TWI742101B - 適於三維半導體元件的磊晶成長的成核結構 - Google Patents

適於三維半導體元件的磊晶成長的成核結構 Download PDF

Info

Publication number
TWI742101B
TWI742101B TW106121662A TW106121662A TWI742101B TW I742101 B TWI742101 B TW I742101B TW 106121662 A TW106121662 A TW 106121662A TW 106121662 A TW106121662 A TW 106121662A TW I742101 B TWI742101 B TW I742101B
Authority
TW
Taiwan
Prior art keywords
nucleation
crystal
growth
plane
dimensional semiconductor
Prior art date
Application number
TW106121662A
Other languages
English (en)
Other versions
TW201804632A (zh
Inventor
伯努瓦 安斯塔
弗羅瑞恩 杜邦
艾文 赫納夫
貝赫哲赫 赫維特
Original Assignee
法國原子能源和替代能源委員會
法商艾勒迪亞公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 法國原子能源和替代能源委員會, 法商艾勒迪亞公司 filed Critical 法國原子能源和替代能源委員會
Publication of TW201804632A publication Critical patent/TW201804632A/zh
Application granted granted Critical
Publication of TWI742101B publication Critical patent/TWI742101B/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • C30B23/025Epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • C30B23/04Pattern deposit, e.g. by using masks
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/04Pattern deposit, e.g. by using masks
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/183Epitaxial-layer growth characterised by the substrate being provided with a buffer layer, e.g. a lattice matching layer
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/602Nanotubes
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/66Crystals of complex geometrical shape, e.g. tubes, cylinders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02491Conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02502Layer structure consisting of two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02603Nanowires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02636Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
    • H01L21/02639Preparation of substrate for selective deposition
    • H01L21/02645Seed materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/16Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous
    • H01L33/18Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous within the light emitting region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/24Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate of the light emitting region, e.g. non-planar junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02636Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
    • H01L21/02639Preparation of substrate for selective deposition

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Geometry (AREA)
  • Led Devices (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

本發明係關於一種適於三維半導體元件(31)的磊晶成長的成核結構(10),包含一基板(11)、多個中間部(14)、多個成核部(16);基板(11)包含形成一成長表面(13)的一單晶材料,由一中間材料製成的多個中間部(14)係從成長表面(13)磊晶而成,並定義一上中間表面(15);以及多個成核部(16)由包含一過渡金屬的一材料製成,過渡金屬的材料由上中間表面(15)磊晶形成一成核材料,定義一成核表面(17),並且適於三維半導體元件(31)的磊晶成長。

