TWI756345B - 用以製造純度相異之氮之氮製造系統及其氮製造方法 - Google Patents

用以製造純度相異之氮之氮製造系統及其氮製造方法 Download PDF

Info

Publication number
TWI756345B
TWI756345B TW107102363A TW107102363A TWI756345B TW I756345 B TWI756345 B TW I756345B TW 107102363 A TW107102363 A TW 107102363A TW 107102363 A TW107102363 A TW 107102363A TW I756345 B TWI756345 B TW I756345B
Authority
TW
Taiwan
Prior art keywords
nitrogen
mentioned
purity nitrogen
heat exchanger
rectification
Prior art date
Application number
TW107102363A
Other languages
English (en)
Other versions
TW201843414A (zh
Inventor
廣瀬献児
宇都宮宏文
永田大祐
西康治
富田伸二
Original Assignee
法商液態空氣喬治斯克勞帝方法研究開發股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 法商液態空氣喬治斯克勞帝方法研究開發股份有限公司 filed Critical 法商液態空氣喬治斯克勞帝方法研究開發股份有限公司
Publication of TW201843414A publication Critical patent/TW201843414A/zh
Application granted granted Critical
Publication of TWI756345B publication Critical patent/TWI756345B/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/044Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a single pressure main column system only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04309Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04109Arrangements of compressors and /or their drivers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04012Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
    • F25J3/04018Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of main feed air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04254Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using the cold stored in external cryogenic fluids
    • F25J3/0426The cryogenic component does not participate in the fractionation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04296Claude expansion, i.e. expanded into the main or high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04333Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04339Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of air
    • F25J3/04345Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of air and comprising a gas work expansion loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04775Air purification and pre-cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04793Rectification, e.g. columns; Reboiler-condenser
    • F25J3/048Argon recovery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/72Refluxing the column with at least a part of the totally condensed overhead gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/42Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/42Nitrogen or special cases, e.g. multiple or low purity N2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/42Nitrogen or special cases, e.g. multiple or low purity N2
    • F25J2215/44Ultra high purity nitrogen, i.e. generally less than 1 ppb impurities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/50Separating low boiling, i.e. more volatile components from oxygen, e.g. N2, Ar
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/40Processes or apparatus involving steps for increasing the pressure of gaseous process streams the fluid being air

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

本發明之課題在於提供一種抑制消耗電力之增加並且可藉由單一之精餾塔製造含有所需濃度之氧之高純度氮及含有所需濃度之氬之超高純度氮之氮製造系統及其製造方法。
本發明之氮製造系統具備:熱交換器H,其冷卻原料空氣;氮精餾塔,其具備供導入藉由熱交換器H冷卻之原料空氣之精餾部A與位於塔頂之冷凝器;第1導入配管,其自熱交換器H向位於較精餾部A之位置更下方之緩衝部導入原料空氣;第2導入配管,其用以自氮精餾塔之緩衝部向冷凝器C導入富氧液化氣體;第1導出配管,其用以自精餾部A導出超高純度氮而進行回收;及第2導出配管,其用以自精餾部A之中間段導出高純度氮而進行回收。

