TWI690241B - 透過對於能量吸收劑氣體之碰撞共振能量轉移的電漿之真空紫外線放射調整 - Google Patents

透過對於能量吸收劑氣體之碰撞共振能量轉移的電漿之真空紫外線放射調整 Download PDF

Info

Publication number
TWI690241B
TWI690241B TW104137092A TW104137092A TWI690241B TW I690241 B TWI690241 B TW I690241B TW 104137092 A TW104137092 A TW 104137092A TW 104137092 A TW104137092 A TW 104137092A TW I690241 B TWI690241 B TW I690241B
Authority
TW
Taiwan
Prior art keywords
plasma
processing chamber
neon
helium
vuv
Prior art date
Application number
TW104137092A
Other languages
English (en)
Other versions
TW201633852A (zh
Inventor
安德里斯 費雪
托爾斯滕 立爾
Original Assignee
美商蘭姆研究公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商蘭姆研究公司 filed Critical 美商蘭姆研究公司
Publication of TW201633852A publication Critical patent/TW201633852A/zh
Application granted granted Critical
Publication of TWI690241B publication Critical patent/TWI690241B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67069Apparatus for fluid treatment for etching for drying etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32917Plasma diagnostics
    • H01J37/32935Monitoring and controlling tubes by information coming from the object and/or discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32091Radio frequency generated discharge the radio frequency energy being capacitively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/321Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • H01J37/32449Gas control, e.g. control of the gas flow
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32917Plasma diagnostics
    • H01J37/32935Monitoring and controlling tubes by information coming from the object and/or discharge
    • H01J37/32972Spectral analysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67253Process monitoring, e.g. flow or thickness monitoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
    • H01L22/26Acting in response to an ongoing measurement without interruption of processing, e.g. endpoint detection, in-situ thickness measurement
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
    • H05G2/001X-ray radiation generated from plasma
    • H05G2/003X-ray radiation generated from plasma being produced from a liquid or gas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/334Etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Drying Of Semiconductors (AREA)
  • Plasma Technology (AREA)
  • Chemical Vapour Deposition (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Toxicology (AREA)

Abstract

本說明書中所揭露的係為在半導體處理腔室中調整來自電漿之真空紫外線(VUV, vacuum ultraviolet)輻射放射的方法。該等方法可包含在處理腔室中產生含VUV放射劑氣體及碰撞能量吸收劑氣體的電漿、及藉由改變該電漿中VUV放射劑氣體對碰撞能量吸收劑氣體的濃度比而調整來自該電漿之VUV輻射之放射。在若干實施例中,VUV放射劑氣體可為氦,而碰撞能量吸收劑氣體可為氖,而在某些此類實施例中,調整VUV放射可包含使氦及/或氖以一比例流至該處理腔室中,以改變該電漿中氦對氖之濃度比。並且,本說明書所揭露的係為實施該等前述方法的設備。

