TWI795650B - 生產顆粒材料的加工系統和方法 - Google Patents

生產顆粒材料的加工系統和方法 Download PDF

Info

Publication number
TWI795650B
TWI795650B TW109121945A TW109121945A TWI795650B TW I795650 B TWI795650 B TW I795650B TW 109121945 A TW109121945 A TW 109121945A TW 109121945 A TW109121945 A TW 109121945A TW I795650 B TWI795650 B TW I795650B
Authority
TW
Taiwan
Prior art keywords
chamber
gas
processing system
dispersion
dispersion chamber
Prior art date
Application number
TW109121945A
Other languages
English (en)
Other versions
TW202114777A (zh
Inventor
良毓 陳
焱 王
楊錄
Original Assignee
美商壹久公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商壹久公司 filed Critical 美商壹久公司
Publication of TW202114777A publication Critical patent/TW202114777A/zh
Application granted granted Critical
Publication of TWI795650B publication Critical patent/TWI795650B/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/26Nozzle-type reactors, i.e. the distribution of the initial reactants within the reactor is effected by their introduction or injection through nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J10/00Chemical processes in general for reacting liquid with gaseous media other than in the presence of solid particles, or apparatus specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0006Controlling or regulating processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/06Solidifying liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/2405Stationary reactors without moving elements inside provoking a turbulent flow of the reactants, such as in cyclones, or having a high Reynolds-number
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J4/00Feed or outlet devices; Feed or outlet control devices
    • B01J4/001Feed or outlet devices as such, e.g. feeding tubes
    • B01J4/002Nozzle-type elements
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • C01B13/34Methods for preparing oxides or hydroxides in general by oxidation or hydrolysis of sprayed or atomised solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0421Methods of deposition of the material involving vapour deposition
    • H01M4/0423Physical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00121Controlling the temperature by direct heating or cooling
    • B01J2219/00123Controlling the temperature by direct heating or cooling adding a temperature modifying medium to the reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Disintegrating Or Milling (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Abstract

提供了一種由液體混合物生產顆粒材料的處理系統和方法。該處理系統通常包括一個連接到一個或多個氣體管線以將一種或多種氣體輸送到處理系統中的系統入口,一個或多個適於將液體混合物噴射到一個或多個液滴流中並迫使其中一個或更多的液滴流進入處理系統的動力噴射模塊,以及一個反應室,其適於在一種或多種氣體的存在下遞送一種或多種液滴流並將該一種或多種液滴流處理成顆粒材料。該方法包括將一種或多種氣體輸送到處理系統中,使用處理系統的一個或多個動力噴射模塊將液體混合物噴射到一個或多個第一液滴流中並進入處理系統,並在存在一種或多種氣體的情況下,在第一溫度下,使從處理系統中反應室內的反應室運送的一個或多個第一液滴流反應成顆粒材料。