Description

用以製造純度相異之氮之氮製造系統及其氮製造方法
本發明係關於一種用以製造純度相異之氮之氮製造裝置及其製造方法,尤其關於一種藉由單一之精餾塔製造氬(以下亦稱為Ar)含量較少之超高純度氮氣及規定濃度之氧含量之氮氣之裝置及方法。
先前,將藉由熱交換器冷卻之原料空氣導入至氮精餾塔之下部進行精餾而將氮分離至塔頂,將氧(以下亦稱為O2)含量較多之液體空氣分離至下部,採集上述分離氮之一部分作為製品氣體(例如專利文獻1)。
[先前技術文獻]
[專利文獻]
[專利文獻1]美國專利第5711167號公報
一般而言,雖氮之精餾中希望被分離之雜質通常為氧成分,但近年來,於半導體領域等一部分用途,氬之分離特別受到期待。即,要求提供氬含有濃度較低之超高純度氮、與純度低於超高純度氮之高純度氮該兩種氮。然而,由於氬於化學上為惰性,故難以藉由吸附法等化學方法去除。又,由於氬與氮之沸點差小於氧與氮之沸點差,故若藉由精餾分離氬,則會導致氮之回收率降低。回收率降低會產生如下問題:伴隨所需原料空氣量增加之電力消耗 量之上升。
例如於上述專利文獻1之裝置中,為了製造氬含量較低之氮,必須增加精餾塔之精餾部之理論板數。然而,氮精餾塔之高度通常非常高(例如50m),若增加理論板數結果會使精餾塔變得更高,於工業上並不現實。
又,於要求分離Ar之半導體領域等,亦要求連續測定氮中之氬濃度。然而,氮中氬濃度之連續測定一般難以進行。原因在於氮與Ar之化學、物理性質相近。因此,先前為了氮中之Ar測定採用如氣相層析法之非連續性分析手法。超高純度氮中之Ar含量極其微量,無論連續測定或非連續測定,均難以測定。
鑒於上述實際情況,本發明之目的在於消除上述缺點,提供一種抑制消耗電力之增加並且可藉由單一之精餾塔製造含有所需濃度之氧之高純度氮及含有所需濃度之氬之超高純度氮之氮製造系統及其製造方法。又,提供一種藉由連續測定高純度氮中之氧而可高精度地控制超高純度氮之製造量及其氬濃度之氮製造系統及其氮製造方法。
本發明者等人算出氮精餾塔內之精餾部之各理論板數(NTP1~60)下之氣相中之氧及Ar之濃度(體積ppm),發現以下之結果。將該結果示於圖1。
根據圖1之氧、氬之各曲線之斜率可知,氬比氧更難自氮分離,儘管原料空氣中之氬濃度(約0.9%)低於氧濃度(約21.0%),但若理論板數(NTP)達到19以上,則氬較氧更多地存在於氣相中。
此意味著,於需自氮分離氬之情形時,存在氧之分離過度進行之可能性,例如於對氧、氬均要求1ppm之濃度之情形時,為了使氬之濃度達到1體積ppm,結果卻使氧濃度變為0.001體積ppm左右,此意味著,遠低於所要求之氧 濃度,對氧之分離投入過多之能量。
又,使氮不含氬之需求僅針對例如電漿CVD等製造半導體之全部製程中之一小部分,因此無需對氮產生裝置所製造之所有氮均應用高度之氬去除。
因此認為,根據氮之用途而自精餾塔分開回收具有複數種純度之氮(例如將氬控制於1體積ppm之超高純度氮、與將氧控制於1體積ppm(氬濃度為45體積ppm)之氮)於熱力學上有效率,結果有助於氮產生裝置之省電力化。
經過上述實驗及研究,結果本發明者等人發現,藉由自氮精餾塔之精餾部之中間段回收含有所需濃度之氧(氬含量為規定值以上)之高純度氮,可藉由單一之精餾塔製造含有所需濃度之氧之高純度氮及含有所需濃度之氬之超高純度氮。進而發現,可控制高純度氮與超高純度氮之回收量,有助於實現省電力化。
本發明之氮製造系統具備:壓縮機,其壓縮原料空氣;去除部,其自藉由上述壓縮機壓縮之原料空氣去除規定雜質;熱交換器,其冷卻藉由上述去除部去除上述雜質之原料空氣;氮精餾塔,其具備供導入藉由上述熱交換器冷卻之原料空氣之精餾部、與位於塔頂之冷凝器(亦稱為凝縮器);第1導入配管,其自上述熱交換器向上述氮精餾塔之位於較上述精餾部之位置更下方之緩衝部導入上述原料空氣;第2導入配管,其用以自上述氮精餾塔之上述緩衝部向上述冷凝器導入富氧液化氣體;第1導出配管,其用以自上述氮精餾塔之上述精餾部之上段或最上段導出含有第1濃度之氬之超高純度氮,使之通過上述熱交換器而進行回收;及第2導出配管,其用以自上述氮精餾塔之上述精餾部之中間段導出含有第2 濃度之氧之高純度氮,使之通過上述熱交換器而進行回收。
上述富氧液化氣體可包含於精餾部生成之氧氣與上述原料空氣。
以上述第1導出配管導出之上述超高純度氮可為氣體狀態,亦可為液體狀態。
以上述第2導出配管導出之上述高純度氮可為氣體狀態,亦可為液體狀態。
氣體狀態之超高純度氮之情形時,可使上述第1導出配管通過上述熱交換器而進行熱交換。
氣體狀態之高純度氮之情形時,可使上述第2導出配管通過上述熱交換器而進行熱交換。
於本發明中,精餾部並無特別限制,只要為公知之精餾塔即可,例如可為填充填充物之方式,亦可為配置塔板(tray)之方式。於上述精餾部為填充物方式之情形時,可為填充有規則填充物或不規則填充物之填充構造體,亦可進而於填充構造體之上部具備分佈器(distributor)。精餾部中亦可具備複數個上述填充構造體。
