TWI651262B - 六方晶氮化硼粉末、其製造方法、樹脂組成物及樹脂薄片 - Google Patents

六方晶氮化硼粉末、其製造方法、樹脂組成物及樹脂薄片 Download PDF

Info

Publication number
TWI651262B
TWI651262B TW106145968A TW106145968A TWI651262B TW I651262 B TWI651262 B TW I651262B TW 106145968 A TW106145968 A TW 106145968A TW 106145968 A TW106145968 A TW 106145968A TW I651262 B TWI651262 B TW I651262B
Authority
TW
Taiwan
Prior art keywords
less
boron nitride
resin
mass
nitride powder
Prior art date
Application number
TW106145968A
Other languages
English (en)
Other versions
TW201829301A (zh
Inventor
大雄樹
深澤賢
Original Assignee
日商昭和電工股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商昭和電工股份有限公司 filed Critical 日商昭和電工股份有限公司
Publication of TW201829301A publication Critical patent/TW201829301A/zh
Application granted granted Critical
Publication of TWI651262B publication Critical patent/TWI651262B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/064Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with boron
    • C01B21/0646Preparation by pyrolysis of boron and nitrogen containing compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/064Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with boron
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/064Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with boron
    • C01B21/0645Preparation by carboreductive nitridation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • C01P2004/22Particle morphology extending in two dimensions, e.g. plate-like with a polygonal circumferential shape
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/54Particles characterised by their aspect ratio, i.e. the ratio of sizes in the longest to the shortest dimension
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/24Thermosetting resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2463/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/382Boron-containing compounds and nitrogen
    • C08K2003/385Binary compounds of nitrogen with boron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/006Additives being defined by their surface area
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本發明係提供一種六方晶氮化硼粉末、其製造方法以及包含該六方晶氮化硼粉末的樹脂組成物及樹脂薄片,其係六方晶氮化硼粉末中的一次粒子之平均長徑(L)為超過10.0μm、30.0μm以下,平均厚度(D)為1.0μm以上,平均長徑(L)相對於平均厚度(D)之比[L/D]為3.0以上、5.0以下,且,長徑(l)相對於厚度(d)之比[l/d]為3.0以上、5.0以下之一次粒子的含有率為25%以上。