Description

生產顆粒材料的加工系統和方法
相關申請的關聯引用 本申請要求享有2019年6月28日提交的、序號為16/457,885的美國臨時專利申請的優先權,其全部內容通過引用結合於本申請中。
本發明總體上涉及用於電池應用的材料的製備。 更具體地,本發明涉及製造用於二次電池的結構化陰極或陽極活性材料的處理系統和方法。
已進行了大量努力來研發先進的電化學電池單元(battery cells),以滿足在高能量密度、高動力性能、高容量、長迴圈週期、低價和卓越的安全性方面,各種消費者電子產品、電動運輸工具和電網能量儲存應用的逐漸增長的需求。在大多數情況下,需要微型化、輕便並且可充電(由此可重複使用)的電池,以節省空間和材料資源。
在電化學活性電池單元中,陰極和陽極浸入電解液,並且通過分離器來在電學上分開。分離器通常由多孔的聚合物膜材料構成,以使得在電池充電和放電期間,從電極釋放到電解液中的金屬離子可以通過分離器的孔擴散,並且在陰極和陽極之間遷移。電池單元的類型通常根據在其陰極和陽極電極之間運輸的金屬離子來命名。多年以來,商業上已開發出了多種可充電的二次電池,例如鎳鎘電池、鎳氫電池、鉛酸電池、鋰離子電池和鋰離子聚合物電池等。為了在商業上使用,可充電的二次電池要求是高能量密度、高動力性能和安全的。然而,在能量密度和動力性能之間存在一定的權衡。
鋰離子電池是在20世紀90年代早期研發出來的一種二次電池。與其他二次電池相比,它具有高能量密度、長迴圈週期、沒有記憶效應、低自放電率和環境友好性的優點。鋰離子電池很快地被接受,並且主宰了商業二次電池市場。然而,商業生產多種鋰離子電池的材料的成本遠高於其他類型的二次電池的成本。
在鋰離子電池中,電解液主要由有機溶劑(例如碳酸乙烯酯、碳酸二甲酯和碳酸二乙酯)中的鋰鹽(例如LiPF6 、LiBF4 或LiClO4 )構成,以使得鋰離子可以在其中自由移動。通常,分別使用鋁箔(例如15~20微米厚)和銅箔(例如8~15微米厚)作為陰極電極和陽極電極的集電器。對於陽極,常常使用微米級石墨(具有大約330 mAh/g的可逆的容量)作為覆蓋陽極集電器的活性材料。石墨材料常常由固態工藝來製備,例如在無氧氣、極高的溫度下研磨並熱解(例如在約3000°C下石墨化)。至於活性陰極材料,多年來,已研發出了不同晶體結構和容量的多種固體材料。好的陰極活性材料的例子包括納米級或微米級的鋰過渡金屬氧化物材料和鋰離子磷酸鹽等。
陰極活性材料是鋰離子電池中最貴的組件,並且在相對大的程度上,決定了鋰電池單元的能量密度、迴圈週期、生產成本和安全性。當鋰電池被初次商業化時,鋰鈷氧化物(LiCoO2 )材料被用作陰極材料,並且在陰離子活性材料市場上它仍然佔有顯著的市場份額。然而,鈷是有毒且昂貴的。其他鋰過渡金屬氧化物材料,例如分層結構的LiMeO2 (其中金屬Me=Ni、Mn、Co等;例如LiNi0.33 Mn0.33 Co0.33 O2 ,其可逆/實際容量約為140~150mAh/g)、尖晶石結構的LiMn2 O4 (其可逆/實際容量約為110~120mAh/g)和橄欖樹型鋰金屬磷酸鹽(例如LiFePO4 ,其可逆/實際容量約為140~150mAh/g)近來被研發為活性陰離子材料。當用作陰離子材料時,尖晶石結構的LiMn2 O4 材料表現出差的電池迴圈週期,而橄欖樹型LiFePO4 材料遭受低的能力密度和差的低溫性能。至於LiMeO2 材料,雖然其電化學性能較好,可是LiMeO2 的現有製備工藝會主要得到團塊,使得大多數LiMeO2 材料的電極密度比LiCoO2 低。無論如何,製備電池應用材料(尤其是陰極活性材料)的現有工藝過於昂貴,因為大部分工藝都消耗太多時間和能源,並且現有材料的品質仍不一致,並且產量低。
常規的材料製備工藝例如固態反應(例如混合固體前驅體,然後煆燒)和濕法化學工藝(例如在溶液中通過共沉澱、溶膠-凝膠或者水熱反應等處理前驅體,然後進行混合和煆燒)在生產納米或微米結構的材料上面臨顯著的挑戰。很難以所需的顆粒大小、形態、晶體結構、顆粒形狀甚至化學計量比來一致地生產均一固體材料(即顆粒和粉末)。為了完全反應、同質性和晶粒生長,大多數常規的固態反應需要長的煆燒時間(例如4-20小時)和額外的退火過程。例如,通過固態反應制得的尖晶石結構的LiMn2 O4 和橄欖樹型LiFePO4 材料需要至少幾個小時的煆燒和分開的加熱後退火過程(例如24小時),並且仍然顯示出差的品質一致性。固態反應的一個內在的問題是在煆燒爐記憶體在溫度和化學物質(例如O2 )梯度,這限制了最終成品的性能、一致性和總體品質。
另一方面,在低溫進行的濕法化學工藝通常涉及較快的化學反應,但是之後仍然需要分開的高溫煆燒過程乃至額外的退火過程。此外,在濕法化學工藝中所需的化學添加劑、膠凝劑和表面活性劑將增加材料生產成本(購買額外的化學物質並調節特定的工藝順序、速率、pH和溫度),並且可能干擾由此生產的活性材料的最終組成(因此通常需要額外的步驟來去除不想要的化學物質或過濾產物)。此外,通過濕法化學生產的產品粉末的初級顆粒的大小非常小,並且易於團結成不合需要的大尺寸的二級顆粒,從而影響能量存儲密度。另外,由此生產的粉末顆粒的形態常常表現出不合需要的無定形團聚體、多空團聚體、線狀體、杆狀體、片狀體等。允許高的存儲密度的均一的顆粒大小和形態是可取的。
鋰鈷氧化物(LiCoO2 )材料的合成相對簡單,包括混合鋰鹽(例如具有所需顆粒大小的氧化鈷(Co3 O4 )的氫氧化鋰(LiOH)或碳酸鋰(Li2 CO3 ),然後在爐內在非常高的溫度下長時間(例如900°C下20小時)煆燒,以確保鋰金屬擴散到氧化鈷的晶體結構中以形成分層晶體結構的LiCoO2 粉末的合適的最終產物。此方法不適用於LiMeO2 ,因為如果直接混合並使其過渡金屬氧化物或鹽反應(固態煆燒),過渡金屬例如Ni、Mn和Co不能很好地擴散到彼此之中形成均一混合的過渡金屬層。因此,在製備最終的活性陰離子材料(例如鋰NiMnCo過渡金屬氧化物(LiMeO2 ))前,常規的LiMeO2 製備工藝需要購買或從共沉澱濕法化學工藝來製備過渡金屬氫氧化物前驅體化合物(例如Me(OH)2 ,Me=Ni、Mn、Co等)。
由於這些Ni(OH)2 、Co(OH)2 和Mn(OH)2 前驅體化合物的水溶性不同,並且它們通常在不同的濃度下沉澱,因此必須控制這些前驅體化合物的混合溶液的pH值,必須緩慢地以小份形式地添加氨水(NH3 )或其他添加劑,以確保鎳(Ni)、錳(Mn)和鈷(Co)可以一起共沉澱來形成微米級鎳-錳-鈷氫氧化物(NMC(OH)2 )二級顆粒。該共沉澱的(NMC(OH)2 )二級顆粒通常是納米級初級顆粒的團聚物。因此,由NMC(OH)2 前驅體化合物制得的最終的鋰NMC過渡金屬氧化物(LiMeO2 )也是團聚物。在電極壓光步驟和塗覆到集電器箔上期間,這些團聚物易於在高壓下破碎。因此,當這些鋰NMC過渡金屬氧化物材料用作陰極活性材料時,在壓光步驟必須使用相對低壓,並且進一步限制生產的陰極的電極密度。
在LiMeO2 活性陰極材料的常規製備工藝中,前驅體化合物例如氫氧化鋰(LiOH)和過渡金屬氫氧化物(Me(OH)2 以固體形式混合均勻,並被儲存在厚Al2 O3 坩堝中)。然後,將坩堝置於以5-10°C/分鐘的速度升溫直至到達900°C至950°C的爐中,煆燒10至20小時。由於前驅體化合物在高溫下長時間加熱,鄰近的顆粒被燒結在一起,因此,在煆燒之後通常需要研碎步驟。因此,在研碎之後需要篩掉不需要的大小的顆粒,進一步降低總產量。高溫和長反應時間還導致鋰金屬的氣化,因此在煆燒期間通常需要添加多至10%額外量的鋰前驅體化合物來確保最終產物具有正確的鋰/過渡金屬比。總而言之,用於該多階段間歇生產工藝的工藝時間將需要多至一周,因此這是勞動非常密集並且消耗很多能源的。間歇工藝還增加了引入雜質的幾率,批次間品質一致性很差,並且總產率低。
因此,需要改進的工藝和體系以製備用於電池單元的高品質、結構化的活性材料。
本發明一般涉及由液體混合物生產顆粒材料的處理系統和方法。 更具體地,本發明涉及用於產生具有期望的晶體結構,尺寸和形態的材料顆粒(例如,活性電極材料等)的方法和處理系統。
在一個實施例中,提供了一種由液體混合物生產顆粒材料的處理系統。 該處理系統包括:一個系統入口,其連接到一個或多個氣體管線以將一種或多種氣體輸送到處理系統中;以及一排包括一個或多個動力噴射模塊的陣列,該陣列適於將液體混合物噴射到一個或多個液滴流中並迫使一個或多個液滴流進入處理系統。 該處理系統還包括反應室,該反應室適於在一種或多種氣體的存在下輸送一個或多個液滴流並將該一個或多個液滴流處理成顆粒材料。
在一個實施例中,處理系統還包括連接至系統入口的緩衝室,其中緩衝室包括氣體分配器,該氣體分配器具有一個或多個通道,用於將一種或多種氣體輸送到處理內部的多個均勻氣流中系統。該處理系統還包括連接至反應室的分散室和一個或多個動力噴射模塊,其中該分散室適於將一種或多種氣體與從一個或多個動力噴射模塊噴射出的一個或多個液滴流分散,使得一種或多種氣體的氣流和一種或多種液滴流的液滴流以在零度至約180度之間的分散角(α)彼此分散。該處理系統還包括連接至緩衝室的分散室和一個或多個動力噴射模塊,其中該分散室適於分散來自緩衝室的多種均勻氣流以及來自一個或多個動力噴射模塊噴射的一個或多個液滴流。
在又一個實施例中,提供了一種用於從液體混合物生產顆粒材料的處理系統。 該系統包括一個人系統入口,其連接到一個或多個氣體管線以將氣體混合物輸送到處理系統中;以及一排包括一個或多個動力噴射模塊的陣列,該陣列適於將液體混合物噴射到一個或多個第一液滴流中並迫使該一或多個液滴流進入處理系統。 該處理系統還包括分散室,該分散室適於連接至一個或多個動力噴射模塊,並且將氣體混合物與從一個或多個動力噴射模塊噴射的一滴或多滴液滴流一起分散,其中, 所述氣體混合物和所述一個或多個液滴流的液滴流以分散角(α)彼此分散,並且反應室連接至所述分散室並適於將一個或多個液滴流處理成顆粒物質。
在一個實施方案中,提供了一種生產顆粒材料(例如,陰極或陽極活性材料)的方法。 該方法包括將一種或多種氣體輸送到處理系統中,以及通過使用處理系統的一個或多個動力噴射模塊將液體混合物噴射到一個或多個第一液滴流中並進入處理系統。 該方法還包括在第一溫度下,在一種或多種氣體的存在下,使從該處理系統中反應腔室的處理腔室輸送的一個或多個第一液滴流反應成顆粒材料。
在另一個實施方案中,該方法還包括在第一停留時間,乾燥第一液滴流,並在反應室中由一種或多種氣體和第一液滴流形成第一氣固混合物。該方法進一步包括將第一氣固混合物從反應室中送出,將第一氣固混合物分離成第一類型的固體顆粒和廢物,將第一類型的固體顆粒輸送到另一反應室中,在第二反應室內流入被加熱到第二溫度的第二氣體的第二流,由加熱的第二氣體和第一類型的固體顆粒在第二反應室內形成第二氣固混合物,使第二氣固混合物在第二反應室內反應第二停留時間,將第二氣固混合物氧化為氧化的反應產物,並將氧化的反應產物輸送到第二反應室之外。然後,將氧化的反應產物冷卻以獲得第二種固體顆粒。
在一方面,第二類型的固體顆粒適合作為活性電極材料,以被進一步加工成電池單元的電極。 在另一方面,被氧化的反應產物將被進一步分離成第二種固體顆粒和氣態副產物。 在另一方面,可以使用冷卻流體(例如,氣體或液體)的一個或多個流來冷卻第二類型的固體顆粒的溫度。
用於生產顆粒材料的處理系統
本發明總體上提供了用於生產顆粒材料的處理系統和方法。 該處理系統包括動力噴射模塊的陣列,一個系統入口,一個反應室和可選的一個分散室。 該處理系統可用於執行連續過程以生產顆粒狀材料,節省材料製造時間和能量,並解決了常規活性材料製造工藝中所見的製造成本高,產量低,質量一致性差,電極密度低,能量密度低的問題。
在一個方面,可以是動力噴射模塊可以將液體混合物,可以是含金屬的液體混合物,迅速噴射到液滴流中,然後分散到處理系統中。液滴流與氣體連續混合以形成氣液混合物,然後將其輸送到反應室內並在反應室內進行反應。
進一步地,在一方面,空氣或氣體流從系統入口被輸送到處理系統中,並且用作用於與液體混合物形成氣液混合物的氣體源,並且用作用於輸送的載氣氣液混合物進入反應室。如果該氣體在進入處理系統之前被加熱,則該氣體還可以用作氣液混合物在反應室中反應的能源。
來自反應室的反應產物被輸送出反應室。反應產物通常包含固體材料顆粒或液體混合物組合物的氧化形式的精細粉末(例如,金屬氧化物材料,例如混合金屬氧化物材料的精細粉末),具有所需的晶體結構,粒度和形態。 。因此,與從常規製造工藝製備的材料相比,可以以更少的時間,勞動力和監督來獲得高質量且一致的活性顆粒材料。
圖1A是用於生產顆粒材料的處理系統的一個實施例的透視圖。該示例性實施處理系統100包括通過氣體管線106輸送一種或多種氣體的系統入口102和用於將微粒材料輸送到處理系統之外的系統出口104。 一種或多種氣體可以選自空氣,氧氣,二氧化碳,氮氣,氫氣,惰性氣體,稀有氣體及其組合等的氣體源。
在一個實施例中,這種處理系統還包括一排包括一個或多個動力噴射模塊的陣列,用於將液體混合物噴射到一個或多個液滴流中,並迫使一個或多個液滴流進入處理系統。 該處理系統還包括用於將一種或多種液滴流和一種或多種氣體處理成顆粒材料的反應室。
液體混合物由兩種或更多種前體化合物製備,然後轉化為液滴,每個液滴將使兩種或更多種前體均勻地分佈在一起。 然後,通過使液滴穿過分散室而除去液體混合物的水分,並且使用氣流將霧氣在分散室內攜帶適當的停留時間。 還可以預期,可以調節液體混合物中前體化合物的濃度和液體混合物的薄霧的液滴尺寸,以控制電池材料的最終產品顆粒的化學組成,粒徑和粒徑分佈。
在另一實施例中,如圖1A所示,這種處理系統還包括至少一個緩衝室,該緩衝室配置到系統入口102,用於將氣體源輸送到多個均勻的氣流中。
進一步地,在一個實施例中,處理系統包括分散室220和動力噴射模塊240A,240B和240C,用於將前驅體液體混合物製備成所需的尺寸並將所需的前驅體液體混合物輸送到處理系統中。動力噴射模塊可附接到分散室的一部分,並利用空氣壓力噴射液體混合物並將其直接轉化為包含小尺寸液滴的霧,直接分散在分散室內部。可替代地,可以在分散室的外部產生霧並將其輸送到分散室中。可以根據所使用的動力噴射模塊的選擇,液體混合物化合物,分散室的溫度,氣體的流速以及分散室內的停留時間來調整合適的液滴尺寸。例如,在分散室內產生液滴大小在十分之一微米至一毫米之間的薄霧。
在一個實施例中,動力噴射模塊240A聯接至分散室220的一部分,以直接在分散室內產生液體混合物的薄霧(例如,大量的小尺寸液滴的集合)。通常,動力噴射模塊240A能夠產生單尺寸的液滴的薄霧。在一實施例中,分散室220連接至一個或多個動力噴射模塊240A,240B和240C,以便於接收來自緩衝室多個均勻的氣體流,用一個或多個動力噴射模塊240A,240B和240C的陣列噴射的一個或多個液滴流將多個均勻的氣流分散。
在一個實施方案中,分散室220然後連接至反應室210,以將一個或多個液滴流和一種或多種氣體處理成顆粒材料。此外,反應室210連接到系統出口104,用於將顆粒材料輸送到處理系統之外。
圖1B是示例性處理系統100的剖視圖,該系統可用於執行快速,簡單,連續和低成本的製造工藝來生產顆粒材料。 處理系統100包括用於將一種或多種氣體輸送到處理系統中的系統入口102,連接至系統入口102的緩衝室230,連接至緩衝室230的分散室220,連接至分散體220的反應室210 室和連接到反應室210的系統出口104。
在一個實施例中,處理系統100還包括附接到緩衝室230的室壁238的氣體分配器232,分配器232的通道,用於將一種或多種氣體F1輸送到處理內部的多個均勻氣流F2中 系統,分散室220和附接到分散室220的室壁228的一個或多個動力噴射模塊240A和240B。
在一個實施例中,輸送到緩衝腔室230中的一種或多種氣體F1被向下加壓,以一定的速度通過氣體分散室232的通道234成為多個均勻的氣流F2並流出通道234,並進入分散室220。 在一個實施例中,可以將一種或多種氣體F1泵送通過空氣過濾器以去除任何顆粒,液滴或污染物,並且可以通過閥或其他裝置來調節氣體的流速。 在一實施例中,從通道234出來的多個均勻氣流F2的流速將高於一種或多種氣體F1的流速。 另外,將收集並統一多個均勻氣流F2的方向。