上述超高純度氮之取出手段(方法)係自精餾部之上部之取出,例如可為設於上述第1導出配管前端之吸入構造。
上述高純度氮之取出手段(方法)係自精餾部之中間段之取出,例如可為設於上述第2導出配管前端之吸入構造。
本發明中,上述精餾部之上段、中段、下段例如可將精餾部整體之高度分成1:1:1、1:1~10:1之比率。構成精餾部之複數個填充構造體之總數中,上段之數量:中段之數量:下段之數量的比率例如可為1:1:1或1:1~10:1之比率。為了取出所需純度之高純度氮氣,設定中間段中之任一 位置而連接第2導出配管。
本發明中,上述雜質例如為水、二氧化碳。
本發明中,上述氬之第1濃度為0.001ppm以上且100ppm以下,可較佳地設為0.1體積ppm以上且10體積ppm以下。
本發明中,上述氧之第2濃度例如為0.001ppm以上且1000ppm以下。
本發明中,上述高純度氮所含之氬濃度高於上述超高純度氮所含之氬濃度即上述第1濃度。
於上述第1濃度為0.001體積ppm以上且100體積ppm以下之濃度範圍之情形時,具有第1濃度以上之Ar含量之高純度氮可用於通常半導體製程或工業用氣體。
上述第1濃度為0.1體積ppm以上且10體積ppm以下之濃度範圍之情形之超高純度氮可用於半導體製程中之要求高精度氣體之電漿CVD等製程。於此種超高純度氮中,氮中雜質(包含Ar)之濃度之增減幅度非常小,有助於改善電漿製程之良率。
先前,為了製造複數種純度之氮,需要根據各純度而設計之複數個氮精餾塔。相對於此,根據本發明,可利用單一之氮精餾塔同時製造複數種純度之氮。
又,與利用個別氮精餾塔製造複數種純度之氮之情形相比,所需之原料空氣為少量即可。原料空氣量之削減關係到以下電力消耗量之削減,即壓縮原料空氣所需之電力、及將原料空氣導入至熱交換器前須進行之水分及二氧化碳之去除所需之電力。又,關係到氮之回收率之提高。進而,與設置複數個製造裝置之情形相比,所使用之機器或配管較少,設置面積亦較小。
上述高純度氮取出配管可為1根,亦可設置複數根。
若上述高純度氮取出配管為1根,則可獲得超高純度氮與高純度氮兩種純 度之氮。
若於上述精餾部之中間段中之相當於不同板數之位置存在2根以上之上述高純度氮取出配管,則可獲得超高純度氮與2種以上之高純度氮即合計三種以上之純度之氮。
高純度氮及超高純度氮中之Ar含量係由高純度氮取出配管之位置(即精餾部之板數)、以及相對於所取入之原料空氣量之高純度氮及超高純度氮之取出量所決定。因此,於與所需Ar含量對應之位置配置高純度氮取出配管。原料空氣之取入量及高純度氮之取出量設定為預先規定之一定量。超高純度氮之取出量根據所需之氬含量及原料空氣之取入量而設定。藉此,可藉由單一之精餾塔而製造一定取出量之高純度氮及一定取出量之超高純度氮(氬含量為所需量以下)。
上述發明中,可具備:氧濃度測定部,其於較上述熱交換器更下游之上述第2導出配管測定上述高純度氮中之氧濃度;流量控制部,其基於藉由上述氧濃度測定部所測定之氧濃度,控制設於較上述熱交換器更下游之上述第1導出配管之第2流量調整部。
上述發明中,亦可進而具備設置於較上述熱交換器更下游之上述第2導出配管的第1流量調整部。上述第1流量調整部亦可控制上述高純度氮之取出量以成為預先規定之所需流量。
上述第2流量調整部亦可控制上述超高純度氮之取出量以成為預先規定之所需流量。
上述氧濃度測定部可即時地測定氧濃度,亦可於規定時刻或按照預先設定之測定規則而測定氧濃度。
上述流量控制部亦可控制上述第2流量調整部以使上述氧濃度維持目標值 (或規定範圍)。
上述流量控制部例如於上述氧濃度小於目標值(或規定範圍)時,亦可控制上述第2流量調整部以增大上述超高純度氮之流量,於上述氧濃度大於目標值(或規定範圍)時,亦可控制上述第2流量調整部以減小上述超高純度氮之流量。
由於高純度氮中之O2濃度與超高純度氮中之Ar濃度存在相關關係,因此可預先求出超高純度氮中之Ar濃度為所需濃度時獲得之高純度氮中之O2濃度。因此,藉由控制O2濃度,可高精度地將Ar濃度控制於目標濃度。
本發明中,亦可於上述冷凝器上進而設置供導入作為上述冷凝器之冷熱源之冷卻用液態氮之第3導入配管。
根據上述構成,為了使精餾部內上升之氣體藉由塔頂冷凝器冷卻而液化後再逆流至精餾部,自外部導入冷卻塔頂冷凝器之液態氮。
本發明中,亦可進而設置將自上述冷凝器(或塔頂之貯存廢氣之空間)取出之廢氣透過膨脹渦輪機導入至上述熱交換器之廢氣導入配管。
根據上述構成,包含較多低沸點雜質之廢氣被分離至冷凝器上部,該廢氣通過廢氣導入配管、膨脹渦輪機被導入至熱交換器作為熱介質,與原料空氣進行熱交換後被排出。上述廢氣被導入至膨脹渦輪機,藉由於膨脹渦輪機內膨脹而溫度降低後被導入至熱交換器。溫度降低之廢氣於熱交換器內與原料空氣進行熱交換,經冷卻之原料空氣被導入至精餾部,如此,膨脹渦輪機發揮維持氮分離之冷熱平衡之作用。