Description

適於三維半導體元件的磊晶成長的成核結構
本發明的領域是包含如奈米線或微米線等三維半導體元件的光電裝置,特別涉及一個成核結構,其中成核結構包含至少一個由包含過渡金屬的材料所製成的成核部,且適於這種三維元件的磊晶成長。
光電裝置包含奈米線或微米線等類型的三維半導體元件,可用以形成發光二極體的一部分。所述奈米線或微米線可形成如為n型的第一摻雜部,且該第一摻雜部的部分被具有至少一量子井的活性區所以及具有相反導電性(例如p型)的第二摻雜部所覆蓋。
所述奈米線或微米線可為軸向配置(axial configuration),其中活性區和p型的第二摻雜部實質上從N型的第一摻雜部沿磊晶成長的縱向軸線延伸,而不圍繞於第一摻雜部的周邊。它們例如也可呈核/殼配置(core/shell configuration),或稱徑向配置(radial configuration)而讓活性區和p型的第二摻雜部圍繞於至少一部分的n型的第一摻雜部的周圍。
該些線的成核以及它們的磊晶成長可使用例如由氮化鋁(AlN)或由位於矽晶所構成之半導體基板上的過渡金屬氮化物所製成的成核部來實現。
專利文獻WO 2011/162715提出了一個由氮化鈦所製成的成核部,且成核層可經由低壓化學氣相沈積(low-pressure chemical vapour deposition.LPCVD)或常壓化學氣相沉積(atmospheric pressure chemical vapour deposition.APCVD)進行沉積。
然而,成核結構需要有如以適於三維半導體元件的成核和磊晶成長的過渡金屬氮化物所構成的成核部,以提高三維半導體元件的光學特性及/或電子特性的均勻性。
本發明的目的是至少克服現有技術的缺點,更具體地說,本發明提供一種具有包含過渡金屬材料的成核層的成核結構,適於三維半導體元件的成核與磊晶成長,可改善光學特性及/或電子特性的均勻性。
為此,本發明提出一種適於三維半導體元件的磊晶成長的成核結構,包含一基板,基板包含形成一成長表面的單晶的一結晶材料,在成長表面上有多個成核部,多個成核部由包含一過渡金屬的一材料製成。根據本發明還包含多個中間部,由一中間材料製成的每個中間部係從成長表面磊晶而成,並定義位於該成長表面的相對側的一上中間表面;每個成核部由包含一過渡金屬的材料製成,過渡金屬的材料由上中間表面磊晶形成一成核材料,並定義一成核表面位於上中間表面的相對側,並且適於三維半導體元件的磊晶成長。
中間材料是從成長表面磊晶而成。因此,中間材料在該材料的平面的至少一方向及與該材料的平面正交的至少一方向,其晶格的結晶取向(crystallographic orientation)與基板的結晶材料的晶格的結晶取向一致。材料的平面在這裡是指中間材料的成長平面。此外,成核材料是從上中間表面磊晶。因此,成核材料在該材料的平面的至少一方向及與該材料的平面正交的至少一方向,其晶格的結晶取向與中間材料的晶格的結晶取向一致。材料的平面在這裡是指成核材料的成長平面。
因此,只要全部的中間部都是從單晶材料構成的相同的成長表面磊晶,它們在上中間表面的任意點,以及從其中一個中間部到下一個中間部,都具有相同的晶體方向(crystallographic orientation)。成核部也是如此,在成核表面的任意點,以及從其中一個成核部到下一個部分的成核部,也都具有相同的晶體方向。
較佳地,但非用以限制的此成核結構包括:
可形成彼此分離的多個塊狀的多個中間部,且成核部可至少部分地與多個注入部毗鄰或接觸。注入部由包含在成長表面上與其接觸的過渡金屬的材料所製成。這些注入部是從成長表面而不是從上中間表面形成,然後織構(textured)(而非磊晶)而成。因此,注入部在與其材料的平面正交的方向上具有單一傾向的晶體方向。注入部的材料的平面在這裡是指注入部的材料的成長平面,且平行於基板的平面。
中間材料可選自氮化鋁(aluminium nitride)、III-V族化合物以及鋁(aluminium)、鈦(titanium)、鉿(hafnium)、鎂(magnesium)和鋯(zirconium)的氧化物,且可具有一個六方晶體,面心立方體(face-centred cubic)或斜方晶體(orthorhombic crystal)的晶體結構。
成核材料可選自鈦(titanium)、釩(vanadium)、鉻(chromium)、鋯(zirconium)、鈮(niobium)、鉬(molybdenum)、鉿(hafnium)、鉭(tantalum)和鎢(tungsten);或者選自鈦、釩、鉻、鋯、鈮、鉬、鉿、鉭和鎢的氮化物或碳化物,且可具有六方晶體或面心立方體的晶體結構。
基板的單晶材料可選自III-V族化合物、II-VI族化合物或IV族的元素或化合物,且可具有六方晶體或面心立方體的晶體結構。
基板的單晶材料為可導電的。
成核結構可包含至少一下注入部,下注入部由包含過渡金屬的材料所製成,其過渡金屬接觸成長表面且被與成核部相同材料形成為一體成形的注入部所覆蓋。下注入部是從成長表面而不是從上中間表面形成,然後織構(而非磊晶)而成。因此,下注入部在與其材料的平面正交的方向上具有單一傾向的晶體方向。下注入部的材料的平面在這裡是指下注入部的材料的成長平面,且平行於基板的平面。
成核結構可包含至少一上注入部,上注入部由包含過渡金屬的材料所製成,其過渡金屬接觸成核部且部分地覆蓋成核表面。
本發明還涉及一種光電裝置,包含前述特徵中任一者所述的成核結構,以及從各別的成核表面磊晶而成的多個三維半導體元件。這些三維半導體元件在該材料的平面的至少一方向及與該材料的該平面正交的至少一方向,其晶格的結晶取向與成核材料的晶格的結晶取向一致。所述的材料的平面是三維半導體元件材料的成長平面。這些成核部的成核材料在成核表面的任意點,以及從其中一個成核部到下一個成核部,都有相同的晶體方向,三維半導體元件從其中一者到下一者也具有相同的晶體方向。
各個三維半導體元件可由選自III-V族化合物、II-VI族化合物、IV族的元素或化合物的半導體材料所製成。
各個三維半導體元件的半導體材料可主要包含來自III族的第一元素和來自V族的第二元素形成III-V族化合物。這些三維半導體元件具有第一元件的極性。
本發明還涉及一種用於製造前述特徵任一者所述的成核結構的方法,包含透過在環境溫度和 500°C之間的成長溫度下進行濺鍍(sputtering)來讓成核部磊晶成長的步驟。
該方法可包含形成至少一個與成核部接觸且部分地覆蓋成核表面的上注入部的步驟,該步驟包含子步驟:磊晶成長一連續層,其中連續層由包含覆蓋成核表面的一過渡金屬的一第二材料所製成;沉積一介電層,其中介電層由覆蓋第二材料所製成之連續層的一介電材料所製成;相對於第二材料對介質材料進行局部和選擇性乾蝕刻(dry etching),以便在第二材料上形成面向成核表面的一第一開口;以及通過該第一開口以相對於成核材料對第二材料進行局部和選擇性溼蝕刻(wet etching),以便在成核表面上形成一開口。
該方法可包含在600°C和1200°C之間的溫度下對這些成核部進行退火結晶(crystallization annealing)的步驟。
本發明還涉及一種用於製造前述特徵任一者所述的光電裝置的方法,包含:一形成步驟,係形成前述特徵中任一項所述的成核結構;以及一成長步驟,係從成核表面各自磊晶成長多個三維半導體元件,使得在該形成步驟和該成長步驟之間的多個成核部未進行氮化退火(nitridation annealing)。
在形成成核結構的步驟和成長多個三維半導體元件的步驟之間,成核表面可能不會同時經歷大於或等於800℃的退火溫度以及氨(ammonia)的氣流。
在圖式中和在說明書的其餘部分中,相同的圖式標記表示相同或相似的元素。此外,為了使圖式更清晰,各元件沒有按比例繪示。此外,各種實施例和變化型並非相互排斥的,而是可以組合在一起。除非另有說明,否則“大致”、“大約”、“數量級”表示在“10%以內”,或者當涉及方向時,表示”在10°以內”。
本發明涉及一種成核結構,適於用於形成發光二極體或光電二極體的三維半導體元件的成核和的磊晶成長。
三維半導體元件可沿著一縱向軸線D而具有一細長的形狀,也就是說,沿著縱向軸線D的縱向尺寸大於橫向尺寸。三維元件被稱為“線(wire)”、“奈米線(nanowires)”或“微米線(microwires)”。這些線在與縱向軸線D正交的平面中的尺寸(即線的橫向尺寸)可以在10奈米(nm)與10微米(μm)之間。例如在100nm與10μm之間,較佳地是在100nm與5nm之間。這些線沿著縱向軸線D的縱向尺寸(即線的高度)大於該橫向尺寸,例如為橫向尺寸的2倍、5倍、較佳地為橫向尺寸的至少10倍以上。
在與縱向軸線D正交的平面中,線的截面可以具有各種形狀,例如為圓形、橢圓形或如三角形、正方形、矩形甚或是六邊形的多邊形。直徑在這裡被定義為與橫截面處的線的周長相關聯的量。直徑可以是與線的橫截面具有相同表面面積的圓盤的直徑。局部直徑是沿著縱向軸線D的給定高度的線的直徑。平均直徑是沿著線或沿著線一部分的局部直徑的平均值,例如算術平均值。
成核結構包含位於在由基板的同一單晶材料所定義的成長表面上的多個堆疊。各個堆疊由包含由一結晶材料製成的中間部磊晶形成的過渡金屬的材料所製成的成核部所形成,該材料也是從基板的成長表面的磊晶而成。
磊晶(Epitaxy)應理解為包含晶格(crystal lattice)或晶體結構(crystal structure)的磊晶材料與從成核材料磊晶的磊晶關係。所述磊晶關係可理解為磊晶材料在所述材料的平面中的至少一個方向與所述材料的平面正交的至少一方向,與所述成核材料的晶格的晶體方向一致。所述磊晶材料的平面這裡是指材料的成長平面,其平行於成核表面。且前述為一致的部分較佳地是在30°以內,甚至達到10°以內。這顯示了在磊晶材料的晶格和成核材料的晶格之間存在方向和晶體位置完全匹配的事實。較佳地,在成長平面中,所述磊晶結晶材料具有一晶格參數a2,使得晶格參數a1的成核材料的晶格失配(lattice mismatch)小於或等於20%。其中晶格失配m =(a2-a1)/ a1 =D a/ a1。
通常,結晶(單晶或多晶)材料具有晶格,其單位晶格(unit cell)特別是透過一組晶軸(crystallographic axes)或原始向量(primitive vector)來定義,隨後將藉由a、b、c的表示來說明(然而,單位晶格也可以透過三個以上的晶軸來定義,特別是當晶格為六方晶體結構型時)。結晶材料可具有各種類型的結構,例如面心立方晶體結構或六方晶體結構;面心立方晶體結構的成長方向例如可沿著方向[111](或是<111>,若考慮整個方向族);而六方晶體結構例如為沿著方向[0001]。多晶材料可理解為由晶界(grain boundary)彼此分離的多個晶體所形成的材料。