在一個實施例中,動力噴射模塊240A包括動力噴射器242A,用於將供應給動力噴射模塊240A的液體混合物噴射到一個或多個液滴流中。動力噴射模塊240A還包括用於支撐動力噴射模塊240A的支撐框架244A,附接到支撐框架244A內側的模塊致動器246A,用於致動和迫使從動力噴射器噴射的一個或多個液滴流FA從 附接到支撐框架244A的內側的動力噴射242A噴出到分散室220,以及一個連接器245A連接到模塊致動器246A和動力噴射242A。另外,動力噴射模塊240B包括一個動力噴射器242B,用於將供應給動力噴射模塊240B的液體混合物噴射成一個或多個液滴流。動力噴射模塊240B還包括:用於支撐動力噴射模塊240B的支撐框架244B;模塊致動器246B,模塊致動器246B附接到支撐框架244B的內側,以致驅動並迫使從附接到支撐框架244B的內側的動力噴射242B噴射的一個或多個液滴FB流進入分散室220,以及連接器245B,其連接模塊致動器246B和動力噴射242B。
在一個實施例中,噴射到分散室220中的液滴流FA以多個均勻氣流F2以彼此的分散角αA彼此分散,並形成包含多個均勻氣流F2的氣液混合物F3和液滴流FA。此外,噴射到分散室220中的液滴流FB 以多個均勻氣流F2以分散角αB 彼此分散,並形成包含多個均勻氣流F2 和液滴流FB 的氣液混合物F3 。在一個實施方案中,分散室將其自身保持在第一溫度。
在一個實施例中,將一種或多種氣體加熱至乾燥溫度以與液滴流混合併從液滴流去除水分。其經設計在乾燥液體混合物的薄霧之後,通過充分混合包括兩種或更多種液體混合物的液體混和物以獲得球形固體顆粒。相反,常規的固態製造工藝涉及混合或研磨液體混合物化合物的固體混合物,導致液體混合物的不均勻混合。
一種或多種氣體可以是,例如,空氣,氧氣,二氧化碳,氮氣,氫氣,惰性氣體,稀有氣體及其組合。例如,加熱的空氣可用作乾燥液滴流的廉價氣體源和能源。一種或多種氣體的選擇可以是與前體的液滴流充分混合併且乾燥霧而不與前體反應的氣體。在某些情況下,液滴流中的化學物質可能會在乾燥過程中與一種或多種氣體和/或彼此發生一定程度的反應,取決於乾燥溫度和前體的化學成分。另外,充分混合的前體化合物的液滴流在分散室內的停留時間是可調節的,可能,例如,可以為一秒至一小時,取決於一種或多種氣體的流速,液滴流必須在分散室內流動的路徑的長度。
在一個實施例中,處理系統100還包括反應室210,用於接收氣液混合物F3 ,並在第二溫度下進行氣液混合物F3 到最終反應產物F4的所需反應,並且 持續一個反應時間。 最後,可以是產物顆粒的最終反應產物F4可以通過系統出口104被輸送到系統100之外,以進一步分析它們的性質(例如,比容量,功率性能,顆粒充電循環性能等), 用作顆粒材料的顆粒大小,形態,晶體結構等。
在一個實施例中,處理系統100通過CPU 340連接到電子控制單元300,以自動控制處理系統100。如圖1B所示,控制單元300在各個位置處耦合至處理系統100,以自動控制由處理系統100執行的製造過程並調整各種過程參數(例如,流速,混合比,溫度,停留時間等)。例如,可以在液體混合物容器或泵附近調節液體混合物進入處理系統100的流速。作為另一示例,可以調節由動力噴射模塊240A和240B產生的霧的液滴尺寸和產生速率。另外,可以通過控制單元300來控制在氣體管線等中流動的各種氣體的流量和溫度。此外,過程控制單元300適於控制溫度,氣壓,以及各種氣固混合物和固體顆粒在各種位置處所需水平的停留時間。
在操作中,控制單元300可用於控制在控制單元300內執行的連續多階段過程(例如,本文所述的方法900)的參數,以獲得高質量且一致的活性電池材料,比用傳統製造工藝製備的材料要少得多的時間,勞動力和監督。由圖3的控制單元300執行的代表性處理配置如圖1B顯示為溫度對時間的曲線圖。多階段處理可以包括第一處理階段910,第二處理階段920,第三處理階段930和第四處理階段940。
可選地,在一個實施例中,處理系統100還包括一個第一分離器,該第一分離器連接至分散室230,並適於將來自分散室的氣液混合物F3收集並分離成第一類型的固體顆粒和廢物。 可選地,第一分離器連接至乾燥室,該干燥室連接至分散室230,並適於將來自分散室的氣液混合物F3收集並乾燥成氣固顆粒,以進行輸送並分離成第一類型的固體顆粒和廢物產物在第一分離器內。在一個實施例中,第一分離器還包括連接到反應室210第一分離器出口,用於將第一類型的固體顆粒輸送到反應室210中的,以及適於將廢物從第一分離器輸送出的第二分離器出口。
圖2A是根據本發明的一個實施例的用於執行製備顆粒材料的過程的緩衝室230的剖視圖。再次參考圖1,圖2A中的緩衝室230被虛線BB’截斷。在一個實施例中,緩衝腔室230包括氣缸氣體分配器232,該氣缸氣體分配器232用於將來自系統入口的一種或多種氣體輸送到多種統一的氣體中,該氣體被包圍在緩衝室230的腔室壁238的內側內並且位於緩衝室230的底部,和氣體分配器232的通道234用於使一種或多種氣體沿統一的方向和流速通過。
圖2B是緩衝室230的透視圖,該緩衝室230包括被包圍在緩衝室230的室壁238內的氣缸氣體分配器232和氣體分配器232的通道234。
圖3A是根據本發明的一個實施例的配置在處理系統100中的分散室220的剖視圖。 再次參考圖1,圖3A中的分散室220被虛線AA’截斷。 分散室220被室壁228包圍。
在一個實施例中,一排包括一個或多個動力噴射模塊的陣列,分別是動力噴射模塊240A,動力噴射模塊240B,動力噴射模塊240C和動力噴射模塊240D,被定位分散腔室220的腔室壁228的腔壁228上一個或多個開口222A,222B,222C和222D。在一個實施例中,動力噴射模塊240A-240D可以以圖3A所示的一種佈置附接到分散腔室220的腔室壁228。 該佈置可以是在腔室壁228四個動力噴射中的每一個以相同水平線上以彼此均勻的距離配置到腔室壁228上。
在一個實施例中,動力噴射模塊240A包括動力噴射器242A,用於將供應給動力噴射模塊240A的液體混合物噴射到一個或多個液滴流中。動力噴射模塊240A還包括用於支撐動力噴射模塊240A的支撐框架244A,附接到支撐框架244A的內側的模塊致動器246A,用於致動和迫使從附接到支撐框架244A的內側的動力噴射器242A噴射的一個或多個液滴流FA ,進入分散室220,以及一個連接器245A,其連接模塊致動器246A和動力噴射242A。類似地,動力噴射模塊240B包括一個動力噴射242B,一個支撐框架244B,一個模塊致動器246B和一個連接器245B。類似地,動力噴射模塊240C包括一個動力噴射242C,一個支撐框架244C,一個模塊致動器246C和一個連接器245C。而且,動力噴射模塊240D包括一個動力噴射器242D,一個支撐框架244D,一個模塊致動器246D和一個連接器245D。
在一個實施例中,將動力噴射242A-242D定位在分散室220的頂部附近,垂直設置的(例如,圓頂型分散室等),以將液滴流FA-D 噴散到分散室220,並垂直向下穿過分散室。可替代地,動力噴射242A-242D可以位於分散室220的底部附近,可以垂直定位的,並且能夠向上將液滴流注入(可以如圖3B所示)到分散室中以增加在其內產生的流體的停留時間。在另一實施例中,當分散室220水平放置時(例如,一個管狀分散室等),並且動力噴射242A-242D位於分散室220的一端附近,使得霧流被輸送從分散室220的一端到另一端,可以在其停留時間的長度上通過分散室220內的路徑。
除了液體混合物流之外,分散室220也充滿氣流。氣體分配器232連接至緩衝室的端部,並適於使多種統一氣體F2 流入分散室220。在分散液內部形成液滴流的同時,可以輸送多種統一氣體F2流。多種統一氣體流F2 同於在分散室220形成的液滴流一起被輸送進入分散室220,攜帶液滴流通過分散室220,可能或不會從霧中去除水分,形成方向為F3的包含混合氣的氣液混合物。而且,可以在形成薄霧之前將多種統一氣體F2的流輸送到分散室220中,以在分散液內部產生液滴流之前將分散室220的內部體積填充並預熱到第一溫度。
在一個示例中,氣體分配器232連接到緩衝室230的底端,該緩衝室230的端部連接到分散室310的頂部,以將多種統一的氣體F 2輸送到分散室220中,以與由附接到分散室220的室壁228的動力噴射模塊產生的液滴流混合。在一個實施例中,將多種統一氣體F2預熱至70℃至600℃之間的溫度去混合並去除液滴流的水分。在另一個實施例中,多種統一氣體F2不進行預熱,而是用於確保在分散室220內形成的氣液混合物與氣體均勻地混合。
圖3B示出了根據本發明的一個實施例的在圖1的處理系統100中配置的分散室220內的多個統一氣體F2和液滴流FA的分散角。
圖3B表示在分散室220內,液滴流FA以分散角αA分散到多種統一氣體F2中。 分散角αA是根據液滴流FA的方向與多個統一氣體F2在垂直Z軸上的角度而測量的,而在XYZ軸設定的3D立體圖中。
在一個實施例中,液體混合物的液滴流(例如,液滴流FA)和氣體流(例如,多種統一氣體F2)可在分散體內部以為0度到180度角度互相接觸。另外,液滴流FA和氣流F2中的空氣流可以是直線,螺旋,纏繞和/或以其他方式流動。
在一個實施例中,液滴流FA和多種統一氣體F2以αA 角(0≤αA≤180o)配置,並且可以合併成分散室內的混合流(例如,並流)在分散室內。另外,液滴流FA和多種統一氣體F2可以以彼此指向和/或指向腔室主體的周邊的各種角度流動,以促進形成螺旋,纏結和/或其他氣流在分散室220內。在一個實施例中,液滴流和氣流以小於90度的α角配置,並且可以在分散室內合併成混合流。在另一個實施例中,液滴流FA和氣流F2以90度的α角配置,並且可以在分散室內合併成混合流。另外,液滴流FA 和氣流F2 可以以彼此指向彼此和/或指向腔室主體的周邊的各種角度流動,以促進在內部形成螺旋,纏繞和/或其他氣流在分散室220內。
例如,如圖3B的示例所示,可以將氣體的流動和在分散室內流動的液滴流的流動作為並流流動。 並流的優點是更短的停留時間,更低的顆粒乾燥溫度和更高的顆粒分離效率。 在另一個實施例中,分散在混合室內的多種統一氣體的流動和液滴流的流動可被配置為作為逆流流動,也如圖3B所示。 逆流的優點是更長的停留時間和更高的顆粒乾燥溫度。
在另一個實施例中,液滴流FA和氣流F2以180度的α角配置並作為逆流流動。 在替代實施例中,分散室220可水平放置。 類似地,液滴流FA和氣流F2可以以0度至180度之間的α角構造。 再次參考圖1,一旦液體混合物的液滴流與氣體形成氣-液混合物,則氣-液混合物通過分散室220輸送至反應室210。
圖4A是根據本發明的一個實施例的動力噴射的透視圖。 動力噴射242A連接到液體源720以存儲期望量的液體混合物化合物,並且電子控制單元300用於引導和控制從液體源720到動力噴射242A的液體混合物化合物的輸送。
在另一種構造中,液體源720內的液體混合物可以被泵從液體源720泵送到動力噴射242A。例如,可以通過不停調節泵對液體混合物的泵送以期望的輸送速率(例如,通過計量閥或其他裝置進行調節),以實現處理系統100的良好處理產量。在另一配置中,動力噴射242A位於分散室220的外部,並且由此產生的流經由室入口被輸送到分散室220。
在一個實施例中,動力噴射242A為長方體結構,具有彼此成直角的六個矩形面。此外,動力噴射242A包括在動力噴射242A的一個側面上的一個噴嘴陣列480A。在一個實施例中,噴嘴陣列480A在動力噴射242A的側面上,其底部寬度短於側面長度,並且由3×10個均勻放置的孔402A組成一個矩形。在另一個實施例中,噴嘴陣列480A由孔的另一種圖案組成。
圖4B是根據本發明的另一個實施例的動力噴射442D的透視圖。 動力噴射442D為具有直的平行側面和圓形或橢圓形截面的圓柱結構。 此外,動力噴射442D在動力噴射442D的平行的一側上包括噴嘴陣列480B。 在一實施例中,噴嘴陣列480B由單個孔402D組成。
圖4C是根據本發明的一個實施例的可用於執行製備顆粒材料的過程的設備的透視圖。 液滴流FA和液滴流FB通過動力噴射242A和動力噴射242B被噴射到分散室220中,它們的側麵包括附接到分散室220的室壁的開口的噴嘴陣列。底側壁 228S連接到反應室210,被反應室210的室壁218圍繞。
在本發明的一個實施例中,液滴流FA的方向垂直於分散室220的腔室壁。液滴流FB的方向不同於液滴FA的方向, 並垂直於分散室220的室壁傾斜。在本發明的一個實施例中,液滴流FA與空氣流混合成氣-液混合物F3,該氣-液混合物F3在重力作用下向下行到分散室220的底部。在本發明的一個實施方案中,液滴流FB 與空氣流混合成氣-液混合物F3 ,該氣-液混合物F3在重力作用下向下行到分散室220的底部。氣液混合物F3 在反應室210中處理並形成最終反應產物F4
圖5A是根據本發明的一個實施例的動力噴射的透視圖。 在一個實施例中,動力噴射542A為長方體結構,具有彼此成直角的六個矩形面。 此外,動力噴射542A包括一個在動力噴射542A的一個側面上噴嘴陣列580A。 在一個實施例中,噴嘴陣列580A在動力噴射542A的側面上,其底部寬度長於側面長度,並且由2×11個均勻放置孔口502A組成的矩形。 在另一個實施例中,噴嘴陣列580A由孔的另一種圖案組成。
圖5B是根據本發明的另一個實施例的動力噴射的透視圖。動力噴射542D為具有直的平行側面和圓形或橢圓形截面的圓柱結構。此外,動力噴射542D包括一個在動力噴射542D的一個頂部筆直面上的噴嘴陣列580B。在一實施例中,噴嘴陣列580B由六個孔口502D組成,所述六個孔口502D在動力噴射542D的筆直面上形成三角形。
圖5C是根據本發明的一個實施例的可用於執行製備顆粒材料的過程的設備的透視圖。分散室220具有一個腔室主體,連接至緩衝腔室的頂側壁228T,連接至反應腔室210的底側壁228S以及圍繞腔室主體的腔室壁。
在一個實施例中,動力噴射542A,動力噴射542B和動力噴射542C在動力噴射542A,動力噴射542B和動力噴射542C的側面上附接到分散室220的室壁的開口,其底部寬度大於邊長。
圖6A是根據本發明的一個實施例的動力噴射的透視圖。 在一實施例中,動力噴射642A為長方體結構,具有彼此成直角的六個矩形面。 此外,動力噴射642A包括一個在動力噴射642A的一個側面上噴嘴陣列680A。 在一個實施例中,噴嘴陣列680A在動力噴射542A的底面上,並且由3×13均勻分佈的孔602A形成一個矩形。 在另一個實施例中,該噴嘴陣列680A由另一種圖案組成。
圖6B是根據本發明的另一個實施例的動力噴射的透視圖。 動力噴射642D為具有直的平行側面和圓形或橢圓形截面的圓柱結構。 此外,動力噴射642D包括一個在動力噴射442D的一個底部筆直側上的噴嘴陣列680B。 在一個實施例中,噴嘴陣列680B包括由3×4孔口602D形成的平行四邊形在動力噴射642D的底部。
圖6C是根據本發明的一個實施例的可用於執行製備顆粒材料的過程的設備的透視圖。分散室220具有一個室主體,一個頂側壁228T,及一個底側壁228S連接至反應室210,以及連接至入口606的室壁218,以使一種或多種氣體F1A流入分散室。在本發明的一個實施例中,一種或多種氣體F1A的方向垂直於分散室220的室壁218。
在一個實施例中,動力噴射器642A,動力噴射器642B和動力噴射器642C在動力噴射器642A,動力噴射器642B和動力噴射器的底面上附接到分散室220的頂壁228T的開口,並且動力噴射器 642C用於將液滴流噴射到分散室220中,以與一種或多種氣體F1A一起分散到分散室內的氣-液混合物F2A中,並通過重力向下行進到穿過反應室210的底部。在本發明的一個實施方案中,液滴流的方向平行於分散室220的室壁218。在本發明的另一實施方案中,液滴流的方向垂直於分散室220的頂側壁228T。
圖7A是根據本發明的一個實施例的在動力噴嘴上的噴嘴陣列的透視圖。 動力噴射742A連接到液體源720以存儲期望量的液體混合物化合物,並且電子控制單元300用於引導和控制從液體源720到動力噴射742A的液體混合物化合物的輸送。 在另一種配置中,液體源720內的液體混合物可以被泵從液體源720泵送到動力噴射742A。例如, 可以通過連續地調節泵對液體混合物的泵送以期望的輸送速率(例如,通過計量閥或其他裝置進行調節),以實現處理系統100的良好處理產量。在另一配置中,動力噴射 742A位於分散室220的外部,並且由此產生的流經由室入口被輸送到分散室220。
在一個實施例中,動力噴射742A為長方體結構,具有彼此成直角的六個矩形面。此外,動力噴射742A包括一個在動力噴射742A的一個側面上噴嘴陣列780A。在一個實施例中,噴嘴陣列780A在動力噴射742A的側面上,其底部寬度短於側面長度,並且由1×8個均勻放置的孔702A形成一條線。回到圖4A,孔702A的形狀小於402A的形狀。