Description

六方晶氮化硼粉末、其製造方法、樹脂組成物及樹脂薄片
[0001] 本發明係針對六方晶氮化硼(以下,亦僅稱為hBN)粉末及包含該hBN粉末的樹脂薄片,特別是針對含有平均長徑大、且長寬比(aspect ratio)小的hBN之一次粒子的高純度的hBN粉末、其製造方法以及包含該hBN粉末的樹脂組成物及樹脂薄片。
[0002] hBN粒子係具有類似石墨之層狀構造,因為於熱傳導性、電絕緣性、化學上的安定性、固體潤滑性、耐熱衝擊性等之特性優異,所以活用此等之特性而使用作為絕緣散熱材料、固體潤滑劑、固體脫模劑、hBN燒成體製造用原料等。   [0003] 以往,hBN粉末係一般而言,混合硼酸或硼砂等之硼化合物和三聚氰胺或尿素等之氮化合物,在氨環境下或非氧化性氣體環境下以較低溫燒成而製造結晶性低的粗製hBN粉末,接著將此已得到的粗製hBN粉末在非氧化性氣體環境下,以高溫燒成而使之結晶成長而得(專利文獻1~3)。   [0004] 使如此的hBN粉末作為填料而含有於環氧樹脂或聚矽氧橡膠等之樹脂材料的薄片或帶、潤滑脂等係例如被使用作為用以將由電子零件產生的熱有效率地除去之具有電絕緣性的熱傳導性薄片或熱傳導性潤滑脂等之熱傳導性構件。為了此等之熱傳導性構件之更進一步的提昇熱傳導性,嘗試進行提高在熱傳導性構件中的hBN粉末之填充性。   然而,hBN之一次粒子係一般上為鱗片狀之粒子形狀,因為一次粒子之平均長徑與平均厚度之比(以下,亦有僅稱為「長寬比」)高,所以若提高填充性則一次粒子容易一致於特定之方向,在成形包含hBN粉末的樹脂組成物而成的如熱傳導性薄片般的成形品係配向向異性變得容易產生。若如此的配向向異性產生,則熱傳導性、電絕緣性、耐熱衝擊性等之特性為降低。   [0005] 因此,近年來,將在熱傳導性薄片的hBN粉末之填充性提高及抑制配向向異性作為目的,使用一種方法,其係將包含hBN之一次粒子所凝聚的二次粒子(以下,亦僅稱為「凝聚體」)的hBN粉末,混合於樹脂(專利文獻4、5)。   然而,在構成凝聚體的一次粒子之長寬比高的情況係若凝聚體之強度不充分,則在與樹脂之複合化過程中凝聚體崩壞,有起因於一次粒子之高長寬比而在熱傳導性薄片產生配向向異性之情事。又,若打算避免凝聚體之崩壞則無法充分地提高在熱傳導性薄片中的hBN粉末之填充性,有熱傳導性降低的問題。   [0006] 因此,將在hBN粉末之熱傳導性薄片中的填充性之提高及熱傳導性之提高作為目的,進行將碳化硼在氮環境中,在1800℃以上之條件進行氮化處理後,混合三氧化二硼或其前驅物,進行燒成而除去碳成分藉此得到以長寬比低的一次粒子所形成的hBN粉末的嘗試(專利文獻6、7)。   作為使hBN粉末中含有長寬比低的一次粒子的其他嘗試,亦進行將於硼化合物和碳源添加作為結晶化觸媒之含氧鈣化合物的混合物在氮環境下,進行加熱(專利文獻8)。 [先前技術文獻] [專利文獻]   [0007]   [專利文獻1] 日本特開昭61-286207號公報   [專利文獻2] 日本特許第3461651號說明書   [專利文獻3] 日本特公平5-85482號公報   [專利文獻4] 日本特開2011-098882號公報   [專利文獻5] 日本特開2005-343728號公報   [專利文獻6] 日本特許第4750220號說明書   [專利文獻7] 日本特許第5081488號說明書   [專利文獻8] 日本特開2015-212217號公報
[發明之概要] [發明欲解決之課題]   [0008] 然而,專利文獻6及7的技術中,尚未達到達成充分低的長寬比。   又,專利文獻8的技術中,平均包含於hBN粉末中的全部之一次粒子的情況係尚未達到達成充分低的長寬比,由提高熱傳導性之觀點,期望更進一步的長寬比之減低化。   進而,若一次粒子的平均長徑過小,則在將hBN粉末與樹脂複合化而作為樹脂組成物之時,一次粒彼此,及一次粒子與樹脂之接觸電阻增大而導致熱傳導率降低。因此,亦期望一次粒子平均長徑之增大化。   本發明係以提供一種hBN粉末、其製造方法以及包含該hBN粉末的樹脂組成物及樹脂薄片為課題,該hBN粉末係含有平均長徑大且長寬比低的hBN之一次粒子的高純度之hBN粉末,且相較於以往的hBN粉末,更抑制樹脂組成物或樹脂薄片之配向向異性,並且具有優異的熱傳導性。 [用以解決課題之手段]   [0009] 發明者等專心致力研討的結果,發現將碳化硼粉末在氮氣環境下燒成而可得的燒成物,在含氧氣之氣體環境下,以特定之溫度加熱脫碳後,再次於氮氣環境下燒成,藉此可得到相較於以往之hBN粉末平均長徑(L)更大,且一次粒子之平均長徑(L)之相對於平均厚度(D)的比[L/D]為更低的hBN粉末。   本發明係立足於上述之知見者。   [0010] 亦即,本發明係提供以下[1] ~[9] 者。   [1] 一種六方晶氮化硼粉末,其特徵在於:六方晶氮化硼粉末中的一次粒子之平均長徑(L)為超過10.0μm、30.0μm以下,平均厚度(D)為1.0μm以上,平均長徑(L)相對於平均厚度(D)之比[L/D]為3.0以上、5.0以下,且,長徑(l)相對於厚度(d)之比[l/d]為3.0以上、5.0以下之一次粒子的含有率為25%以上。   [2] 如上述[1]記載之六方晶氮化硼粉末,其中前述含有率為50%以上。   [3] 如上述[1]或[2]記載之六方晶氮化硼粉末,其中前述六方晶氮化硼粉末含有2個以上的一次粒子凝聚而成之凝聚體,使該六方晶氮化硼粉末通過孔徑106μm的篩時,其篩下之六方晶氮化硼粉末的50%體積累積粒徑D50 (1)為25μm以上、100μm以下,對將該篩下之六方晶氮化硼粉末分散於水中而得到之分散液進行3分鐘超音波處理後之50%體積累積粒徑D50 (2)為50μm以下。   [4] 如上述[1]至[3]中任一項記載之六方晶氮化硼粉末,其中BET比表面積為2.0 m2 /g以下。   [5] 一種樹脂組成物,其係含有如上述[1]~[4]中任一項記載之六方晶氮化硼粉末及有機基質,相對於該六方晶氮化硼粉末及該有機基質的合計量,該六方晶氮化硼粉末的含量為10體積%以上、90體積%以下。   [6] 一種樹脂薄片,其係由如上述[5]記載之樹脂組成物或其硬化物所構成者。   [7] 一種六方晶氮化硼粉末之製造方法,其係具有下述步驟1~3之如上述[1]~[4]中任一項記載之六方晶氮化硼粉末之製造方法,   步驟1:將碳化硼粉末於氮氣環境下以1600℃以上、2200℃以下進行燒成之步驟;   步驟2:將於步驟1所得到之燒成物於含有氧氣之氣體環境下以500℃以上、未達1500℃進行加熱並脫碳之步驟;   步驟3:將於步驟2所得到之脫碳後的生成物再次於氮氣環境下以1500℃以上、2200℃以下進行燒成之步驟。   [8] 如上述[7]之六方晶氮化硼粉末之製造方法,其中,步驟3中,相對於脫碳後之生成物100質量份,添加10質量份以上、80質量份以下之以組成式B2 O( 3+X ) H2X [惟,X=0~3]所示之硼化合物。   [9] 如上述[7]或[8]之六方晶氮化硼粉末之製造方法,其中,步驟3中,相對於脫碳後之生成物100質量份,添加10質量份以上、200質量份以下之鈣化合物。 [發明之效果]   [0011] 本發明係可提供一種hBN粉末、其製造方法以及包含該hBN粉末的樹脂組成物及樹脂薄片,該hBN粉末係含有平均長徑大且長寬比低的hBN之一次粒子的高純度之hBN粉末,且相較於以往的hBN粉末,更抑制樹脂組成物或樹脂薄片之配向向異性,並且具有優異的熱傳導性。
[0013] [六方晶氮化硼粉末]   本發明之六方晶氮化硼粉末(hBN粉末)係hBN粉末中的一次粒子之平均長徑(L)為超過10.0μm、30.0μm以下,平均厚度(D)為1.0μm以上,平均長徑(L)相對於平均厚度(D)之比[L/D](以下,亦僅稱為「長寬比[L/D])為3.0以上、5.0以下,且,長徑(l)相對於厚度(d)之比[l/d](以下,亦僅稱為「長寬比[l/d])為3.0以上、5.0以下,一次粒子的含有率為25%以上。   尚,在本說明書,所謂「平均長徑」係意味一次粒子之長徑之數平均值,所謂「平均厚度」係意味一次粒子之厚度之數平均值。又,所謂「長徑」係意味著鱗片狀粒子之平面方向之最大徑。   [0014] 藉由本發明,可得到一種hBN粉末,其係含有平均長徑大且長寬比低的hBN之一次粒子的高純度之hBN粉末,且相較於以往的hBN粉末更抑制樹脂組成物或樹脂薄片之配向向異性,並且具有優異的熱傳導性。可得到如此的效果的理由尚不清楚,但可認為本發明之hBN粉末係hBN之一次粒子之平均長徑大,將該hBN粉末與樹脂複合化而作為樹脂組成物之時,一次粒子間,以及一次粒子與樹脂的接觸電阻減低而提高熱傳導率。又,可認為hBN粉末中的一次粒子之長寬比[L/D]亦低,而且具有特定之長寬比[l/d]的一次粒子之含有率為特定之範圍,因此可改善在樹脂組成物或樹脂薄片的配向向異性,可顯現高的熱傳導性。   但是,此等為推定,本發明係不限定於此等之機制。   [0015] <一次粒子>   本發明之hBN粉末中之一次粒子之平均長徑(L)係由減低一次粒子間的接觸電阻、使熱傳導性提高的觀點為超過10.0μm、30.0μm以下,較佳為10.5μm以上、30.0μm以下,更佳為11.0μm以上、28.0μm以下,進而佳為12.0μm以上、26.0μm以下,進而更佳為13.0μm以上、24.0μm以下,進而更佳為14.0μm以上、22.0μm以下,進而更佳為15.0μm以上、20.0μm以下,進而更佳為16.0μm以上、19.5μm以下。包含平均長徑(L)為超過10.0μm之大的一次粒子的hBN粉末係在與樹脂複合化而成為樹脂組成物之時,可使一次粒子間,以及一次粒子與樹脂間的接觸電阻減低而提高熱傳導率。   本發明之hBN粉末中之一次粒子之平均厚度(D)係由提高熱傳導性之觀點為1.0μm以上,較佳為1.2μm以上,更佳為1.5μm以上,進而佳為2.0μm以上,進而更佳為2.5μm以上,進而更佳為3.0μm以上,進而更佳為3.5μm以上,並且,較佳為5.0μm以下,更佳為4.5μm以下,進而佳為4.0μm以下。   尚,一次粒子之平均長徑(L)及平均厚度(D)係藉由實施例所記載之方法而測定者。   [0016] 本發明之hBN粉末中之一次粒子之長寬比[L/D]係由抑制配向向異性,使熱傳導性提高的觀點為3.0以上、5.0以下,較佳為3.0以上、未達5.0,更佳為3.4以上、未達5.0,進而佳為3.6以上、4.9以下,進而更佳為3.8以上、4.9以下,進而更佳為4.0以上、4.8以下,進而更佳為4.4以上、4.8以下,進而更佳為4.5以上、4.8以下。   尚,長寬比[L/D]係藉由實施例所記載之方法而測定者。   [0017] 形成本發明之hBN粉末的一次粒子之個別長寬比[l/d]為3.0以上、5.0以下的一次粒子之含有率係由使朝向樹脂組成物之填充性提高,抑制配向向異性,使熱傳導性提高的觀點為25%以上,較佳為30%以上,更佳為40%以上,進而佳為50%以上,進而更佳為60%以上,尚,由生產優越性之觀點,較佳為80%以下,更佳為70%以下,進而佳為65%以下。   尚,前述含有率係藉由實施例所記載之方法而測定者。   [0018] <hBN粉末>   本發明之hBN粉末係較佳為含有2個以上之一次粒子凝聚而成的凝聚體,將該hBN粉末通過孔徑106μm的篩之時,其篩下之六方晶氮化硼粉末的50%體積累計粒徑D50 (1)(以下,亦僅稱為「D50 (1)」)為25μm以上、100μm以下為佳,且對將該篩下之hBN粉末分散於水中而得到之分散液進行3分鐘超音波處理後之50%體積累計粒徑D50 (2)(以下,亦僅稱為「D50 (2)」)為50μm以下為佳。   若超音波處理後之D50 (2)小,則構成凝聚體的一次粒子間之鍵結力變弱,若超音波處理後之D50 (2)大,則該一次粒子間之鍵結力變強,超音波處理後之D50 (2)係成為表示構成凝聚體的一次粒子間之鍵結力的指標。因而,藉由將超音波處理後之D50 (2)設為50μm以下,於與樹脂之複合化過程解碎一次粒子,凝聚體適度地變形,藉此提高在樹脂組成物中的hBN粉末之接觸性,形成熱傳導通路而可顯現高的熱傳導性。又,本發明之hBN粉末係在與樹脂之複合化過程中即使解碎一次粒子,因為含有長寬比低的hBN之一次粒子,所以可抑制在樹脂組成物或樹脂薄片的配向向異性。由此等之觀點,超音波處理後之D50 (2)係較佳為10μm以上、50μm以下,更佳為12μm以上、45μm以下,進而佳為14μm以上、40μm以下,進而更佳為16μm以上、35μm以下,進而更佳為18μm以上、30μm以下,進而更佳為20μm以上、25μm以下。   又,超音波處理前後之D50 之比[D50 (2)/D50 (1)]係由提高熱傳導性之觀點,較佳為0.50以上、0.90以下,更佳為0.51以上、0.85以下,進而佳為0.52以上、0.80以下,進而更佳為0.53以上、0.75以下,進而更佳為0.55以上、0.70以下,進而更佳為0.60以上、0.70以下。   [0019] 超音波處理後之D50 (2)係使用雷射繞射‧散射法之粒度分布計(日機裝公司製,機種名「Microtrac MT3300EXII」),藉由以下之方法而測定。   首先,將本發明之hBN粉末,使用孔徑106μm之篩而藉由乾式振動篩裝置(過篩時間60分鐘)分級,得到以該D50 (1)(超音波處理前之D50 )成為25μm以上、100μm以下之方式所分級的篩下hBN粉末(以下,亦僅稱為「分級hBN粉末」)。接著,將包含已得到的分級hBN粉末0.06g、水50g及分散劑0.005g的分散液放入50ml之容器,以輸出150W、振盪頻率19.5kHz之條件進行3分鐘超音波處理後,將超音波處理後之分散液,使用磁力攪拌器而以旋轉數400rpm之條件攪拌,同時藉由所得到的粒度分布而測定超音波處理後之D50 (2)。前述超音波處理係可使用超音波處理裝置(日本精機製作所公司製,機種名「超音波均質機US-150V」。又,作為前述分散劑係例如可使用LION公司之洗劑(商品名「MAMA LEMON」)等之市售之洗劑。   又,超音波處理前之D50 (1)係藉由實施例所記載之方法而測定者。   尚,在本發明所謂「以D50 (1)成為25μm以上、100μm以下之方式進行分級」係訂定供給於前述超音波處理後之D50 (2)之測定的本發明之hBN粉末之前處理條件,並非規定本發明之hBN粉末本身。   [0020] 本發明之hBN粉末之BET比表面積係由提高熱傳導性之觀點,較佳為未達5.0 m2 /g,更佳為0.1 m2 /g以上、4.5 m2 /g以下,進而佳為0.2 m2 /g以上、4.0 m2 /g以下,進而更佳為0.3 m2 /g以上、3.5 m2 /g以下,進而更佳為0.3 m2 /g以上、3.0 m2 /g以下,進而更佳為0.4 m2 /g以上、2.5 m2 /g以下,進而更佳0.5 m2 /g以上、2.0 m2 /g以下,進而更佳為0.5 m2 /g以上、1.5 m2 /g以下,進而更佳為0.5 m2 /g以上、1.0 m2 /g以下,進而更佳為0.6 m2 /g以上、0.9 m2 /g以下。若BET比表面積未達5.0 m2 /g,則包含於hBN粉末的凝聚體之比表面積亦變小,在製造樹脂組成物時被取入凝聚體內部的樹脂成分之量變少。因此,可認為相對上存在於凝聚體間的樹脂成分之量變多,凝聚體之相對於樹脂成分的分散性提高,hBN粉末與樹脂成分之親和性變好,熱傳導性提高。   另,hBN粉末之BET比表面積係可以實施例所記載之以流動法的BET1點法測定。   [0021] 本發明之hBN粉末之純度,亦即,在本發明之hBN粉末中的hBN之純度係由提高熱傳導性之觀點,較佳為96質量%以上,更佳為98質量%以上,進而佳為99質量%以上,進而更佳為99.5質量%以上,進而更佳為99.8質量%以上。   另,此hBN粉末之純度係可藉由實施例所記載之方法而測定。   [0022] 本發明之hBN粉末中之氧化硼(以下,亦僅稱為「B2 O3 」)含量係由熱傳導性及生產優越性提高之觀點,較佳為0.120質量%以下,更佳為0.001質量%以上、0.110質量%以下,進而佳為0.005質量%以上、0.100質量%以下,進而更佳為0.008質量%以上、0.080質量%以下,進而更佳為0.010質量%以上、0.070質量%以下。   另,B2 O3 含量係可藉由實施例所記載之方法而測定。   [0023] 本發明之hBN粉末中之碳含量係由提高熱傳導性及電絕緣性之觀點,較佳為0.50質量%以下,更佳為0.20質量%以下,進而佳為0.10質量%以下,進而更佳為0.05質量%以下,進而更佳為0.04質量%以下,進而更佳為0.03質量%以下,進而更佳為0.02質量%以下。   另,碳含量係可藉由實施例所記載之方法而測定。   [0024] [表面處理]   本發明之hBN粉末係在分散於樹脂成分中而製造樹脂組成物時,在提高相對於樹脂成分的分散性,使加工性提高等之目的,視需要亦可使用各種偶合劑等施加表面處理。   [0025] (偶合劑)   作為偶合劑係可舉出矽烷系、鈦酸酯系、鋁系等,但在此等之中,以使hBN粉末之分散性提高之點,較佳為矽烷系偶合劑。作為矽烷系偶合劑係特別是可較佳地使用γ-胺基丙基三甲氧基矽烷,γ-胺基丙基三乙氧基矽烷,γ-(2-胺基乙基)胺基丙基三甲氧基矽烷、γ-(2-胺基乙基)胺基丙基三乙氧基矽烷、γ-苯胺基丙基三甲氧基矽烷、γ-苯胺基丙基三乙氧基矽烷、N-β-(N-乙烯基苄基胺基乙基)-γ-胺基丙基三甲氧基矽烷及N-β-(N-乙烯基苄基胺基乙基)-γ-胺基丙基三乙氧基矽烷等之胺基矽烷化合物。   [0026] [六方晶氮化硼粉末之製造方法]   本發明之hBN粉末係將碳化硼(B4 C)粉末作為起始原料,藉由具有下述步驟1~3的製造方法而可得。   步驟1:將碳化硼粉末於氮氣環境下以1600℃以上、2200℃以下進行燒成之步驟   步驟2:將步驟1所得到的燒成物於含有氧氣之氣體環境下以500℃以上、未達1500℃進行加熱並脫碳之步驟   步驟3:將於步驟2所得到之脫碳後的生成物再次於氮氣環境下以1500℃以上、2200℃以下進行燒成之步驟   [0027] (步驟1)   步驟1係將碳化硼粉末於氮氣環境下以1600℃以上、2200℃以下進行燒成而得到燒成物之步驟。在步驟1中,根據下述式(1)進行將碳化硼粉末於氮氣環境下燒成而生成氮化硼粉末,但為此需要施加充分的溫度及時間和氮氣分壓。在步驟1的燒成溫度係1600℃以上、2200℃以下。若燒成溫度為1600℃以上,則上述式(1)之反應為有效率地進行,又,若為2200℃以下則可抑制上述式(1)之逆反應。由此等之觀點,較佳為1700℃以上、2200℃以下、更佳為1800℃以上、2150℃以下,進而佳為1900℃以上、2100℃以下。   在步驟1的燒成時間係由生產優越性之觀點,較佳為1小時以上、20小時以下,更佳為2小時以上、16小時以下,進而佳為3小時以上、12小時以下,進而更佳為4小時以上、10小時以下。   燒成係在氮氣環境下進行。在氮氣環境中的氮氣濃度係由提高反應性之觀點,較佳為60體積%以上,更佳為80體積%以上,進而佳為90體積%以上,進而更佳為99體積%以上。氧氣較少者為佳。   使用的碳化硼粉末之50%體積累積粒徑D50 ,較佳為45μm以下、3.0μm以上。若碳化硼粉末之D50 為45μm以下,則可促進上述式(1)之反應,燒成物之產率提高,同時可促進其後的脫碳處理的有效率的脫碳。並且,若為3.0μm以上,可在確保生產優越性的同時,增大最終所得之hBN一次粒子的大小。   由該等觀點,碳化硼粉末之50%體積累積粒徑D50 係更佳為30μm以下,進而佳為25μm以下,進而更佳為20μm以下,進而更佳為18μm以下,進而更佳為16μm以下,並且,較佳為3.0μm以上,更佳為5.0μm以上,進而佳為7.0μm以上,進而更佳為10μm以上。   尚,碳化硼粉末之D50 係可藉由實施例所記載之方法而測定。   碳化硼粉末之純度係由生產優越性之觀點,較佳為90質量%以上,更佳為93質量%以上,進而佳為95質量%以上。   在本發明之製造方法,碳化硼粉末之不純物係藉由步驟1及步驟3之高溫燒成而除去。   [0028] (步驟2)   步驟2係將步驟1所得到的燒成物於含有氧氣之氣體環境下,以500℃以上、未達1500℃進行加熱並脫碳而得到生成物的步驟。以往,在將上述燒成物脫碳時,一般而言,加入氧化硼等而在非氧化性氣體環境下以1500℃以上燒成,然而在此情況下,在碳成分與氧化硼之間藉由以下述式(2)所示的還原氮化反應而產生新的氮化硼之微結晶,而難以使燒成物全體均勻地晶粒成長。因此,在本發明之製造方法之步驟2係藉由在含有氧氣之氣體環境下,以未達1500℃進行加熱、脫碳,可將在後述的步驟3的氮氣環境下之再燒成時之晶粒成長均勻化。更進一步,藉由包含於生成物中的hBN在加熱時被氧化,一部分成為氧化硼,可不需要,或可大幅地減低以往在其後之非氧化性氣體環境下再次燒成時作為結晶成長助劑加入之氧化硼。   在步驟2的加熱溫度係500℃以上、未達1500℃。若加熱溫度為500℃以上,則脫碳反應為有效率地進行,又,若未達1500℃則可抑制在因六方晶氮化硼之氧化而產生的氧化硼與碳成分之間引起的以前述式(2)所示的還原氮化反應,促進均勻的晶粒成長。由此等之觀點,較佳為600℃以上、1300℃以下、更佳為700℃以上、1100℃以下,進而佳為800℃以上、900℃以下。   