Description

透過對於能量吸收劑氣體之碰撞共振能量轉移的電漿之真空紫外線放射調整
本發明係關於半導體處理方法與設備,而更具體而言,係關於透過對於能量吸收劑氣體之碰撞共振能量轉移來調整電漿之真空紫外線放射的方法與設備。
隨著半導體產業中的裝置與特徵部尺寸持續微型化,以及亦隨著3D裝置結構(例如Intel的三閘電晶體構造)在積體電路(IC,integrated circuit)設計中變得更普遍,沉積薄的保形膜(相對於下伏結構之形狀而具有均勻厚度的材料膜,即使該下伏結構並非平面)的能力將持續增加重要性。原子層沉積(ALD,atomic layer deposition)為一種非常適合沉積保形膜的膜形成技術,此係由於ALD的單一循環僅沉積單一材料薄層,而其厚度係受到在形成膜的化學反應本身之前,可吸附在基板表面上(亦即形成吸附限制層)之一或更多膜前驅反應物的量所限制。之後可使用多個「ALD循環」來積累所期望厚度的膜,且因各層係薄且保形,故最終的膜實質上與下伏裝置結構的形狀相同。同樣地,原子層蝕刻(ALE, atomic layer etch)係為類似於ALD的吸附介導蝕刻技術,其(由於其涉及蝕刻劑之吸附限制層的反應)可用以可控制地及選擇性地以高精度來蝕刻矽基板,然而,如同ALD,通常需要多個「ALE循環」來完成所期望的基板蝕刻量。由於ALD及ALE兩者往往皆為電漿活化製程,在許多循環的過程中控制電漿之特性(用以活化ALD中之膜形成反應或ALE中的蝕刻反應)可能係相當重要。
本說明書中所揭露的為在半導體處理腔室中調整來自電漿之真空紫外線(VUV,vacuum ultraviolet)輻射放射的方法。該等方法可包含在處理腔室中產生含VUV放射劑氣體及碰撞能量吸收劑氣體的電漿、及藉由改變該電漿中VUV放射劑氣體對碰撞能量吸收劑氣體的濃度比而調整來自該電漿之VUV輻射之放射。在若干實施例中,VUV放射劑氣體為氦,而在若干實施例中,碰撞能量吸收劑氣體為氖。在若干實施例中,調整來自電漿的VUV輻射之放射可包含使氦及/或氖以一比例流至該處理腔室中,以改變該電漿中氦對氖之濃度比。在若干實施例中,該等方法更可包含量測電漿及/或基板的特性,且因應所量測之特性而設定氦及/或氖進入處理腔室之流量。在某些實施例中,該特性可為來自電漿的激發態物種之放射頻帶的放射強度。在某些實施例中,該特性可為利用量測工具所量測的半導體基板之蝕刻的特徵部之輪廓,該特徵部已在處理腔室中被蝕刻。在若干實施例中,該電漿(其VUV之放射被調整)為電容耦合電漿。
本說明書中並揭露半導體處理設備,在該半導體處理設備內產生放射VUV的電漿,且調整其VUV之放射。該設備可包含處理腔室、電漿產生器、配置以使氦及氖流入該處理腔室中的一或更多氣流入口、及用於控制該設備之 操作的控制器。在若干實施例中,該控制器可包含用於下列操作之機器可讀取指令:操作該電漿產生器以在該處理腔室中產生放射VUV的電漿,該電漿包含氦及氖;及操作該一或更多氣流入口以藉由使氦及/或氖以一比例流至該處理腔室中,以改變該電漿中氦對氖之濃度比,以調整來自該電漿之該VUV輻射的放射
在若干實施例中,該設備更可包含光學偵測器,且該控制器的該機器可讀取指令更可包含用於下列操作之指令:操作該光學偵測器以量測該電漿之放射頻帶的放射強度;以及操作該一或更多氣流入口以因應所量測之放射強度而設定氦及/或氖進入該處理腔室的流率。
在若干實施例中,該一或更多氣流入口更可配置以使蝕刻劑氣體流至該處理腔室中,且該設備更包含真空泵、通往該真空泵的閥控制導管。在某些此類實施例中,該控制器的該機器可讀取指令更可包含用於下列操作之指令:操作該一或更多氣流入口以使蝕刻劑氣體流至該處理腔室中;及設定該處理腔室內之條件以使該蝕刻劑吸附至該半導體基板之表面上,而形成蝕刻劑之吸附限制層。該控制器的該機器可讀取指令更可包含用於下列操作之指令:操作該閥控制導管及該真空泵以將未被吸附及/或脫附之蝕刻劑自圍繞該被吸附的蝕刻劑之體積移除;在蝕刻劑之吸附與未被吸附及/或脫附的蝕刻劑之移除後,操作該電漿產生器以蝕刻該半導體基板上之特徵部。
在若干實施例中,該設備更可包含用於量測半導體基板的特徵部之蝕刻輪廓的量測工具。在某些此類實施例中,該控制器更可包含用於下列操作之指令:操作該量測工具以量測在該半導體基板上所蝕刻之特徵部的蝕刻輪 廓;及操作該一或更多氣流入口以因應所量測之蝕刻輪廓而設定氦及/或氖進入該處理腔室的流率。
110:基板
120:蝕刻劑
130:基板表面之頂層
140:電漿
511:操作
512:操作
513:操作
514:操作
515:邏輯方塊
516:邏輯方塊
517:操作
600:可調間隙之電容耦合式限制RF電漿反應器
602:腔室
604:腔室外罩
606:下電極
608:上電極
610:間隙
610a:小間隙
610b:中等間隙
610c:大間隙
612:開口
614:絕緣環
616:支撐板
618:腔室壁板
620:射頻電源
622:射頻供應導管
624:射頻帶
626:射頻功率構件
628:階梯凸緣
630:射頻偏壓外罩
632:射頻偏壓外罩槽
634:射頻偏壓外罩臂
636:接地護罩
638:導管支撐板
640:設施導
642:驅動機構
644:垂直線性軸承/線性軸承
646:螺旋齒輪
648:曲徑軸封
650:橫向偏斜伸縮囊/伸縮囊
656:固定護罩
658:可移動護罩板
660:曲徑溝槽
682:晶圓埠口
700:感應耦合式電漿蝕刻設備
701:腔室壁/腔室
702:上部子腔室
703:下部子腔室
711:窗口
717:卡盤
719:半導體晶圓/晶圓
721:匹配電路
722:埠口
723:射頻電源
725:連接部
727:連接部
730:系統控制器
733:線圈
739:匹配電路
740:真空泵
741:射頻電源
743:連接部
745:連接部
749:法拉第屏蔽部
750:內部電漿柵
760:主要氣流入口
770:側氣流入口770
800:處理工具
820(820a、820b、820c、820d):處理模組
822:機器人
824:末端作用器
826:晶圓
828:模組中心
830:氣閘
832:前端機械人
834:前開式晶圓傳送盒
836:刻面
838:真空傳送模組
840:大氣傳送模組
842:裝載埠模組
844:對準器
850:系統控制器
852:處理器
854:大量儲存裝置
856:記憶體裝置
858:系統控制指令
圖1示意性地繪示用於蝕刻半導體基板之表面的原子層蝕刻(ALE,atomic layer etch)製程。
圖2呈現氦及氖之能階圖,其繪示氖的某些激發態與氦的某些激發態一起依能量排列,而因此可引發自氦至氖的共振能量轉移。
圖3標繪來自氦-氖電漿的氖之632.8nm射線的放射強度,該氦-氖電漿在具有約1吋之小腔室間隙的電容耦合電漿(CCP,capacitively coupled plasma)反應器中產生。尤其,氖之632.8nm的放射強度係相對於四個不同腔室壓力下(對應四個不同的氖分壓)流入該CCP反應器之氦流量而標繪。
圖4標繪來自氦-氖電漿的氖之632.8nm射線的放射強度,該氦-氖電漿在具有約6吋之大腔室間隙的感應耦合電漿(ICP,inductively coupled plasma)反應器中產生。尤其,氖之632.8nm的放射強度係相對於四個不同腔室壓力下(對應四個不同的氖分壓)流入該ICP反應器之氦流量而標繪。
圖5為利用VUV放射調整及/或控制之原子層蝕刻(ALE,atomic layer etch)製程的流程圖。
圖6A-6C為適於執行本說明書中所述之各種ALE製程的CCP反應器示意圖。
圖7為適於執行本說明書中所述之各種ALE製程的ICP反應器示意圖。
圖8為適於執行本說明書中所述之各種ALE製程的基板處理群集工具示意圖。
為提供對發明之全面性的理解,以下敘述中提出多項特定細節。然而,不須某些或全部的此等特定細節仍可實施本發明。在其他情況下,為避免非必要地混淆本揭露內容的發明態樣,眾所周知的製程操作或硬體則不詳加敘述。雖然本發明結合特定詳細實施例而加以描述,但應瞭解,該等特定詳細實施例不欲限制本發明書中所揭露之發明概念的範疇。
原子層蝕刻技術與操作
現所描述的為用於在部分製造之半導體基板表面上蝕刻特徵部的蝕刻技術、操作、方法論等。在若干實施例中,該蝕刻技術可使用類似原子層沉積(ALD,atomic layer deposition)的製程,其中表面反應(在此情況下係為蝕刻表面之反應)可以原子層的精密度來加以控制。在若干實施例中,依據該方式(其中此類原子層蝕刻(ALE,atomic layer etch)技術會引起該表面反應之活化作用),可以垂直地(但實質上並不水平地)蝕刻基板特徵部;舉例而言,蝕刻操作可蝕刻特徵部的底部/基部,但實質上並不蝕刻其側壁。可藉由蝕刻製程之受吸附作用限制的性質以及(如所陳述之)該活化作用的方式來部分達成此類選擇性。圖1之子圖(a)至(e)中所顯示的概要基板橫剖面說明此類ALE製程。
如圖1(a)中所顯示,在若干實施例中,此類ALE製程可藉由將用於蝕刻的化學物種120(即:蝕刻劑物種)引入處理腔室而開始,以將蝕刻劑120輸送至基板110(如該圖中向下箭頭所指示)的表面。在若干實施例中,蝕刻劑可為 含鹵素之物種,且在某些此類實施例中,可為例如XeF2、BrF3、IF5、ClF3等之含氟物種。在若干實施例中,蝕刻劑可為含鹵素及含碳之物種,如碳氟化合物,例如:C4F8。其他範例可為F2、CF4、CHF3、CH2F2、CH3F。在若干實施例中,蝕刻劑可為含氯物種,例如Cl2、CCl4、CHCl3、CH2Cl2、CH3Cl、BCl3
在將蝕刻劑120導入處理腔室後,蝕刻劑120(或蝕刻劑120的一部分)吸附至基板110之表面上,以使其在基板110表面頂端形成吸附限制層。該吸附限制層往往可描述為大致上具有均勻之單一吸附分子厚度的單層。在該範例情況下,單層的形成往往是需要用來在其上吸附之曝露表面的化學吸附製程的結果,亦即,在該表面上之給定點的單一吸附原子或分子會阻止在該點的進一步吸附。
在圖1(b)中,概要性地繪示蝕刻劑120之單層至待蝕刻之基板110表面上的此類吸附作用。圖1(b)概要性地繪示與該基板之表面的頂層130直接結合的蝕刻劑120。儘管本說明書中所揭露的ALE方法並不限定於在蝕刻劑120與該基板表面之頂層130之間存在實際化學鍵結的方法,然而在若干情況下,可能發生化學鍵結(例如共價鍵結)。在其他情況下,取決於蝕刻劑的吸附作用,蝕刻劑與基板表面之間可能存在吸引力交互作用的其他形式。
在圖1(a)-1(d)中,蝕刻劑與基板表面之頂層係描繪為「球體」,而其互相的結合則描繪為「棒狀物」,然而應注意,各如單一「球體」的此類物種圖像不應解釋為暗指各此類物種皆必須為原子態物種。反而,依據實施例而定,蝕刻劑與基板表面物種亦可為多原子的分子態物種。該簡明的「球體-棒狀物」圖示係用於提供表面吸附作用製程的基本說明。亦應注意,儘管圖1(a)-1(d)出於簡化的目的而顯示出同樣的物種被引入及其後被吸附的情況,然而被吸附的物種可能並非組成被引入處理腔室之蝕刻劑的全部。換言之,在若干實施例中,蝕刻劑中僅有一部分可被吸附。
舉例而言,若被引入處理腔室的蝕刻劑為Cl2,則被吸附的蝕刻劑可為與基板表面所共價鍵結的原子態氯(Cl)自由基或氯原子。因此在此範例中可表述為:技術上,原子態氯(Cl)為進行蝕刻的物種。儘管如此,出於清楚及簡化的目的,在理解「蝕刻劑」係意指實際被吸附至表面上、並實行如本說明書中所述之蝕刻作用的物種或物種來源之化合物的情況下,被引入處理腔室的蝕刻劑(在此範例中為分子態Cl2)及實際被吸附的物種(在此範例中為原子態Cl)兩者在本說明書中皆可稱為「蝕刻劑」。
應注意,吸附作用可以電漿輔助或可藉由將基板表面曝露至中性蝕刻劑氣體來達成。亦應注意,儘管圖1(b)概要性地繪示蝕刻劑被吸附至水平表面上,但一般而言,蝕刻劑亦可能被吸附至被蝕刻之基板特徵部的側壁上。然而,由於以下所說明之理由,此情況並非必定造成側壁之蝕刻或側壁可能被蝕刻掉。
在吸附作用發生後,如圖1(c)所示,自處理腔室移除多餘未被吸附(可能包含脫附的)的蝕刻劑,以防止其在後續蝕刻製程步驟中對化學吸附物種的活化與反應(例如潛在之同時發生的氣相反應)造成干擾。在若干實施例中,可藉由將未被吸附之蝕刻劑抽出處理腔室而完成多餘未被吸附之蝕刻劑的移除。在若干實施例中,可藉由利用惰性氣體來吹淨處理腔室而完成移除。在若干實施例中,可利用將反應腔室泵抽回基礎壓力以移除未被吸附之物種並接著進行吹淨、或反向的組合序列。
一旦蝕刻劑的吸附限制層在基板表面上形成,而未被吸附的前驅物自處理腔室被移除,在被吸附之蝕刻劑與該表面(蝕刻劑被吸附至此)之頂層間的反應即被活化。如圖1(d)所示,此情況造成該表面的一些部分被蝕刻掉。圖1(d)概要性地繪示為了活化表面反應而曝露於電漿140之電子激發物種的吸附限制層。
在若干實施例中,在該表面介導蝕刻反應已開始進行(如圖1(d)中所示)後,最終可自處理腔室移除由該蝕刻反應所產生之副產物(單或複數),如圖1(e)中所示。此情況可藉由泵抽至基底(PTB,pump-to-base)、及/或以惰性氣體吹淨處理腔室等來完成。在吸附限制層含有氯作為蝕刻劑的實施例中,副產物可包括含氯物種,且其應被適當處理。
圖1(a)-1(e)概要性地描繪組成ALE的單一循環之範例事件序列。因此,通常一單一ALE循環可包含以下操作:使蝕刻劑吸附至半導體基板之表面上,俾該蝕刻劑在該表面上形成吸附限制層,而之後將未被吸附及/或脫附之蝕刻劑自圍繞被吸附的蝕刻劑之體積移除。此類單一ALE循環可接著在處理腔室內繼續進行電漿產生,並使該被吸附的蝕刻劑與電漿接觸,以蝕刻基板表面。在電漿活化蝕刻之後,可選擇的蝕刻後移除操作可將蝕刻副產物及/或脫附的蝕刻劑自圍繞所蝕刻的基板之體積移除。
然而,因各ALE循環僅構成蝕刻劑之單一吸附限制層的反應,如圖1(e)中所示,通常僅有單一單層自基板表面被移除,而為了實質上將基板表面之可觀的量蝕刻掉,故通常會重複多次ALE操作之循環。因此,在圖1中,概要性地以箭頭連結圖1(e)與圖1(a)來指示此蝕刻循環之重複。應注意,在各循環中被吸附的蝕刻劑之層往往被稱為保形層,亦即:具有實質上均勻厚度的層,且該層與特徵部(該層吸附至其上)的形狀實質相同。就其本身而言,在蝕刻循環期間,反應性蝕刻劑的量(基板之任何部分對其曝露)係一致且可重複的,藉此對整體多循環ALE製程提供了均勻性、可控制性、及選擇性。