圖7B是根據本發明的一個實施例的在動力噴嘴上的噴嘴陣列的透視圖。動力噴射742B連接到液體源720以存儲期望量的液體混合物化合物,並且電子控制單元300用於引導和控制從液體源720到動力噴射742B的液體混合物化合物的輸送。在另一種配置中,液體源720內的液體混合物可以被泵從液體源720泵送到動力噴射742B。可以通過連續地調節泵對液體混合物的泵送以期望的輸送速率(例如,通過計量閥或其他裝置進行調節),以實現處理系統100的良好處理產量。在另一配置中,動力噴射742B位於分散室220的外部,並且由此產生的流經由室入口被輸送到分散室220。
在一個實施例中,動力噴射742B為長方體結構,具有彼此成直角的六個矩形面。 此外,動力噴射742B包括一個在動力噴射742B的一個側面上噴嘴陣列780B。 在一個實施例中,噴嘴陣列780B在動力噴射742B的側面上,其底部寬度小於側面長度,並且由3×8均勻佈置的的孔702B組成矩形形狀。 回到圖4A,孔702B的形狀小於402A的形狀。
圖8是示例性處理系統800的剖視圖,該系統可用於執行用於生產顆粒材料的快速,簡單,連續和低成本的製造過程,並且示出了生產系統的一個實施例。 顆粒材料。 處理系統800包括用於將一種或多種氣體輸送到處理系統中的系統入口802,連接至系統入口802的緩衝室830,連接至緩衝室830的分散室820,連接至反應室810的反應室810。 分散室820和連接到反應室810的系統出口804。
在一個實施例中,處理系統800還包括附接到緩衝室830的室壁838上的氣體分配器832,分配器832的通道,用於將一種或多種氣體F1輸送到處理內部的多個均勻氣流F2中,分散室820和附接到分散室820的室壁828的一個或多個動力噴射模塊840A和840B。
在一個實施例中,輸送到緩衝腔室830中的一種或多種氣體F1被向下加壓,以一定速度通過氣體分配器832的通道834流入多個均勻的氣流F2,這些氣體從通道834流出並流出通道834,進入分散室820。在一個實施例中,可以將一種或多種氣體F1泵送通過空氣過濾器以去除任何顆粒,液滴或污染物,並且可以通過閥或其他手段來調節氣體的流速。在一實施例中,從通道834出來的多個均勻氣流F2的流速將高於一種或多種氣體F1的流速。另外,將收集並統一多個均勻氣流F2的方向。
在一個實施例中,一個或更多個動力噴射模塊840A和840B包括一個或更多個動力噴射器842A和842B,用於將供應給一個或更多個動力噴射模塊840A和840B的液體混合物噴射成一個或更多個液滴流 FA 和FB 。 一個或多個動力噴射模塊840A和840B進一步包括一個或多個支撐框架844A和844B,一個或多個連接器845A和845B,以及一個或多個模塊致動器846A和846B,用於致動並推動從動力噴嘴842A和842B噴射的一個或多個液滴FA 和FB 進入分散室820。
在一個實施例中,噴射到分散室820中的液滴流FA 在第一溫度下以多個均勻氣流F2 在第一分散時間段內以分散角αA 彼此分散,並形成氣體- 包含多個均勻氣流F2 和液滴流FA 的液體混合物F3 。 此外,噴射到分散室820中的液滴FB 的流在第一溫度下以多個均勻的氣流F2以第一分散時間彼此之間以分散角αB 分散,並形成包含多個均勻氣流F2 和液滴流FB 混合物F3。在一個實施方案中,分散室將自身保持在第一溫度。
在一個實施方案中,將一種或多種氣體加熱至乾燥溫度以與液滴流混合併從液滴流中除去水分。其經設計在乾燥液體混合物的薄霧之後,通過充分混合包括兩種或更多種液體混合物的液體混和物以獲得球形固體顆粒。相反,常規的固態製造工藝涉及混合或研磨液體混合物化合物的固體混合物,導致液體混合物的不均勻混合。一種或多種氣體尤其可以是例如空氣,氧氣,二氧化碳,氮氣,氫氣,惰性氣體,稀有氣體及其組合。例如,加熱的空氣可用作乾燥液滴流的廉價氣體源和能源。一種或多種氣體的選擇可以是與前體的液滴流充分混合併且乾燥霧而不與前體反應的氣體。在某些情況下,取決於乾燥溫度和前體的化學組成,液滴流中的化學物質可能會在乾燥過程中與一種或多種氣體和/或彼此發生一定程度的反應。另外,充分混合的前體化合物的液滴流在分散室內的停留時間是可調節的,例如可以為一秒至一小時,取決於一種或多種氣體的流速,以及液滴流在分散室內流動的路徑的長度。
可選地,在一個實施例中,處理系統800進一步包括一個第一分離器,該第一分離器連接至分散室830,並適於將來自分散室的氣液混合物F3收集並分離成第一類固體顆粒和廢物。 可選地,第一分離器連接至乾燥室,該干燥室連接至分散室830,並適於將來自分散室的氣液混合物F3收集並乾燥成氣固顆粒,以進行輸送並分離成第一類型的固體顆粒和廢物產物在第一分散器內。 在一個實施例中,第一分離器還包括連接至反應室810的第一分離器出口,並適於將第一類型的固體顆粒輸送至反應室810中,以及適於將廢物從第一分離器輸送出的第二分離器出口。 。
在一個實施例中,處理系統800還包括用於接收氣液混合物F3的反應室810。 在一個實施例中,反應室810還包括附接至反應室810的室壁818的一個或多個氣體管線入口808A,以使一種或多種第二氣體F5流入氣體分配環882,反應室810的內室壁連接到分散室820的室壁828,氣體分配環882在其外周邊附接到室壁818的內側,並且在其內週附接到內壁888的外側。 在一個實施例中,氣體分配環882包括用於將一種或多種第二氣體輸送到反應室810內的多個均勻氣流F6中的通道884,以在第二溫度和一個反應時間內將氣液混合物F3 反應成最終反應產物F7
一種或多種氣體尤其可以是但不限於空氣,氧氣,二氧化碳,氮氣,氫氣,惰性氣體,稀有氣體及其組合。 例如,空氣可用作乾燥霧的廉價氣體源和能源。 氣體的選擇可以是與氣-液混合物充分混合併且乾燥氣-液混合物而不與氣-液混合物反應的氣體。 在某些情況下,取決於第二溫度和液體混合物的化學組成,液滴/霧中的化學物質可能會在反應過程中與氣體和/或彼此發生一定程度的反應。 另外,反應室內的充分混合的液體混合物化合物的霧的反應時間是可調節的,例如在一秒至一小時之間,並且可以取決於氣體的流量和霧在反應室內流過路徑的長度。
在一個實施方案中,反應時間可以在1秒至十小時之間或更長,這取決於氣體的流速,薄霧在反應室內流過的路徑的長度,反應溫度和最初送入處理系統800的液體混合物的類型。
在一個實施方案中,反應室810能夠進行反應,包括但不限於氧化,還原,分解,組合反應,相轉化,重結晶,單置換反應,雙置換反應,燃燒,異構化及其組合。在一個實施方案中,在均勻的氣流F6和可以是產物顆粒的氣液混合物F3的情況下,在反應室中進行反應的最終反應產物F7,通過系統出口804被輸送到系統800之外,以進行進一步的分析關於它們的性質(例如,比容量,功率性能,顆粒充電循環性能等),粒度,形態,晶體結構等,將用作顆粒材料。
在替代實施例中,反應室810的氣體管線入口808A聯接至加熱機構,以將來自氣體源的一種或多種第二氣體加熱至400℃至1300℃之間的反應溫度。 加熱機構,例如,可以是電加熱器,氣體加熱器,燃燒器以及其他加熱器。 如果需要,可以使用附加的氣體管線入口將加熱的空氣或氣體輸送到反應室810中。 預熱的第二氣體可以填充反應室810並保持反應室810的內部溫度,比常規加熱反應室810的腔室主體好得多並且具有能量效率。 反應室810內使用加熱的第二氣體作為能量源提供了快速傳熱,精確的溫度控制,其中的均勻溫度分佈和/或易於擴大規模等優點。
在一個實施方案中,一旦反應室810內的反應完成,例如,在形成所需的晶體結構,顆粒形態和粒徑後,反應產物就通過系統出口804從反應室810中排出。在一個實施方案中,將反應產物冷卻。 最終反應產物包括一類微粒,其包含例如液體混合物的氧化反應產物顆粒。
可選地,處理系統800包括第二分離器,該第二分離器從反應室810的系統出口804收集最終反應產物F7 。第二分離器可以是顆粒收集器,例如旋風分離器,靜電分離器,靜電沉澱器, 重力分離器,慣性分離器,膜分離器,流化床分級器,電篩撞擊器,浸出分離器,淘析器,空氣分級器,浸出分級器及其組合。
可選地,處理系統800的第二分離器通常包括一個分離器入口,一個第一分離器出口和一個第二分離器出口,用於將最終反應產物F7 分離成第二類型的固體顆粒和氣態副產物。 氣態副產物可以被輸送到減氣裝置中以進行處理並從處理系統800中釋放出來。被第二分離器分離的氣態副產物通常可以包含水(H2 O)蒸氣,有機溶劑蒸氣,含氮氣體。 ,含氧氣體,O2,O3,氮氣(N2 ),NO,NO2 ,NO2 ,N2 O,N4 O,NO3 ,N2 O3 ,N2 O4 ,N2 O5 ,N(NO23 ,含碳氣體,二氧化碳(CO2 ) CO,含氫氣體,H2 ,含氯氣體,Cl2 ,含硫氣體,SO2 ,第一種固體顆粒的小顆粒,第二種固體顆粒的小顆粒及其組合。
可選地,處理系統800還可包括連接至系統出口804或第二分離器的分離器出口並適於冷卻最終反應產物F7 和/或第二種固體顆粒的一條或多條冷卻流體管線 。冷卻流體管線適於將冷卻流體(例如,氣體或液體)從源輸送到第二分離器的分離器入口。冷卻流體管線適於將冷卻流體輸送到熱交換器中,該冷卻流體可以通過過濾器過濾以去除顆粒。
可選地,熱交換器適於通過使冷卻流體流過第二分離器和/或反應室810來收集和冷卻第二類型的固體顆粒和/或最終反應產物F7 。冷卻流體的溫度低於最終反應產物F7 ,以及從第二分離器和/或反應室810輸送的第二類型的固體顆粒的溫度。冷卻流體的溫度可以在4℃至30℃之間,冷卻流體可以是液態水,液態氮,空氣,惰性氣體或不會與反應產物反應的任何其他氣體。
圖9A是根據本發明的一個實施例的配置在處理系統800中的分散室820的剖視圖。再次參考圖8,圖2A中的分散室820由虛線AA′截取。分散腔室820被腔室壁828包圍,腔室壁828具有一個或多個開口,所述一個或多個開口連接至一個或多個動力噴射模塊的動力噴射842A,842B,842C和842D。
在一個實施例中,動力噴射842A-842D位於垂直設置的分散室820的頂部附近(例如,圓頂型分散室等),以將液滴流注入分散室中820並垂直向下穿過分散室。替代地,動力噴射842A-842D可以定位在垂直設置的分散室820的底部附近,並且能夠將液滴流向上註入到分散室中以增加在其中產生的流的停留時間。在另一實施例中,當將分散室820水平放置時(例如,一個管狀分散室等),並且將動力噴射842A-842D放置在分散室820的一端附近,使得霧流被輸送從分散室820的一端穿過另一端的另一端,可以通過分散室820內的路徑達其停留時間的長度。
在一個實施例中,動力噴射842A-842D可以以圖9A所示的一種佈置附接到分散室820的室壁828。該佈置可以是四個動力噴射中的每一個在腔室壁828的相同水平線上以彼此相鄰的均勻距離配置到腔室壁828上。
圖9B是根據本發明的一個實施例的用於執行製備顆粒材料的過程的緩衝室830的剖視圖。再次參照圖8,圖9B中的緩衝室830由虛線BB′截取。在一個實施例中,緩衝室830包括一個圓筒形氣體分配器832,該圓筒形氣體分配器832用於將來自系統入口的一種或多種氣體輸送到多種統一的氣體中,該圓筒形氣體分配器被包圍在緩衝室830的腔室壁838的內側內並且位於緩衝室830的底部,和氣體分配器832的通道834用於使一種或多種氣體沿統一的方向和流速通過。
圖9C是根據本發明的一個實施方案的用於執行製備顆粒材料的過程的反應室810的頂部的剖視圖。再次參考圖8,圖9C中的反應室810在其頂部被虛線CC′截斷。在一實施例中,反應腔室810包括圍繞反應腔室810的腔室主體的腔室壁818,連接到分散腔室820的腔室壁828的反應腔室810的內腔室壁888,氣體分配環882在其外周邊上附接到腔室壁818的內側,並且在其內周邊上附接到內壁888的外側。在一實施例中,氣體分配器環882還包括通道884,用於使一種或多種第二氣體沿統一的方向並以一定的流量進入反應室810內的多個均勻的氣流F6,以與氣液混合物反應F3 在第二溫度下並持續一段反應時間而變成最終的反應產物F7
圖10以透視圖示出了配置在處理系統的分散室中的動力噴射模塊的示例。在一個實施例中,用於將液體混合物噴射到一個或多個液滴流中並迫使一個或多個流進入處理系統的動力噴射模塊1040A,包括一個用於將供應給動力噴射模塊1040A的液體混合物噴射到一個或多個液滴流的動力噴射器1042A。動力噴射模塊1040A還包括一個支撐框架1044A,用於支撐動力噴射1042A的移動,一個第一模塊致動器1046A,其用於移動動力噴射以相應地連接至分散室上的開口;以及一個連接器1045A,其連接第一模塊致動器1046A和動力噴射1042A。
而且,如圖10所示,分散室1020包括一個或多個開口1022A,1022B,1022C,1022D,1022E和1022F,其位於分散室1020的室壁上,並適於連接至並與之配合帶有噴嘴陣列的動力噴射一側上的動力噴射模塊的動力噴射。在一實施例中,圖10示出了一個或多個開口的形狀以及一個或多個開口的佈置,其中,一個或多個開口為矩形,其底部寬度短於側面長度,並且在腔室壁的同一水平線上以彼此相鄰的均勻距離定位。
同樣,如圖10所示,分散室1020充滿了從處理室的緩衝室輸送來的多種統一氣體F2。 在一實施例中,多種統一氣體F2 ,於分散室1020內的從動力噴射模塊的動力噴嘴噴射出的形成的液滴流,同時被運送到到分散室1020中,以使液滴流通過分散體1020,去不去除霧中水分都可,並形成方向為F3 的氣-液混合物,其包含液體混合物和多種統一氣體。此外,可以在形成液滴流之前將多種統一氣體F2的流輸送到分散室1020中,以填充並可選地在產生液滴流之前將分散室1020的內部容積預熱到第一溫度。
在一個實施例中,一個或多個開口1022A-1022F位於垂直設置的分散室1020的頂部附近(例如,圓頂型分散室等)以連接和裝配動力噴射模塊用於將液滴流注入分散室1020中並垂直向下穿過分散室。替代地,一個或多個開口1022A-1022F可以定位在垂直佈置的分散室1020的底部附近,並且能夠連接並裝配動力噴射模塊,以通過增加液滴的噴射量而向上將液滴流注入分散室中,以此增加在其中生成的流的停留時間。在另一實施例中,當分散室1020水平放置時(例如,一個管狀式分散室等),並且一個或多個開口1022A-1022F位於分散室1020的一端附近,以適合併連接至動力噴射組件,以此輸送的液滴流可以從分散室1020的一端通過另一端,可以通過分散室1020內的路徑,以一個停留時間的長度。
另外,在一個實施例中,噴射到分散室1020中的液滴流與多個均勻氣流F2一起分散到包含多個均勻氣流F2和液滴流的氣液混合物F3中。 在一個實施方案中,分散室將自身保持在第一溫度。
在本發明的一個實施例中,輸送到分散室中的多個均勻氣流F2的方向平行於分散室1020的室壁。並且氣液混合物F3的方向通過分散體1020也平行於分散室1020的室壁。在本發明的另一個實施例中,輸送到分散室1020中的多個均勻氣流F2的方向和通過室1020輸送的氣液混合物F3的方向是不同的。
圖11以透視圖示出了配置在處理系統的分散室中的動力噴射模塊的示例。在一個實施例中,用於將液體混合物噴射到一個或多個液滴流中並迫使一個或多個流進入處理系統的動力噴射模塊1140A包括一個用於將供應給動力噴射模塊1140A的液體混合物噴射到其中的動力噴射器1142A。動力噴射模塊1140A還包括:一個支撐框架1144A,用於支撐動力噴射1142A的移動;一個第一模塊致動器1146A,用於移動以相應地連接至分散室上開口的動力噴射;以及一個連接器1145A,其連接第一模塊致動器1146A和動力噴嘴1142A。
另外,如圖11所示,分散室1120包括一個或多個開口1122A,1122B,1122C,其位於分散室1120的室壁上,並適於連接至動力噴射的動力噴射並與之配合,在帶有噴嘴陣列的動力噴射一面。在一實施例中,圖11中示出了一個或多個開口的形狀以及一個或多個開口的佈置,其中,一個或多個開口為矩形形狀,其底部寬度長於側面長度,並且在腔室壁的同一水平線上以彼此相鄰且均勻的距離定位。
同樣,如圖11所示,分散室1120充滿了從處理室的緩衝室輸送來的多種統一氣體F2。 在一實施例中,多種統一氣體F2同時與在分散室1120內形成液滴流從動力噴射模塊的動力噴嘴噴射出到分散室1120中,以使液滴流通過分散室1120, 可以從霧中去除水分,也可以不從霧中去除水分,並形成方向為F3的氣-液混合物,其包含液體混合物和多種統一氣體。 而且,可以在形成液滴流之前將多種統一氣體F 2的流輸送到分散室1120中,以填充並可選地在在分散室1120內部產生液滴流之前將分散室1120的內部體積預熱到第一溫度。
