WO2016083704A1 - Dispositif optoélectronique á éléments semiconducteurs tridimensionnels et son procédé de fabrication - Google Patents

Dispositif optoélectronique á éléments semiconducteurs tridimensionnels et son procédé de fabrication Download PDF

Info

Publication number
WO2016083704A1
WO2016083704A1 PCT/FR2015/053107 FR2015053107W WO2016083704A1 WO 2016083704 A1 WO2016083704 A1 WO 2016083704A1 FR 2015053107 W FR2015053107 W FR 2015053107W WO 2016083704 A1 WO2016083704 A1 WO 2016083704A1
Authority
WO
WIPO (PCT)
Prior art keywords
seeds
nitride
layer
optoelectronic device
substrate
Prior art date
Application number
PCT/FR2015/053107
Other languages
English (en)
Inventor
Amélie DUSSAIGNE
Hubert Bono
Original Assignee
Commissariat A L'energie Atomique Et Aux Energies Alternatives
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat A L'energie Atomique Et Aux Energies Alternatives filed Critical Commissariat A L'energie Atomique Et Aux Energies Alternatives
Priority to KR1020177015491A priority Critical patent/KR20170089879A/ko
Priority to CN201580063955.4A priority patent/CN107004571A/zh
Priority to US15/527,031 priority patent/US20170365737A1/en
Priority to EP15805588.9A priority patent/EP3224858A1/fr
Publication of WO2016083704A1 publication Critical patent/WO2016083704A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02576N-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02603Nanowires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02636Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
    • H01L21/02639Preparation of substrate for selective deposition
    • H01L21/02645Seed materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02366Special surface textures of the substrate or of a layer on the substrate, e.g. textured ITO/glass substrate or superstrate, textured polymer layer on glass substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03044Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds comprising a nitride compounds, e.g. GaN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035227Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum wires, or nanorods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/035281Shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1856Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising nitride compounds, e.g. GaN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0075Processes for devices with an active region comprising only III-V compounds comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/08Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a plurality of light emitting regions, e.g. laterally discontinuous light emitting layer or photoluminescent region integrated within the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/16Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous
    • H01L33/18Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous within the light emitting region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/22Roughened surfaces, e.g. at the interface between epitaxial layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/24Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate of the light emitting region, e.g. non-planar junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/42Transparent materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating

Definitions

  • the present disclosure relates generally to optoelectronic devices comprising semi ⁇ dimensional conductor elements, for example micro-wires, nanowires, bevel or tapered elements and their manufacturing processes.
  • optoelectronic devices are meant devices adapted to perform the conversion of an electrical signal into an electromagnetic radiation or vice versa, and in particular devices dedicated to the detection, measurement or emission of electromagnetic radiation or devices dedicated to photovoltaic applications.
  • microwires or nanowires comprising a semiconductor material are microwires or nanowires based on a compound having at least one group III element and a group V element (for example gallium nitride GaN), called by the III-V compound suite, or comprising orally, at least one group II element and one group VI element (for example zinc oxide ZnO), hereinafter referred to as II-VI compound.
  • group III element and a group V element for example gallium nitride GaN
  • III-V compound suite for example gallium nitride GaN
  • group VI element for example zinc oxide ZnO
  • Processes for the fabrication of microfilaments or nanowires of semiconductor material must enable the fabrication of microfilts or nanowires with precise and uniform control of the geometry, position and crystallographic properties of each microfil or nanowire.
  • Document US Pat. No. 7,829,443 describes a process for manufacturing nanowires comprising depositing a layer made of a dielectric material on a planar face of a substrate, etching apertures in the layer of the dielectric material to expose portions of the substrate. filling the apertures of portions of a material promoting the growth of nanowires and the formation of nanowires in the apertures on these portions.
  • the dielectric material is chosen so that the nanowires do not grow directly thereon.
  • each microfil or nanowire In order for the conversion properties of an electrical signal into electromagnetic radiation or conversely of microfilts or nanowires to be the best possible, it is desirable for each microfil or nanowire to have a substantially monocrystalline structure.
  • the microfilts or nanowires are preferably composed of a material based on a first element and a second element, for example compounds III-V or II-VI, it is desirable that each microfil or nanowire has a substantially constant polarity on the entire microfilament or nanowire.
  • the growth of the nanowires may be disturbed so that each nanowire may not have a monocrystalline structure.
  • the nanowires are predominantly composed of a material based on a first element and a second element, for example compounds III-V or II- VI, it can appear, on the flanks of the nanowire, a peripheral layer having a reversed polarity with respect to the polarity in the heart of the nanowire.
  • an object of an embodiment of the present invention is to overcome at least in part the disadvantages of optoelectronic devices, in particular microwires or nanowires, and their manufacturing processes described above.
  • Another object of an embodiment of the present invention is that the three-dimensional elements, in particular microwires or nanowires, made of semiconductor material are not formed through openings made in a layer of a dielectric material.
  • each three-dimensional element, in particular each microfil or nanowire, made of semiconductor material has substantially a monocrystalline structure.
  • Another object of an embodiment of the present invention is that the position, the geometry and the crystallographic properties of each three-dimensional element, in particular each microfil or nanowire, of semiconductor material can be controlled in a precise and uniform manner.
  • Another object of an embodiment of the present invention is that the three-dimensional elements, in particular the microwires or nanowires, of semiconductor material can be formed on an industrial scale and at low cost.
  • One embodiment provides an optoelectronic device comprising a support comprising a face comprising contiguous plane facets inclined relative to each other; germs, predominantly a first compound selected from the group consisting of the compounds III-V, the compounds II-VI and compounds IV, in contact with the support at least some of the joints between the facets; and wired, conical or frustoconical three-dimensional semiconductor elements of nanometric or micrometric size, predominantly of said first compound, on the seeds.
  • the device further comprises, for each semiconductor element, an active region at least partially covering a portion of the semiconductor element and adapted to the emission or reception of electromagnetic radiation.
  • the semiconductor elements have an elongate shape parallel to a preferred direction, and the distance, measured perpendicularly to the preferred direction, between two germs of adjacent seed pairs is greater than 1 ⁇ m.
  • the joints comprise first raised joints and second recessed joints and the distance, measured parallel to the preferred direction, between a first join and the second adjacent join is greater than 1 ⁇ m.
  • the support comprises a substrate and at least one layer covering the substrate, the seeds being formed on said layer.
  • the substrate is made of a semiconductor material, in particular a substrate made of silicon, germanium, silicon carbide, a III-V compound, such as GaN or GaAs, or a ZnO substrate.
  • the layer is made of aluminum nitride (AlN), aluminum oxide (Al 2 O 3), boron (B), boron nitride (BN), titanium (Ti), nitride of titanium (TiN), tantalum (Ta), tantalum nitride (TaN), hafnium (Hf), hafnium nitride (HfN), niobium (Nb), niobium nitride (NbN), zirconium (Zr), of zirconium borate (ZrB2), of zirconium nitride (ZrN), of silicon carbide (SiC), of nitride and tantalum carbide (TaCN), or of magnesium nitride in the form Mg x Ny, where x is approximately equal to 3 and y is approximately equal to 2, for example magnesium nitride in the form 3 ⁇ 4 ⁇ 2.
  • AlN aluminum nitride
  • Al 2 O 3 aluminum oxide
  • a support comprising a face comprising plane ointive facets inclined relative to each other;
  • the device further comprises, for each semiconductor element, the formation of an active region at least partially covering a portion of the semiconductor element and adapted to the emission or reception of radiation electromagnetic.
  • the seeds are formed at a temperature between 900 and 1100 ° C.
  • the seeds are formed by organometallic chemical vapor deposition.
  • the seeds are in a III-V material and the seeds are obtained by supplying precursors in a reactor with a V / III ratio of less than 50.
  • the support is made of silicon and is etched by chemical etching based on KOH or TMZH.
  • FIGS. 1A to 1C are partial and schematic sections of structures obtained at successive stages of a known method of manufacturing an optoelectronic device with microwires or nanowires;
  • Figure 2 is a partial and schematic sectional detail of a microfil or nanowire obtained by the method described in relation to Figures 1A to 1C;
  • Figure 3 is a partial and schematic sectional view of an embodiment of an optoelectronic device with microwires or nanowires;
  • FIGS. 4A to 4G are partial and schematic sections of structures obtained at successive stages of an embodiment according to the invention of a manufacturing method of the optoelectronic device of FIG. 3; and FIG. 5 is a partial and schematic sectional view of another embodiment of an optoelectronic device with microwires or nanowires.
  • a compound based on at least a first element and a second element has a polarity of the first element or a polarity of the second element means that the material grows according to a direction and that when the material is cut in a plane perpendicular to the preferred growth direction, the exposed face essentially comprises atoms of the first element in the case of the polarity of the first element or atoms of the second element in the case of the polarity of the second element.
  • the present application relates to optoelectronic devices with three-dimensional elements, for example microwires, nanowires, conical elements or frustoconical elements.
  • three-dimensional elements for example microwires, nanowires, conical elements or frustoconical elements.
  • embodiments are described for optoelectronic devices with microfilts or nanowires.
  • these embodiments may be implemented for three-dimensional elements other than microfilms or nanowires, for example three-dimensional conical or frustoconical elements.
  • microfil denotes a three-dimensional structure of elongated shape in a preferred direction, of which at least two dimensions, called minor dimensions, are between 5 nm and 2.5 ⁇ m. , preferably between 50 nm and 2.5 ⁇ m, the third dimension, called the major dimension, being greater than or equal to 1 time, preferably greater than or equal to 5 times and even more preferably greater than or equal to 10 times, the greater minor dimensions.
  • the minor dimensions may be less than or equal to about 1 ⁇ m, preferably from 100 nm to 1 ⁇ m, more preferably from 100 nm to 800 nm.
  • the height of each microfil or nanowire may be greater than or equal to 500 nm, preferably from 1 ⁇ m to 50 ⁇ m.
  • the term “wire” is used to mean “microfil or nanowire”.
  • the mean line of the wire which passes through the centroids of the straight sections, in planes perpendicular to the direction preferred wire, is substantially rectilinear and is called thereafter "axis" of the wire.
  • FIGS. 1A to 1C illustrate the structures obtained at successive steps of an example of a known method of manufacturing an optoelectronic device comprising wires as described above.
  • a layer 1 of a dielectric material is deposited on a substrate 2 and openings 4 are etched in the layer 1, the openings 4 to expose certain parts 5 of the substrate 2 ( Figure 1A).
  • FIG 2 is a detail view of one of the son 7 shown in Figure 1C.
  • the inventors have demonstrated that when the method described above in connection with FIGS. 1A to 1C is used for the formation of wires of a semiconductor material based on a compound of a first element and a second element. element, this can result in the formation of a wire 7 comprising a monocrystalline core 8, having the polarity of the first element, surrounded by a monocrystalline peripheral layer 9 of the polarity of the second element. This can then cause the appearance of defects at the interface between the layer 9 and the core 8.
  • One explanation would be that the presence of the dielectric layer 1 disrupts the formation of the seed 6 and / or the beginning of the growth of the wire 7, which causes the formation of the layer 9 when the wire 7 grows from the seed 6 under -jacent.
  • the son before the formation of the son, it is intended to form patterns in relief on the face of the support on which the seeds at the base of the son must be formed.
  • the raised patterns may include pyramids, steps or ribs.
  • the face of the support then comprises a succession of contiguous planar facets which are connected to each other by joins, corresponding to corners or edges. Corners or edges may be "raised” or “hollow”. For example, a raised corner may correspond to the top of an asperity and a raised edge may correspond to the nose of a step. A recessed corner may correspond to the bottom of a recess and a recessed edge may correspond to the bottom of a valley.
  • the inventors have demonstrated that, when suitable growth conditions are used, it is possible to grow the seeds used for the formation of the son substantially only on the corners or edges in relief.
  • the wires are thus not formed through openings provided in an insulating layer covering the support.
  • FIG. 3 is a partial and schematic sectional view of an embodiment of an optoelectronic device 10 comprising wires as described previously and adapted to the emission of electromagnetic radiation.
  • the device 10 comprises, from the bottom to the top in FIG.
  • a first polarization electrode 12 for example metallic
  • a support 14 comprising a first face 16 in contact with the electrode 12 and a second face 18 opposite the first face 16, and comprising relief patterns 20, which correspond to in the present embodiment pyramids 20 each having a vertex 22;
  • semiconductor elements 28 which in the present embodiment correspond to wires of height H ] and of axis D, three wires 28 being shown, each wire 28 comprising a lower portion 30 of height 3 ⁇ 4, doped with a first type of conductivity, for example N type, in contact with one of the seeds 26, and an upper portion 32 of height H3, doped with the first type of conductivity or unintentionally doped;
  • each shell 34 covering the outer wall of the upper portion 32 of each wire 28, each shell 34 comprising at least one stack of an active layer 36 covering the upper portion 32 and a semiconductor layer 38 of a second conductivity type opposite to the first type of conductivity, covering the active layer 36;
  • an insulating region 40 covering the face 18 between the wires 28 on at least the height 3 ⁇ 4;
  • a second electrode layer 42 covering the semiconductor layers 38 of the shells 34 and the insulating region 40.
  • a conductive layer can cover the electrode layer 42 between the wires 28.
  • An encapsulation layer can cover the electrode 42.
  • each wire 28 and the shell 34 associated is an LED light emitting diode.
  • LEDs LED When multiple LEDs LED are formed on the substrate 14, they can be connected in series and / or in parallel and form a set of light emitting diodes.
  • the assembly can comprise of a few LEDs ⁇ LEDs to a thousand LEDs.
  • the support 14 may be a one-piece structure or comprise a stack of a layer, of two layers or of several layers on a substrate.
  • the support 14 comprises a substrate 24 optionally covered with a nucleation layer 25 adapted to facilitate the growth of the seeds 26.
  • the substrate 24 may be a semiconductor substrate, for example a silicon substrate , in germanium, silicon carbide, a compound III-V, such as GaN or GaAs, or a ZnO substrate.
  • the substrate 24 is a monocrystalline silicon substrate.
  • it is a semiconductor substrate compatible with the manufacturing processes implemented in microelectronics.
  • the substrate 24 may correspond to a multilayer structure of silicon on insulator type, also called SOI (acronym for Silicon On Insulator).
  • the substrate 24 may be of an insulating material, for example sapphire.
  • the electrode 12 can be made on the side of the face 18 of the substrate 24.
  • the substrate 24 can be heavily doped, weakly doped or undoped .
  • the seed layer 25 is made of a germ-growth promoting material 26.
  • the material constituting the seed layer 25 may be a transition metal nitride, carbide or boride of column IV , V or VI of the periodic table of the elements or a combination of these compounds.
  • the seed layer 25 may be aluminum nitride (AlN), aluminum oxide (Al 2 O 3), boron (B), boron nitride (BN), titanium (Ti) , of titanium nitride (TiN), of tantalum (Ta), of tantalum nitride (TaN), of hafnium (Hf), of hafnium nitride (HfN), of niobium (Nb), of niobium nitride (NbN ), zirconium (Zr), zirconium borate (ZrB2), zirconium nitride (ZrN), silicon carbide (SiC), nitride and tantalum carbide (TaCN), or magnesium nitride in the form Mg x Ny, where x is approximately equal to 3 and y is approximately equal to 2, for example magnesium nitride in the form 3 ⁇ 4 ⁇ 2.
  • the seed layer 25 may be doped with the same
  • the seed layer 25 When the seed layer 25 is aluminum nitride, it can be substantially textured and have a preferred polarity.
  • the texturing of the seed layer 25 can be obtained by an additional treatment carried out after the deposition of the seed layer 25. It is, for example, annealing under an ammonia (NH 3) stream.
  • the seed layer 25 In the case of a wire composed mainly of GaN, the seed layer 25 can promote the growth of GaN with the polarity N.
  • the seeds 26 and the semiconductor elements 28 are mainly formed from at least one semiconductor material selected from the group consisting of compounds III-V, compounds II-VI or semiconductors or compounds of group IV.
  • the seeds 26 and the semiconductor elements 28 may be at least partly formed from semiconductor materials having, for the most part, a III-V compound, for example a III-N compound.
  • group III elements include gallium (Ga), indium (In) or aluminum (Al).
  • III-N compounds are GaN, AlN, InN, InGaN, AlGaN or AlInGaN.
  • Other group V elements may also be used, for example, phosphorus or arsenic. In general, the elements in compound III-V can be combined with different mole fractions.
  • the seeds 26 and the semiconductor elements 28 may be, at least in part, formed from semiconductor materials predominantly comprising a compound II-VI.
  • Group II elements include Group IIA elements, including beryllium (Be) and magnesium (Mg) and Group IIB elements, including zinc (Zn), cadmium (Cd) and mercury ( Hg).
  • Group VI elements include elements of the VIA group, including oxygen (O) and tellurium (Te).
  • compounds II-VI are ZnO, ZnMgO, CdZnO, CdZnMgO, CdHgTe, CdTe or HgTe. In general, the elements in II-VI can be combined with different mole fractions.
