TWI748537B - 具有輔助氣體流的處理系統與方法 - Google Patents

具有輔助氣體流的處理系統與方法 Download PDF

Info

Publication number
TWI748537B
TWI748537B TW109121941A TW109121941A TWI748537B TW I748537 B TWI748537 B TW I748537B TW 109121941 A TW109121941 A TW 109121941A TW 109121941 A TW109121941 A TW 109121941A TW I748537 B TWI748537 B TW I748537B
Authority
TW
Taiwan
Prior art keywords
gas
chamber
processing system
streams
temperature
Prior art date
Application number
TW109121941A
Other languages
English (en)
Other versions
TW202112650A (zh
Inventor
良毓 陳
焱 王
楊錄
Original Assignee
美商壹久公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US16/914,458 external-priority patent/US11673112B2/en
Application filed by 美商壹久公司 filed Critical 美商壹久公司
Publication of TW202112650A publication Critical patent/TW202112650A/zh
Application granted granted Critical
Publication of TWI748537B publication Critical patent/TWI748537B/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/26Nozzle-type reactors, i.e. the distribution of the initial reactants within the reactor is effected by their introduction or injection through nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J10/00Chemical processes in general for reacting liquid with gaseous media other than in the presence of solid particles, or apparatus specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0006Controlling or regulating processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0006Controlling or regulating processes
    • B01J19/0013Controlling the temperature of the process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/2405Stationary reactors without moving elements inside provoking a turbulent flow of the reactants, such as in cyclones, or having a high Reynolds-number
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J4/00Feed or outlet devices; Feed or outlet control devices
    • B01J4/001Feed or outlet devices as such, e.g. feeding tubes
    • B01J4/002Nozzle-type elements
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • C01B13/34Methods for preparing oxides or hydroxides in general by oxidation or hydrolysis of sprayed or atomised solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00076Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements inside the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00121Controlling the temperature by direct heating or cooling
    • B01J2219/00123Controlling the temperature by direct heating or cooling adding a temperature modifying medium to the reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00132Controlling the temperature using electric heating or cooling elements
    • B01J2219/00135Electric resistance heaters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00157Controlling the temperature by means of a burner
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/18Details relating to the spatial orientation of the reactor
    • B01J2219/185Details relating to the spatial orientation of the reactor vertical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/19Details relating to the geometry of the reactor
    • B01J2219/194Details relating to the geometry of the reactor round
    • B01J2219/1941Details relating to the geometry of the reactor round circular or disk-shaped
    • B01J2219/1943Details relating to the geometry of the reactor round circular or disk-shaped cylindrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/19Details relating to the geometry of the reactor
    • B01J2219/194Details relating to the geometry of the reactor round
    • B01J2219/1941Details relating to the geometry of the reactor round circular or disk-shaped
    • B01J2219/1946Details relating to the geometry of the reactor round circular or disk-shaped conical
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/50Agglomerated particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Abstract

提供一種生產產品材料的處理系統和方法。該處理系統包括連接到一個系統入口,該系統入口連接到一個或多個氣體管線,所述的一個或多個氣體管線將一種或多種氣體輸送到處理系統中、一個緩衝室、一個分散室、一個加熱組件、一個反應室和一個用於將產品材料輸送出處理系統的系統出口。該方法包括:經由系統入口將一種或多種氣體輸送到處理系統的緩衝室中、使用一個或多個動力噴射模塊將液體混合物噴射到處理系統中的一個或多個液滴流中、通過一個加熱組件、將一個或多個的加熱氣體流輸送到處理系統中、形成反應混合物,並將反應混合物在反應室中的反應溫度下加工成產品材料。