在一個實施例中,一個或多個開口1122A-1122C位於垂直定位的分散室1120的頂部附近(例如,圓頂型分散室等)以連接並裝配動力噴射模塊用於將液滴流注入到分散室1120中並垂直向下穿過分散室。可替代地,一個或多個開口1122A-1122C可以定位在垂直佈置的分散室1120的底部附近,並能夠連接並裝配動力噴射模塊以通過增加液滴的噴射量而向上將液滴流注入分散室中,增加在其中生成的流的停留時間。在另一實施例中,當分散室1120水平放置時(例如,一個管式分散室等),並且一個或多個開口1122A-1122C位於分散室1120的一端附近,以適合併連接至動力噴射模塊,以此噴射從分散室1120的一端通過另一端輸送的液滴流,可以以一定的的停留時間通過分散室1120內的路徑。 在一個實施方案中,分散室將其自身保持在第一溫度。
在本發明的一個實施例中,輸送到分散室中的多個均勻氣流F2的方向平行於分散室1120的室壁。並且,輸送的氣液混合物F3 的方向平行於分散室1120的室壁,該氣液混合物F3 是由在通過分散室1102,動力噴射將多個均勻的氣流F2 分散成液滴流形成。
圖12以透視圖示出了配置在處理系統的分散室中的動力噴射模塊的示例。 在一個實施例中,用於將液體混合物噴射到一個或多個液滴流中並迫使一個或多個流進入處理系統的動力噴射模塊1240A,包括一個用於將供應給動力噴射模塊1240A的液體混合物噴射到一個或多個液滴流的動力噴射1242A。 動力噴射模塊1240A還包括:一個支撐框架1244A,用於支撐動力噴射1242A的移動,第一模塊致動器1246A,用於使動力噴射運動以相應地連接至分散室上的開口;以及一個連接器1245A,其連接到第一模塊致動器1246A和動力噴射1242A。
同樣,如圖12所示,分散室1220包括一個或多個開口1222A,1222B,1222C,其位於分散室1220的室壁上,並適於連接至在帶有噴嘴陣列的動力噴射的一面的動力噴射模塊的動力噴射並與之配合。在一實施例中,圖12中展示一個或一個以上開口的形狀及一個或一個以上開口的佈置,其中所述一個或一個以上開口為矩形形狀,其底部寬度短於邊長,在分散室1220的室壁的同一垂直線上以彼此相鄰的均勻距離定位。
同樣,如圖12所示,分散室1220充滿了從處理室的緩衝室輸送來的多種統一氣體F2。在一實施例中,可以同時將多種統一氣體F2 ,及在從動力噴射模塊的動力噴嘴噴射出的在分散室1220內形成液滴流輸送到分散室1220中,以使液滴流通過分散體室1220,可以或可以不從霧中除去水分,並形成包含液體混合物和多種統一氣體的氣液混合物F3。而且,可以在形成液滴流之前將多種統一氣體F2的流輸送到分散室1220中,以填充並可選地在分散室1220內產生液滴流之前將分散室1220的內部體積預熱到第一溫度。
在一個實施例中,一個或多個開口1222A-1222C位於水平放置的分散室1220的左端附近(例如,一個管狀分散室等),以連接和裝配動力噴射組件用於將液滴流注入分散室1220並從分散室一端穿過到另一端。 替代地,一個或多個開口1222A-1222C可以定位在水平佈置的分散室1220的右端附近,並且能夠連接並裝配動力噴射模塊以將液滴流向上註入到分散室中以在其中生成的流的停留時間的長度。 在一個實施方案中,分散室將自身保持在第一溫度。
在本發明的一個實施例中,輸送到分散室中的多個均勻氣流F2的方向平行於分散室1220的室壁。並且,輸送的氣液混合物F3 的方向平行於分散室1120的室壁,該氣液混合物F3 是由在通過分散室1102,動力噴射將多個均勻的氣流F2 分散成液滴流形成。
圖13以透視圖示出了配置在處理系統的分散室中的動力噴射模塊的示例。在一個實施例中,用於將液體混合物噴射到一個或多個液滴流中並迫使一個或多個流進入處理系統的地動力噴射模塊1340A包括一個用於將供應給動力噴射模塊1340A的液體混合物噴射到一個或多個液滴流的動力噴射器1342A。動力噴射模塊1340A還包括:一個支撐框架1344A,用於支撐動力噴射1342A的移動;一個第一模塊致動器1346A,其用於移動動力噴射以相應地連接至分散室上的開口;以及一個連接器1345A,其連接第一模塊致動器1346A和動力噴射1342A。
另外,如圖13所示,分散室1320包括一個或多個開口1322A,1322B,1322C,1322D,1322E和1322F,其位於分散室1320的室壁上並適於連接至並與之配合在噴嘴陣列的動力噴射,在動力噴射具有噴嘴陣列的一面,且底部寬度比其側面長度長。 在一實施例中,一個或多個開口的形狀以及一個或多個開口的佈置在圖13中示出,其中,一個或多個開口為矩形,其底部寬度長於側面長度,並且在腔室壁的同一垂直線上以彼此相鄰的均勻距離放置。
在一個實施例中,一個或多個開口1322A-1322F位於水平佈置的分散室1220的左端附近(例如,一個管狀分散室等),以連接和裝配動力噴散模塊用於將液滴流注入分散室1320並穿過分散室從一端到另一端。替代地,一個或多個開口1322A-1322F可位於水平佈置的分散室1320的右端附近,並且能夠連接並裝配動力噴射模塊以將液滴流向上註入到分散室中,以在其中生成的流的停留時間的長度。在一個實施方案中,分散室將其自身保持在第一溫度。
在本發明的一個實施例中,輸送到分散室中的多個均勻氣流F2的方向平行於分散室1020的室壁。並且氣液混合物F3流過分散室1020的方向平行於分散室1020的室壁。在本發明的另一個實施例中,輸送到分散室1020中的多個均勻氣流F2的方向和流過分散室1020的氣液混合物F3的方向是不同的。
在本發明的一個實施例中,輸送到分散室中的多個均勻氣流F2的方向平行於分散室1320的室壁。並且,通過將從動力噴射輸送到分散室132的多個均勻的氣流F2分散到液滴流產生的氣液混合物F3地方向平行於分散室1320的室壁。
生產顆粒材料的方法
圖14示出了生產顆粒材料的方法900。 方法900包括步驟910,步驟920,步驟930和步驟940。
步驟910包括將一種或多種氣體輸送到處理系統中。一種或多種氣體尤其可以是,例如,空氣,氧氣,二氧化碳,氮氣,氫氣,惰性氣體,稀有氣體及其組合。
步驟920包括通過處理系統的一個或多個動力噴射模塊將液體混合物噴射到一個或多個液滴流中。
可以通過調節動力噴射模塊內的液體輸送/噴射通道的尺寸來調節一個或多個液滴流的期望尺寸。 可以產生從幾納米到幾百微米的一個或多個液滴流的尺寸。 可以根據所使用的霧發生器的選擇,混合液化合物,分散室的溫度,氣體的流速以及分散室內的停留時間來調節合適的液滴尺寸。 例如,在分散室內產生液滴大小在十分之一微米至一毫米之間的薄霧。
步驟930包括在處理系統的分散室內部在第一溫度下將一種或多種氣體的一種或多種氣流與一種或多種液滴流分散成氣-液混合物。
因此,本發明的一個實施例提供了在分散室內流動的一種或多種氣體用作在分散室內形成氣液混合物的氣體源。 通過連續地和/或以可調節的,可變的流速使一種或多種氣體流動,在分散室內混合一種或多種液滴流。 同時,從液體混合物中噴出的液滴流以氣體形式,作為徹底混合的氣液混合物,通過分散室內的路徑,隨著更多的氣體流入,氣液混合物從分散室中排出,並連續輸送到與分散室相連的反應室中。
替代地,分散系統中流動的一種或多種氣體被加熱,並且加熱的氣體的熱能用作在分散室內進行乾燥和/或其他反應的能量源。可以通過合適的加熱機制將氣體加熱到70°C至600°C之間的溫度,例如電動加熱器,燃料燃燒加熱器等。可選地,分散室內的干燥和/或其他反應可以通過直接加熱分散室,例如加熱分散室的室主體來進行。使用加熱氣體的優點是傳熱快,溫度均勻性高,易於按比例放大等優點。分散室可以是任何室,具有封閉室體的爐子,例如圓頂型陶瓷分散室,石英室,管室等。可選地,室體由絕熱材料(例如陶瓷等)製成,以防止在乾燥和/或分散室內的其他反應過程中產生熱量損失。
因此,一種或多種氣體可以是與液滴流充分混合成氣-液混合物並乾燥氣-液混合物而不與液滴流反應的氣體。在某些情況下,液滴流中的化學物質在乾燥和/或分散室內的其他反應過程中,可能會與氣體和/或彼此發生一定程度的反應,具體取決於第一溫度和氣流的化學組成。飛沫。另外,充分混合的液滴化合物流的氣-液混合物在分散室內的停留時間是可調節的,其可以例如在一秒至一小時之間,並且取決於一種或多種氣體的流速,以及液滴流必須在分散室內流過的路徑的長度。
任選地,在步驟930之後,乾燥產品例如通過將氣體和液體混合物混合在一起的氣體-固體混合物,在處理系統的分散室內在第一溫度下乾燥氣-液混合物而獲得,並將其分離成第一類型的固體顆粒和廢物,使用例如氣固分離器。第一類固體顆粒可以包括液體混合物的充分混合的固體顆粒。
步驟940包括在處理系統的反應室內部在第二溫度下處理氣液混合物。氣液混合物被輸送到反應室中以在不同於第一溫度的第二溫度下進行反應。
可選地,步驟940包括使加熱到第二溫度的第二氣體的第二流在反應室內流動。因此,加熱的第二氣體和在反應室內輸送的氣-液混合物混合在一起以形成第二氣-液混合物。
在一個實施方案中,將第二氣體加熱至期望的反應溫度,例如在400°C至1300°C之間的溫度,並流入反應室中,以用作乾燥和/或反應的能量源第二氣-液混合物在第二停留時間和第二溫度下進入反應產物,例如第一類固體顆粒。流動的空氣或已加熱氣體的優點是傳熱更快,溫度分佈均勻(尤其是在高溫範圍內),易於擴大規模等。第二停留時間可以是進行第二氣-液混合物的完全反應的任何停留時間,例如在一秒至十小時之間或更長的停留時間。
第二氣-液混合物在反應室內的反應可包括氧化,還原,分解,組合反應,相變,重結晶,單置換反應,雙置換反應,燃燒,異構化和組合中的任何一種 其。 例如,第二氣體-液體混合物可以被氧化,諸如將液體混合物化合物氧化成氧化物材料。 可選擇地,從反應室內的第二氣-液混合物的反應獲得期望的反應產物的晶體結構。
示例性第二氣體包括但不限於空氣,氧氣,二氧化碳,氧化性氣體,氮氣,惰性氣體,稀有氣體及其組合。 對於反應器內部的氧化反應,例如由一種或多種液體混合物形成氧化物材料,可以將氧化氣體用作第二氣體。 為了在反應器內進行還原反應,可以將還原氣體用作第二氣體。 例如,加熱的空氣被用作形成第二氣固混合物的氣體源。
任選地,在步驟940之後,將反應產物(例如,與第二氣體和/或其他氣相副產物或廢產物等混合的氧化反應產物的氣固混合物)輸送處反應室,並冷卻以獲得所需尺寸,形態和晶體結構的最終固體顆粒,準備進一步用於電池應用。 例如,可將反應產物緩慢冷卻至室溫,以避免干擾或破壞形成具有均勻形態和所需晶體結構的穩定能態的過程。
儘管前述內容針對本發明的實施例,但是在不脫離本發明的基本範圍的情況下,可以設計本發明的其他和進一步的實施例,並且本發明的範圍由所附請求項書確定。
100:處理系統 102:系統入口 104:系統出口 106:氣管入口 210:反應室 218:腔室壁 220:分散室 222A:開口 222B:開口 222C:開口 222D:開口 228:腔室壁 228S:腔室壁 228T:腔室壁 230:緩衝室 232:氣體分散器 234:通道 238:腔室壁 240A:動力噴射模塊 240B:動力噴射模塊 240C:動力噴射模塊 240D:動力噴射模塊 242A:動力噴射 242B:動力噴射 242C:動力噴射 242D:動力噴射 244A:支撐框架 244B:支撐框架 245A:連接器 245B:連接器 246A:模塊驅動器 246B:模塊驅動器 246C:模塊驅動器 246D:模塊驅動器 300:電子控制單元 340:CPU 402A:孔 402D:孔 442A:動力噴射 480A:噴嘴陣列 480B:噴嘴陣列 502A:孔 502D:孔 542A:動力噴射 542B:動力噴射 542C:動力噴射 542D:動力噴射 580A:噴嘴陣列 580B:噴嘴陣列 602A:孔 602D:孔 606:入口 642A:動力噴射 642B:動力噴射 642C:動力噴射 642D:動力噴射 680A:噴嘴陣列 680B:噴嘴陣列 702A:孔 702B:孔 720:液體源 742A:動力噴射 742B:動力噴射 780A:噴嘴陣列 780B:噴嘴陣列 800:處理系統 802:系統入口 804:系統出口 808:氣管入口 810:反應室 818:腔室壁 882:氣體分配環 884:通道 888:內牆 820:分散室 828:腔室壁 830:緩衝室 832:氣體分散器 834:通道 838:通道牆 900:方法 910:步驟 920:步驟 930:步驟 940:步驟 1120:分散室 1122A:開口 1122B:開口 1122C:開口 1122D:開口 1122E:開口 1122F:開口 1140A:動力噴射模塊 1142A:動力噴射 1144A:支撐框架 1145A:連接器 1146A:模塊驅動器 1220:分散室 1222A:開口 1222B:開口 1222C:開口 1240A:動力噴射模塊 1242A:動力噴射 1244A:支撐框架 1246A:模塊驅動器 1320:分散室 1322A:開口 1322B:開口 1322C:開口 1340A:動力噴射模塊 1342A:動力噴射 1344A:支撐框架 1346A:模塊驅動器 1420:分散室 1422A:開口 1422B:開口 1422C:開口 1422D:開口 1422E:開口 1422F:開口 1440A:動力噴射模塊 1442A:動力噴射 1444A:支撐框架 1445A:連接器 1446A:模塊驅動器
為了可以詳細地理解本發明的上述特徵的方式,可以通過參考實施例來對本發明進行更具體的描述,上面對本發明進行了簡要概述,其中一些示例在附圖中示出。然而,應注意,附圖僅示出了本發明的典型實施例,因此不應視為對本發明範圍的限制,因為本發明可允許其他等效實施例。
圖1A是用於生產顆粒材料的處理系統的一個實施例的透視圖。
圖1B是用於生產顆粒材料的處理系統的一個實施例的剖視圖。
圖2A是根據本發明的一個實施例的可用於執行製備顆粒材料的過程的設備的剖視圖(如圖1B中的虛線BB'所示)。
圖2B是根據本發明的一個實施例的可用於執行製造顆粒材料的過程的設備的透視圖。
圖3A是根據本發明的一個實施例的可用於執行製造顆粒材料的過程的設備的剖視圖(如圖1B中的虛線A-A'剖開)。
圖3B示出了根據本發明的一個實施例的設備內部的氣流與液滴流之間的角度。
圖4A是根據本發明的一個實施例的動力噴射和其上的孔的透視圖。
圖4B是根據本發明的一個實施例的動力噴射和其上的孔的透視圖。
圖4C是根據本發明的一個實施例的可用於執行生產顆粒材料的過程的各種設備的透視圖。
圖5A是根據本發明的一個實施例的動力噴射和其上的孔的透視圖。
圖5B是根據本發明的一個實施例的動力噴射和其上的孔的透視圖。
圖5C是根據本發明的一個實施例的可用於執行生產顆粒材料的過程的各種設備的透視圖。
圖6A是根據本發明的一個實施例的動力噴射和其上的孔的透視圖。
圖6B是根據本發明的一個實施例的動力噴射和其上的孔口的透視圖。
圖6C是根據本發明的一個實施例的可用於執行生產顆粒材料的過程的各種設備的透視圖。
圖7A是根據本發明的一個實施例的動力噴射模塊上的噴嘴陣列的透視圖。
圖7B是根據本發明的一個實施例的動力噴射模塊上的噴嘴陣列的透視圖。
圖8是用於生產顆粒材料的處理系統的一個實施例的剖視圖。
圖9A展示出了根據本發明的一個實施例的可用於執行製造顆粒材料的過程的設備的剖視圖(如圖8中的虛線A-A'剖開)。
圖9B展示出了根據本發明的一個實施例的可用於執行製造顆粒材料的過程的設備的橫截面圖(如圖8中的虛線BB'所示)。
圖9C展示出了根據本發明的一個實施例的可用於在用於生產顆粒材料的處理系統上執行的設備的橫截面圖(如圖8中的虛線CC'所示)。
圖10展示出了根據本發明另一實施例的該處理系統中配置在分散室的示例性動力噴射模塊的透視圖。
圖11展示出了根據本發明其中一實施例的該處理系統中配置在分散室的示例性動力噴射模塊的透視圖。
圖12展示出了根據本發明另一實施例的該處理系統中配置在分散室的示例性動力噴射模塊的透視圖。
圖13展示出了根據本發明另一實施例的該處理系統中配置在分散室的示例性動力噴射模塊的透視圖。
圖14示出了在用於生產顆粒材料的處理系統上執行的方法的步驟。
(無)
100:處理系統
102:系統入口
104:系統出口
106:氣管入口
210:反應室
220:分散室
230:緩衝室
240A:動力噴射模塊
240B:動力噴射模塊
240C:動力噴射模塊