  • the seeds 26 and the semiconductor elements 28 may be at least partially formed from semiconductor materials having at least one Group IV element.
  • Group IV semiconductor materials are silicon (Si), carbon (C), germanium (Ge), silicon carbide (SiC) alloys, silicon-germanium (SiGe) alloys or carbide alloys of germanium (GeC).
  • the semiconductor elements 28 may further comprise a dopant.
  • the dopant may be chosen from the group comprising a group II P dopant, for example magnesium (Mg), zinc (Zn), cadmium (Cd ) or mercury (Hg), a group IV P-type dopant, for example carbon (C) or a group IV N-type dopant, for example silicon (Si), germanium (Ge), selenium (Se), sulfur (S), terbium (Tb) or tin (Sn).
  • a group II P dopant for example magnesium (Mg), zinc (Zn), cadmium (Cd ) or mercury (Hg)
  • a group IV P-type dopant for example carbon (C) or a group IV N-type dopant, for example silicon (Si), germanium (Ge), selenium (Se), sulfur (S), terbium (Tb) or tin (Sn).
  • Each seed 26 has a mean nanometric size, that is to say that the volume of each seed 26 is included in a sphere whose diameter is between 1 nm and 100 nm.
  • the seeds 26 do not extend on the facets between the joints. This means that each seed 26 covers only one seam and there is no seed that covers two or more seams.
  • Each seed 26 may correspond to a single crystal.
  • each seed 26, or at least some of them may correspond to a quantum dot.
  • a quantum dot is a nanoscale semiconductor structure. It behaves like a potential well that confines electrons and holes in the three dimensions of space, in a region of a size of the order of the length wave of electrons, a few tens of nanometers in a semiconductor material.
  • the height H] _ may be between 250 nm and 50 um.
  • Each wire 28 may have an elongate semiconductor structure along an axis D.
  • the axes D of the wires 28 may be substantially parallel.
  • Each wire 28 may have a generally cylindrical shape, the base of which has, for example, an oval, circular or polygonal shape, in particular triangular, rectangular, square or hexagonal.
  • the axes of two adjacent yarns 28 may be 0.5 ⁇ m to 10 ⁇ m apart and preferably 1.5 ⁇ m to 5 ⁇ m.
  • the son 28 may be regularly distributed, in particular according to a hexagonal network.
  • the lower portion 30 of each wire consists mainly of a compound III-N, for example gallium nitride, doped with a first type of conductivity, for example of type N.
  • the dopant type N can be silicon.
  • the height 3 ⁇ 4 of the lower portion 30 may be between 500 nm and 25 ⁇ m.
  • the upper portion 32 of each wire is, for example, at least partially made in a compound III-N, for example gallium nitride.
  • the portion 32 may be doped with the first type of conductivity, for example of the N type, or may not be intentionally doped.
  • the height H3 of the upper portion 32 may be between 500 nm and 25 ⁇ m.
  • the crystalline structure of the wire may be of the wurtzite type, the wire extending in the crystallographic direction c.
  • the active layer 36 is the layer from which the majority of the radiation provided by the device 10 is emitted.
  • the active layer 36 may comprise means of confinement.
  • the active layer 36 may comprise a single quantum well. It then comprises a different semiconductor material semiconductor material forming the upper portion 32 and the semiconductor layer 38 and having a band gap smaller than that of the material forming the upper portion 32 and the semiconductor layer 38.
  • the active layer 36 may comprise multiple quantum wells. It then comprises a stack of semiconductor layers forming an alternation of quantum wells and barrier layers.
  • the semiconductor layer 38 may comprise a multilayer stack comprising in particular:
  • the electron blocking layer may be formed of a ternary alloy, for example gallium aluminum nitride (AlGaN) or indium aluminum nitride (AlInN) in contact with the active layer and the intermediate layer, to ensure a good distribution of the electric carriers in the active layer.
  • a ternary alloy for example gallium aluminum nitride (AlGaN) or indium aluminum nitride (AlInN) in contact with the active layer and the intermediate layer, to ensure a good distribution of the electric carriers in the active layer.
  • the intermediate layer for example doped P type, may correspond to a semiconductor layer or a stack of semiconductor layers and allows the formation of a junction
  • the active layer 36 being between the P-type intermediate layer and the N-type portion 32 of the wire 28 of the P-N or P-I-N junction.
  • the bonding layer may correspond to a semiconductor layer or to a stack of semiconductor layers and allows the formation of an ohmic contact between the intermediate layer and the electrode 42.
  • the bonding layer may be doped very thinly. strongly of the opposite type to the portion lower 30, until degenerate the semiconductor layer or layers, for example doped P type at a concentration greater than or equal to 10 ⁇ 0 atoms / cm- ⁇ .
  • the insulating region 40 may be a dielectric material, such as silicon oxide (S1O2) f silicon nitride (Si x N y, where x is approximately equal to 3 and y is equal to about 4, e.g., S13N4) , in silicon oxynitride (in particular of general formula SiO x Ny, for example S12O 2), in hafnium oxide (HfC 2) or in diamond.
  • the thickness of the insulating region 40 is between 500 nm and 25 ⁇ m.
  • the insulating region 40 may have a monolayer structure or correspond to a stack of two layers or more than two layers.
  • the electrode 42 is adapted to bias the active layer 36 covering each semiconductor element 28 and to pass electromagnetic radiation emitted by the emitting diodes ⁇ luminescent LED.
  • the material forming the electrode 42 may be a transparent and conductive material such as indium tin oxide (ITO), or zinc oxide doped with aluminum or not. or gallium, or graphene.
  • the electrode layer 42 has a thickness of between 5 nm and 200 nm, preferably between 20 nm and 50 nm.
  • the facets of the pyramids 20 can act as reflecting surfaces and improve the reflection of the light emitted by the active layers towards the substrate 24, towards the outside of the optoelectronic device 10.
  • MOVPE Metal-Organic Vapor Phase Epitaxy
  • MBE molecular beam epitaxy
  • MBBE gas-source MBE
  • MOMBE organometallic MBE
  • PAMBE plasma-assisted MBE
  • ALE Atomic Layer Epitaxy
  • HVPE Hydride Vapor Phase Epitaxy
  • the process may comprise injecting into a reactor a precursor of a group III element and a precursor of a group V element.
  • group III precursor elements are trimethylgallium (TMGa), triethylgallium (TEGa), trimethylindium (TMIn) or trimethylaluminum (TMA1).
  • group V precursors are ammonia (NH3), tertiarybutylphoshine (TBT), arsine (ASH3), or asymmetric dimethylhydrazine (UDMH).
  • the ratio V / III of the gas flow of the precursor of the group V element to the gas flow of the precursor of the group III element is referred to as the V / III ratio.
  • a precursor of an additional element is added in addition to the precursors of compound III -V.
  • the presence of the precursor of the additional element leads to the incorporation of the element addi ⁇ mentary in the III-V compound to dope the III-V compound but also to the formation of a layer of a dielectric material mainly composed of the additional element and the group V element on the lateral flanks of the growing crystals of the III-V compound.
  • the additional element may be silicon (Si).
  • An example of a precursor of silicon is silane (S1H4). This enables the N-type wires to be doped.
  • the thickness of the dielectric layer of S13N4 obtained is then generally less than 10 nm.
  • the face 18 is irregular or rough, that is to say that it has asperities.
  • the face 18 comprises pyramid-shaped asperities 20.
  • the face 18 comprises a succession of contiguous facets which are connected to each other by seams, corresponding to corners or edges, relief or hollow.
  • the facets correspond to the faces of the pyramids 20
  • the raised corners correspond to the vertices 22 of the pyramids
  • the hollow edges correspond to the edges situated at the base of the pyramids 20 and which are common to adjacent pyramids.
  • the inventors have demonstrated that, when the roughness of the face 18 has particular properties and for particular germ growth conditions described below, the seeds are first formed in majority, or in whole, on certain joints of the face 18, preferably on the raised corners, and if there are no raised corners, on the raised edges. These edges or corners 22 then form preferred growth sites for the seeds 26.
  • the seeds 26 themselves form growth sites of the wires 28.
  • One explanation would be that when the atoms of the material making up the seeds 26 are deposited on the face 18 during the growth of the seeds 26, these atoms tend to accumulate first at the raised corners, or in the absence of raised corners, at raised edges, these locations being those where the growth germs 26 would require the least energy.
  • the distance D ] _ measured perpendicularly to the axis D, between two adjacent raised corners 22, or, in the absence of raised corners, between two adjacent raised edges, is greater than diffusion length of the atoms of the material constituting the seeds 26.
  • This diffusion length depends in particular on the geometric shape of the face 18, its roughness, the material constituting the seeds 26, and 26.
  • the substrate 24 is Si and the asperities 20 correspond to pyramids
  • the distance D ] _ between two adjacent vertices 22 is included between 1 ⁇ m and 10 ⁇ m.
  • the distance D2 between a raised corner 22 and the adjacent edge or wedge 22, or, in the absence of raised corners, between an edge in relief and the adjacent edge or wedge 22 is greater than the diffusion length of the atoms of the material constituting the seeds 26.
  • the seeds are GaN
  • that the substrate 14 is Si and that the asperities correspond to pyramids
  • the distance D2 between the apex 22 and the base of the pyramid is between 1 ⁇ m and 10 ⁇ m.
  • the ratio V / III is less than 500, preferably less than 50.
  • the main parameter for modifying the diffusion length of the material constituting the seeds 26 is the temperature in the reactor during the growth of the seeds.
  • the temperature in the growth reactor is between 900 and 1100, preferably between 950 and 1050.
  • FIGS. 4A to 4G are partial and schematic sections of structures obtained at successive stages of an embodiment of a method of manufacturing the optoelectronic device 10 shown in FIG.
  • FIG. 4A represents the structure obtained after depositing, on a planar face 50 of the substrate 24, a layer 52, forming an etching mask, and comprising openings 54 which expose portions of the face 50 of the substrate 24.
  • the substrate 24 a for example, an initial thickness of 400 ⁇ m.
  • the layer 52 corresponds, for example, to a layer of titanium (Ti), titanium nitride (TiN), silicon nitride (S13N4) or silicon dioxide (S12O).
  • the layer 52 is deposited on the entire face 50 and the openings 54 are formed in the layer 52 by etching.
  • the layer deposition conditions may be adapted to cause the formation of the openings 54 randomly during the deposition of the layer 52.
  • the method of forming the layer 52 comprises the deposition of a resin layer 52 on the entire face 50 of the substrate 24 and the formation of the openings 54 in the resin layer 52 by lithography.
  • nanoimprint is an etching process in which a punch coated with a nanometric pattern is applied to the resin layer 52.
  • the resin layer 52 is then cured, for example under the effect of heat or heat. exposure to ultraviolet rays, the hardened resin layer 52 retaining the printed pattern from the punch.
  • the residual resin portion at the bottom of the printed patterns is then removed, for example by dry etching, to obtain the openings 54.
  • FIG. 4B shows the structure obtained after etching the substrate 24 through the layer 52 to form a face 56 comprising patterns in relief and after removing the layer 52.
  • the relief patterns may correspond to pyramids.
  • the face 56 corresponds to the face 18 described above.
  • the face 56 has the same shape as the desired face 18.
  • the etching of the substrate 24 may be a humic chemical etching anisotropic using an aqueous solution of potassium hydroxide (KOH) or tetramethylammonium hydroxide (TMAH).
  • KOH potassium hydroxide
  • TMAH tetramethylammonium hydroxide
  • the face 50 of the substrate 24 can be a face (001) and the face 56 obtained after the etching may be composed of (111) planes.
  • the etching of the substrate 24 may be a directional dry etching, for example by works a plasma.
  • the etching of the substrate 24 may be anisotropic humic chemical etching using an aqueous solution of potassium hydroxide (KOH).
  • FIG. 4C represents the structure obtained after the possible deposit of the seed-promoting layer 25.
  • the seed layer 25 can be deposited by a conformal deposit, for example by MOCVD or by PVD.
  • FIG. 4D represents the structure obtained after the formation of the seeds 26 on the seed layer 25 at the vertices 22 of the pyramids 20.
  • a method of the MOCVD type can be implemented by in ection in a spray-type MOCVD reactor, a gallium precursor gas, for example trimethylgallium (TMGa) and a nitrogen precursor gas, for example ammonia (NH3).
  • TMGa trimethylgallium
  • NH3 ammonia
  • a 3x2 "MOCVD reactor, of the spray type, marketed by the company AIXTRON a V / III ratio of less than 50, for example in the range of 5 to 50, makes it possible to promote the growth of 26.
  • the pressure in the reactor is, for example, between 100 mbar (100 hPa) and
  • the temperature in the reactor is, for example, between 900 ° C and 1100 ° C.
  • FIG. 4E shows the structure obtained after having grown the lower portions 30 of the wires 28. According to one embodiment, the operating conditions of the reactor
  • MOCVDs previously described for the growth of seeds 26 are maintained except that a precursor of silicon, for example silane (S1H4), is added to the other precursor gases.
  • a precursor of silicon for example silane (S1H4)
  • silane is added to the other precursor gases.
  • the presence of silane among the precursor gases results in the incorporation of silicon into the GaN compound.
  • this results in the formation of a layer of silicon nitride, not shown, which covers the periphery of each lower portion 30, with the exception of the top as shown in FIG. and as the growth of the lower portion 30 increases.
  • FIG. 4F represents the structure obtained after having grown the upper portions 32 of the wires 28.
  • the operating conditions of the MOCVD reactor described above are, by way of example, maintained except for the fact that the stream of silane in the reactor is reduced, for example by a factor greater than or equal to 10, or stopped.
  • the upper portion 32 may be N-type doped due to the diffusion in this active portion of dopants from the adjacent passivated portions or due to the residual doping of GaN.
  • FIG. 4G represents the structure obtained after having grown the shells 34 covering the upper portions 32 of the wires 28.
  • the layers composing the shell 34 may be formed by epitaxy. Given the presence of the silicon nitride layer covering the periphery of the lower portion 30 of each wire 28, the deposition of the layers composing the shell 34 occurs only on the upper portion 32 of each wire 28.
  • the subsequent steps of the method of manufacturing the optoelectronic device 10 include forming the insulating region 40 and forming the electrodes.
  • the method may comprise a step of thinning the substrate 14 before the formation of the electrode 12.
  • FIG. 5 is a partial and schematic sectional view of an embodiment of an optoelectronic device 60 comprising wires 28 as described above and adapted to the emission of electromagnetic radiation.
  • the optoelectronic device 60 comprises all the elements of the optoelectronic device 10 described previously with reference to FIG. 3 except that the pyramidal relief patterns of the optoelectronic device 10 are replaced by patterns in relief in the form of steps 62.
  • the seed layer 25 is not shown.
  • the distance D ] _ described above, corresponds to the distance perpendicular to the axis D between two successive noses 64 and the distance D2, described above, corresponds to the height of the step, measured parallel to the axis D.
  • the noses 64 of the steps 62 form preferred growth sites of the seeds 26 when the growth conditions described above are implemented.
  • the raised patterns in the form of steps 62 may be obtained in particular by dry etching and / or by the use of disoriented substrate.
  • the device Optoelectronics may have an axial structure in which the active layer is formed only in the extension of the wire, that is to say only on the top wall of the wire.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Electromagnetism (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Led Devices (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

