,並具備會讓內面反射率降低之相位轉移膜。
一種相位轉移膜係包含從透光性基板側來依序層積有第1層及第2層的構造。第1層係設置為相接於透光性基板表面。ArF準分子雷射的曝光光線之波長在第1層及第2層中之折射率分別為n1、n2時,會滿足n1<n2的關係。該曝光光線之波長在第1層及第2層中之消光係數分別為k1、k2時,會滿足k1<k2的關係。在第1層及第2層之膜厚分別為d1、d2時,會滿足d1<d2的關係。

Description

遮罩基底、相位轉移遮罩以及半導體元件之製造方法
本發明係關於一種遮罩基底及使用該遮罩基底所製造之相位轉移遮罩。又,本發明係關於一種使用上述相位轉移遮罩的半導體元件之製造方法。
一般而言,半導體元件之製造工序係使用光微影法來進行微細圖案之形成。又,在此微細圖案之形成中通常會使用數片被稱為轉印用遮罩之基板。在將半導體元件之圖案微細化時,除了將形成在轉印用遮罩的遮罩圖案微細化之外,還需要將光微影所使用之曝光光源的波長短波長化。因此,近年來,在半導體裝置製造時的曝光光源便從KrF準分子雷射(波長248nm)朝ArF準分子雷射(波長193nm)來短波長化地發展。
作為轉印用遮罩之類型除了在以往的透光性基板上具備由鉻所構成之遮光圖案的二元遮罩之外,還已知一種半色調型相位轉移遮罩。
專利文獻1揭露有一種具備遮光膜以及表面、內面反射防止膜之二元遮罩基底。此專利文獻1中,為了抑制起因於來自遮光帶之反射而對鄰接照射造成影響之光斑(Flare)或圖案區域內之曝光量過量錯誤(Dose Error),便會於遮光膜下相接形成而具備包含矽、過渡金屬、氧及氮,且膜之折射率n2為1.0~3.5,膜之消光係數k2為2.5以下,膜厚t2為5~40nm的內面反射防止膜。然後,相對於從透明基板側來入射光線的反射率(以下,稱為內面反射率)為約30%以下,具體而言,如該實施例所示,會實現約29%或約23%的二元遮罩基底。
專利文獻2揭露一種半色調型相位轉移遮罩,係在透光性基板上設置有能以既定穿透率來讓ArF曝光光線穿透,且具有相對於穿透之ArF曝光光 線來產生既定量之相位轉移的功能之相位轉移膜。此專利文獻2中,係使相位轉移膜成為包含高穿透層與低穿透層之層積構造。進一步地,高穿透層會適用氮含量相對較多之SiN系膜,低穿透層則會適用氮含量相對較少之SiN系膜。
又,近年來,於半導體元件上之阻劑膜進行曝光轉印時所使用的照明系統亦會高度化、複雜化。專利文獻3揭露一種方法,係為了提高基板上之遮罩圖案的成像而構成光微影裝置之照射源。此方法係包含下述6個工序。(1)將照射源分割為畫素群,各畫素群會在照射源之瞳面包含1個或複數個照射源點之工序。(2)讓各畫素群的偏光狀態改變,而求得從各畫素群的偏光狀態之改變所導致之相對於複數各臨界尺寸的漸進效應之工序。(3)使用所求得之漸進效應,來計算出複數各臨界尺寸相關之第1複數靈敏度係數的工序。(4)選擇初期照射源之工序。(5)使用所計算出之第1複數靈敏度係數,來反覆計算出光微影陣列來作為初期照射源之畫素群的偏光狀態之改變結果,而生成初期照射源之畫素群的偏光狀態之變化經改變後之照射源的工序。(6)基於反覆計算的結果來調節初期照射源之工序。
[先前技術文獻]
[專利文獻]
專利文獻1:日本特許第5054766號公報
專利文獻2:日本特開2014-137388號公報
專利文獻3:日本特開2012-74695號公報
近年來,會期望轉印圖案進一步微細化,且在進行曝光轉印時所使用之照明系統亦可高度化、複雜化。例如,專利文獻3中之照明系統係以讓照射源之位置及角度最佳化的方式來進行控制。在此般複雜的照明系統中,於以較短波長之ArF準分子雷射的曝光光線來對轉印用遮罩進行曝光之情況下,便會容易在該轉印用遮罩之透光性基板內產生因多重反射導致之雜散光。在半導體 元件上之阻劑膜進行曝光轉印時,於此雜散光到達至轉印用遮罩之透光性基板中的圖案形成區域之外所設置之條碼或對位標記時,便會在半導體元件上之阻劑膜產生映射現象。在此現象產生時,便會在半導體元件上之阻劑膜產生CD不一致。由於透光性基板上之薄膜所形成條碼或對位標記是為了識別轉印用遮罩或對位而不可或缺者,故實際上並不會去除該等。又,一般而言,會在進行曝光轉印時所使用之照明系統設置用以遮蔽會讓曝光光線照射到轉印用遮罩之曝光區域外側的遮蔽機構。然而,因為上述照射源之位置及角度的最佳化所致的曝光光線之斜向入射成分增加,而會難以抑制照射至轉印用遮罩之曝光區域內的曝光光線會在透光性基板內多重反射於曝光區域之外側區域而產生的雜散光的情事。由此般情事看來,便會難以在以往所容許之內面反射率為約30%左右的遮罩基底中滿足轉印圖案之進一步微細化要求。
於是,本發明係為了解決以往課題所完成者,其目的在於提供一種在透光性基板上具備相位轉移膜之遮罩基底,係兼具使相對於ArF準分子雷射之曝光光線以既定穿透率來穿透的功能以及會使相對於所穿透之ArF準分子雷射之曝光光線產生既定相位差的功能,並進一步地具備會讓內面反射率降低之相位轉移膜。又,目的在於提供一種使用該遮罩基底所製造之相位轉移遮罩。然後,本發明之目的在於提供一種使用此般相位轉移遮罩的半導體元件之製造方法。
為了達成上述課題,本發明係具有下述構成。
(構成1)
一種遮罩基底,係在透光性基板上具備相位轉移膜之遮罩基底;
該相位轉移膜係包含從該透光性基板側依序層積有第1層及第2層之構造;
該第1層係設置為相接於該透光性基板之表面;
ArF準分子雷射之曝光光線的波長在該第1層及該第2層中之折射率分別為n1、n2時,會滿足n1<n2的關係;
該曝光光線的波長在該第1層及該第2層中之消光係數分別為k1、k2時,會滿足k1<k2的關係;
在該第1層及該第2層之膜厚分別為d1、d2時,會滿足d1<d2的關係。
(構成2)
如構成1之遮罩基底,其中該第1層之折射率n1係1.8以上,該第1層之消光係數k1為0.15以下。
(構成3)
如構成1或2之遮罩基底,其中該第2層之折射率n2係2.2以上,該第2層之消光係數k2為0.2以下。
(構成4)
如構成1至3中任一者之遮罩基底,其中該曝光光線的波長在該透光性基板中之折射率為nS時,會滿足nS<n1<n2之關係;
該曝光光線的波長在該透光性基板中之消光係數為kS時,會滿足kS<k1<k2之關係。
(構成5)
如構成4之遮罩基底,其中該透光性基板之折射率nS係1.6以下,該透光性基板之消光係數kS係0.01以下。
(構成6)
如構成1至5中任一者之遮罩基底,其中該相位轉移膜係具有以15%以上的穿透率來讓該曝光光線穿透之功能以及讓相對於穿透該相位轉移膜之該曝光光線而使在空氣中通過與該相位轉移膜之厚度相同距離的曝光光線之間會產生150度以上,200度以下的相位差之功能。
(構成7)
如構成1至6中任一者之遮罩基底,其中該第1層係以由矽與氮與氧所構成之材料,或是由選自類金屬元素及非金屬元素的1種以上的元素與矽與氮與氧所構成之材料所形成;該第2層係以由矽與氮所構成之材料,或是由選自類金屬元素及非金屬元素的1種以上的元素與矽與氮所構成之材料所形成。
(構成8)
如構成7之遮罩基底,其中該第2層之氮含量會較該第1層之氮含量要多。
(構成9)
如構成1至8中任一者之遮罩基底,其中該相位轉移膜係在該第2層上具備第3層;該曝光光線的波長在該第3層中之折射率為n3時,會滿足n3<n1<n2之關係;該曝光光線的波長在該第3層中之消光係數為k3時,會滿足k1<k2<k3之關係。
(構成10)
如構成9之遮罩基底,其中在該第3層之膜厚為d3時,會滿足d3<d1<d2之關係。
(構成11)
如構成9或10之遮罩基底,其中在該第3層之膜厚為d3時,會滿足d3<d1<d2之關係。
(構成12)
如構成9至11任一種之遮罩基底,其中該第3層係以由矽與氮所構成之材料,或是由選自類金屬元素及非金屬元素的1種以上的元素與矽與氮所構成之材料所形成。
(構成13)
如構成9至11任一種之遮罩基底,其中該相位轉移膜係在該第3層上具備第4層;該曝光光線的波長在該第4層中之折射率為n4時,會滿足n4<n1<n2之關係;該曝光光線的波長在該第4層中之消光係數為k4時,會滿足k4<k1<k2之關係。
(構成14)
如構成13之遮罩基底,其中該第4層之折射率n4係1.7以下,該第4層之消光係數k4為0.02以下。
(構成15)
如構成13或14之遮罩基底,其中該第4層係以由矽與氧所構成之材料,或是由選自類金屬元素及非金屬元素的1種以上的元素與矽與氧所構成之材料所形成。
(構成16)
如構成1至8中任一種之遮罩基底,其中其中該相位轉移膜係在該第2層上具備第3A層;
該曝光光線的波長在該第3A層中之折射率為n3A時,會滿足n3A<n1<n2之關係;
該曝光光線的波長在該第3A層中之消光係數為k3A時,會滿足k3A<k1<k2之關係。
(構成17)
如構成16之遮罩基底,其中該第3A層之折射率n3A係1.7以下,該第3A層之消光係數k3A為0.02以下。
(構成18)
如構成16或17之遮罩基底,其中該第3A層係以由矽與氧所構成之材料,或是由選自類金屬元素及非金屬元素的1種以上的元素與矽與氧所構成之材料所形成。
(構成19)
一種相位轉移遮罩,係將轉印圖案設置於如構成1至18中任一種之遮罩基底的該相位轉移膜。
(構成20)
一種半導體元件之製造方法,係具備使用如構成19之相位轉移遮罩,來將轉印圖案曝光轉印於半導體基板上之阻劑膜的工序。
根據本發明,便可提供一種具備會讓內面反射率降低之相位轉移膜的遮罩基底,係在透性基板上具備相位轉移膜,該相位轉移膜係兼具使相對於ArF準分子雷射之曝光光線以既定穿透率來穿透的功能以及會使相對於所穿透之ArF準分子雷射之曝光光線而產生既定相位差的功能。
1‧‧‧透光性基板
2‧‧‧相位轉移膜
21‧‧‧第1層
22‧‧‧第2層
23‧‧‧第3層
24‧‧‧第4層
25‧‧‧第3A層
2a‧‧‧相位轉移圖案
3‧‧‧遮光膜
3a、3b‧‧‧遮光圖案
4‧‧‧硬遮罩膜
4a‧‧‧硬遮罩圖案
5a‧‧‧第1阻劑圖案
6a‧‧‧第2阻劑圖案
100、110、120、130‧‧‧遮罩基底
200、210、220、230‧‧‧相位轉移遮罩
圖1係顯示本發明第1實施形態中之遮罩基底構成的剖面圖。
圖2係顯示本發明第2實施形態中之遮罩基底構成的剖面圖。
圖3係顯示本發明第3實施形態中之遮罩基底構成的剖面圖。
圖4係顯示本發明第4實施形態中之遮罩基底構成的剖面圖。
圖5係顯示本發明第1至第4實施形態中之相位轉移遮罩的製造工序之剖面概略圖。
以下,便就本發明之實施形態來加以說明。本案發明人係就在相位轉移膜中,能夠兼具讓ArF準分子雷射的曝光光線(以下會有僅稱為曝光光線之情況。)以既定穿透率來穿透之功能與產生既定相位差之功能,且可進一步地降低內面反射率之方法進行努力研究。
對轉印用遮罩進行曝光時所產生的雜散光應是起因於從相位轉移遮罩的透光性基板內側(未設置有相位轉移膜之側)表面(內面)所入射之曝光光線的一部分會在透光性基板與相位轉移膜的界面處被反射,進一步地在透光性基板內面與空氣的界面處再次被反射,而從透光性基板表側的表面未有相位轉移膜之區域所射出的光線。為了抑制因該雜散光所產生之條碼或對位標記的映射,而期望使雜散光的光強度相對於照射在透光性基板之曝光光線的光強度成為0.2%以下。相位轉移遮罩中,形成有轉印圖案之區域的外周區域所設置之遮光帶(相位轉移膜與遮光膜的層積構造)較佳地係穿透率為0.2%以下。只要是此穿透率的話,即便有曝光光線穿透,實質上仍不會有對半導體元件上之阻劑膜的CD不一致所造成之影響。
在以ArF準分子雷射的曝光光線來對相位轉移遮罩進行曝光之情況下,於曝光光線從空氣中入射至透光性基板的內面時,在透光性基板內面處反射之光線約為入射光的5%左右(亦即,入射至透光性基板內部之曝光光線的光強度會減少5%左右。)。進一步地,在透光性基板與相位轉移膜的界面處被反射之部分曝光光線在透光性基板之內面與空氣的界面處被反射時,一部分的光線並不會被反射而是從內面射出。探討該等點的結果,發現到在透光性基板上僅存在有相位轉移膜之狀態下,若是透光性基板側(內面側)相對於曝光光線的反射率(內面反射率)為9%以下的話,便可使雜散光的光強度成為0.2%以下,而可抑制條碼或對位標記的映射。