Claims (20)

  1. 一種由液體混合物生產用於電池單元的顆粒材料的處理系統,包括:一個系統入口,其連接到一個或多個氣體管線,以將一種或多種氣體輸送到上述處理系統中;一個分散室,接受來自於上述處理系的系統入口所輸入的上述一種或多種氣體;一排包括一個或多個動力噴射模塊的陣列,連接至上述分散室,適於將液體混合物噴射成一個或多個液滴流中,並迫使噴射出的上述一或多個液滴流進入上述處理系統,在上述分散室內接受上述一種或多種氣體以及上述一個或多個動力噴射模塊所噴射出的上述一或多個液滴流;和一個反應室,連接至上述分散室,在一種或多種氣體的存在下輸送來自上述一個或多個動力噴射模塊的所噴射出的上述一個或多個液滴流,並將一個或多個液滴流在一種或多種氣體的存在下進行反應以處理成所述用於電池單元的顆粒材料。
  2. 根據請求項1所述的處理系統,還包括連接至系統入口的緩衝室,其中,所述緩衝室包括氣體分配器,所述一個氣體分配器在其中具有一個或多個通道,用於將所述一種或多種氣體輸送到所述處理系統內部的多個均勻氣流中。
  3. 根據請求項2所述的處理系統,還包括分散室,所述分散室連 接到所述緩衝室和所述一個或多個動力噴射模塊,其中,所述分散室適於將來自所述緩衝室的多個均勻氣流與從一個或多個動力噴射模塊噴射的一個或多個氣流液滴分開。
  4. 根據請求項3所述的處理系統,其中,所述分散室還包括:一個腔體;分散室的腔室主體的第一側壁,其中第一側壁連接到緩衝室;腔室主體的第二側壁,其中第二側壁連接到一個或多個動力噴射模塊;和腔室主體的第三側壁,其中第三側壁連接到反應室。
  5. 根據請求項1所述的處理系統,還包括連接到所述反應室和所述一個或多個動力噴射模塊的分散室,其中所述分散室適是用來自一個或多個動力噴射模塊噴射的一個或多個液滴流來分散所述一種或多種氣體,以此使得一種或多種氣體的氣體流和一個或多個液滴流的液滴流以介於零度和約180度之間的分散角(α)彼此分散。
  6. 根據請求項5所述的處理系統,其中,所述分散角(α)為零度。
  7. 根據請求項5所述的處理系統,其中,所述分散角(α)為大約90度。
  8. 根據請求項1所述的處理系統,其中,所述反應室包括氣體分配環,所述氣體分配環在其中具有一個或多個通道,用於使另外的氣體適應多種氣體流並將所述多種氣體輸送到所述反應室中。
  9. 一種由液體混合物生產用於電池單元的顆粒材料的處理系統,包括:一個系統入口,其連接到一個或多個氣體管線,以將一種或多種氣體混合物輸送到處理系統中;一排包括一個或多個動力噴射模塊的陣列,適於將液體混合物噴射成一個或多個液滴流中,並迫使噴射出的上述一個或多個液滴流進入上述處理系統;一個分散室,其適於連接至一個或多個動力噴射模塊,其中,上述分散室接受來自於上述處理系的系統入口所輸入的上述一種或多種氣體混合物,並利用從上述一個或多個動力噴射模塊噴射的上述一個或多個液滴流與上述一種或多種氣體混合物彼此相遇,其中,上述氣體混合物和上述一個或多個液滴流中的液滴流以分散角(α)彼此分散;和一個連接到分散室的反應室,適於在所述反應室內於上述一種或多種氣體的存在下輸送來自上述一個或多個動力噴射模塊的所噴射出的上述一個或多個液滴流,並將一個或多個液滴流處理成所述用於電池單元的顆粒材料。
  10. 根據請求項9所述的處理系統,其中,所述一個或多個動力噴射模塊中的每一個包括一個動力噴射器,所述動力噴射器具有至少一個噴嘴陣列,所述噴嘴陣列上具有一個或多個孔陣,所述每個孔適於從所述噴嘴中噴射 出至少一個來自上述液體混合物的液滴。
  11. 根據請求項10所述的處理系統,其中,每個動力噴射模塊的動力噴射器為長方體形狀,並且所述動力噴射器的一個或多個噴嘴孔的陣列為矩形,並且其中所述一個或多個噴嘴孔的陣列被定位為垂直長度大於水平長度。
  12. 根據請求項10所述的處理系統,其中,所述動力噴射器的形狀為長方體,並且所述動力噴射器的一個或多個噴嘴孔的陣列的形狀為矩形,並且其中所述一個或多個噴嘴孔的陣列為垂直長度小於其水平長度。
  13. 根據請求項9所述的處理系統,其中所述分散室包括一個或多個開口,所述每個動力噴射模塊與所述分散室上的一個或多個開口中的所述每個開口相匹配。
  14. 根據請求項13所述的處理系統,其中所述一個或更多個動力噴射模塊中的每個門位於所述分散室的腔室主體側壁的一個或多個開口上,其中所述側壁選自由垂直側壁和水平側壁組成的組合。
  15. 根據請求項9所述的處理系統,其中所述分散角(α)為零度,並且所述一個或多個氣體流和所述一個或多個液滴流從相同方向彼此共流。
  16. 根據請求項9所述的處理系統,其中,所述分散角(α)為大約90度。
  17. 根據請求項16所述的處理系統,其中,所述一個或多個動力噴射模塊位於所述分散室的腔室主體的豎直側壁上,並且所述氣體混合物的一個或多個氣流從分散室的腔室主體的水平側壁的頂部流入所述分散室。
  18. 根據請求項16所述的處理系統,其中,所述一個或更多個動力噴射模塊位於所述分散室的腔室主體的水平側壁上,並且所述氣體混合物的一個或更多個氣體流從分散室腔室主體的垂直側壁流入所述分散室。
  19. 一種由液體混合物生產用於電池單元的顆粒材料的方法,包括:將一種或多種氣體輸送到一種處理系統的一個系統入口中;使用上述處理系統的一個或多個動力噴射模塊將液體混合物噴射成一個或多個第一液滴流並進入上述處理系統;和於該處理系統的一個反應室內,在第一溫度下,上述一種或多種氣體於該處理系統的上述反應室中幫助輸送上述一個或多個第一液滴流,在上述反應室內加溫處理反應成第一顆粒材料。
  20. 根據請求項19所述的方法,還包括:於該處理系統的一個反應室內,在第二溫度下,將具有上述一個或多個第 一液滴流與上述一種或多種氣體分散成的一個氣液混合物,在上述第二溫度下組成的一個或多個氣液混合物氣流,該氣液混合物氣流於反應室內處理反應成第二顆粒材料,其中上述第二溫度不同於上述第一溫度。
TW109121945A 2019-06-28 2020-06-29 生產顆粒材料的加工系統和方法 TWI795650B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/457,885 2019-06-28
US16/457,885 US11376559B2 (en) 2019-06-28 2019-06-28 Processing system and method for producing a particulate material