Description

具有輔助氣體流的處理系統與方法 相關申請的關聯引用
本申請要求享有2019年6月28日提交的、序號為62/868,843的美國臨時專利申請的優先權,和2020年6月28日提交的、序號為16/914,458的美非臨時專利申請的優先權,其全部內容通過引用結合於本申請中。
本發明總體上涉及用於電池應用的材料的製備。更具體地說,本發明涉及製造用於二次電池的結構化陰極或陽極活性材料的方法和系統。
已進行了大量努力來研發先進的電化學電池單元(battery cells),以滿足在高能量密度、高動力性能、高容量、長迴圈週期、低價和卓越的安全性方面,各種消費者電子產品、電動運輸工具和電網能量儲存應用的逐漸增長的需求。在大多數情況下,需要微型化、輕便並且可充電(由此可重複使用)的電池,以節省空間和材料資源。
在電化學活性電池單元中,陰極和陽極浸入電解液,並且通過分離器來在電學上分開。分離器通常由多孔的聚合物膜材料構成,以使得在電池充電和放電期間,從電極釋放到電解液中的金屬離子可以通過分離器的孔擴 散,並且在陰極和陽極之間遷移。電池單元的類型通常根據在其陰極和陽極電極之間運輸的金屬離子來命名。多年以來,商業上已開發出了多種可充電的二次電池,例如鎳鎘電池、鎳氫電池、鉛酸電池、鋰離子電池和鋰離子聚合物電池等。為了在商業上使用,可充電的二次電池要求是高能量密度、高動力性能和安全的。然而,在能量密度和動力性能之間存在一定的取捨。
鋰離子電池是在20世紀90年代早期研發出來的一種二次電池。與其他二次電池相比,它具有高能量密度、長迴圈週期、沒有記憶效應、低自放電率和環境友好性的優點。鋰離子電池很快地被接受,並且主宰了商業二次電池市場。然而,商業生產多種鋰離子電池的材料的成本遠高於其他類型的二次電池的成本。
在鋰離子電池中,電解液主要由有機溶劑(例如碳酸乙烯酯、碳酸二甲酯和碳酸二乙酯)中的鋰鹽(例如LiPF6、LiBF4或LiClO4)構成,以使得鋰離子可以在其中自由移動。通常,分別使用鋁箔(例如15~20微米厚)和銅箔(例如8~15微米厚)作為陰極電極和陽極電極的集電器。對於陽極,常常使用微米級石墨(具有大約330mAh/g的可逆的容量)作為覆蓋陽極集電器的活性材料。石墨材料常常由固態工藝來製備,例如在無氧氣、極高的溫度下研磨並熱解(例如在約3000℃下石墨化)。至於活性陰極材料,多年來,已研發出了不同晶體結構和容量的多種固體材料。好的陰極活性材料的例子包括納米級或微米級的鋰過渡金屬氧化物材料和鋰離子磷酸鹽等。
陰極活性材料是鋰離子電池中最貴的組件,並且在相對大的程度上,決定了鋰電池單元的能量密度、迴圈週期、生產成本和安全性。當鋰電池被初次商業化時,鋰鈷氧化物(LiCoO2)材料被用作陰極材料,並且在陰離子 活性材料市場上它仍然佔有顯著的市場份額。然而,鈷是有毒且昂貴的。其他鋰過渡金屬氧化物材料,例如分層結構的LiMeO2(其中金屬Me=Ni、Mn、Co等;例如LiNi0.33Mn0.33Co0.33O2,其可逆/實際容量約為140~150mAh/g)、尖晶石結構的LiMn2O4(其可逆/實際容量約為110~120mAh/g)和橄欖樹型鋰金屬磷酸鹽(例如LiFePO4,其可逆/實際容量約為140~150mAh/g)近來被研發為活性陰離子材料。當用作陰離子材料時,尖晶石結構的LiMn2O4材料表現出差的電池迴圈週期,而橄欖樹型LiFePO4材料遭受低的能力密度和差的低溫性能。至於LiMeO2材料,雖然其電化學性能較好,可是LiMeO2的現有製備工藝會主要得到團塊,使得大多數LiMeO2材料的電極密度比LiCoO2低。無論如何,製備電池應用材料(尤其是陰極活性材料)的現有工藝過於昂貴,因為大部分工藝都消耗太多時間和能源,並且現有材料的品質仍不一致,並且產量低。
常規的材料製備工藝例如固態反應(例如混合固體前驅體,然後煆燒)和濕法化學工藝(例如在溶液中通過共沉澱、溶膠-凝膠或者水熱反應等處理前驅體,然後進行混合和煆燒)在生產納米或微米結構的材料上面臨顯著的挑戰。很難以所需的顆粒大小、形態、晶體結構、顆粒形狀甚至化學計量比來一致地生產均一固體材料(即顆粒和粉末)。為了完全反應、同質性和晶粒生長,大多數常規的固態反應需要長的煆燒時間(例如4-20小時)和額外的退火過程。例如,通過固態反應制得的尖晶石結構的LiMn2O4和橄欖樹型LiFePO4材料需要至少幾個小時的煆燒和分開的加熱後退火過程(例如24小時),並且仍然顯示出差的品質一致性。固態反應的一個內在的問題是在煆燒爐記憶體在溫度和化學物質(例如O2)梯度,這限制了最終成品的性能、一致性和總體品質。
另一方面,在低溫進行的濕法化學工藝通常涉及較快的化學反 應,但是之後仍然需要分開的高溫煆燒過程乃至額外的退火過程。此外,在濕法化學工藝中所需的化學添加劑、膠凝劑和表面活性劑將增加材料生產成本(購買額外的化學物質並調節特定的工藝順序、速率、pH和溫度),並且可能干擾由此生產的活性材料的最終組成(因此通常需要額外的步驟來去除不想要的化學物質或過濾產物)。此外,通過濕法化學生產的產品粉末的初級顆粒的大小非常小,並且易於團結成不合需要的大尺寸的二級顆粒,從而影響能量存儲密度。另外,由此生產的粉末顆粒的形態常常表現出不合需要的無定形團聚體、多空團聚體、線狀體、杆狀體、片狀體等。允許高的存儲密度的均一的顆粒大小和形態是可取的。
鋰鈷氧化物(LiCoO2)材料的合成相對簡單,包括混合鋰鹽(例如具有所需顆粒大小的氧化鈷(Co3O4)的氫氧化鋰(LiOH)或碳酸鋰(Li2CO3),然後在爐內在非常高的溫度下長時間(例如900℃下20小時)煆燒,以確保鋰金屬擴散到氧化鈷的晶體結構中以形成分層晶體結構的LiCoO2粉末的合適的最終產物。此方法不適用於LiMeO2,因為如果直接混合並使其過渡金屬氧化物或鹽反應(固態煆燒),過渡金屬例如Ni、Mn和Co不能很好地擴散到彼此之中形成均一混合的過渡金屬層。因此,在製備最終的活性陰離子材料(例如鋰NiMnCo過渡金屬氧化物(LiMeO2))前,常規的LiMeO2製備工藝需要購買或從共沉澱濕法化學工藝來製備過渡金屬氫氧化物前驅體化合物(例如Me(OH)2,Me=Ni、Mn、Co等)。
由於這些Ni(OH)2、Co(OH)2和Mn(OH)2前驅體化合物的水溶性不同,並且它們通常在不同的濃度下沉澱,因此必須控制這些前驅體化合物的混合溶液的pH值,必須緩慢地以小份形式地添加氨水(NH3)或其他添加劑,以 確保鎳(Ni)、錳(Mn)和鈷(Co)可以一起共沉澱來形成微米級鎳-錳-鈷氫氧化物(NMC(OH)2)二級顆粒。該共沉澱的(NMC(OH)2)二級顆粒通常是納米級初級顆粒的團聚物。因此,由NMC(OH)2前驅體化合物制得的最終的鋰NMC過渡金屬氧化物(LiMeO2)也是團聚物。在電極壓光步驟和塗覆到集電器箔上期間,這些團聚物易於在高壓下破碎。因此,當這些鋰NMC過渡金屬氧化物材料用作陰極活性材料時,在壓光步驟必須使用相對低壓,並且進一步限制生產的陰極的電極密度。
在LiMeO2活性陰極材料的常規製備工藝中,前驅體化合物例如氫氧化鋰(LiOH)和過渡金屬氫氧化物(Me(OH)2以固體形式混合均勻,並被儲存在厚Al2O3坩堝中)。然後,將坩堝置於以5-10℃/分鐘的速度升溫直至到達900℃至950℃的爐中,煆燒10至20小時。由於前驅體化合物在高溫下長時間加熱,鄰近的顆粒被燒結在一起,因此,在煆燒之後通常需要研碎步驟。因此,在研碎之後需要篩掉不需要的大小的顆粒,進一步降低總產量。高溫和長反應時間還導致鋰金屬的氣化,因此在煆燒期間通常需要添加多至10%額外量的鋰前驅體化合物來確保最終產物具有正確的鋰/過渡金屬比。總而言之,用於該多階段間歇生產工藝的工藝時間將需要多至一周,因此這是勞動非常密集並且消耗很多能源的。間歇工藝還增加了引入雜質的幾率,批次間品質一致性很差,並且總產率低。
因此,需要改進的工藝和體系以製備用於電池單元的高品質、結構化的活性材料。
本發明總體上涉及在反應室中具有輔助氣體流的處理系統,以及從液體混合物中生產產品材料的方法。更具體地,本發明涉及生產出所欲的晶體結構、尺寸和形態的材料顆粒(例如,活性電極材料等)的方法和處理系統。
在一個實施例中,提供了一種由液體混合物生產粒子材料的處理系統。該處理系統包括一個或多個氣體管線、一個系統入口,該系統入口連接到一個或多個氣體管線,將一種或多種第一氣氣體流輸送到處理系統中、一或多個動力噴射模塊,適於將液體混合物噴射到一個或多個液滴流中,並將一個或多個液滴流噴射到處理系統中。該處理系統更包括一個反應室,用於將反應混合物加工成產品材料、和一個加熱組件。
一方面,加熱組件包括一個第二氣體管線,該第二氣體管線連接至反應室的腔室壁的開口,用於將一種或多種第二氣體流輸送到反應室中,和一個氣體輸送元件,其連接到第二氣體管線並置於反應室內。在另一方面,反應混合物包括:一種或多種第一氣體流、一種或多種第二氣體流、和一個或多個液滴流。在另一方面,還包括一個分散室,所述分散室適用於連接至所述一個或多個動力噴射模塊,並將所述一個或多個液滴流分散到所述一種或多種氣體流中。
在另一方面,該處理系統還包括一個緩衝室,所述緩衝室適用於將一種或多種氣體流從所述系統入口輸送至所述分散室。在另一實施例中,所述緩衝室包括氣體分流器,所述氣體分流器具有一個或多個通道,用於將所述一種或多種氣體輸送為氣體流。在另一實施例中,所述氣體分流器的形狀符合緩衝室中腔室壁的內周長。在另一方面,處理系統中的分散室中進一步包括一種或多種氣體和一個或多個液滴流以在零度和大約180度之間的角度彼此相 遇。在一實施例中,處理系統的氣體輸送元件將氣體流與從一個或多個動力噴射模塊產生的一個或多個液滴流混合,並且氣體流和一個或多個液滴流在反應室內,以零度和大約180度之間的角度彼此相遇。
在另一實施例中,一種生產產品粒子材料的處理系統,該系通包括一個或多個第一氣體管線、一個系統入口,該系統入口連接到一個或多個第一氣體管線,將一種或多種第一氣氣體流輸送到處理系統中、一個或多個動力噴射模塊,適於將液體混合物噴射到一個或多個液滴流中,並將一個或多個液滴流噴射到處理系統中、一個分散室適用於連接至所述一個或多個動力噴射模塊,並將所述一個或多個液滴流分散到所述一種或多種第一氣體流中,形成氣液混合物,其中所述一種或多種第一氣體流和所述一個或更多個液滴流以在零度和大約180度之間的分散角(α)彼此相遇、一個反應室,用於將反應混合物加工成產品材料,和一個加熱組件。在一方面,所述一種或多種第二氣體流由所述氣體輸送元件輸送,與所述一個或多個氣液混合物,以在零度和大約180度之間的分散角(β)在反應室內彼此相遇混和。
在另一實施例中,提供一種從液體混合物生產產品材料的方法。該方法包括:透過系統入口,輸送一種或多種第一氣體流到處理系統中的緩衝室中、透過加熱組件輸送一種或多種第二氣體流到處理系統中的反應室中、透過處理系統中的一個或多個動力噴射模塊,將液體混合物噴射到一個或多個液滴流中、透過一個或多個動力噴射模塊,將一個或多個液滴流輸送進處理系統中的分散室中、和在反應室中產生一個反應混合物,該反應混合物包含一種或多種第一氣體流、一種或多種第二氣體流和一個或多個液滴流。該方法可以包括使用一種或多種第二氣體流加熱處理系統中的反應室,可將所述第二氣體流被 加熱到100℃至1400℃之間的溫度;並在反應室中將反應混合物加工成產品材料。
100:處理系統
102:系統入口
104:系統出口
106:氣體管線
110:反應室
118:腔室壁
119:開口
120:分散室
140A,140B,140C:動力噴射模塊
130:r緩衝室
180:加熱組件
184:氣體輸送元件
186:氣管
188:壁
200:處理系統
202:系統入口
204:系統出口
210:反應室
212:進入區域
214:出口區域
218:腔室壁
219:腔室壁開口