再度參照顯示於圖1(d)中的電漿活化操作,該電漿可包含離子、自由基、及中性非自由基物種,且該等物種其中一或更多者與吸附限制層之接觸可用以完成表面反應之活化作用。依據該實施例,可在處理腔室中產生/觸發電漿,或可從遠端電漿源將電漿引入處理腔室中,或可利用前述兩者之組合。 通常,若使用離子來活化表面反應,則在處理腔室內產生離子式電漿,而若使用自由基物種來活化表面反應,則可從距處理腔室遠距離地產生的自由基式電漿(即,從自由基式的遠端電漿源)將該等物種引入處理腔室。在若干實施例中,該電漿可包含大量數目的自由基物種及離子態物種兩者。該電漿可由例如He、Ar、Ne、Kr、及/或Xe之惰性氣體所形成,或可包含所述之惰性氣體。
當使用離子式電漿來活化表面反應,該電漿的離子可藉由施加的電磁(EM,electromagnetic)場而驅向基板。施加的電磁場可產生撞擊物種的一固定通量,或其可經由該電磁場的脈動而產生撞擊物種的脈衝。此外,可特別維持施加的電磁場以使離子加速至特別選定/需要的動能位準。儘管此與離子式的濺射蝕刻技術類似,然而其差異在於,在典型ALE製程中,該等離子具有低於受撞擊材料之濺射閾值的動能;因在ALE製程中由該等撞擊離子所轉移的能量僅足以活化被吸附之蝕刻劑的表面反應,而不足以單獨藉由純粹的動能而碰撞式地使層自表面脫落。因此,舉例而言,在本說明書中所揭露的ALE技術中,離子物種可藉由以少於100電子伏特(eV,electron volts)的相對動能、或少於30eV的相對動能、或甚至少於10eV的相對動能碰撞蝕刻劑之吸附限制層而與之接觸(如圖1(d)中)。當然,若使用自由基物種來活化該反應,其亦往往是由電漿產生,且通常亦具有較低的動能。無論如何,因為用以活化表面反應之物(可將其視為電漿物種的撞擊分子束)賦予下層基板的能量較離子式濺射蝕刻要少得多,該ALE技術具有下列潛力:對下層表面造成極小損害、及對於欲被蝕刻的基板部分更加為可控制且更加為特定的(例如當與蝕刻遮罩搭配使用時)。
被吸附之蝕刻劑的電漿活化亦可作為用於控制蝕刻製程之特定性的額外機制。尤其是,當使用所施加的電磁場來引導電漿通量朝向基板表面時,該電磁場的強度可使該電漿之物種具有實質上垂直於基板平面的速度,而因此,當其與基板碰撞(由於實質上缺乏水平速度分量),該等電漿物種接觸特徵 部側壁的頻率遠低於其接觸特徵部底部的頻率。因此,相對於在特徵部側壁上,此情況優先引起在基板特徵部基部之蝕刻反應的活化作用,藉此起到維護臨界尺寸(CD,critical dimension)及特徵部縱橫比(ARs,aspect ratios)的作用。在蝕刻覆有蝕刻遮罩層之基板的情況下,引導撞擊電漿物種垂直向下(實質上垂直於基板平面)會使蝕刻製程向下蝕刻至基板中未被蝕刻遮罩所保護的區域,而在此類區域中並不側向蝕刻或水平蝕刻。與蝕刻製程為等向性或具有相等之水平與垂直分量的程度對照之下,可將蝕刻為垂直的程度表述為其非等向性的程度。在許多情況下,垂直非等向性蝕刻係較理想,係由於其向下蝕刻至基板中,而無實質上水平蝕刻特徵部側壁之情況,該情況可能會使側壁變得「彎曲」,在若干情況下,甚至達到水平蝕刻分量可能將材料自蝕刻遮罩下方(由該蝕刻遮罩的邊緣所垂直界定的遮蔽區域)移除的程度。
然而,亦存在由等向性蝕刻所造成之側向蝕刻係為樂見的情況,而甚至存在蝕刻製程被設計成在一階段期間為實質上垂直非等向性,而接著在另一隨後的(或在先前的)階段中為等向性的情況。一範例涉及所謂的環繞式閘極(GAA,gate-all-around)場效電晶體(FET)(鰭狀場效電晶體(FINFET)設計的潛力後繼物)之製造,其中閘極圍著電晶體之摻雜式通道區域而繞360度,實質上形成奈米線體。在此類型的設計中,非等向性蝕刻(垂直沿該通道之側面向下)而接著等向性蝕刻(在該線形通道下方側向地)係可為樂見的,俾可以適宜的導電性閘極材料來填充該等被蝕刻掉的區域,而藉此圍繞該GAA的通道。因此,下個世代之IC設計的製造可大大受益於蝕刻製程的結合,其中可經由改變一或更多製程參數而「在運作中」調整、控制、及/或調節蝕刻非等向性的程度。
調整及/或控制來自活化蝕刻之電漿的真空紫外線之放射
近來已發現儘管例如Ne、Xe、Kr、Ar、及其組合的各種惰性氣體可作為用於形成電漿(用以在ALE製程中活化表面蝕刻反應)的有效氣體,然而在各種實施例中,氦與該等前述氣體之一或多者結合使用可提供額外的優勢。在不受限於特定理論的情況下,認為小尺寸的氦原子賦予活化蝕刻之電漿的氦成分下列能力:貫穿(或更深入貫穿)至蝕刻劑之被吸附層的結構中或甚至至待蝕刻之下層材料的結構中,因此更有效率地活化在其中的蝕刻反應。
因此,使用氦式電漿之ALE操作可被有益地利用。然而,當氦在某些類型的蝕刻製程中作為電漿成分可能發生之伴隨著氦而來的問題,係為其激發態放射真空紫外線(VUV,vacuum ultraviolet)輻射的若干者。以下詳述之圖2繪示氦之兩激發態與基態分隔20.7電子伏特(eV,electron volts)及19.8電子伏特,且該等激發態分別藉由充分放射59奈米(nm,nanometer)及62奈米光子之短波長的光於VUV範圍(被認為係約200nm至10nm或約6.20eV至124eV)中而衰變至基態。
VUV輻射具有非常高的能量,而就其本身而言,放射的VUV光子本身可引起表面蝕刻(例如:透過活化表面吸附之蝕刻劑的反應),且由於VUV光子等向性地放射(在此情況下係來自氦),其等向性地蝕刻基板。此若是在需要具有特定方向性之受控制的非等向性蝕刻(例如:垂直於基板表面)之情況下,可能造成問題。在另一方面,若在特定的製程中等向性蝕刻係樂見的,VUV光子之等向性放射可提供優勢。
然而,如本說明書中進一步敘述,在若干情況下,可控制VUV放射的等向性性質,以對ALE製程中等向性/非等向性的程度提供控制及/或調整。例如,若在ALE製程中使用的活化蝕刻之電漿包含VUV放射劑(例如氦),則用於調整及/或控制來自此電漿成分之VUV放射之程度的機制亦可提供用於調整及/或控制ALE製程之等向性/非等向性的機制。達成此情況的方法係為使附加氣體 包含於活化蝕刻之電漿中,該附加氣體用於使該放射劑氣體去激(至少至某個程度),並在VUV光子之放射發生前從該放射劑氣體吸收能量。用於使此能量轉移發生的機制係透過VUV放射劑氣體之原子與能量吸收劑氣體之原子之間的非彈性碰撞。因此,針對該氦之情況,能量吸收劑氣體可用以在氦有機會放射VUV光子之前使氦碰撞式去激。
可成功地用以使氦去激的此類能量吸收劑氣體為氖。此過程的能量情況係概要性地繪示於圖2中。應注意,一直以來,自氦至氖的碰撞能量轉移定律已用於氦-氖雷射中。該圖的右側繪示4個氖的電子激發態,其具有能量E2、E3、E4、及E5,連同具有能量E1的基態。該圖的左側繪示2個氦的電子激發態,其具有能量E3’及E5’。(出於簡化之目的,各電子激發態係藉由其對應的能量E2、E3、E3’等來稱呼)。如該圖中所指示,氦之E3’及E5’激發態分別具有相對於基態E1(視為0eV)之19.8eV及20.7eV的能量。再者,如該圖中所指示,氦之E3’及E5’激發態可分別藉波長62nm及59nm之VUV光子的放射而輻射性衰變至基態E1。
然而,圖2亦繪示,具有能量19.8eV及20.7eV的氦之激發態(標示為E3’及E5’)在能量上係非常接近氖之電子激發態其中兩者(標示為E3及E5)。E3與E3’之間及E5與E5’之間的小能量偏差(約50MeV),可由參與碰撞之原子的動能所提供。因此,自氦(於該等激發態其中一者)至氖的共振能量轉移(如該圖中所指示)可為由碰撞所引起的。例如,激發態E3’的氦可藉由碰撞能量轉移至氖而非輻射性地回到其基態,而其中氖則接著自其基態E1被激發至激發態E3。同樣地,透過氖自其基態E1至激發態E5的碰撞能量轉移及激發,可非輻射性地消淬氦的激發態E5’。
當然,若氖一旦被激發而接著其本身放射VUV光子,則此氦至氖的共振能量轉移可能不具有該期望之效應。然而,如由圖2針對氖之衰變途徑的 繪圖所示,氖衰變主要由其E3及E5激發態至中間的E2能態,而E5與E2之間以及E3與E2之間的能隙對應至可見光或紅外線範圍中但非高能量VUV範圍中放射的光子。尤其,自氖之E5至E2態的輻射性衰變產生632.8nm的光子(可見光、紅),而自氖之E3至E2態的衰變造成1152nm光子(紅外線)之放射。
為完成該循環,氖必須回到其基態以使其可再度碰撞式地自氦吸收能量。然而,氖無法藉由光學放射自激發態E2回到其基態E1;其需要碰撞式去激。此透過氖原子與處理腔室之實體結構(例如:用以產生電漿的平板電極、處理腔室之壁、或若干其他結構)之間的碰撞能量轉移來完成,該實體結構有效地作為剩餘電子能量的吸收槽。應注意,氖之E2態的去激需要具有針對氖原子之小途徑的處理腔室設計,如此一來該等氖原子可在短時間內觸達該等壁。特別是,需要具有窄腔室間隙的電漿處理腔室來支持該氦-氖碰撞能量轉移程序。
因此,在活化蝕刻之電漿中,氦伴隨氖可提供一機制,藉由該機制,可調整及/或控制來自該電漿的VUV輻射之放射,且此功能開啟了在ALE製程中調整及/或控制非等向性蝕刻程度的可能性。實際上,在涉及多個ALE循環(因在各循環中使用之蝕刻劑的吸附限制量所致,ALE之單一循環僅移除少量厚度的材料,而因此多個ALE循環為典型現象)的蝕刻過程期間,來自用以活化表面蝕刻反應之電漿的VUV輻射之放射可被調整一或多次,以在該蝕刻製程期間完成一或更多VUV放射分佈(例如:以改變蝕刻非等向性)。
此功能例如使ALE製程以實質上非等向性垂直蝕刻(透過如以上所述施加之電磁場的影響)而開始,而接著在若干數量的循環(及/或滿足若干其他製程參數或基板特性)後,藉由增加來自蝕刻電漿之VUV放射的程度而轉變為等向性蝕刻。之後,取決於所製造之基板特徵部的種類,該ALE製程亦可轉變回非等向性垂直蝕刻等等。
舉例而言,此類控制可為有用的特定情況係為上述提及之所謂GAA電晶體的範例。在此類型之設計中,非等向性蝕刻(垂直沿該GAA電晶體之通道區域的側面向下)然後等向性蝕刻(如此一來存在有在該線形通道區域下方蝕刻的實質側向分量)係為樂見的,且由具有可調整之VUV放射強度所提供的蝕刻非等向性之控制可提供用以達到此功能的機制。
在其他實施例中,例如在利用蝕刻遮罩之典型特徵部蝕刻中(與在最新GAA設計中之閘極形成相反),其目標可為儘可能實質垂直地蝕刻(即,垂直於基板平面),此係由於水平蝕刻分量可能在蝕刻遮罩下方蝕刻,而對所形成之基板裝置結構造成損害。在此情況下,針對整體蝕刻將等向性蝕刻分量最小化至可行的程度係為樂見的,且因此,為了達到此程度,可調整電漿組成以將VUV放射一致地最小化。儘管此可能為最常見的情境,然而仍存在例如「等向性ALE」的情況,在其中將等向性以及VUV放射最大化係為樂見的。一般而言,蝕刻製程之不同階段可能需要使等向性或非等向性達到不同的程度,而因此,依據該實施例,藉由透過改變電漿組成而改變電漿VUV放射以在不同階段期間達到各目標蝕刻等向性/非等向性係為可行的。
在若干實施例中,VUV放射之調整可涉及改變電漿中之VUV放射劑氣體對碰撞能量吸收劑氣體的濃度比。針對VUV放射劑氣體為氦而碰撞能量吸收劑氣體為氖之情況,例如藉由使氦及/或氖以一比例流至處理腔室中,以改變電漿中氦對氖的濃度比,可達成此情況。若將氦及氖持續供應至處理腔室中,則可改變在此供應中之相對比例以改變電漿組成。若非持續供應而是以固定的、事先流入該腔室中之氦及氖的量來替代,則可制定其中之一流量或另一流量以在該腔室中改變該比例。無論如何,若使用流量來改變該相對比例,則依據所需之VUV放射分佈,可藉由使氦流入處理腔室以增加電漿中氦對氖的比來向上調整放射強度,或可藉由使氖流入處理腔室以減少電漿中氦對氖的比來向 下調整放射強度。使VUV放射劑或碰撞能量吸收劑其中任一者或兩者皆流入腔室中,可藉由自該腔室移除氣體來平衡,以使總腔室壓力維持在所需的程度。因此,藉由使用氦與氖之間的各種氣體混合比例,可調節來自活化蝕刻電漿之VUV放射的量。吾人可了解,最高的VUV放射強度係由不含氖或幾乎不含氖的氣體混合物所產生,而最低的VUV放射強度係由含約50%以上之氖的氣體混合物所產生。
執行數個實驗以說明可藉由將氖包含在電漿中及藉由改變電漿中氦對氖之相對比例來改變來自氦電漿之VUV放射強度。實驗係執行於兩不同的蝕刻腔室中。
該等蝕刻腔室的第一種為電容耦合電漿腔室(CCP,capacitively coupled plasma)反應器,在此情況下設立的係為小間隙反應器之範例,其在此特別為具有基板支撐體與其他平板形電極間之僅24mm(約1吋)的間隙(電漿產生於此間隙間)。該小間隙促進氖與電漿腔室之結構間的碰撞,導致與該腔室之碰撞能量轉移增加,並加速氖之E2態至其基態的緩解作用。對應在此腔室中產生之氦-氖電漿的結果及VUV調整功能的說明係繪示於圖3中。尤其,圖3針對在四個不同腔室壓力位準下所執行的四個實驗,標繪氖之632.8nm射線的放射強度相對於流入CCP反應器之氦流量的關係。自40mTorr分布至400mTorr的該四個壓力係顯示於該圖之圖標說明中(其中較高的總腔室壓力對應較高的氖分壓)。應注意,由於VUV放射實際上難以直接量測(因VUV在高度真空環境外被吸收所致),因此氖之632.8nm射線的放射係用於評估透過顯示於圖2中之碰撞共振能量轉移程序而自氦流至氖的能量。
圖3中之實驗結果繪示在該四個不同總腔室壓力位準之各者的情況下該~633nm之放射強度與氦流量的相依關係:較多的氦推測可產生較多的VUV放射,並且增加氦與氖間碰撞的機率,導致較多氦之碰撞式去激,較多能 量流向氖,而因此較多633nm之放射。該等實驗亦顯示,針對給定之氦流率,100mTorr及250mTorr的總腔室壓力(對應250及550sccm的氖流率)會展現最高的633nm放射,而故有最大的自氦至氖之能量轉移及最強的VUV放射抑制作用。在不受限於特定理論的情況下,認為由於該等中等程度的腔室壓力位準提供氦-氖撞擊頻率及氖與處理腔室結構間撞擊頻率之間的平衡,因此造成增加的氦至氖之能量轉移。較高的壓力會增加氦-氖碰撞情況的頻率,但若壓力過高,會使氖之平均自由徑減少至某個程度,該程度使電漿內部之氖原子無法以足夠頻率來觸達處理腔室結構(此係其自身去激作用所需),而若如此,則無法完成圖2中之能量轉移循環。(見以上氖自E2激發態衰變之論述)。故推斷,基於該等實驗,一般存在若干最佳氖分壓位準,其於給定之氦分壓位準下傾向提供最大的VUV抑制作用。