另外,在實際測量相位轉移膜的內面反射率之情況,係將測量光照射在透光性基板之設置有相位轉移膜側之相反側的表面(內面),而測量反射光的光強度,並從該反射光的光強度來求得內面反射率。所測量之該反射光的光強度會成為至少包含有在空氣與透光性基板的界面處被反射之光線,以及並未在該處被反射而入射至透光性基板的測量光在透光性基板與相位轉移膜的界面處被反射,且並未進一步地在透光性基板內面與空氣的界面處再次被反射便射出至空氣中之光線(低於入射至該界面之光線的4%之光線)的光線之光線強度。亦即,所謂上述內面反射率為9%以下係指以亦包含有在透光性基板與相位轉移膜的界面處被反射之光線以外的反射光之光線所求得的內面反射率。
然後,本案發明人探討了具有相位轉移膜之遮罩基底的構成,該相位轉移膜係兼具讓ArF準分子雷射的曝光光線以既定穿透率來穿透之功能與產生既定相位差之功能,且實現9%以下的內面反射率。
形成以往相位轉移膜之材料較佳地係儘可能地使折射率n加大,且使消光係數k位在不會過大又不會過小之範圍內。這是因為以往相位轉移膜主要是基於以下設計概念來完成之故:藉由在相位轉移膜的內部吸收ArF準分子雷射的曝光光線,來讓ArF準分子雷射的曝光光線以既定穿透率穿透,並使所穿透之該ArF準分子雷射的曝光光線產生既定相位差。單層構造的相位轉移膜中,會難以具有相位轉移膜所要求的功能(相對於會穿透相位轉移膜內之ArF準分子雷射的曝光光線而產生既定穿透率與相位差之功能),且實現9%以下的內面反射率。於是, 本案發明人探討了以複數層來構成相位轉移膜,並在該等層整體中,兼具能夠讓ArF準分子雷射的曝光光線以既定穿透率來穿透之功能與產生既定相位差之功能,且實現9%以下的內面反射率。為了降低相位轉移膜相對於ArF準分子雷射的曝光光線之內面反射率,必須利用透光性基板與相位轉移膜的界面處之反射光與構成相位轉移膜之層間的界面處之反射光的干擾效果。
考量上述該等點的結果,發現到藉由將相位轉移膜成為從透光性基板側依序層積第1層及第2層之構造,並使第1層設置為相接透光性基板表面,分別調整ArF準分子雷射的曝光光線波長在第1層、第2層之折射率n1、n2,消光係數k1、k2及膜厚d1、d2,便可形成兼具使相對於ArF準分子雷射的曝光光線有既定穿透率與既定相位差,且為9%以下之內面反射率的相位轉移膜。本發明係經由上述努力研究所完成者。另外,下述說明中,只要不特別指明,折射率、消光係數、穿透率、相位差的數值都是相對於ArF準分子雷射之曝光光線的數值。
圖1係顯示本發明第1實施形態相關之遮罩基底100構成的剖面圖。圖1所示之本發明之遮罩基底100係具有於透光性基板1上依序層積相位轉移膜2、遮光膜3及硬遮罩膜4之構造。
透光性基板1除了合成石英玻璃以外,還可以石英玻璃、矽酸鋁玻璃、鹼石灰玻璃、低熱膨脹玻璃(SiO2-TiO2玻璃等)等來加以形成。該等中又以合成石英玻璃相對於ArF準分子雷射光之穿透率會較高,故作為形成遮罩基底的透光性基板1之材料而言係特佳。
透光性基板1之折射率nS較佳地為1.6以下,更佳地為1.59以下,最佳地為1.58以下。另一方面,透光性基板1之折射率nS較佳地為1.5以上,更佳地為1.52以上,最佳地為1.54以上。又,透光性基板1之消光係數kS較佳地為0.01以下。另外,透光性基板1之消光係數ks的下限值為0.00。
相位轉移膜2為了使在穿透相位轉移膜2內部之曝光光線會與穿透空氣中之曝光光線之間產生充分的相位轉移效果,較佳地係使相對於曝光光線之穿透率為15%以上,更佳地為16%以上。另一方面,相位轉移膜2相對於曝光光線之穿透率較佳地為40%以下,更佳地為36%以下。
相位轉移膜2為了得到適當的相位轉移效果,較佳地係調整在讓相對於穿透之ArF準分子雷射的曝光光線而使在空氣中通過與該相位轉移膜2之厚度相同距離的曝光光線之間會產生150度以上,200度以下的範圍。相位轉移膜2中之該相位差的下限值較佳地為155度以上,更佳地為160度以上。另一方面,相位轉移膜2中之該相位差的上限值較佳地為190度以下。
相位轉移膜2在透光性基板1上僅存在有相位轉移膜2之狀態下,相對於ArF準分子雷射的曝光光線之內面反射率較佳地為9%以下。
相位轉移膜2係具有從透光性基板1側層積有第1層21及第2層22之構造。相位轉移膜2整體至少須滿足上述穿透率、相位差及內面反射率的各條件。本案發明人發現到為了使相位轉移膜2滿足上述條件,便需要使第1層21之折射率n1及第2層22之折射率n2滿足n1<n2的關係,使第1層21之消光係數k1及第2層22之消光係數k2滿足k1<k2的關係。
進一步地,第1層21的折射率n1較佳地為1.8以上,更佳地為1.85以上。又,第1層21的折射率n1較佳地為未達2.2,更佳地為2.15以下。第1層21的消光係數k1較佳地為0.15以下,更佳地為0.14以下。又,第1層21的消光係數k1較佳地為0.05以上,更佳地為0.06以上。另外,第1層21的折射率n1及消光係數k1係將第1層21整體視為光學上為均勻的1個層而導出之數值。
進一步地,透光性基板1之折射率nS、第1層21之折射率n1、第2層22之折射率n2會滿足ns<n1<n2的關係,透光性基板1之消光係數kS、第1層21之消光係數k1、第2層22之消光係數k2會滿足kS<k1<k2的關係。
為了使相位轉移膜2滿足上述條件,第2層22的折射率n2較佳地為2.2以上,更佳地為2.25以上。又,第2層22的折射率n2較佳地為3.0以下,更佳地為2.8以下。又,第2層22的消光係數k2較佳地為0.2以上,更佳地為0.25以上。又, 第2層22的消光係數k2較佳地為0.5以下,更佳地為0.4以下。另外,第2層22的折射率n2及消光係數k2係將第2層22整體視為光學上為均勻的1個層所導出之數值。
包含有相位轉移膜2之薄膜的折射率n與消光係數k並非僅以該薄膜的組成來決定。該薄膜的膜密度或結晶狀態等亦為左右折射率n或消光係數k之要素。因此,便調整以反應性濺鍍來成膜出薄膜時的各條件,並以使該薄膜成為所欲折射率n及消光係數k之方式來進行成膜。為了使第1層21、第2層22成為在上述折射率n與消光係數k的範圍內,不僅限於在反應性濺鍍來進行成膜時,調整惰性氣體與反應性氣體(氧氣、氮氣等)之混合氣體的比率。亦可調整以反應性濺鍍來進行成膜時的成膜室內壓力、施加於濺鍍靶材之電力以及靶材與透光性基板1之間的距離等位置關係等。該等成膜條件為成膜裝置所固有的,而可以所形成之第1層21、第2層22會成為所欲的折射率n及消光係數k之方式來適當調整。
進一步地,為了使相位轉移膜2滿足上述各條件,除了上述第1層21、第2層22之光學特性之外,還至少還需要使第1層21的膜厚d1、與第2層22的膜厚d2滿足d1<d2的關係。
第1層21的厚度d1較佳地為未達33nm,更佳地為32nm以下。又,第1層21的厚度d1較佳地較10nm要大,更佳地為15nm以上。
第2層22的厚度d2較佳地為33nm以上,更佳地為34nm以上。又,第2層22的厚度d2較佳地為50nm以下,更佳地為48nm以下。
第1層21較佳地係以由矽與氮與氧所構成之材料,或是由選自類金屬元素及非金屬元素的1種以上的元素與矽與氮與氧所構成之材料所形成。又,第2層22較佳地係以由矽與氮所構成之材料,或是由選自類金屬元素及非金屬元素的1種以上的元素與矽與氮所構成之材料所形成。在此類金屬元素中,在含有選自硼、鍺、銻及碲之1種以上的元素時,由於可期待提高作為濺鍍靶材所使用之矽的導電性,故較佳。又,此非金屬元素中,較佳地係含有選自氮、碳、 氟及氫之1種以上的元素。此非金屬元素亦包含有氦(He)、氬(Ar)、氪(Kr)及氙(Xe)等惰性氣體。
第2層22的氮含量較佳地係較第1層21的氮含量要多。第1層21的氮含量較佳地為40原子%以下,更佳地為30原子%以下。又,第1層21的氮含量較佳地為10原子%以上,更佳地為15原子%以上。另一方面,第2層22的氮含量較佳地為45原子%以上,更佳地為50原子%以上,最佳地為55原子%以上。這是因為第2層22雖較佳地以折射率較高之材料所形成,但亦可藉由增加氮含量來提高折射率之故。
第1層21的氧含量較佳地係較第2層22的氧含量要多。第1層21的氧含量較佳地為10原子%以上,更佳地為15原子%以上。又,第1層21的氧含量較佳地為40原子%以下,更佳地為40原子%以下。另一方面,第2層22的氧含量較佳地為5原子%以下,更佳地為2原子%以下。第2層22最佳地係不含氧。這是因為隨著第2層22之氧含量增加,便會使第2層22之折射率下降之故。
第1層21係設置為相接於透光性基板1表面。這是因為構成為第1層21會與透光性基板1的表面相接,便更能得到因上述相位轉移膜2之第1層21、第2層22的層積構造所產生之降低內面反射率的效果之故。
相位轉移膜2中的第1層21、第2層22雖係藉由濺鍍而形成,但亦可適用DC濺鍍、RF濺鍍及離子束濺鍍等任一種濺鍍法。在考量成膜速度時,較佳地適用DC濺鍍。在使用導電性較低的靶材之情況下,雖較佳地適用RF濺鍍或離子束濺鍍,但在考量成膜速度時,則更佳地適用RF濺鍍。
遮罩基底100係在相位轉移膜2上具有遮光膜3。一般而言,在二元遮罩中,形成有轉印圖案之區域(轉印圖案形成區域)的外周區域係在使用曝光裝置來曝光轉印於半導體晶圓上的阻劑膜時,為了使阻劑膜不受到穿透外周區域後之曝光光線的影響,而被要求要確保既定值以上的光學濃度(OD)。關於此點,在相位轉移遮罩的情況亦是相同。通常,在包含有相位轉移遮罩之轉印用 遮罩的外周區域中,OD較佳地為2.7以上。相位轉移膜2雖具有能夠讓曝光光線以既定穿透率來穿透之功能,但只靠相位轉移膜2會難以確保既定值的光學濃度。因此,在製造遮罩基底100之階段中,為了確保不足的光學濃度,便必須在相位轉移膜2上先層積出遮光膜3。藉由構成上述般之遮罩基底100,若是在製造相位轉移遮罩200(參照圖5)的中途,去除使用相位轉移效果之區域(基本上為轉印圖案形成區域)的遮光膜3的話,便可製造出能在外周區域確保有既定值的光學濃度之相位轉移遮罩200。
遮光膜3可適用單層構造及2層以上之層積構造的任一者。又,單層構造的遮光膜3以及2層以上之層積構造的遮光膜3的各層可構成為在膜或層的厚度方向上為幾乎相同的組成,或是構成為在層的厚度方向上使組成傾斜。
圖1所記載形態之遮罩基底100係構成為於相位轉移膜2上並未透過其他膜來層積有遮光膜3。此構成情況的遮光膜3必須適用相對於在相位轉移膜2形成圖案時所使用的蝕刻氣體具有充分蝕刻選擇性之材料。在此情況下的遮光膜3較佳地係由含鉻材料所形成。形成遮光膜3之含鉻材料除了鉻金屬以外,還舉例有於鉻包含有選自氧、氮、碳、硼及氟之一種以上的元素之材料。
一般而言,鉻系材料雖會被氯系氣體與氧氣的混合氣體加以蝕刻,但鉻金屬相對於此蝕刻氣體的蝕刻率並不太高。在考量提高相對於氯系氣體與氧氣之混合氣體的蝕刻氣體之蝕刻速率的點時,形成遮光膜3之材料較佳地為於鉻包含有選自氧、氮、碳、硼及氟之一種以上的元素之材料。又,亦可使形成遮光膜3之含鉻材料包含有鉬、銦及錫中之一種以上的元素。藉由包含有鉬、銦及錫中之一種以上的元素,便可更加快相對於氯系氣體與氧氣的混合氣體之蝕刻速率。
又,只要能在與形成第2層22之材料之間得到相對於乾蝕刻之蝕刻選擇性的話,便可以含有過渡金屬與矽之材料來形成遮光膜3。這是因為含有過渡金屬與矽之材料的遮光性能較高,而可使遮光膜3的厚度變薄之故。作為被 包含在遮光膜3之過渡金屬係舉例有鉬(Mo)、鉭(Ta)、鎢(W)、鈦(Ti)、鉻(Cr)、鉿(Hf)、鎳(Ni)、釩(V)、鋯(Zr)、釕(Ru)、銠(Rh)、鋅(Zn)、鈮(Nb)、鈀(Pd)等的任一種金屬或該等金屬的合金。作為被包含在遮光膜3之過渡金屬元素以外的金屬元素係舉例有鋁(Al)、銦(In)、錫(Sn)及鎵(Ga)等。