220:分散室
222A:開口
222B:開口
222C:開口
222D:開口
228:腔室壁
230:緩衝室
232:氣體分流器
234:通道
238:腔室壁
240A:動力噴射模塊
240B:動力噴射模塊
240C:動力噴射模塊
240D:動力噴射模塊
242A:動力噴射器
242B:動力噴射器
242C:動力噴射器
242D:動力噴射器
245A:連接器
245B:連接器
246A:模塊驅動器
246B:模塊驅動器
246C:模塊驅動器
246D:模塊驅動器
280:加熱組件
284:氣體運輸元件
286:氣體管線
288:壁
300:電子控制單元
310:液體源
340:CPU
400:方法
410:步驟
420:步驟
430:步驟
440:步驟
450:步驟
502-522:向量
510:步驟
520:步驟
530:步驟
540:步驟
582:在反應室上的腔室壁的開口
584:系統出口
602:線
604:線
606:線
608:線
610:線
612:線
614:線
616:線
618:線
620:線
622:線
682:在反應室上的腔室壁的開口
684:系統出口
702:線
704:線
706:線
708:線
710:線
712:線
714:線
716:線
718:線
720:線
722:線
782:在反應室上的腔室壁的開口
784:系統出口
802:線
804:線
806:線
808:線
810:線
812:線
814:線
816:線
818:線
820:線
822:線
882:在反應室上的腔室壁的開口
884:系統出口
902:線
904:線
906:線
908:線
910:線
912:線
914:線
916:線
982:在反應室上的腔室壁的開口
984:系統出口
為了可以更詳細地理解本發明的上述特徵的方式,可以通過參考實施方式來對本發明進行更具體的描述,上面對本發明進行了簡要概述,其中一些實施方式在附圖中示出。然而,應注意,附圖僅示出了本發明的典型實施例,因此不應視為對本發明範圍的限制,因為本發明可允許其他等效實施例。
圖1A是在反應室中具有輔助氣體流的處理系統的一個實施例的透視圖。
圖1B是另一個在反應室中具有輔助氣體流的處理系統的另一個實施例的剖視圖。
圖1C是可在反應室中可用於輔助氣體流的處理系統中的設備的剖視圖。
圖2A是所述設備的分散室的剖視圖,其可在反應室內部具有輔助氣體流動的處理系統中使用。
圖2B示出了根據本發明的一個實施例的在分散室內的氣流和液滴流之間的角度。
圖3A是所述設備在反應室的剖視圖,該設備可用於在反應室中具有輔助氣體流的處理系統。
圖3B示出了根據本發明的一個實施方案的氣液混合物與反應室內的加熱的氣體流之間的角度。
圖4示出了生產顆粒材料的方法。
圖5示出了根據本發明的一個實施例可以在處理系統中使用的所述設備內的速度向量。
圖6示出了根據本發明的一個實施例,可在處理系統中使用的所述設備內的速度流線。
圖7示出了根據本發明的一個實施例,可用於在反應室內部具有輔助氣流的處理系統中的所述裝置的溫度分佈。
圖8示出了根據本發明的一個實施例,可在處理系統中使用的所述設備內的速度流線。
圖9示出了根據本發明的一個實施方案,可用於在反應室內部具有輔助氣流的處理系統中的所述裝置的溫度分佈。
本發明總體上提供了一種在反應室內部具有輔助氣體流的處理系統以及其從液體混合物生產顆粒材料的方法。該處理系統可用於執行連續過程以製造顆粒狀材料,節省材料製造時間和能源,並解決傳統製造活性材料製造工藝中存在的製造成本高、產量低、質量一致性差、電極密度低、能量密度低的問題。處理系統通常包括透過一個或多個氣體管線,輸送一種或多種氣體的系統入口、緩衝室、與一個或多個動力噴射模塊連接的分散室、反應室、反應室內的加熱組件,以及用於將顆粒材料輸出到處理系統外的系統出口。
一方面,將諸如含金屬的前驅體之類的前驅體化合物混合到液體混合物中,以調節出不同金屬前軀體所期望的比例,並且仍然能夠獲得均勻共 混的前驅體。然後將液體混合物與氣體迅速混合以形成氣固混合物,在氣相中和加熱的氣體連續均勻地混合處理,從而在反應室內反應成乾燥的顆粒狀固體顆粒。
在另一方面,將金屬前體化合物以所需比例的均勻混合物混合到液體混合物中,並從緩衝室噴射到分散室中以接收一種或多種氣體(例如載體氣體、反應氣體、氧化氣體、氧氣等)。從而在進入反應室之前,在分散室內形成氣液混合物的液滴。
在一個實施例中,氣液混合物的液滴流入反應室以被處理成氣固混合物,其中被加熱的空氣或被加熱的氣體透過加熱組件,主動地流入反應室裡的內部腔室,使得加熱的氣體可以同時作為氣體來源和/或能量來源,用於反應室內的各種反應,例如乾燥反應,氧化反應,加熱反應等。
將來自反應室的反應產物(例如:顆粒、電池氧化物材料、顆粒材料等)從反應室中排出並冷卻。冷卻後,反應產物包含固體材料顆粒或前驅體組合物的氧化形式的精細粉末(例如金屬氧化物材料,例如混合金屬氧化物材料的精細粉末),並具有所需的晶體結構、粒徑和形態學。因此,與常規製造工藝製備的材料相比,可以以更少的時間、勞動力和監控來獲得高質量且一致的活性電池材料。
一方面,加熱組件包括氣體管線,該氣體管線連接至反應室腔室壁的開口,用於輸送一個或多個加熱的氣體(例如:加熱至100℃至1400℃的溫度)進入反應室中。當一個或多個加熱的氣體流在進入處理系統前被加熱後,該一個或多個加熱的氣體可以做為反應物(例如,反應混合物,氣-液混合物,液體混合物和其他混合物等)在反應室中反應的能源。加熱組件還包括氣體輸送元 件,該氣體輸送元件連接至氣體管線並且置於反應室內,用於輸送一個或多個加熱的氣體以到達反應室的入口區域,該入口區域處連接至分散室。此外,反應室連接到系統出口,用於將顆粒材料輸送到處理系統之外。
在另一方面,將一種或多種氣體流(例如:在200℃至400℃溫度的載體氣體、氧氣、惰性氣體、氮氣等)從處理系統中的系統入口進入處理系統,並用作為將液體混合物形成為氣液混合物的氣體源,並用作將氣液混合物輸送到反應室的載體氣體。如果在進入處理系統前,將氣體加熱到20℃或更高(例如100℃至400℃),該氣體也可以用作氣液混合物在反應室中反應的能量來源。
在另一方面,液體混合物,可以是含金屬的液體混合物,通過連接至分散室的一個或多個動力噴射模塊迅速地噴入液滴流中,然後噴散進處理系統的分散室中。液滴流持續與氣體混合以形成氣液混合物,使其輸送到反應室中。
在一個實施例中,一個或多個加熱氣體被積極地輸送到反應室內,並且與在反應室的內部腔室內的氣-液混合物混合在一起以形成反應混合物。在另一個實施方案中,將輸送到反應室中的一個或多個加熱的氣體流加熱至所需的反應溫度,例如100℃至1400℃之間,又例如300℃至1000℃之間的溫度,又或是400℃至800℃之間的溫度等。在另一個實施例中,可以透過加熱到100℃和1400℃溫度間的一種或多種氣體,將處理系統的反應室加熱到反應溫度。在反應室內的反應混合物在反應室內的反應溫度下,經過一定時間的反應後被加工成產物材料,並從反應室內排出。例如,反應混合物可以包括一個或多個液體,一種或多種氣體,一個或多個液滴和加熱的氣體流及其混合物。
在處理系統的反應室內部具有輔助氣流的處理系
圖1A是處理系統100的一個示例性實施例的透視圖,該處理系統由液體混合物生產顆粒材料的方法中提供。處理系統100通常可以包括系統入口102,系統出口104,反應室110和加熱組件180。如下面所描述的,加熱組件180被設計為為處理系統100的反應室110內部提供輔助氣體流的功能。
系統入口102作為透過氣體管線106將一種或多種氣體(例如載體氣體和其他氣體)輸送到處理系統100中。系統出口104連接到反應室110,用於在處理諸如化學溶液的液體混合物(例如,液體電池反應物化學溶液的混合物等)之類的反應物之後,將顆粒材料從處理系統100中輸送出去以製成產品(例如:電池顆粒材料,電池正極材料,電池負極材料等)。
如圖1A所示,處理系統100還可包括至少一個緩衝室130,該緩衝室130連接到系統入口102,並與一種或多種氣體分流器或氣體分流器機制(例如,一個或多個通道)的通道,其中從系統入口102接收的一個或多個氣流(例如,如圖1B所示的一種或多種氣體F1)轉移成在內部流動的多個均勻氣流(例如,如圖1B所示的一種或多種氣體F2)。在緩衝室130內流動的一種或多種氣體可以選自空氣,氧氣,二氧化碳,氮氣,氫氣,惰性氣體,稀有氣體及其組合等氣體源。
此外,處理系統100還可以包括分散室120,其與一個或多個動力噴射模塊(例如,動力噴射模塊140A,140B,140C等)相連接。提供一個或多個動力噴射模塊以接收一個或多個化學反應物,將化學反應物混合成一個或多個液體混合物,並將一個或多個液體混合物噴射到分散室120中,從而輸送一個或多個液體。混合物進入處理系統100的分散室120。
動力噴射模塊140A,140B,140C等可以連接到分散室的一部分, 以利用空氣壓力噴射液體混合物並將其直接轉化為包含小粒徑液滴的霧,直接分散在分散室內部。或者,可以在分散室120外部產生霧並將其輸送到分散室120中。可根據所使用的動力噴射模塊,液體混合物化合物,分散室120的溫度,氣體的流量以及在分散室內的停留時間來調節合適的液滴尺寸。例如,在分散室內產生液滴大小在十分之一微米至一毫米之間的薄霧。
可聯接至分散室120的動力噴射模塊的數量沒有限制,並可客製化設計或基於需求,可存在一個,兩個,三個或任意數量的聯接至分散室120的動力噴射模塊。一方面,兩個或更多個動力噴射模塊圍繞置於分散室120的外周。每個動力噴射模塊可將液體混合物噴射到分散室120中為一股或多股液滴流,從而使一股或多股液滴流與一種或多種氣體在緩衝室130中的氣體分流機制的一個或多個通道進行混合,從而在分散室120內形成一種或多種氣液混合物,以輸送到反應室110中。
在一個實施例中,動力噴射模塊140A聯接至分散室120的一部分,以直接在分散室內產生液體混合物的薄霧(例如,大量的小尺寸液滴)。通常,動力噴射模塊140A能夠產生單一尺寸的液滴的薄霧。在另一實施例中,分散室120連接到一個或多個動力噴射模塊140A,140B和140C,用於從緩衝室130接收多個均勻的氣體流,該多個均勻的氣體流將與從一個或多個動力噴射模塊140A,140B和140C的陣列所噴射出的一個或更多個液滴流彼此相遇。
此外,在一個實施方案中,由兩種或更多種前軀體化合物製備成液體混合物,然後將其轉化成液滴,每個液滴將使兩種或更多種前驅體均勻地分佈在一起。然後,通過使液滴穿過分散室而除去液體混合物的水分,透過氣體流可做為運載霧氣,讓霧氣在分散室內停留適當的時間。還可以預期,可以 調節液體混合物中前驅體化合物的濃度和液體混合物的薄霧的液滴尺寸以控制電池材料最終產品顆粒的化學組成,粒徑和粒徑分佈。
在一個實施例中,處理系統100的反應室內110作為接收一種或多種氣液混合物的液滴流,並處理從分散室120輸送的一種或多種氣液混合物。通過使氣液混合物與一種或多種加熱的氣體反應,氧化並將氣液混合物加熱成最終反應產物,例如電池顆粒材料,氧化的金屬氧化物材料等。
在另一個實施例中,反應室110連接到具有輔助氣體流的加熱組件180,以輸送連接到加熱組件180的氣體管線186內的加熱氣體,加熱組件180的一部分位於反應室110的內部腔室空間中。加熱組件180透過和反應室110的腔室壁118上的開口119與反應室110相互連結。
加熱組件180包括在反應室110的內部腔室空間內的氣體輸送元件184。在一實施例中,氣體輸送元件184被設計成向反應室110內的反應物提供乾熱源和/或氣體源。可以預期的是,氣體輸送元件184的開口被定位為靠近分散室120與反應室110之間的連接處,以便處理從分散室120接收在反應室110內部的氣液混合物。