L'invention concerne un dispositif optoélectronique (10) comprenant un support (14) comprenant une face (18) comprenant des facettes planes jointives inclinées les unes par rapport aux autres; des germes (26), majoritairement en un premier composé choisi parmi le groupe comprenant les composés III-V, les composés II-VI et les composés IV, au contact du support à au moins certaines des jointures (22) entre les facettes; et des éléments semiconducteurs tridimensionnels (28) filaires, coniques ou tronconiques de taille nanométrique ou micrométrique, majoritairement en ledit premier composé, sur les germes.

Description

DISPOSITIF OPTOELECTRONIQUE A ELEMENTS SEMICONDUCTEURS TRIDIMENSIONNELS ET SON PROCEDE DE FABRICATION
La présente demande de brevet revendique la priorité de la demande de brevet français FR14/61345 qui sera considérée comme faisant partie intégrante de la présente description.
Domaine
La présente description concerne de façon générale les dispositifs optoélectroniques comprenant des éléments semi¬ conducteurs tridimensionnels, par exemple des microfils, des nanofils, des éléments coniques ou des éléments tronconiques, et leurs procédés de fabrication.
Par dispositifs optoélectroniques, on entend des dispositifs adaptés à effectuer la conversion d'un signal électrique en un rayonnement électromagnétique ou inversement, et notamment des dispositifs dédiés à la détection, la mesure ou l'émission d'un rayonnement électromagnétique ou des dispositifs dédiés à des applications photovoltaïques .
Exposé de l'art antérieur
Des exemples de microfils ou nanofils comprenant un matériau semiconducteur sont les microfils ou nanofils à base d'un composé comportant ma oritairement au moins un élément du groupe III et un élément du groupe V (par exemple du nitrure de gallium GaN) , appelé par la suite composé III-V, ou comportant ma oritairement au moins un élément du groupe II et un élément du groupe VI (par exemple de l'oxyde de zinc ZnO) , appelé par la suite composé II-VI. De tels microfils ou nanofils permettent la fabrication de dispositifs semiconducteurs tels que des dispositifs optoélectroniques.
Les procédés de fabrication de microfils ou de nanofils à matériau semiconducteur doivent permettre la fabrication des microfils ou des nanofils avec un contrôle précis et uniforme de la géométrie, de la position et des propriétés cristallographiques de chaque microfil ou nanofil.
Le document US 7 829 443 décrit un procédé de fabrication de nanofils comprenant le dépôt d'une couche en un matériau diélectrique sur une face plane d'un substrat, la gravure d'ouvertures dans la couche du matériau diélectrique pour exposer des portions du substrat, le remplissage des ouvertures de portions d'un matériau favorisant la croissance de nanofils et la formation des nanofils dans les ouvertures sur ces portions. Le matériau diélectrique est choisi de façon que les nanofils ne croissent pas directement sur celui-ci.
Pour que les propriétés de conversion d'un signal électrique en un rayonnement électromagnétique ou inversement des microfils ou nanofils soient les meilleures possibles, il est souhaitable que chaque microfil ou nanofil ait une structure sensiblement monocristalline. En particulier, lorsque les microfils ou nanofils sont ma oritairement composés d'un matériau à base d'un premier élément et d'un deuxième élément, par exemple des composés III-V ou II-VI, il est souhaitable que chaque microfil ou nanofil ait sensiblement une polarité constante sur la totalité du microfil ou nanofil.
Toutefois, avec le procédé décrit dans le document
US 7 829 443, la croissance des nanofils peut être perturbée de sorte que chaque nanofil peut ne pas avoir une structure monocristalline. En particulier, lorsque les nanofils sont majoritairement composés d'un matériau à base d'un premier élément et d'un deuxième élément, par exemple des composés III-V ou II- VI, il peut apparaître, sur les flancs du nanofil, une couche périphérique ayant une polarité inversée par rapport à la polarité au coeur du nanofil.
Ceci peut entraîner la formation de défauts, notamment au niveau des joints de grains, qui peuvent dégrader le rendement de la conversion d'un signal électrique en un rayonnement électromagnétique ou inversement.
Résumé
Ainsi, un objet d'un mode de réalisation de la présente invention est de pallier au moins en partie les inconvénients des dispositifs optoélectroniques, notamment à microfils ou nanofils, et de leurs procédés de fabrication décrits précédemment.
Un autre objet d'un mode de réalisation de la présente invention est que les éléments tridimensionnels, notamment des microfils ou nanofils, en matériau semiconducteur ne soient pas formés au travers d'ouvertures réalisées dans une couche d'un matériau diélectrique.
Un autre objet d'un mode de réalisation de la présente invention est que chaque élément tridimensionnel, notamment chaque microfil ou nanofil, en matériau semiconducteur ait sensiblement une structure monocristalline.
Un autre objet d'un mode de réalisation de la présente invention est que la position, la géométrie et les propriétés cristallographiques de chaque élément tridimensionnel, notamment chaque microfil ou nanofil, en matériau semiconducteur puissent être contrôlées de façon précise et uniforme.
Un autre objet d'un mode de réalisation de la présente invention est que les éléments tridimensionnels, notamment les microfils ou nanofils, en matériau semiconducteur puissent être formés à une échelle industrielle et à bas coût.
Un mode de réalisation prévoit un dispositif optoélectronique comprenant un support comprenant une face comprenant des facettes planes jointives inclinées les unes par rapport aux autres ; des germes, majoritairement en un premier composé choisi parmi le groupe comprenant les composés III-V, les composés II-VI et les composés IV, au contact du support à au moins certaines des jointures entre les facettes ; et des éléments semiconducteurs tridimensionnels filaires, coniques ou tronconiques de taille nanométrique ou micrométrique, majori- tairement en ledit premier composé, sur les germes.
Selon un mode de réalisation, le dispositif comprend, en outre, pour chaque élément semiconducteur, une région active recouvrant au moins partiellement une partie de l'élément semiconducteur et adaptée à l'émission ou à la réception d'un rayonnement électromagnétique.
Selon un mode de réalisation, les éléments semiconducteurs ont une forme allongée parallèlement à une direction privilégiée, et la distance, mesurée perpendiculairement à la direction privilégiée, entre deux germes de paires de germes adjacents est supérieure à 1 um.
Selon un mode de réalisation, les jointures comprennent des premières jointures en relief et des deuxièmes jointures en creux et la distance, mesurée parallèlement à la direction privilégiée, entre une première jointure et la deuxième jointure adjacente est supérieure à 1 um.
Selon un mode de réalisation, le support comprend un substrat et au moins une couche recouvrant le substrat, les germes étant formés sur ladite couche.
Selon un mode de réalisation, le substrat est en un matériau semiconducteur, notamment un substrat en silicium, en germanium, en carbure de silicium, en un composé III-V, tel que du GaN ou du GaAs, ou un substrat en ZnO.
Selon un mode de réalisation, la couche est en nitrure d'aluminium (AIN), en oxyde d'aluminium (AI2O3) , en bore (B) , en nitrure de bore (BN) , en titane (Ti) , en nitrure de titane (TiN) , en tantale (Ta) , en nitrure de tantale (TaN) , en hafnium (Hf) , en nitrure d' hafnium (HfN) , en niobium (Nb) , en nitrure de niobium (NbN) , en zirconium (Zr) , en borate de zirconium (ZrB2) , en nitrure de zirconium (ZrN) , en carbure de silicium (SiC) , en nitrure et carbure de tantale (TaCN) , ou en nitrure de magnésium sous la forme MgxNy, où x est environ égal à 3 et y est environ égal à 2, par exemple du nitrure de magnésium selon la forme ¾Ν2.
Un mode de réalisation prévoit un procédé de fabrication d'un dispositif optoélectronique comprenant les étapes suivantes :
former un support comprenant une face comprenant des facettes planes ointives inclinées les unes par rapport aux autres ;
former des germes, ma oritairement en un premier composé choisi parmi le groupe comprenant les composés III-V, les composés II-VI et les composés IV, au contact du support à au moins certaines des jointures entre les facettes ; et
former des éléments semiconducteurs tridimensionnels filaires, coniques ou tronconiques de taille nanométrique ou micrométrique, majoritairement en ledit premier composé, sur les germes .
Selon un mode de réalisation, le dispositif comprend, en outre, pour chaque élément semiconducteur, la formation d'une région active recouvrant au moins partiellement une partie de l'élément semiconducteur et adaptée à l'émission ou à la réception d'un rayonnement électromagnétique.
Selon un mode de réalisation, les germes sont formés à une température comprise entre 900 et 1100°C.
Selon un mode de réalisation, les germes sont formés par dépôt chimique en phase vapeur organométallique .
Selon un mode de réalisation, les germes sont en un matériau III-V et les germes sont obtenus par fourniture dans un réacteur de précurseurs avec un rapport V/III inférieur à 50.
Selon un mode de réalisation, le support est en silicium et est gravé par gravure chimique à base de KOH ou de TMZH.
Brève description des dessins
Ces objets, caractéristiques et avantages, ainsi que d'autres seront exposés en détail dans la description suivante de modes de réalisation particuliers faite à titre non limitatif en relation avec les figures jointes parmi lesquelles :
les figures 1A à 1C sont des coupes, partielles et schématiques, des structures obtenues à des étapes successives d'un procédé connu de fabrication d'un dispositif optoélectronique à microfils ou nanofils ;
la figure 2 est une coupe, partielle et schématique, de détail d'un microfil ou nanofil obtenu par le procédé décrit en relation avec les figures 1A à 1C ;
la figure 3 est une coupe, partielle et schématique, d'un mode de réalisation d'un dispositif optoélectronique à microfils ou nanofils ;
les figures 4A à 4G sont des coupes, partielles et schématiques, des structures obtenues à des étapes successives d'un mode de réalisation selon l'invention d'un procédé de fabrication du dispositif optoélectronique de la figure 3 ; et la figure 5 est une coupe, partielle et schématique, d'un autre mode de réalisation d'un dispositif optoélectronique à microfils ou nanofils.
Description détaillée
Par souci de clarté, de mêmes éléments ont été désignés par de mêmes références aux différentes figures et, de plus, comme cela est habituel dans la représentation des circuits électroniques, les diverses figures ne sont pas tracées à l'échelle. En outre, seuls les éléments utiles à la compréhension de la présente description ont été représentés et sont décrits. En particulier, les moyens de polarisation et de commande du dispositif optoélectronique sont bien connus et ne sont pas décrits. Dans la suite de la description, sauf indication contraire, les termes "sensiblement", "environ" et "de l'ordre de" signifient "à 10 % près", de préférence à 5 % près.