因此,當從一結晶成核材料磊晶形成一結晶材料(即透過磊晶成長形成),這兩種結晶材料之間的磊晶關係如下:磊晶材料的晶格的至少一晶軸以磊晶材料的平面為其方向(例如ae 及/或be ),以及至少一晶軸正交於該平面(例如ce ),且皆實質上分別平行於成核材料的晶格的晶軸an 及/或bn 和cn
此外,在本發明的成核材料為單晶的情況下,an 軸、bn 軸、cn 軸在成核表面的任意點上實質上相互平行。換句話說,an 軸於成核表面上的任何點與其他軸平行,bn 軸、cn 軸也是如此。因此,在磊晶材料上與成核表面平行的平面,磊晶材料的晶軸ae 、be 、ce 實質上彼此相互平行。
織構材料具有與材料平面正交的優選晶體方向但在材料的平面的方向上沒有優選晶體方向,在此概念下,磊晶材料是織構材料的一個特殊情況。此外,優選晶體方向正交於織構材料的平面,其並非、或非常不取決於成核材料的結晶性質。
因此,織構材料具有單一傾向的結晶取向,例如c軸而不是三個傾向的方向。然後,織構材料的晶格具有多晶結構,其結晶域(crystalline domain)由晶界分開,且都沿著相同的晶軸c軸。另一方面,它們在成長平面中沒有相互平行的關係。換句話說,結晶域的c軸彼此平行,但是a軸和b軸為彼此不平行且實質上為隨機取向。此種有傾向的結晶取向,並非、或非常不取決於成核材料的結晶性質。因此,可以從有單晶、多晶甚或是非晶結構的成核材料中獲得織構材料。
圖1A是根據一個實施例的成核結構10的剖視圖。
在此以及其他描述的部分定義了三維標記(X、Y、Z),其中X軸和Y軸所形成的平面與基板11的主平面平行,並且其中Z軸的方向正交於基板11的平面。在其他敘述中,「垂直」和「垂直地」等詞可被理解為實質上與Z軸平行的方向,「水平」和「水平地」等詞為實質上平行於平面(XY)的方向。此外,「下」和「上」等詞可被理解為有關與沿著Z軸方向靠近或離開基板11。
所述成核結構10包含一基板11、多個中間部14與多個成核部16。基板11包含由一單晶材料形成的一成長表面13;多個中間部14,由從基板11的成長表面13磊晶而成的一中間材料所製成,且具有稱為一上中間表面15的一相對表面;多個成核部16,由包含從上中間表面15磊晶形成的一過渡金屬的一材料所構成,且各成核部16具有稱為一成核表面17的一相對表面。
基板11包含一上表面,其至少一部分形成一成長表面13,以作為形成線的表面。它可以是單塊結構(monoblock strusture),或者由例如SOI(矽絕緣體)類型的基板11的層堆疊形成。
至少在成長表面13上包含一單晶成長材料。因此,在成長表面13上,成長材料由單晶形成,因此不包含藉由晶界彼此分離的多個晶體。此單晶材料的晶格有特別由其晶軸(在此以晶軸as 、bs 、cs 來表示)所定義的單位晶格。晶軸as 、bs 、cs 在成長表面13的任意點實質上彼此平行。換句話說,晶軸as 在成長表面13的任意點上實質上平行其他晶軸。晶軸bs 和晶軸cs 也是如此。
成長材料在晶格參數和結構的類型等方面具有適於中間部14的結晶材料的磊晶成長的結晶性質。因此,優選地具有沿方向[111]的面心立方晶體結構或沿方向[0001]的六方晶體結構。同樣優選地,其具有與中間部14的材料的相同、小於或等於20%的晶格失配(m =Da/as )。
成長材料可以是選自包含元素週期表III族的至少一種元素和元素週期表V族的至少一種元素的III-V化合物所構成的半導體單晶材料。舉例而言,它可以是矽、鍺(germanuim)、碳化矽(silicon carbide),有利於導電,並且其電阻率類似於金屬,優選的是小於或等於數個歐姆-公分。基板11的材料可以是高摻雜的,例如摻雜濃度在5×1016 原子/cm3 至2×1020 原子/cm3 之間。
在這個例子中,基板11的成長材料是n型高摻雜單晶矽,且具有面心立方晶體結構,其成長平面沿方向[111],並其晶格參數as 約為3.84埃(Å)。
成核結構10包含多個中間部14。每個中間部14是從成長表面13磊晶而成。更具體地說,每個中間部14是由從成長表面13磊晶而成之一中間材料所製成。中間材料界定了一相對表面,稱為上中間表面15。
中間材料包含與成長材料有磊晶關係的一晶格。中間材料的晶格有特別由其晶軸(在此以ai 、bi 、ci 來表示)所定義的單位晶格。因此,該晶格在該材料的平面的至少一晶軸ai 、bi 及與該材料的平面正交的至少一個晶軸ci 分別與該成長材料的晶軸as 、bs 和cs 一致。如下:晶軸ai 在上中間表面15的任意點處實質上平行於晶軸as ,如同晶軸bi 與ci 實質上分別平行於晶軸bs 和cs 。此外,無論中間材料是單晶還是多晶,由於其與成長表面的單晶材料的磊晶關係,每個晶軸ai 、bi 、ci 在上中間表面15的任意點上實質上相同。換句話說,該些晶軸ai 為相同,即在上中間表面15的任意點處互相平行,晶軸bi 和ci 也同樣如此。
中間材料在晶格參數和結構的類型等方面具有適於從基板11的成長材料磊晶的結晶性質。此外,還適於使由包含一過渡金屬的材料製成的成核部16從上中間表面15磊晶成長。優選的,其晶格參數使成長材料的晶格失配小於或等於20%。此外,晶體結構的類型使得其晶軸ai 、bi 、ci 可以分別平行於成長材料的as 、bs 、cs 軸。晶體結構可以是沿方向[111]的面心立方晶體結構、或沿著方向[0001]的六方晶體結構、甚或是沿方向[111]取向的斜方晶體結構。
中間材料可以是選自如如氮化鋁(AlN)、鎵氮(GaN)、氮化鋁鎵(AlGaN)的III-V族化合物、如氮化矽(SiN)的IV-V族化合物、如氧化鋅(ZnO)的II-VI族化合物、或IV族的元素或如碳矽(SiC)的IV族化合物的材料。中間材料也可以是選自氧化鎂(MgO)、氧化鉿(HfO2 )、氧化鋯(ZrO2 )、氧化鈦(TiO2 )或氧化鋁(Al2 O3 )的材料。它也可能是氮化鎂,例如Mg3 N2 。有利的是,中間材料是導電的。
在實施例中,中間材料是有大約3.11 Å的晶格參數的氮化鋁(AlN),以及為六方晶體結構,其成長平面沿著方向[0001]。
中間部14是彼此分開的塊。在一變化型中,它們可以是由同一個中間材料製成的同一連續層的區域。層被理解為是指一結晶材料的一區域,其沿著Z軸的厚度,例如比平面(XY)中的縱向寬度和長度尺寸小10倍甚至20倍。塊可被理解為是一種結晶材料的體積,其厚度小於、等於甚或是大於其縱向寬度和長度尺寸,且其縱向尺寸小於該層的縱向尺寸。
在平面(XY)中,中間部14具有數十奈米到數微米之間的一個平均尺寸,例如在20nm和20μm之間,較佳地在200nm和10μm之間,以及更佳地為800nm至5μm,例如為1μm或1.5μm。其有利地大於在與成核部16的界面處的線的局部直徑。它們還有數奈米至數百奈米的厚度,例如在5nm和500nm之間,較佳地在10nm和100nm之間,例如為20nm。
成核結構10包含多個成核部16。各成核部16旨在使至少一線能成核和磊晶成長,且較佳地是單一線。各成核部16是從上中間表面15磊晶而成。更具體地說,各成核部16是由上中間表面15磊晶而成的一成核材料所製成。它形成稱為一成核表面17的表面,位於上中間表面15的相對側。
成核材料包含與中間材料的晶格有磊晶關係的一晶格。成核材料的晶格具有特別由其晶軸(在此以an 、bn 、cn 來表示)所定義的單位晶格。因此,該晶格在該材料的平面的至少一晶軸an 、bn 及與該材料的平面正交的至少一晶軸cn 分別與該中間材料的晶軸ai 、bi 和ci 一致。如下:在成核表面17的任意點,晶軸an 實質上平行於上中間表面15的晶軸ai ,如同晶軸bn 和bn 實質上分別平行於上中間表面15的晶軸bi 和ci 。此外,無論成核材料是單晶還是多晶,各晶軸an 、bn 、cn 在成核表面17的任意點都相同。換句話說,該些晶軸an 為相同,即在成核表面17的任意點相互平行彼此平行,晶軸bn 和cn 也同樣如此。
成核材料在晶格參數和結構的類型等方面具有使其從中間材料磊晶的結晶性質,且還適於從成核表面17開始的線的磊晶成長。較佳地,其與中間材料的晶格的晶格失配為小於或等於20%。此外,此類型的晶體結構使得其晶軸an 、bn 、cn 可以分別平行於中間材料的ai 、bi 、ci 軸。該晶體結構可以是沿著方向[111]的面心立方晶體結構、或沿著方向[0001]的六方晶體結構、甚或是沿著方向[111]的斜方晶體結構。
成核材料包含一過渡金屬,也就是說成核材料可由一過渡金屬,或是包含一過渡金屬的化合物所製成,例如過渡金屬的氮化物或碳化物。過渡金屬及其氮化物和碳化物特別具有與金屬類似的良好導電性的優點。成核材料可以選自鈦(Ti)、鋯(Zr)、鉿(Hf)、釩(V)、鈮(Nb)、鉭(Ta)、鉻(Cr)、鉬(Mo)或鎢(W)、和這些元素的氮化物(氮化鈦(TiN)、氮化鋯(ZrN)、氮化鉿(HfN)、氮化釩(VN)、氮化鈮(NbN)、氮化鉭(TaN)、氮化鉻(CrN)、氮化鉬(MoN)或氮化鎢(WN))或這些元素的碳化物(碳化鈦(TiC)、碳化鋯(ZrC)、碳化鉿(HfC)、碳化釩(VC)、碳化鈮(NbC)、碳化鉭(TaC)、碳化鉻(CrC)、碳化鉬(MoC)或碳化鎢(WC))。過渡金屬的氮化物和碳化物可包含過渡金屬的原子的比例不超過50%。較佳地,成核材料選自如氮化鈦(TiN)、氮化鋯(ZrN)、氮化鉿(HfN)、氮化釩(VN)、氮化鈮(NbN)、氮化鉭(TaN)、氮化鉻(CrN)、氮化鉬(MoN)或氮化鎢(WN)的氮化物,或如碳化鈦(TiC)、碳化鋯(ZrC)、碳化鉿(HfC)、碳化釩(VC)、碳化鈮(NbC)或碳化鉭(TaC)的碳化物。較佳地,成核材料選自鈦的氮化物或碳化物(氮化鈦、碳化鈦)、鋯的氮化物或碳化物(氮化鋯、碳化鋯)、鉿的氮化物或碳化物(氮化鉿、碳化鉿)、釩的氮化物或碳化物(氮化釩、碳化釩)、鈮的氮化物或碳化物(氮化鈮、碳化鈮)或鉭的氮化物或碳化物(氮化鉭、碳化鉭)。更佳地,成核材料選自氮化鈦(TiN)、氮化鋯(ZrN)、氮化鉿(HfN)、氮化鈮(NbN)或氮化鉭(TaN)的氮化物。更佳地,成核材料選自氮化鉿(HfN)或氮化鈮(NbN)的氮化物。
在平面(XY)中,成核部16具有數十奈米到數微米之間的平均尺寸,例如在20nm和20μm之間,較佳地在200nm和10μm之間,更佳地在800nm和5μm之間,例如在1μm和3μm之間。其有利地大於在與成核部16的界面處的線的局部直徑。它們還具有數奈米至數百奈米級的厚度,例如在5nm和500nm之間,較佳地在10nm和100nm之間,例如為20nm。