又,本發明係一種氮製造方法,該方法藉由低溫蒸餾而製造氮,包括如下步驟:壓縮步驟,其壓縮原料空氣;去除步驟,其自藉由上述壓縮步驟而壓縮之原料空氣去除規定雜質; 冷卻步驟,其藉由熱交換器冷卻藉由上述去除步驟而去除上述雜質之原料空氣;第1導入步驟,其向具備精餾部與位於塔頂之冷凝器之氮精餾塔之較上述精餾部位置更下部導入藉由上述熱交換器冷卻之原料空氣;第2導入步驟,其自上述氮精餾塔之較精餾部位置更下部向上述冷凝器導入富氧液化氣體;第1導出步驟,其自上述氮精餾塔之上述精餾部之上段或最上段導出含有第1濃度之氬之超高純度氮,使之通過上述熱交換器而進行回收;第2導出步驟,其自上述氮精餾塔之上述精餾部之中間段導出含有第2濃度之氧之高純度氮,使之通過上述熱交換器而進行回收。
上述發明中,可進而包括如下步驟:氧濃度測定步驟,其於較上述熱交換器更下游測定上述高純度氮中之氧濃度;流量控制步驟,其基於藉由上述氧濃度測定步驟所測定之氧濃度,控制設於較上述熱交換器更下游之調整超高純度氮之流量之第2流量調整部。
上述發明中,可進而包括控制步驟,其藉由設置於較上述熱交換器更下游之調整高純度氮之流量之第1流量調整部控制上述高純度氮之取出量。
上述氧濃度測定步驟可即時地測定氧濃度,亦可於規定時刻或按照預先設定之測定規則而測定氧濃度。
上述流量控制步驟亦可控制上述第2流量調整部以使上述氧濃度維持目標值(或規定範圍)。
上述流量控制步驟例如於上述氧濃度小於目標值(或規定範圍)時,亦可控制上述第2流量調整部以增大上述超高純度氮之流量,於上述氧濃度大於目標值(或規定範圍)時,亦可控制上述第2流量調整部以減小上述超高純度氮 之流量。
本發明中,可進而包括如下步驟:藉由向上述冷凝器導入液態氮,而冷卻上述冷凝器。
又,本發明亦可具有如下步驟:將自上述冷凝器取出之廢氣通過膨脹渦輪機導入至上述熱交換器,而使上述廢氣與上述原料空氣進行熱交換。
1:氮製造系統
2:原料空氣取入配管
3:原料空氣導入配管(第1導入配管)
4:富氧液化氣體導入配管(第2導入配管)
5:超高純度氮取出配管(第1導出配管)
6:高純度氮取出配管(第2導出配管)
7:廢氣導入配管
8:廢氣配管
10:第1流量調整部
11:第2流量調整部
12:流量控制部
A:精餾部
C:冷凝器
D:雜質濃度測定部(氧濃度測定部)
H:熱交換器
T:膨脹渦輪機
圖1係表示氮精餾塔內之精餾部之各理論板數下之氣相中之氧及Ar之濃度之圖。
圖2係表示實施形態1之氮製造系統之構成例之圖。
以下,對本發明之若干實施形態進行說明。以下說明之實施形態係說明本發明之一例者。本發明並不受下述實施形態之任何限定,亦包括於不改變本發明之主旨之範圍內實施之各種變形形態。此外,以下所說明之構成未必全部為本發明之必須構成。
(實施形態1)
使用圖2來說明實施形態1之氮製造系統1。氮製造系統1具有:熱交換器H、具備精餾部A與位於塔頂之冷凝器C之氮精餾塔、用以將原料空氣送至熱交換器H內進行冷卻之原料空氣取入配管2、用以將經冷卻之原料空氣送至精餾部A之原料空氣導入配管3、自精餾部A下部導出富氧液化氣體並將其導入至冷凝器C以冷卻冷凝器C內之富氧液化氣體導入配管4、自精餾部A上段導出超高純 度氮並將其導入至熱交換器H之超高純度氮取出配管5、及自精餾部A之中間段導出高純度氮並將其導入至熱交換器H之高純度氮取出配管6。以下詳細說明各構成。
熱交換器H係將藉由壓縮機(未作圖示)壓縮並藉由精製單元(相當於雜質去除部,未作圖示)去除二氧化碳或水等雜質之原料空氣(例如原料空氣量為1000Nm3/h)進行冷卻。所導入之原料空氣於熱交換器H內與下述高純度氮及超高純度氮進行熱交換而被冷卻至液化點附近。該經冷卻之原料空氣變為液化氣體之狀態,藉由原料空氣導入配管3而被導入至精餾部A。
導入至精餾部A之液化氣體狀態之原料空氣於精餾部A內上升而被精餾。精餾部A之運轉壓力範圍為5barA~20barA,運轉壓力例如可設為9barA。又,精餾部A之理論板數為40~100塊,例如可設為60塊。富氧液化氣體被分離至精餾部A下部,高純度氮氣被分離至精餾部A上部。自精餾部A下部導出至少一部分富氧液化氣體,通過富氧液化氣體導入配管4導入至冷凝器C,藉此冷凝器被冷卻。
自精餾部A上段導出超高純度氮。此處,自精餾部A之中間段通過高純度氮取出配管6導出高純度氮。雖於精餾部A中,會進行自上段向下段之回流,但藉由自中間段導出高純度氮,而與無此操作之情形相比可提高自中間段至上段之間之回流比。藉此,與未自中間段進行導出之情形相比,自上段導出之氮中之Ar含量變少,可取出Ar含量極低之超高純度氮,進而,可自中間段獲得雖然Ar含量高於超高純度氮,但氧濃度滿足製品要求之高純度氮。
包含較多低沸點雜質之廢氣被分離至冷凝器C上部。該廢氣通過廢氣導入配管7導入至熱交換器H後被送至膨脹渦輪機T,其後,通過廢氣配管8再次導入至熱交換器H。導入至膨脹渦輪機T之廢氣於膨脹渦輪機T內膨脹,藉此溫度降低。進而,再次導入至熱交換器H之廢氣於熱交換器H內與原 料空氣進行熱交換,其後被排出。