Dans la suite de la description, le fait de dire qu'un composé à base d'au moins un premier élément et d'un deuxième élément a une polarité du premier élément ou une polarité du deuxième élément signifie que le matériau croît selon une direction privilégiée et que lorsque le matériau est coupé dans un plan perpendiculaire à la direction de croissance privilégiée, la face exposée comprend essentiellement des atomes du premier élément dans le cas de la polarité du premier élément ou des atomes du deuxième élément dans le cas de la polarité du deuxième élément .
La présente demande concerne des dispositifs optoélectroniques à éléments tridimensionnels, par exemple des microfils, des nanofils, des éléments coniques ou des éléments tronconiques . Dans la suite de la description, des modes de réalisation sont décrits pour des dispositifs optoélectroniques à microfils ou à nanofils. Toutefois, ces modes de réalisation peuvent être mis en oeuvre pour des éléments tridimensionnels autres que des microfils ou des nanofils, par exemple des éléments tridimensionnels coniques ou tronconiques.
Le terme "microfil", "nanofil", "élément conique" ou "élément tronconique" désigne une structure tridimensionnelle de forme allongée selon une direction privilégiée dont au moins deux dimensions, appelées dimensions mineures, sont comprises entre 5 nm et 2,5 um, de préférence entre 50 nm et 2,5 um, la troisième dimension, appelée dimension majeure, étant supérieure ou égale à 1 fois, de préférence supérieure ou égale à 5 fois et encore plus préférentiellement supérieure ou égale à 10 fois, la plus grande des dimensions mineures. Dans certains modes de réalisation, les dimensions mineures peuvent être inférieures ou égales à environ 1 um, de préférence comprises entre 100 nm et 1 um, plus préféren- tiellement entre 100 nm et 800 nm. Dans certains modes de réalisation, la hauteur de chaque microfil ou nanofil peut être supérieure ou égale à 500 nm, de préférence comprise entre 1 um et 50 um.
Dans la suite de la description, on utilise le terme "fil" pour signifier "microfil ou nanofil". De préférence, la ligne moyenne du fil qui passe par les barycentres des sections droites, dans des plans perpendiculaires à la direction privilégiée du fil, est sensiblement rectiligne et est appelée par la suite "axe" du fil.
Dans la suite de la description, des modes de réalisation vont être décrits dans le cas d'un dispositif optoélectronique à diodes électroluminescentes. Toutefois, il est clair que ces modes de réalisation peuvent concerner d'autres applications, notamment des dispositifs dédiés à la détection ou la mesure d'un rayonnement électromagnétique ou des dispositifs dédiés aux applications photovoltaïques .
Les figures 1A à 1C illustrent les structures obtenues à des étapes successives d'un exemple de procédé connu de fabrication d'un dispositif optoélectronique comprenant des fils tels que décrits précédemment.
(i) Une couche 1 d'un matériau diélectrique est déposée sur un substrat 2 et des ouvertures 4 sont gravées dans la couche 1, les ouvertures 4 venant exposer certaines parties 5 du substrat 2 (figure 1A) .
(ii) On fait croître des germes 6 d'un matériau favorisant la croissance de fils dans les ouvertures 4 (figure 1B) .
(iii) On fait croître un fil 7 sur chaque germe 6 (figure 1C) .
La figure 2 est une vue de détail de l'un des fils 7 représenté en figure 1C.
Les inventeurs ont mis en évidence que lorsque le procédé décrit précédemment en relation avec les figures 1A à 1C est mis en oeuvre pour la formation de fils d'un matériau semiconducteur à base d'un composé d'un premier élément et d'un deuxième élément, ceci peut se traduire par la formation d'un fil 7 comprenant un coeur 8 monocristallin, ayant la polarité du premier élément, entouré d'une couche périphérique 9 monocristalline de la polarité du deuxième élément. Ceci peut alors entraîner l'apparition de défauts à l'interface entre la couche 9 et le coeur 8. Une explication serait que la présence de la couche de diélectrique 1 perturbe la formation du germe 6 et/ou le début de la croissance du fil 7, ce qui entraîne la formation de la couche 9 lorsque le fil 7 croît à partir du germe 6 sous-jacent.
Selon un mode de réalisation, avant la formation des fils, il est prévu de former des motifs en relief sur la face du support sur laquelle les germes à la base des fils doivent être formés. Les motifs en relief peuvent notamment comprendre des pyramides, des marches ou des nervures. La face du support comprend alors une succession de facettes planes jointives qui sont reliées les unes aux autres par des jointures, correspondant à des coins ou à des arêtes. Les coins ou les arêtes peuvent être en "relief" ou en "creux". A titre d'exemple, un coin en relief peut correspondre au sommet d'une aspérité et une arête en relief peut correspondre au nez d'une marche. Un coin en creux peut correspondre au fond d'un évidement et une arête en creux peut correspondre au fond d'une vallée.
Les inventeurs ont mis en évidence que, lorsque des conditions de croissance adaptées sont mises en oeuvre, il est possible de faire croître les germes utilisés pour la formation des fils sensiblement seulement sur les coins ou les arêtes en relief. Les fils ne sont ainsi pas formés au travers d'ouvertures prévues dans une couche isolante recouvrant le support.
La figure 3 est une coupe, partielle et schématique, d'un mode de réalisation d'un dispositif optoélectronique 10 comprenant des fils tels que décrits précédemment et adapté à l'émission d'un rayonnement électromagnétique.
Le dispositif 10 comprend, du bas vers le haut en figure 3 :
une première électrode de polarisation 12, par exemple métallique ;
un support 14 comprenant une première face 16 au contact de l'électrode 12 et une deuxième face 18 opposée à la première face 16, et comprenant des motifs en reliefs 20, qui correspondent dans le présent mode de réalisation à des pyramides 20 ayant chacune un sommet 22 ;
des germes 26 en contact avec le support 14 aux sommets 22 ;
des éléments semiconducteurs 28, qui dans le présent mode de réalisation correspondent à des fils de hauteur H]_ et d'axe D, trois fils 28 étant représentés, chaque fil 28 comprenant une portion inférieure 30 de hauteur ¾, dopée d'un premier type de conductivité, par exemple de type N, en contact avec l'un des germes 26, et une portion supérieure 32 de hauteur H3, dopée du premier type de conductivité ou non intentionnellement dopée ;
une coque 34 recouvrant la paroi extérieure de la portion supérieure 32 de chaque fil 28, chaque coque 34 comprenant au moins un empilement d'une couche active 36 recouvrant la portion supérieure 32 et d'une couche semiconductrice 38 d'un second type de conductivité opposé au premier type de conductivité, recouvrant la couche active 36 ;
une région isolante 40 recouvrant la face 18 entre les fils 28 sur au moins la hauteur ¾ ; et
une couche de seconde électrode 42 recouvrant les couches semiconductrices 38 des coques 34 et la région isolante 40.
Une couche conductrice, non représentée, peut recouvrir la couche d'électrode 42 entre les fils 28. Une couche d' encapsulation, non représentée, isolante et transparente, peut recouvrir l'électrode 42.
L'ensemble formé par chaque fil 28 et la coque 34 associée constitue une diode électroluminescente DEL. Lorsque plusieurs diodes électroluminescentes DEL sont formées sur le substrat 14, elles peuvent être connectées en série et/ou en parallèle et former un ensemble de diodes électroluminescentes. L'ensemble peut comprendre de quelques diodes électrolumines¬ centes DEL à un millier de diodes électroluminescentes DEL.
Le support 14 peut être une structure monobloc ou comprendre un empilement d'une couche, de deux couches ou de plusieurs couches sur un substrat. Dans le mode de réalisation représenté en figure 3, le support 14 comprend un substrat 24 éventuellement recouvert d'une couche de nucléation 25 adaptée à faciliter la croissance des germes 26. Le substrat 24 peut être un substrat semiconducteur, par exemple un substrat en silicium, en germanium, en carbure de silicium, en un composé III-V, tel que du GaN ou du GaAs, ou un substrat en ZnO. De préférence, le substrat 24 est un substrat de silicium monocristallin. De préférence, il s'agit d'un substrat semiconducteur compatible avec les procédés de fabrication mis en oeuvre en microélectronique. Le substrat 24 peut correspondre à une structure multicouches de type silicium sur isolant, également appelée SOI (acronyme anglais pour Silicon On Insulator) . Le substrat 24 peut être en un matériau isolant, par exemple du saphir. Lorsque la structure du support 14 ne permet pas la circulation du courant entre les faces 16 et 18, l'électrode 12 peut être réalisée du côté de la face 18 du substrat 24. Le substrat 24 peut être fortement dopé, faiblement dopé ou non dopé .
La couche de germination 25 est en un matériau favorisant la croissance des germes 26. A titre d'exemple, le matériau composant la couche de germination 25 peut être un nitrure, un carbure ou un borure d'un métal de transition de la colonne IV, V ou VI du tableau périodique des éléments ou une combinaison de ces composés. A titre d'exemple, la couche de germination 25 peut être en nitrure d'aluminium (AIN), en oxyde d'aluminium (AI2O3) , en bore (B) , en nitrure de bore (BN) , en titane (Ti) , en nitrure de titane (TiN) , en tantale (Ta) , en nitrure de tantale (TaN) , en hafnium (Hf) , en nitrure d'hafnium (HfN) , en niobium (Nb) , en nitrure de niobium (NbN) , en zirconium (Zr) , en borate de zirconium (ZrB2), en nitrure de zirconium (ZrN) , en carbure de silicium (SiC) , en nitrure et carbure de tantale (TaCN) , ou en nitrure de magnésium sous la forme MgxNy, où x est environ égal à 3 et y est environ égal à 2, par exemple du nitrure de magnésium selon la forme ¾Ν2. La couche de germination 25 peut être dopée du même type de conductivité que le substrat 24. La couche de germination 25 a, par exemple, une épaisseur comprise entre 1 et 100 nanomètres, de préférence comprise entre 10 et 30 nanomètres.
Lorsque la couche de germination 25 est en nitrure d'aluminium, elle peut être sensiblement texturée et posséder une polarité préférentielle. La texturation de la couche de germination 25 peut être obtenue par un traitement supplémentaire réalisé après le dépôt de la couche de germination 25. Il s'agit, par exemple, d'un recuit sous flux d'ammoniac (NH3) . Dans le cas d'un fil 20 composé principalement de GaN, la couche de germination 25 peut favoriser la croissance du GaN avec la polarité N.
Les germes 26 et les éléments semiconducteurs 28 sont en majorité formés à partir d'au moins un matériau semiconducteur choisi parmi le groupe comprenant les composés III-V, les composés II-VI ou les semiconducteurs ou composés du groupe IV.
Les germes 26 et les éléments semiconducteurs 28 peuvent être, au moins en partie, formés à partir de matériaux semiconducteurs comportant ma oritairement un composé III-V, par exemple un composé III-N. Des exemples d'éléments du groupe III comprennent le gallium (Ga) , l'indium (In) ou l'aluminium (Al). Des exemples de composés III-N sont GaN, AIN, InN, InGaN, AlGaN ou AlInGaN. D'autres éléments du groupe V peuvent également être utilisés, par exemple, le phosphore ou l'arsenic. De façon générale, les éléments dans le composé III-V peuvent être combinés avec différentes fractions molaires.