圖4中顯示以第二種類型的蝕刻腔室來執行類似的實驗。該第二蝕刻腔室為感應耦合電漿反應器(ICP,inductively coupled plasma),其為大間隙反應器之範例,其在此情況下具有基板支撐體與電漿產生硬體間之約6吋的間隙。該大間隙減少氖與電漿腔室結構間之碰撞頻率(相對於小間隙反應器),導致氖之碰撞式去激大量減少,並大量減緩自氖之E2態(至其基態)的緩解作用。
類似圖3,圖4顯示在不同總腔室壓力位準下所執行之四個實驗的結果,並針對該等實驗各者繪示氖之~633nm射線的放射強度相對於流入該反應器之氦流量的關係。在此,該四個實驗的總腔室壓力自20mTorr分布至300mTorr,且其亦觀察到,針對給定之氦流率,中等程度的腔室壓力造成最大之VUV抑制作用的能力。然而,針對此大間隙反應器之範例,造成最高之633nm放射的該等中等程度腔室壓力為40mTorr及90mTorr,該等壓力範圍係為較在小間隙反應器中被觀察到最有效促進VUV抑制作用的100mTorr及250mTorr之壓力位準(見圖3)低相當多的範圍。再者,即使是在40mTorr的情況下,在該大間隙反 應器中的該等實驗仍僅造成微弱的633nm信號,其指示發生些微的VUV抑制作用。再次,且不受限於特定理論的情況下,認為在若干點較高的壓力會使氖之平均自由徑減少至某個程度,該程度使氖無法頻繁地觸達處理腔室結構(此係其自身去激作用所需),而若如此,則無法完成圖2中之能量轉移循環。由於氖必須移動以觸達蝕刻腔室之結構的距離在大間隙反應器中係相較於在小間隙反應器中大相當多,故可達到VUV抑制作用之壓力係較在小間隙中低。因此推斷,大間隙反應器(例如此等實驗中所使用之ICP反應器)中的VUV抑制、調整、及/或控制係受限於某些低壓體系。無論如何,在圖3及4確實說明可在各種蝕刻腔室中使用VUV放射劑氣體與能量吸收劑氣體間之碰撞能量轉移程序以控制及/或調整VUV放射。
因此應注意,使用小腔室間隙(例如CCP反應器中可提供)之蝕刻反應器相對於在典型大間隙反應器(例如典型ICP反應器),提供更顯著提升的VUV放射之控制及/或調整機會。然而,應注意,在若干實施例中,實際修改典型ICP反應器(或其他大間隙反應器)以增加一或更多元件係為可允許的,其中該一或更多元件提供一結構,該結構為儘管氖原子因較高的壓力體系所致而具有低平均自由徑但仍可對其碰撞的結構。例如,在大間隙反應器之間隙區域內所設置的柵條或網狀物可為此類結構。另一範例可為一組同心圓柱體(可能具有間隙、孔洞等),其以其垂直於基板之平面的中央軸來定向。當然,應注意,在若干實施例中,如上所述,使用者可能希望針對特定應用而調節VUV放射強度,因此,達到最大VUV抑制作用實際上可能不為其目的。
因此,有鑑於前述在蝕刻腔室中控制及/或調整來自電漿之VUV輻射放射的功能,所揭露的為ALE技術,其利用活化蝕刻反應之電漿,且使用調整來自該電漿之VUV輻射放射的一或更多操作。圖5提供使用VUV調整之此類循環式ALE程序的流程圖。如該圖中所示,該循環式ALE程序以操作511開始, 操作511為:使蝕刻劑吸附至半導體基板之表面上,俾該蝕刻劑在該表面上形成吸附限制層。接著為操作512:將未被吸附及/或脫附的蝕刻劑自圍繞該被吸附的蝕刻劑之體積移除。接著,如該圖中所示,在操作513中,在處理腔室中產生放射VUV輻射之氦-氖電漿,而在操作514中,該被吸附的蝕刻劑接著接觸該電漿以蝕刻該基板表面。
在此時間點已執行單一的ALE循環,其造成一層基板材料被蝕刻掉。由於多個ALE循環通常構成一蝕刻製程,圖5接著指示,該前述ALE循環可重複任意次數(假設為N),以完成特定的ALE製程序列。因此在於操作514中蝕刻該表面後,該製程繼續進行至邏輯方塊515,此處係確定是否已執行N個ALE循環。若已執行特定數量的N個ALE循環,則該製程結束。否則,若已執行小於N個的循環則該製程繼續進行至邏輯方塊516。
邏輯方塊516係關於判定是否可有益地調整該活化蝕刻之電漿的VUV放射強度。依據自該電漿所放射之VUV輻射強度以及其他因素,在先前ALE循環中所進行之基板蝕刻可能為實質上等向性或其可能具有一實質上非等向性的分量,且再者,在該先前之ALE循環期間,等向性/非等向性的程度可能為最佳的,或其在若干方面可為次佳的。
因此,在若干實施例中,可量測活化蝕刻之電漿之特性,以判定針對所使用之特定ALE製程,其是否為充分等向性或非等向性。舉例而言,可量測活化蝕刻之電漿的激發態物種之放射頻帶的放射強度,以評估該電漿之VUV放射的強度,且從而評估其等向性/非等向性的程度。在某些此類實施例中,量測之放射頻帶可為氖之集中在632.8nm的可見光頻帶,如圖3及圖4所繪示。
在其他實施例中,可基於所蝕刻基板之特性來評估是否有必要進行VUV放射調整之決定。舉例而言。可以量測工具來量測在ALE製程中所蝕刻的一或更多基板特徵部之輪廓,以確定VUV放射調整是否可為有益的。更具體 而言,例如,蝕刻之特徵部側壁之量測到的彎曲可指示應使電漿為較少等向性,而應減少VUV放射。
在又其他實施例中,有可能在剛完成之ALE循環中使用的活化蝕刻之電漿實質上為最理想(或至少相當理想),然而由於待蝕刻之基板特徵部的設計所致,整體蝕刻製程係為使非等向性程度應在下個循環中改變,例如:由垂直蝕刻改變為水平蝕刻以達成GAA電晶體中之閘極形成(如上所述)。
因此,如顯示於圖5之邏輯方塊516,判定是否可有益地調整電漿之VUV放射強度(例如,因在該剛完成之ALE循環中為次佳情況(如由所量測之電漿及/或基板之特性來確定)或因在整體蝕刻製程中為調整之適當時機等)而若為如此,該製程繼續進行至操作517,如所指示,在操作517中,藉由改變電漿中氦對氖之濃度比來調整電漿之VUV放射。在若干實施例中,可藉由回應於所量測之特性而以一比例設定氦及/或氖進入處理腔室之流量,以改變電漿中氦對氖之濃度比,而達到此情況。無論如何,一旦完成VUV放射調整或若在邏輯方塊516中該調整被確定為不需要/無益處,則該製程即持續進行而再一次重複該ALE循環之操作511-514。
如所描繪,圖5呈現ALE製程序列,其在蝕刻單一基板的情況下,將自活化蝕刻電漿所放射的VUV輻射之調整併入。此可能對應例如當ALE循環進行時,監測活化蝕刻之電漿的特性及/或所蝕刻基板的特性之情況。然而,在若干實施例中,針對給定之基板,ALE製程關於該等特性的資訊會在蝕刻後取得。就其本身而言,在針對蝕刻所處理基板序列中之下個基板的製程參數之調整中,可有益地利用此資訊。在該等類型之實施例中,用以量測蝕刻的基板之特性(例如:在一或更多所蝕刻基板之表面上的其特性)的計量工具可(儘管非必要)為與蝕刻處理腔室(儘管在相同群集工具上為可行的)不同的裝置,且可用以在基板離開蝕刻腔室後取得先前的資料。因此,舉例而言,在若干實施例中, 可建立來自分開之測量工具的反饋迴路,其將蝕刻輪廓資訊反饋至蝕刻腔室之操作中,而若所量測之蝕刻輪廓不落於所要求之成果範圍內,可自動調整氦與氖之比例以補正。應注意,儘管在一系列基板的情況下執行該等類型之VUV放射調整實施例,繪示於圖5中之原則仍適用:在一系列ALE操作期間,可確定該蝕刻製程是否受益於調整VUV放射,而若為如此,則藉由改變電漿中氦對氖的濃度比來進行該調整,以改善隨後的ALE循環。
額外的製程參數細節
(i)蝕刻劑用劑及吸附:在剛描述之ALE循環的蝕刻劑用劑及吸附操作期間,可以約100sccm與250sccm(每分鐘標準立方公分)間、或更具體為約150sccm與500sccm間之速率來使蝕刻劑流至反應腔室。依據該實施例,可使蝕刻劑流至該反應腔室,如此一來蝕刻劑在該腔室中具有約50mTorr與250mTorr間、或更具體為約100mTorr與150mTorr間之分壓。該流動之持續時間可介於約0.5秒與30秒之間、或更具體為介於約10秒與20秒之間。在若干實施例中,此步驟可以電漿輔助。RF(射頻)功率位準可為對感應耦合反應器之天線的介於約100瓦與1000瓦之間、或介於約200瓦與700瓦之間,且在若干實施例中,亦可為約400瓦之RF功率,或為對電容耦合反應器之電極的相同功率位準。
(ii)蝕刻劑之用劑後移除:在剛描述之ALE循環的移除未被吸附及/或脫附之蝕刻劑的用劑後操作期間,可使用反應腔室之惰性吹淨。該吹淨可持續以約100sccm與500sccm間之速率將惰性吹淨氣體(例如:可使用He及/或Ne作為移除氣體,以及Ar、Kr、及/或Xe)流至反應腔室達1秒與10秒間,或更具體為達1秒與3秒間,或約2秒。
(iii)電漿產生與蝕刻活化:在剛描述之ALE循環的電漿活化反應/轉化操作期間,可在包含VUV放射劑氣體(例如:氦)及碰撞能量吸收劑氣體(例 如:氖)之離子及/或自由基的處理腔室中產生電漿。藉由在將該等氣體流至處理腔室時立即(或在流動期間)將RF電磁(EM,electromagnetic)輻射施加至該等氣體來形成該電漿。在電漿產生期間針對該等電漿前驅物之可實行的流量可介於約100sccm與250sccm之間,或更具體為介於約150sccm與500sccm之間,或流至該處理腔室之流量可達到如此程度以致於建立VUV放射劑氣體與碰撞能量吸收劑氣體的聯合分壓,其介於約50mTorr與250mTorr之間,或更具體為介於約100mTorr與150mTorr之間。
用於產生電漿之RF功率可介於約30W與6000W之間、或介於約200W與3100W之間、或介於約300W與1100W之間、或介於約350W與550W之間、或介於約30W與100W之間、或為約400W;利用13.56MHz之頻率(然而亦可依據實施例而使用13.56MHz的正整數倍,如:27.12MHz、40.68MHz、或54.24MHz(有時為非整數倍,如:60MHz)等,並且可利用在約13.56MHz或其倍數附近調節的若干頻率)。該RF功率可保持開啟達約0.1秒與30秒間,造成所吸附之蝕刻劑曝露於電漿之離子及/或自由基的對應時間達約0.1秒與30秒間,引起表面蝕刻反應。更具體而言,可開啟RF功率(而所吸附之蝕刻劑曝露於該電漿)達約0.5秒與3秒間、或達約0.5秒與2秒間、或達約1秒與2秒間。
此外,儘管習知之高頻率電漿係於設定為約13.56MHz頻率的RF頻率下產生,在若干實施例中,可容許該頻率浮動至與此標準值不同的值。藉由在將阻抗匹配固定至預定負載(例如50歐姆的負載,然而該負載可為頻率相依)的同時允許該頻率浮動(通常為約±5%),電漿可更迅速地穩定,而這結果在使用有時與ALE循環相關之非常短的電漿持續時間時很重要。再者,如上所提及,在某些實施例中,可使用該標準HF(高頻)值13.56MHz之倍數(或,在若干實施例中為非倍數,例如:60MHz或80MHz)以產生甚至更高頻率的電漿。當使用該13.56MHz之標準值時,亦可容許動態調節在13.56MHz之倍數的更高頻率下所 產生的HF輻射。依據該實施例,可使用之13.56MHz的倍數包含27.12MHz(=2*13.56MHz)、40.68MHz(=3*13.56MHz)、54.24MHz(=4*13.56MHz)等。在13.56MHz之倍數附近調節的頻率可包含約±5%的頻率變化。較高的RF頻率造成每瓦RF功率較高的電漿密度、較低的片電壓、及較低的撞擊基板之離子速度與方向性(其當目標為等向性蝕刻時可為有益的)。
(iv)蝕刻副產物及/或脫附之蝕刻劑物種移除:當在ALE循環中使用蝕刻後副產物移除操作,可藉由以惰性吹淨氣體(例如:Ar或N2)在約100sccm與500sccm間之流率下將腔室吹淨達1秒與10秒間(或更具體為達1秒與3秒間、或達約2秒)來完成移除。以壓力而言,吹淨期間腔室內之壓力可介於約50mTorr與250mTorr之間,或更具體為介於約50mTorr與150mTorr之間。如同上述之用劑後移除操作,在若干實施例中,在此蝕刻後移除期間亦可使用泵抽回至基礎壓力(PTB,pump-to-base)。因此,一般可藉由將圍繞基板之體積泵抽回至基礎壓力(「pump-to-base」)等來進行吹淨、排空,以完成用劑後與蝕刻後之移除操作。
基板處理設備
可以任何適宜的半導體基板處理設備來執行本說明書中所描述之方法。適宜的設備包含用於完成該製程運作之硬體、及具有指令之系統控制器,其中該等指令用於根據本說明書中所揭露之各種電漿VUV放射調整及/或控制技術與ALE操作來控制製程運作。在若干實施例中,該硬體可包含一或更多的處理站/模組,該等處理站/模組被包含在一多站基板處理工具中(如下所述);及具有(或可存取)機器可讀取之指令的控制器(如下所述),該控制器用於根據本說明書中所揭露之技術及操作來控制該設備之製程運作。
因此,如所述於下的各種電容耦合及感應耦合電漿反應器情況中所詳加具體描述,適宜的基板處理設備一般可包含處理腔室、電漿產生器、配 置以使氣體流入該處理腔室的一或更多氣流入口、真空泵、通往該真空泵之閥控制導管、及用於控制該等元件之操作的控制器。在若干實施例中,此類設備更包含用於量測在其處理腔室中形成的電漿之放射強度的光學偵測器,而由前述設備所包含之該處理模組可存取量測工具,該量測工具係用於量測使用此設備而在半導體基板上所蝕刻的特徵部之蝕刻輪廓。下列描述極詳細地說明\適宜的蝕刻腔室。
用於ALE操作中的電容耦合電漿反應器
在某些實施例中,可適用於原子層蝕刻(ALE,atomic layer etching)操作,並使用用於吸附之氯電漿及用於脫附之氦-氖電漿,且其中可調整及/或控制VUV放射的電容耦合電漿(CCP,capacitively coupled plasma)反應器係描述於2009年2月9日所申請(作為美國專利申請案第12/367,754號),發明名稱為「Adjustable gap capacitively coupled RF plasma reactor including lateral bellows and non-contact particle seal」的美國專利第8,552,334號中,此專利案之內容整體係針對所有目的併入本說明書中以供參照。
舉例而言,圖6A-6C繪示可調間隙之電容耦合式限制RF電漿反應器600的實施例。如所描繪,真空處理腔室602包含腔室外罩604,其圍繞出罩住下電極606的內部空間。在腔室602的上部中,上電極608與下電極606垂直隔開。上電極608及下電極606之平面表面(配置以用於電漿產生)實質上平行,並與電極間的垂直方向正交。上電極608及下電極606較佳為圓形且共軸於一垂直軸。上電極608之下表面面對下電極606之上表面。隔開之面對電極的表面界定介於其間的可調間隙610。在電漿產生期間,由RF電源(匹配器)620將RF功率供應給下電極606。RF功率係透過RF供應導管622、RF帶624、及RF功率構件626而供應至下電極606。接地護罩636可圍繞RF功率構件626,以將更均勻之RF場提供至下 電極606。如美國專利公開案第2008/0171444號中所說明,該案之內容整體係針對所有目的併入本說明書中以供參照,晶圓係透過晶圓埠口682而嵌入,並支撐於下電極606上之間隙610中以進行處理,製程氣體係供應至間隙610並藉由RF功率使其激發為電漿狀態。可對上電極608供電或使其接地。