成核部16在此是由同一結晶成核材料製成的同一連續層的區域。在一變化型中,成核部16可以是彼此分開的塊。
成核部16在此與中間部14接觸並覆蓋其上中間表面15。該連續層還包含與基板11的成長表面13接觸的多個注入部20。注入部20與成核部16接觸。在本實施例中,各注入部20與相鄰的成核部16接觸。在一變化型中,各成核部16可以與一個注入部20接觸,該注入部20例如是在周圍且與成長表面13接觸,而非屬於同一個連續層。
當中間材料是電絕緣的或具有比成核材料的能隙大的能隙時,成核部16與注入部20接觸的這種配置是特別有利的。因此,電荷載體可以藉由穿過注入部20,從基板11注入成核部16中。特別是當基板11係由高摻雜的矽所製成,以及當中間部14係由AlN所製成的狀況下。
成核結構10還可以包含覆蓋成核部16的介電層,且可形成成長光罩18。成長光罩18可讓線在成核表面上局部形成的開口19磊晶成長。介電層由例如氧化矽(如SiO2 )、或氮化矽(如Si3 N4 或SiN)、甚或是氮氧化矽、氧化鋁或氧化鉿的電絕緣材料所製成。
成核結構10還可以包含與基板11接觸的第一極化電極(polarization electrode)3A,第一極化電極3A在這裡是導電的(例如在其背面)。第一極化電極3A可以由鋁或任何其他合適的材料所製成。
圖1B是具有徑向構型(radial configuration)的發光二極體2的光電裝置1的剖視圖,其包含通過磊晶生長形成發光二極體2的三維半導體元件(於此是線)的一成核結構10。
各發光二極體2包含一第一三維半導體元件31,於此是從成核部16沿著實質上正交於平面(XY)的縱向軸線D延伸的線。各發光二極體2另外包含一活性區32和第二摻雜部33,以及與第二摻雜部33接觸的一層第二極化電極3B。
線31放置在基板11上並與成核部16接觸。它沿著縱向軸線D延伸並形成發光二極體2的核心以形成一核/殼的構型。
該線31是由從成核表面17磊晶的一結晶材料所製成。該線的材料包含與成核材料的晶格有磊晶關係的一晶格。該線的材料的晶格具有特別由由其晶軸(在此以af 、bf 、cf 來表示)所定義的單位晶格。該線的材料的晶軸af 、bf 、cf 在成核表面17上實質上分別平行於成核材料的晶軸an 、bn 、cn 。換句話說,晶軸af 平行於成核表面17的晶軸an 。這同樣適用於晶軸bf 、cf 與晶軸bn 、cn 。此外,從其中一個成核表面17到下一個成核表面17的晶軸an 、bn 、cn 分別相同,從其中一線到下一個線的晶軸af 、bf 、cf 分別相同。換句話說,這些晶軸af 是相同的,即從一條線到另一條線為相互平行。晶軸bn 、cn 也是如此。因此,該線在晶格的方向和位置等方面具有實質上相同的結晶性質。因此,光電裝置1在線中具有實質上均勻的結晶性質,這有助於發光二極體2的電性及/或光學性質的均勻化。
根據晶格參數和結構類型,線的材料有結晶性質,使得其可以從成核材料磊晶而成。因此,線有一晶格參數,使得其與成核材料的晶格失配為小於或等於20%。此外,晶體結構的類型使得其晶軸af 、bf 、cf 可以分別平行於成核材料的an 、bn 、cn 軸。晶體結構可以是沿著方向[111]的面心立方晶體結構、或沿著方向[0001]的六方晶體結構、甚或是沿方向[111]的斜方晶體結構。
線的材料由一第一半導體化合物所製成,第一半導體化合物可以選自III-V族化合物、特別是III-N族化合物、II-VI族化合物或IV族的化合物或元素。作為實施例,III-V族化合物可以是如氮化鎵(GaN)、氮化銦鎵(InGaN)、氮化鋁鎵(AlGaN)、氮化鋁(AlN)、氮化銦(InN)或氮化鋁銦鎵(AlInGaN)的化合物,甚或是如砷化鎵(AsGa)或磷化銦(InP)的化合物。II-VI族化合物可以是碲化鎘(CdTe)、碲化汞(HgTe)、碲化鎘汞(CdHgTe)、氧化鋅(ZnO)、氧化鎂鋅(ZnMgO)、氧化鋅鎘(CdZnO)或氧化鎂鋅鎘(CdZnMgO)。IV族的元素或化合物可以是矽(Si)、碳(C)、鍺(Ge)、碳化矽(SiC)、矽鍺(SiGe)或鍺碳(GeC)。該線根據第一類型(於此為n型)的導電性形成的一第一摻雜部31。
在此實施例中,該線由n型摻雜的氮化鎵(GaN)所製成,特別是由矽所製成。它具有沿著方向[0001]的六方晶體結構。其晶格參數約為3.189Å。於此的平均直徑在10nm和10μm之間(例如在500nm和5μm之間),於此實質上等於500nm。線的高度可在100nm和10μm之間(例如在500nm和5μm之間),於此實質上等於5μm。
發光二極體2的大部分的光輻射是從活性區32發射。活性區32可包含至少一個量子井,量子井由具有能隙低於線31的能隙和第二摻雜部33的能隙的一半導體化合物所製成。量子井覆蓋線的上緣和側緣。活性區32可包含插入在阻障層(barrier layer)之間為層或框(box)形式的單個量子井或多個量子井。或者,活性區32可以不包含任何量子井。活性區32可以具有與線31和第二摻雜部33的能隙實質上相等的能隙。它可以由非有意摻雜的半導體化合物所製成。
第二摻雜部33形成覆蓋且至少部分地圍繞活性區32的層。第二摻雜部33由與第一類導電性相反的第二導電性(即p型)之一第二半導體化合物摻雜而成。第二半導體化合物可與線的第一半導體化合物相同,或者可包含第一半導體化合物及另外一個或多個補充元素(supplementary element)。在此實施例中,第二摻雜部33可以是氮化鎵(GaN)或氮化銦鎵(InGaN)的p型摻雜,特別是由鎂摻雜。第二摻雜部33的厚度可以在20nm和500nm之間,且可以大約等於150nm。當然,第一摻雜部31和第二摻雜部33的導電性的類型可以相反。
第二摻雜部33還可以包含位於活性區32的界面處的一電子阻擋層(未圖示)。該電子阻擋層可以由III-N族的三元化合物形成,例如氮化鋁鎵(AlGaN)或氮化鋁銦(AlInN),有利地是p型摻雜。它可以提高活性區32的輻射復合(radiative recombination)的水平。
第二極化電極3B覆蓋第二摻雜部33,且適於向發光二極體2施加電極化(electric polarization)。第二極化電極3B由可讓發光二極體2((如氧化銦錫(ITO)或氧化鋅(ZnO))發射的光輻射實質上穿透的材料所構成,具有數奈米至數十或數百奈米的厚度。
因此,當藉由兩個極化電極(第一極化電極3A和第二極化電極3B)將電位差以正向方向施加到發光二極體2時,發光二極體2發射光輻射,其發射光譜在給定波長下具有一強度峰值。此外,當對光電裝置1的發光二極體2提供相同的電位差時,發射光譜在各種發光二極體2之間實質上是均勻的,由於成核結構10,線具有實質上均勻的結晶性質。
圖2A係成長的基板11的透視圖和分解圖,在基板11上直接形成由包含過渡金屬的材料所製成的成核部16。圖2B係成長表面13和成核表面17的俯視圖。圖2C係從成核表面17磊晶形成線的實例。
本發明人已經證明,由包含過渡金屬的材料製成的成核部16是透過從成長表面13而不是從中間部14磊晶形成,並且為織構(textured)而不是磊晶。
如圖2A和圖2B所示,基板11包含在成長表面13的單晶材料,例如沿著方向[111]的面心立方晶體結構的矽。該材料是單晶的(monocrystalline),因此,在成長表面13的任意點,晶軸as 、bs 、cs 的方向相同。
由包含過渡金屬的材料製成的成核部16例如是透過金屬有機化學氣相沉積(MOCVD)製程或濺鍍製程從成長表面13形成。成核材料看起來是織構的,而不是磊晶的(epitaxied)。因此,它具有與材料平面正交傾向的方向,即在成核表面17的任意點處晶軸cn 的方向皆相同。另一方面,在成核表面17的任意點,晶軸an 和晶軸bn 非平行。晶軸cn 並非或沒有非常取決於基板11的單晶材料的結晶結構。
如圖2C所示,於此藉由MOCVD製程磊晶GaN所製成的線都具有一個相同的成長方向,該方向實質上平行於晶軸cn 。另一方面,從一條線到下一條線,線的六方晶體結構看起來不是以相同的方式取向,這表示從其中的一條線到下一條線,晶軸af 和晶軸bf 不是以相同的方向取向。然後,從其中一條線到另一條線,線具有不同的結晶性質,這可能導致發光二極體2的電性及/或光學性質存有一定的不均勻性。
圖3A是成長的基板11的透視圖和分解圖,在其表面磊晶的是一中間部14,然後磊晶形成一個由包含過渡金屬的材料所製成的成核部16。圖3B是上中間表面15和成核表面17的成長表面13的俯視圖。圖3C是從成核表面17磊晶成線的實例圖。
因此,本發明人已經證明,令人驚奇的是,當成核部16是從一中間層磊晶形成,而不是直接從基板11的單晶成長表面13形成時,由包含過渡金屬的材料所製成的成核部16是磊晶(而非織構)而成。
如圖3A和圖3B所示,基板11在成長表面13處包含單晶材料,例如沿著方向[111]的面心立方晶體結構的矽,該材料為單晶的,因此在成長表面13的任意點,晶軸as 、bs 、cs 分別有相同的方向。
中間部14例如是通過MOCVD或濺鍍製程從成長表面13磊晶成長形成。然後中間材料的晶格在上中間表面15的任意點分別有相同方向的晶軸ai 、bi 、ci
與圖2A至圖2C所示的實施例不同的是,由包含如通過MOCVD或濺鍍製程形成的過渡金屬的材料所製成的成核部16,接著是磊晶形成而不是織構形成。因此,在成核表面17的任意點,晶軸an 、bn 、bn 分別有相同的方向。
如圖3C所示,在此藉由MOCVD製程磊晶製成的GaN所形成的都具有一個相同的成長方向,該方向實質上平行於晶軸cn 。此外,所有線的六方晶體結構的方向看起來是相同的,這表示了從其中一條線到下一條線,晶軸af 和晶軸bf 分別以相同的方式取向。且該些線從其中一條線到下一條線具有大致相同的結晶性質,這使得發光二極體2的電性及/或光學性質具有更好的均勻性。
成核部16實際上是磊晶的事實可以在X射線圖的輔助下,藉由掃描j角來驗證,以便在結晶域(在多個成核部16為多晶的情況下)或各個區域(在多個成核部16為單晶的情況下)的成核表面鑑定晶體的取向。
沿著j軸的x射線繞射圖案在有一不對稱線的一繞射峰上實現,該不對稱線為一條對應於不垂直於成核表面的晶體方向的線。沿著j軸的x射線繞射掃描可如以下方式進行。角度2q和w是固定的,以將感興趣的平面放置在繞射位置。沿著角度j進行掃描,角度j可以在0°到360°之間變化。在材料為磊晶的情況下,結晶域在成核表面的平面中具有優先的結晶取向。然後角度j的掃描有幾個繞射峰。繞射峰的數量與平面中晶體的對稱性相關。另一方面,在多晶材料為織構的情況下,結晶域在平面中沒有優先的結晶取向。然後角度j的掃描沒有繞射峰。