自精餾部A導出之超高純度氮通過超高純度氮取出配管5被導入至熱交換器H,於此處與原料空氣進行熱交換而升溫後被提供至後段之使用點(point of use)或被送至儲槽。自精餾部A導出之高純度氮通過高純度氮取出配管6被導入至熱交換器H,於此處與原料空氣進行熱交換而升溫後被提供至後段之使用點或被送至儲槽。
高純度氮中之氧含量及超高純度氮中之Ar含量係由高純度氮取出配管之位置(即精餾部A之板數)、以及相對於所取入之原料空氣量的高純度氮及超高純度氮之取出量所決定。因此,預先於與所需Ar含量對應之位置配置高純度氮取出配管。
例如,於精餾部A之理論板數為60塊之情形時,可將超高純度氮取出配管5設為相當於60塊之位置,將高純度氮取出配管6設置於中間段(例如相當於40塊至49塊之間之位置)。
將原料空氣取入量與高純度氮取出量分別設定為所需流量。進而,根據所需之超高純度氮中之氬含量而設定超高純度氮之取出量。藉此,可藉由單一之精餾部而製造一定取出量之高純度氮及一定取出量之超高純度氮(含有所需量之Ar)。
亦可將藉由超高純度氮取出配管5自精餾部A上段取出之超高純度氮中之Ar含量設為未達預先規定之第1濃度,將藉由高純度氮取出配管6自精餾部A之中間段取出之高純度氮中之Ar含量設為上述第1濃度以上。
第1濃度為0.001ppm以上且100ppm以下,較佳為0.1體積ppm以上且10體積ppm以下。第1濃度可考慮成為製品之氮之使用用途之要求等而決定,例如可設為1體積ppm或100重量ppb。
實施形態1之氮製造系統具備:測定高純度氮中之雜質量(氧濃 度)之雜質濃度測定部D、控制高純度氮量之第1流量調整部10、控制超高純度氮量之第2流量調整部11、及基於藉由雜質濃度測定部D測定之雜質濃度測定結果而控制第2流量調整部11之流量控制部12。此外,第1流量調整部10可有可無。
藉由流量控制部12以如下方式調整第2流量調整部11:於雜質測定結果(氧濃度)未達預先規定之第2濃度之情形時,增加自超高純度氮取出配管5取出之氮量,於雜質測定結果(氧濃度)為預先規定之第2濃度以上之情形時,減少自超高純度氮取出配管5取出之氮量。
作為雜質濃度測定部D,例如可使用氧濃度計(能夠應用氧濃淡電池進行連續分析)。由於氮與Ar之化學、物理性質相近,故而難以測定氮中之Ar濃度。本發明者等人發現超高純度氮中之Ar含量與高純度氮中之氧含量存在關聯。因此,流量控制部12基於高純度氮中之氧含量而求出超高純度氮中之Ar含量,控制第2流量調整部11以調整超高純度氮之導出量。
(實施例)
本發明者等人藉由模擬,算出在精餾部之理論板數為60、原料空氣量為1000Nm3/h之條件下,基於中間段位置之變化之高純度氮(氧濃度為1體積ppm)與超高純度氮(Ar濃度為1體積ppm)之導出量,將其結果示於表1。又,亦將與先前技術進行比較之情形時之改善效率示於表1,先前技術中,自理論板數60塊之精餾塔取出相同量之超高純度氮(Ar濃度為1體積ppm),且自理論板數為自49塊至40塊之各不相同之精餾塔取出相同量之高純度氮(氧濃度為1體積ppm)。
於本模擬中,中間段係設為自理論板數49之位置至40之位置的範圍。例如若中間段為理論板數44之位置,則超高純度氮之導出量為208Nm3/h,高純度氮之導出量為184Nm3/h。
Figure 107102363-A0305-02-0015-1
於理論板數同為60、原料空氣量亦同為1000Nm3/h之條件下,藉由先前之僅自精餾部上段取出氮之方法,製造Ar濃度為1體積ppm之超高純度氮之情形時,超高純度氮之導出量為363Nm3/h。由於原料空氣量與超高純度氮導出量之比率固定,故而於相同條件下1000:363=[用以獲得208Nm3/h之原料空氣量]:208成立。即,於獲得208Nm3/h之超高純度氮導出量之情形時,所需之原料空氣量為1000×208÷363=573Nm3/h。
於使用理論板數與上述中間段相同即為44之另一精餾部,原料空氣量亦同為1000Nm3/h之條件下,製造氧濃度為1體積ppm之高純度氮之情形時,高純度氮製造量為395Nm3/h。由於原料空氣量與高純度氮導出量之比率固定,故而於相同條件下1000:395=[用以獲得184Nm3/h之原料空氣量]:184成立。即,於獲得高純度氮導出量184Nm3/h之情形時,所需之原料空氣量為 1000×184÷395=465.8Nm3/h。
因此,先前技術中,為了獲得超高純度氮導出量208Nm3/h與高純度氮導出量184Nm3/h,需要573Nm3/h與465.8Nm3/h之合計即1038.8Nm3/h之原料空氣。
根據該1038.8Nm3/h,與原料空氣量為1000Nm3/h之情形相比獲得3.88%之改善率。如此,可根據模擬結果而決定高純度氮取出配管之位置。又,不僅可根據模擬結果,亦可根據試驗工場(pilot plant),或根據兩者之結果而設定高純度氮取出位置(精餾部之中間段之位置)。