Publications (2)

Publication Number Publication Date
TW202114777A TW202114777A (zh) 2021-04-16
TWI795650B true TWI795650B (zh) 2023-03-11

Family

ID=74042973

Family Applications (2)

Application Number Title Priority Date Filing Date
TW112103909A TW202325396A (zh) 2019-06-28 2020-06-29 生產顆粒材料的加工系統和方法
TW109121945A TWI795650B (zh) 2019-06-28 2020-06-29 生產顆粒材料的加工系統和方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW112103909A TW202325396A (zh) 2019-06-28 2020-06-29 生產顆粒材料的加工系統和方法

Country Status (7)

Country Link
US (3) US11376559B2 (zh)
EP (1) EP3980173A4 (zh)
JP (2) JP7417298B2 (zh)
KR (1) KR20220052863A (zh)
CN (1) CN114007733A (zh)
TW (2) TW202325396A (zh)
WO (1) WO2020264192A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11376559B2 (en) * 2019-06-28 2022-07-05 eJoule, Inc. Processing system and method for producing a particulate material
US20220181616A1 (en) * 2020-09-18 2022-06-09 eJoule, Inc. Materials and Methods of Producing Lithium Cobalt Oxide Materials of A Battery Cell
US20220177324A1 (en) * 2020-09-18 2022-06-09 eJoule, Inc. Materials and Methods of Producing Lithium Cobalt Oxide Materials of A Battery Cell

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104870074A (zh) * 2012-11-06 2015-08-26 创新科学技术有限责任公司 用于混合气体和液体以重力、物理和化学收集化合物的方法和系统

