TWI786308B - 直流電源電路 - Google Patents

直流電源電路 Download PDF

Info

Publication number
TWI786308B
TWI786308B TW108122752A TW108122752A TWI786308B TW I786308 B TWI786308 B TW I786308B TW 108122752 A TW108122752 A TW 108122752A TW 108122752 A TW108122752 A TW 108122752A TW I786308 B TWI786308 B TW I786308B
Authority
TW
Taiwan
Prior art keywords
voltage
circuit
transistor
output
aforementioned
Prior art date
Application number
TW108122752A
Other languages
English (en)
Other versions
TW202015321A (zh
Inventor
平川智浩
Original Assignee
日商濱松赫德尼古斯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商濱松赫德尼古斯股份有限公司 filed Critical 日商濱松赫德尼古斯股份有限公司
Publication of TW202015321A publication Critical patent/TW202015321A/zh
Application granted granted Critical
Publication of TWI786308B publication Critical patent/TWI786308B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0025Arrangements for modifying reference values, feedback values or error values in the control loop of a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • H02M3/33523Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with galvanic isolation between input and output of both the power stage and the feedback loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0045Converters combining the concepts of switch-mode regulation and linear regulation, e.g. linear pre-regulator to switching converter, linear and switching converter in parallel, same converter or same transistor operating either in linear or switching mode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/06Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider
    • H02M3/07Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Amplifiers (AREA)

Abstract

本發明之直流電源電路1具備:電壓調整電路2;變壓器3,其具有連接於電壓調整電路2之一次側繞組3a;電晶體4,其連接於一次側繞組3a,交替地重複使在一次側繞組3a中流動之電流導通/關斷;整流電路5,其連接於變壓器3之二次側繞組3b,將自二次側繞組3b輸出之電壓轉換為直流電壓;及PWM控制電路6,其相應於目標電壓控制電晶體4之導通/關斷之負載比。在目標電壓包含於第1電壓範圍內時,PWM控制電路6將負載比設為一定,電壓調整電路2之電晶體在線形區域內動作。在目標電壓包含於較第1電壓範圍為大之第2電壓範圍內時,PWM控制電路6使負載比相應於目標電壓而變化,電壓調整電路2之電晶體在飽和區域內動作。藉此,可抑制電源裝置之大型化及電力損失之增加且提高輸出電壓之穩定性。