Les germes 26 et les éléments semiconducteurs 28 peuvent être, au moins en partie, formés à partir de matériaux semiconducteurs comportant majoritairement un composé II-VI. Des exemples d'éléments du groupe II comprennent des éléments du groupe IIA, notamment le béryllium (Be) et le magnésium (Mg) et des éléments du groupe IIB, notamment le zinc (Zn) , le cadmium (Cd) et le mercure (Hg) . Des exemples d'éléments du groupe VI comprennent des éléments du groupe VIA, notamment l'oxygène (0) et le tellure (Te) . Des exemples de composés II-VI sont ZnO, ZnMgO, CdZnO, CdZnMgO, CdHgTe, CdTe ou HgTe. De façon générale, les éléments dans le composé II-VI peuvent être combinés avec différentes fractions molaires.
Les germes 26 et les éléments semiconducteurs 28 peuvent être, au moins en partie, formés à partir de matériaux semiconducteurs comportant ma oritairement au moins un élément du groupe IV. Des exemples de matériaux semiconducteurs du groupe IV sont le silicium (Si) , le carbone (C) , le germanium (Ge) , les alliages de carbure de silicium (SiC) , les alliages silicium- germanium (SiGe) ou les alliages de carbure de germanium (GeC) .
Les éléments semiconducteurs 28 peuvent, en outre, comprendre un dopant. A titre d'exemple, pour des composés III-V, le dopant peut être choisi parmi le groupe comprenant un dopant de type P du groupe II, par exemple, du magnésium (Mg) , du zinc (Zn) , du cadmium (Cd) ou du mercure (Hg) , un dopant du type P du groupe IV, par exemple du carbone (C) ou un dopant de type N du groupe IV, par exemple du silicium (Si) , du germanium (Ge) , du sélénium (Se), du souffre (S), du terbium (Tb) ou de l'étain (Sn) .
Chaque germe 26 a une taille moyenne nanométrique, c'est-à-dire que le volume de chaque germe 26 est compris dans une sphère dont le diamètre est compris entre 1 nm et 100 nm. Les germes 26 ne s'étendent pas sur les facettes entre les jointures. Ceci signifie que chaque germe 26 ne recouvre qu'une seule jointure et qu'il n'y a pas de germe qui recouvre deux ou plus de deux jointures.
Chaque germe 26 peut correspondre à un monocristal. Selon la nature du matériau composant le germe 26 et du matériau composant le substrat 24 ou la couche de germination 25 sur laquelle le germe 26 repose, chaque germe 26, ou au moins certains d'entre eux, peut correspondre à une boîte quantique. Une boîte quantique est une structure semiconductrice de dimension nanométrique. Elle se comporte comme un puits de potentiel qui confine les électrons et les trous dans les trois dimensions de l'espace, dans une région d'une taille de l'ordre de la longueur d'onde des électrons, soit quelques dizaines de nanomètres dans un matériau semiconducteur.
Lorsque les éléments semiconducteurs tridimensionnels 28 du dispositif optoélectronique 10 correspondent à des fils, la hauteur H]_ peut être comprise entre 250 nm et 50 um. Chaque fil 28 peut avoir une structure semiconductrice allongée selon un axe D. Les axes D des fils 28 peuvent être sensiblement parallèles. Chaque fil 28 peut avoir une forme générale cylindrique, dont la base a, par exemple, une forme ovale, circulaire ou polygonale, notamment triangulaire, rectangulaire, carrée ou hexagonale. Les axes de deux fils 28 adjacents peuvent être distants de 0,5 um à 10 um et de préférence de 1,5 um à 5 um. A titre d'exemple, les fils 28 peuvent être régulièrement répartis, notamment selon un réseau hexagonal .
Selon un mode de réalisation, la portion inférieure 30 de chaque fil est principalement constituée d'un composé III-N, par exemple du nitrure de gallium, dopé d'un premier type de conductivité, par exemple de type N. Le dopant de type N peut être le silicium. La hauteur ¾ de la portion inférieure 30 peut être comprise entre 500 nm et 25 um.
Selon un mode de réalisation, la portion supérieure 32 de chaque fil est, par exemple, au moins partiellement réalisée dans un composé III-N, par exemple du nitrure de gallium. La portion 32 peut être dopée du premier type de conductivité, par exemple de type N, ou ne pas être dopée de façon intentionnelle.
La hauteur H3 de la portion supérieure 32 peut être comprise entre 500 nm et 25 um.
Dans le cas d'un fil 28 composé principalement de GaN, la structure cristalline du fil peut être du type wurtzite, le fil s 'étendant selon la direction cristallographique c.
La couche active 36 est la couche depuis laquelle est émise la majorité du rayonnement fourni par le dispositif 10. La couche active 36 peut comporter des moyens de confinement. A titre d'exemple, la couche active 36 peut comprendre un puits quantique unique. Elle comprend alors un matériau semiconducteur différent du matériau semiconducteur formant la portion supérieure 32 et la couche semiconductrice 38 et ayant une bande interdite inférieure à celle du matériau formant la portion supérieure 32 et la couche semiconductrice 38. La couche active 36 peut comprendre des puits quantiques multiples. Elle comprend alors un empilement de couches semiconductrices formant une alternance de puits quantiques et de couches barrières .
La couche semiconductrice 38 peut comprendre un empilement de plusieurs couches comprenant notamment :
- une couche de blocage d'électrons recouvrant la couche active 36 ;
- une couche intermédiaire de type de conductivité opposé à la portion inférieure 30 et recouvrant la couche de blocage d'électrons ; et
- une couche de liaison recouvrant la couche inter¬ médiaire et recouverte par l'électrode 42.
La couche de blocage d'électrons peut être formée d'un alliage ternaire, par exemple en nitrure de gallium et d'aluminium (AlGaN) ou en nitrure d' indium et d'aluminium (AlInN) en contact avec la couche active et la couche intermédiaire, pour assurer une bonne répartition des porteurs électriques dans la couche active .
La couche intermédiaire, par exemple dopée de type P, peut correspondre à une couche semiconductrice ou à un empilement de couches semiconductrices et permet la formation d'une jonction
P-N ou P-I-N, la couche active 36 étant comprise entre la couche intermédiaire de type P et la portion 32 de type N du fil 28 de la jonction P-N ou P-I-N.
La couche de liaison peut correspondre à une couche semiconductrice ou à un empilement de couches semiconductrices et permet la formation d' un contact ohmique entre la couche intermédiaire et l'électrode 42. A titre d'exemple, la couche de liaison peut être dopée très fortement du type opposé à la portion inférieure 30, jusqu'à dégénérer la ou les couches semi- conductrices, par exemple dopée de type P à une concentration supérieure ou égale à 10^0 atomes/cm-^.
La région isolante 40 peut être en un matériau diélectrique, par exemple en oxyde de silicium (S1O2) f en nitrure de silicium (SixNy, où x est environ égal à 3 et y est environ égal à 4, par exemple du S13N4) , en oxynitrure de silicium (notamment de formule générale SiOxNy, par exemple du S12O 2), en oxyde d'hafnium (HfC^) ou en diamant. A titre d'exemple, l'épaisseur de la région isolante 40 est comprise entre 500 nm et 25 um. La région isolante 40 peut avoir une structure monocouche ou correspondre à un empilement de deux couches ou de plus de deux couches .
L'électrode 42 est adaptée à polariser la couche active 36 recouvrant chaque élément semiconducteur 28 et à laisser passer le rayonnement électromagnétique émis par les diodes électro¬ luminescentes DEL. Le matériau formant l'électrode 42 peut être un matériau transparent et conducteur tel que de l'oxyde d'indium- étain (ou ITO, acronyme anglais pour Indium Tin Oxide) , de l'oxyde de zinc dopé ou non à l'aluminium ou au gallium, ou du graphène.
A titre d'exemple, la couche d'électrode 42 a une épaisseur comprise entre 5 nm et 200 nm, de préférence entre 20 nm et 50 nm.
Lorsqu'une tension est appliquée entre les électrodes 12 et 42, un rayonnement lumineux est émis par la couche active 36. De façon avantageuse, les facettes des pyramides 20 peuvent jouer le rôle de surfaces réfléchissantes et améliorer la réflexion de la lumière émise par les couches actives en direction du substrat 24, vers l'extérieur du dispositif optoélectronique 10.
Le procédé de croissance des germes 26 et/ou des fils
28 peut être un procédé du type dépôt chimique en phase vapeur (CVD, sigle anglais pour Chemical Vapor Déposition) ou dépôt chimique en phase vapeur organométallique (MOCVD, acronyme anglais pour Metal-Organic Chemical Vapor Déposition) , également connu sous le nom d'épitaxie organométallique en phase vapeur (ou MOVPE, acronyme anglais pour Metal-Organic Vapor Phase Epitaxy) . Toutefois, des procédés tels que l'épitaxie par jets moléculaires (MBE, acronyme anglais pour Molecular-Beam Epitaxy) , la MBE à source de gaz (GSMBE) , la MBE organométallique (MOMBE) , la MBE assistée par plasma (PAMBE) , l'épitaxie par couche atomique (ALE, acronyme anglais pour Atomic Layer Epitaxy) ou l'épitaxie en phase vapeur aux hydrures (HVPE, acronyme anglais pour Hydride Vapor Phase Epitaxy) peuvent être utilisés.
A titre d'exemple, le procédé peut comprendre l'injection dans un réacteur d'un précurseur d'un élément du groupe III et d'un précurseur d'un élément du groupe V. Des exemples de précurseurs d'éléments du groupe III sont le triméthylgallium (TMGa) , le triéthylgallium (TEGa) , le triméthylindium (TMIn) ou le triméthylaluminium (TMA1) . Des exemples de précurseurs d'éléments du groupe V sont l'ammoniac (NH3) , le tertiarybutylphoshine (TBT) , l'arsine (ASH3) , ou le diméthylhydrazine asymétrique (UDMH) . On appelle rapport V/III le rapport entre le flux de gaz du précurseur de l'élément du groupe V et le flux de gaz du précurseur de l'élément du groupe III.
Selon un mode de réalisation de l'invention, dans une phase de croissance des fils 28 du composé III-V, notamment pour la croissance de la portion inférieure 30, un précurseur d'un élément supplémentaire est ajouté en plus des précurseurs du composé III-V. La présence du précurseur de l'élément supplémentaire conduit à l'incorporation de l'élément supplé¬ mentaire dans le composé III-V pour doper ce composé III-V mais également à la formation d'une couche d'un matériau diélectrique principalement constitué de l'élément supplémentaire et de l'élément du groupe V sur les flancs latéraux des cristaux en croissance du composé III-V. L'élément supplémentaire peut être le silicium (Si) . Un exemple de précurseur du silicium est le silane (S1H4) . Ceci permet de doper les fils de type N. Ceci peut entraîner, en outre, la formation d'une couche diélectrique de nitrure de silicium SiN, éventuellement sous forme stoechiométrique S13N4, sur les parois latérales du fil. L'épaisseur de la couche diélectrique de S13N4 obtenue est alors généralement inférieure à 10 nm.
La face 18 est irrégulière ou rugueuse, c'est-à-dire qu'elle présente des aspérités. En figure 3, la face 18 comprend des aspérités en forme de pyramides 20. De façon générale, la face 18 comprend une succession de facettes jointives qui sont reliées les unes aux autres par des jointures, correspondant à des coins ou à des arêtes, en relief ou en creux. Dans le mode de réalisation représenté en figure 3, les facettes correspondent aux faces des pyramides 20, les coins en relief correspondent aux sommets 22 des pyramides 20, les arêtes en creux correspondent aux arêtes situées à la base des pyramides 20 et qui sont communes à des pyramides adjacentes.