Family Cites Families (124)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3408164A (en) * 1966-07-08 1968-10-29 Phillips Petroleum Co Plasma treatment of carbon blacks
US4085197A (en) * 1974-04-29 1978-04-18 Phillips Petroleum Company Carbon black process
US5009854A (en) * 1988-08-31 1991-04-23 Columbian Chemicals Company Axial reactor with coaxial oil injection
DE4200244A1 (de) 1992-01-08 1993-07-15 Metallgesellschaft Ag Verfahren und vorrichtung zum kuehlen der heissen feststoffe eines wirbelschichtreaktors
US5341766A (en) 1992-11-10 1994-08-30 A. Ahlstrom Corporation Method and apparatus for operating a circulating fluidized bed system
US5406914A (en) 1992-11-10 1995-04-18 A. Ahlstrom Corporation Method and apparatus for operating a circulating fluidized bed reactor system
US6348181B1 (en) * 1993-06-15 2002-02-19 Cabot Corporation Process for producing carbon blacks
WO1995009449A1 (en) 1993-09-27 1995-04-06 Arthur D. Little, Inc. Small particle electrodes by aerosol process
US5372096A (en) 1993-12-29 1994-12-13 Combustion Engineering, Inc. Internal particle collecting cells for circulating fluid bed combustion
US5443809A (en) 1994-05-24 1995-08-22 Valence Technology, Inc. Manufacture of cathode materials by the decomposition of ammonium metal oxides in a fluidized bed
US5770018A (en) 1996-04-10 1998-06-23 Valence Technology, Inc. Method for preparing lithium manganese oxide compounds
US5910382A (en) 1996-04-23 1999-06-08 Board Of Regents, University Of Texas Systems Cathode materials for secondary (rechargeable) lithium batteries
JP3221352B2 (ja) 1996-06-17 2001-10-22 株式会社村田製作所 スピネル型リチウムマンガン複合酸化物の製造方法
US5928405A (en) 1997-05-21 1999-07-27 Degussa Corporation Method of making metallic powders by aerosol thermolysis
US5952125A (en) 1997-07-21 1999-09-14 Nanogram Corporation Batteries with electroactive nanoparticles
EP0903536A1 (de) 1997-09-23 1999-03-24 Asea Brown Boveri AG Dampferzeuger mit integriertem Staubabscheider
US6383235B1 (en) 1997-09-26 2002-05-07 Mitsubishi Denki Kabushiki Kaisha Cathode materials, process for the preparation thereof and secondary lithium ion battery using the cathode materials
US6753108B1 (en) 1998-02-24 2004-06-22 Superior Micropowders, Llc Energy devices and methods for the fabrication of energy devices
US6770226B2 (en) 1998-02-24 2004-08-03 Superior Micropowders Fine powders for use in primary and secondary batteries
US6203944B1 (en) 1998-03-26 2001-03-20 3M Innovative Properties Company Electrode for a lithium battery
KR100602542B1 (ko) * 1998-06-09 2006-07-20 캐보트 코포레이션 카본 블랙의 제조 방법 및 장치
US6432583B1 (en) 1998-07-31 2002-08-13 Mitsui Mining Co., Ltd. Anode material for lithium secondary battery, process for production thereof, and lithium secondary battery
US6685762B1 (en) 1998-08-26 2004-02-03 Superior Micropowders Llc Aerosol method and apparatus for making particulate products
JP5153027B2 (ja) 1999-01-28 2013-02-27 日立金属株式会社 リチウム二次電池の正極材の製造方法
US6699297B1 (en) 1999-03-30 2004-03-02 Toho Titanium Co., Ltd. Method for preparing lithium manganate and positive electrode for lithium secondary cell containing the same
JP3525792B2 (ja) 1999-03-31 2004-05-10 日本碍子株式会社 液滴吐出装置
KR100487458B1 (ko) 1999-10-22 2005-05-06 산요덴키가부시키가이샤 리튬 2차 전지용 전극의 제조 방법
US6511516B1 (en) 2000-02-23 2003-01-28 Johnson Research & Development Co., Inc. Method and apparatus for producing lithium based cathodes
US6582481B1 (en) 1999-11-23 2003-06-24 Johnson Research & Development Company, Inc. Method of producing lithium base cathodes
US6699336B2 (en) 2000-01-13 2004-03-02 3M Innovative Properties Company Amorphous electrode compositions
US6916578B2 (en) 2000-04-19 2005-07-12 Japan Storage Battery Co., Ltd. Positive electrode active material for secondary cell, method for producing the same and nonaqueous electrolyte secondary cell comprising the same
JP2004508261A (ja) 2000-09-05 2004-03-18 アルテア ナノマテリアルズ インコーポレイテッド 混合した金属酸化物及び金属酸化物のコンパウンドの製造方法
US7138209B2 (en) 2000-10-09 2006-11-21 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery and method of preparing same
CN101887972B (zh) 2000-11-16 2012-07-04 日立麦克赛尔能源株式会社 正极活性物质和含有锂的复合氧化物的制造方法
US6489408B2 (en) * 2000-11-30 2002-12-03 Univation Technologies, Llc Polymerization process
US6444009B1 (en) * 2001-04-12 2002-09-03 Nanotek Instruments, Inc. Method for producing environmentally stable reactive alloy powders
US6964828B2 (en) 2001-04-27 2005-11-15 3M Innovative Properties Company Cathode compositions for lithium-ion batteries
CA2452496A1 (en) 2001-07-10 2003-01-23 The Board Of Regents Of The University And Community College System Of N Evada On Behalf Of The University Of Nevada, Reno Process for passivating sulfidic iron-containing rock
US7393476B2 (en) 2001-11-22 2008-07-01 Gs Yuasa Corporation Positive electrode active material for lithium secondary cell and lithium secondary cell
JP2003229124A (ja) 2002-01-31 2003-08-15 Hitachi Metals Ltd 非水系リチウム二次電池用正極活物質とその製造方法及びそれを用いた非水系リチウム二次電池
EP1357616B1 (en) 2002-03-25 2012-11-28 Sumitomo Chemical Company, Limited Positive electrode active material for non-aqueous secondary battery
US7241532B2 (en) 2002-03-28 2007-07-10 Mitsubishi Chemical Corporation Positive-electrode material for lithium secondary battery, secondary battery employing the same, and process for producing positive-electrode material for lithium secondary battery
KR100453555B1 (ko) 2002-06-03 2004-10-20 한국지질자원연구원 화염분무열분해를 이용한 리튬코발트 산화물 나노입자의제조방법
JP4155116B2 (ja) 2002-06-10 2008-09-24 セイコーエプソン株式会社 トナーの製造方法、トナーおよびトナー製造装置
KR100564744B1 (ko) 2003-05-07 2006-03-27 한국전자통신연구원 리튬 이차전지용 리튬-코발트-망간계 산화물 및 그 제조방법
JP4740409B2 (ja) 2003-06-11 2011-08-03 株式会社日立製作所 電気自動車或いはハイブリット自動車用リチウム二次電池
US20050037262A1 (en) 2003-08-01 2005-02-17 Alain Vallee Cathode material for polymer batteries and method of preparing same
US7211237B2 (en) 2003-11-26 2007-05-01 3M Innovative Properties Company Solid state synthesis of lithium ion battery cathode material
EP3432392B1 (en) 2003-12-31 2023-03-29 LG Energy Solution, Ltd. Electrode active material powder with size dependent composition and method to prepare the same
US7381496B2 (en) 2004-05-21 2008-06-03 Tiax Llc Lithium metal oxide materials and methods of synthesis and use
JP4555199B2 (ja) 2005-09-20 2010-09-29 中外炉工業株式会社 粉体製造装置
US7494744B2 (en) 2006-03-08 2009-02-24 Changs-Ascending Enterprise Co. Cathode material for Li-ion battery applications
KR20080108146A (ko) 2006-04-04 2008-12-11 미쯔비시 레이온 가부시끼가이샤 분무 건조기, 분무 건조 방법 및 중합체 분체
WO2008039808A2 (en) 2006-09-25 2008-04-03 Board Of Regents, The University Of Texas System Cation-substituted spinel oxide and oxyfluoride cathodes for lithium ion batteries
JP4963059B2 (ja) 2006-11-20 2012-06-27 独立行政法人産業技術総合研究所 チタン及びニッケル含有リチウムマンガン系複合酸化物
US7824802B2 (en) 2007-01-17 2010-11-02 The United States Of America As Represented By The Secretary Of The Army Method of preparing a composite cathode active material for rechargeable electrochemical cell
JP2008194637A (ja) 2007-02-14 2008-08-28 Hosokawa Funtai Gijutsu Kenkyusho:Kk 微粒子製造装置
KR101151931B1 (ko) 2007-03-30 2012-06-04 파나소닉 주식회사 비수전해질 이차전지용 활물질 및 그 제조법
WO2009039281A2 (en) 2007-09-19 2009-03-26 Amgen Inc. Particle drying apparatus and methods for forming dry particles
CN101396647B (zh) 2007-09-29 2011-03-16 中科合成油技术有限公司 用于费-托合成的气-液-固三相悬浮床反应器及其应用
KR101519686B1 (ko) 2007-10-01 2015-05-12 바스프 에스이 결정질 리튬, 바나듐 및 포스페이트 함유 물질의 제조 방법
CN101855770A (zh) 2007-10-25 2010-10-06 应用材料股份有限公司 大量制造薄膜电池的方法
KR101234965B1 (ko) 2007-11-06 2013-02-20 파나소닉 주식회사 비수전해질 이차전지용 양극 활물질 및 그것을 이용한 비수전해질 이차전지
US8993051B2 (en) 2007-12-12 2015-03-31 Technische Universiteit Delft Method for covering particles, especially a battery electrode material particles, and particles obtained with such method and a battery comprising such particle
TW201010944A (en) 2008-04-17 2010-03-16 Basf Se Process for the preparation of crystalline lithium-, iron-and phosphate-comprising materials
CA2722547A1 (en) 2008-04-25 2009-10-29 Sumitomo Osaka Cement Co., Ltd. Method for producing cathode active material for lithium ion batteries, cathode active material for lithium ion batteries obtained by the production method, lithium ion battery electrode, and lithium ion battery
US8277683B2 (en) 2008-05-30 2012-10-02 Uchicago Argonne, Llc Nano-sized structured layered positive electrode materials to enable high energy density and high rate capability lithium batteries
US8153296B2 (en) 2008-08-27 2012-04-10 The Gillette Company Lithium cell with cathode containing metal doped iron sulfide
WO2010036723A1 (en) 2008-09-24 2010-04-01 The Regents Of The University Of California Aluminum substituted mixed transition metal oxide cathode materials for lithium ion batteries
US8389160B2 (en) 2008-10-07 2013-03-05 Envia Systems, Inc. Positive electrode materials for lithium ion batteries having a high specific discharge capacity and processes for the synthesis of these materials
US20110274976A1 (en) 2008-11-03 2011-11-10 Basvah, Llc Lithium secondary batteries with positive electrode compositions and their methods of manufacturing
US20100126849A1 (en) 2008-11-24 2010-05-27 Applied Materials, Inc. Apparatus and method for forming 3d nanostructure electrode for electrochemical battery and capacitor
EP2373579A2 (en) 2008-12-08 2011-10-12 Tisol, Llc Multicomponent nanoparticle materials and process and apparatus therefor
KR20160107362A (ko) 2008-12-12 2016-09-13 어플라이드 머티어리얼스, 인코포레이티드 하이브리드 나노―탄소 층을 갖는 삼차원 배터리
TWI474970B (zh) 2008-12-29 2015-03-01 Basf Se 於水熱條件下合成鋰-金屬-磷酸鹽
KR100939647B1 (ko) 2009-01-22 2010-02-03 한화석유화학 주식회사 전극 활물질인 음이온 부족형 비화학양론 리튬 전이금속 다중산 화합물, 그 제조 방법 및 그를 이용한 전기화학 소자
US8486562B2 (en) 2009-02-25 2013-07-16 Applied Materials, Inc. Thin film electrochemical energy storage device with three-dimensional anodic structure
US20100261071A1 (en) 2009-04-13 2010-10-14 Applied Materials, Inc. Metallized fibers for electrochemical energy storage
KR101718972B1 (ko) 2009-06-24 2017-03-23 바스프 에스이 LiFePO4-탄소 복합재의 제조 방법
CN201482483U (zh) 2009-07-29 2010-05-26 江苏新河农用化工有限公司 一种新型间苯二甲腈汽化器
US8431108B2 (en) 2009-08-14 2013-04-30 The University Court Of The University Of St. Andrews Cathode materials and methods for production
WO2011028529A2 (en) 2009-08-24 2011-03-10 Applied Materials, Inc. In-situ deposition of battery active lithium materials by thermal spraying
US8333950B2 (en) 2009-08-27 2012-12-18 Honeywell International Inc. Process for the preparation of lithium metal oxides involving fluidized bed techniques
EP2292557A1 (en) 2009-09-03 2011-03-09 Clariant International Ltd. Continuous synthesis of carbon-coated lithium-iron-phosphate
CN102804460A (zh) 2009-11-02 2012-11-28 巴斯瓦有限公司 用于锂离子电池的活性材料
US20110129732A1 (en) 2009-12-01 2011-06-02 Applied Materials, Inc. Compressed powder 3d battery electrode manufacturing
EP2514007A4 (en) 2009-12-17 2014-07-23 Phostech Lithium Inc METHOD FOR IMPROVING THE ELECTROCHEMICAL PERFORMANCE OF ALKALI METAL OXYANION ELECTRODE MATERIAL AND ALKALI METALLIC OXYANION ELECTRODE MATERIAL OBTAINED THEREFROM
US8540902B2 (en) 2010-01-13 2013-09-24 CNano Technology Limited Carbon nanotube based pastes
EP3594382A3 (en) 2010-02-17 2020-03-18 All American Lithium LLC Processes for preparing highly pure lithium carbonate
US20110217585A1 (en) 2010-03-02 2011-09-08 Applied Materials, Inc. Integrated composite separator for lithium-ion batteries
CN106159189B (zh) 2010-03-30 2019-11-01 应用材料公司 高性能ZnFe液流电池组
AU2011201595A1 (en) 2010-04-12 2011-10-27 Belenos Clean Power Holding Ag Transition metal oxidenitrides
WO2011139574A2 (en) 2010-05-05 2011-11-10 Applied Materials, Inc. Hydrothermal synthesis of active materials and in situ spraying deposition for lithium ion battery
KR101084076B1 (ko) 2010-05-06 2011-11-16 삼성에스디아이 주식회사 리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차 전지
US8808888B2 (en) 2010-08-25 2014-08-19 Applied Materials, Inc. Flow battery systems
JP6227411B2 (ja) 2010-09-30 2017-11-08 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated リチウムイオン電池向けの一体型セパレータの電界紡糸
US20130004657A1 (en) 2011-01-13 2013-01-03 CNano Technology Limited Enhanced Electrode Composition For Li ion Battery
US20120282522A1 (en) 2011-05-02 2012-11-08 Washington University Spray Pyrolysis Synthesis of Mesoporous Positive Electrode Materials for High Energy Lithium-Ion Batteries
US9593413B2 (en) 2011-05-04 2017-03-14 Uchicago Argonne, Llc Composite materials for battery applications
CN103518276A (zh) 2011-05-12 2014-01-15 应用材料公司 用于电池活性材料合成的前驱物制剂
US20120321815A1 (en) 2011-06-17 2012-12-20 Applied Materials, Inc. Thin Film Battery Fabrication With Mask-Less Electrolyte Deposition
US8765302B2 (en) 2011-06-17 2014-07-01 Nanotek Instruments, Inc. Graphene-enabled vanadium oxide cathode and lithium cells containing same
US8927068B2 (en) 2011-07-12 2015-01-06 Applied Materials, Inc. Methods to fabricate variations in porosity of lithium ion battery electrode films
JP5899737B2 (ja) 2011-07-28 2016-04-06 株式会社リコー 微粒子製造装置及び微粒子の製造方法
CN103828094A (zh) 2011-08-12 2014-05-28 应用材料公司 颗粒合成的装置及方法
ES2942483T3 (es) 2011-10-05 2023-06-01 Oned Mat Inc Materiales activos de nanoestructuras de silicio para baterías de iones de litio y procesos, composiciones, componentes y dispositivos relacionados con los mismos
KR101450857B1 (ko) * 2012-01-06 2014-10-15 주식회사 포스코 리튬 함유 용액 내 용존 물질의 추출 방법 및 이를 이용한 시스템
US9650309B2 (en) 2012-04-12 2017-05-16 Iowa State University Research Foundation, Inc. Stability of gas atomized reactive powders through multiple step in-situ passivation
US9861973B2 (en) * 2012-05-10 2018-01-09 University Of Connecticut Methods and apparatus for making catalyst films
KR101522526B1 (ko) 2012-11-26 2015-05-26 주식회사 엘지화학 무기 입자의 제조방법 및 그로부터 얻어진 무기 입자
JP2014113529A (ja) 2012-12-07 2014-06-26 Furukawa Electric Co Ltd:The 微粒子製造装置及び微粒子製造方法
CN103962058A (zh) 2013-01-30 2014-08-06 中国石油化工股份有限公司 预混合器、径向固定床反应器和丁烯氧化脱氢反应系统
JP2014147892A (ja) 2013-02-01 2014-08-21 Ricoh Co Ltd 粒子製造装置、粒子の製造方法、及びトナー
WO2014159118A1 (en) 2013-03-14 2014-10-02 Applied Materials, Inc. Apparatus and methods for synthesis of battery-active materials
US10086351B2 (en) 2013-05-06 2018-10-02 Llang-Yuh Chen Multi-stage process for producing a material of a battery cell
US9314800B2 (en) * 2013-10-11 2016-04-19 Hestia Systems, Llc Apparatus and process for high throughput powder production
JP6519840B2 (ja) * 2014-03-14 2019-05-29 株式会社リコー 粒子製造装置及び粒子製造方法
US9388093B2 (en) 2014-07-03 2016-07-12 Chevron U.S.A. Inc. Nozzle design for ionic liquid catalyzed alkylation
JP2016147225A (ja) 2015-02-12 2016-08-18 株式会社リコー 微粒子製造装置、微粒子製造方法、及びトナー
CN105990569B (zh) * 2015-02-13 2018-10-30 中科派思储能技术有限公司 一种硫碳复合粉体材料的制备方法及粉体材料和应用
DE102015206843A1 (de) 2015-04-16 2016-10-20 Hte Gmbh The High Throughput Experimentation Company Vorrichtung und Verfahren zum Versprühen von Flüssigkeiten und der Erzeugung von Feinstnebel
CN106139624A (zh) * 2015-04-22 2016-11-23 厦门大学 多阵列单分散颗粒的宏量喷雾干燥系统及其使用方法
EP3589398A1 (de) 2017-03-01 2020-01-08 Basf Se Vorrichtung und verfahren zur herstellung von pulverförmigen polymeren
US11376559B2 (en) * 2019-06-28 2022-07-05 eJoule, Inc. Processing system and method for producing a particulate material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104870074A (zh) * 2012-11-06 2015-08-26 创新科学技术有限责任公司 用于混合气体和液体以重力、物理和化学收集化合物的方法和系统

Also Published As

Publication number Publication date
EP3980173A4 (en) 2023-05-24
TW202114777A (zh) 2021-04-16
KR20220052863A (ko) 2022-04-28
US20230166228A1 (en) 2023-06-01
JP2022542648A (ja) 2022-10-06
US20220297076A1 (en) 2022-09-22
US20200406215A1 (en) 2020-12-31
WO2020264192A1 (en) 2020-12-30
US11376559B2 (en) 2022-07-05
JP7417298B2 (ja) 2024-01-18
CN114007733A (zh) 2022-02-01
TW202325396A (zh) 2023-07-01
EP3980173A1 (en) 2022-04-13
JP2024038079A (ja) 2024-03-19
US11975300B2 (en) 2024-05-07

Similar Documents

Publication Publication Date Title
US10507446B2 (en) Method of preparing a material of a battery cell
TWI795650B (zh) 生產顆粒材料的加工系統和方法
US20230253541A1 (en) System with Power Jet Modules and Method thereof
US11673112B2 (en) System and process with assisted gas flow inside a reaction chamber
TWI748537B (zh) 具有輔助氣體流的處理系統與方法
TWI836684B (zh) 一種具有輔助氣體流的處理系統與生產電池材料的方法