另一方面,作為另一實施形態之遮罩基底100係可具備從相位轉移膜2側依序層積有由含鉻材料所構成的層與含有過渡金屬與矽之材料所構成的層之構造的遮光膜3。在此情況下之含鉻材料及含有過渡金屬與矽之材料的具體內容係與上述遮光膜3的情況相同。
遮罩基底100在層積有相位轉移膜2與遮光膜3之狀態下,相對於ArF準分子雷射的曝光光線之內面反射率較佳地為9%以下。
遮罩基底100中,較佳地係構成為在遮光膜3上進一步地層積有以相對於蝕刻遮光膜3時所使用之蝕刻氣體而具有蝕刻選擇性之材料所形成的硬遮罩膜4。由於硬遮罩膜4基本上不會受到光學濃度的限制,故可使硬遮罩膜4的厚度較遮光膜3的厚度要大幅地變薄。然後,由於有機系材料的阻劑膜只要在於此硬遮罩膜4形成圖案之乾蝕刻結束為止的期間,具有能夠作為蝕刻遮罩之功能的膜厚便已足夠,故可使厚度較以往要大幅地變薄。阻劑膜的薄膜化對提升阻劑解析度與防止圖案傾倒是很有效果的,故對於微細化要求來說極為重要。
此硬遮罩膜4在遮光膜3是由含鉻材料所形成的情況,較佳地係由含矽材料來加以形成。另外,由於此情況之硬遮罩膜4會有與有機系材料的阻劑膜之密合性較低的傾向,故較佳地係對硬遮罩膜4的表面施予HMDS(Hexamethyldisilazane)處理,來提高表面的密合性。另外,此情況之硬遮罩膜4更佳地係由SiO2、SiN、SiON等來加以形成。
又,在以含鉻材料來形成遮光膜3情況下之硬遮罩膜4材料除了上述之外,還可使用含鉭材料。作為此情況下之含鉭材料,除了鉭金屬之外,還舉例有於鉭含有選自氮、氧、硼及碳之一種以上的元素之材料等。可舉例有Ta、 TaN、TaO、TaON、TaBN、TaBO、TaBON、TaCN、TaCO、TaCON、TaBCN、TaBOCN等。又,硬遮罩膜4係在遮光膜3是由含矽材料所形成的情況,較佳地係由上述含鉻材料來加以形成。
遮罩基底100中,較佳地係相接於硬遮罩膜4表面,並以100nm以下的膜厚來形成有機系材料的阻劑膜。在對應於DRAM hp32nm世代之微細圖案的情況,會有在應形成於硬遮罩膜4之轉印圖案(相為轉移圖案)設置有線寬為40nm之SRAF(Sub-Resolution Assist Feature)的情況。然而,即便在此情況下,由於仍可使阻劑圖案的剖面深寬比成為較低的1:2.5,故可抑制在阻劑膜顯影時、沖洗時等使阻劑圖案傾倒或脫離。另外,阻劑膜的膜厚更佳地為80nm以下。
圖2係顯示本發明第2實施形態相關之遮罩基底110構成的剖面圖。本實施形態之遮罩基底110中,相位轉移膜2係具有從透光性基板1側層積有第1層21、第2層22、第3層23之構造。關於第1層21、第2層22,由於較佳的折射率或消光係數、膜厚係如第1實施形態所述,故省略說明。另外,關於透光性基板1、遮光膜3、硬遮罩膜4的構成亦是如第1實施形態所述。
第3層23除了其表層部分之外,較佳地係以由矽與氮所構成之材料,或是由選自類金屬元素及非金屬元素的1種以上的元素與矽與氮所構成之材料所形成。
第1層21之折射率n1、第2層22之折射率n2、第3層23之折射率n3較佳地係滿足n3<n1<n2的關係。又,第1層21之消光係數k1、第2層22之消光係數k2、第3層23之消光係數k3較佳地係滿足k1<k2<k3的關係。再者,第3層23之折射率n3較佳地為未達1.8,更佳地為1.75以下。又,第3層23之折射率n3較佳地為1.0以上,更佳地為1.2以上。第3層23之消光係數k3較佳地為1.0以上,更佳地為1.2以上。又,第3層23之消光係數k3較佳地為2.0以下,更佳地為1.8以下。
第1層21之膜厚d1、第2層22之膜厚d2、第3層23之膜厚d3較佳地係滿足d3<d1<d2之關係。再者,第3層23之膜厚d3較佳地為10nm以下,更佳地為9nm以下。又,第3層23之膜厚d3較佳地為2nm以上,更佳地為3nm以上。
第3層23的氮含量較佳地係較第2層22的氮含量要少。第3層23的氮含量較佳地為35原子%以下,更佳地為30原子%以下。又,第3層23的氮含量較佳地為5原子%以上,更佳地為10原子%以上。第3層23的氧含量較佳地係較第1層21的氧含量要少。第3層23的氧含量較佳地為10原子%以下,更佳地為5原子%以下。
本實施形態中之遮罩基底110係可藉由上述構成來產生大略180度之相位差,並可較第1實施形態之遮罩基底100要進一步地降低內面反射率。
圖3係顯示本發明第3實施形態相關之遮罩基底120構成之剖面圖。本實施形態之遮罩基底120中,相位轉移膜2係具有從透光性基板1側層積有第1層21、第2層22、第3層23及第4層24之構造。關於第1層21、第2層22、第3層23,由於較佳的折射率或消光係數、膜厚係如第1實施形態所述,故省略說明。另外,關於透光性基板1、遮光膜3、硬遮罩膜4的構成亦是如第1實施形態所述。
第4層24較佳地係以由矽與氧所構成之材料,或是由選自類金屬元素及非金屬元素的1種以上的元素與矽與氧所構成之材料所形成。
又,第1層21之折射率n1、第2層22之折射率n2、第3層23之折射率n3、第4層24之折射率n4較佳地係同時滿足n3<n1<n2的關係與n4<n1<n2的關係。又,第1層21之消光係數k1、第2層22之消光係數k2、第3層23之消光係數k3、第4層24之消光係數k4較佳地係同時滿足k1<k2<k3的關係與k4<k1<k2的關係。再者,第4層24之折射率n4較佳地為1.7以下,更佳地為1.65以下。又,第4層24之折射率n4較佳地為1.50以上,更佳地為1.52以上。第4層23之消光係數k4較佳地為0.02以下,更佳地為0.01以上。又,第4層24之消光係數k4較佳地為0.00以上。
第4層24之厚度較佳地為10nm以下,更佳地為9nm以下。又,第4層24之厚度較佳地為2nm以上,更佳地為3nm以上。
第4層24的氮含量較佳地係較第1層21的氮含量要多。第4層24的氮含量較佳地為50原子%以上。第4層24的氧含量較佳地係較第1層21的氧含量要多。第4層24的氧含量較佳地為50原子%以上,更佳地為55原子%以下。
本實施形態中之遮罩基底120係可藉由上述構成來產生大略180度之相位差,並可抑制容易在氮含量較多的含矽膜中產生之塵霧(haze)的產生,而可較第1實施形態之遮罩基底100要進一步地降低內面反射率。
圖4係顯示本發明第4實施形態相關之遮罩基底130構成之剖面圖。本實施形態之遮罩基底130中,相位轉移膜2係具有從透光性基板1側層積有第1層21、第2層22、第3A層25之構造。關於第1層21、第2層22,由於較佳的折射率或消光係數、膜厚係如第1實施形態所述,故省略說明。另外,關於透光性基板1、遮光膜3、硬遮罩膜4的構成亦是如第1實施形態所述。
第3A層25較佳地係以由矽與氧所構成之材料,或是由選自類金屬元素及非金屬元素的1種以上的元素與矽與氧所構成之材料所形成。
第1層21之折射率n1、第2層22之折射率n2、第3A層25之折射率n3A較佳地係滿足n3A<n1<n2的關係。又,第1層21之消光係數k1、第2層22之消光係數k2、第3A層25之消光係數k3A較佳地係滿足k3A<k1<k2的關係。再者,第3A層25之折射率n3A較佳地為1.7以下,更佳地為1.65以下。又,第3A層25之折射率n3A較佳地為1.50以上,更佳地為1.52以上。又,第3A層25之消光係數k3A較佳地為0.02以下,更佳地為0.01以下。又,第3A層25之消光係數k3A較佳地為0.00以上。
第1層21之膜厚d1、第2層22之膜厚d2、第3A層25之膜厚d3A較佳地係滿足d3A<d1<d2之關係。再者,第3A層25之膜厚d3A較佳地為30nm以下,更佳地為25nm以下。又,第3A層25之膜厚d3A較佳地為2nm以上,更佳地為3nm以上。
第3A層25的氧含量較佳地較第1層21的氧含量要多。第3A層25的氧含量較佳地為50原子%以上,更佳地為55原子%以下。
本實施形態中之遮罩基底130係可藉由上述構成來產生大略180度之相位差,並可較第1實施形態之遮罩基底100要進一步地降低內面反射率。
於圖5顯示從第1至第4實施形態之遮罩基底100、110、120、130所製造出的本發明第1至第4實施形態相關之相位轉移遮罩200、210、220、230及其製造工序。
如圖5(g)所示,相位轉移遮罩200、210、220、230會在遮罩基底100、110、120、130的相位轉移模2形成有為轉印圖案之相位轉移圖案2a,而在遮光膜3形成有遮光圖案3b。在遮罩基底100、110、120、130設置有硬遮罩膜4之構成的情況,會在製作此相位轉移遮罩200、210、220、230的途中去除硬遮罩膜4。
本發明第1至第4實施形態相關之相位轉移遮罩200、210、220、230的製造方法係使用上述遮罩基底100、110、120、130,並具備有下述工序:藉由乾蝕刻來於遮光膜3形成轉印圖案之工序、藉由具有轉印圖案之遮光膜3作為遮罩之乾蝕刻來於相位轉移膜2形成轉印圖案之工序以及藉由具有遮光圖案之阻劑膜(第2阻劑圖案)6b作為遮罩之乾蝕刻來於遮光膜3形成遮光圖案3b之工序。以下,便依照圖5所示之製造工序,來說明本發明之相位轉移遮罩200、210、220、230的製造方法。另外,在此便就使用於遮光膜3上層積有硬遮罩膜4之遮罩基底100、110、120、130之相相位轉移遮罩200、210、220、230的製造方法來加以說明。又,係就將含鉻材料適用於遮光膜3,並將含矽材料適用於硬遮罩膜4之情況來加以闡述。
首先,將阻劑膜藉由旋塗法來形成為相接於遮罩基底100、110、120、130中的硬遮罩膜4。接著,便以電子線來將應形成於相位轉移膜2之轉印圖案(相位轉移圖案)之第1圖案曝光描繪在阻劑膜,並進一步地進行顯影處理等的既定處理夾形成具有相位轉移圖案之第1阻劑圖案5a(參照圖5(a))。接著,將第 1阻劑圖案5a作為遮罩來進行使用氟系氣體之乾蝕刻,以於硬遮罩膜4形成第1圖案(硬遮罩圖案4a)(參照圖5(b))。
接著,在去除阻劑圖案5a後,便將硬遮罩圖案4a作為遮罩來進行使用氯系氣體與氧氣的混合氣體之乾蝕刻,以於遮光膜3形成第1圖案(遮光圖案3a)(參照圖5(c))。接著,將遮光圖案3a作為遮罩來進行使用氟系氣體之乾蝕刻,以於相位轉移膜2形成第1圖案(相位轉移圖案2a),並去除硬遮罩圖案4a(參閱圖5(d))。
接著,藉由旋塗法來於遮罩基底100、110、120、130上形成阻劑膜。接著,以電子線來將應形成於遮光膜3之圖案(遮光圖案)的第2圖案曝光描繪在阻劑膜,而進一步地進行顯影處理等的既定處理來形成具有遮光圖案之第2阻劑圖案6b(參照圖5(e))。接著,便將第2阻劑圖案6b作為遮罩來進行使用氯系氣體與氧氣的混合氣體之乾蝕刻,以於遮光膜3形成第2圖案(遮光圖案3b)(參照圖5(f))。進一步地,去除第2阻劑圖案6b並經由洗淨等的既定處理來得到相位轉移遮罩200、210、220、230(參照圖5(g))。
上述乾蝕刻所使用之氯系氣體只要是含有Cl的話便不特別限制。舉例有Cl2、SiCl2、CHCl3、CH2Cl2、CCl4、BCl3等。又,上述乾蝕刻所使用之氟系氣體只要是含有F則未特別限制。舉例有CHF3、CF4、C2F6、C4F8、SF6等。特別是,由於不含C之氟系氣體相對於玻璃基板之蝕刻率較低,故可更加減少對玻璃基板的損傷。