Description

直流電源電路
本發明係關於一種直流電源電路。
在專利文獻1中曾記載與高電壓電源控制電路相關之技術。圖12係顯示該文獻所記載之電路之圖。如圖12所示,該電路100具有:直流輸入端子101、開關調節器102、PWM控制電路103、換流器電路104、高壓變壓器105、整流、平滑電路106、輸出電壓檢測電路107、串聯降壓器108、輸出端子109、壓降檢測電路110、及開關電路111。
PWM控制電路103控制開關調節器102之驅動脈衝之負載寬度。自直流輸入端子101輸入之直流電壓在由開關調節器102抑制變動後,由換流器電路104朝高壓變壓器105之一次側傳送。在高壓變壓器105之二次側,於整流、平滑電路106中進行整流及平滑,而再次產生直流電壓。該直流電壓藉由受輸出電壓檢測電路107控制之串聯降壓器108而更穩定化,並自輸出端子109輸出。
在專利文獻2中曾記載與直流高壓電源裝置相關之技術。圖13係顯示該文獻所記載之電路之圖。如圖13所示,該電路200具有:升壓變壓器201、電晶體202、PWM控制電路203、多倍壓整流電路204、限制電阻205、輸出電壓檢測電路207、輸出電流檢測電路208、軟起動電路209、飛輪二極體210、浪湧吸收電路211、及電感器212。
多倍壓整流電路204包含二極體204a、204b及電容器204c、204d,經由限制電阻205連接於輸出端子221。對升壓變壓器201之一次側繞組施加直流電壓。在升壓變壓器201之一次側繞組,為了將對該一次側繞組施加之直流電壓導通/關斷,而連接有電晶體202。在電晶體202之基極連接有用於使電晶體202作導通/關斷動作之PWM控制電路203。
藉由利用電晶體202將對升壓變壓器201之一次側繞組施加之電壓導通/關斷,而在升壓變壓器201之二次側繞組產生高電壓。該高電壓由電容器輸入型多倍壓整流電路204整流,並經由限制電阻205自輸出端子221輸出。在輸出端子221連接有輸出電壓檢測電路207。在多倍壓整流電路204連接有輸出電流檢測電路208。
PWM控制電路203基於由輸出電壓檢測電路207檢測之電壓值及由輸出電流檢測電路208檢測之電流值控制電晶體202之導通/關斷之時序。藉此,進行定電壓控制及定電流控制。此外,軟起動電路209係為了藉由在電源啟動時逐漸增長電晶體202之導通時間而一面抑制電晶體202之峰值電流一面轉移至穩態動作而設置。 [先前技術文獻] [專利文獻]
專利文獻1:日本特開平5-64439號公報 專利文獻2:日本特開平6-22550號公報
[發明所欲解決之問題]
在開關電源裝置中,藉由利用FET等之開關元件將所輸入之直流導通/關斷,而控制朝變壓器之一次側繞組之供給能量。為了獲得直流電力,而在變壓器之二次側繞組連接有整流電路。為了獲得高電壓,而有使變壓器之二次側之匝數多於一次側之匝數且將柯克勞夫-沃耳吞電路等之倍壓整流電路用作整流電路等方法。輸出電壓藉由回饋控制而被保持為所期望之大小。一般而言,輸出電壓與目標電壓之差被回饋至開關元件之導通時間與關斷時間之比。
在此種開關電源裝置中,有將輸出電壓設為可變之情形。尤其是,在電力供給對象需要高壓電源時(光電子倍增管、半導體光感測器等),較理想為將輸出電壓設為可變。此時,理想的是獲得在可變範圍內之任何輸出電壓下均穩定之電壓值,但實際上,起因於開關的漣波電壓雜訊等之交流成分重疊。尤其是,當輸出電壓值變得極低時,開關之週期並非為一定(斷續振盪),交流成分顯著地出現。因而,輸出電壓之穩定性降低。輸出電壓之穩定性之降低導致電力供給對象之輸出信號之變動,而引起測定精度之降低。
為了自輸出電壓去除該交流成分,也可設置低通濾波器。然而,因斷續振盪之週期為開關週期之數倍,而去除此種週期之交流成分之低通濾波器之零件尺寸變大,其結果為電源裝置整體變得過大。又,在專利文獻2所記載之電路(參照圖13)中,為了去除交流成分而設置有電感器212,但在電流微小時,必須增大電感器212之電感,電感器212之尺寸大型化,甚至電源裝置整體變得過大。
且,也考量在開關調節器之前段設置串聯調節器,將開關之負載比設為一定,且利用串聯調節器控制輸出電壓之大小之方式。然而,串聯調節器與開關調節器比較,帶來更大之電力損失。因若利用串聯調節器遍及全部輸出電壓範圍控制輸出電壓之大小,則電力損失顯著變大,而並不令人滿意。
本發明之目的在於提供一種可抑制電源裝置之大型化及電力損失之增加且提高輸出電壓之穩定性的直流電源電路。 [解決問題之技術手段]
本發明之實施形態係直流電源電路。直流電源電路具備:電壓調整電路,其具有:電晶體,其對於電力配線串聯插入;及放大器,其輸入與目標電壓對應之控制信號,而相應於控制信號控制朝電晶體之控制端子之電壓;變壓器,其具有連接於電壓調整電路之一次側繞組;開關元件,其連接於一次側繞組,交替地重複對在一次側繞組中流動之電流導通/關斷;整流電路,其連接於變壓器之二次側繞組,將自二次側繞組輸出之電壓轉換為直流電壓;及控制電路,其相應於目標電壓控制開關元件之導通/關斷之負載比;且在目標電壓包含於第1電壓範圍內時,控制電路將負載比設為一定,電晶體在線形區域內動作;在目標電壓包含於較第1電壓範圍為大之第2電壓範圍內時,控制電路使負載比相應於目標電壓變化,電晶體在飽和區域內動作。
在該直流電源電路中,當朝電力配線輸入具有某一電壓值之電力時,以該電壓值為上限,由電晶體控制輸出電壓值。當在比較低之第1電壓範圍內包含目標電壓時,電晶體在線形區域內動作,相應於朝電晶體之控制端子輸入之電壓變更輸出電壓值。又,當在比較高之第2電壓範圍內包含目標電壓時,無論朝電晶體之控制端子輸入之電壓為何,輸出電壓值皆與輸入電壓值大致相等。
來自如上述般被控制之電晶體之輸出電壓朝變壓器之一次側繞組輸入。此時,開關元件交替地重複在一次側繞組中流動之電流之導通/關斷。該導通/關斷之負載比係相應於目標電壓由控制電路控制。亦即,在目標電壓包含於第1電壓範圍內時,控制電路將負載比設為一定。又,在目標電壓包含於第2電壓範圍內時,控制電路使負載比相應於目標電壓變化。在變壓器之二次側繞組中產生之電壓在由整流電路轉換為直流電壓後朝直流電源電路之外部輸出。
如上述般,當在比較低之第1電壓範圍內包含目標電壓時,控制電路將負載比設為一定,電晶體在線形區域內動作。亦即,在第1電壓範圍內,由電晶體實現之串聯調節器控制輸出電壓之大小,由開關元件及變壓器實現之開關調節器不控制輸出電壓之大小。藉此,可避免開關元件之斷續振盪,而減少起因於開關的漣波電壓雜訊等之交流成分。因而,可抑制由設置與斷續振盪對應之低通濾波器等所致之電源裝置之大型化。
又,當在比較高之第2電壓範圍內包含目標電壓時,控制電路使負載比相應於目標電壓變化,電晶體在飽和區域內動作。亦即,在第2電壓範圍內,由電晶體實現之串聯調節器不控制輸出電壓之大小,由開關元件及變壓器實現之開關調節器控制輸出電壓之大小。藉此,可降低串聯調節器之電力損失。
由以上內容可知,根據具有上述之構成之直流電源電路,可抑制電源裝置之大型化及電力損失之增加且提高輸出電壓之穩定性。 [發明之效果]
根據本發明之實施形態之直流電源電路,可抑制電源裝置之大型化及電力損失之增加且提高輸出電壓之穩定性。
以下,一面參照附圖一面詳細地說明直流電源電路之實施形態。此外,在圖式之說明中對同一要素賦予同一符號,且省略重複之說明。
圖1係顯示一實施形態之直流電源電路1之構成之電路圖。如圖1所示,該直流電源電路1具備:電壓調整電路2、變壓器3、電晶體4、整流電路5、脈寬調變(PWM)控制電路6、濾波電路7、及誤差放大器8。電壓調整電路2係串聯調節器。變壓器3、電晶體4、整流電路5、及PWM控制電路6構成開關調節器。電壓調整電路2設置於變壓器3之前段(一次側)。換言之,開關調節器設置於串聯調節器之後段。
電壓調整電路2具有:輸入端2a、輸出端2b、及控制輸入端2c。輸入端2a與直流電源電路1之電力輸入端1a電性連接。自直流電源電路1之外部供給之輸入電壓Vin經由電力輸入端1a朝輸入端2a輸入。電壓調整電路2在以輸入電壓Vin之電壓值為上限之範圍內產生輸出電壓Vout1,並將輸出電壓Vout1自輸出端2b輸出。輸出電壓Vout1之大小係由朝控制輸入端2c輸入之控制信號Sc1控制。控制信號Sc1係與目標電壓對應之控制信號,由誤差放大器8產生。
圖2係顯示電壓調整電路2之具體例之電路圖。電壓調整電路2具有:電晶體21、放大器22、及電阻23、24。電晶體21對於將輸入端2a與輸出端2b相連之電力配線20串聯插入。亦即,電晶體21之一個電流端子連接於輸入端2a,另一電流端子連接於輸出端2b。
電晶體21係例如場效電晶體(FET),在一例中係p通道MOSFET。在電晶體21為p通道MOSFET時,電晶體21之源極端子連接於輸入端2a,汲極端子連接於輸出端2b。此外,此例並非係妨礙在輸入端2a與電晶體21之間、及/或在電晶體21與輸出端2b之間插入電阻、二極體等其他電氣元件者。又,作為電晶體21,可利用PNP電晶體,來取代p通道MOSFET。
放大器(amplifier)22控制朝電晶體21之控制端子(閘極端子)之電壓。放大器22具有:輸入端22a、22b、及輸出端22c。輸入端22a、22b之一者係反轉輸入端,另一者係非反轉輸入端。輸入端22a連接於控制輸入端2c,接收控制信號Sc1。輸入端22b連接於相互串聯連接之電阻23、24之間之節點N1。包含電阻23、24之串聯電路連接於輸出端2b與基準電位線(也稱為GND配線、接地配線)9之間。因而,朝輸入端22b輸入相應於電阻23、24之比將輸出電壓Vout1分壓之電壓V1。