加熱組件180的氣體輸送元件184內的壁188做為引導從氣體管線186接收的加熱氣體的氣流,氣體通過氣體輸送元件184到達反應室110和分散室120之間的進入區域,從而從加熱組件180的氣體輸送元件184輸送進去的加熱氣體接下來會從加熱組件180的氣體輸送元件184中流出,以填充反應室110的腔室壁118的內部腔室空間。
在一個實施例中,氣體輸送元件184最好向上放置在反應室110內。在另一實施例中,氣體輸送元件184可以定位在相對於地面以從0度到90度 的任何角度。一方面,氣體輸送元件184會垂直於地面。另一方面,氣體輸送元件184可以與地面成任何角度,範圍從0度到90度。
圖1B是處理系統200的另一個實施例的剖視圖,該系統可用於執行快速、簡單、連續和低成本的製造工藝,以生產電池顆粒材料。處理系統200包括用於將一種或多種氣體輸送到處理系統200中的系統入口202、連接至系統入口202的緩衝室230、連接至緩衝室230的分散室220、加熱組件280、和連接到分散室220的反應室210、和連接到反應室210的系統出口204,用於將所得的顆粒物質輸送到處理系統200之外。
系統入口202做為將一種或多種氣體F1輸送到緩衝室230中,向下加壓一種或多種氣體F1,該氣體將以一定的氣體速度流經緩衝室230的氣體分流器232,以便以便將一種或多種氣體F1引導並分配到多個均勻的氣流F2中,使其從緩衝室230進入分散室220。氣體分流器232可以具有一個或多個圓形佈置的通道234,以引導氣流;例如,氣體分流器232的通道234可以以像噴頭一樣的方式佈置,使得氣體流F1可以被分流成多個均勻的氣體流F2。在一個實施例中,可以將一種或多種氣體F1泵送進空氣過濾器以去除任何顆粒、液滴或污染物,並且可以通過閥或其他手段來調節氣體F1的流速。在一實施例中,從通道234出來的多個均勻氣體流F2的流速將高於一種或多種氣體流F1的流速。另外,多個均勻氣體流F2的方向將被收集和統一。
圖1C是根據本發明的一個實施例的緩衝室230的橫截面圖的示例(由圖1B中的虛線B-B'分開)。緩衝腔室230的氣體分流器232位於緩衝室230的底部,並且在緩衝室230的腔室壁238的內側包括多個通道234,並且作為將從系統入口202所接收的氣體流F1引導成多個統一的氣體流F2。氣體分流器232的通道 234提供讓一種或多種氣體以統一的方向並以期望的均勻流速通過。
一種或多種氣體F1可以是一種或多種載體氣,例如,空氣、氧氣、二氧化碳、氮氣、氫氣、惰性氣體、稀有氣體及其組合等。一種或多種氣體的選擇可以是與電池金屬前軀體的液滴流進行充分混合,且而不會與液滴流反應的一種或多種氣體。在某些情況下,取決於氣體F1和/或F2的溫度以及液滴流的化學組成,在分散室內混合和/或其他反應過程中,液滴流中的化學物質可能會與氣體F1和/或F2發生一定程度的反應,另外,具有充分混和的液滴化合物的氣液混合物,在分散室220內的停留時間是可調節的,可以例如在一秒和一小時之間,這取決於例如一種或多種氣體F1和F2的流速,以及液滴流必須在分散室220內流過的路徑的長度。
在一個實施例中,處理系統200的分散室220連接到一個或多個動力噴射模塊(例如動力噴射模塊240A,240B等),這些動力噴射模塊附接到分散室220的腔室壁228的外周上。圖2A是根據本發明的一個實施例的配置在處理系統200中的分散室220的剖視圖(由圖1B中的虛線A-A'分開)。在一個實施例中,可以將一個或多個動力噴射模塊的陣列(例如,如圖2A所示的4個動力噴射模塊240A,240B,240C,240D,或者更多數量的動力噴射模塊(未示出))以對稱的方式(也顯示在圖2A中)附接到分散室220的腔室壁228,或以其他方式(例如,動力噴射模塊可以堆疊,嵌入等方式或其他方式佈置)。
在圖2A中,在分散室220的腔室壁228上的一個或多個開口222A,222B,222C和222D分別連接到動力噴射模塊240A,240B,240C,240D。在一示例中,動力噴射模塊240A,240B,240C,240D可以以圖2A所示的一種排列布置方式附接到分散室220的腔室壁228。該排列布置可以是在腔室壁228以同一 水平線,將四個動力噴射器中以每一個彼此相鄰的均勻距離進行排列配置在腔室壁228。
動力噴射模塊240A,240B,240C,240D中的每一個分別包括動力噴射器242A,242B,242C,242D,用於將供應給動力噴射模塊240A的液體混合物噴射成一個或多個液滴流。動力噴射模塊240A,240B,240C,240D中的每個可進一步包括用於支撐動力噴射模塊240A,240B,240C,240D的支撐框架,模塊驅動器246A,246B,246C,246D以及連接器245A,245B,245C和245D。模塊驅動器246A,246B,246C,246D中的每一個均附接到其自身的支撐框架的內側,以分別驅動和迫使從每個動力噴射器242A,242B,242C,242D將一個或多個液滴FA,FB,FC,FD流噴射到分散室220中。每個連接器245A,245B,245C,245D用來分別連接模塊驅動器246A,246B,246C,246D和動力噴射器242A,242B,242C,242D。
在一個示例中,242A,242B,242C,242D置於分散室220的側面附近,以將液滴流FA-D如圖1B所示水平地注入到分散室220中,並水平地和側面地通過分散室。例如,當分散室220水平放置時(例如,管式分散室等),而動力噴射器242A,242B,242C,242D位於分散室220的一端附近時,從分散室220的一端到另一端的霧氣流可以在其停留時間的長度上通過分散室220內的路徑。
在另一個示例中,動力噴射器242A,242B,242C,242D置於分散室220的頂部附近,以垂直(例如,圓頂型分散室等)注入液滴流FA,FB,FC,FD進入分散室220並垂直向下經過分散室。或者,可將動力噴射器242A,242B,242C,242D置於分散室220的底部附近,將液滴流垂直向上射入(可表示為圖2B)到分散室中,以增加其停留時間。
如圖1B所示,除了液體混合物外,分散室220還充滿了從緩衝室230接收的氣體流。氣體分流器232連接到緩衝室230的端部,並適用在使多個均勻的氣體流F2流入分散室220。在分散室220內形成液滴流的同時,多個均勻氣體流F2的流可以被輸送到分散室220中,以使液滴流通過分散室220,這將可以或可以不從中去除水分,並且形成一個或多個氣液混合物流F3,其一個或多個氣液混合物流F3,具有方向且包含液體混合物。而且,可以在形成霧氣充滿之前,將多個均勻氣體流F2輸送到分散室220中,並在分散室220內產生液滴流之前,將分散室220的內部體積預熱至溫度TD
在一個示例中,氣體分流器232連接到緩衝室230的底端,該緩衝室230的端部連接到分散室220的頂部,做為將多個均勻的氣體流F2輸送到分散室220中與由附著在分散室220的腔室壁228上的動力噴射模塊240A,240B,240C,240D所產生的液滴流進行混合。在一個實施例中,將多個均勻氣體流F2被預熱到20℃至400℃之間,與液滴流混合,並從液滴流中去除水分。在另一個實施例中,多個均勻氣流F2將不被預熱,而是用於確保在分散室220內形成的氣液混合物與氣體均勻地混合。
在另一個實施例中,每個動力噴射器242A,242B,242C,242D可以形塑為各種結構,例如,以具有彼此垂直的六個矩形面的長方體結構,具有筆直平行邊的圓柱結構和圓形或橢圓形的部分和/或其組合。此外,每個動力噴射器242A,242B,242C,242D可以包括在動力噴射器的每一個側面上有噴嘴陣列。在一個實施例中,噴嘴陣列是在動力噴射器的側面上,該陣列大小的底部寬度大於側面長度,並且由均勻放置的孔形成矩形形式的樣式。在另一個實施例中,噴嘴陣列由孔形成別種樣式所組成。動力噴射模塊的其他示例在2019 年6月28日所提交的標題為“生產顆粒材料的加工系統和方法”的美國申請序列號16/457,885中以及在2019年6月28日提交的標題為“具有動力噴射模塊的系統及其方法”的“美國專利申請序列號16/457,889”中進行了描述。,並且這些專利申請中的每一個的公開內容通過引用整體併入本文。
圖2B示出了由液滴流FA和分散室220內的氣體流F2形成的分散角(α A)的一個示例的3D透視圖。根據液滴流FA,FB,FC,FD的流動方向與氣體流F2的方向之間的角度來測量分散角α。在一個示例中,液體混合物的液滴流FA,FB,FC,FD(例如,液滴流FA)和氣體流(例如,多個均勻的氣流F2)可能會在分散室220內0度至180度的角度彼此相遇。在另一示例中,液滴流FA和氣體流F2可以直線,螺旋,纏繞和/或以其他方式流動。
在一個實施例中,液滴流FA和氣體流F2彼此間相遇的角度為α A(0
Figure 109121941-A0305-02-0021-1
α A
Figure 109121941-A0305-02-0021-2
180),並且可以在分散室220內部混和為一個或多個混合流(例如,氣液混合物流F3)(例如,並流)。另外,液滴流FA和氣流F2可以以不同角度朝向彼此流動和/或朝向腔室體的周邊的各種角度流動,以促進在分散室220內部形成螺旋,纏繞和/或其他氣流。
例如,在分散室220內部流動的氣體的和液滴流的流動可以被配置為並流流動。並流的優點是更短的停留時間,更低的顆粒乾燥溫度和更高的顆粒分離效率。作為另一示例,液滴流FA和氣流F2可以以180度的α角配置並且作為逆流流動。逆流的優點是更長的停留時間和更高的顆粒乾燥溫度等。在其他的實施例中,分散室220可以水平放置。
在一個示例中,液滴流FA,FB,FC,FD和氣體流以小於90度的α角相遇,並且可以合併為分散室內的氣液混合物F3的混合流。在另一實施例中, 液滴流FA和氣體流F2以90度的α角相遇,並且可以在分散室220內合併成一個或多個混合流(例如,氣液混合物流F3)。另外,液滴流FA和氣流F2可以以不同角度朝向彼此流動和/或朝向腔室體的周邊的各種角度流動,以促進在分散室220內部形成螺旋,纏繞和/或其他氣流。
回到圖1B,一旦液體混合物的液滴流FA,FB,FC,FD與氣體流F2混合成氣液混合物,則氣液混合物將通過分散室220輸送進入反應室210中。處理系統200的反應室210連接至分散室220,以接收從分散室220輸送的一種或多種氣液混合物流F3。另外,反應室210透過反應室210的腔室壁218上的開口219,連接至加熱組件280,用於將一種或多種加熱的氣體F6輸送到反應室210內的內部腔室空間中。
加熱組件280包括由壁288圍繞的氣體輸送元件284,以引導從氣體管線286輸送的一種或多種加熱氣體F6的流動。氣體輸送元件284的一端連接到氣體管線286,另一端延伸到反應室210的內部腔室空間中,用於輸送一種或多種加熱的氣體F6到達反應室210的進入區域212。其中進入區域212鄰近分散室220。此外,在出口區域214附近形成諸如氧化物顆粒,顆粒材料等的處理後的產物,並通過位於反應室210的底部附近的系統出口204將其排出處理系統200。
在一個實施例中,經由加熱組件280的氣體輸送元件284輸送的一股或多股加熱氣體F6,與從分散室220輸送的一股或多股氣液混合物流F3,彼此在反應室210內以一定角度相遇並進行混合。一種或多種加熱氣體F6和一種或多種氣液體混合物流F3的角度可以在0度至180度之間。
在一個實施例中,在一種或多種氣體F6通過反應室210的腔室218的開口219輸送到反應室之前,可先對其進行加熱。該一種或多種加熱氣體流F6 可以通過經過合適的加熱機制來加熱,該加熱機制例如是電動加熱器,燃料燃燒加熱器,燃燒器,以及其他加熱器。此外,一種或多種加熱氣體流F6可以在100℃至1400℃之間的溫度下被加熱,例如在300℃至1000℃之間,或在400℃至800℃之間等等,因此可為反應室內的所需反應提供足夠的能量作為加熱源。加熱組件280的壁288由絕熱材料製成,例如不銹鋼,並且能夠在高溫下在由壁288包圍的空間中維持高溫,其中溫度可以高於100℃,例如300℃或更高,500℃或更高或1000℃或更高,比方說在400℃至800℃等。