由表1所示之結果可知,改善率最高者為自理論板數44塊導出高純度氮之條件,因此本發明者等人確認於該條件下本發明於氮產生量方面相較於先前技術之優越性。將基於表1之模擬結果之總氮回收量示於表2。於本實施形態中,無需將全部之氮均精製至超高純度,故根據能夠自精餾部A回收之總氮回收量進行評價。根據本實施例,相對於原料空氣1000Nm3/h,自單一之精餾部A之NTP60能夠導出超高純度氮208Nm3/h、及自精餾部A之NTP40能夠導出高純度氮184Nm3/h,合計能夠回收392Nm3/h之氮。相對於此,比較例1、2中,相對於原料空氣1000Nm3/h,自比較例1之最大NTP44之精餾部能夠導出之超高純度氮為314Nm3/h。又,自比較例2之最大NTP60之精餾部能夠導出之超高純度氮為363Nm3/h。若以總氮回收量進行比較,則可知與比較例1之自最大NTP44之精餾部回收氮之情形相比,本實施例具有(392-314)/314=25%之總氮回收量之效率改善之效果,與比較例2之自最大NTP60之精餾部回收氮之情形相比,本實施例具有(392-363)/363=8%之總氮回收量之效率改善之效果。
Figure 107102363-A0305-02-0017-2
於將超高純度氮中之Ar濃度設為1體積ppm、將高純度氮中之氧濃度設為1體積ppm之情形時,如圖2所示,流量控制部12可調整第2流量調整部11而控制超高純度氮之導出量。
如圖2所示,於偏離最佳條件時,例如若氧濃度未達第2濃度(1體積ppm),則流量控制部12調整第2流量調整部11而控制超高純度氮之導出量以維持其第2濃度(1體積ppm)。若氧濃度超過第2濃度(1體積ppm),則流量控制部12調整第2流量調整部11而控制超高純度氮之導出量以維持其第2濃度(1體積ppm)。
作為另一實施形態,亦可設為具有導入液態氮以將冷凝器C冷卻之液態氮導入配管之構成。
於導入液態氮之情形時,自外部液態氮罐等液態氮供給源供給液態氮而將冷凝器C冷卻。
於小規模之氮製造系統之情形時,可不設置價格昂貴之膨脹渦輪機T,而僅藉由導入液態氮實現之冷卻來應對。若為具備膨脹渦輪機T之設備,則雖可不設置液態氮導入配管,但亦可設置液態氮導入配管作為備用設備。
雖於本實施形態中,設置有使廢氣膨脹之膨脹渦輪機T,但並不限定於此,亦可採用不具有膨脹渦輪機T之構成,於該情形時,可設置導入 用以將冷凝器C冷卻之液態氮之配管。
雖於本實施形態中,高純度氮取出配管6為1根,於其他實施形態中,可同樣地為1根,但亦可根據所製造之氮之種類而設置複數根。於高純度氮取出配管6為1根之情形時,獲得1種高純度氮、與超高純度氮,即兩種製品。於高純度氮取出配管6為2根或2根以上之情形(分別設置於不同之板數)時,在相當於不同理論板數之高度設置高純度氮取出配管。藉此,獲得根據高純度氮取出配管6之安裝位置而具有不同純度之2種或2種以上之高純度氮、與超高純度氮,即三種或三種以上之製品。
(實施形態2)
對實施形態2之製造不同純度之氮之方法進行說明。實施形態2之方法可較佳地使用上述實施形態1之系統而實行。
一種氮製造方法,該方法藉由低溫蒸餾而製造氮,包括如下步驟:壓縮步驟,其壓縮原料空氣;去除步驟,其自藉由上述壓縮步驟而壓縮之原料空氣去除規定雜質;冷卻步驟,其藉由熱交換器冷卻藉由上述去除步驟而去除上述雜質之原料空氣;第1導入步驟,其向具備精餾部與位於塔頂之冷凝器之氮精餾塔之較上述精餾部位置更下部導入藉由上述熱交換器冷卻之原料空氣;第2導入步驟,其自上述氮精餾塔之較精餾部位置更下部向上述冷凝器導入富氧液化氣體;第1導出步驟,其自上述氮精餾塔之上述精餾部之上段或最上段導出含有第1濃度之氬之超高純度氮,使之通過上述熱交換器而進行回收;第2導出步驟,其自上述氮精餾塔之上述精餾部之中間段導出含有第2濃度之氧之高純度氮,使之通過上述熱交換器而進行回收。
又,上述方法包括如下步驟:氧濃度測定步驟,其於較上述熱交換器更下游測定上述高純度氮中之氧濃度;流量控制步驟,其基於藉由上述氧濃度測定步驟所測定之氧濃度,控制設於較上述熱交換器更下游之調整超高純度氮之流量之第2流量調整部。
又,上述氧濃度測定步驟可即時地測定氧濃度,亦可於規定時刻或按照預先設定之測定規則而測定氧濃度。
又,上述流量控制步驟可控制上述第2流量調整部以使上述氧濃度維持目標值(或規定範圍)。
又,上述流量控制步驟例如於上述氧濃度小於目標值(或規定範圍)時,可控制上述第2流量調整部以增大上述超高純度氮之流量,於上述氧濃度大於目標值(或規定範圍)時,可控制上述第2流量調整部以減小上述超高純度氮之流量。
1‧‧‧氮製造系統
2‧‧‧原料空氣取入配管
3‧‧‧原料空氣導入配管
4‧‧‧富氧液化氣體導入配管
5‧‧‧超高純度氮取出配管(第1導出配管)
6‧‧‧高純度氮取出配管(第2導出配管)
7‧‧‧廢氣導入配管
8‧‧‧廢氣配管
10‧‧‧第1流量調整部
11‧‧‧第2流量調整部
12‧‧‧流量控制部
A‧‧‧精餾部
C‧‧‧冷凝器
D‧‧‧雜質濃度測定部
H‧‧‧熱交換器
T‧‧‧膨脹渦輪機