本發明之相位轉移遮罩200、210、220、230會使用該遮罩基底100、110、120、130來加以製作。因此,形成有轉印圖案之相位轉移膜2(相位轉移圖案2a)係相對於ArF準分子雷射之曝光光線的穿透率為15%以上,且會使穿過相位轉移圖案2a之曝光光線以及在空氣中通過與相位轉移圖案2a之厚度相同距離的曝光光線之間的相位差在150度以上,200度以下之範圍內。又,此相位轉移遮罩200係在未層積有遮光圖案3b之相位轉移圖案2a的區域(僅存在有相位轉 移圖案2a之透光性基板1上的區域)中之內面反射率會成為9%以下。藉此,在使用相位轉移遮罩200來對轉印對象物(半導體晶圓上的阻劑膜等)進行曝光轉印時,便可抑制因上述雜散光而對曝光轉印像造成的影響。
本發明之半導體元件之製造方法係使用上述相位轉移遮罩200、210、220、230來將轉印圖案曝光轉印在半導體基板上的阻劑膜。相位轉移遮罩200、210、220、230係兼具使相對於ArF準分子雷射之曝光光線以既定穿透率來穿透之功能以及使相對於該穿透之Ar準分子雷射之曝光光線而產生既定相位差之功能,且相較於以往,內面反射率會大幅降低至9%以下。因此,即便是將此相位轉移遮罩200、210、220、230安裝在曝光裝置,並進行從該相位轉移遮罩200、210、220、230的透光性基板1側來照射ArF準分子雷射的曝光光線而朝轉印對象物(半導體晶圓上的阻劑膜等)曝光轉印之工序,仍可抑制對相位轉移遮罩200、210、220、230所形成之條碼或對位標記的轉印對象物之映射,而可以高精確度來將所欲圖案轉印在轉印對象物。
另一方面,即便為與上述本發明第1至第4個實施形態所示之相位轉移膜的構成不同之另一發明的相位轉移膜的構成,仍可實現兼具使相對於ArF準分子雷射之曝光光線有既定穿透率及既定相位差,且為9%以下的內面反射率之相位轉移膜。例如,此另一發明之遮罩基底係在透光性基板上具備相位轉移膜之遮罩基底;相位轉移膜係包含從透光性基板側依序層積有第1B層、第2B層、第3B層、第4B層之構造;第1B層係設置為相接於該透光性基板之表面;ArF準分子雷射之曝光光線的波長在第1B層、第2B層、第3B層、第4B層中之折射率分別為n1B、n2B、n3B、n4B時,會同時滿足n4B<n1B<n2B及n4B<n3B<n2B的關係;曝光光線的波長在第1B層、第2B層、第3B層、第4B層中之消光係數分別為k1B、k2B、k3B、k4B時,會同時滿足k4B<k1B<k2B及k4B<k3B<k2B的關係;在第1B層、第2B層、第3B層、第4B層之膜厚分別為d1B、d2B、d3B、d4B時,會同時滿足d1B>d3B>d4B及d2B>d3B>d4B的關係。另外,關於透光性基板、遮光膜、硬遮罩膜之構成係與上 述第1實施形態中所述者相同。又,關於相位轉移膜除了下述點之外,係與上述第1實施形態中所述者相同。
第1B層與第3B層較佳地係以由矽與氮與氧所構成之材料,或是由選自類金屬元素及非金屬元素的1種以上的元素與矽與氮與氧所構成之材料所形成。又,第2B層較佳地係以由矽與氮所構成之材料,或是由選自類金屬元素及非金屬元素的1種以上的元素與矽與氮所構成之材料所形成。第4B層較佳地係以由矽與氧所構成之材料,或是由選自類金屬元素及非金屬元素的1種以上的元素與矽與氧所構成之材料所形成。
第1B層之折射率n1B較佳地為1.8以上,更佳地為1.85以上。又,第1B層之折射率n1B較佳地為未達2.2,更佳地為2.15以下。又,第1B層之消光係數k1B較佳地為0.15以下,更佳地為0.14以下。又,第1B層之消光係數k1B較佳地為0.05以上,更佳地為0.06以上。第1B層之膜厚d1B較佳地為35nm以下,更佳地為33nm以下。又,第1B層之膜厚d1B較佳地為較20nm要大,更佳地為21nm以上。
第2B層之折射率n2B較佳地為2.2以上,更佳地為2.25以上。又,第2B層之折射率n2B較佳地為3.0以下,更佳地為2.8以下。又,第2B層之消光係數k2B較佳地為0.2以上,更佳地為0.25以上。又,第2B層之消光係數k2B較佳地為0.5以下,更佳地為0.4以下。第2B層之膜厚d2B較佳地為35nm以下,更佳地為33nm以下。又,第2B層之膜厚d2B較佳地為較20nm要大,更佳地為21nm以上。
第3B層之折射率n3B較佳地為1.8以上,更佳地為1.85以上。又,第3B層之折射率n3B較佳地為未達2.2,更佳地為2.15以下。又,第3B層之消光係數k3B較佳地為0.15以下,更佳地為0.14以下。又,第3B層之消光係數k3B較佳地為0.05以上,更佳地為0.06以上。第3B層之膜厚d3B較佳地為20nm以下,更佳地為19nm以下。又,第3B層之膜厚d3B較佳地為10nm以上,更佳地為15nm以上。
第4B層之折射率n4B較佳地為1.7以下,更佳地為1.65以下。又,第4B層之折射率n4B較佳地為1.50以上,更佳地為1.52以上。又,第4B層之消光係 數k4B較佳地為0.1以下,更佳地為0.01以下。又,第4B層之消光係數k4B較佳地為0.00以上。第4B層之膜厚d4B較佳地為較10nm要小,更佳地為9nm以下。又,第4B層之膜厚d4B較佳地為2nm以上,更佳地為3nm以上。
第2B層的氮含量較佳地係較第1B層及第3B層的氮含量要多。第1B層及第3B層的氮含量較佳地為40原子%以下,更佳地為30原子%以下。又,第1B層及第3B層的氮含量較佳地為10原子%以上,更佳地為15原子%以上。另一方面,第2B層的氮含量較佳地為45原子%以上,更佳地為50原子%以上,最佳地為55原子%以上。第2B層較佳地係以折射率較高之材料來加以形成,這是因為可藉由提高氮含量來提高折射率之故。
第1B層及第3B層的氧含量較佳地係較第2B層的氧含量要多。第1B層及第3B層的氧含量較佳地為10原子%以上,更佳地為15原子%以上。又,第1B層及第3B層的氧含量較佳地為45原子%以下,更佳地為40原子%以下。另一方面,第2B層的氧含量較佳地為5原子%以下,更佳地為2原子%以下。第2B層最佳地係不含有氧。這是因為隨著第2B層之氧含量增加,便會使第2B層之折射率下降之故。
第4層的氧含量較佳地係較第1B層、第2B層、第3B層的氧含量要多。第4B層的氧含量較佳地為50原子%以上,更佳地為55原子%以下。
另一方面,係可以與從上述第1至第4實施形態的遮罩基底來製造出相位轉移遮罩的情況相同之順序,從此另一發明之遮罩基底來製造出相位轉移遮罩。此另一發明之相位轉移遮罩係在上述另一發明之遮罩基底的相位轉移膜形成有為轉印圖案之相位轉移圖案,而在遮光膜形成有遮光圖案。
另一方面,關於上述本發明的半導體元件之製造方法係可使用上述另一發明的相位轉移遮罩。此另一發明的相位轉移遮罩亦兼具使相對於ArF準分子雷射的曝光光線以既定穿透率來穿透之功能與使相對於ArF準分子雷射的曝光光線產生既定相位差之功能,且相較於以往要能讓內面反射率大幅降低至 9%以下。因此,即便將此另一發明相位轉移遮罩設置於曝光裝置,而從該另一發明的相位轉移遮罩的透光性基板側來照射ArF準分子雷射之曝光光線,以對轉印對象物(半導體晶圓上之阻劑膜等)進行曝光轉印工序,仍可抑制對相位轉移遮罩所形成之條碼或對位標記的轉印對象物之映射,而可以高精確度來將所欲圖案轉印在轉印對象物。
[實施例]
以下,便藉由實施例來進一步地具體說明本發明之實施形態。
(實施例1)
[遮罩基底之製造]
準備主表面的尺寸為約152mm×約152mm且厚度為約6.35mm,並由合成石英玻璃所構成的透光性基板1。此透光性基板1係將端面及主表面研磨成既定表面粗糙度後,再施予既定洗淨處理及乾燥處理。測量此透光性基板1的光學特性後,折射率nS為1.556,消光係數kS為0.00。
接著,便將由矽、氧及氮所構成相位轉移膜2的第1層21(SiON膜,Si:O:N=40原子%:35原子%:25原子%)以29.5nm的厚度來形成為相接於透光性基板1的表面。此第1層21係將透光性基板1設置在枚葉式RF濺鍍裝置內,並使用矽(Si)靶材,藉由氬(Ar)、氧(O2)及氮(N2)的混合氣體作為濺鍍氣體之RF濺鍍來加以形成。接著,於第1層21上,以41.5nm的厚度來形成由矽及氮所構成相位轉移膜2的第2層22(SiN膜,Si:N=43原子%:57原子%)。此第2層22係使用矽(Si)靶材並藉由氬(Ar)及氮(N2)的混合氣體作為濺鍍氣體之反應性濺鍍(RF濺鍍)來加以形成。由上述順序便可以71nm厚度來形成會相接於透光性基板1的表面而層積有第1層21、第2層22之的相位轉移膜2。另外,第1層21、第2層22的組成係藉由X射線光電子光譜法(XPS)來測量所獲得的結果。以下,關於其他膜亦相同。
接著,使用相位轉移量測量裝置(Lasertec公司製MPM193),來測量該相位轉移膜2相對於波長193nm的光線之穿透率與相位差後,則穿透率為 27.4%,相位差為183.2度(deg)。進一步地,以光譜橢圓偏光計(J.A.Woollam公司製M-2000D)來測量此相位轉移膜2的第1層21、第2層22的各光學特性後,則第1層21之折射率n1為1.990,消光係數k1為0.085,第2層22之折射率n2為2.595,消光係數k2為0.357。相位轉移膜2相對於ArF準分子雷射之曝光光線波長的光線之內面反射率為3.7%,為低於9%者。
接著,於相位轉移膜2上以59.5nm之厚度來形成由CrOCN所構成之遮光膜3(CrOCN膜,Cr:O:C:N=55原子%:22原子%:12原子%:11原子%)。此遮光膜3係藉由將形成有相位轉移膜2之透光性基板1設置在枚葉式DC濺鍍裝置內,而使用鉻(Cr)靶材,並藉由氬(Ar)、二氧化碳(CO2)、氮(N2)及氦(He)的混合氣體作為濺鍍氣體之反應性濺鍍(DC濺鍍)來加以形成。在此透光性基板1上層積有相位轉移膜2與遮光膜3之狀態下,相對於ArF準分子雷射之曝光光線波長的光線之內面反射率為0.5%,而為低於9%者。在測量此相位轉移膜2與遮光膜3的層積構造中相對於波長193nm的光線之光學濃度(OD)後,為3.0以上。又,準備另一透光性基板1並以相同的成膜條件來僅成膜出遮光膜3,而在以上述光譜橢圓偏光計來測量該遮光膜3的光學特性後,折射率n為1.92,消光係數k為1.50。
接著,於遮光膜3上形成由矽及氧所構成,厚度5nm的硬遮罩膜4。此硬遮罩膜4係藉由將層積有相位轉移膜2及遮光膜3之透光性基板1設置在枚葉式RF濺鍍裝置內,而使用二氧化矽(SiO2)靶材並藉由氬氣(Ar)作為濺鍍氣體之RF濺鍍來加以形成。藉由上述順序來製造出具備有於透光性基板1上層積有3層構造的相位轉移膜2、遮光膜3及硬遮罩膜4之構造的遮罩基底100。
[相位轉移遮罩之製造]
接著,使用此實施例1之遮罩基底100並以下述順序來製作出實施例1之相位轉移遮罩200。首先,對硬遮罩膜4表面施予HMDS處理。接著,藉由旋塗法,來將由電子線描繪用化學增幅型阻劑所構成的阻劑膜以膜厚80nm來形成為相接於硬遮罩膜4的表面。接著,將應形成於相位轉移膜2之相位轉移圖案之第1圖案電 子線描繪在該阻劑膜。進一步地,進行既定顯影處理及洗淨處理來形成具有第1圖案之第1阻劑圖案5a(參照圖5(a))。此時,第1阻劑圖案5a係於圖案形成區域外一併形成有對應於條碼或對位標記之形狀的圖案。
接著,便將第1阻劑圖案5a作為遮罩來進行使用CF4氣體之乾蝕刻,以於硬遮罩膜4形成第1圖案(硬遮罩圖案4a)(參照圖5(b))。此時,硬遮罩膜4係於圖案形成區域外一併形成有對應於條碼或對位標記之形狀的圖案。之後,便去除第1阻劑圖案5a。
接著,將硬遮罩圖案4a作為遮罩來進行使用氯與氧的混合氣體(氣體流量比Cl2:O2=10:1)之乾蝕刻,以於遮光膜3形成第1圖案(遮光圖案3a)(參照圖5(c))。此時,遮光膜3係於圖案形成區域外一併形成有對應於條碼或對位標記之形狀的圖案。接著,便將遮光圖案3a作為遮罩而進行使用氟系氣體(SF6+He)之乾蝕刻,以於相位轉移膜2形成第1圖案(相位轉移圖案2a),且同時去除硬遮罩圖案4a(參照圖5(d))。此時,相位轉移膜2係於圖案形成區域外一併形成有對應於條碼或對位標記之形狀的圖案。