Les inventeurs ont mis en évidence que, lorsque la rugosité de la face 18 a des propriétés particulières et pour des conditions de croissance des germes 26 particulières décrites par la suite, les germes se forment d'abord en majorité, voire en totalité, sur certaines des jointures de la face 18, de préférence sur les coins en relief, et s'il n'y a pas de coins en relief, sur les arêtes en relief. Ces arêtes ou coins 22 forment alors des sites de croissance privilégiés des germes 26. Les germes 26 eux-mêmes forment des sites de croissance des fils 28. Une explication serait que lorsque les atomes du matériau composant les germes 26 sont déposés sur la face 18 lors de la croissance des germes 26, ces atomes tendent à s'accumuler d'abord au niveau des coins en relief, ou en l'absence de coins en relief, au niveau d'arêtes en relief, ces emplacements étant ceux où la croissance des germes 26 nécessiterait le moins d'énergie.
Selon un mode de réalisation, la distance D]_, mesurée perpendiculairement à l'axe D, entre deux coins en relief 22 adjacents, ou, en l'absence de coins en relief, entre deux arêtes en relief adjacentes, est supérieure à la longueur de diffusion des atomes du matériau composant les germes 26. Cette longueur de diffusion dépend notamment de la forme géométrique de la face 18, de sa rugosité, du matériau composant les germes 26, et des conditions de croissance des germes 26. A titre d'exemple, lorsque les germes 26 sont en GaN, que le substrat 24 est en Si et que les aspérités 20 correspondent à des pyramides, la distance D]_ entre deux sommets 22 adjacents est comprise entre 1 um et 10 um.
Selon un mode de réalisation, la distance D2, mesurée parallèlement à l'axe D, entre un coin en relief 22 et l'arête ou le coin en creux 22 adjacent, ou, en l'absence de coins en relief, entre une arête en relief et l'arête ou le coin en creux 22 adjacent, est supérieure à la longueur de diffusion des atomes du matériau composant les germes 26. A titre d'exemple, lorsque les germes sont en GaN, que le substrat 14 est en Si et que les aspérités 20 correspondent à des pyramides, la distance D2 entre le sommet 22 et la base de la pyramide 20 est comprise entre 1 um et 10 um.
Selon un mode de réalisation, dans le cas où la croissance des germes 26 est réalisée par MOCVD, le rapport V/III est inférieur à 500, de préférence inférieur à 50.
Le paramètre principal pour modifier la longueur de diffusion du matériau composant les germes 26 est la température dans le réacteur lors de la croissance des germes. Selon un mode de réalisation, dans le cas où la croissance des germes 26 est réalisée par MOCVD, la température dans le réacteur de croissance est comprise entre 900 et 1100, de préférence entre 950 et 1050.
Les figures 4A à 4G sont des coupes, partielles et schématiques, des structures obtenues à des étapes successives d'un mode de réalisation d'un procédé de fabrication du dispositif optoélectronique 10 représenté en figure 3.
La figure 4A représente la structure obtenue après avoir déposé, sur une face 50 plane du substrat 24, une couche 52, formant un masque de gravure, et comprenant des ouvertures 54 qui exposent des parties de la face 50 du substrat 24. Le substrat 24 a, par exemple, une épaisseur initiale de 400 um. La couche 52 correspond, par exemple, à une couche de titane (Ti) , de nitrure de titane (TiN) , de nitrure de silicium (S13N4) ou le dioxyde de silicium (S12O) . Selon un mode de réalisation, la couche 52 est déposée sur la totalité de la face 50 et les ouvertures 54 sont formées dans la couche 52 par gravure. Selon un autre mode de réalisation, notamment lorsque la couche est en nitrure de silicium (SixNy) , les conditions de dépôt de la couche peuvent être adaptées pour entraîner la formation des ouvertures 54 de façon aléatoire lors du dépôt de la couche 52.
Selon un autre mode de réalisation, le procédé de formation de la couche 52 comprend le dépôt d'une couche de résine 52 sur la totalité de la face 50 du substrat 24 et la formation des ouvertures 54 dans la couche de résine 52 par lithographie par nano-impression. La lithographie par nano-impression est un procédé de gravure dans lequel un poinçon recouvert d'un motif nanométrique est appliqué sur la couche de résine 52. La couche de résine 52 est ensuite durcie, par exemple sous l'effet de la chaleur ou de l'exposition à des rayons ultraviolets, la couche de résine 52 durcie conservant le motif imprimé à partir du poinçon. La portion de résine résiduelle au fond des motifs imprimés est alors retirée, par exemple par gravure sèche, pour obtenir les ouvertures 54.
La figure 4B représente la structure obtenue après avoir gravé le substrat 24 au travers de la couche 52 pour former une face 56 comprenant des motifs 20 en relief et après avoir retiré la couche 52. Les motifs en relief peuvent correspondre à des pyramides. Lorsque la couche de germination 25 n'est pas présente, la face 56 correspond à la face 18 décrite précédemment. Lorsqu'une couche de germination 25 doit être déposée, la face 56 a la même forme que la face 18 recherchée.
Le type de gravure à utiliser dépend notamment du matériau ou des matériaux composant le substrat 24. Selon un mode de réalisation, dans le cas où la partie du substrat 24 à graver est en silicium, la gravure du substrat 24 peut être une gravure chimique humique anisotrope utilisant une solution aqueuse d'hydroxyde de potassium (KOH) ou d'hydroxyde de tétraméthy- lammonium (TMAH) . Dans ce cas, la face 50 du substrat 24 peut être une face (001) et la face 56 obtenue après la gravure peut être composée de plans (111) . Selon un mode de réalisation, notamment dans le cas où la partie du substrat 24 à graver est en Si, en saphir, en SiC, en GaN ou en AIN, la gravure du substrat 24 peut être une gravure sèche directive, par exemple mettant en oeuvre un plasma. Dans le cas où la partie du substrat 24 à graver est en GaN de polarité N ou en AIN de polarité N, la gravure du substrat 24 peut être une gravure chimique humique anisotrope utilisant une solution aqueuse d'hydroxyde de potassium (KOH) .
La figure 4C représente la structure obtenue après le dépôt éventuel de la couche 25 favorisant la croissance des germes 26. La couche de germination 25 peut être déposée par un dépôt conforme, par exemple par MOCVD ou par PVD.
La figure 4D représente la structure obtenue après la formation des germes 26 sur la couche de germination 25 aux sommets 22 des pyramides 20. A titre d'exemple, dans le cas où les germes 26 sont en GaN, un procédé du type MOCVD peut être mis en oeuvre par in ection dans un réacteur MOCVD, de type douchette, d'un gaz précurseur du gallium, par exemple le triméthylgallium (TMGa) et d'un gaz précurseur de l'azote, par exemple l'ammoniac (NH3) . A titre d'exemple, on peut utiliser un réacteur MOCVD 3x2", de type douchette, commercialisé par la société AIXTRON. Un rapport V/III inférieur à 50, par exemple dans la gamme de 5 à 50, permet de favoriser la croissance des germes 26. La pression dans le réacteur est, par exemple, comprise entre 100 mbar (100 hPa) et
800 mbar (800 hPa) . La température dans le réacteur est, par exemple, comprise entre 900°C et 1100°C.
La figure 4E représente la structure obtenue après avoir fait croître les portions inférieures 30 des fils 28. Selon un mode de réalisation, les conditions de fonctionnement du réacteur
MOCVD décrites précédemment pour la croissance des germes 26 sont maintenues à l'exception du fait qu'un précurseur du silicium, par exemple du silane (S1H4) , est ajouté aux autres gaz précurseurs. La présence de silane parmi les gaz précurseurs entraîne l'incorporation de silicium au sein du composé GaN. On obtient ainsi des portions inférieures 30 dopées de type N. En outre, ceci se traduit par la formation d'une couche de nitrure de silicium, non représentée, qui recouvre le pourtour de chaque portion inférieure 30, à l'exception du sommet au fur et à mesure de la croissance de la portion inférieure 30.
La figure 4F représente la structure obtenue après avoir fait croître les portions supérieures 32 des fils 28. Selon un mode de réalisation, les conditions de fonctionnement du réacteur MOCVD décrites précédemment sont, à titre d'exemple, maintenues à l'exception du fait que le flux de silane dans le réacteur est réduit, par exemple d'un facteur supérieur ou égal à 10, ou arrêté. Même lorsque le flux de silane est arrêté, la portion supérieure 32 peut être dopée de type N en raison de la diffusion dans cette portion active de dopants provenant des portions passivées adjacentes ou en raison du dopage résiduel du GaN.
La figure 4G représente la structure obtenue après avoir fait croître les coques 34 recouvrant les portions supérieures 32 des fils 28. Les couches composant la coque 34 peuvent être formées par épitaxie. Compte tenu de la présence de la couche de nitrure de silicium recouvrant le pourtour de la portion inférieure 30 de chaque fil 28, le dépôt des couches composant la coque 34 ne se produit que sur la portion supérieure 32 de chaque fil 28.
Les étapes ultérieures du mode de réalisation du procédé de fabrication du dispositif optoélectronique 10 comprennent la formation de la région isolante 40 et la formation des électrodes
42 et 12. Le procédé peut comprendre une étape d'amincissement du substrat 14 avant la formation de l'électrode 12.
La figure 5 est une coupe, partielle et schématique, d'un mode de réalisation d'un dispositif optoélectronique 60 comprenant des fils 28 tels que décrits précédemment et adapté à l'émission d'un rayonnement électromagnétique. Le dispositif optoélectronique 60 comprend l'ensemble des éléments du dispositif optoélectronique 10 décrit précédemment en relation avec la figure 3 à la différence que les motifs 20 en relief de forme pyramidale du dispositif optoélectronique 10 sont remplacées par des motifs en relief en forme de marches 62. En outre, en figure 5, la couche de germination 25 n'est pas représentée. La distance D]_, décrite précédemment, correspond à la distance perpendiculaire à l'axe D entre deux nez 64 de marche successifs et la distance D2, décrite précédemment, correspond à la hauteur de la marche, mesurée parallèlement à l'axe D. Les nez 64 des marches 62 forment des sites privilégiés de croissance des germes 26 lorsque les conditions de croissance décrites précédemment sont mises en oeuvre. Les motifs en relief en forme de marches 62 peuvent être obtenus notamment par gravure sèche et/ou par l'utilisation de substrat désorienté.
Des modes de réalisation particuliers ont été décrits. Diverses variantes et modifications apparaîtront à l'homme de l'art. En particulier, bien que des modes de réalisation décrits précédemment aient été décrits pour des dispositifs opto¬ électroniques à structure radiale dans lesquels la couche active 36 recouvre les parois latérales et éventuellement la paroi sommitale de la portion supérieure 32 du fil 28 associé, le dispositif optoélectronique peut avoir une structure axiale dans laquelle la couche active n'est formée que dans le prolongement du fil, c'est-à-dire seulement sur la paroi sommitale du fil.