放大器22產生相應於控制信號Sc1與電壓V1之差之控制電壓Vc1,並自輸出端22c輸出。輸出端22c與電晶體21之控制端子連接,控制電壓Vc1對電晶體21之控制端子施加。根據此構成,對控制電壓Vc1施加回饋以使節點N1之電壓接近控制信號Sc1,其結果為輸出電壓Vout1被控制為相應於控制信號Sc1之所期望之大小。此外,在本實施形態中,朝放大器22輸入利用電阻23、24分壓之電壓V1,但若為可朝放大器22輸入與輸出電壓Vout1相當(或成正比)之電壓之構成,則不限定於本實施形態。
再次參照圖1。變壓器3具有一次側繞組3a及二次側繞組3b。一次側繞組3a之一端連接於電壓調整電路2之輸出端2b。在輸出端2b與一次側繞組3a之間之節點N2和基準電位線9之間連接有電容器11。電容器11係為了降低電壓調整電路2之輸出阻抗而設置之旁流電容器。在變壓器3中,藉由電晶體4之導通/關斷而流動脈衝狀之電流,但該脈衝電流包含電晶體4之開關頻率及其高次諧波。藉由在節點N2連接有電容器11,而可自電容器11供給脈衝電流,電壓調整電路2穩定地動作。
又,一次側繞組3a之另一端經由電晶體4連接於基準電位線9。亦即,一次側繞組3a之另一端連接於電晶體4之一個電流端子,電晶體4之另一電流端子連接於基準電位線9。
電晶體4係本實施形態之開關元件之例。電晶體4係例如場效電晶體(FET),在一例中為n通道MOSFET。在電晶體4為n通道MOSFET時,電晶體4之汲極端子連接於一次側繞組3a,源極端子連接於基準電位線9。此外,此例並非係妨礙在一次側繞組3a與電晶體4之間、及/或在電晶體4與基準電位線9之間插入電阻、二極體等其他電氣元件者。又,作為電晶體4,可利用NPN電晶體,來取代n通道MOSFET。
電晶體4交替地重複在一次側繞組3a中流動之電流之導通/關斷。電晶體4之控制端子(閘極端子)連接於PWM控制電路6,由自PWM控制電路6提供之PWM信號Sc2控制電晶體4之導通/關斷。當變為電晶體4之導通狀態時,由電壓調整電路2產生之電力朝變壓器3之一次側繞組3a供給。當變為電晶體4之關斷狀態時,由電壓調整電路2產生之電力朝一次側繞組3a之供給被遮斷。
PWM控制電路6係由例如積體有複數個邏輯電路之IC構成。PWM控制電路6自外部接收具有特定之頻率之時脈信號,而產生具有與該時脈信號之頻率相應之頻率之PWM信號Sc2。PWM信號Sc2之負載比係基於自誤差放大器8輸出之控制信號Sc1而設定。因而,PWM控制電路6及誤差放大器8構成相應於目標電壓控制電晶體4之導通/關斷之負載比之控制電路12。
此外,在本實施形態中,所謂負載比係意指導通脈衝之半峰全寬W1與脈衝週期W2之比(W1/W2)。若負載比變大,則朝一次側繞組3a供給之電量增大,而自二次側繞組3b輸出之電壓變大。相反地,若負載比變小,則朝一次側繞組3a供給之電量減少,而自二次側繞組3b輸出之電壓變小。由PWM控制電路6控制之負載比始終大於0。
自二次側繞組3b輸出之電壓主要包含相應於PWM控制之脈衝週期W2之週期之交流成分。整流電路5係為了將該交流成分平滑化而設置。亦即,整流電路5連接於變壓器3之二次側繞組3b,將自二次側繞組3b輸出之電壓轉換為直流電壓。在一例中,整流電路5具有電容器輸入型構成。作為電容器輸入型整流電路一者,有複數個二極體與複數個電容器組合而成之倍壓整流電路。
圖3係作為倍壓整流電路之例而顯示柯克勞夫-沃耳吞(CW)電路5A之構成之電路圖。CW電路5A具有:包含串聯連接之複數個電容器之2個電容器行、及將該2個電容器行相互連接之複數個二極體。具體而言,CW電路5A具有:N1 個(N1 為2以上之整數,在圖中例示N1 =6之情形)電容器Cd(1)~Cd(N1 )、及N1 個二極體Dd(1)~Dd(N1 )。
奇數級電容器Cd(2m-1)(m為整數)被相互串聯連接,其一端連接於二次側繞組3b之一端。又,偶數級電容器Cd(2m)被相互串聯連接,其一端連接於二次側繞組3b之另一端。此外,二次側繞組3b之另一端可連接於基準電位線9。
而且,二極體Dd(n)(n為1以上之整數)之陽極連接於電容器Cd(n)之高電壓側之電極,二極體Dd(n)之陰極連接於電容器Cd(n+1)之低電壓側之電極。惟,末級之二極體Dd(N1 )之陰極連接於電容器Cd(N1 -1)之高電壓側之電極。此外,在此例中例示用於輸出負的高電壓之CW電路5A,但在為用於輸出正的高電壓之CW電路時,二極體Dd(1)~Dd(N1 )之朝向相反。
再次參照圖1。濾波電路7係設置於整流電路5之後段之低通濾波器。濾波電路7減少起因於電晶體4之開關且與重疊於整流電路5之輸出電壓的週期性漣波電壓雜訊。由於漣波電壓雜訊之週期依存於電晶體4之導通/關斷週期,故濾波電路7具有用於去除與電晶體4之導通/關斷週期(亦即上述之脈衝週期W2)對應之頻率之濾波特性。
濾波電路7之輸出端連接於直流電源電路1之電力輸出端1b。濾波後之電壓作為輸出電壓Vout2自電力輸出端1b朝直流電源電路1之外部輸出。此外,濾波電路7可由電阻及電容器之組合構成。或,濾波電路7可由電感器及電容器之組合、或電阻、電感器及電容器之組合構成。又,濾波電路7若不需要則可省略。
誤差放大器8如上述般構成控制電路12之一部分,產生相應於目標電壓與輸出電壓Vout2之差分之控制信號Sc1。具體而言,直流電源電路1更具有電阻13、14。電阻13、14在電力配線與基準電位線9之間被相互串聯連接。亦即,包含電阻13、14之串聯電路之一端連接於電力輸出端1b與濾波電路7之間之節點N3。該串聯電路之另一端連接於基準電位線9。
誤差放大器8具有:輸入端8a、8b、及輸出端8c。輸入端8a、8b之一者係反轉輸入端,另一者係非反轉輸入端。輸入端8a連接於電阻13、14之間之節點N4。因而,朝輸入端8a輸入相應於電阻13、14之比而將輸出電壓Vout2分壓之電壓V2。輸入端8b接收與目標電壓對應之電壓Vt。電壓Vt具有將輸出電壓Vout2之目標電壓相應於電阻13、14之比而分壓之大小。誤差放大器8產生相應於電壓Vt與電壓V2之差之控制信號Sc1,並自輸出端8c輸出。
根據此構成,由於輸出電壓Vout2與目標電壓之差經由控制信號Sc1被回饋至電壓調整電路2之衰減率及電晶體4之導通/關斷之負載比,故可使輸出電壓Vout2接近目標電壓。此外,在本實施形態中,朝誤差放大器8輸入利用電阻13、14分壓之電壓V2,但若為可朝誤差放大器8輸入與輸出電壓Vout2相當(或成正比)之電壓之構成,則不限定於本實施形態。
此處,針對電壓調整電路2及電晶體4之動作更詳細地說明。圖4係顯示目標電壓與電壓調整電路2之輸出電壓Vout1之關係之圖。在圖4中,橫軸表示目標電壓之電壓值,縱軸表示輸出電壓Vout1之電壓值。
在本實施形態中,在目標電壓包含於第1電壓範圍VA內時,以電壓調整電路2之電晶體21在線形區域內動作之方式設定控制電壓Vc1之大小。因而,在第1電壓範圍VA內,若目標電壓增大,則與目標電壓成正比地輸出電壓Vout1增大。此外,若目標電壓為0 (V),則輸出電壓Vout1也設為0 (V)。輸出電壓Vout1之最大值與輸入電壓Vin大致相等。
又,在目標電壓包含於較第1電壓範圍VA為大之第2電壓範圍VB內時,以電壓調整電路2之電晶體21在飽和區域內動作之方式設定控制電壓Vc1之大小。因而,在第2電壓範圍VB內,即便目標電壓變動,輸出電壓Vout1仍為一定(輸入電壓Vin)。此外,所謂第2電壓範圍VB大於第1電壓範圍VA係意指第2電壓範圍VB之最小電壓與第1電壓範圍VA之最大電壓相等或大於其。
圖5係顯示目標電壓與電晶體4之導通/關斷之負載比之關係的圖。在圖5中,橫軸表示目標電壓之電壓值,縱軸表示負載比。
在本實施形態中,在目標電壓包含於第1電壓範圍VA內時,PWM控制電路6將PWM信號Sc2之負載比設為一定。此時之負載比Dmin在負載比之變化範圍內為最低值,但一定大於0。換言之,在每一PWM週期內一定存在脈衝,且不進行斷續振盪。
又,在目標電壓包含於第2電壓範圍VB內時,PWM控制電路6使PWM信號Sc2之負載比相應於目標電壓變化。在一例中,若在第2電壓範圍VB內目標電壓增大,則與目標電壓成正比地負載比增大。此外,第2電壓範圍VB之目標電壓與負載比之關係不限定於比例關係,可應用單調增加之各種關係。此外,負載比之最大值Dmax小於1。因而,在每一PWM週期內一定存在電晶體4之關斷期間。
本實施形態之直流電源電路1之動作係如下述般。當朝電力配線20輸入具有某一電壓值之電力時,以該電壓值為上限,由電晶體21控制輸出電壓Vout1之大小。當在比較低之第1電壓範圍VA內包含目標電壓時,電晶體21在線形區域內動作,相應於朝電晶體21之控制端子輸入之控制電壓Vc1變更輸出電壓Vout1之大小。又,當在比較高之第2電壓範圍VB內包含目標電壓時,無論朝電晶體21之控制端子輸入之控制電壓Vc1為何,輸出電壓Vout1之大小皆與輸入電壓Vin大致相等。
來自如上述般被控制之電晶體21之輸出電壓Vout1朝變壓器3之一次側繞組3a輸入。此時,電晶體4交替地重複在一次側繞組3a中流動之電流之導通/關斷。在目標電壓包含於第1電壓範圍VA內時,PWM控制電路6將負載比設為一定。又,在目標電壓包含於第2電壓範圍VB內時,PWM控制電路6使負載比相應於目標電壓變化。在變壓器3之二次側繞組3b中產生之電壓在由整流電路5轉換為直流電壓,且由濾波電路7去除漣波電壓雜訊後,自電力輸出端1b朝直流電源電路1之外部輸出。