接著,於遮光圖案3a上藉由旋塗法來形成膜厚150nm,且由電子線描繪用化學增幅型阻劑所構成的阻劑膜。接著,將應形成於遮光膜之圖案(遮光圖案)的第2圖案曝光描繪在阻劑膜,進一步地,進行顯影處理等既定處理來形成具有遮光圖案之第2阻劑圖案6b(參照圖5(e))。接著,將第2阻劑圖案6b作為遮罩,而進行使用氯與氧的混合氣體(氣體流量比Cl2:O2=4:1)之乾蝕刻,以於遮光膜3形成第2圖案(遮光圖案3b)(參照圖5(f))。進一步地,去除第2阻劑圖案6b而經由洗淨等既定處理來得到相位轉移遮罩200(參照圖5(g))。
針對此相位轉移遮罩200,使用AIMS193(Carl Zeiss公司製)來進行藉由ArF準分子雷射的曝光光線而曝光轉印在半導體元件上的阻劑膜時之曝光轉印像的模擬。在驗證此模擬所得到的曝光轉印像時,已充分滿足設計式樣。又,曝光轉印像中並未發現到起因於條碼或對位標記的映射所造成之CD差異。由上述結果,可說是即便將從此實施例1之遮罩基底所製造的相位轉移遮罩200安裝在曝光裝置,並進行ArF準分子雷射的曝光光線之曝光轉印,仍能以高精度來對半導體元件上的阻劑膜進行曝光轉印。
(實施例2)
[遮罩基底之製造]
實施例2之遮罩基底110係除了相位轉移膜2之外,都以與實施例1相同之順序來加以製造。此實施例2之相位轉移膜2係在第2層22上形成第3層23。具體而言,係將由矽、氧及氮所構成相位轉移膜2的第1層21(SiON膜,Si:O:N=40原子%:35原子%:25原子%)以29.5nm的厚度來形成為相接於透光性基板1的表面。此相位轉移膜2係將透光性基板1設置在枚葉式RF濺鍍裝置內,並使用矽(Si)靶材,藉由氬(Ar)、氧(O2)及氮(N2)的混合氣體作為濺鍍氣體之RF濺鍍來加以形成。接著,於第1層21上,以41.5nm的厚度來形成由矽及氮所構成相位轉移膜2的第2層22(SiN膜,Si:N=43原子%:57原子%)。此第2層22係使用矽(Si)靶材並藉由氬(Ar)及氮(N2)的混合氣體作為濺鍍氣體之反應性濺鍍(RF濺鍍)來加以形成。接著,於第2層22上,以3nm的厚度來形成由矽及氮所構成相位轉移膜2的第3層23(SiN膜,Si:N=68原子%:32原子%)。此第3層23係使用矽(Si)靶材並藉由氬(Ar)及氮(N2)的混合氣體作為濺鍍氣體之反應性濺鍍(RF濺鍍)來加以形成。由上述順序便可以74nm厚度來形成會相接於透光性基板1的表面而層積有第1層21、第2層22、第3層23之的相位轉移膜2。
接著,使用上述相位轉移量測量裝置,來測量該相位轉移膜2相對於波長193nm的光線之穿透率與相位差後,則穿透率為19.6%,相位差為175.8度(deg)。進一步地,以上述光譜橢圓偏光計來測量此相位轉移膜2的第1層21、第2層22、第3層23的各光學特性後,則第1層21之折射率n1為1.990,消光係數k1為0.085,第2層22之折射率n2為2.595,消光係數k2為0.357,第3層23之折射率n3 為1.648,消光係數k3為1.861。相位轉移膜2相對於ArF準分子雷射之曝光光線波長的光線之內面反射率(透光性基板1側之反射率)為6.3%,為低於9%者。
藉由上述順序來製造出具備有於透光性基板1上層積有由第1層21、第2層22、第3層23所構成之相位轉移膜2、遮光膜3及硬遮罩膜4之構造的實施例2之遮罩基底110。另外,此實施例2之遮罩基底110係在透光性基板1上層積有相位轉移膜2與遮光膜3的狀態下使相對於ArF準分子雷射之曝光光線波長的光線之內面反射率(透光性基板1側之反射率)為6.3%,為低於9%者。在測量此相位轉移膜2與遮光膜3的層積構造中相對於波長193nm的光線之光學濃度(OD)後,為3.0以上。
[相位轉移遮罩之製造]
接著,便使用此實施例2之遮罩基底110,並以與實施例1相同之順序,來製作出實施例2之相位轉移遮罩210。
針對此相位轉移遮罩210,使用AIMS193(Carl Zeiss公司製)來進行藉由ArF準分子雷射的曝光光線而曝光轉印在半導體元件上的阻劑膜時之曝光轉印像的模擬。在驗證此模擬所得到的曝光轉印像時,已充分滿足設計式樣。又,曝光轉印像中並未發現到起因於條碼或對位標記的映射所造成之CD差異。由上述結果,可說是即便將從此實施例2之遮罩基底所製造的相位轉移遮罩210安裝在曝光裝置,並進行ArF準分子雷射的曝光光線之曝光轉印,仍能以高精度來對半導體元件上的阻劑膜進行曝光轉印。
(實施例3)
[遮罩基底之製造]
實施例3之遮罩基底120除了相位轉移膜2以外,都以與實施例1相同的順序來加以製造。此實施例3之相位轉移膜2係第3層23上形成有第4層24。具體而言,係將由矽、氧及氮所構成相位轉移膜2的第1層21(SiON膜,Si:O:N=40原子%:35原子%:25原子%)以29.5nm的厚度來形成為相接於透光性基板1的表面。此第1層21係將透光性基板1設置在枚葉式RF濺鍍裝置內,並使用矽(Si)靶材,藉由氬(Ar)、氧(O2)及氮(N2)的混合氣體作為濺鍍氣體之RF濺鍍來加以形成。接著,於第1層21上,以41.5nm的厚度來形成由矽及氮所構成相位轉移膜2的第2層22(SiN膜,Si:N=43原子%:57原子%)。此第2層22係使用矽(Si)靶材並藉由氬(Ar)及氮(N2)的混合氣體作為濺鍍氣體之反應性濺鍍(RF濺鍍)來加以形成。接著,於第2層22上,以3nm的厚度來形成由矽及氮所構成相位轉移膜2的第3層23(Si:N=68原子%:32原子%)。此第3層23係使用矽(Si)靶材並藉由氬(Ar)及氮(N2)的混合氣體作為濺鍍氣體之反應性濺鍍(RF濺鍍)來加以形成。接著,於第3層23上,以3nm的厚度來形成由矽及氧所構成相位轉移膜2的第4層24(SiO膜,Si:O=33原子%:67原子%)。此第4層24係使用矽(Si)靶材並藉由氬(Ar)及氮(O2)的混合氣體作為濺鍍氣體之反應性濺鍍(RF濺鍍)來加以形成。由上述順序便可以77nm厚度來形成會相接於透光性基板1的表面而層積有第1層21、第2層22、第3層23、第4層24之的相位轉移膜2。
接著,使用上述相位轉移量測量裝置,來測量該相位轉移膜2相對於ArF準分子雷射之曝光光線波長(波長193nm)的光線之穿透率與相位差後,則穿透率為20.1%,相位差為178.0度(deg)。進一步地,以上述光譜橢圓偏光計來測量此相位轉移膜2的第1層21、第2層22、第3層23、第4層24的各光學特性後,則第1層21之折射率n1為1.990,消光係數k1為0.085,第2層22之折射率n2為2.595,消光係數k2為0.357,第3層23之折射率n3為1.648,消光係數k3為1.861,第4層24之折射率n4為1.590,消光係數k4為0.000。相位轉移膜2相對於ArF準分子雷射之曝光光線波長光線之內面反射率(透光性基板1側之反射率)為5.8%,為低於9%者。
藉由上述順序來製造出具備有於透光性基板1上層積有由第1層21、第2層22、第3層23、第4層24所構成之相位轉移膜2、遮光膜3及硬遮罩膜4之構造的實施例3之遮罩基底120。另外,此實施例3之遮罩基底120係在透光性 基板1上層積有相位轉移膜2與遮光膜3的狀態下使相對於ArF準分子雷射之曝光光線波長的光線之內面反射率(透光性基板1側之反射率)為7.7%,為低於9%者。在測量此相位轉移膜2與遮光膜3的層積構造中相對於波長193nm的光線之光學濃度(OD)後,為3.0以上。
[相位轉移遮罩之製造]
接著,便使用此實施例3之遮罩基底120,以與實施例1相同之順序來製作出實施例3之相位轉移遮罩220。
針對此相位轉移遮罩220,使用AIMS193(Carl Zeiss公司製)來進行藉由ArF準分子雷射的曝光光線而曝光轉印在半導體元件上的阻劑膜時之曝光轉印像的模擬。在驗證此模擬所得到的曝光轉印像時,已充分滿足設計式樣。又,曝光轉印像中並未發現到起因於條碼或對位標記的映射所造成之CD差異。由上述結果,可說是即便將從此實施例3之遮罩基底所製造的相位轉移遮罩220安裝在曝光裝置,並進行ArF準分子雷射的曝光光線之曝光轉印,仍能以高精度來對半導體元件上的阻劑膜進行曝光轉印。
(實施例4)
[遮罩基底之製造]
實施例4之遮罩基底130係除了相位轉移膜2之外,都以與實施例1相同之順序來加以製造。此實施例4之相位轉移膜2係在第2層22上形成與第3層23組成不同之第3A層25。具體而言,係將由矽、氧及氮所構成相位轉移膜2的第1層21(SiON膜,Si:O:N=40原子%:35原子%:25原子%)以29.5nm的厚度來形成為相接於透光性基板1的表面。此第1層21係將透光性基板1設置在枚葉式RF濺鍍裝置內,並使用矽(Si)靶材,藉由氬(Ar)、氧(O2)及氮(N2)的混合氣體作為濺鍍氣體之RF濺鍍來加以形成。接著,於第1層21上,以41.5nm的厚度來形成由矽及氮所構成相位轉移膜2的第2層22(SiN膜,Si:N=43原子%:57原子%)。此第2層22係使用矽(Si)靶材並藉由氬(Ar)及氮(N2)的混合氣體作為濺鍍氣體之反應性濺鍍(RF濺鍍)來加以形成。接著,於第2層22上,以3nm的厚度來形成由矽及氧所構成相位轉移膜2的第3A層25(SiO膜,Si:O=33原子%:67原子%)。此第3A層25係使用矽(Si)靶材並藉由氬(Ar)及氧(O2)的混合氣體作為濺鍍氣體之反應性濺鍍(RF濺鍍)來加以形成。由上述順序便可以74nm厚度來形成會相接於透光性基板1的表面而層積有第1層21、第2層22、第3A層25之的相位轉移膜2。
使用上述相位轉移量測量裝置,來測量該相位轉移膜2相對於ArF準分子雷射之曝光光線波長(波長193nm)的光線之穿透率與相位差後,則穿透率為27.7%,相位差為179.3度(deg)。進一步地,以上述光譜橢圓偏光計來測量此相位轉移膜2的第1層21、第2層22、第3A層25的各光學特性後,則第1層21之折射率n1為1.990,消光係數k1為0.085,第2層22之折射率n2為2.595,消光係數k2為0.357,第3A層25之折射率n3A為1.590,消光係數k3A為0.000。相位轉移膜2相對於ArF準分子雷射之曝光光線波長的光線之內面反射率(透光性基板1側之反射率)為8.4%,為低於9%者。
藉由上述順序來製造出具備有於透光性基板1上層積有由第1層21、第2層22、第3A層25所構成之相位轉移膜2、遮光膜3及硬遮罩膜4之構造的實施例4之遮罩基底130。另外,此實施例4之遮罩基底130係在透光性基板1上層積有相位轉移膜2與遮光膜3的狀態下使相對於ArF準分子雷射之曝光光線波長的光線之內面反射率(透光性基板1側之反射率)為8.3%,為低於9%者。在測量此相位轉移膜2與遮光膜3的層積構造中相對於波長193nm的光線之光學濃度(OD)後,為3.0以上。
[相位轉移遮罩之製造]
接著,便使用此實施例4之遮罩基底130,以與實施例1相同之順序來製作出實施例4之相位轉移遮罩230。
針對此相位轉移遮罩230,使用AIMS193(Carl Zeiss公司製)來進行藉由ArF準分子雷射的曝光光線而曝光轉印在半導體元件上的阻劑膜時之曝光 轉印像的模擬。在驗證此模擬所得到的曝光轉印像時,已充分滿足設計式樣。又,曝光轉印像中並未發現到起因於條碼或對位標記的映射所造成之CD差異。由上述結果,可說是即便將從此實施例4之遮罩基底所製造的相位轉移遮罩230安裝在曝光裝置,並進行ArF準分子雷射的曝光光線之曝光轉印,仍能以高精度來對半導體元件上的阻劑膜進行曝光轉印。
(實施例5)
[遮罩基底之製造]