在另一個實施例中,氣液混合物F3和加熱氣體F6可以在反應室210內部的進入區域212附近、與分散室220相鄰的區域彼此碰撞。在一示例中,加熱組件280的氣體輸送元件284可延伸至反應室內部的位置,在該位置處,一種或多種氣液混合物流F3與一種或多種加熱的氣體流F6彼此充分碰撞,以形成反應混合物F7,以便為一個或多個氣液混合物流F3提供足夠的熱能,從而在反應室210內以快速、足夠的時間和方式連續地進行所需的反應。例如,氣體輸送元件284最好置於反應室210內部的入口區域212附近,其中入口區域212與分散室220相鄰。
在一個實施例中,氣體輸送元件284最好朝上置於反應室210內部,用於將一種或多種加熱氣體F6輸送到進入區域212。在另一個實施例中,氣體輸送元件284可以相對於反應室210的腔室體以從0度到90度的任何角度進行放置定位。在一示例中,反應室210的腔室體垂直於地面。在另一個示例中,反應室210的腔室體可以相對於地面以從0度到90度的任何角度放置定位。
圖3A是具有加熱組件280的反應室210的剖視圖(如圖1B中的虛線C-C'所示),以在其中輔助和輸送加熱的氣流。由加熱組件280的氣體輸送元件 284的壁288所包圍的通道的形狀可以是圓形的(如圖1B所示)或其他形狀(例如橢圓形,矩形,正方形等)。加熱組件280的氣體輸送元件284的直徑可以變化,亦即氣體輸送元件284的壁288的直徑與反應室210腔室體的直徑(被腔室壁218包圍)的比率,該比率可以在1:10至大約1:1之間。
967/5000
圖3B示出了反應室210內部的氣液混合物流F3和一種或多種加熱氣體流F6的分散角的3D透視圖。在反應室210內部,一種或多種加熱氣體流F6通過氣體輸送元件284輸送,與氣液混合物流F3以角度β(例如,β A)彼此相遇混合。角度β是根據由加熱氣體流F6的方向和氣液混合物流F3的方向彼此相遇所形成的角度來測量的。氣液混合物流F3和一種或多種氣體混合物流(例如,一種或多種加熱氣體流F6)可能在反應室210內以0度至180度的角度相互碰撞。另外,氣液混合物流F3和一種或多種加熱的氣體流F6可以直線,螺旋,纏繞和/或以其他方式流動。
在一個實施例中,一種或多種加熱氣體流F6和氣液混合物流F3相遇的角度為β A角(0
Figure 109121941-A0305-02-0024-3
β A
Figure 109121941-A0305-02-0024-4
180),並且可以混和成反應混合物F7,持續時間為反應室內的反應時間(例如,並流)。另外,一種或多種加熱氣體流F6和氣液混合物流F3可以以各種角度朝向彼此流動和/或朝向腔室體的周邊的各種角度流動,以促進在反應室210內形成螺旋,纏繞和/或其他氣流。在一個實施例中,一種或多種加熱氣體流F6和氣液混合物流F3以小於90度的β A角彼此相遇,並且可以合併成反應室內的混合流。在另一實施方式中,一種或多種加熱氣體流F6和氣液混合物流F3以90度的β角相遇,並且可以合併到反應室內的反應混合物F7中。另外,一種或多種加熱氣體流F6和氣液混合物流F3,可以以各種角度朝向彼此流動 和/或朝向腔室體的周邊的各種角度流動,以促進螺旋形,纏結,和/或反應室210內的其他氣流。
例如,反應室210內的氣體F6的流動和氣-液混合物F3的流動可以作為並流流動,並混和成一種或多種流動的反應混合物F7。在另一示例中,一種或多種加熱氣體F6的流動和在反應室210內部流動的氣液混合物F3的流動可以被設定為逆流流動(例如,以180度的β角)並合併成一種或多種流動反應混合物F7。在一個替代實施方案中,反應室210可以垂直,水平或成一定角度放置。
回到圖1B,處理系統200連接到具有CPU 340的電子控制單元300,以自動控制處理系統200。例如,每個動力噴射模塊240A,240B,240C,240D連接到液體源310以儲存所需要量的液體混合物化合物,並連接到電子控制單元300,該電子控制單元300用於引導和控制液體混合物化合物從液體源310到每一個動力噴射器242A,242B,242C,242D中的輸送。在一種配置中,可以通過泵將液體源310內的液體混合物從液體源310泵送到動力噴射器242A,242B,242C,242D中的每一個。可以例如以所需要的輸送速率(例如,通過計量閥或其他手段調節)連續地配置通過泵泵送液體混合物,以實現處理系統200的良好處理產量。
在一個實施例中,噴射到分散室220中的液滴流(例如,FA,FB等)與多個均勻氣流F2以分散角α(例如,α Aα B等)彼此相遇,並形成一個或多個氣液混合物流F3。氣體流F2作為包含一種或多種氣體(例如,空氣,氧氣,氮氣,惰性氣體等)的載體氣體,並將液滴流FA和FB的氣體流運載入分散室220中,並透過形成一個或多個氣液混合物流F3,該氣液混合物包含了多個均勻氣流F2和液滴流FA,最終進入反應室210。
在一個實施例中,氣體流F1和F2可以保持在20℃至400℃之間的溫度。在一方面,F2的溫度保持在20℃至100℃之間。在另一方面,F2的溫度保持在20℃至200℃之間。在另一方面,F2的溫度保持在25℃至400℃之間。另外,分散室220可保持在20℃至400℃之間的溫度TD,例如30℃至100℃之間,或50℃至200℃之間。
氣液混合物流F3和一種或多種加熱的氣體F6混合在一起形成反應混合物F7,持續時間為在反應室210內的反應時間。反應混合物F7可以包括液體混合物F3(包含氣流F1,F2和液滴流(FA,FB,FC,FD等)和一種或多種加熱氣體流F6。處理系統200的反應室210的溫度可保持在100℃至1400℃之間,可以是透過使用一種或多種加熱氣體F6以保持在100℃至1400℃之間的反應溫度TR。在一個實施例中,溫度TR高於溫度TD
在另一個實施例中,將氣體流F6加熱至乾燥溫度或氧化溫度以與氣液混合物F3混合,並從氣液混合物F3中除去水分。它被設計成從兩種或更多種液體混合物的充分混合的氣液混合物F3中產生出球形固體顆粒。然而,常規的固態製造工藝涉及將兩種或更多種化合物的固體混合物混合或研磨,導致兩種或更多種化合物的不均勻混合。
將反應室210內的反應混合物F7處理成產物材料(例如,氧化反應混合物的氣固混合物與一種或多種加熱氣體和/或其他氣相副產物混合、或廢物等),並積聚在出口區域214附近,在反應室210內經過一段反應時間後通過系統出口204輸送到處理系統200外。從反應室210排出的產物材料包含固體材料顆粒或液體混合物組合物的氧化形式的精細粉末(例如,金屬氧化物材料,像是混合金屬氧化物材料的精細粉末),該產物材料具有所需的晶體結構、粒徑和 形態。
可選擇地,在一個實施例中,處理系統200進一步包括分離器,該分離器在反應室210的底端部分連接至系統出口204,作為收集加工產物,並將該加工產物分離成固體顆粒和廢物。合適的分離器的實例包括旋風分離器,靜電分離器,靜電除塵器,重力分離器,慣性分離器,膜分離器,流化床,分級機,電篩,撞擊器,顆粒收集器,浸出分離機,淘析器,空氣分級機,浸出分級機及其組合。
產物材料可以被冷卻以獲得想要的的尺寸、形態和晶體結構的最終固體顆粒,準備被進一步用於對其性質的進一步分析用於電池應用(例如,比容量,功率性能,顆粒充電循環性能等),顆粒大小,形態,晶體結構等。例如,可以將產物材料緩慢冷卻至室溫,以避免干擾或破壞形成具有均勻形態和所需晶體結構的穩定能態的過程。因此,與從常規製造工藝製備的材料相比,可以以更少的時間、勞動力和監督來獲得高質量且一致的活性顆粒材料。
由液體混合物在處理系統上以輔助氣體在處理系統的反應室內部中處理系統產生顆粒材料的方法。
圖4示出了由液體混合物生產產品材料的方法400。在步驟410,具有溫度TR的一種或多種加熱的氣體經由加熱組件流入處理系統的反應室中。例如,加熱組件280被設置為連接到氣體管線286並且連接到反應室210的腔室壁218上的開口219,用於將一種或多種加熱的氣體輸送到反應室210中。經由氣體管線206的加熱氣體,通過加熱組件280的氣體輸送元件284中壁288所引導分流。在一示例中,氣體輸送元件284被置於到達反應室210的與分散室相鄰的進入區域212。在一實施例中,氣體輸送元件284最好朝上置於反應室210內部。在 另一個實施例中,氣體輸送元件284可以相對於地面以從0度到90度的任何角度定位。
將一種或多種加熱的氣體流加熱到所需的反應溫度,例如100℃至1400℃之間的溫度,並流入反應室中,用作將氣液混合物乾燥和/或反應成反應混合物一段停留時間的能源。流動的空氣或已加熱氣體的優點是傳熱更快,溫度分佈均勻(尤其是在高溫範圍內),易於規模放大等。停留時間可以是進行一種或多種氣液混合物流的完全反應的任何停留時間,例如在一秒至十小時之間或更長的停留時間。
一種或多種加熱氣體的示例性氣流包括但不限於空氣,氧氣,二氧化碳,氧化性氣體,氮氣,惰性氣體,稀有氣體及其組合。對於反應室210內部的氧化反應,例如由一種或多種液體混合物形成氧化物材料,可以在氣體流中使用氧化氣體。為了在反應室內進行還原反應,可以將還原氣體用作加熱氣體。此外,加熱的氣體可以用作形成氣液混合物的氣體來源。
在步驟420,可選擇地,一種或多種氣體經由系統入口被輸送到處理系統的緩衝室中。該一種或多種氣體可以是例如空氣,氧氣,二氧化碳,氮氣,氫氣,惰性氣體,稀有氣體及其組合。
在步驟430,通過處理系統的一個或多個動力噴射模塊將液體混合物噴射到一個或多個液滴流中。液體混合物由兩種或更多種前驅體形成。通常,液態的前驅體化合物可以直接製備成所需濃度的液體混合物。前驅體化合物的固體形式可以溶解或分散在合適的溶劑(例如水,酒精,異丙醇或任何其他有機或無機溶劑及其組合)中,以形成水溶液,漿液,凝膠的液體混合物,氣霧劑或任何其他合適的液體形式。例如,可以將所需的兩種或更多種固體前驅體 的摩爾比製備成液體混合物,例如,透過將適量的兩種或更多種固體前驅體與適量的溶劑一起測量並製備到容器中。取決於前驅體在溶劑中的溶解度,可以調節pH,溫度以及機械攪拌和混合,以獲得前驅體化合物完全溶解和/或均勻分散的液體混合物。
在一個實例中,將兩種或更多種含金屬的前軀體混合到液體混合物中,以獲得混合的金屬氧化物材料的最終反應產物。示例性的含金屬前體包括但不限於金屬鹽,含鋰化合物,含鈷化合物,含錳化合物,含鎳化合物,硫酸鋰(Li2SO4),硝酸鋰(LiNO3),碳酸鋰(Li2CO3),乙酸鋰(LiCH2COO),氫氧化鋰(LiOH),甲酸鋰(LiCHO2),氯化鋰(LiCl),硫酸鈷(CoSO4),硝酸鈷(Co(NO3)2),碳酸鈷(CoCO3),醋酸鈷(Co(CH2COO)2),氫氧化鈷(Co(OH)2),甲酸鈷(Co(CHO2)2),氯化鈷(CoCl2),硫酸錳(MnSO4),硝酸錳(Mn(NO3)2),碳酸錳(MnCO3),醋酸錳(Mn(CH2COO)2),氫氧化錳(Mn(OH)2),甲酸錳(Mn(CHO2)2),氯化錳(MnCl2),硫酸鎳(NiSO4),硝酸鎳(Ni(NO3)2),碳酸鎳(NiCO3),乙酸鎳(Ni(CH2COO)2),氫氧化鎳(Ni(OH)2),甲酸鎳(Ni(CHO2)2),氯化鎳(NiCl2),含鋁(Al)的組件nd,含鈦(Ti)的化合物,含鈉(Na)的化合物,含鉀(K)的化合物,含rub(Rb)的化合物,含釩(V)的化合物,含絕(Cs)的化合物,含鉻(Cr)的化合物,含銅(Cu)的化合物,含鎂(Mg)的化合物,含鐵(Fe)的化合物及其組合等。