Claims

REVENDICATIONS
1. Dispositif optoélectronique (10) comprenant :
un support (14) comprenant une face (18) comprenant des facettes planes ointives inclinées les unes par rapport aux autres ;
des germes (26) , ma oritairement en un premier composé choisi parmi le groupe comprenant les composés III-V, les composés II-VI et les composés IV, au contact du support à au moins certaines des jointures (22) entre les facettes, le volume de chaque germe étant compris dans une sphère dont le diamètre est compris entre 1 nm et 100 nm ; et
des éléments semiconducteurs tridimensionnels (28) filaires, coniques ou tronconiques de taille nanométrique ou micrométrique, majoritairement en ledit premier composé, sur les germes .
2. Dispositif optoélectronique selon la revendication
1, comprenant, en outre, pour chaque élément semiconducteur (28) , une région active (36) recouvrant au moins partiellement une partie de l'élément semiconducteur (28) et adaptée à l'émission ou à la réception d'un rayonnement électromagnétique.
3. Dispositif optoélectronique selon la revendication
1 ou 2, dans lequel les éléments semiconducteurs (28) ont une forme allongée parallèlement à une direction privilégiée, et dans lequel la distance, mesurée perpendiculairement à la direction privilégiée, entre deux germes (26) de paires de germes adjacents est supérieure à 1 um.
4. Dispositif optoélectronique selon la revendication 3, dans lequel les jointures comprennent des premières jointures (22) en relief et des deuxièmes jointures en creux et dans lequel la distance, mesurée parallèlement à la direction privilégiée, entre une première jointure et la deuxième jointure adjacente est supérieure à 1 um.
5. Dispositif optoélectronique selon l'une quelconque des revendications 1 à 4, dans lequel le support (14) comprend un substrat (24) et au moins une couche (25) recouvrant le substrat, les germes (26) étant formés sur ladite couche (25) .
6. Dispositif optoélectronique selon la revendication 5, dans lequel le substrat (24) est en un matériau semiconducteur, notamment un substrat en silicium, en germanium, en carbure de silicium, en un composé III-V, tel que du GaN ou du GaAs, ou un substrat en ZnO.
7. Dispositif optoélectronique selon la revendication 5 ou 6, dans lequel la couche (25) est en nitrure d'aluminium (AIN), en oxyde d'aluminium (AI2O3) , en bore (B) , en nitrure de bore (BN) , en titane (Ti) , en nitrure de titane (TiN) , en tantale (Ta) , en nitrure de tantale (TaN) , en hafnium (Hf) , en nitrure d'hafnium (HfN) , en niobium (Nb) , en nitrure de niobium (NbN) , en zirconium (Zr) , en borate de zirconium (ZrB2), en nitrure de zirconium (ZrN) , en carbure de silicium (SiC) , en nitrure et carbure de tantale (TaCN) , ou en nitrure de magnésium sous la forme MgxNy, où x est environ égal à 3 et y est environ égal à 2, par exemple du nitrure de magnésium selon la forme Mg3 2.
8. Procédé de fabrication d'un dispositif opto- électronique (10) comprenant les étapes suivantes :
former un support (14) comprenant une face (18) comprenant des facettes planes jointives inclinées les unes par rapport aux autres ;
former des germes (26) , ma oritairement en un premier composé choisi parmi le groupe comprenant les composés III-V, les composés II-VI et les composés IV, au contact du support à au moins certaines des jointures (22) entre les facettes, le volume de chaque germe étant compris dans une sphère dont le diamètre est compris entre 1 M et 100 nm ; et
former des éléments semiconducteurs tridimensionnels
(28) filaires, coniques ou tronconiques de taille nanométrique ou micrométrique, majoritairement en ledit premier composé, sur les germes .
9. Procédé selon la revendication 8, comprenant, en outre, pour chaque élément semiconducteur (28), la formation d'une région active (36) recouvrant au moins partiellement une partie de l'élément semiconducteur (28) et adaptée à l'émission ou à la réception d'un rayonnement électromagnétique.
10. Procédé selon la revendication 8 ou 9, dans lequel les germes (26) sont formés à une température comprise entre 900°C et 1100°C.
11. Procédé selon l'une quelconque des revendications 8 à 10, dans lequel les germes (26) sont formés par dépôt chimique en phase vapeur organométallique .
12. Procédé selon l'une quelconque des revendications 8 à 11, dans lequel les germes (26) sont en un matériau III-V et dans lequel les germes sont obtenus par fourniture dans un réacteur de précurseurs avec un rapport V/III inférieur à 50.
13. Procédé selon l'une quelconque des revendications 8 à 12, dans lequel le support (14) est en silicium et est gravé par gravure chimique à base de KOH ou de TMAH.
PCT/FR2015/053107 2014-11-24 2015-11-17 Dispositif optoélectronique á éléments semiconducteurs tridimensionnels et son procédé de fabrication WO2016083704A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020177015491A KR20170089879A (ko) 2014-11-24 2015-11-17 3차원 반도체 소자를 포함하는 광전자 장치 및 이것의 제조 방법
CN201580063955.4A CN107004571A (zh) 2014-11-24 2015-11-17 包括三维半导体元件的光电子装置及其制造方法
US15/527,031 US20170365737A1 (en) 2014-11-24 2015-11-17 Optoelectronic device comprising three-dimensional semiconductor elements and method for the production thereof
EP15805588.9A EP3224858A1 (fr) 2014-11-24 2015-11-17 Dispositif optoélectronique á éléments semiconducteurs tridimensionnels et son procédé de fabrication

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1461345A FR3029015B1 (fr) 2014-11-24 2014-11-24 Dispositif optoelectronique a elements semiconducteurs tridimensionnels et son procede de fabrication
FR1461345 2014-11-24

Publications (1)

Publication Number Publication Date
WO2016083704A1 true WO2016083704A1 (fr) 2016-06-02

Family

ID=52737214

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2015/053107 WO2016083704A1 (fr) 2014-11-24 2015-11-17 Dispositif optoélectronique á éléments semiconducteurs tridimensionnels et son procédé de fabrication

Country Status (6)

Country Link
US (1) US20170365737A1 (fr)
EP (1) EP3224858A1 (fr)
KR (1) KR20170089879A (fr)
CN (1) CN107004571A (fr)
FR (1) FR3029015B1 (fr)
WO (1) WO2016083704A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI742101B (zh) * 2016-06-28 2021-10-11 法國原子能源和替代能源委員會 適於三維半導體元件的磊晶成長的成核結構
RU2758776C2 (ru) * 2019-12-05 2021-11-01 Федеральное государственное бюджетное учреждение науки Физико-технический институт им. А.Ф. Иоффе Российской академии наук Способ изготовления наноколончатой гетероструктуры на основе соединений iii-n

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3076399B1 (fr) * 2017-12-28 2020-01-24 Aledia Dispositif optoelectronique comprenant des diodes electroluminescentes tridimensionnelles

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1461345A (fr) 1964-03-10 1966-02-25 Procédé et appareil pour la trempe du grain
WO2008085129A1 (fr) * 2007-01-12 2008-07-17 Qunano Ab Nanofils de nitrure et leur procédé de fabrication
EP2333847A1 (fr) * 2008-09-01 2011-06-15 Sophia School Corporation Réseau d'éléments optiques à semi-conducteurs et procédé de fabrication associé
WO2011091016A2 (fr) * 2010-01-25 2011-07-28 Micron Technology, Inc. Dispositif d'éclairage à semi-conducteurs et procédés de fabrication associés
FR2995729A1 (fr) * 2012-09-18 2014-03-21 Aledia Dispositif opto-electrique a microfils ou nanofils semiconducteurs et son procede de fabrication
US20140246647A1 (en) * 2013-01-29 2014-09-04 Samsung Electronics Co., Ltd. Nanostructure light emitting device and method of manufacturing the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4307113B2 (ja) * 2002-03-19 2009-08-05 宣彦 澤木 半導体発光素子およびその製造方法
JP2007112633A (ja) * 2005-10-17 2007-05-10 Toshiba Corp 窒化物半導体ウェーハ及び窒化物半導体素子
US8263990B2 (en) * 2008-03-14 2012-09-11 Panasonic Corporation Compound semiconductor light-emitting element and illumination device using the same, and method for manufacturing compound semiconductor light-emitting element
US9537044B2 (en) * 2012-10-26 2017-01-03 Aledia Optoelectric device and method for manufacturing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1461345A (fr) 1964-03-10 1966-02-25 Procédé et appareil pour la trempe du grain
WO2008085129A1 (fr) * 2007-01-12 2008-07-17 Qunano Ab Nanofils de nitrure et leur procédé de fabrication
US7829443B2 (en) 2007-01-12 2010-11-09 Qunano Ab Nitride nanowires and method of producing such
EP2333847A1 (fr) * 2008-09-01 2011-06-15 Sophia School Corporation Réseau d'éléments optiques à semi-conducteurs et procédé de fabrication associé
WO2011091016A2 (fr) * 2010-01-25 2011-07-28 Micron Technology, Inc. Dispositif d'éclairage à semi-conducteurs et procédés de fabrication associés
FR2995729A1 (fr) * 2012-09-18 2014-03-21 Aledia Dispositif opto-electrique a microfils ou nanofils semiconducteurs et son procede de fabrication
US20140246647A1 (en) * 2013-01-29 2014-09-04 Samsung Electronics Co., Ltd. Nanostructure light emitting device and method of manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI742101B (zh) * 2016-06-28 2021-10-11 法國原子能源和替代能源委員會 適於三維半導體元件的磊晶成長的成核結構
RU2758776C2 (ru) * 2019-12-05 2021-11-01 Федеральное государственное бюджетное учреждение науки Физико-технический институт им. А.Ф. Иоффе Российской академии наук Способ изготовления наноколончатой гетероструктуры на основе соединений iii-n

Also Published As

Publication number Publication date
FR3029015B1 (fr) 2018-03-02
EP3224858A1 (fr) 2017-10-04
US20170365737A1 (en) 2017-12-21
FR3029015A1 (fr) 2016-05-27
CN107004571A (zh) 2017-08-01
KR20170089879A (ko) 2017-08-04

Similar Documents

Publication Publication Date Title
EP2898546B1 (fr) Dispositif opto-électronique à microfils ou nanofils semi-conducteurs et son procédé de fabrication
EP2911974B1 (fr) Dispositif optoélectronique et son procédé de fabrication
EP3248227B1 (fr) Dispositif optoelectronique et son procede de fabrication
EP2997605B1 (fr) Dispositif optoélectronique et son procédé de fabrication
EP2997598A1 (fr) Dispositif optoélectronique et son procédé de fabrication
EP3090450B1 (fr) Dispositif optoélectronique à éléments semiconducteurs et son procédé de fabrication
FR3039004B1 (fr) Dispositif optoelectronique a elements semiconducteurs tridimensionnels et son procede de fabrication
KR20200023273A (ko) 나노 구조체
EP3014665B1 (fr) Dispositif optoélectronique à réflectivité améliorée et son procédé de fabrication
EP3201951B1 (fr) Dispositif optoelectronique a elements semiconducteurs tridimensionnels
EP2939276B1 (fr) Dispositif opto-électronique à microfils ou nanofils
EP2939277B1 (fr) Dispositif optoelectronique a microfils ou nanofils
EP3164881B1 (fr) Dispositif optoelectronique a elements semiconducteurs et son procede de fabrication
WO2016083704A1 (fr) Dispositif optoélectronique á éléments semiconducteurs tridimensionnels et son procédé de fabrication
FR3000611A1 (fr) Dispositif optoelectronique a microfils ou nanofils
FR3000613A1 (fr) Dispositif optoelectronique a microfils ou nanofils

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15805588

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015805588

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15527031

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177015491

Country of ref document: KR

Kind code of ref document: A