在顯示於圖6A-6C中的實施例中,下電極606係支撐於下電極支撐板616上。插入下電極606與下電極支撐板616間的絕緣環614使下電極606與支撐板616絕緣。RF偏壓外罩630將下電極606支撐於RF偏壓外罩槽632上。藉由RF偏壓外罩630之臂634,槽632係透過在腔室壁板618中之開口連接至導管支撐板638。在較佳實施例中,RF偏壓外罩槽632與RF偏壓外罩臂634結合形成為一個元件,然而,臂634及槽632亦可為被栓綁或連結在一起的兩獨立元件。
RF偏壓外罩臂634包含一或更多中空通路,其用於使RF功率及設施(例如:氣體冷卻劑、液體冷卻劑、RF能量、用於升降銷控制之纜線、電力監控或驅動信號),自真空腔室602外部通過至真空腔室602內部之位於下電極606背側上的空間。RF供應導管622與RF偏壓外罩臂634絕緣,RF偏壓外罩臂634將RF功率之返回路徑提供至RF電源620。設施導管640提供針對設施元件之通道。該設施元件之進一步細節係描述於美國專利第5,948,704號及美國專利公開案第2008/0171444號中,該等案兩者之內容整體係針對所有目的併入本說明書中以供參照,而為了說明之簡要在此將不顯示。間隙610較佳地以限制環組件圍繞(未顯示),其細節可在美國專利公開案第2007/0284045號中尋得,該案之內容整體係針對所有目的併入本說明書中以供參照。
導管支撐板638係附接至驅動機構642。驅動機構之細節係描述於美國專利公開案第2008/0171444號中,該案之內容整體係針對所有目的併入本說明書中以供參照。藉由例如滾珠螺桿之螺旋齒輪646及用以轉動滾珠螺桿之馬達,將驅動機構642(例如伺服機械馬達、步進馬達或相似物)附接至垂直線性軸 承644。在調整間隙610之尺寸期間,驅動機構642沿垂直線性軸承644而移動。圖6A繪示當驅動機構642位於線性軸承644上之高位置(其造成小間隙610a)時之配置。圖6B繪示當驅動機構642位於線性軸承644上之中間位置時之配置。如所示,下電極606、RF偏壓外罩630、導管支撐板638、RF電源620皆移動至相對於腔室外罩604及上電極608更低之位置,造成中等尺寸間隙610b。
圖6C繪示當驅動機構642位於線性軸承上之低位置時的大間隙610c。較佳地,在間隙調整期間,上電極608及下電極606保持共軸,且該上電極及下電極橫越間隙之相對表面係保持平行。
此實施例容許在多步驟蝕刻製程期間調整CCP腔室602的下電極606與上電極608間之間隙610,例如,為了維持橫越大直徑基板(例如300mm晶圓或平面顯示器)的均勻蝕刻。尤其,此實施例屬於機械配置,其用以促進提供下電極606及上電極608間之可調間隙所需的線性移動。
圖6A繪示橫向偏斜伸縮囊650,其在近端密封至導管支撐板638且在末端密封至腔室壁板618之階梯凸緣628。該階梯凸緣之內徑界定腔室壁板618中之開口612,而RF偏壓外罩臂634通過開口612。當允許RF偏壓外罩630、導管支撐板638、及驅動機構642之垂直移動時,橫向偏斜伸縮囊650提供真空密封件。可將RF偏壓外罩630、導管支撐板638、及驅動機構642稱為懸臂組件。較佳地,RF電源620與懸臂組件一起移動並可附接至導管支撐板638。圖6B顯示當懸臂組件位於中央位置時,伸縮囊650位於中間位置。圖6C顯示當懸臂組件位於低位置時,伸縮囊650橫向偏斜。
曲徑軸封648於伸縮囊650與電漿處理室外罩604之內部間提供粒子阻隔。固定護罩656不可移動地在腔室壁板618上附接至腔室外罩604之內側內壁,以提供曲徑溝槽660(狹縫),在該曲徑溝槽中,可移動護罩板658垂直移動以 適應懸臂組件之垂直移動。可移動護罩板658之外部部分在下電極606之所有垂直位置皆保持在該溝槽中。
在該實施例中顯示,曲徑軸封648包含固定護罩656,其於腔室壁板618中之開口612之周緣附接至腔室壁板618之內部表面,而界定曲徑溝槽660。可移動護罩板658附接並自RF偏壓外罩臂634徑向延伸,在該處該臂634通過在腔室壁板618中之開口612。可移動護罩板658延伸至曲徑溝槽660中,而以第一間隙與固定護罩656相間隔,且以第二間隙與腔室壁板618之內部表面相間隔,因而允許懸臂組件垂直移動。曲徑軸封648阻擋自伸縮囊650剝落之粒子遷移進入真空腔室內部,並阻擋來自製程氣體電漿之自由基遷移至伸縮囊650,在該處該自由基會形成隨後剝落之沉積物。
圖6A顯示當懸臂組件在高位置時(小間隙610a),可移動護罩板658位於RF偏壓外罩臂634之上的曲徑溝槽660中之高位置。圖6C顯示當懸臂組件在低位置時(大間隙610c),可移動護罩板658位於RF偏壓外罩臂634之上的曲徑溝槽660中之低位置。圖6B顯示當懸臂組件在中間位置時(中等間隙610b),可移動護罩板658位於曲徑溝槽660內之中間或中央位置。儘管曲徑軸封648顯示為對稱於RF偏壓護罩臂634,然而在其他實施例中曲徑軸封648可不對稱於RF偏壓護罩臂634。
用於ALE操作中的感應耦合電漿反應器
現描述在某些實施例中可適用於原子層蝕刻(ALE,atomic layer etching)操作,並使用用於吸附之氯電漿及用於脫附之氦-氖電漿,且其中可調整及/或控制VUV放射的感應耦合電漿(ICP,Inductively coupled plasma)反應器。此類ICP反應器已描述於2013年12月10日所申請,發明名稱為「IMAGE REVERSAL WITH AHM GAP FILL FOR MULTIPLE PATTERNING」的美國專利公開案第2014/0170853號中,此案之內容整體係針對所有目的併入本說明書中以供參照。
舉例而言,圖7示意性地顯示感應耦合式電漿蝕刻設備700的剖面圖,該設備適用於執行本說明書中的某些實施例,其範例為由加州Fremont之Lam Research Corp.所製造的KiyoTM反應器。感應耦合式電漿蝕刻設備700包含結構上由腔室壁701及窗口711所界定之整體蝕刻腔室。腔室壁701可由不鏽鋼或鋁來製造。窗口711可由石英或其他介電材料來製造。可選之內部電漿柵750將整體蝕刻腔室分隔成上部子腔室702及下部子腔室703。在大部份的實施例中可移除電漿柵750,藉此利用由子腔室702及703所形成的腔室空間。卡盤717定位於下部子腔室703內接近底部內表面處。卡盤717配置以接收並固持蝕刻製程在其上執行之半導體晶圓719。卡盤717可為當晶圓719存在時用於支撐晶圓719的靜電卡盤。在若干實施例中,邊緣環(未顯示)環繞卡盤717,且具有近乎平坦於晶圓719(當存在於卡盤717上時)之頂表面的上表面。卡盤717亦包含用於固緊及釋放晶圓之靜電電極。可針對此目的設置濾波器及DC固緊電源(未顯示)。亦可設置用於使晶圓719升離卡盤717的其他控制系統。可使用RF電源723將卡盤717電性地充電。RF電源723係透過連接部727而連接至匹配電路721。匹配電路721係透過連接部725而連接至卡盤717。以此方式,RF電源723係連接至卡盤717。
用於電漿產生之元件包含定位於窗口711上方的線圈733。線圈733係由導電材料所製造且包含至少完整一圈。圖7中所示之範例線圈733包含三圈。線圈733之剖面係以符號顯示,且具有「X」的線圈旋轉地延伸進入頁面,而具有「●」的線圈旋轉地延伸出頁面。用於電漿產生之元件亦包含RF電源741,其配置以將RF功率供應至線圈733。大致上,RF電源741係透過連接部745而連接至匹配電路739。匹配電路739係透過連接部743而連接至線圈733。以此方式,RF電源741係連接至線圈733。可選之法拉第屏蔽部749定位於線圈733與窗口711 之間。法拉第屏蔽部749係以相對於線圈733的間隔關係而維持。法拉第屏蔽部749設置於窗口711的正上方。線圈733、法拉第屏蔽部749、及窗口711各自配置以實質上彼此平行。法拉第屏蔽部可防止金屬或其他物種沉積在電漿腔室的介電窗上。
可透過定位於上腔室之一或更多主要氣流入口760及/或透過一或更多側氣流入口770來使製程氣體(例如:氦、氖、蝕刻劑等)流入處理腔室。同樣地,儘管未明確顯示,仍可使用相似的氣流入口來將製程氣體供應至圖6A-6C中所示之電容耦合電漿處理腔室。可使用例如一或二階段機械乾式泵及/或渦輪分子泵之真空泵740以將製程氣體吸出處理腔室701並於腔室701內維持一壓力。可使用閥控制導管來將真空泵流體連接至處理腔室以選擇性地控制由真空泵所提供之真空環境的運用。此可藉由在電漿操作處理期間利用閉迴路控制式流動限制裝置(例如節流閥(未顯示)或擺閥(未顯示))來完成。同樣地,亦可利用連至圖6A-6C中之電容耦合電漿處理腔室的真空泵及閥控制流體連接部。
在設備操作期間,可透過氣流入口760及/或770來供應一或更多製程氣體。在某些實施例中,可僅透過主要氣流入口760、或僅透過側氣流入口770來供應製程氣體。在一些情況下,可以例如更複雜的氣流入口或一或更多噴淋頭來替代該圖中的氣流入口。法拉第屏蔽部749及/或可選之柵750可包含容許製程氣體輸送至腔室的內部通道及孔洞。法拉第屏蔽部749及可選之柵750其中任一者或兩者皆可作為用於輸送製程氣體的噴淋頭。
射頻功率係自RF電源741供應至線圈733,以使RF電流流過線圈733。流過線圈733之RF電流會產生環繞線圈733之電磁場。電磁場在上部子腔室702內產生感應電流。各種所產生之離子及自由基與晶圓719的物理及化學交互作用會選擇性地蝕刻出晶圓的特徵部。
若使用電漿柵而使得存在有上部子腔室702及下部子腔室703兩者,則感應電流對存在於上部子腔室702中之氣體作用,以在上部子腔室702中產生電子-離子電漿。可選之內部電漿柵750限制下部子腔室703中的熱電子數量。在若干實施例中,將設備設計及操作成使存在於下部子腔室703中的電漿為離子-離子電漿。
儘管離子-離子電漿會具有較大的負離子對正離子之比例,然而上部之電子-離子電漿與下部之離子-離子電漿兩者皆可包含正離子與負離子。揮發性蝕刻副產物可透過埠口722而自下部子腔室703移除。
可在範圍介於約10℃與約250℃間的升高溫度下操作本說明書中所揭露之卡盤717。該溫度將取決於蝕刻製程操作及特定配方。在若干實施例中,腔室701亦可在介於約1mTorr及約95mTorr間之範圍中的壓力下操作。在若干實施例中,壓力可高於以上所揭露。
當腔室701安裝於無塵室或製造設施中時,腔室701可耦接至設施(未顯示)。設施包含提供製程氣體、真空、溫度控制、及環境微粒控制的管路。當腔室701安裝於目標製造設施中時,此等設施耦接至腔室701。此外,腔室701可耦接至使用典型自動化而使機器人將半導體晶圓傳送進出腔室701的傳送腔室。
在若干實施例中,系統控制器730(其可包含一或更多實體或邏輯控制器)控制蝕刻腔室之操作的部分或全部。系統控制器730可包含一或更多記憶體裝置及一或更多處理器。
具有整合式量測工具的群集工具
圖8描繪半導體處理群集工具800,具有與真空傳送模組(VTM,vacuum transfer module)838介面接合的各種模組。可將用以在多個儲存設施與處 理模組之間「傳送」基板的傳送模組之配置稱為「群集工具架構」系統。氣閘830(亦稱為負載鎖室或傳送模組)顯示於在具有四個處理模組820a至820d的VTM 838中,可將該四個處理模組個別最佳化以執行各種製造程序。
舉例而言,可實施處理模組820a至820d以執行基板蝕刻(例如:藉ALE製程來蝕刻一維或二維的圖案)、沉積(例如:藉原子層沉積(ALD,atomic layer deposition)製程來沉積保形膜)、離子植入、晶圓清潔、晶圓平坦化、濺鍍、及/或其他半導體製程。因此,舉例而言,處理模組可為感應耦合電漿反應器(如上所述)、或電容耦合電漿反應器(亦如上所述)。
在若干實施例中,該等基板處理模組其中一或多者(820a-820d其中任一者)可用於取得晶圓量測數據,該數據可使用作為用於調整及/或控制在該群集工具上的其他晶圓處理模組之操作(單或複數)的基礎。例如,晶圓量測工具模組可在蝕刻操作之後量測一或更多基板特徵部的一或更多特性,而可接著在發生於該群集工具上之進一步蝕刻操作中使用所產生的數據來調整製程參數(例如用以活化ALE製程之電漿中氦與氖的相對比例)。在某些此類實施例中,由量測模組/工具所量測之基板特徵部可為半導體基板特徵部之蝕刻輪廓。
在如圖8中所示者之群集工具上所執行的若干蝕刻操作中,可在蝕刻操作期間進行量測,且為了確定當相同蝕刻在製程中及/或在後續蝕刻操作中(例如:在不同的基板上)時如何調整及/或控制一或更多製程參數,可分析該量測值。舉例而言,感應耦合電漿反應器或電容耦合電漿反應器可利用光學偵測器來量測來自例如來自用以活化ALE表面反應之電漿的一或更多可見光、紅外線、紫外線(UV,ultraviolet)、及/或真空紫外線(VUV,vacuum ultraviolet)放射頻帶之放射強度。在若干實施例中,可分析量測之放射強度且將其用以調整在本說明書中所述之ALE操作中所使用的氦-氖電漿中氦與氖的相對濃度。
再度參照圖8,可將氣閘830及處理模組820稱為「站」。每一站具有一刻面836,其將該站介面接合至VTM 838。在每一刻面內,感測器1至18係用於當晶圓826在各個站之間移動時偵測晶圓826之通過。機器人822於站之間傳送晶圓826。在一實施例中,機器人可具有一臂,而在另一實施例中,機器人可具有二臂,其中每一臂具有末端作用器824,以拾取晶圓(如晶圓826)用於傳送。大氣傳送模組(ATM,atmospheric transfer module)840中的前端機械人832可用於將晶圓826自裝載埠模組(LPM,Load Port Module)842中的晶圓盒或前開式晶圓傳送盒(FOUP,Front Opening Unified Pod)834傳送到氣閘830。在處理模組820內的模組中心828可為放置晶圓826的一位置。ATM 840中的對準器844係用於對準晶圓。