針對由以上所說明之本實施形態之直流電源電路1獲得之效果,與先前之問題一起進行說明。一般而言,在用於獲得5 V或12 V等低電壓之電源電路中,輸出電壓被固定為所期望之大小。另一方面,在可輸出例如1000 V等高電壓之電源電路中,設計為可自如地變更為可輸出該輸出電壓之範圍內(例如0 V~1000 V)之電壓。此高電壓可用於例如光電子倍增管(PMT)、半導體光感測器等計測器。
在高電壓之電源電路中,理想的是獲得在可變範圍內之任何輸出電壓下均穩定之電壓值,但實際並非如此。尤其是,輸出電壓設定越低則特性越劣化。除直流以外,起因於開關的交流電壓(漣波電壓雜訊)也重疊於高壓電源之輸出,但輸出電壓越低,朝負載供給之電流越少,則交流成分越變大。在負載為PMT或半導體光感測器等之計測器時,交流成分混入計測信號等而成為測定誤差之原因。
在輸出電壓為低,朝負載供給之電流為少之條件下交流成分變大之原因係如下述般。亦即,在組合有變壓器與電容器輸入型整流電路之直流電源中,變壓器以正向模式及返馳模式之兩種模式動作。所謂正向模式係在開關元件導通之期間朝變壓器之二次側繞組傳遞能量之模式。在此模式下,在變壓器之二次側繞組產生相應於匝數比之電壓。又,作為返馳模式係在開關元件導通之期間蓄積能量,在開關元件關斷之期間自二次側繞組放出能量之模式。
在輸出高電壓時,返馳模式佔主導地位,但在輸出低電壓時,正向模式佔主導地位。而且,在正向模式中,無法將輸出電壓降低至以輸入電壓乘以變壓器之匝數比及整流電路之升壓倍數之電壓以下。因而,在產生較其更降低輸出電壓之需要時,將週期性開關變更為斷續性開關。若變為此斷續動作(斷續振盪),則輸出電壓大幅度變動,重疊於輸出電壓之交流成分變大。
為了自輸出電壓去除該交流成分,也可設置低通濾波器。然而,因斷續振盪之週期為開關週期之數倍,而必須設置可去除如此長週期之交流成分之低通濾波器。而且,為了去除長週期(低頻率)之交流成分,而需要具有高阻抗之電阻或電感器、及具有低阻抗之電容器。因而,低通濾波器之零件尺寸變大,其結果為電源裝置整體變得過大。
又,在專利文獻2所記載之電路(參照圖13)中,為了去除交流成分而設置有電感器212,但在電流微小時,必須增大電感器212之電感,電感器212之尺寸大型化,甚至電源裝置整體變得過大。
且,也考量在開關調節器之前段設置串聯調節器,將開關之負載比設為一定,且利用串聯調節器控制輸出電壓之大小之方式。然而,串聯調節器與開關調節器比較,帶來更大之電力損失。因若利用串聯調節器遍及所有輸出電壓範圍控制輸出電壓之大小,則電力損失顯著變大,而並不令人滿意。此外,串聯調節器之電力損失係藉由輸出電流之平方與電晶體之導通電阻之積而求得。
對於上述之問題,在本實施形態之直流電源電路1中,當在比較低之第1電壓範圍VA內包含目標電壓時,PWM控制電路6將負載比設為一定,電晶體21在線形區域內動作。亦即,在第1電壓範圍VA內,由電晶體21實現之串聯調節器控制輸出電壓Vout2之大小,由電晶體4及變壓器3實現之開關調節器不控制輸出電壓Vout2之大小。
藉此,由於可設置PWM信號Sc2之負載比之下限,故可在一定之週期內一定使電晶體4導通/關斷。因而,可避免電晶體4之斷續振盪,利用小型濾波電路7減少起因於開關的漣波電壓雜訊等之交流成分。因而,可抑制由設置與斷續振盪對應之低通濾波器等所致之電源裝置之大型化。
又,當在比較高之第2電壓範圍VB內包含目標電壓時,PWM控制電路6使負載比相應於目標電壓變化,電晶體21在飽和區域內動作。亦即,在第2電壓範圍VB內,由電晶體21實現之串聯調節器不控制輸出電壓Vout2之大小,由電晶體4及變壓器3實現之開關調節器控制輸出電壓Vout2之大小。
藉此,在需要較大之電力之第2電壓範圍VB中,由於可使串聯調節器之效率最大,故可降低串聯調節器之電力損失。且,可抑制來自電路之發熱。
由以上內容可知,根據本實施形態之直流電源電路1,可抑制電源裝置之大型化及電力損失之增加且提高輸出電壓Vout2之穩定性。
又,如本實施形態般,整流電路5可為電容器輸入型。藉此,可利用簡易之電路構成將自二次側繞組3b輸出之電壓轉換為直流電壓。此時,整流電路5可為複數個二極體Dd(1)~Dd(N1 )與複數個電容器Cd(1)~Cd(N1 )組合而成之倍壓整流電路(例如CW電路)。藉此,可利用簡易之電路構成容易地獲得高電壓。
(第1變化例)
圖6係顯示上述實施形態之第1變化例之電晶體4之負載比及電壓調整電路2之輸出電壓Vout1與目標電壓之關係之圖。在圖6中,橫軸表示目標電壓,左縱軸表示輸出電壓Vout1,右縱軸表示負載比。
在上述實施形態中相應於目標電壓之大小定義第1電壓範圍VA及第2電壓範圍VB,但在本變化例中,更定義存在於第1電壓範圍VA與第2電壓範圍VB之間之第3電壓範圍VC。第3電壓範圍VC大於第1電壓範圍VA且小於第2電壓範圍VB。亦即,第3電壓範圍VC之最小電壓與第1電壓範圍VA之最大電壓相等或大於其,第3電壓範圍VC之最大電壓與第2電壓範圍VB之最小電壓相等或大於其。
而且,在目標電壓包含於第3電壓範圍VC內時,以電壓調整電路2之電晶體21在線形區域內動作之方式設定控制電壓Vc1之大小。因而,在第3電壓範圍VC內,若目標電壓增大,則與目標電壓成正比地輸出電壓Vout1增大。又,在目標電壓包含於第3電壓範圍VC時,PWM控制電路6使電晶體4之負載比相應於目標電壓變化。在一例中,若在第3電壓範圍VC內目標電壓增大,則與目標電壓成正比地負載比增大。此外,在第3電壓範圍VC內亦然,目標電壓與負載比之關係不限定於比例關係,可應用單調增加之各種關係。
如本變化例般,藉由在第1電壓範圍VA與第2電壓範圍VB之間設置串聯調節器及開關調節器之兩者控制輸出電壓Vout1之大小之第3電壓範圍VC,而可順滑地切換串聯調節器與開關調節器之間之控制之切換。
(第2變化例)
圖7係顯示上述實施形態之第2變化例之整流電路5B之構成的電路圖。作為上述實施形態之整流電路5。可利用本變化例之整流電路5B。該整流電路5B具有:第1二極體33、第2二極體34、在變壓器3與電壓輸出端之間被相互並聯連接之第1升壓整流電路部35及第2升壓整流電路部36、以及電壓合成部50。
第1二極體33之陽極連接於二次側繞組3b之一端。第1二極體33之陰極連接於基準電位線9。第2二極體34之陽極連接於二次側繞組3b之另一端。第2二極體34之陰極連接於基準電位線9。
第1升壓整流電路部35連接於二次側繞組3b之兩端。第1升壓整流電路部35藉由組合有複數段包含電容器及二極體之電路部分而進行在二次側繞組3b之兩端產生之交流電壓之整流及升壓。本變化例之第1升壓整流電路部35係由半波整流型CW電路構成。
具體而言,第1升壓整流電路部35具有:N1 個(N1 為2以上之整數,在圖中例示N1 =5之情形)電容器Ca(1)~Ca(N1 )、及N1 個二極體Da(1)~Da(N1 )。
偶數級電容器Ca(2m)(其中,m=1、2、3、・・・)被相互串聯連接,其一端連接於二次側繞組3b之一端。又,奇數級電容器Ca(2m-1)被相互串聯連接,其一端經由電阻R1連接於二次側繞組3b之另一端。
而且,二極體Da(n)(其中,n=1、2、3、・・・)之陽極連接於電容器Ca(n)之高電壓側之電極,二極體Da(n)之陰極連接於電容器Ca(n+1)之低電壓側之電極。惟,末級二極體Da(N1 )之陰極連接於電容器Ca(N1 -1)之高電壓側之電極。
亦即,第1升壓整流電路部35係藉由組合有分別包含電容器Ca(n)及二極體Da(n)之N1 段電路部分而構成。藉此,自第1升壓整流電路部35之輸出端、亦即電容器Ca(N1 )之高電壓側之電極輸出將二次側繞組3b之交流電壓整流及升壓而獲得之直流電壓VDC1。
第2升壓整流電路部36連接於二次側繞組3b之兩端。第2升壓整流電路部36藉由組合有複數段包含電容器及二極體之電路部分,而以與上述第1升壓整流電路部35為相反相位(相位相差180゚)對在二次側繞組3b之兩端產生之交流電壓進行整流及升壓。本變化例之第2升壓整流電路部36與第1升壓整流電路部35同樣地由半波整流型CW電路構成。
具體而言,第2升壓整流電路部36具有:N1 個電容器Cb(1)~Cb(N1 )、及N1 個二極體Db(1)~Db(N1 )。
偶數級電容器Cb(2m)被相互串聯連接,其一端連接於二次側繞組3b之另一端。又,奇數級電容器Cb(2m-1)被相互串聯連接,其一端經由電阻R2連接於二次側繞組3b之一端。
而且,二極體Db(n)之陽極連接於電容器Cb(n)之高電壓側之電極,二極體Db(n)之陰極連接於電容器Cb(n+1)之低電壓側之電極。惟,末級二極體Db(N1 )之陰極連接於電容器Cb(N1 -1)之高電壓側之電極。
亦即,第2升壓整流電路部36係藉由組合有分別包含電容器Cb(n)及二極體Db(n)之N1 段電路部分而構成。藉此,自第2升壓整流電路部36之輸出端、亦即電容器Cb(N1 )之高電壓側之電極輸出將二次側繞組3b之交流電壓整流及升壓而獲得之直流電壓VDC2。
電壓合成部50將自第1升壓整流電路部35輸出之直流電壓VDC1與自第2升壓整流電路部36輸出之直流電壓VDC2合成。本變化例之電壓合成部50係由2個二極體51a及51b構成。
二極體51a之陰極連接於第1升壓整流電路部35之輸出端(電容器Ca(N1 )之高電壓側之電極)。二極體51b之陰極連接於第2升壓整流電路部36之輸出端(電容器Cb(N1 )之高電壓側之電極)。二極體51a之陽極與二極體51b之陽極在連接點52處被相互連接。藉由此構成而將直流電壓VDC1與直流電壓VDC2合成,並作為整流電路5B之輸出電壓VDC3自連接點52輸出。