不受限於理論,為了製備具有兩種或更多種不同金屬的氧化物材料,首先將所有所需的金屬元素混合成液體混合物(例如,混合成溶液,使用兩種或多種含金屬的前體化合物作為每種金屬元素的來源,以使兩種或多種不 同的金屬可以所需比例均勻混合。例如,為了製備水溶液,漿液或凝膠的液體混合物,可以使用一種或多種具有高水溶性的金屬鹽。例如,可以使用金屬硝酸鹽,金屬硫酸鹽,金屬氯化物,金屬乙酸鹽,甲酸金屬鹽。可以使用有機溶劑,例如醇,異丙醇等,以低水溶性溶解或分散含金屬的前驅體。在某些情況下,可以調節液體混合物的pH值以增加一種或多種前驅體化合物的溶解度。可以任選地將化學添加劑,膠凝劑和表面活性劑如氨,EDTA等添加到液體混合物中,以幫助將前驅體化合物溶解或分散在所選溶劑中。
可以通過調節動力噴射模塊內的液體輸送/噴射通道的尺寸來調節一個或多個液滴流的期望尺寸。可以產生從幾納米到幾百微米的一個或多個液滴流的尺寸。可以根據所使用的霧產生器,液體混合物化合物,分散室的溫度,氣體的流速以及分散室內的停留時間來調節合適的液滴尺寸。例如,在分散室內產生液滴大小在十分之一微米至一毫米之間的薄霧。
在步驟440,將一個或多個液滴流經由一個或多個動力噴射模塊噴射到處理系統的分散室內,讓該液滴流在其中流動。在一種配置中,一個或多個動力噴射模塊連接到液體源以存儲所需要的液體混合物化合物,並且該電子控制單元用於引導和控制液體混合物化合物從液體源到動力噴射器的輸送。
在另一種配置中,液體源內的液體混合物可以由泵從液體源泵送到動力噴射器。例如以想要的輸送速率(例如,通過計量閥或其他裝置調節)透過泵連續地泵送液體混合物,以實現處理系統的良好處理產量。在另一種配置中,動力噴射器位於分散室的外部,並且由此產生的液滴流通過腔室入口被輸送到分散室。
在一個實施例中,一個或多個動力噴射模塊可作為將液體混合物 噴射到一個或多個液滴流中,並且將一個或多個液滴流噴射到處理系統中。在另一個實施方案中,噴射到分散室中的液滴流與一種或多種氣體流以分散角(α)彼此相遇,並形成包含一種或多種氣體的氣流和一種或液滴流的一種或多種氣液混合物流。一種或多種氣體和一個或多個液滴流以零度至約180度之間的分散角(α)彼此相遇。
在步驟450中,在處理系統的分散室內,一種或多種氣體與一個或多個液滴流在溫度TD彼此相遇,形成氣液混合物。一方面,溫度TD可保持在20℃至400℃之間。透過使一種或多種氣體連續地和/或以可調節的、可變的流速流動,能將一個或多個液滴流在分散室內混合。同時,從液體混合物中噴出的液滴流被氣體所載送,作為一種充分混合的氣液混合物,通過分散室內的路徑,隨著更多的氣體流入,氣液混合物會從分散室中排出,並連續輸送到與分散室相連的反應室中。
在步驟460,由加熱組件提供的一種或多種加熱氣體以及由分散室提供的氣體和液滴流的氣液混合物在反應室內形成反應混合物,使得反應混合物在反應室內的反應溫度下將其加工成產物材料。
在一個實施例中,加熱在處理系統100、200中流動的各種氣體,並且該加熱的氣體的熱能在處理系統內部可以用作進行乾燥,反應,氧化,還原和/或其他反應的能量源。透過適當的加熱機制,例如電動加熱器,燃油加熱器等,可以將氣體加熱到20℃或更高的溫度,例如100℃或更高,或者40℃或更高,例如100℃至1000℃,400℃至900℃等。或者,可以透過直接加熱腔室體或直接加熱處理系統的每個部分,例如加熱反應室或分散室的腔室體,來在處理系統內部進行加熱,乾燥和/或其他反應。
使用加熱氣體作為熱源的優點是快速的熱傳遞,高溫均勻性和易於按比例放大等。反應室可以是任何腔室、具有封閉室主體的爐子,例如圓頂型陶瓷室,石英室,管室腔室等。可選地,腔室體由絕熱材料(例如,陶瓷等)製成,以防止在腔室內的干燥和/或其他反應期間的熱損失。
由一種或多種氣體和一個或多個液滴流形成的氣液混合物被輸送到反應室中以進行反應。反應室內的氣液混合物的反應可包括氧化,還原,分解,組合反應,相轉化,重結晶,單置換反應,雙置換反應,燃燒,異構化及其組合中的任何一種。例如,一個或多個氣液混合物流可以被氧化,諸如將液體混合物化合物氧化成氧化物材料。或者,從反應室內的一種或多種氣液混合物流的反應,獲得所需的反應混合物的晶體結構。
本發明的一個實施例提供了所使用的一種或多種氣體可以是與液滴流充分混合成氣液混合物,並在不與液滴流反應的情況下,處理該氣液混合物。但是,在某些情況下,液滴流中的化學物質可能會在處理過程和/或腔室內的其他反應過程中,與氣體和/或彼此發生一定程度的反應,該反應具體取決於溫度和液滴流的化學組成。另外,液滴化合物充分混合的氣液混合物在處理系統每個腔室中的停留時間是可調節的,取決於例如一種或多種氣體流的流速,以及液滴流必須在分散室內流過的路徑的長度,其可以例如在一秒與一小時之間。
在一個實施方案中,氣液混合物和一種或多種加熱的氣體可在反應室內彼此碰撞。氣液混合物流和一種或多種加熱的氣體,在反應室內經過反應時間持續進行混合,形成反應混合物,其中反應混合物包括氣體流、液滴流和加熱的氣體。在另一個實施方案中,可以通過使用一種或多種加熱到100℃至 1400℃之間的溫度的加熱氣體,將處理系統的反應室加熱到反應溫度TR。一方面,一種或多種加熱的氣體由氣體輸送元件輸送,在反應室內以與一種或多種氣液混合物流在彼此間以介於0度和大約180度之間的角度(β)彼此相遇混合。
示例:處理系統的反應室內部的輔助氣流:使用處理系統進行實驗,並將氣體流通過加熱組件輸送到處理系統的反應室中,並追踪和測量一種或多種氣體流的路徑。
圖5是實驗結果的剖視圖,出示了輸送到處理系統中的一種或多種加熱氣體的速度向量。在該示例中,溫度估計為800℃的一種或多種加熱氣體以13.28m/s的速度通過反應室腔室壁上的開口582輸送到處理系統中,並從處理系統中的系統出口584中排出。如多個箭頭所示,多個向量502、504、506、508、510、512、514、516、518、520、522,代表氣體流的方向以及氣體流在每個位置的向量大小,來模擬加熱的氣體F6。特定位置處的氣體流的方向顯示為向量502-522的方向,氣體流速度的大小顯示為向量502-522的粗細。
圖6是實驗結果的剖視圖,其示出了在將一種或多種加熱的氣體輸送到反應室中之後等速線的分佈。在該示例中,溫度約為900℃的加熱的氣體流F6以1m/s或更快(例如約10m/s或更快、大約30m/s或更快)的速度通過反應室腔室壁上的開口682輸送進反應室,並從系統出口684離開處理系統。在圖6中,每條線是由具有相同速度的連接點形成的,並且每條線602、604、606、608、610、612、614、616、618、620、622、624代表線上的每個點在指定的時間具有相同或相等的速度,並且每條線的速度可以為0.1m/s或更大,範圍可以從0.5m/s至2.0m/s,或從0.1m/s至5m/s,或從0.1m/s到10m/s。例如,輸入速度約為13m/s,則每條線的速度可以在8到20m/s的範圍內。此外,在圖6中,大 多數線602、604、606、608、610、612、614、616、618、620、622、624在反應器室內形成迴圈,以表示在反應室內攜帶液滴的氣體流的飛行時間增加,並有助於其中的化學反應過程,從而在反應室內形成均勻的顆粒。例如,線602中的速度與所測量的Vs1m/s的速度之比率可以在1:15至大約1:4之間。另外,線602,線612,線614,線616和線622可具有相同或相似的速度。線608中的速度與所測量的Vs1m/s的速度之比率可以在1:8至大約1:3之間。另外,線608和線610具有相同或相似的速度。線618中的速度與所測量的VS1m/s的速度之比率可以在1:6至大約1:2之間。線624中的速度與VS1m/s的速度之比率可以在1:1與大約1:1.2之間。另外,線604和線606以及線624具有相同或相似的速度。
圖7是實驗結果的剖視圖,其示出了在將一種或多種加熱的氣體輸送到反應室之後等溫線的分佈。在該示例中,溫度約為800℃的加熱的氣體流F6以13.28m/s的速度通過開口782進入反應室,在該反應室中,氣體入口流速為800CFM(ft3/min),並從反應室中系統出口784流出。在圖7中,每條線由具有相同溫度的連接點形成,並且線702、704、706、708、710、712、714、716、718中的每條線代表在所示的時間,每個點的溫度上是相同或相等的,這有助於形成均勻的顆粒。圖7中的溫度範圍為50℃至900℃。在圖7中,兩條相鄰線之間的空間內每個點的溫度範圍為0到20℃。線702上的溫度表示720℃,線704上表示540℃,線706上的溫度表示580℃,線708上表示600℃,線710上的溫度表示540°C,線上的溫度712表示580℃,線714上的溫度表示600℃,線716上的溫度表示620℃,線718上的溫度表示640℃。
圖8是實驗結果的剖視圖,其示出了在將一種或多種加熱的氣體輸送到反應室中之後等速線的分佈。在該示例中,溫度估計為800℃的加熱氣體F6 的流動以5.8m/s的速度通過開口882進入反應室,在該反應室中,氣體入口流速為800CFM(ft3/min),並從反應室中系統出口884流出。在圖8中,每條線是由具有相同速度的點連接而成的,並且每條線802、804、806、808、810、812、814、816代表該線上的每個點在所示的時間上速度具有相同或相等的速度,這有助於形成均勻的顆粒。在圖8中,在線802、804、806、808、810、812、814、816上的速度形成一個迴圈,並且同一條線上的所有點都具有相同的速度,其中線上的速度與通過反應室的腔室壁的開口882測得的Vs2m/s的速度之比率可以在1:200至大約1:4之間。例如,線802、線804和線808具有相同或相似的速度。線808上的速度與所測量的Vs2m/s的速度之比率可以在1:100與大約1:40之間。線810上的速度與Vs2m/s的速度之比率可以在1:60至大約1:20之間。另外,線810和線812具有相同或相似的速度。線814上的速度與Vs2m/s的速度之比率可以在1:25與大約1:10之間。線816上的速度與Vs2m/s的速度之比率可以在1:8至大約1:4之間。
圖9是實驗結果的剖視圖,示出了在將一種或多種加熱的氣體輸送到反應室中之後等溫線的分佈。在該示例中,溫度約為800℃的加熱的氣體流F6以5.8m/s的速度通過開口982進入反應室,在該反應室中,氣體入口流速為350CFM(ft3/min),並從反應室中系統出口984流出。在圖9中,每條線是由具有相同溫度的連接點形成的,並且每條線902、904、906、908、910、912、914、916、916代表該線上的每個點在所示的時間具有相同或相等的溫度,這有助於形成均勻的顆粒。圖9中的溫度範圍是50℃至900℃。在圖9中,相鄰線之間的空間內每個點的溫度範圍為0到12℃。線902上的溫度代表680℃,線904上的溫度代表620℃,線006上的溫度代表560℃,線908上的溫度代表560℃,線910上的溫度 代表584℃,線912上的溫度代表584℃,線914上的溫度代表620℃。
儘管前述內容針對本發明的實施例,但是在不脫離本發明的基本範圍的情況下,可以設計本發明的其他和進一步的實施例,並且本發明的範圍由所附權利要求書確定。
200:處理系統
202:系統入口
204:系統出口
210:反應室
212:進入區域
214:出口區域
218:腔室壁
219:腔室壁開口
220:分散室
228:腔室壁
230:緩衝室
232:氣體分流器
234:通道
238:腔室壁
240A:動力噴射模塊
240B:動力噴射模塊
242A:動力噴射器
242B:動力噴射器
280:加熱組件
284:氣體運輸元件
286:氣體管線
288:壁
300:電子控制單元
310:液體源
340:CPU