現在描述如圖1A所示的用於產生成核結構10的方法的實施例。在這個例子中,成核結構10適於藉由MOCVD製程實現n型摻雜的GaN所製成的線的成核和磊晶成長。
在第一步驟中,提供成長的基板11,其材料至少在成長表面13是單晶的。在此實施例中,基板11是由矽所製成,其結構為面心立方晶體,並沿著方向[111]取向。其成長表面13的平面中的晶格參數為3.84Å。
在第二步驟中,多個中間部14形成為彼此分離的塊的形狀,且是從成長表面13磊晶而成。
為此,得先在成長的基板11的上表面進行一層中間材料的磊晶成長。中間材料是一結晶材料,該中間材料可以是單晶或多晶的結晶材料,且其晶格與基板11有磊晶關係。
該中間材料可以藉由如金屬有機化學氣相沉積(MOCVD)等類型的化學氣相沉積(chemical vapour deposition,CVD)的方法、或藉由如混合氣相磊晶(hybrid vapour phase epitaxy,HVPE)、原子層磊晶(atomic layer epitaxy,ALE)或原子層沉積(atomic layer deposition,ALD)等類型的分子束磊晶(molecular beam epitaxy,MBE)的方法、甚或是通過蒸發、或濺射來沉積中間材料。
在此實施例中,中間材料是氮化鋁,其結晶結構是六方晶體且沿著方向[0001]取向。其在平面(XY)中的晶格參數為3.11Å。該中間材料的厚度例如在0.5nm和100nm之間,甚至在1nm和100nm之間,較佳地在2nm和50nm之間,並且可約等於25nm。
在此實施例中,該中間材料透過MOCVD製程沉積。V/III比率,定義為第V族元素的莫耳流量與III族元素的莫耳流量之比(即N/Al比),為介於200和1000之間。壓力為75托爾(torrs)。在成核階段,在基板11測量的成長溫度T可以約大於或等於750℃,然後成長階段的溫度可以是950℃。
接下來,通過常規顯影和蝕刻技術來蝕刻中間材料的連續層,以形成形式為分開塊狀的多個中間部14。中間部14在平面(XY)中的橫向尺寸可以在100nm和10μm之間,例如約為1μm。
因此,中間材料在上中間表面15處的晶軸ai 、bi 、ci 分別平行於晶軸as 、bs 、cs .。由於成長材料是單晶的,因此在上中間表面15的任意點,每個晶軸ai 、bi 、ci 都是平行的。
在第三步驟中,從中間部14的上中間表面15進行多個成核部16的磊晶成長。
在此實施例中,中間部14是同一連續層的區域。成核層可以藉由濺鍍沉積技術形成,其成長溫度在環境溫度(例如20℃)和1000℃之間較為有利。令人驚訝的是,當藉由在環境溫度(例如20℃至500℃)之間的成長溫度(例如實質上等於400℃的溫度)沉積時,成核層也進行磊晶。功率可以是400W。壓力可以是8×10-3 torrs,以便不改變中間部14的結晶性質。成核材料包含過渡金屬,如鈦、鋯、鉿、釩、鈮、鉭、鉻、鉬或鎢的氮化物。成核部16的厚度可為0.5nm和100nm之間、甚至在1nm和100nm之間、較佳地在2nm和50nm之間,例如,可以等於約25nm。
因此,獲得由包含過渡金屬的材料所製成的成核層,其由從上中間表面15磊晶形成的成核部16,以及從成長表面13形成的注入部20所形成。注入部20通常是織構而不是磊晶的,不會對製程的品質產生不利影響。
因此,在成核表面17處的成核材料的晶軸an 、bn 、cn 分別平行於在上中間表面15處的晶軸ai 、bi 、ci 及在成長表面的13晶軸as 、bs 、cs 。由於成長材料是單晶的,因此每個晶軸an 、bn 、cn 在成核表面17的任意點為平行的。另一方面,在注入部20的每個晶軸bn 、cn 不一定相同,也就是說不需要平行。
有利地,在成核部16由多晶材料製成的情況下,可以進行退火結晶(crystallization annealing)的步驟以獲得單晶的成核材料。退火可以實質上在與成核材料的結晶溫度實質上一致的退火溫度下進行,在過渡金屬氮化物的情況下退火溫度約為1620℃。然而,令人驚訝的是,成核材料的結晶也可以在低於結晶溫度的退火溫度下獲得,例如在600℃到1620℃的溫度範圍內,較佳地在800℃和1200℃之間,例如約等於1000°C。退火可以進行一段時間,例如大於1分鐘,較佳地超過5分鐘,甚至可超過10分鐘,例如20分鐘。退火可以在氮氣(N2 )和氨氣(NH3 )的氣流下進行。壓力可為75 torrs。
在此實施例中,該方法還包含沉積成長光罩18的步驟。為此,沉積一個介電材料製成的介電層以覆蓋成核層,然後局部地在成核表面17形成開口19。介電材料例如為氧化矽(例如SiO2 )或氮化矽(例如Si3 N4 ),甚或是兩種不同介電材料的堆疊。可以相對於成核部16的材料選擇性地蝕刻。介電層的厚度例如在50nm和200nm之間,例如100nm,開口19在平面(XY)的橫向尺寸例如在100nm和10μm之間,且可以約等於500nm。較佳地,開口19的橫向尺寸小於成核部16的橫向尺寸,例如開口19的橫向尺寸至少小於兩倍的成核部16的橫向尺寸。
因此,獲得如圖1A所示的成核結構10,其適於實現如圖1B所示的發光二極體2的線的成核和磊晶成長。
現在描述用於製造如圖1B所示的多個發光二極體2的方法。
在第一步驟中,線首先透過成長光罩18的開口19從成核表面磊晶成長。
成長溫度達到第一值T1,例如在950℃和1100℃之間,特別是在990℃和1060℃之間。V/III的比率(於此為N/Ga的比),具有10至100之間的第一值(V/III)1 ,例如實質上等於30。注入到磊晶反應器(epitaxy reactor)中的前導物(precursors)的來自III族和V族的元素,前導物例如是鎵元素的三甲基鎵(TMGa)或三乙基鎵(TEGa)、氮元素的氨(NH3 )。H2 /N2 的比率具有大於或等於60/40,較佳地大於或等於70/30,或甚至更大,例如實質上等於90/10的第一值(H2 /N2 )1 。壓力可設定在100毫巴(mb)左右。
因此,獲得第一摻雜部31,該第一摻雜部31具有從成核表面17沿縱向軸線D延伸的線的形狀。第一摻雜部31的第一半導體化合物,在此為GaN,是n型的矽摻雜。在此n型的第一摻雜部31的高度約為5μm,平均直徑約為500 nm。
根據專利文獻WO 2012/136665所述的相同或相似過程,覆蓋n型的第一摻雜部31的側邊緣的介電層的形成可以在形成第一摻雜部31時同時進行。為此,附加元素的前導物為矽的情況下,例如矽烷(SiH4 )被注入前述前導物,其中鎵的前導物與矽前導物的莫耳流量的比例較佳為約500至5000之間。因此,獲得了一層厚度為1nm的氮化矽層(例如Si3 N4 ),其覆蓋n型的第一摻雜部31的側邊緣的整個高度。
這裡獲得的是從成核表面磊晶形成的多條線,其結晶性質實質上相同,只要從具有實質上相同的結晶性質的成核表面進行線的成核。
在第二步驟中,活性區32從線的暴露表面磊晶成長形成,即從不被側向介電層覆蓋的表面磊晶成長形成。
更具體地,形成阻障層的堆疊和形成量子井的至少一個層的堆疊,所述層在磊晶成長的方向上交替形成。形成量子井層和阻障層的層可以由量子井層和阻障層的不同原子比例的氮化銦鎵(InGaN)所製成。作為實施例,阻障層由x大約等於18原子百分比(atomic %)的Inx Ga(1-x) N所製成,而量子井層Iny Ga(1-y) N所製成,其中x大於y,y約為25原子百分比,以改善量子井中的電荷載體的量子限制。
可以在實質上成長溫度值等於T2的成長溫度值T3(即750℃)下形成阻障層和量子井層。其 V/III比中,(V/III)3 的值實質上等於(V/III)2 的值。H2 /N2 的值在阻障層形成期間實質上等於(H2 /N2 )2 的值,並且H2 /N2 的值在形成量子井層期間實質上低於(H2 /N2 )2 的值,例如1/99。壓力可能保持不變。因此,獲得由大約為18個原子百分比左右的銦的氮化銦鎵(InGaN)製成的阻障層,以及由大約為25原子百分比左右的銦的氮化銦鎵(InGaN)製成的量子井層。
在第三步驟中,p型的第二摻雜部33藉由磊晶成長形成,以便覆蓋和至少部分地圍繞活性區32。
為此,成長溫度可以達到高於成長溫度T3的第四值T4,例如為885℃。 V/III的比值可以達到大於(V/III)3 的第四值(V/III)4 ,例如為4000。H2 /N2 比率將達到大於(H2 /N2 )2 的第四值(H2 /N2 )4 ,例如為15/85。最後,壓力可以降低到數量級為300毫巴。
因此,獲得p型參雜的GaN或InGaN所製成的第二摻雜部33,其在此連續地覆蓋並圍繞活性區32。因此,p型的第二摻雜部33和活性區32形成為核/殼配置的發光二極體2中的殼。
最後,第二極化電極3B可以沉積成與p型的第二摻雜部33的至少一部分接觸。第二極化電極3B由對線發射的光輻射為透光的導電材料所構成。因此,藉由兩個極化電極(第一極化電極3A和第二極化電極3B)直接施加電位差到線上以發射光輻射,其發射光譜性質取決於活性區32中的量子井的組成。
因此,獲得具有線型的發光二極體2的光電裝置1,其發光二極體2具有提升的光學及/或電子特性。
圖4A至圖4C是圖1A所示的成核結構10的各種變化型的局部剖視圖。
參考圖4A,該變化型的成核結構10與圖1A中所示的成核結構不同之處在於,成核部16是彼此分離的塊,而不是一個相同的連續層的各個區域。在此實施例中,各成核部16包含一注入部20,其較佳地是位於成核部16的周邊,且與成核部16相接處並與成長表面13接觸。
參考圖4B,該變化型的成核結構10與圖1A所示的成核結構10的不同之處在於,成核部16和中間部14的堆疊形成彼此分開的塊。此外,該結構不包含如上所述的注入部20。成核結構10不包含形式為由介電材料製成的成長光罩18。然而,為了從成核表面以局部的方式確保線的成核和磊晶成長,基板包含介電區4,在暴露的成長表面13處,即不被中間部14和成核部覆蓋的區域。更具體地,介電區4從暴露的成長表面13延伸到基板11,並連接相鄰的中間部14。
可以使用專利文獻WO 2014/064395中描述的方法,即通過成長材料的氮化或氧化獲得介電區。在基板11為矽的情況下,介電區由氧化矽(例如SiO2 )或氮化矽(例如Si3 N4 )所製成。在此實施例中,中間部14較佳地由導電材料製成,例如是摻雜的GaN。