在步驟2的加熱時間係由生產優越性之觀點,較佳為1小時以上、20小時以下,更佳為2小時以上、16小時以下,進而佳為3小時以上、12小時以下,進而更佳為4小時以上、10小時以下。   加熱係在含有氧氣之氣體環境下進行。氧氣分壓係無特別限制,但在氧氣濃度係較佳為10體積%以上、50體積%以下,更佳為15體積%以上、30體積%以下的環境下進行為佳。作為含有氧氣之氣體係由生產成本之觀點,使用空氣為佳。   [0029] (步驟3)   步驟3係將於步驟2所得到之脫碳後的生成物再次於氮氣環境下以1500℃以上、2200℃以下進行燒成而得到本發明之hBN粉末的步驟。藉由步驟3,可使hBN粉末中之一次粒子進行晶粒成長。   在步驟3的燒成溫度係由促進hBN一次粒子之晶粒成長的觀點,為1500℃以上、2200℃以下。若燒成溫度係1500℃以上則促進充分的hBN一次粒子之晶粒成長反應,又若為2200℃以下則可抑制hBN之分解。由此等之觀點,燒成溫度係較佳為1600℃以上、2200℃以下、更佳為1700℃以上、2200℃以下。   在步驟3的燒成時間係較佳為1小時以上、20小時以下。若燒成時間為1小時以上則充分地進行hBN一次粒子之晶粒成長反應,又若為20小時以下,則降低燒成成本。由此等之觀點,更佳為1小時以上、15小時以下,進而佳為3小時以上、10小時以下。   [0030] 本發明之製造方法係由促進脫碳的觀點,及促進hBN一次粒子之結晶成長的觀點,較佳為進而添加以組成式B2 O(3+X) H2X [惟,X=0~3]所示的硼化合物。該添加係在步驟1~3之燒成或加熱前之任一者均可,但由促進hBN一次粒子之結晶成長的觀點,在步驟3中,於在步驟2得到的脫碳後之生成物添加前述硼化合物為佳。藉此,可在抑制於步驟2中以上述式(2)所示的還原氮化反應所致之產生氮化硼之微結晶的同時促進脫碳,於接下來之步驟3中充分地促進hBN一次粒子之結晶成長。   作為前述硼化合物係由正硼酸(H3 BO3 )、偏硼酸(HBO2 )、四硼酸(H2 B4 O7 )等之硼含氧酸及硼酸酐(B2 O3 )等之硼氧化物中所選擇的1種以上為較佳,由取得容易,與脫碳後之生成物之混合性為良好的觀點,硼酸酐(B2 O3 )為更佳。   前述硼化合物之純度係由生產優越性之觀點,較佳為90質量%以上,更佳為95質量%以上,進而佳為99質量%以上,進而更佳為100質量%。   前述硼化合物之添加量係由促進hBN一次粒子之結晶成長的觀點,相對於脫碳後之生成物100質量份,較佳為10質量份以上、80質量份以下,更佳為20質量份以上、70質量份以下,進而佳為30質量份以上、60質量份以下,進而更佳為35質量份以上、55質量份以下。   [0031] 本發明之製造方法係由促進脫碳的觀點,及促進hBN一次粒子之結晶成長的觀點,較佳為除前述硼化合物之外進而添加鈣化合物(以下,亦僅稱為「Ca化合物」)。作為Ca化合物係可舉出碳酸鈣、氧化鈣、氟化鈣、氯化鈣等。該等中較佳為碳酸鈣。   Ca化合物中碳酸鈣的含量係較佳為90質量%以上,更佳為95質量%以上,進而佳為99質量%以上,進而更佳為100質量%。該添加係於步驟1~3之燒成或加熱前之任一者皆可,由促進hBN一次粒子之結晶成長的觀點,較佳為於步驟3中,將Ca化合物添加於步驟2所得到之脫碳後的生成物。   Ca化合物之添加量係由促進hBN一次粒子之結晶成長的觀點,相對於脫碳後之生成物100質量份,較佳為10質量份以上、200質量份以下,更佳為30質量份以上、160質量份以下,進而佳為50質量份以上、140質量份以下,進而更佳為70質量份以上、120質量份以下。   [0032] [樹脂組成物]   本發明之樹脂組成物係含有前述六方晶氮化硼粉末(hBN粉末)及有機基質,相對於該hBN粉末及該有機基質的合計量,該hBN粉末的含量為10體積%以上、90體積%以下。在本發明之樹脂組成物的前述hBN粉末之含量(體積%)係由在與樹脂之複合化步驟的製造容易性及熱傳導性之觀點,相對於前述hBN粉末及前述有機基質之合計量,為10體積%以上、90體積%以下,較佳為20體積%以上、80體積%以下,更佳為25體積%以上、75體積%以下,進而佳為30體積%以上、70體積%以下,進而更佳為35體積%以上、65體積%以下。在本發明,前述hBN粉末之體積基準之含量(體積%)係可由在25℃的該hBN粉末之比重及作為有機基質使用的各種樹脂之比重而求出。   藉由使用前述hBN粉末,在與樹脂複合化而作為樹脂組成物之時,一次粒子間,及一次粒子與樹脂間之接觸電阻減低,其結果,可顯現高的熱傳導性。更進一步,因為hBN粉末含有長寬比低的一次粒子,所以可抑制在樹脂組成物或樹脂薄片的配向向異性。   在本發明之樹脂組成物的前述hBN粉末之含量(質量 %)亦依據所使用的有機基質之種類而定,但由在與樹脂之複合化步驟的製造容易性及熱傳導性之觀點,相對於前述hBN粉末及前述有機基質之合計量,較佳為5質量%以上、95質量%以下,更佳為10質量%以上、90質量%以下,進而佳為15質量%以上、85質量%以下,進而更佳為20質量%以上、80質量%以下,進而更佳為25質量%以上、75質量%以下。   另,本發明之樹脂組成物的前述hBN粉末之含量(質量 %)係藉由「碳纖維強化塑料之纖維含有率及空隙率試驗方法(JIS K 7075:1991)」所記載之燃燒法而測定。並且,本發明之樹脂組成物的前述hBN粉末之含量(體積%)係將藉由前述方法所得之hBN粉末之含量(質量%)除以氮化硼之密度而算出。   [0033] <有機基質>   本發明之樹脂組成物係含有樹脂作為有機基質。   作為使用於本發明的樹脂,較佳為含有由熱硬化性樹脂、熱可塑性樹脂、各種橡膠、熱可塑性彈性體、油等之中所選擇的1種以上之樹脂。   作為熱硬化性樹脂係例如可舉出環氧樹脂、聚矽氧樹脂、酚樹脂、尿素樹脂、不飽和聚酯樹脂、三聚氰胺樹脂、聚醯亞胺樹脂、聚苯并噁唑樹脂、胺基甲酸酯樹脂等。   作為熱可塑性樹脂係例如可舉出聚乙烯、聚丙烯、乙烯-醋酸乙烯酯共聚物等之聚烯烴樹脂;聚對苯二甲酸乙二酯、聚對苯二甲酸丁二酯、液晶聚酯等之聚酯樹脂;聚氯乙烯樹脂、丙烯酸樹脂、聚苯硫醚樹脂、聚苯醚樹脂、聚醯胺樹脂、聚醯胺醯亞胺樹脂及聚碳酸酯樹脂等。   作為各種橡膠係可舉出天然橡膠、聚異戊二烯橡膠、苯乙烯-丁二烯共聚物橡膠、聚丁二烯橡膠、乙烯-丙烯共聚物、乙烯-丙烯-二烯共聚物、丁二烯-丙烯腈共聚物、異丁烯-異戊二烯共聚物、氯丁二烯橡膠、聚矽氧橡膠、氟橡膠、氯-磺化聚乙烯、聚胺基甲酸酯橡膠等。此等橡膠係進行交聯使用為佳。   作為熱可塑性彈性體係可舉出烯烴系熱可塑性彈性體、苯乙烯系熱可塑性彈性體、氯乙烯系熱可塑性彈性體、胺基甲酸酯系熱可塑性彈性體、酯系熱可塑性彈性體等。   作為油成分係可舉出矽油等之潤滑脂類。   此等之有機基質係可以單獨一種使用,亦可組合二種以上使用。   [0034] 作為有機基質使用的樹脂係按照使用本發明之樹脂組成物而可得的熱傳導性構件之用途、該熱傳導性構件之機械上的強度、耐熱性、耐久性、柔軟性、可撓性等之要求特性,可適宜選擇。   在此等之中,尤其由抑制配向向異性、使熱傳導性提高的觀點,較佳為由以往作為樹脂薄片之有機基質而使用的各種之熱硬化性樹脂、熱可塑性樹脂、各種橡膠、熱可塑性彈性體等所選擇的1種以上之樹脂,更佳為熱硬化性樹脂,進而佳為由硬化性環氧樹脂及硬化性聚矽氧樹脂中選擇1種以上。   前述樹脂組成物中之前述有機基質之含量(體積%)係由提高在與樹脂之複合化步驟的製造容易性及熱傳導性之觀點,相對於前述hBN粉末及前述有機基質之合計量,較佳為10體積%以上、90體積%以下,更佳為20體積%以上、80體積%以下,進而佳為25體積%以上、75體積%以下,進而更佳為30體積%以上、70體積%以下,進而更佳為35體積%以上、65體積%以下。在本發明,前述有機基質之體積基準之含量(體積%)係可由在25℃的hBN粉末之比重及作為有機基質使用的各種樹脂之比重而求出。   在本發明之樹脂組成物的前述有機基質之含量(質量%)亦依據所使用的有機基質之種類,但由在與樹脂之複合化步驟的製造容易性及熱傳導性之觀點,相對於前述hBN粉末及前述有機基質之合計量,較佳為5質量%以上、95質量%以下,更佳為10質量%以上、90質量%以下,進而佳為15質量%以上、85質量%以下,進而更佳為20質量%以上、80質量%以下,進而更佳為25質量%以上、75質量%以下。   [0035] [硬化性環氧樹脂]   在本發明之樹脂組成物,作為有機基質使用的硬化性環氧樹脂係由hBN粉末之相對於有機基質的分散性之觀點,較佳為在常溫為液狀之環氧樹脂或在常溫為固體狀之低軟化點環氧樹脂。   作為此硬化性環氧樹脂,如為於1分子中具有2個以上之環氧基的化合物則無特別限制,可由以往作為環氧樹脂所使用的一般周知之化合物之中適宜地選擇任意者而使用。作為如此的環氧樹脂,例如可舉出雙酚A型環氧樹脂、雙酚F型環氧樹脂、藉由聚羧酸之縮水甘油醚、環己烷衍生物之環氧化而得的環氧樹脂等。此等係可以單獨使用一種,亦可組合二種以上來使用。在前述環氧樹脂之中係由耐熱性及作業性等之觀點,雙酚A型環氧樹脂、雙酚F型環氧樹脂、藉由環己烷衍生物之環氧化而得的環氧樹脂為合適。   [0036] (環氧樹脂用硬化劑)   為了使硬化性環氧樹脂硬化,通常使用環氧樹脂用硬化劑。作為此環氧樹脂用硬化劑係無特別限制,可由以往作為環氧樹脂之硬化劑使用者之中,適宜地選擇任意者而使用,例如可舉出胺系、酚系、酸酐系、咪唑系等。作為胺系硬化劑係例如可較佳的舉出二氰二胺、m-苯二胺、4,4’-二胺基二苯基甲烷、4,4’-二胺基二苯基碸、m-苯二甲基二胺等之芳香族二胺等,作為酚系硬化劑係例如可舉出苯酚酚醛清漆樹脂、甲酚酚醛清漆樹脂、雙酚A型酚醛清漆樹脂、三嗪改質苯酚酚醛清漆樹脂等。又,作為酸酐系硬化劑係例如可舉出甲基六氫鄰苯二甲酸酐等之脂環式酸酐、鄰苯二甲酸酐等之芳香族酸酐、脂肪族二元酸酐等之脂肪族酸酐、氯菌酸酐等之鹵素系酸酐等。作為咪唑系硬化劑係可舉出2-甲基咪唑、2-十一烷基咪唑、2-十七烷基咪唑、2-乙基-4-甲基咪唑、2-苯基咪唑、2-苯基-4-甲基咪唑、1-氰乙基-2-乙基-4-甲基咪唑等。   此等之硬化劑係可以單獨使用一種,亦可組合二種以上來使用。此環氧樹脂用硬化劑之使用量係由硬化性及硬化樹脂物性之平衡等之觀點,在以相對於前述硬化性環氧樹脂的當量比計,通常為0.5~1.5當量比左右,較佳為0.7~1.3當量比之範圍選定。   [0037] (環氧樹脂用硬化促進劑)   在本發明之樹脂組成物中,可與環氧樹脂用硬化劑一起視需要併用環氧樹脂用硬化促進劑。   作為此環氧樹脂用硬化促進劑係無特別限制,可由以往作為環氧樹脂之硬化促進劑使用者之中,適宜地選擇任意者而使用。例如可例示2-乙基-4-甲基咪唑、1-苄基-2-甲基咪唑、2-甲基咪唑、2-乙基咪唑、2-異丙基咪唑、2-苯基咪唑、2-苯基-4-甲基咪唑等之咪唑化合物、2,4,6-參(二甲基胺基甲基)酚、三氟化硼胺錯合物、三苯基膦等。