Claims (23)

  1. 一種生產產品材料的處理系統,包括:一個或多個第一氣體管線;一個系統入口,該系統入口連接到一個或多個第一氣體管線,將一個或多個第一氣氣體流輸送到處理系統中;一或多個動力噴射模塊,用於將液體混合物噴射到一個或多個液滴流中,並將一個或多個液滴流噴射到處理系統中;一個反應室,用於將反應混合物加工成產品材料;和一個加熱組件,包括:一個第二氣體管線,該第二氣體管線連接至反應室的腔室壁的開口,用於將一種或多種第二氣體流輸送到反應室中;和一個氣體輸送元件,其連接到第二氣體管線並置於反應室內,其中反應混合物包括:一種或多種第一氣體流;一種或多種第二氣體流;和一個或多個液滴流。
  2. 根據請求項1所述的處理系統,將所述加熱組件的所述氣體輸送元件朝上置於所述反應室內部裡。
  3. 根據請求項1所述的處理系統,還包括一個分散室,所述分散室適用於連接至所述一個或多個動力噴射模塊,並將所述一個或多個液滴流分散到所述一種或多種第一氣體流中,形成氣液混合物。
  4. 根據請求項3所述的處理系統,其中所述一種或多種第一氣體流和所述一個或更多個液滴流以在零度和180度之間的分散角(α)彼此相遇。
  5. 根據請求項3所述的處理系統,其中所述氣體輸送元件置於所述反應室內以達到反應室內的進入區域,所述進入區域是連接至所述處理系統的分散室。
  6. 根據請求項3所述的處理系統,其中所述一種或多種第二氣體流由所述氣體輸送元件輸送,與所述一個或多個氣液混合物,以在零度和180度 之間的分散角(β)在反應室內彼此相遇混和。
  7. 根據請求項6所述的處理系統,其中所述分散角(β)為180度。
  8. 根據請求項3所述的處理系統,還包括一個緩衝室,所述緩衝室適用於將一種或多種第一氣體流從所述系統入口輸送至所述分散室。
  9. 根據請求項8所述的處理系統,其中所述緩衝室包括氣體分流器,所述氣體分流器具有一個或多個通道,用於將所述一種或多種第一氣體流輸送到一種或多種均勻的氣體流中,並且其中所述氣體分流器的形狀符合緩衝室中腔室壁的內周長。
  10. 根據請求項1所述的處理系統,其中所述處理系統還包括一個電子控制中心。
  11. 根據請求項1所述的處理系統,其中透過一個或多個第一氣體管線輸送的一種或多種第一氣體流保持在第一溫度,並且透過加熱組件的氣體輸送元件所輸送的一種或多種第二氣體流保持在第二溫度,並且其中第二溫度高於第一溫度。
  12. 根據請求項11所述的處理系統,其中所述第一溫度保持在20℃至400℃之間的溫度。
  13. 根據請求項11所述的處理系統,其中所述第二溫度保持在100℃至1400℃之間的溫度。
  14. 一種生產產品材料的處理系統,包括:一個或多個第一氣體管線;一個系統入口,該系統入口連接到一個或多個第一氣體管線,將一種或多種第一氣氣體流輸送到處理系統中;一個或多個動力噴射模塊,適於將液體混合物噴射到一個或多個液滴流中,並將一個或多個液滴流噴射到處理系統中;一個分散室適用於連接至所述一個或多個動力噴射模塊,並將所述一個或多個液滴流分散到所述一種或多種第一氣體流中,形成氣液混合物,其中所述 一種或多種第一氣體流和所述一個或更多個液滴流以在零度和180度之間的分散角(α)彼此相遇。一個反應室,用於將反應混合物加工成產品材料;和一個加熱組件,包括:一個第二氣體管線,該第二氣體管線連接至反應室的腔室壁的開口,用於將一種或多種第二氣體流輸送到反應室中;和一個氣體輸送元件,其連接到第二氣體管線並置於反應室內,其中反應混合物包括:一種或多種第一氣體流;一種或多種第二氣體流;和一個或多個液滴流;和其中所述一種或多種第二氣體流由所述氣體輸送元件輸送,與所述一個或多個氣液混合物,以在零度和180度之間的分散角(β)在反應室內彼此相遇混和。
  15. 根據請求項14所述的處理系統,將所述加熱組件的所述氣體輸送元件朝上置於所述反應室內部裡。
  16. 根據請求項14所述的處理系統,其中透過一個或多個第一氣體管線輸送的一種或多種第一氣體流保持在第一溫度,並且透過加熱組件的氣體輸送元件所輸送的一種或多種第二氣體流保持在第二溫度,並且其中第二溫度高於第一溫度。
  17. 根據請求項16所述的處理系統,其中所述第一溫度保持在20℃至400℃之間的溫度。
  18. 根據請求項16所述的處理系統,其中所述第二溫度保持在100℃至1400℃之間的溫度。
  19. 一種從液體混合物生產產品材料的方法,包括:透過系統入口,輸送一種或多種第一氣體流到處理系統中的緩衝室中;透過加熱組件,輸送一種或多種第二氣體流到處理系統中的反應室中,其中加熱組件包括:一個第二氣體管線,該第二氣體管線連接至反應室的腔室壁的開口,用於將一種或多種第二氣體流輸送到反應室中;和 一個氣體輸送元件,其連接到第二氣體管線並置於反應室內,透過處理系統中的一個或多個動力噴射模塊,將液體混合物噴射到一個或多個液滴流中;透過一個或多個動力噴射模塊,將一個或多個液滴流輸送進處理系統中的分散室中;和產生反應混合物,該反應混合物包含一種或多種第一氣體流、一種或多種第二氣體流和一個或多個液滴流。
  20. 根據請求項19所述的方法,其中透過一個或多個第一氣體管線輸送的一種或多種第一氣體流保持在第一溫度,並且透過加熱組件的氣體輸送元件所輸送的一種或多種第二氣體流保持在第二溫度,並且其中第二溫度高於第一溫度。
  21. 根據請求項19所述的方法,還包括:使用一種或多種第二氣體流加熱處理系統的反應室,所述第二氣體流被加熱到100℃至1400℃之間的溫度;並在反應溫度內將反應混合物加工成產品材料。
  22. 根據請求項21所述的方法,其中所述氣體輸送元件置於所述反應室內以達到反應室內的進入區域,將一種或多種第二氣體流運輸至進入區域,其中所述之進入區域是連接至所述分散室。
  23. 根據請求項21所述的方法,其中透過一個或多個第一氣體管線輸送的一種或多種第一氣體流保持在第一溫度,並且透過加熱組件的氣體輸送元件所輸送的一種或多種第二氣體流保持在第二溫度,並且其中第二溫度高於第一溫度。
TW109121941A 2019-06-28 2020-06-29 具有輔助氣體流的處理系統與方法 TWI748537B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201962868843P 2019-06-28 2019-06-28
US62/868,843 2019-06-28
US16/914,458 US11673112B2 (en) 2020-06-28 2020-06-28 System and process with assisted gas flow inside a reaction chamber
US16/914,458 2020-06-28