Claims (6)

  1. 一種氮製造系統,其具備:壓縮機,其壓縮原料空氣;去除部,其自藉由上述壓縮機壓縮之原料空氣去除規定雜質;熱交換器,其冷卻藉由上述去除部去除上述雜質之原料空氣;氮精餾塔,其具備供導入藉由上述熱交換器冷卻之原料空氣之精餾部、與位於塔頂之冷凝器;第1導入配管,其自上述熱交換器向上述氮精餾塔之位於較上述精餾部之位置更下方之緩衝部導入上述壓縮原料空氣;第2導入配管,其用以自上述氮精餾塔之上述緩衝部向上述冷凝器導入富氧液化氣體;第1導出配管,其用以自上述氮精餾塔之上述精餾部之上段或最上段導出含有第1濃度之氬之超高純度氮,使之通過上述熱交換器而進行回收;第2導出配管,其用以自上述氮精餾塔之上述精餾部之中間段導出含有第2濃度之氧之高純度氮,使之通過上述熱交換器而進行回收;氧濃度測定部,其於較上述熱交換器更下游之上述第2導出配管測定上述高純度氮中之氧濃度;及流量控制部,其基於藉由上述氧濃度測定部所測定之氧濃度,控制設於較上述熱交換器更下游之上述第1導出配管之第2流量調整部。
  2. 如請求項1所述之氮製造系統,其進而具備設於上述第2導出配管之第1流量調整部,上述第1流量調整部控制上述高純度氮之取出量以成為預先規定之所需流量。
  3. 如請求項1或2所述之氮製造系統,其中上述冷凝器具有供導入 作為上述冷凝器之冷熱源之冷卻用液態氮之第3導入配管。
  4. 如請求項1或2所述之氮製造系統,其進而具備將自上述冷凝器取出之廢氣經由膨脹渦輪機導入至上述熱交換器之廢氣導入配管。
  5. 如請求項3所述之氮製造系統,其進而具備將自上述冷凝器取出之廢氣經由膨脹渦輪機導入至上述熱交換器之廢氣導入配管。
  6. 一種氮製造方法,其包括如下步驟:壓縮步驟,其壓縮原料空氣;去除步驟,其自藉由上述壓縮步驟而壓縮之原料空氣去除規定雜質;冷卻步驟,其藉由熱交換器冷卻藉由上述去除步驟而去除上述雜質之原料空氣;第1導入步驟,其向具備精餾部與位於塔頂之冷凝器之氮精餾塔之較上述精餾部位置更下部導入藉由上述熱交換器冷卻之原料空氣;第2導入步驟,其自上述氮精餾塔之較精餾部位置更下部向上述冷凝器導入富氧液化氣體;第1導出步驟,其自上述氮精餾塔之上述精餾部之上段或最上段導出含有第1濃度之氬之超高純度氮,使之通過上述熱交換器而進行回收;第2導出步驟,其自上述氮精餾塔之上述精餾部之中間段導出含有第2濃度之氧之高純度氮,使之通過上述熱交換器而進行回收;氧濃度測定步驟,其於較上述熱交換器更下游測定上述高純度氮中之氧濃度;及流量控制步驟,其基於藉由上述氧濃度測定步驟所測定之氧濃度,控制設於較上述熱交換器更下游之調整超高純度氮之流量之第2流量調整部。
TW107102363A 2017-04-19 2018-01-23 用以製造純度相異之氮之氮製造系統及其氮製造方法 TWI756345B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017083203A JP6900230B2 (ja) 2017-04-19 2017-04-19 純度の異なる窒素を製造するための窒素製造システムおよびその窒素製造方法
JPJP2017-083203 2017-04-19