參考圖4C,該變化型的成核結構10與圖1A中所示的成核結構不同之處在於,中間部14是同一連續層23的各個區域。成核部16也是同一連續層24的多個區域。成核表面17由成長光罩18的開口19界定。在此實施例中,中間層23較佳地由導電材料製成,例如是摻雜的GaN。
圖4D至圖4F是圖1A所示的成核結構10的其他變化型的局部剖示圖,其中成核結構10包含由包含過渡金屬的材料所製成的其他注入部。
參考圖4D,該變化型的成核結構10與圖1A中所示的成核結構不同之處在於,其實質上還包含上注入部21,其旨在改善電荷載體注入線的情形。
上注入部21覆蓋了注入部20,且覆蓋了成核部16的一部分。因此,它們在平面(XY)中限定了成核表面,且有助於透過成長光罩18界定開口19。換句話說,上注入部21的開口處在開口19,且部分界定開口的外圍邊緣。因此,在線的成核和磊晶成長期間,每條線佔據開口19,使其側邊緣處與上注入部21接觸。以這種方式一方面增加了由包含過渡金屬的材料所製成的部分的厚度,這改善了電荷載體的循環,另一方面改善了線與包含過渡金屬的材料製成的部分之間的接觸界面,從而改善了從導電的基板11向線注入電荷載體的情形。
上注入部21於此是同一連續層的區域,但是也可以採取彼此為分開的塊的形式。它們可以由包含過渡金屬的同一材料形成,或者由包含過渡金屬的幾個相同或不同材料的堆疊形成。
上注入部21於此由包含過渡金屬的第二材料製成,也就是說它可以由過渡金屬製成、或者由包含過渡金屬的化合物製成,例如過渡金屬的氮化物或碳化物。包含過渡金屬的第二材料可能與成核部16的材料相同或不同,並且較佳地具有比該材料低的電阻率。例如,成核材料可以選自氮化鉭(TaN)、氮化鉿(HfN)、氮化鈮(NbN)、氮化鋯(ZrN)、氮化鈦(TiN),以及多個上注入部21的材料,即包含過渡金屬的第二材料可以為氮化鈦。
上注入部21可具有在1nm和100nm之間的厚度,較佳地在1nm和50nm之間,例如為25nm。
上注入部21可以透過沉積包含過渡金屬的材料的連續層來製成,以便覆蓋成核部16和注入部。然後可以被用於形成成長光罩18的介電材料所覆蓋。
較佳地可透過兩個步驟形成開口19。首先,第一步驟,相對於多個上注入部21的材料,進行選擇性地蝕刻介電材料的步驟,例如透過反應式離子蝕刻(reactive-ion etching,RIE)型的乾蝕刻。因此,包含過渡金屬的第二材料的連續層形成一蝕刻停止層。因而獲得位於第二材料的成核表面17的第一開口。接著,第二步驟,從第一開口進行相對於成核材料選擇性蝕刻第二材料的步驟,例如透過溼蝕刻,其蝕刻劑例如氫氟酸(hydrofluoric acid)。因此形成了開口於成核表面17的開口19。因此,保護成核表面17,避免與乾蝕刻步驟相關聯的成核表面17有任何潛在的劣化。
參考圖4E,該變化型的成核結構10與圖1A中所示的成核結構不同之處在於,其實質上還包含多個下注入部22,旨在改善電荷載體注入線的情形。
下注入部22放置與中間部14之間的成長表面13接觸,且較佳地是與這些部分接觸。下注入部22因此被注入部20覆蓋並與其接觸。於此,注入部20和成核部16是同一連續層24的不同區域。
下注入部22於此由包含過渡金屬的第三材料所製成,也就是說它可以由過渡金屬製成、或者由包含過渡金屬的化合物製成,例如過渡金屬的氮化物或碳化物。包含過渡金屬的第三材料可以與成核部16的材料相同或不同,且較佳地是具有比該材料低的電阻率。例如,成核材料可以選自氮化鉭(TaN)、氮化鉿(HfN)、氮化鈮(NbN)、氮化鋯(ZrN)、氮化鈦(TiN),以及下注入部22的材料,即包含過渡金屬的第三材料可以是氮化鈦。
下注入部22可具有在1nm和100nm之間的厚度,較佳地在1nm和50nm之間,例如為25nm。它們的厚度實質上可等於中間部14的厚度。
因此,由包含過渡金屬的材料製成的部分的厚度局部增加,這改善了電荷載體的循環,且改善了電荷載體從導電的基板11注入線的情形。
參考圖4F,該變化型的成核結構10與圖1A所示的成核結構不同之處在於,其包含多個下注入部22和多個上注入部21。
下注入部22與成長表面13接觸並且被注入部20覆蓋。較佳地是與中間部14接觸。下注入部22是彼此分離的塊,但也可以是形成連續層的區域的變化型。
上注入部21與注入部的上表面接觸並且部分地覆蓋多個成核部16,以便界定成核表面。上注入部21開口於開口19。在此實施例中,上注入部21也與成長表面13接觸並且覆蓋下注入部22和注入部的垂直側壁。上注入部21於此是彼此分離的塊,但也可作為形成連續層的區域的變化型。
上注入部21的第二材料和下注入部22的第三材料是包含過渡金屬的材料,也就是說它們可以由過渡金屬、或包含過渡金屬的化合物所製成,例如過渡金屬的氮或碳化物。第二材料和第三材料的過渡金屬氮化物可以相同或不同,並且可以與成核部16的材料相同或不同。它們可以彼此相同,並且與成核材料不同,並且較佳地具有比該材料低的電阻率。舉例來說,成核材料可以選自氮化鉭(TaN)、氮化鉿(HfN)、氮化鈮(NbN)、氮化鋯(ZrN)、氮化鈦(TiN),第二材料和第三材料的過渡金屬氮化物可能為氮化鈦。
因此,由包含過渡金屬的材料製成的部分的厚度特別地通過局部形成與成核部16接觸的注入部的堆疊而增加,這改善了電荷載體的循環和注入。此外,線和由包含過渡金屬的材料製成的部分之間的接觸界面增加。然後,改善從導電的基板11向線注入電荷載體的情形。
此外,根據III族元素(例如鎵)的極性,而不是根據V族元素(例如氮)的極性,進行主要由III-V化合物(例如,GaN)製成的半導體材料對於的線的成長是有利的。
具體地說,這樣的線可以具有改善的光學及/或電子特性,在氮極性的線的情況下可能出現的反相邊界(inversion domain boundaries)傾向於減少甚至消除,並且線的平面c可能具有的粗糙度將減少,也就是說,線的平面c為實質上正交於生長軸c的取向的線的上表面。
通常,根據III族元素的極性或根據V族元素的極性,由III-V族化合物製成的線可以沿著有利的成長方向而生長。在根據III族元素的極性的成長的情況下,以及根據V族元素的極性的成長的情況下,如果線沿著與成長方向垂直的平面切割,則暴露面實質上具有分別為V族元素的原子和III族元素的原子。
由III-V族化合物(例如由GaN製成)所製成的線顯示,並且根據氮極性藉由成長獲得的線具有反相邊界,其中局部的線為鎵極性。此外,線的平面c顯示具有表面粗糙度。這些氮極性的特性可導致線的光學及/或電子特性的劣化。
根據III族元素的極性,即根據GaN的情況下的鎵極性,本發明人已經觀察到,當線由前述成核結構形成時,以及當在線的成長之前沒有對成核部氮化退火時的線的磊晶成長。具體來說,成核部16,特別是成核表面17,不會同時接受到大於或等於800°C的溫度,特別是溫度大於或等於1000℃、或氨(NH3 )的氣流。獨立於氨的氣流,成核表面17可以經受氮分子(N2)的氣流,而不需要根據這種極性改變線的成長。
因此,發明人已經透過圖式的方式觀察到,當成核表面17在線的成長之前不經歷氮化退火(nitridation annealing),特別是它們不同時處於大於或等於800℃的溫度和氨的氣流時,可根據鎵極性從氮化鈮(NbN)構成的成核部分16獲得由氮化鎵(GaN)構成的線的生長。當成核表面17經受氨的氣流而不是處於大於或等於800℃的溫度時,也可根據鎵極性獲得線的成長。而當成核表面17經歷大於或等於800℃的溫度(如1000℃)而非經受氨的氣流時,也可根據鎵極性獲得線的成長。另一方面,當對成核部16施加氮化退火時,即當成核表面17同時經受溫度例如1000℃時以及氨的氣流時,可根據氮極性獲得線的成長。
在線的成長階段的開始期間,特別是從成核表面上在線的III-V族化合物的成核階段期間,成核表面經受氨氣流。那麼接著溫度較佳是低於800℃。隨後,根據III族的極性,當III-V族化合物連續地覆蓋成核表面17時,溫度可以提高到高於800℃,並且保持氨的氣流,而不會對線的成長產生不利的影響。
較佳地,成核部16的材料選自如氮化鈦(TiN)、氮化鋯(ZrN)、氮化鉿(HfN)、氮化釩(VN)、氮化鈮(NbN)、氮化鉭(TaN)、氮化鉻(CrN)、氮化鉬(MoN)或氮化鎢(WN)的氮化物,或如碳化鈦(TiC)、碳化鋯(ZrC)、碳化鉿(HfC)、碳化釩(VC)、碳化鈮(NbC)、碳化鉭(TaC)的碳化物。成核材料較佳地選自氮化鈦(TiN)、氮化鋯(ZrN)、氮化鉿(HfN)、氮化鈮(NbN)、或氮化鉭(TaN)。成核材料更佳地為氮化鈮(NbN)。
如前描述過之具體實施例。根據本發明的所描述的內容,本領域技術人員將可輕易完成各種變化型和修改。
徑向或核/殼的構造已經描述,構造為第二摻雜部至少部分地包圍並覆蓋線的活性區和末端。作為一變化型,發光二極體可以有一軸向配置,其中線、活性區和第二摻雜部沿著縱向軸線D彼此堆疊,線的側邊緣不需由活性區和第二摻雜部覆蓋。側邊緣被理解為線的一部分的表面,該表面實質上平行延伸縱向軸線D。
已描述了以線的形式的三維半導體元件。作為一變化型,三維元件也可以有錐形,例如多邊圓錐形(polygon-based conical)或截頭圓錐形狀。
還描述了能夠發射電磁輻射的包含發光二極體的光電裝置。作為一變化型,光電裝置還可接收和偵測電磁輻射,以將其轉換成電子信號。
1‧‧‧光電裝置2‧‧‧發光二極體4‧‧‧介電區10‧‧‧成核結構11‧‧‧基板13‧‧‧成長表面14‧‧‧中間部15‧‧‧上中間表面16‧‧‧成核部17‧‧‧成核表面18‧‧‧成長光罩19‧‧‧開口20‧‧‧注入部21‧‧‧上注入部22‧‧‧下注入部23‧‧‧連續層24‧‧‧連續層31‧‧‧第一摻雜部、三維半導體元件、線32‧‧‧活性區33‧‧‧第二摻雜部3A‧‧‧第一極化電極3B‧‧‧第二極化電極an、bn、cn、ae、be、ce、as、bs、cs、ai、bi、ci、af、bf、cf‧‧‧晶軸
圖1A和圖1B是根據一個實施例的成核結構(圖1A)和具有發光二極體且包含圖1A之成核結構的光電裝置(圖1B)的剖視圖。 圖2A和圖2B分別是在沒有中間部的情況下成長和成核表面的透視圖和分解圖。 圖2C是線從成核表面磊晶的透視圖。 圖3A和圖3B分別是成長表面、上中間表面和成核表面(從下到上依序排列)的透視圖。 圖3C是線從成核表面磊晶的透視圖。 圖4A至圖4F是成核結構的各種變化型的剖視圖。
10‧‧‧成核結構
11‧‧‧基板
13‧‧‧成長表面
14‧‧‧中間部
15‧‧‧上中間表面
16‧‧‧成核部
17‧‧‧成核表面
18‧‧‧成長光罩
19‧‧‧開口
20‧‧‧注入部
3A‧‧‧第一極化電極