在一處理序列的範例中,晶圓放置於LPM 842中之複數FOUP 834的其中一者中。前端機械人832將晶圓自FOUP 834傳送至對準器844,對準器844使晶圓826在被蝕刻或被處理前,能夠適當地置中。在對準後,藉由前端機械人832來將晶圓826移動至氣閘830中。由於氣閘模組能夠在ATM與VTM之間匹配環境,因此晶圓826能在兩壓力環境之間移動而不受損害。機器人822將晶圓826自氣閘830經由VTM 838而移至處理模組820a至820d其中一者中。為了完成此晶圓移動,機器人822使用其每一臂上的末端作用器824。一旦晶圓826已經過處理,其係藉由機器人822自處理模組820a-820d移動至氣閘模組830。晶圓826可藉由前端機器人832自此處移動至複數FOUP 834的其中一者或至對準器844。
應注意,可使用系統控制器(如以下所述)來控制群集工具之操作(例如:控制在群集工具上各種站之間的基板移動)。該系統控制器可位於群集架構的局部中、或可位於生產樓層中之群集工具的外部、或位於遠端且透過網路而連接至群集工具。
系統控制器
圖8亦描繪系統控制器850之實施例,該系統控制器係用以控制處理工具800及其處理站的製程條件及硬體狀態。系統控制器850可包含一或更多記憶體裝置856、一或更多大量儲存裝置854、及一或更多處理器852。處理器852可包含一或更多CPUs、ASICs、一般用途電腦(單或複數)、及/或特殊用途電腦(單或複數)、一或更多類比及/或數位輸入/輸出連接部、一或更多步進馬達控制器板等。
在若干實施例中,系統控制器850控制處理工具800之操作的部分或全部,包含其個別處理站之操作。系統控制器850可在處理器852上執行機器可讀取的系統控制指令858(在若干實施例中,系統控制指令858自大量儲存裝置854載入至記憶體裝置856中)。系統控制指令858可包含用以控制下列各項之指令:時程、氣態與液態反應物的混合、腔室及/或站的壓力、腔室及/或站的溫度、晶圓溫度、目標功率位準、RF功率位準、RF曝露時間、基板基座、卡盤、及/或承受器的位置、及由處理工具800所執行之特定製程的其他參數。該等製程包含各種類型的製程,其包含(但不限於)與基板上的膜之蝕刻(例如藉由ALE)相關的製程、涉及被吸附之表面反應物的電漿活化(例如藉由氦-氖電漿)之操作、電漿VUV放射(例如來自氦,經由例如氖之碰撞能量吸附劑氣體的使用)之調整、以及其他類型的基板處理操作。
因此,舉例而言,關於用於執行ALE製程的設備,其具有用於量測來自用以活化表面蝕刻反應的電漿之放射強度的光學偵測器,由系統控制器850所執行的機器可讀取指令858可包含用於下列操作之指令:在處理腔室中操作電漿產生器以產生電漿,該電漿包含氦及氖,該電漿放射VUV輻射;及 操作一或更多氣流入口以藉由使氦及/或氖以一比例流至該處理腔室中,以改變該電漿中氦對氖之濃度比,以調整來自該電漿的該VUV輻射之放射。
並且,舉例而言且依據該實施例,包含用於下列操作之指令:操作光學偵測器以量測該電漿之放射頻帶的放射強度;及操作一或更多氣流入口以因應於量測之放射強度而設定氦及/或氖進入該處理腔室的流率。
同樣地,關於用於執行ALE製程的設備,其具有用於量測蝕刻輪廓的量測工具,該控制器的機器可讀取指令可包含用於下列操作之指令:操作一或更多氣流入口以使蝕刻劑氣體流至處理腔室中;設定該處理腔室內之條件以使該蝕刻劑吸附至固持於該處理腔室中的半導體基板之表面上,以形成蝕刻劑之吸附限制層;操作閥控制導管及真空泵以將未被吸附及/或脫附之蝕刻劑自圍繞被吸附的蝕刻劑之體積移除;在蝕刻劑之吸附與未被吸附及/或脫附的蝕刻劑之移除後,操作電漿產生器以蝕刻半導體基板上之特徵部;操作量測工具以量測在該半導體基板上所蝕刻的特徵部之蝕刻輪廓;及操作一或更多氣流入口以因應於量測之蝕刻輪廓而設定氦及/或氖進入該處理腔室的流率。
可以任何適宜的方式來配置系統控制指令858。例如,可寫入各種處理工具元件的子程序或控制目標,以控制執行各種處理工具製程所需之該處理工具元件的操作。可以任何適宜的電腦可讀取程式語言將系統控制指令858編碼。在若干實施例中,以軟體來執行系統控制指令858,在其他實施例中,以 硬體來執行該等指令,舉例而言,如硬編碼成特殊應用積體電路(ASIC,application specific integrated circuit)中的邏輯,或者,在其他實施例中被實施成軟體與硬體之結合。
在若干實施例中,系統控制指令858可包含用於控制上述各種參數的輸入/輸出控制(IOC,input/output control)定序指令。舉例而言,沉積及/或蝕刻製程(單或複數)之每一階段可包含用以藉由系統控制器850所執行的一或更多指令。舉例而言,可將用於針對膜沉積及/或蝕刻製程階段而設定製程條件的該等指令包含在相對應的沉積及/或蝕刻配方階段中。在若干實施例中,可依序安排該等配方階段,以使一製程階段的所有指令係與該製程階段同時執行。
在若干實施例中,可使用儲存於與系統控制器850相連之大量儲存裝置854及/或記憶體裝置856中的其他電腦可讀取指令及/或程式。程式或程式部份之範例包含基板定位程式、製程氣體控制程式、壓力控制程式、加熱器控制程式、及電漿控制程式。
基板定位程式可包含針對處理工具元件的指令,該等處理工具元件係用以將基板裝載至基座上,並控制基板與圖8之處理工具800其他部件之間的間距。定位程式可包含用於如在基板上沉積及/或蝕刻膜所需而將基板適當地移進及移出反應腔室的指令。
製程氣體控制程式可包含用於控制氣體組成及流率、及選擇性地用於在沉積及/或蝕刻之前使氣體流入圍繞一或更多處理站的體積以穩定此等體積中之壓力的指令。在若干實施例中,製程氣體控制程式可包含用於在於基板上沉積及/或蝕刻膜的期間將某些氣體導入圍繞處理腔室內的一或更多處理站之體積(單或複數)的指令。製程氣體控制程式亦可包含依據所沉積之膜的組成及/或所涉及之蝕刻製程的性質,以相同速率、相同持續時間,或以不同速率及/或不同持續時間來輸送此等氣體的指令。製程氣體控制程序亦可包含用於在氦或 若干其他載氣存在的情況下,於加熱之注射模組中使液態反應物霧化/汽化的指令。
壓力控制程式可包含用於藉由調節例如處理站之排放系統中的節流閥、進入處理站之氣流等而控制處理站內之壓力的指令。壓力控制程式可包含用於在於基板上沉積各種膜類型及/或蝕刻基板的期間維持相同或不同之壓力的指令。
加熱器控制程式可包含用於控制通往加熱基板用之加熱單元的電流之指令。替代地或額外地,加熱器控制程式可控制熱傳氣體(如:氦)至基板的輸送。加熱器控制程式可包含用於在於基板上沉積各種膜類型及/或蝕刻基板的期間於反應腔室及/或圍繞處理站之體積中維持相同或不同溫度的指令。
電漿控制程式可包含用於依據本說明書中之實施例設定在一或更多處理站中的RF功率位準、頻率、及曝露時間的指令。在若干實施例中,電漿控制程式可包含用於在於基板上沉積膜及/或蝕刻基板的期間使用相同或不同的RF功率位準及/或頻率及/或曝露時間的指令。
在若干實施例中,可存在有與系統控制器850相連之使用者介面。使用者介面可包含顯示螢幕、設備及/或製程條件之圖形化軟體顯示器、及使用者輸入裝置(例如指向裝置、鍵盤、觸控螢幕、麥克風等)。
在若干實施例中,由系統控制器850所調整之參數可與製程條件有關。非限制性之範例包含製程氣體組成物及流率、溫度(基板支撐體及噴淋頭之溫度)、壓力、電漿條件(如RF偏壓功率位準及曝露時間)等。可以配方(可利用使用者介面來輸入)的形式將該等參數提供給使用者。
可藉由系統控制器850之類比及/或數位輸入連接部,而自各種處理工具感測器提供用於監視製程的信號。可於處理工具800之類比及數位輸出連接部上輸出用於控制製程之信號。可受監測之處理工具感測器的非限制性範例 包含質量流量控制器(MFCs,mass flow controllers)、壓力感測器(如壓力計)、溫度感測器(如熱電偶)等。適當程式化之反饋及控制演算法可與來自該等感測器的資料一起使用以維持製程條件。
系統控制器850可提供用於實施上述沉積及/或蝕刻製程的機器可讀取指令。該等指令可控制多種製程參數,如DC功率位準、RF偏壓功率位準、壓力、溫度等。該等指令可控制該等參數以執行如本說明書中所述之膜沉積及/或蝕刻操作。
因此,系統控制器通常會包含配置以執行機器可讀取指令俾使設備將依據本說明書中所揭露之製程而執行操作的一或更多記憶體裝置及一或更多處理器。可將包含用於依據本說明書中所揭露之基板處理操作而控制操作之指令的機器可讀取、非暫態媒體耦接至系統控制器。
上述之各種設備/製程可與例如用於製造或生產半導體裝置、顯示器、LED、光伏面板、及相似物之微影圖案化工具及/或製程結合使用,儘管非必要,但通常會在共同的製造設施中一起及/或同時使用此類工具或執行此類製程。
在若干實施例中,控制器係為系統的部分,其可為上述範例的部分。此類系統可包含半導體處理設備,含一或複數處理工具、一或複數腔室、用於處理的一或複數工作台、及/或特定處理元件(晶圓基座、氣流系統等)。該等系統可與電子裝置整合,以於半導體晶圓或基板之處理前、處理期間、及處理後控制其操作。可將該等電子裝置稱為「控制器」,其可控制一或複數系統的各種元件或子部件。依據處理之需求及/或系統之類型,可將控制器程式化以控制本說明書中所揭露之製程的任一者,包含處理氣體之輸送、溫度設定(如:加熱及/或冷卻)、壓力設定、真空設定、功率設定、射頻(RF,radio frequency)產生器設定、RF匹配電路設定、頻率設定、流率設定、流體輸送設定、位置及操 作設定、進出工具及連接至特定系統或與特定系統介面接合的其他傳送工具及/或負載鎖室之晶圓傳送。
廣泛而言,可將控制器定義為具有接收指令、發送指令、控制操作、允許清潔操作、允許終點量測等之各種積體電路、邏輯、記憶體、及/或軟體的電子設備。該積體電路可包含儲存程式指令的韌體形式之晶片、數位信號處理器(DSPs,digital signal processors)、定義為特殊應用積體電路(ASICs,application specific integrated circuits)之晶片、及/或執行程式指令(如:軟體)之一或更多的微處理器或微控制器。程式指令可為以各種個別設定(或程式檔案)之形式傳送到控制器的指令,其定義用以在半導體晶圓上、或針對半導體晶圓、或對系統執行特定製程的操作參數。在若干實施中,該操作參數可為由製程工程師所定義之配方的部分,該配方係用以在一或更多的層、材料、金屬、氧化物、矽、二氧化矽、表面、電路、及/或晶圓之晶粒的製造期間,完成一或更多的處理步驟。
在若干實施中,控制器可為電腦的部分或連接至電腦,該電腦係與系統整合、連接至系統、或透過網路連接至系統、或上述之組合。舉例而言,控制器係可位於「雲端」、或為晶圓廠主機電腦系統的全部或部分,其可允許晶圓處理之遠端存取。該電腦能達成對該系統之遠端存取,以監視製造操作之目前製程、查看過去製造操作之歷史、查看來自多個製造操作之趨勢或性能指標,來改變目前處理之參數,以設定處理步驟來接續目前的處理、或開始新的製程。在若干範例中,遠端電腦(如:伺服器)可透過網路將製程配方提供給系統,該網路可包含區域網路或網際網路。該遠端電腦可包含可達成參數及/或設定之輸入或編程的使用者介面,該等參數或設定接著自該遠端電腦傳送至該系統。在若干範例中,控制器接收資料形式之指令,在一或更多的操作期間,其針對該待執行的處理步驟之每一者而指定參數。應瞭解,該等參數可特定於待執行 之製程的類型、及工具(控制器係配置成與該工具介面接合或控制該工具)的類型。因此,如上所述,控制器可分散,例如藉由包含一或更多的分離的控制器,其透過網路連接在一起並朝共同的目標而作業,例如本說明書中所敘述之製程及控制。用於此類目的之分開的控制器之範例可為腔室上之一或更多的積體電路,其與位於遠端(例如為平台等級、或為遠端電腦的部分)之一或更多的積體電路連通,其結合以控制該腔室上的製程。
範例系統可包含電漿蝕刻腔室或模組(使用感應式或電容式耦合電漿)、沉積腔室或模組、旋轉沖洗腔室或模組、金屬電鍍腔室或模組、潔淨腔室或模組、斜邊蝕刻腔室或模組、物理氣相沉積(PVD,physical vapor deposition)腔室或模組、化學氣相沉積(CVD,chemical vapor deposition)腔室或模組、原子層沉積(ALD,atomic layer deposition)腔室或模組、原子層蝕刻(ALE,atomic layer etch)腔室或模組、離子植入腔室或模組、徑跡腔室或模組、及可與半導體晶圓之製造及/或生產有關或用於其中的任何其他半導體處理系統,但不限於此。
如上所述,依據待由工具執行之製程步驟(或複數製程步驟),控制器可與下列一或多者通訊:其他工具電路或模組、其他工具元件、群集工具、其他工具介面、鄰接工具、附近工具、位於整個工廠的工具、主要電腦、另一控制器、或將晶圓之容器帶往或帶離半導體製造廠中的工具位置及/或載入埠的用於材料傳送之工具。
微影圖案化
膜的微影圖案化通常包含下列操作(每一個操作係以若干合適的工具來達成)之部分或全部:(1)使用旋轉塗佈或噴霧塗佈工具將光阻塗佈於基板(例如具有形成於其上之矽氮化物的基板)上;(2)使用加熱板、或加熱爐、或其他適宜的固化工具將光阻固化;(3)以例如晶圓步進機之工具將光阻曝露於可見 光、或UV光、或x射線光;(4)使用例如溼式清洗台或噴霧顯影機之工具使阻劑顯影,以選擇性地移除阻劑並藉此將其圖案化;(5)藉由使用乾式或電漿輔助蝕刻工具將阻劑圖案轉移至下層膜或基板中;及(6)使用例如RF或微波電漿光阻剝除機之工具將光阻移除。在若干實施例中,在塗佈光阻之前,可沉積可灰化硬遮罩層(例如非晶碳層)及另一適宜的硬遮罩(例如抗反射層)。
其他實施例
儘管已為了促進明確性及理解度的目的而在特定實施例的背景內詳述先前揭露之技術、操作、製程、方法、系統、設備、工具、膜、化學物質、及組成,然而對於該領域中具有通常知識者將明白,在本揭露內容的精神及範疇內存在執行該等前述實施例的許多替代方式。因此,本說明書中所述之實施例將被視為在所揭露之發明概念方面係說明性而非限制性,且不應作為對於最終針對本揭露內容之標的的任何請求項之範圍予以過度限制的不容許依據。
511‧‧‧操作
512‧‧‧操作
513‧‧‧操作
514‧‧‧操作
515‧‧‧邏輯方塊
516‧‧‧邏輯方塊
517‧‧‧操作