根據該整流電路5B,在第1升壓整流電路部35中產生之漣波電壓之相位與在第2升壓整流電路部36中產生之漣波電壓之相位相互偏移180度。因而,因起因於寄生電容的空間傳播耦合所致之漣波電壓朝直流輸出部之重疊藉由該等漣波電壓相互抵消而被儘量排除。尤其是,在第1升壓整流電路部35與第2升壓整流電路部36在空間上線對稱地配置時,此效果更顯著。
又,在最終直流輸出中所含之漣波電壓之頻率為來自第1升壓整流電路部35之漣波電壓與來自第2升壓整流電路部36之漣波電壓之相加之結果之2倍。因而,可如上述般大幅度減少漣波。又,可實現要求高耐壓性能之低通濾波器電路之省略或大幅度之小型化,而能夠避免電路之大型化。再者,由於也無須在輸出電流之路徑上設置複數個電阻器,故可將電力損失抑制為較小。
又,根據本實施形態,由於藉由設置相位相互反轉之2個升壓整流電路部35、36,而無須將二次側繞組3b之中間點連接於基準電位線(亦即中心分接頭),而可設為單繞組構造,故可將變壓器之二次側之構成設為簡易之構成且進行升壓整流,而可將變壓器及其周邊之電路設為小型。尤其是,在使用確保二次側之耐壓之目的下之分割捲線軸時實屬有效。
又,根據本變化例之整流電路5B,由於以中心分接頭輸出比獲得2倍之電壓,故可將二次側繞組之匝數設為一半。因而,能夠減少線間靜電電容,而提高驅動頻率,可實現變壓器之小型化。又,根據本變化例之整流電路5B,無須考量變壓器之各繞組間之耦合效率、及使用2個以上之變壓器時之變壓器間之特性之不均一。又,根據本變化例之整流電路5B,由於與一般之CW電路比較,漣波頻率為2倍,故可降低用於獲得所需之規格之開關頻率。
(第3變化例)
圖8係顯示上述實施形態之第3變化例之整流電路5C之構成的電路圖。作為上述實施形態之整流電路5,可利用本變化例之整流電路5C。該整流電路5C係雙波整流式CW電路。在整流電路5C中,二次側繞組3b被分割為2個,在其等之間串聯連接有2個電阻R3、R4,電阻R3、R4之連接點連接於基準電位線9。
又,該整流電路5C具有:N3 個(在圖中例示N3 =3之情形)電容器Ce(1)~Ce(N3 )、N3 個電容器Cf(1)~Cf(N3 )、及N3 個電容器Cg(1)~Cg(N3 )。
電容器Ce(n)被相互串聯連接,其一端連接於電阻R3、R4之連接點。電容器Cf(n)被相互串聯連接,其一端連接於二次側繞組3b之一端。又,電容器Cg(n)被相互串聯連接,其一端連接於二次側繞組3b之另一端。
該整流電路5C更具有:2N3 個二極體De(1)~De(2N3 )、及2N3 個二極體Df(1)~Df(2N3 )。奇數編號之二極體De(2m-1)之陰極連接於電容器Cf(n)之高電壓側之電極,二極體De(2m-1)之陽極連接於電容器Ce(n)之低電壓側之電極。偶數編號之二極體De(2m)之陰極連接於電容器Ce(n)之高電壓側之電極,二極體De(2m)之陽極連接於電容器Cf(n+1)之低電壓側之電極。惟,末級二極體De(2N3 )之陽極連接於電容器Cf(N3 )之高電壓側之電極。
又,奇數編號之二極體Df(2m-1)之陰極連接於電容器Cg(n)之高電壓側之電極,二極體Df(2m-1)之陽極連接於電容器Ce(n)之低電壓側之電極。偶數編號之二極體Df(2m)之陰極連接於電容器Ce(n)之高電壓側之電極,二極體Df(2m)之陽極連接於電容器Cg(n+1)之低電壓側之電極。惟,末級二極體Df(2N3 )之陽極連接於電容器Cg(N3 )之高電壓側之電極。
(第4變化例)
圖9係顯示第4變化例之整流電路5D之構成之電路圖。作為上述實施形態之整流電路5,可利用本變化例之整流電路5D。該整流電路5D係平衡型CW電路。在整流電路5D中,二次側繞組3b被分割為2個,在其等之間串聯連接有2個電阻R3、R4,電阻R3、R4之連接點連接於基準電位線9。
又,整流電路5D具有:N4 個(在圖中例示N4 =3之情形)電容器Ch(1)~Ch(N4 )、N4 個電容器Ci(1)~Ci(N4 )、N4 個二極體Dh(1)~Dh(N4 )、及N4 個二極體Di(1)~Di(N4 )。
電容器Ch(n)被相互串聯連接,其一端連接於二次側繞組3b之一端。電容器Ci(n)被相互串聯連接,其一端連接於二次側繞組3b之另一端。
而且,二極體Dh(n)之陰極連接於電容器Ch(n)之高電壓側之電極,二極體Dh(n)之陽極連接於電容器Ci(n)之低電壓側之電極。同樣地,二極體Di(n)之陰極連接於電容器Ci(n)之高電壓側之電極,二極體Di(n)之陽極連接於電容器Ch(n)之低電壓側之電極。
此外,末級電容器Ch(N4 )及Ci(N4 )各者之高電壓側之電極連接於二極體37a及37b各者之陽極。又,二極體37a之陰極與二極體37b之陰極被相互連接。藉由此構成而將末級電容器Ch(N4 )及Ci(N4 )之高電壓側之電極電位合成,並自二極體37a及37b之連接點輸出。
(第5變化例)
圖10係顯示第5變化例之整流電路5E之構成之電路圖。作為上述實施形態之整流電路5,可利用本變化例之整流電路5E。該整流電路5E係多級輸出型升壓整流電路。如圖10所示,該整流電路5E具有:第1二極體38、第2二極體39、第1升壓整流電路部41、第2升壓整流電路部42、及電壓合成部53。
第1二極體38之陽極連接於二次側繞組3b之一端。第1二極體38之陰極連接於基準電位線9。第2二極體39之陽極連接於二次側繞組3b之另一端。第2二極體39之陰極連接於基準電位線9。
第1升壓整流電路部41連接於二次側繞組3b之兩端。第1升壓整流電路部41藉由組合有複數段包含電容器及二極體之電路部分而進行在二次側繞組3b之兩端產生之交流電壓之第1半波之整流及升壓。本變化例之第1升壓整流電路部41係由半波整流型CW電路構成。
具體而言,第1升壓整流電路部41具有:N1 個(在圖中例示N1 =5之情形)電容器Cj(1)~Cj(N1 )、及二極體Dj(1)~Dj(N1 )。
偶數級電容器Cj(2m)被相互串聯連接,其一端連接於二次側繞組3b之一端。又,奇數級電容器Cj(2m-1)被相互串聯連接,其一端連接於二次側繞組3b之另一端。
而且,二極體Dj(n)之陽極連接於電容器Cj(n)之高電壓側之電極,二極體Dj(n)之陰極連接於電容器Cj(n+1)之低電壓側之電極。惟,末級二極體Dj(N1 )之陰極連接於電容器Cj(N1 -1)之高電壓側之電極。又,偶數級二極體Dj(2m)係由被相互正向串聯連接之2個二極體構成。
亦即,第1升壓整流電路部41藉由組合有分別包含電容器Cj(n)及二極體Dj(n)之N1 段電路部分而構成。藉此,自電容器Cj(N1 )之高電壓側之電極輸出藉由整流及升壓而獲得之直流電壓VDC1。
第2升壓整流電路部42連接於二次側繞組3b之兩端。第2升壓整流電路部42藉由組合有複數段包含電容器及二極體之電路部分,而進行在二次側繞組3b之兩端產生之交流電壓之另一半波、亦即相對於上述第1半波為相反相位(相位相差180゚)之第2半波之整流及升壓。本變化例之第2升壓整流電路部42與第1升壓整流電路部41同樣地由半波整流型CW電路構成。
具體而言,第2升壓整流電路部42具有:N1 個電容器Ck(1)~Ck(N1 )、及複數個二極體Dk(1)~Dk(N1 )。
偶數級電容器Ck(2m)被相互串聯連接,其一端連接於二次側繞組3b之另一端。又,奇數級電容器Ck(2m-1)被相互串聯連接,其一端連接於二次側繞組3b之一端。
而且,二極體Dk(n)之陽極連接於電容器Ck(n)之高電壓側之電極,二極體Dk(n)之陰極連接於電容器Ck(n+1)之低電壓側之電極。惟,末級二極體Dk(N1 )之陰極連接於電容器Ck(N1 -1)之高電壓側之電極。又,偶數級二極體Dk(2m)係由被相互正向串聯連接之2個二極體構成。
亦即,第2升壓整流電路部42係藉由組合有分別包含電容器Ck(n)及二極體Dk(n)之N1 段電路部分而構成。藉此,自電容器Ck(N1 )之高電壓側之電極輸出藉由整流及升壓而獲得之直流電壓VDC2。
電壓合成部53將自第1升壓整流電路部41輸出之直流電壓VDC1與自第2升壓整流電路部42輸出之直流電壓VDC2合成。本變化例之電壓合成部53係由2個二極體54a及54b構成。
二極體54a之陰極連接於第1升壓整流電路部41之輸出端(電容器Cj(N1 )之高電壓側之電極)。二極體54b之陰極連接於第2升壓整流電路部42之輸出端(電容器Ck(N1 )之高電壓側之電極)。二極體54a之陽極與二極體54b之陽極在連接點55處被連接。藉由此構成而將直流電壓VDC1與直流電壓VDC2合成,並作為整流電路5E之輸出電壓自連接點55輸出。
又,本變化例之整流電路5E具有被相互串聯連接之N5 個(N5 為N1 /2以上(N1 /2+1)以下之整數)電容器Cm(1)~Cm(N5 )。
包含電容器Cm(1)~Cm(N5 )之串聯電路之一端連接於基準電位線9,另一端連接於電壓合成部53之連接點55。再者,在電容器Cm(n)與Cm(n+1)之間連接有構成第1升壓整流電路部41之偶數級二極體Dj(2m)之2個二極體間之連接點、及構成第2升壓整流電路部42之偶數級二極體Dk(2m)之2個二極體間之連接點。自各電容器Cm(1)~Cm(N5 )間之各連接點分別輸出用於多級輸出之(N5 -1)個輸出電壓。此外,圖中之電阻Ra(1)~Ra(N5 -1)表示負載。
(第6變化例)
圖11係顯示第6變化例之整流電路5F之構成之電路圖。作為上述實施形態之整流電路5,可利用本變化例之整流電路5F。該整流電路5F具備:第1串聯電路部43、第2串聯電路部44、及第3串聯電路部45。二次側繞組3b之中間點連接於基準電位線9。