實施例5之遮罩基底130係除了相位轉移膜2之外,都以與實施例1相同之順序來加以製造。此實施例5之相位轉移膜2係從實施例4的相位轉移膜2來改變各第1層21、第2層22、第3A層25的膜厚。具體而言,係將由矽、氧及氮所構成相位轉移膜2的第1層21(SiON膜,Si:O:N=40原子%:35原子%:25原子%)以31nm的厚度來形成為相接於透光性基板1的表面。此第1層21係將透光性基板1設置在枚葉式RF濺鍍裝置內,並使用矽(Si)靶材,藉由氬(Ar)、氧(O2)及氮(N2)的混合氣體作為濺鍍氣體之RF濺鍍來加以形成。接著,於第1層21上,以38nm的厚度來形成由矽及氮所構成相位轉移膜2的第2層22(SiN膜,Si:N=43原子%:57原子%)。此第2層22係使用矽(Si)靶材並藉由氬(Ar)及氮(N2)的混合氣體作為濺鍍氣體之反應性濺鍍(RF濺鍍)來加以形成。接著,於第2層22上,以20nm的厚度來形成由矽及氧所構成之相位轉移膜2的第3A層25(SiO膜,Si:O=33原子%:67原子%)。此第3A層25係使用矽(Si)靶材並藉由氬(Ar)及氧(O2)的混合氣體作為濺鍍氣體之反應性濺鍍(RF濺鍍)來加以形成。由上述順序便可以89nm厚度來形成會相接於透光性基板1的表面而層積有第1層21、第2層22、第3A層25之的相位轉移膜2。
使用上述相位轉移量測量裝置,來測量該相位轉移膜2相對於ArF準分子雷射之曝光光線波長(波長193nm)的光線之穿透率與相位差後,則穿透率為35.2%,相位差為189.6度(deg)。進一步地,以上述光譜橢圓偏光計來測量此相位轉移膜2的第1層21、第2層22、第3A層25的各光學特性後,則第1層21之折 射率n1為1.990,消光係數k1為0.085,第2層22之折射率n2為2.595,消光係數k2為0.357,第3A層25之折射率n3A為1.590,消光係數k3A為0.000。相位轉移膜2相對於ArF準分子雷射之曝光光線波長的光線之內面反射率(透光性基板1側之反射率)為5.4%,為低於9%者。
藉由上述順序來製造出具備有於透光性基板1上層積有由第1層21、第2層22、第3A層25所構成之相位轉移膜2、遮光膜3及硬遮罩膜4之構造的實施例5之遮罩基底130。在測量此相位轉移膜2與遮光膜3的層積構造中相對於波長193nm的光線之光學濃度(OD)後,為3.0以上。
[相位轉移遮罩之製造]
接著,便使用此實施例5之遮罩基底130,以與實施例1相同之順序來製作出實施例5之相位轉移遮罩230。
針對此相位轉移遮罩230,使用AIMS193(Carl Zeiss公司製)來進行藉由ArF準分子雷射的曝光光線而曝光轉印在半導體元件上的阻劑膜時之曝光轉印像的模擬。在驗證此模擬所得到的曝光轉印像時,已充分滿足設計式樣。又,曝光轉印像中並未發現到起因於條碼或對位標記的映射所造成之CD差異。由上述結果,可說是即便將從此實施例5之遮罩基底所製造的相位轉移遮罩230安裝在曝光裝置,並進行ArF準分子雷射的曝光光線之曝光轉印,仍能以高精度來對半導體元件上的阻劑膜進行曝光轉印。
(實施例6)
[遮罩基底之製造]
實施例6之遮罩基底110係除了相位轉移膜2之外,都以與實施例1相同之順序來加以製造。此實施例6之相位轉移膜2係從實施例2的相位轉移膜2來改變第1層21、第2層22的膜厚,並進一步地從實施例2的相位轉移膜2來改變第3層23之組成及膜厚。具體而言,係將由矽、氧及氮所構成相位轉移膜2的第1層21(SiON膜,Si:O:N=40原子%:35原子%:25原子%)以31nm的厚度來形成為相接於 透光性基板1的表面。此第1層21係將透光性基板1設置在枚葉式RF濺鍍裝置內,並使用矽(Si)靶材,藉由氬(Ar)、氧(O2)及氮(N2)的混合氣體作為濺鍍氣體之RF濺鍍來加以形成。接著,於第1層21上,以35nm的厚度來形成由矽及氮所構成相位轉移膜2的第2層22(SiN膜,Si:N=43原子%:57原子%)。此第2層22係使用矽(Si)靶材並藉由氬(Ar)及氮(N2)的混合氣體作為濺鍍氣體之反應性濺鍍(RF濺鍍)來加以形成。接著,於第2層22上,以17nm的厚度來形成由矽、氧及氮所構成相位轉移膜2的第3層23(Si:O:N=40原子%:35原子%:25原子%)。此第3層23係使用矽(Si)靶材並藉由氬(Ar)、氧(O2)及氮(N2)的混合氣體作為濺鍍氣體之反應性濺鍍(RF濺鍍)來加以形成。由上述順序便可以83nm厚度來形成會相接於透光性基板1的表面而層積有第1層21、第2層22、第3層23之的相位轉移膜2。
使用上述相位轉移量測量裝置,來測量該相位轉移膜2相對於ArF準分子雷射之曝光光線波長(波長193nm)的光線之穿透率與相位差後,則穿透率為33.4%,相位差為191.5度(deg)。進一步地,以上述光譜橢圓偏光計來測量此相位轉移膜2的第1層21、第2層22、第3層23的各光學特性後,則第1層21之折射率n1為1.990,消光係數k1為0.085,第2層22之折射率n2為2.595,消光係數k2為0.357,第3層23之折射率n3為1.990,消光係數k3為0.085。相位轉移膜2相對於ArF準分子雷射之曝光光線波長的光線之內面反射率(透光性基板1側之反射率)為4.7%,為低於9%者。
藉由上述順序來製造出具備有於透光性基板1上層積有由第1層21、第2層22、第3層23所構成之相位轉移膜2、遮光膜3及硬遮罩膜4之構造的實施例6之遮罩基底110。在測量此相位轉移膜2與遮光膜3的層積構造中相對於波長193nm的光線之光學濃度(OD)後,為3.0以上。
[相位轉移遮罩之製造]
接著,便使用此實施例6之遮罩基底110,以與實施例1相同之順序來製作出實施例6之相位轉移遮罩210。
針對此相位轉移遮罩210,使用AIMS193(Carl Zeiss公司製)來進行藉由ArF準分子雷射的曝光光線而曝光轉印在半導體元件上的阻劑膜時之曝光轉印像的模擬。在驗證此模擬所得到的曝光轉印像時,已充分滿足設計式樣。又,曝光轉印像中並未發現到起因於條碼或對位標記的映射所造成之CD差異。由上述結果,可說是即便將從此實施例6之遮罩基底所製造的相位轉移遮罩210安裝在曝光裝置,並進行ArF準分子雷射的曝光光線之曝光轉印,仍能以高精度來對半導體元件上的阻劑膜進行曝光轉印。
(參考例1)
[遮罩基底之製造]
參考例1之遮罩基底係另一發明之遮罩基底相關的參考例。此參考例1之遮罩基底係除了相位轉移膜之外,都以與實施例1相同之順序來加以製造。此參考例1之相位轉移膜2係具備從透光性基板側依序層積有第1B層、第2B層、第3B層及第4B層的構造。第1B層雖會使用與實施例1之第1層21相同材料,但會將膜厚變更為31nm。第2B層雖會使用與實施例1之第2層22相同材料,但會將膜厚變更為30nm。第3B層雖會使用與實施例1之第1層21相同材料,但會將膜厚變更為15nm。第4B層會使用與實施例3之第4層24相同材料,且膜厚亦為3nm。由上述順序便可以79nm厚度來形成會相接於透光性基板1的表面而層積有第1B層、第2B層、第3B層、第4B層的相位轉移膜。
使用上述相位轉移量測量裝置,來測量該相位轉移膜2相對於ArF準分子雷射之曝光光線波長(波長193nm)的光線之穿透率與相位差後,則穿透率為38.5%,相位差為175.1度(deg)。相位轉移膜2相對於ArF準分子雷射之曝光光線波長的光線之內面反射率(透光性基板1側之反射率)為8.9%,為低於9%者。
藉由上述順序來製造出具備有於透光性基板上層積有由第1B層、第2B層、第3B層、第4B層所構成之相位轉移膜、遮光膜及硬遮罩膜之構造 的參考例1之遮罩基底。在測量此相位轉移膜與遮光膜的層積構造中相對於波長193nm的光線之光學濃度(OD)後,為3.0以上。
[相位轉移遮罩之製造]
接著,便使用此參考例1之遮罩基底,以與實施例1相同之順序來製作出參考例1之相位轉移遮罩。
針對此參考例1之相位轉移遮罩,使用AIMS193(Carl Zeiss公司製)來進行藉由ArF準分子雷射的曝光光線而曝光轉印在半導體元件上的阻劑膜時之曝光轉印像的模擬。在驗證此模擬所得到的曝光轉印像時,已充分滿足設計式樣。又,曝光轉印像中並未發現到起因於條碼或對位標記的映射所造成之CD差異。由上述結果,可說是即便將從此參考例1之遮罩基底所製造的相位轉移遮罩安裝在曝光裝置,並進行ArF準分子雷射的曝光光線之曝光轉印,仍能以高精度來對半導體元件上的阻劑膜進行曝光轉印。
(比較例1)
[遮罩基底之製造]
此比較例1之遮罩基底係除了相位轉移膜之外,都以與實施例1相同之順序來加以製造。此比較例1之相位轉移膜係變更為單層構造。具體而言,係將由矽及氮所構成相位轉移膜(SiN膜,Si:N=43原子%:57原子%)以60nm的厚度來形成為相接於透光性基板1的表面。此相位轉移膜係將透光性基板設置在枚葉式RF濺鍍裝置內,並使用矽(Si)靶材,藉由氬(Ar)及氮(N2)的混合氣體作為濺鍍氣體之反應性濺鍍(RF濺鍍)來加以形成。
以上述光譜橢圓偏光計,來測量該相位轉移膜之光學特性後,則折射率n為2.638%,消光係數k為0.363。然而,在將此單層構造之相位轉移膜調整為相位差為178.5度(deg)時,則穿透率18.6%。由於在相位轉移膜與遮光膜之層積構造中相對於ArF準分子雷射之曝光光線的光學濃度(OD)為3.0以上,故遮 光膜的組成及光學特性雖為相同,但會使厚度改變為55.8nm,相位轉移膜相對於ArF準分子雷射之曝光光線的內面反射率為25.8%,為大幅超過9%者。
藉由上述順序來製造出具備有於透光性基板上層積有由SiN之單層構造所構成的相位轉移膜、遮光膜及硬遮罩膜之構造的比較例1之遮罩基底。另外,此比較例1之遮罩基底係在透光性基板上層積有相位轉移膜與遮光膜的狀態下使相對於ArF準分子雷射之曝光光線的內面反射率為20.0%,為大幅超過9%者。
[相位轉移遮罩之製造]
接著,便使用此比較例1之遮罩基底,以與實施例1相同之順序來製作出比較例1之相位轉移遮罩。
針對製作出之比較例1的半色調型相位轉移遮罩,使用AIMS193(Carl Zeiss公司製)來進行藉由ArF準分子雷射的曝光光線而曝光轉印在半導體元件上的阻劑膜時之曝光轉印像的模擬。在驗證此模擬所得到的曝光轉印像時,會發現到起因於條碼或對位標記的映射所造成之CD差異,而未滿足設計式樣。由上述結果,從此比較例1之遮罩基底所製造出的相位轉移遮罩可說是無法以高精度來對半導體元件上的阻劑膜進行曝光轉印。
(比較例2)
[遮罩基底之製造]
此比較例2之遮罩基底係除了相位轉移膜之外,都以與實施例1相同之順序來加以製造。此比較例2之相位轉移膜係將第1層、第2層、第3層分別變更為40nm、35.5nm、3.5nm。此相位轉移膜2係使第2層之厚度成為較第1層之厚度要小。另外,相位轉移膜2之第1層、第2層、第3層的各折射率、消光係數係與實施例1相同。
此相位轉移膜的相位差為176.3度(deg),穿透率為19.9%。由於在相位轉移膜與遮光膜之層積構造中使相對於ArF準分子雷射之曝光光線的光學 濃度(OD)為3.0以上,故遮光膜的組成及光學特性雖會與實施例1相同,但會將厚度改變為55.6nm。相位轉移膜相對於ArF準分子雷射之曝光光線的內面反射率為12.1%,為大幅超過9%者。
藉由上述順序來製造出具備有於透光性基板上層積有相位轉移膜、遮光膜及硬遮罩膜之構造的比較例2之遮罩基底。另外,此比較例2之遮罩基底係在透光性基板上層積有相位轉移膜與遮光膜的狀態下相對於ArF準分子雷射之曝光光線的內面反射率為16.9%,為大幅超過9%者。
[相位轉移遮罩之製造]
接著,便使用此比較例2之遮罩基底,以與實施例1相同之順序來製作出比較例2之相位轉移遮罩。
針對製作出之比較例2的半色調型相位轉移遮罩,使用AIMS193(Carl Zeiss公司製)來進行藉由ArF準分子雷射的曝光光線而曝光轉印在半導體元件上的阻劑膜時之曝光轉印像的模擬。在驗證此模擬所得到的曝光轉印像時,會發現到起因於條碼或對位標記的映射所造成之CD差異,而未滿足設計式樣。由上述結果,從此比較例2之遮罩基底所製造出的相位轉移遮罩可說是無法以高精度來對半導體元件上的阻劑膜進行曝光轉印。
1‧‧‧透光性基板
2‧‧‧相位轉移膜
21‧‧‧第1層
22‧‧‧第2層
3‧‧‧遮光膜
4‧‧‧硬遮罩膜
100‧‧‧遮罩基底