Publications (2)

Publication Number Publication Date
TW201843414A TW201843414A (zh) 2018-12-16
TWI756345B true TWI756345B (zh) 2022-03-01

Family

ID=63854257

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107102363A TWI756345B (zh) 2017-04-19 2018-01-23 用以製造純度相異之氮之氮製造系統及其氮製造方法

Country Status (4)

Country Link
US (1) US11150016B2 (zh)
JP (1) JP6900230B2 (zh)
CN (1) CN108731378B (zh)
TW (1) TWI756345B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7460973B2 (ja) * 2020-03-05 2024-04-03 日本エア・リキード合同会社 空気分離装置
US11976878B2 (en) * 2021-09-02 2024-05-07 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Flexible process and apparatus for the liquefaction of oxygen

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60147086A (ja) * 1984-01-11 1985-08-02 大同酸素株式会社 高純度窒素ガス製造装置
JPH06174365A (ja) * 1992-07-29 1994-06-24 L'air Liquide 複数の異なる純度のガス状窒素の製造方法及び設備
JPH06207775A (ja) * 1992-09-23 1994-07-26 Air Prod And Chem Inc 一酸化炭素のない窒素を製造するための低温空気分離方法
JPH09217982A (ja) * 1996-02-09 1997-08-19 Nippon Sanso Kk 空気液化分離装置及び空気液化分離方法
JP2003004372A (ja) * 2001-06-26 2003-01-08 Nippon Sanso Corp 空気液化分離方法及び装置
TW524963B (en) * 2000-09-13 2003-03-21 Linde Akiengesellschaft Process and apparatus for generating high-purity nitrogen by low-temperature fractionation of air

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4595405A (en) 1984-12-21 1986-06-17 Air Products And Chemicals, Inc. Process for the generation of gaseous and/or liquid nitrogen
FR2651035A1 (fr) 1989-08-18 1991-02-22 Air Liquide Procede de production d'azote par distillation
US5170630A (en) * 1991-06-24 1992-12-15 The Boc Group, Inc. Process and apparatus for producing nitrogen of ultra-high purity
US5385024A (en) * 1993-09-29 1995-01-31 Praxair Technology, Inc. Cryogenic rectification system with improved recovery
US5711167A (en) * 1995-03-02 1998-01-27 Air Liquide Process & Construction High efficiency nitrogen generator
JP2875206B2 (ja) * 1996-05-29 1999-03-31 日本エア・リキード株式会社 高純度窒素製造装置及び方法
US5906113A (en) * 1998-04-08 1999-05-25 Praxair Technology, Inc. Serial column cryogenic rectification system for producing high purity nitrogen
US6279345B1 (en) * 2000-05-18 2001-08-28 Praxair Technology, Inc. Cryogenic air separation system with split kettle recycle
US7204101B2 (en) * 2003-10-06 2007-04-17 Air Liquide Large Industries U.S. Lp Methods and systems for optimizing argon recovery in an air separation unit
CN101482336A (zh) * 2008-05-28 2009-07-15 上海启元空分技术发展有限公司 用于空气分离的压缩节流制冷方法
US8443625B2 (en) * 2008-08-14 2013-05-21 Praxair Technology, Inc. Krypton and xenon recovery method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60147086A (ja) * 1984-01-11 1985-08-02 大同酸素株式会社 高純度窒素ガス製造装置
JPH06174365A (ja) * 1992-07-29 1994-06-24 L'air Liquide 複数の異なる純度のガス状窒素の製造方法及び設備
JPH06207775A (ja) * 1992-09-23 1994-07-26 Air Prod And Chem Inc 一酸化炭素のない窒素を製造するための低温空気分離方法
JPH09217982A (ja) * 1996-02-09 1997-08-19 Nippon Sanso Kk 空気液化分離装置及び空気液化分離方法
TW524963B (en) * 2000-09-13 2003-03-21 Linde Akiengesellschaft Process and apparatus for generating high-purity nitrogen by low-temperature fractionation of air
JP2003004372A (ja) * 2001-06-26 2003-01-08 Nippon Sanso Corp 空気液化分離方法及び装置

Also Published As

Publication number Publication date
JP6900230B2 (ja) 2021-07-07
CN108731378B (zh) 2021-11-05
TW201843414A (zh) 2018-12-16
US20180306497A1 (en) 2018-10-25
US11150016B2 (en) 2021-10-19
JP2018179453A (ja) 2018-11-15
CN108731378A (zh) 2018-11-02

Similar Documents

Publication Publication Date Title
JP6204231B2 (ja) 空気液化分離装置及び方法
CN110307695B (zh) 产品氮气和产品氩的制造方法及其制造装置
US10436508B2 (en) Air separation method and air separation apparatus
TWI756345B (zh) 用以製造純度相異之氮之氮製造系統及其氮製造方法
JPH07305953A (ja) 低純度酸素製造のための極低温精留システム
JP2597521B2 (ja) 粗アルゴン生成物生産に係る極低温蒸留による空気分離法
US4088464A (en) Method and apparatus with a single rectifying column for air fractionation
JPH07198249A (ja) 空気を分離するための方法および装置
JPH06210162A (ja) 熱的に統合されたアルゴンカラムを有する極低温精留系
CN107648976B (zh) 一种低温分离制取超高纯气体的方法及低温分离系统
US11326116B2 (en) Natural gas liquids recovery process
KR100859916B1 (ko) 질소 제조방법 및 장치
JP2016188751A (ja) 窒素及び酸素製造方法、並びに窒素及び酸素製造装置
JP6753298B2 (ja) 空気液化分離方法および空気液化分離装置
JP4960277B2 (ja) 超高純度酸素の製造方法
JP2016040494A5 (zh)
JP2003262463A (ja) 超高純度酸素の製造方法及び製造装置
JP7355980B1 (ja) 超高純度酸素製造方法及び超高純度酸素製造装置
KR102139990B1 (ko) 공기분리장치의 운전방법
JP4230168B2 (ja) 窒素製造方法及び装置
KR102010087B1 (ko) 공기압축기 2기를 구비하는 산소 플랜트 설비의 공기압축기 1기 가동에 의한 순아르곤 생산 방법
KR20240054183A (ko) 개선된 아르곤의 회수를 위한 프로세스 및 장치
JP2018004091A (ja) 空気液化分離方法
CN206347802U (zh) 一种单塔低温精馏回收氩气的装置
KR20210038351A (ko) 고순도 산소 제조 장치