第1串聯電路部43係N個(N為2以上之整數,在圖中例示N=3之情形)第1電容器Cp(2)、Cp(4)、・・・、Cp(2N)、及N個第2電容器Cq(2)、Cq(4)、・・・、Cq(2N)交替地串聯連接而成。第1串聯電路部43之一端連接於基準電位線9。
第2串聯電路部44係N個電容器Cp(1)、Cp(3)、・・・、Cp(2N-1)串聯連接而成。第2串聯電路部44之一端經由電阻R7連接於二次側繞組3b之一端。
第3串聯電路部45係N個電容器Cq(1)、Cq(3)、・・・、Cq(2N-1)串聯連接而成。第3串聯電路部45之一端經由電阻R8連接於二次側繞組3b之另一端。
而且,二極體Dp(n)(其中,n=1、2、3、・・・)之陰極連接於電容器Cp(n)之高電壓側之電極,二極體Dp(n)之陽極連接於電容器Cp(n+1)之低電壓側之電極。惟,末級二極體Dp(2N)之陽極連接於電容器Cp(2N-1)之高電壓側之電極。同樣地,二極體Dq(n)之陰極連接於電容器Cq(n)之高電壓側之電極,二極體Dq(n)之陽極連接於電容器Cq(n+1)之低電壓側之電極。惟,末級二極體Dq(2N)之陽極連接於電容器Cq(2N-1)之高電壓側之電極。
如此,在本變化例中,第2串聯電路部44之電容器Cp(1)、Cp(3)、・・・、Cp(2N-1)、及第1串聯電路部43之第1電容器Cp(2)、Cp(4)、・・・、Cp(2N)構成半波整流型CW電路。又,第3串聯電路部45之電容器Cq(1)、Cq(3)、・・・、Cq(2N-1)、及第1串聯電路部43之第2電容器Cq(2)、Cq(4)、・・・、Cq(2N)構成另一半波整流型CW電路。
藉由以上之構成,而第1串聯電路部43之另一端之電位作為整流電路5F之輸出電壓被輸出。
在本變化例之整流電路5F中,半波整流型CW電路之交流升壓部分(第2串聯電路部44、第3串聯電路部45)之電容器相對於直流部分(第1串聯電路部43)之電容器對稱地配置,且變壓器3之二次側繞組3b具有中心分接頭構造。藉此,在自變壓器3側數起於相同段數存在之交流升壓部分之電容器產生之漣波振幅原理上相等。因而,可減少交流漣波朝直流部分之重疊。因而,根據該整流電路5F,可大幅度減少漣波。
又,根據本變化例之整流電路5F,可實現用於減少漣波之低通濾波器電路之省略或大幅度之小型化,而能夠抑制電路整體之大型化。再者,根據本變化例之整流電路5F,由於無須在輸出電流之路徑上設置複數個電阻器,故可抑制電力損失。
本發明並非係限定於上述之實施形態及構成例者,可進行其他各種變化。例如,在上述之實施形態之直流電源電路中,利用PWM信號控制電晶體4,但可藉由將脈寬設為一定,將脈衝週期設為可變,而控制電晶體4之導通/關斷之負載。
上述實施形態之直流電源電路採用具備下述部分之構成,即:電壓調整電路,其具有:電晶體,其對於電力配線串聯插入;及放大器,其輸入與目標電壓對應之控制信號,而相應於控制信號控制朝電晶體之控制端子之電壓;變壓器,其具有連接於電壓調整電路之一次側繞組;開關元件,其連接於一次側繞組,交替地重複在一次側繞組中流動之電流之導通/關斷;整流電路,其連接於變壓器之二次側繞組,將自二次側繞組輸出之電壓轉換為直流電壓;及控制電路,其相應於目標電壓控制開關元件之導通/關斷之負載比。
又,上述之直流電源電路採用在目標電壓包含於第1電壓範圍內時,控制電路將負載比設為一定,電晶體在線形區域內動作,在目標電壓包含於較第1電壓範圍為大之第2電壓範圍內時,控制電路使負載比相應於目標電壓變化,電晶體在飽和區域內動作的構成。
在上述之直流電源電路中可採用在目標電壓包含於大於第1電壓範圍且小於第2電壓範圍之第3電壓範圍內時,控制電路使負載比相應於目標電壓變化,電晶體在線形區域內動作的構成。
如此,藉由在第1電壓範圍與第2電壓範圍之間設置串聯調節器及開關調節器之兩者控制輸出電壓之大小之第3電壓範圍,而可順滑地切換串聯調節器與開關調節器之間之控制之切換。
在上述之直流電源電路中可採用整流電路為電容器輸入型之構成。藉此,可利用簡易之電路構成將自二次側繞組輸出之電壓轉換為直流電壓。
在上述之直流電源電路中可採用整流電路為複數個二極體與複數個電容器組合而成之倍壓整流電路之構成。藉此,可利用簡易之電路構成容易地獲得高電壓。 [產業上之可利用性]
本發明可用作能夠抑制電源裝置之大型化及電力損失之增加且提高輸出電壓之穩定性的直流電源電路。
1:直流電源電路 1a:電力輸入端 1b:電力輸出端 2:電壓調整電路 2a:輸入端 2b:輸出端 2c:控制輸入端 3:變壓器 3a:一次側繞組 3b:二次側繞組 4:電晶體 5:整流電路 5A:柯克勞夫-沃耳吞電路/CW電路 5B:整流電路 5C:整流電路 5D:整流電路 5E:整流電路 5F:整流電路 6:PWM控制電路/脈寬調變(PWM)控制電路 7:濾波電路 8:誤差放大器 8a:輸入端 8b:輸入端 8c:輸出端 9:基準電位線 11:電容器 12:控制電路 13:電阻 14:電阻 20:電力配線 21:電晶體 22:放大器 22a:輸入端 22b:輸入端 22c:輸出端 23:電阻 24:電阻 33:第1二極體 34:第2二極體 35:第1升壓整流電路部/升壓整流電路部 36:第2升壓整流電路部/升壓整流電路部 37a:二極體 37b:二極體 38:第1二極體 39:第2二極體 41:第1升壓整流電路部 42:第2升壓整流電路部 43:第1串聯電路部 44:第2串聯電路部 45:第3串聯電路部 50:電壓合成部 51a:二極體 51b:二極體 52:連接點 53:電壓合成部 54a:二極體 54b:二極體 55:連接點 100:電路 101:直流輸入端子 102:開關調節器 103:PWM控制電路 104:換流器電路 105:高壓變壓器 106:平滑電路 107:輸出電壓檢測電路 108:串聯降壓器 109:輸出端子 110:檢測電路 111:開關電路 200:電路 201:升壓變壓器 202:電晶體 203:PWM控制電路 204:多倍壓整流電路 204a:二極體 204b:二極體 204c:電容器 204d:電容器 205:限制電阻 207:輸出電壓檢測電路 208:輸出電流檢測電路 209:軟起動電路 210:飛輪二極體 211:浪湧吸收電路 212:電感器 221:輸出端子 Ca(1)~Ca(5):電容器 Cb(1)~Cb(5):電容器 Cd(1)~Cd(6):電容器 Ce(1)~Ce(3):電容器 Cf(1)~Cf(3):電容器 Cg(1)~Cg(3):電容器 Ch(1)~Ch(3):電容器 Ci(1)~Ci(3):電容器 Cj(1)~Cj(5):電容器 Ck(1)~Ck(5):電容器 Cm(1)~Cm(3):電容器 Cp(1):電容器 Cp(2):第1電容器 Cp(3):電容器 Cp(4):第1電容器 Cp(5):電容器 Cp(6):第1電容器 Cq(1):電容器 Cq(2):第2電容器 Cq(3):電容器 Cq(4):第2電容器 Cq(5):電容器 Cq(6):第2電容器 Da(1)~Da(5):二極體 Db(1)~Db(5):二極體 Dd(1)~Dd(6):二極體 De(1)~De(6):二極體 Df(1)~Df(6):二極體 Dh(1)~Dh(3):二極體 Di(1)~Di(3):二極體 Dj(1)~Dj(5):二極體 Dk(1)~Dk(5):二極體 Dmax:最大值 Dmin:負載比 Dp(1)~Dp(6):二極體 Dq(1)~Dq(6):二極體 N1:節點 N2:節點 N3:節點 N4:節點 R1:電阻 R2:電阻 R3:電阻 R4:電阻 R7:電阻 R8:電阻 Ra(1):電阻 Ra(2):電阻 Sc1:控制信號 Sc2:PWM信號 V1:電壓 V2:電壓 VA:第1電壓範圍 VB:第2電壓範圍 VC:第3電壓範圍 Vc1:控制電壓 VDC1:直流電壓 VDC2:直流電壓 VDC3:輸出電壓 Vin:輸入電壓 Vout1:輸出電壓 Vout2:輸出電壓 Vt:電壓
圖1係顯示一實施形態之直流電源電路1之構成之電路圖。 圖2係顯示電壓調整電路2之具體例之電路圖。 圖3係作為倍壓整流電路之例而顯示柯克勞夫-沃耳吞電路5A之構成之電路圖。 圖4係顯示目標電壓與電壓調整電路2之輸出電壓Vout1之關係之圖。 圖5係顯示目標電壓與電晶體4之導通/關斷之負載比之關係的圖。 圖6係顯示第1變化例之電晶體4之負載比及電壓調整電路2之輸出電壓Vout1與目標電壓之關係之圖。 圖7係顯示第2變化例之整流電路5B之構成之電路圖。 圖8係顯示第3變化例之整流電路5C之構成之電路圖。 圖9係顯示第4變化例之整流電路5D之構成之電路圖。 圖10係顯示第5變化例之整流電路5E之構成之電路圖。 圖11係顯示第6變化例之整流電路5F之構成之電路圖。 圖12係顯示專利文獻1所記載之電路之圖。 圖13係顯示專利文獻2所記載之電路之圖。
1:直流電源電路
1a:電力輸入端
1b:電力輸出端
2:電壓調整電路
2a:輸入端
2b:輸出端
2c:控制輸入端
3:變壓器
3a:一次側繞組
3b:二次側繞組
4:電晶體
5:整流電路
6:PWM控制電路/脈寬調變(PWM)控制電路
7:濾波電路
8:誤差放大器
8a:輸入端
8b:輸入端
8c:輸出端
9:基準電位線
11:電容器
12:控制電路
13:電阻
14:電阻
N2:節點
N3:節點
N4:節點
Sc1:控制信號
Sc2:PWM信號
V2:電壓
Vin:輸入電壓
Vout1:輸出電壓
Vout2:輸出電壓
Vt:電壓