Claims (13)

  1. 一種遮罩基底,係在透光性基板上具備相位轉移膜之遮罩基底;該相位轉移膜係包含從該透光性基板側依序層積有第1層及第2層之構造;該第1層係設置為相接於該透光性基板之表面;該相位轉移膜係在該第2層上具備第3層;ArF準分子雷射之曝光光線的波長在該第1層、該第2層、及該第3層中之折射率分別為n1、n2、n3時,會滿足n3<n1<n2的關係;該曝光光線的波長在該第1層、該第2層、及該第3層中之消光係數分別為k1、k2、k3時,會滿足k1<k2<k3的關係;在該第1層、該第2層、及該第3層之膜厚分別為d1、d2、d3時,會滿足d3<d1<d2的關係;該第1層之折射率n1係1.8以上但未達2.2,該第1層之消光係數k1為0.05以上且0.15以下,該第1層之膜厚d1係較10nm要大但未達33nm;該第2層之折射率n2係2.2以上且3.0以下,該第2層之消光係數k2為0.2以上且0.5以下,該第2層之膜厚d2係33nm以上且50nm以下;該第3層之折射率n3係未達1.8,該第3層之消光係數k3為1.0以上且2.0以下,該第3層之膜厚d3係2nm以上且10nm以下。
  2. 如申請專利範圍第1項之遮罩基底,其中該曝光光線的波長在該透光性基板中之折射率為nS時,會滿足nS<n1<n2之關係;該曝光光線的波長在該透光性基板中之消光係數為kS時,會滿足kS<k1<k2之關係。
  3. 如申請專利範圍第2項之遮罩基底,其中該透光性基板之折射率nS係1.6以下,該透光性基板之消光係數kS係0.01以下。
  4. 如申請專利範圍第1至3項中任一項之遮罩基底,其中該相位轉移膜係具有以15%以上的穿透率來讓該曝光光線穿透之功能以及讓相對於穿透該相位轉移膜之該曝光光線而使在空氣中通過與該相位轉移膜之厚度相同距離的曝光光線之間會產生150度以上,200度以下的相位差之功能。
  5. 如申請專利範圍第1至3項中任一項之遮罩基底,其中該第1層係以由矽與氮與氧所構成之材料,或是由選自類金屬元素及非金屬元素的1種以上的元素與矽與氮與氧所構成之材料所形成;該第2層係以由矽與氮所構成之材料,或是由選自類金屬元素及非金屬元素的1種以上的元素與矽與氮所構成之材料所形成。
  6. 如申請專利範圍第5項之遮罩基底,其中該第2層之氮含量會較該第1層之氮含量要多。
  7. 如申請專利範圍第1至3項中任一項之遮罩基底,其中該第3層係以由矽與氮所構成之材料,或是由選自類金屬元素及非金屬元素的1種以上的元素與矽與氮所構成之材料所形成。
  8. 如申請專利範圍第1至3項中任一項之遮罩基底,其中該相位轉移膜係在該第3層上具備第4層;該曝光光線的波長在該第4層中之折射率為n4時,會滿足n4<n1<n2之關係;該曝光光線的波長在該第4層中之消光係數為k4時,會滿足k4<k1<k2之關係;該第4層之折射率n4係1.5以上且1.7以下,該第4層之消光係數k4為0.00以上且0.02以下; 該第4層之膜厚d4係2nm以上且10nm以下。
  9. 如申請專利範圍第8項之遮罩基底,其中該第4層係以由矽與氧所構成之材料,或是由選自類金屬元素及非金屬元素的1種以上的元素與矽與氧所構成之材料所形成。
  10. 一種遮罩基底,係在透光性基板上具備相位轉移膜之遮罩基底;該相位轉移膜係包含從該透光性基板側依序層積有第1層及第2層之構造;該第1層係設置為相接於該透光性基板之表面;該相位轉移膜係在該第2層上具備第3A層;ArF準分子雷射之曝光光線的波長在該第1層、該第2層、及該第3A層中之折射率分別為n1、n2、n3A時,會滿足n3A<n1<n2之關係;該曝光光線的波長在該第1層、該第2層、及該第3A層中之消光係數分別為k1、k2、k3A時,會滿足k3A<k1<k2之關係;在該第1層、該第2層、及該第3A層之膜厚分別為d1、d2、d3A時,會滿足d3A<d1<d2的關係;該第1層之折射率n1係1.8以上但未達2.2,該第1層之消光係數k1為0.05以上且0.15以下,該第1層之膜厚d1係較10nm要大但未達33nm;該第2層之折射率n2係2.2以上且3.0以下,該第2層之消光係數k2為0.2以上且0.5以下,該第2層之膜厚d2係33nm以上且50nm以下;該第3A層之折射率n3A係1.5以上且1.7以下,該第3A層之消光係數k3A為0.00以上且0.02以下,該第3A層之膜厚d3A係2nm以上且30nm以下。
  11. 如申請專利範圍第10項之遮罩基底,其中該第3A層係以由矽與氧所構成之材料,或是由選自類金屬元素及非金屬元素的1種以上的元素與矽與氧所構成之材料所形成。
  12. 一種相位轉移遮罩,係將轉印圖案設置於如申請專利範圍第1至11項中任一項之遮罩基底的該相位轉移膜。
  13. 一種半導體元件之製造方法,係具備使用如申請專利範圍第12項之相位轉移遮罩,來將轉印圖案曝光轉印於半導體基板上之阻劑膜的工序。
TW108118002A 2018-05-30 2019-05-24 遮罩基底、相位轉移遮罩以及半導體元件之製造方法 TWI801587B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018103482A JP7109996B2 (ja) 2018-05-30 2018-05-30 マスクブランク、位相シフトマスクおよび半導体デバイスの製造方法
JP2018-103482 2018-05-30