Claims (16)

  1. 一種成核結構(10),適於三維半導體元件(31)的磊晶成長,包含:一基板(11),該基板由一單晶材料構成,且包含一成長表面(13),在該成長表面(13)上有多個成核部(16),該些成核部(16)由包含一過渡金屬的一材料所製成;以及多個中間部(14),各該中間部由一中間材料所製成,該中間材料係從該成長表面(13)磊晶而成,因而在該中間材料的平面的至少一方向以及與該中間材料的平面正交的至少一方向中,該中間材料的晶格的結晶取向與該基板(11)的結晶材料的晶格的結晶取向一致,各該中間部具有一上中間表面(15)位於相對該成長表面(13)之一側,其中,各該成核部(16)由包含形成一成核材料的一過渡金屬的一材料所製成,該成核材料從該上中間表面(15)磊晶形成,因而在該成核材料的平面的至少一方向以及與該成核材料的平面正交的至少一方向中,該成核材料的晶格的結晶取向與該中間材料的晶格的結晶取向一致;且該些成核部具有一成核表面(17)位於相對該上中間表面(15)的一側,且適於該三維半導體元件(31)的磊晶成長,其中該些中間部(14)位於該基板(11)及該些成核部(16)之間。
  2. 如請求項1之成核結構(10),其中該些中間部(14)形成彼此分離的多個塊,且該些成核部(16)至少部分地毗鄰且接觸多個注入部(20),該些注入部(20)由包含位於該成長表面(13)上的一過渡金屬的一材料所製成,該些注入部接著從該成長表面(13)被織構,因而在與該些注入部 的該材料的平面正交的一方向具有一單一傾向的結晶取向。
  3. 如請求項1或2之成核結構(10),其中該中間材料係選自氮化鋁、III-V族化合物或鋁、鈦、鉿、鎂和鋯的氧化物,且具有一六方晶體結構、一面心立方晶體結構或一斜方晶體結構。
  4. 如請求項1或2之成核結構(10),其中該成核材料係選自鈦、釩、鉻、鋯、鈮、鉬、鉿、鉭或鎢,或選自鈦、釩、鉻、鋯、鈮、鉬、鉿、鉭或鎢的氮化物或碳化物,且具有一六方晶體結構或一面心立方晶體結構。
  5. 如請求項1或2之成核結構(10),其中該基板的該單晶材料係選自III-V族化合物、II-VI族化合物或IV族的元素或化合物,且具有一六方晶體結構或一面心立方晶體結構。
  6. 如請求項5之成核結構(10),其中該基板(13)的該單晶材料是可導電的。
  7. 如請求項1之成核結構(10),更包含至少一下注入部(22),該下注入部(22)由包含一過渡金屬的一材料所製成,該下注入部(22)接觸該成長表面(13),且被與該成核部(16)一體成形並與該成核部(16)為相同材料所製成的一注入部(20)覆蓋,然後該下注入部(22)從該成長表面(13)織構,因而在正交於該下注入部(22)的該材料的平面的一方向上,該下注入部(22)具有單一傾向的一結晶取向。
  8. 如請求項1之成核結構(10),更包含至少一上注入部(21),該上注入部(21)由包含一過渡金屬的一材料所製成,該上注入部(21)接觸該成核部(16),且部分地覆蓋該成核表面(17)。
  9. 一種光電裝置(1),包含前述請求項1至8中任一項之該成核 結構(10),以及多個三維半導體元件(31),其中各該些三維半導體元件(31)從各別的其中一該成核表面(17)磊晶而成,因此在該些三維半導體元件的材料的平面的至少一方向及與該些三維半導體元件的材料的平面正交的至少一方向中,該些三維半導體元件的晶格的結晶取向與該成核材料的晶格的結晶取向一致。
  10. 如請求項9之光電裝置(1),其中各該三維半導體元件(31)係由選自III-V族化合物、II-VI族化合物或IV族的元素或化合物的一半導體材料所製成。
  11. 如請求項10之光電裝置(1),其中各該三維半導體元件(31)的該半導體材料主要由來自III族的一第一元素和來自V族的一第二元素形成的一III-V族的化合物所構成,該些三維半導體元件具有該第一元件的一極性。
  12. 一種製造前述請求項1至8中任一項之成核結構(10)的方法,包含該些成核部(16)的一磊晶成長步驟,該磊晶成長步驟是藉由在環境溫度和500℃之間的一成長溫度下進行濺鍍。
  13. 如請求項12之成核結構(10)的製造方法,更包含形成與該些成核部(16)接觸並且部分地覆蓋該成核表面(17)的至少一上注入部(21)的步驟,該步驟包含:磊晶成長一連續層,該連續層由包含一過渡金屬的一第二材料製成,其中該連續層覆蓋該成核表面(17);沉積一介電層,其中該介電層由一介電材料製成,且覆蓋由該第二材料製成的該連續層; 相對於該第二材料,對該介質材料進行局部和選擇性乾蝕刻,以便形成一第一開口,其中該第一開口面向該成核表面(17),並且開口在該第二材料上;以及相對於該成核材料,對該第二材料進行局部和選擇性溼蝕刻,以便透過該第一開口在該成核表面(17)形成一開口(19)。
  14. 如請求項12或13之成核結構(10)的製造方法,更包含該些成核部(16)的一退火結晶步驟,該退火結晶步驟的溫度範圍為600℃和1200℃之間。
  15. 一種製造前述請求項9至11中任一項之光電裝置(1)的方法,包含:一形成步驟,係形成前述請求項1至8中任一項之該成核結構(10);以及一成長步驟,係從一成核表面(17)磊晶成長多個三維半導體元件(31),使得在該形成步驟和該成長步驟之間的該些成核部(16)不會進行一氮化退火。
  16. 如請求項15之光電裝置(1)的製造方法,其中在該形成步驟和該成長步驟之間,該些成核表面(17)不會同時處於大於或等於800℃的退火溫度以及氨的氣流。
TW106121662A 2016-06-28 2017-06-28 適於三維半導體元件的磊晶成長的成核結構 TWI742101B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1656008A FR3053054B1 (fr) 2016-06-28 2016-06-28 Structure de nucleation adaptee a la croissance epitaxiale d’elements semiconducteurs tridimensionnels
FR1656008 2016-06-28
??1656008 2016-06-28