Claims (4)

  1. 一種直流電源電路,其具備:電壓調整電路,其具有:電晶體,其對於電力配線串聯插入;及放大器,其輸入與目標電壓對應之控制信號,而相應於前述控制信號控制朝前述電晶體之控制端子之電壓;變壓器,其具有連接於前述電壓調整電路之輸出之一次側繞組;開關元件,其連接於前述一次側繞組,交替地重複對在前述一次側繞組中流動之電流導通/關斷;整流電路,其連接於前述變壓器之二次側繞組,將自前述二次側繞組輸出之電壓轉換為直流電壓;及控制電路,其相應於前述目標電壓控制前述開關元件之導通/關斷之負載比;且在前述目標電壓包含於第1電壓範圍內時,前述控制電路將前述負載比設為一定,前述電晶體在線形區域內動作;在前述目標電壓包含於較前述第1電壓範圍為大之第2電壓範圍內時,前述控制電路使前述負載比相應於前述目標電壓變化,前述電晶體在飽和區域內動作。
  2. 如請求項1之直流電源電路,其中在前述目標電壓包含於大於前述第1電壓範圍且小於前述第2電壓範圍之第3電壓範圍內時,前述控制電路使前述負載比相應於前述目標電壓變化,前述電晶體在線形區域內動作。
  3. 如請求項1或2之直流電源電路,其中前述整流電路為電容器輸入型。
  4. 如請求項3之直流電源電路,其中前述整流電路係複數個二極體與複數個電容器組合而成之倍壓整流電路。
TW108122752A 2018-07-30 2019-06-28 直流電源電路 TWI786308B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-142588 2018-07-30
JP2018142588A JP6611385B1 (ja) 2018-07-30 2018-07-30 直流電源回路