Claims (22)

  1. 一種在半導體處理腔室中調整來自電漿之真空紫外線(VUV,vacuum ultraviolet)放射的方法,該方法包含以下步驟:在該半導體處理腔室中產生電漿,該電漿包括包含氦(He)的VUV放射劑氣體及包含氖(Ne)的碰撞能量吸收劑氣體,該電漿放射VUV輻射;及藉由改變該電漿中之該VUV放射劑氣體對該碰撞能量吸收劑氣體之濃度比來調整來自該電漿之該VUV輻射的放射。
  2. 如申請專利範圍第1項之在半導體處理腔室中調整來自電漿之VUV放射的方法,其中該VUV放射劑氣體為氦。
  3. 如申請專利範圍第2項之在半導體處理腔室中調整來自電漿之VUV放射的方法,其中該碰撞能量吸收劑氣體為氖。
  4. 如申請專利範圍第3項之在半導體處理腔室中調整來自電漿之VUV放射的方法,其中調整來自該電漿之該VUV輻射的放射之該步驟包含使氦及/或氖以一比例流至該半導體處理腔室中,以改變該電漿中氦對氖之濃度比。
  5. 如申請專利範圍第4項之在半導體處理腔室中調整來自電漿之VUV放射的方法,其中藉由使氦流至該半導體處理腔室中以增加該電漿中氦對氖的濃度比來向上調整來自該電漿之該VUV輻射的放射。
  6. 如申請專利範圍第4項之在半導體處理腔室中調整來自電漿之VUV放射的方法,其中藉由使氖流至該半導體處理腔室中以減少該電漿中氦對氖的濃度比來向下調整來自該電漿之該VUV輻射的放射。
  7. 如申請專利範圍第4項之在半導體處理腔室中調整來自電漿之VUV放射的方法,更包含以下步驟:量測該半導體處理腔室中之該電漿及/或基板的特性;及 因應所量測之特性而設定氦及/或氖進入該半導體處理腔室之流量。
  8. 如申請專利範圍第7項之在半導體處理腔室中調整來自電漿之VUV放射的方法,其中該特性為來自該電漿的激發態物種之放射頻帶的放射強度。
  9. 如申請專利範圍第8項之在半導體處理腔室中調整來自電漿之VUV放射的方法,其中所量測之放射頻帶為集中於632.8nm的氖之放射頻帶。
  10. 如申請專利範圍第7項之在半導體處理腔室中調整來自電漿之VUV放射的方法,其中該特性為利用量測工具所量測的半導體基板之蝕刻的特徵部之輪廓,該特徵部已在該半導體處理腔室中被蝕刻。
  11. 如申請專利範圍第10項之在半導體處理腔室中調整來自電漿之VUV放射的方法,其中因應於量測之該蝕刻的特徵部之側壁的彎曲,而減少氦之流量及/或增加氖之流量。
  12. 如申請專利範圍第1-11項其中任一項之在半導體處理腔室中調整來自電漿之VUV放射的方法,其中該電漿為電容耦合電漿。
  13. 如申請專利範圍第12項之在半導體處理腔室中調整來自電漿之VUV放射的方法,其中電漿產生於其中的該半導體處理腔室係電容耦合電漿反應器之部分,該電容耦合電漿反應器具有上平板,該電容耦合電漿反應器配置以使該上平板與該基板間的間隙係介於約1.5cm與2.5cm之間。
  14. 如申請專利範圍第1-11項其中任一項之在半導體處理腔室中調整來自電漿之VUV放射的方法,其中該電漿為感應耦合電漿,其中電漿產生於其中的該半導體處理腔室係感應耦合電漿反應器之部分,該感應耦合電漿反應器具有在其內產生該電漿之間隙區域,且其中該感應耦合電漿反應器包含位於該間隙區域內的一或更多元件,該一或更多元件提供一結構,氖原子可對該結構碰撞且被碰撞式去激。
  15. 如申請專利範圍第14項之在半導體處理腔室中調整來自電漿之VUV放射的方法,其中為使氖去激而提供前述結構的該一或更多元件包含一組同心圓柱體,該組同心圓柱體定向為其中央軸垂直於該基板之平面。
  16. 一種在處理腔室中的半導體基板之表面上蝕刻特徵部的方法,該方法包含以下步驟:(a)使蝕刻劑吸附至該處理腔室中的該半導體基板之表面,以使該蝕刻劑在該表面上形成吸附限制層;(b)在(a)之後,將未被吸附及/或脫附的蝕刻劑自圍繞該被吸附之蝕刻劑的體積移除;(c)在(b)之後,在該處理腔室中產生電漿,該電漿包含氦及氖,該電漿放射VUV輻射;(d)使該被吸附之蝕刻劑與該電漿接觸以蝕刻該半導體基板之表面;及(e)重複(a)-(d)數次,並且藉由改變該電漿中氦對氖的濃度比來調整步驟(d)中來自該電漿之該VUV輻射的放射,藉此改變該半導體基板之表面的該蝕刻步驟之非等向性。
  17. 如申請專利範圍第16項之在處理腔室中的半導體基板之表面上蝕刻特徵部的方法,其中該蝕刻劑包含氯。
  18. 如申請專利範圍第16-17項其中任一項之在處理腔室中的半導體基板之表面上蝕刻特徵部的方法,其中調整來自該電漿之該VUV輻射的放射之該步驟包含使氦及/或氖以一比例流至該處理腔室中,以改變該電漿中氦對氖之濃度比。
  19. 如申請專利範圍第18項之在處理腔室中的半導體基板之表面上蝕刻特徵部的方法,更包含以下步驟:利用量測工具來量測該半導體基板之蝕刻的特徵部之輪廓;及 因應所量測之輪廓而設定氦及/或氖進入該處理腔室之流量。
  20. 一種半導體處理設備,其包含:處理腔室;電漿產生器;一或更多氣流入口,其配置以使氦及氖流入該處理腔室中;及控制器,包含用於下列操作之機器可讀取指令:操作該電漿產生器以在該處理腔室中產生電漿,該電漿包括包含氦的VUV放射劑氣體及包含氖的碰撞能量吸收劑氣體,該電漿放射VUV輻射;及操作該一或更多氣流入口以藉由使氦及/或氖以一比例流至該處理腔室中,以改變該電漿中氦對氖之濃度比,以調整來自該電漿之該VUV輻射的放射。
  21. 如申請專利範圍第20項之半導體處理設備:其中該設備更包含光學偵測器;且其中該控制器的該機器可讀取指令更包含用於下列操作之指令:操作該光學偵測器以量測該電漿之放射頻帶的放射強度;及操作該一或更多氣流入口以因應所量測之放射強度而設定氦及/或氖進入該處理腔室的流率。
  22. 如申請專利範圍第20-21項其中任一項之半導體處理設備:其中該一或更多氣流入口係更配置以使蝕刻劑氣體流至該處理腔室中;其中該設備更包含:真空泵;閥控制導管,其通往該真空泵;及量測工具,其用於量測半導體基板之特徵部的蝕刻輪廓;且 其中該控制器的該機器可讀取指令更包含用於下列操作之指令:操作該一或更多氣流入口以使蝕刻劑氣體流至該處理腔室中;設定該處理腔室內之條件以使該蝕刻劑吸附至該半導體基板之表面上,而形成蝕刻劑之吸附限制層;操作該閥控制導管及該真空泵以將未被吸附及/或脫附之蝕刻劑自圍繞該被吸附的蝕刻劑之體積移除;在蝕刻劑之吸附與未被吸附及/或脫附的蝕刻劑之移除後,操作該電漿產生器以蝕刻該半導體基板上之特徵部;操作該量測工具以量測在該半導體基板上所蝕刻之特徵部的蝕刻輪廓;及操作該一或更多氣流入口以因應所量測之蝕刻輪廓而設定氦及/或氖進入該處理腔室的流率。
TW104137092A 2014-11-12 2015-11-11 透過對於能量吸收劑氣體之碰撞共振能量轉移的電漿之真空紫外線放射調整 TWI690241B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/539,121 2014-11-12
US14/539,121 US9609730B2 (en) 2014-11-12 2014-11-12 Adjustment of VUV emission of a plasma via collisional resonant energy transfer to an energy absorber gas