Publications (2)

Publication Number Publication Date
TW202012164A TW202012164A (zh) 2020-04-01
TWI801587B true TWI801587B (zh) 2023-05-11

Family

ID=68697347

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108118002A TWI801587B (zh) 2018-05-30 2019-05-24 遮罩基底、相位轉移遮罩以及半導體元件之製造方法

Country Status (7)

Country Link
US (1) US11442357B2 (zh)
JP (1) JP7109996B2 (zh)
KR (1) KR102660488B1 (zh)
CN (1) CN112189167B (zh)
SG (1) SG11202010535YA (zh)
TW (1) TWI801587B (zh)
WO (1) WO2019230313A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018213056A1 (de) * 2018-08-03 2020-02-06 Robert Bosch Gmbh Verfahren und Vorrichtung zum Ermitteln einer Erklärungskarte
CN113809047B (zh) * 2020-06-12 2024-02-06 长鑫存储技术有限公司 半导体结构及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014145920A (ja) * 2013-01-29 2014-08-14 Hoya Corp マスクブランク、転写用マスク、マスクブランクの製造方法、転写用マスクの製造方法、および半導体デバイスの製造方法
TW201708940A (zh) * 2015-05-15 2017-03-01 Hoya Corp 光罩基底、轉印用光罩、轉印用光罩之製造方法及半導體裝置之製造方法

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3213345B2 (ja) 1991-08-27 2001-10-02 松下電工株式会社 タイマ付き配線器具
JPH07159981A (ja) 1993-12-03 1995-06-23 Toshiba Corp 露光用マスク基板
US5629115A (en) 1993-04-30 1997-05-13 Kabushiki Kaisha Toshiba Exposure mask and method and apparatus for manufacturing the same
JP3115185B2 (ja) * 1993-05-25 2000-12-04 株式会社東芝 露光用マスクとパターン形成方法
KR0168134B1 (ko) 1993-05-25 1999-01-15 사토 후미오 반사형 위상쉬프트 마스크와, 투과형 위상쉬프트 마스크 및, 패턴형성방법
JPH10186632A (ja) * 1996-10-24 1998-07-14 Toppan Printing Co Ltd ハーフトーン型位相シフトマスク用ブランク及びハーフトーン型位相シフトマスク
US5935735A (en) 1996-10-24 1999-08-10 Toppan Printing Co., Ltd. Halftone phase shift mask, blank for the same, and methods of manufacturing these
JP5054766B2 (ja) 2007-04-27 2012-10-24 Hoya株式会社 フォトマスクブランク及びフォトマスク
NL2007303A (en) 2010-09-23 2012-03-26 Asml Netherlands Bv Process tuning with polarization.
KR102166222B1 (ko) 2013-01-15 2020-10-15 호야 가부시키가이샤 마스크 블랭크, 위상 시프트 마스크 및 이들의 제조 방법
JP6005530B2 (ja) 2013-01-15 2016-10-12 Hoya株式会社 マスクブランク、位相シフトマスクおよびこれらの製造方法
US9177796B2 (en) * 2013-05-03 2015-11-03 Applied Materials, Inc. Optically tuned hardmask for multi-patterning applications
JP2018063441A (ja) * 2013-11-06 2018-04-19 信越化学工業株式会社 ハーフトーン位相シフト型フォトマスクブランク、ハーフトーン位相シフト型フォトマスク及びパターン露光方法
JP6264238B2 (ja) 2013-11-06 2018-01-24 信越化学工業株式会社 ハーフトーン位相シフト型フォトマスクブランク、ハーフトーン位相シフト型フォトマスク及びパターン露光方法
JP6524614B2 (ja) 2014-05-27 2019-06-05 大日本印刷株式会社 マスクブランクス、ネガ型レジスト膜付きマスクブランクス、位相シフトマスク、およびそれを用いるパターン形成体の製造方法
JP6430155B2 (ja) * 2014-06-19 2018-11-28 Hoya株式会社 マスクブランク、位相シフトマスク、位相シフトマスクの製造方法および半導体デバイスの製造方法
JP6058757B1 (ja) 2015-07-15 2017-01-11 Hoya株式会社 マスクブランク、位相シフトマスク、位相シフトマスクの製造方法および半導体デバイスの製造方法
JP6087401B2 (ja) 2015-08-14 2017-03-01 Hoya株式会社 マスクブランク、位相シフトマスクおよび半導体デバイスの製造方法
TWI720752B (zh) 2015-09-30 2021-03-01 日商Hoya股份有限公司 空白遮罩、相位移轉遮罩及半導體元件之製造方法
SG11201901301SA (en) 2016-08-26 2019-03-28 Hoya Corp Mask blank, phase shift mask, method of manufacturing phase shift mask, and method of manufacturing semiconductor device
JP6271780B2 (ja) 2017-02-01 2018-01-31 Hoya株式会社 マスクブランク、位相シフトマスクおよび半導体デバイスの製造方法
JP6321265B2 (ja) * 2017-05-29 2018-05-09 Hoya株式会社 マスクブランク、位相シフトマスク、位相シフトマスクの製造方法及び半導体デバイスの製造方法
JP6490786B2 (ja) * 2017-12-25 2019-03-27 Hoya株式会社 マスクブランク、位相シフトマスクおよび半導体デバイスの製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014145920A (ja) * 2013-01-29 2014-08-14 Hoya Corp マスクブランク、転写用マスク、マスクブランクの製造方法、転写用マスクの製造方法、および半導体デバイスの製造方法
TW201708940A (zh) * 2015-05-15 2017-03-01 Hoya Corp 光罩基底、轉印用光罩、轉印用光罩之製造方法及半導體裝置之製造方法

Also Published As

Publication number Publication date
TW202012164A (zh) 2020-04-01
US11442357B2 (en) 2022-09-13
SG11202010535YA (en) 2020-11-27
JP7109996B2 (ja) 2022-08-01
KR20210015777A (ko) 2021-02-10
WO2019230313A1 (ja) 2019-12-05
KR102660488B1 (ko) 2024-04-24
CN112189167A (zh) 2021-01-05
US20210208497A1 (en) 2021-07-08
JP2019207361A (ja) 2019-12-05
CN112189167B (zh) 2024-05-03

Similar Documents

Publication Publication Date Title
TWI689777B (zh) 遮罩基底、相位轉移遮罩及半導體元件之製造方法
JP6920775B2 (ja) マスクブランク、転写用マスクの製造方法、及び半導体デバイスの製造方法
JP7106492B2 (ja) マスクブランク、位相シフトマスクおよび半導体デバイスの製造方法
KR20160137980A (ko) 마스크 블랭크, 위상 시프트 마스크의 제조 방법, 위상 시프트 마스크 및 반도체 디바이스의 제조 방법
TWI801587B (zh) 遮罩基底、相位轉移遮罩以及半導體元件之製造方法
TWI791837B (zh) 遮罩基底、相移遮罩及半導體元件之製造方法
TWI809232B (zh) 遮罩基底、相移遮罩、相移遮罩之製造方法及半導體元件之製造方法
JP7163505B2 (ja) マスクブランク、位相シフトマスク及び半導体デバイスの製造方法
JP7179543B2 (ja) マスクブランク、転写用マスクおよび半導体デバイスの製造方法
US20230314929A1 (en) Mask blank, phase shift mask, and method of manufacturing semiconductor device
TW202125093A (zh) 遮罩基底、相移遮罩及半導體元件之製造方法