Publications (2)

Publication Number Publication Date
TW202015321A TW202015321A (zh) 2020-04-16
TWI786308B true TWI786308B (zh) 2022-12-11

Family

ID=68692040

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108122752A TWI786308B (zh) 2018-07-30 2019-06-28 直流電源電路

Country Status (6)

Country Link
US (1) US11329566B2 (zh)
JP (1) JP6611385B1 (zh)
CN (1) CN112534698B (zh)
DE (1) DE112019003823T5 (zh)
TW (1) TWI786308B (zh)
WO (1) WO2020026601A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024070496A (ja) * 2022-11-11 2024-05-23 株式会社日立製作所 電源回路及び電源回路を含む装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6292375B1 (en) * 1998-08-05 2001-09-18 Agence Spatiale Europeenne DC-DC voltage converter capable of protecting against short circuits
CN1365181A (zh) * 2000-12-04 2002-08-21 三垦电气株式会社 Dc-dc变换器
TW201238221A (en) * 2011-03-08 2012-09-16 Green Solution Tech Co Ltd Full-bridge driving controller and full-bridge converting circuit
CN106787847A (zh) * 2016-12-15 2017-05-31 宁波央腾汽车电子有限公司 一种变压器输出电压调节电路

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4499531A (en) * 1982-11-03 1985-02-12 501 Gateway Technology, Inc. Power converter
CA1287103C (en) * 1986-04-22 1991-07-30 Jim Pinard Cmos latch-up recovery circuit
US4686617A (en) * 1986-06-06 1987-08-11 Rca Corporation Current limited constant frequency dc converter
US5077486A (en) * 1988-03-21 1991-12-31 Gary Marson Power supply for cathodic protection system
US4964028A (en) * 1989-10-26 1990-10-16 Plessey Electronic Systems Corp. Current limited quasi-resonant voltage converting power supply
JPH0622550A (ja) * 1991-05-14 1994-01-28 Fuji Xerox Co Ltd 直流高圧電源装置
JP3350939B2 (ja) * 1991-09-05 2002-11-25 日本電気株式会社 高電圧電源制御回路
US6188276B1 (en) * 1998-09-21 2001-02-13 Anastasios V. Simopoulos Power amplifier
US6456511B1 (en) * 2000-02-17 2002-09-24 Tyco Electronics Corporation Start-up circuit for flyback converter having secondary pulse width modulation
US6707283B1 (en) * 2000-07-03 2004-03-16 Semiconductor Components Industries, L.L.C. Primary side sensing circuit for producing a secondary side constant current, constant voltage output
JP3817446B2 (ja) * 2001-02-15 2006-09-06 株式会社リコー 電源回路及びdc−dcコンバータの出力電圧制御方法
JP3696604B2 (ja) * 2003-05-23 2005-09-21 ローム株式会社 直流−交流変換装置、及び交流電力供給方法
JP2005210759A (ja) * 2004-01-19 2005-08-04 Sanken Electric Co Ltd 共振型スイッチング電源装置
US7084612B2 (en) * 2004-04-30 2006-08-01 Micrel, Inc. High efficiency linear regulator
US7167089B2 (en) * 2004-10-29 2007-01-23 Shu-Chen Lu Burglar alarm using power cord to transmit signals and method for controlling the same
JP5134236B2 (ja) * 2006-12-12 2013-01-30 四変テック株式会社 高電圧電源装置
ITTO20070859A1 (it) * 2007-11-29 2009-05-30 St Microelectronics Srl Convertitore di tensione isolato con retroazione al primario, e relativo metodo di controllo della tensione di uscita
CN101272098B (zh) * 2008-04-08 2010-11-03 广州金升阳科技有限公司 双三极管电流控制型自振荡反激变换器
US8008960B2 (en) * 2008-04-22 2011-08-30 Cisco Technology, Inc. Synchronous rectifier post regulator
US8526203B2 (en) * 2008-10-21 2013-09-03 On-Bright Electronics (Shanghai) Co., Ltd. Systems and methods for constant voltage mode and constant current mode in flyback power converter with primary-side sensing and regulation
WO2012031241A2 (en) * 2010-09-03 2012-03-08 Skyworks Solutions, Inc. High-voltage tolerant voltage regulator
CN104429159A (zh) * 2011-12-16 2015-03-18 替代照明科技公司 近似单位功率因数、寿命长、成本低的led灯改进系统及方法
JP5704124B2 (ja) * 2012-06-14 2015-04-22 株式会社村田製作所 スイッチング電源装置
JP6122257B2 (ja) * 2012-07-04 2017-04-26 ローム株式会社 Dc/dcコンバータおよびその制御回路、それを用いた電源装置、電源アダプタおよび電子機器
JP6039274B2 (ja) * 2012-07-05 2016-12-07 ローム株式会社 Dc/dcコンバータおよびその制御回路、それを用いた電源装置、電源アダプタおよび電子機器
US9112419B2 (en) * 2013-07-16 2015-08-18 Rohm Co., Ltd. AC/DC converter with control circuit that receives rectified voltage at input detection terminal
US9093910B1 (en) * 2014-02-14 2015-07-28 Maxim Integrated Products, Inc. Predictive sampling for primary side sensing in isolated flyback converters
JP6401516B2 (ja) * 2014-06-30 2018-10-10 浜松ホトニクス株式会社 昇圧整流回路
US9847710B2 (en) * 2015-04-02 2017-12-19 Virginia Tech Intellectual Properties, Inc. Universal system structure for low power adapters
US10291113B2 (en) * 2017-07-05 2019-05-14 Richtek Technology Corporation Flyback power converter circuit and primary side controller circuit thereof
JP6982236B2 (ja) * 2017-09-28 2021-12-17 富士通株式会社 同期整流回路及びスイッチング電源装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6292375B1 (en) * 1998-08-05 2001-09-18 Agence Spatiale Europeenne DC-DC voltage converter capable of protecting against short circuits
CN1365181A (zh) * 2000-12-04 2002-08-21 三垦电气株式会社 Dc-dc变换器
TW201238221A (en) * 2011-03-08 2012-09-16 Green Solution Tech Co Ltd Full-bridge driving controller and full-bridge converting circuit
CN106787847A (zh) * 2016-12-15 2017-05-31 宁波央腾汽车电子有限公司 一种变压器输出电压调节电路

Also Published As

Publication number Publication date
CN112534698B (zh) 2024-06-04
US20210288583A1 (en) 2021-09-16
TW202015321A (zh) 2020-04-16
DE112019003823T5 (de) 2021-04-15
CN112534698A (zh) 2021-03-19
JP6611385B1 (ja) 2019-11-27
JP2020022228A (ja) 2020-02-06
WO2020026601A1 (ja) 2020-02-06
US11329566B2 (en) 2022-05-10

Similar Documents

Publication Publication Date Title
KR100674553B1 (ko) 차지 펌프 회로
JP5532121B2 (ja) スイッチング電源装置
US7310249B2 (en) Switching power supply circuit
JP5434371B2 (ja) 共振型スイッチング電源装置
JP2015047017A (ja) Dc−dcコンバータ及びdc−dcコンバータの制御方法
JP6456930B2 (ja) 幅広い入力及び出力ダイナミックレンジを備えたインターリーブされたフォワードコンバータ
IT201900006719A1 (it) Convertitore elettronico
JP4124231B2 (ja) 直流変換装置
US6744647B2 (en) Parallel connected converters apparatus and methods using switching cycle with energy holding state
TWI625923B (zh) 直流對直流轉換電路及其多相電源控制器
TWI786308B (zh) 直流電源電路
JP4619769B2 (ja) 電源装置
JP2011083049A (ja) 電圧変換装置
JP2006187159A (ja) 共振型スイッチング電源装置
JP2021010286A (ja) 駆動回路
JP4563359B2 (ja) 自励式共振型スイッチング電源
JP2003259644A (ja) スイッチングコンバータ回路
JP6409171B2 (ja) スイッチング電源装置、電子機器及び双方向dcdcコンバータ
WO2019036368A1 (en) VOLTAGE DUCT USING SWITCHING REGULATOR AND VOLTAGE LIMITER
JP2007267450A (ja) 多出力電源装置
JP2020198748A (ja) フォワード型dc−dcコンバータ回路
JP2014057469A (ja) 半導体集積回路およびその動作方法
JP2010148263A (ja) チャージポンプ回路
JP2005304273A (ja) スイッチング電源用制御回路
JP2007151323A (ja) Dc/dcコンバータ、および、スイッチング電源用の半導体集積回路