Publications (2)

Publication Number Publication Date
TW202112650A TW202112650A (zh) 2021-04-01
TWI748537B true TWI748537B (zh) 2021-12-01

Family

ID=74059631

Family Applications (2)

Application Number Title Priority Date Filing Date
TW109121941A TWI748537B (zh) 2019-06-28 2020-06-29 具有輔助氣體流的處理系統與方法
TW110141566A TWI785881B (zh) 2019-06-28 2020-06-29 具有輔助氣體流的處理系統與方法及所製成用於電池的材料

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW110141566A TWI785881B (zh) 2019-06-28 2020-06-29 具有輔助氣體流的處理系統與方法及所製成用於電池的材料

Country Status (7)

Country Link
US (1) US20240075451A1 (zh)
EP (1) EP4142928A4 (zh)
JP (2) JP7417299B2 (zh)
KR (1) KR20220034741A (zh)
CN (1) CN114025874A (zh)
TW (2) TWI748537B (zh)
WO (1) WO2020264464A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020065374A1 (en) * 2000-11-30 2002-05-30 Simon Mawson Polymerization process
CN103962058A (zh) * 2013-01-30 2014-08-06 中国石油化工股份有限公司 预混合器、径向固定床反应器和丁烯氧化脱氢反应系统
US10076737B2 (en) * 2013-05-06 2018-09-18 Liang-Yuh Chen Method for preparing a material of a battery cell

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19847161A1 (de) * 1998-10-14 2000-04-20 Degussa Mittels Aerosol dotiertes pyrogen hergestelltes Siliciumdioxid
AT411900B (de) 2001-04-25 2004-07-26 Andritz Ag Maschf Verfahren und vorrichtung zur gewinnung von metalloxiden
JP2003229124A (ja) 2002-01-31 2003-08-15 Hitachi Metals Ltd 非水系リチウム二次電池用正極活物質とその製造方法及びそれを用いた非水系リチウム二次電池
JP4155116B2 (ja) 2002-06-10 2008-09-24 セイコーエプソン株式会社 トナーの製造方法、トナーおよびトナー製造装置
JP4555199B2 (ja) 2005-09-20 2010-09-29 中外炉工業株式会社 粉体製造装置
WO2009039281A2 (en) 2007-09-19 2009-03-26 Amgen Inc. Particle drying apparatus and methods for forming dry particles
CN101396647B (zh) * 2007-09-29 2011-03-16 中科合成油技术有限公司 用于费-托合成的气-液-固三相悬浮床反应器及其应用
CN201482483U (zh) * 2009-07-29 2010-05-26 江苏新河农用化工有限公司 一种新型间苯二甲腈汽化器
KR101450857B1 (ko) * 2012-01-06 2014-10-15 주식회사 포스코 리튬 함유 용액 내 용존 물질의 추출 방법 및 이를 이용한 시스템
US9650309B2 (en) * 2012-04-12 2017-05-16 Iowa State University Research Foundation, Inc. Stability of gas atomized reactive powders through multiple step in-situ passivation
JP2014113529A (ja) 2012-12-07 2014-06-26 Furukawa Electric Co Ltd:The 微粒子製造装置及び微粒子製造方法
WO2014159118A1 (en) * 2013-03-14 2014-10-02 Applied Materials, Inc. Apparatus and methods for synthesis of battery-active materials
JP6519840B2 (ja) 2014-03-14 2019-05-29 株式会社リコー 粒子製造装置及び粒子製造方法
CN105990569B (zh) * 2015-02-13 2018-10-30 中科派思储能技术有限公司 一种硫碳复合粉体材料的制备方法及粉体材料和应用
DE102015206843A1 (de) * 2015-04-16 2016-10-20 Hte Gmbh The High Throughput Experimentation Company Vorrichtung und Verfahren zum Versprühen von Flüssigkeiten und der Erzeugung von Feinstnebel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020065374A1 (en) * 2000-11-30 2002-05-30 Simon Mawson Polymerization process
CN103962058A (zh) * 2013-01-30 2014-08-06 中国石油化工股份有限公司 预混合器、径向固定床反应器和丁烯氧化脱氢反应系统
US10076737B2 (en) * 2013-05-06 2018-09-18 Liang-Yuh Chen Method for preparing a material of a battery cell

Also Published As

Publication number Publication date
CN114025874A (zh) 2022-02-08
US20240075451A1 (en) 2024-03-07
JP7417299B2 (ja) 2024-01-18
TWI785881B (zh) 2022-12-01
TW202112650A (zh) 2021-04-01
TW202306889A (zh) 2023-02-16
JP2024050543A (ja) 2024-04-10
TW202206373A (zh) 2022-02-16
KR20220034741A (ko) 2022-03-18
JP2022543985A (ja) 2022-10-17
WO2020264464A1 (en) 2020-12-30
EP4142928A4 (en) 2023-05-24
WO2020264464A8 (en) 2022-02-03
EP4142928A1 (en) 2023-03-08

Similar Documents

Publication Publication Date Title
US20220410105A1 (en) Method of Preparing a Material of a Battery Cell
TWI795650B (zh) 生產顆粒材料的加工系統和方法
US20230253541A1 (en) System with Power Jet Modules and Method thereof
US11673112B2 (en) System and process with assisted gas flow inside a reaction chamber
TWI748537B (zh) 具有輔助氣體流的處理系統與方法
TWI836684B (zh) 一種具有輔助氣體流的處理系統與生產電池材料的方法