Publications (2)

Publication Number Publication Date
TW201804632A TW201804632A (zh) 2018-02-01
TWI742101B true TWI742101B (zh) 2021-10-11

Family

ID=57583139

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106121662A TWI742101B (zh) 2016-06-28 2017-06-28 適於三維半導體元件的磊晶成長的成核結構

Country Status (8)

Country Link
US (1) US10801129B2 (zh)
EP (1) EP3475471A1 (zh)
JP (1) JP6931366B2 (zh)
KR (1) KR102409783B1 (zh)
CN (1) CN109563638B (zh)
FR (1) FR3053054B1 (zh)
TW (1) TWI742101B (zh)
WO (1) WO2018002497A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3076078B1 (fr) 2017-12-27 2021-11-26 Aledia Dispositif optoelectronique a matrice de diodes tridimensionnelles
CN112930605B (zh) * 2018-09-07 2022-07-08 苏州晶湛半导体有限公司 半导体结构及其制备方法
FR3130072A1 (fr) * 2021-12-07 2023-06-09 Aledia Procédé de fabrication d’un dispositif optoélectronique
FR3141282A1 (fr) * 2022-10-25 2024-04-26 Commissariat à l'Energie Atomique et aux Energies Alternatives Procédé de fabrication d’un dispositif électronique de puissance, et dispositif obtenu par ce procédé

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104904016A (zh) * 2012-10-26 2015-09-09 原子能及能源替代委员会 配备有过渡金属缓冲层的包含纳米线的电子器件、至少一个纳米线的生长方法以及器件制造方法
WO2016083704A1 (fr) * 2014-11-24 2016-06-02 Commissariat A L'energie Atomique Et Aux Energies Alternatives Dispositif optoélectronique á éléments semiconducteurs tridimensionnels et son procédé de fabrication

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008048704A2 (en) * 2006-03-10 2008-04-24 Stc.Unm Pulsed growth of gan nanowires and applications in group iii nitride semiconductor substrate materials and devices
WO2007112066A2 (en) * 2006-03-24 2007-10-04 Amberwave Systems Corporation Lattice-mismatched semiconductor structures and related methods for device fabrication
WO2010038463A1 (ja) * 2008-10-02 2010-04-08 住友化学株式会社 半導体基板、電子デバイス、および半導体基板の製造方法
TW201019376A (en) * 2008-10-02 2010-05-16 Sumitomo Chemical Co Semiconductor wafer, electronic device and manufacturing method of semiconductor wafer
US9947829B2 (en) 2010-06-24 2018-04-17 Glo Ab Substrate with buffer layer for oriented nanowire growth
FR2973936B1 (fr) 2011-04-05 2014-01-31 Commissariat Energie Atomique Procede de croissance selective sur une structure semiconductrice
FR2984599B1 (fr) * 2011-12-20 2014-01-17 Commissariat Energie Atomique Procede de fabrication d'un micro- ou nano- fil semiconducteur, structure semiconductrice comportant un tel micro- ou nano- fil et procede de fabrication d'une structure semiconductrice
CN103377876B (zh) * 2012-04-25 2016-12-14 清华大学 外延结构体的制备方法
FR2995729B1 (fr) * 2012-09-18 2016-01-01 Aledia Dispositif opto-electrique a microfils ou nanofils semiconducteurs et son procede de fabrication
FR2997558B1 (fr) 2012-10-26 2015-12-18 Aledia Dispositif opto-electrique et son procede de fabrication
US9537044B2 (en) * 2012-10-26 2017-01-03 Aledia Optoelectric device and method for manufacturing the same
JP6059085B2 (ja) * 2013-05-27 2017-01-11 東京エレクトロン株式会社 トレンチを充填する方法及び処理装置
FR3007580B1 (fr) * 2013-06-25 2016-10-21 Commissariat Energie Atomique Dispositif optoelectronique a reflectivite amelioree
FR3032064B1 (fr) * 2015-01-22 2018-03-09 Aledia Dispositif optoelectronique et son procede de fabrication

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104904016A (zh) * 2012-10-26 2015-09-09 原子能及能源替代委员会 配备有过渡金属缓冲层的包含纳米线的电子器件、至少一个纳米线的生长方法以及器件制造方法
WO2016083704A1 (fr) * 2014-11-24 2016-06-02 Commissariat A L'energie Atomique Et Aux Energies Alternatives Dispositif optoélectronique á éléments semiconducteurs tridimensionnels et son procédé de fabrication

Also Published As

Publication number Publication date
TW201804632A (zh) 2018-02-01
WO2018002497A1 (fr) 2018-01-04
KR102409783B1 (ko) 2022-06-16
CN109563638A (zh) 2019-04-02
KR20190094143A (ko) 2019-08-12
JP6931366B2 (ja) 2021-09-01
CN109563638B (zh) 2021-03-19
US20190153619A1 (en) 2019-05-23
FR3053054B1 (fr) 2021-04-02
JP2019527470A (ja) 2019-09-26
FR3053054A1 (fr) 2017-12-29
US10801129B2 (en) 2020-10-13
EP3475471A1 (fr) 2019-05-01

Similar Documents

Publication Publication Date Title
KR102140315B1 (ko) 광전자 장치 및 이의 제조 방법
TWI775886B (zh) 包括以軸向配置的三維半導體結構之光電裝置
US7943494B2 (en) Method for blocking dislocation propagation of semiconductor
TWI425558B (zh) 形成電路結構的方法
TWI413262B (zh) 二極體
US10886427B2 (en) Optoelectronic device comprising three-dimensional diodes
TWI742101B (zh) 適於三維半導體元件的磊晶成長的成核結構
EP2997605B1 (fr) Dispositif optoélectronique et son procédé de fabrication
US20190363219A1 (en) Optoelectronic device and method for manufacturing same
US9196787B2 (en) Nanowire LED structure with decreased leakage and method of making same
KR20170062480A (ko) 3차원 반도체 소자를 구비한 광전자 장치
US11049997B2 (en) Optoelectronic device comprising three-dimensional semiconductor structures with a wider single-crystal portion
US20140284551A1 (en) Nanowire LED Structure with Decreased Leakage and Method of Making Same
JP4743989B2 (ja) 半導体素子およびその製造方法ならびに半導体基板の製造方法
KR102070209B1 (ko) 성장기판 및 그를 포함하는 발광소자
KR20220034222A (ko) 발광 다이오드 및 제조 방법
CN109346573A (zh) 一种氮化镓基发光二极管外延片及其制备方法
CN109378368B (zh) 在PSS衬底上沿半极性面外延生长GaN基片的方法
KR20220025818A (ko) 3차원 반도체 구성요소를 구비하는 광전자 장치와 상기 장치를 제조하는 방법
KR20110013845A (ko) 발광다이오드 및 이의 제조방법