Publications (2)

Publication Number Publication Date
TW201633852A TW201633852A (zh) 2016-09-16
TWI690241B true TWI690241B (zh) 2020-04-01

Family

ID=55913372

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104137092A TWI690241B (zh) 2014-11-12 2015-11-11 透過對於能量吸收劑氣體之碰撞共振能量轉移的電漿之真空紫外線放射調整

Country Status (5)

Country Link
US (2) US9609730B2 (zh)
JP (1) JP6758818B2 (zh)
KR (1) KR20160056839A (zh)
CN (1) CN105590826B (zh)
TW (1) TWI690241B (zh)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8617411B2 (en) * 2011-07-20 2013-12-31 Lam Research Corporation Methods and apparatus for atomic layer etching
KR102306612B1 (ko) 2014-01-31 2021-09-29 램 리써치 코포레이션 진공-통합된 하드마스크 프로세스 및 장치
CN105431924B (zh) * 2014-04-09 2020-11-17 应用材料公司 用于解决具有改良的流动均匀性/气体传导性的可变的处理容积的对称腔室主体设计架构
US9870899B2 (en) * 2015-04-24 2018-01-16 Lam Research Corporation Cobalt etch back
US10020264B2 (en) * 2015-04-28 2018-07-10 Infineon Technologies Ag Integrated circuit substrate and method for manufacturing the same
US9972504B2 (en) 2015-08-07 2018-05-15 Lam Research Corporation Atomic layer etching of tungsten for enhanced tungsten deposition fill
WO2017052905A1 (en) * 2015-09-22 2017-03-30 Applied Materials, Inc. Apparatus and method for selective deposition
US10727073B2 (en) 2016-02-04 2020-07-28 Lam Research Corporation Atomic layer etching 3D structures: Si and SiGe and Ge smoothness on horizontal and vertical surfaces
KR20170122910A (ko) * 2016-04-27 2017-11-07 성균관대학교산학협력단 원자층 식각방법
US10269566B2 (en) 2016-04-29 2019-04-23 Lam Research Corporation Etching substrates using ale and selective deposition
US10566212B2 (en) 2016-12-19 2020-02-18 Lam Research Corporation Designer atomic layer etching
US10559461B2 (en) 2017-04-19 2020-02-11 Lam Research Corporation Selective deposition with atomic layer etch reset
US10832909B2 (en) 2017-04-24 2020-11-10 Lam Research Corporation Atomic layer etch, reactive precursors and energetic sources for patterning applications
US10494715B2 (en) 2017-04-28 2019-12-03 Lam Research Corporation Atomic layer clean for removal of photoresist patterning scum
US10796912B2 (en) * 2017-05-16 2020-10-06 Lam Research Corporation Eliminating yield impact of stochastics in lithography
US9991129B1 (en) * 2017-05-23 2018-06-05 Applied Materials, Inc. Selective etching of amorphous silicon over epitaxial silicon
EP3726567A4 (en) * 2017-12-15 2021-08-25 Tokyo Electron Limited PLASMA ETCHING METHOD AND PLASMA ETCHING DEVICE
EP3776636A4 (en) 2018-03-30 2021-12-22 Lam Research Corporation ATOMIC LAYER ENGRAVING AND SMOOTHING OF REFRACTORY METALS AND OTHER HIGH SURFACE BOND ENERGY MATERIALS
US11062887B2 (en) * 2018-09-17 2021-07-13 Applied Materials, Inc. High temperature RF heater pedestals
JP2022507368A (ja) 2018-11-14 2022-01-18 ラム リサーチ コーポレーション 次世代リソグラフィにおいて有用なハードマスクを作製する方法
KR102286359B1 (ko) * 2018-11-14 2021-08-05 주식회사 히타치하이테크 플라스마 처리 장치 및 그것을 이용한 피처리 시료의 처리 방법
KR20200116855A (ko) * 2019-04-01 2020-10-13 에이에스엠 아이피 홀딩 비.브이. 반도체 소자를 제조하는 방법
DE102019214074A1 (de) * 2019-09-16 2021-03-18 Robert Bosch Gmbh Verfahren und Vorrichtung zum lokalen Entfernen und/oder Modifizieren eines Polymermaterials auf einer Oberfläche
JP7189375B2 (ja) 2020-01-15 2022-12-13 ラム リサーチ コーポレーション フォトレジスト接着および線量低減のための下層
CN111370308B (zh) * 2020-02-18 2023-03-21 中国科学院微电子研究所 一种刻蚀方法及系统、刻蚀控制装置、电子器件及设备
US11875967B2 (en) 2020-05-21 2024-01-16 Applied Materials, Inc. System apparatus and method for enhancing electrical clamping of substrates using photo-illumination
US11538714B2 (en) 2020-05-21 2022-12-27 Applied Materials, Inc. System apparatus and method for enhancing electrical clamping of substrates using photo-illumination
US11315819B2 (en) * 2020-05-21 2022-04-26 Applied Materials, Inc. System apparatus and method for enhancing electrical clamping of substrates using photo-illumination
CN111994868B (zh) * 2020-08-12 2022-05-17 天津大学 极紫外光与等离子体复合原子尺度加工方法
CN112509901B (zh) 2020-11-19 2022-03-22 北京北方华创微电子装备有限公司 工艺腔室及半导体工艺设备
CN114843164A (zh) * 2021-02-02 2022-08-02 中微半导体设备(上海)股份有限公司 升降销固定器、升降销组件及等离子体处理装置
US11502217B1 (en) * 2021-05-24 2022-11-15 Gautam Ganguly Methods and apparatus for reducing as-deposited and metastable defects in Amorphousilicon
KR20230092566A (ko) 2021-12-17 2023-06-26 세메스 주식회사 공정 가스 공급 유닛 및 이를 포함하는 기판 처리 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5948704A (en) * 1996-06-05 1999-09-07 Lam Research Corporation High flow vacuum chamber including equipment modules such as a plasma generating source, vacuum pumping arrangement and/or cantilevered substrate support
US20110139748A1 (en) * 2009-12-15 2011-06-16 University Of Houston Atomic layer etching with pulsed plasmas
US20120095586A1 (en) * 2010-10-18 2012-04-19 Tokyo Electron Limited Using vacuum ultra-violet (vuv) data in microwave sources
US20130023125A1 (en) * 2011-07-20 2013-01-24 Harmeet Singh Methods and apparatus for atomic layer etching
US8552334B2 (en) * 2008-02-08 2013-10-08 Lam Research Corporation Adjustable gap capacitively coupled RF plasma reactor including lateral bellows and non-contact particle seal

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0629255A (ja) * 1992-07-10 1994-02-04 Hitachi Sci Syst:Kk プラズマエッチング方法及び装置
US6461529B1 (en) * 1999-04-26 2002-10-08 International Business Machines Corporation Anisotropic nitride etch process with high selectivity to oxide and photoresist layers in a damascene etch scheme
US7160671B2 (en) * 2001-06-27 2007-01-09 Lam Research Corporation Method for argon plasma induced ultraviolet light curing step for increasing silicon-containing photoresist selectivity
US7517814B2 (en) * 2005-03-30 2009-04-14 Tokyo Electron, Ltd. Method and system for forming an oxynitride layer by performing oxidation and nitridation concurrently
US7740736B2 (en) 2006-06-08 2010-06-22 Lam Research Corporation Methods and apparatus for preventing plasma un-confinement events in a plasma processing chamber
US7732728B2 (en) 2007-01-17 2010-06-08 Lam Research Corporation Apparatuses for adjusting electrode gap in capacitively-coupled RF plasma reactor
JP5560285B2 (ja) * 2009-11-17 2014-07-23 株式会社日立ハイテクノロジーズ 試料処理装置、試料処理システム及び試料の処理方法
JP2012149278A (ja) * 2011-01-17 2012-08-09 Mitsui Chemicals Inc シリコン含有膜の製造方法
US9362133B2 (en) 2012-12-14 2016-06-07 Lam Research Corporation Method for forming a mask by etching conformal film on patterned ashable hardmask

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5948704A (en) * 1996-06-05 1999-09-07 Lam Research Corporation High flow vacuum chamber including equipment modules such as a plasma generating source, vacuum pumping arrangement and/or cantilevered substrate support
US8552334B2 (en) * 2008-02-08 2013-10-08 Lam Research Corporation Adjustable gap capacitively coupled RF plasma reactor including lateral bellows and non-contact particle seal
US20110139748A1 (en) * 2009-12-15 2011-06-16 University Of Houston Atomic layer etching with pulsed plasmas
US20120095586A1 (en) * 2010-10-18 2012-04-19 Tokyo Electron Limited Using vacuum ultra-violet (vuv) data in microwave sources
US20130023125A1 (en) * 2011-07-20 2013-01-24 Harmeet Singh Methods and apparatus for atomic layer etching

Also Published As

Publication number Publication date
JP6758818B2 (ja) 2020-09-23
KR20160056839A (ko) 2016-05-20
US20170170036A1 (en) 2017-06-15
US20160135274A1 (en) 2016-05-12
CN105590826B (zh) 2018-08-03
CN105590826A (zh) 2016-05-18
US9609730B2 (en) 2017-03-28
JP2016103632A (ja) 2016-06-02
TW201633852A (zh) 2016-09-16

Similar Documents

Publication Publication Date Title
TWI690241B (zh) 透過對於能量吸收劑氣體之碰撞共振能量轉移的電漿之真空紫外線放射調整
TWI680509B (zh) 用於高深寬比圓筒狀物蝕刻的側壁鈍化層之沉積技術
CN105719952B (zh) 用于电介质蚀刻应用的集成蚀刻/清洁
JP6646978B2 (ja) 高アスペクト比構造におけるコンタクト洗浄
US10134605B2 (en) Dual chamber plasma etcher with ion accelerator
JP2017103454A (ja) エッチング処理および蒸着処理のためのコンピュータアドレス可能なプラズマ密度修正
JP6415035B2 (ja) ギャップフィルのための共形膜蒸着
TWI702307B (zh) 噴射頭及使用該噴射頭的設備
CN107045969B (zh) 用于图案化非挥发性金属的室
TW201630067A (zh) 用於高深寬比圓筒狀物蝕刻的側壁鈍化層之沉積技術
TW201639027A (zh) 用於高深寬比圓筒狀物蝕刻的含金屬側壁鈍化層之沉積技術
JP6017928B2 (ja) プラズマエッチング方法及びプラズマエッチング装置
JP2015079793A (ja) プラズマ処理方法
TW202201536A (zh) 利用氯之高深寬比介電質蝕刻
US20230343593A1 (en) Multi-layer hardmask for defect reduction in euv patterning
KR20170132666A (ko) 고 종횡비 실린더 에칭을 위해 측벽 패시베이션을 디포짓하기 위한 기법