此等之硬化促進劑係可以單獨使用一種,亦可組合二種以上來使用。此環氧樹脂用硬化促進劑之使用量係由硬化促進性及硬化樹脂物性之平衡等觀點,在相對於前述硬化性環氧樹脂100質量份,通常為0.1~10質量份左右,較佳為0.4~5質量份之範圍選定。   [0038] [硬化性聚矽氧樹脂]   作為硬化性聚矽氧樹脂係可使用加成反應型聚矽氧樹脂與聚矽氧系交聯劑之混合物。作為加成反應型聚矽氧樹脂,例如可舉出由於分子中具有作為官能基的烯基的聚有機矽氧烷之中所選擇的1種以上。作為上述之於分子中具有作為官能基的烯基的聚有機矽氧烷之較佳者,可舉出將乙烯基設為官能基的聚二甲基矽氧烷、將己烯基設為官能基的聚二甲基矽氧烷及此等之混合物等。   [0039] 作為聚矽氧系交聯劑係例如於1分子中具有至少2個之鍵結矽原子的氫原子的聚有機矽氧烷,具體而言係可舉出二甲基氫矽氧基末端封閉二甲基矽氧烷-甲基氫矽氧烷共聚物、三甲基矽氧基末端封閉二甲基矽氧烷-甲基氫矽氧烷共聚物、三甲基矽氧烷基末端封閉聚(甲基氫矽氧烷)、聚(氫倍半矽氧烷)等。   [0040] 又,作為硬化觸媒係通常使用鉑系化合物。作為此鉑系化合物之例係可舉出微粒子狀鉑、已吸附於碳粉末載體上的微粒子狀鉑、氯鉑酸、醇改質氯鉑酸、氯鉑酸之烯烴錯合物、鈀、銠觸媒等。   [0041] 本發明之樹脂組成物係在本發明之效果可得的範圍,亦可含有更進一步的任意成分。作為如此的任意成分係例如可舉出氮化鋁、氮化矽、纖維狀氮化硼等之氮化物粒子、氧化鋁、纖維狀氧化鋁、氧化鋅、氧化鎂、氧化鈹、氧化鈦等之電絕緣性金屬氧化物、鑽石、富勒烯等之電絕緣性碳成分、可塑劑、黏著劑、補強劑、著色劑、耐熱提昇劑、黏度調整劑、分散安定劑及溶劑。   又,於本發明之樹脂組成物係只要不損及該效果,除了作為上述之氮化物粒子或電絕緣性金屬氧化物所例示者以外,亦可添加氫氧化鋁、氫氧化鎂等之無機填料、改善無機填料與樹脂之界面接著強度的矽烷偶合劑等之表面處理劑、還原劑等。   前述樹脂組成物中之任意成分之含量係較佳為0體積%以上、30體積%以下,更佳為0體積%以上、20體積%以下,進而佳為0.01體積%以上、10體積%以下。又,前述樹脂組成物含有任意成分之情況下,前述樹脂組成物中之前述hBN粉末及前述有機基質之合計量係較佳為70體積%以上、100體積%以下,更佳為80體積%以上、100體積%以下,進而佳為90體積%以上、99.99體積%以下。   [0042] 本發明之樹脂組成物係例如可以下述之方式進行而製造。   首先,將樹脂及視需要之硬化劑混合而調製有機基質。又,由在製造後述的樹脂薄片時調整黏度的觀點,亦可進而視需要而加入溶劑於該有機基質中。接著,在此有機基質,將前述hBN粉末,以相對於該有機基質及該hBN粉末之合計量,該hBN粉末以10體積%以上、90體積%以下之比例包含之方式加入。以藉由在25℃的hBN粉末之比重和作為有機基質所使用的樹脂之比重而成為所期望之體積%之方式,設定hBN粉末及樹脂之重量,將其各自秤量後混合,調製樹脂組成物。   在本發明之樹脂組成物,作為有機基質之主成分,使用硬化性環氧樹脂的情況係此硬化性環氧樹脂、環氧樹脂用硬化劑,與視需要而使用的環氧樹脂用硬化促進劑之混合物成為有機基質。又,在作為有機基質之主成分,而使用硬化性聚矽氧樹脂的情況下,加成反應型聚矽氧樹脂、聚矽氧系交聯劑,與硬化觸媒之混合物成為有機基質。   更進一步,在調製有機基質之時加入溶劑的情況,係除去溶劑者成為有機基質。   [0043] 以如此的方式進行而得到的樹脂組成物係可使用於熱傳導性薄片、熱傳導性凝膠、熱傳導性潤滑脂、熱傳導性接著劑、相變化型薄片等之熱傳導性構件。該結果,可將來自MPU或功率電晶體、變壓器等之發熱性電子零件之熱,有效率地傳達至散熱鰭片或散熱扇等之散熱零件。   在上述熱傳導性構件之中,較佳為使用樹脂薄片作為熱傳導性薄片。藉由將前述樹脂組成物使用於樹脂薄片,由抑制配向向異性的觀點,及提高熱傳導性之觀點,特別可發揮該效果。   [0044] [樹脂薄片]   本發明之樹脂薄片係由前述樹脂組成物或其硬化物所構成者,將前述樹脂組成物成形為薄片而成。在前述樹脂組成物為硬化性之情況下,係成形至薄片後,使其硬化而成。   本發明之樹脂薄片係可藉由將前述樹脂組成物,以通常之塗覆機等,塗佈於附有脫模層之樹脂薄膜等之基材之脫模層上,在前述樹脂組成物包含溶劑的情況係藉由遠紅外線輻射加熱器、噴吹溫風等而使溶劑乾燥、薄片化而製造。   作為脫模層係可使用三聚氰胺樹脂等。又,作為樹脂薄膜係使用聚對苯二甲酸乙二酯等之聚酯樹脂等。   在前述樹脂組成物的有機基質為並非如硬化性環氧樹脂或硬化性聚矽氧樹脂般的硬化性有機基質的情況,前述之已薄片化的樹脂薄片依原樣成為本發明之樹脂薄片。   [0045] 更進一步,在前述有機基質為硬化性基質的情況下,將在前述所得到的基材上所形成的樹脂薄片,視需要而自該基材之前述樹脂組成物所未塗佈的面側,介隔該基材而加壓,更進一步進行加熱處理而使其硬化,藉此得到本發明之樹脂薄片。加壓條件係較佳為15MPa以上、20MPa以下,更佳為17MPa以上、19MPa以下。又,加熱條件係較佳為80℃以上、200℃以下、更佳為100℃以上、150℃以下。尚,脫模性薄膜等之基材通常最終將剝離或除去。   [0046] 以如此之方式進行而得到的本發明之樹脂薄片之膜厚係由成形性之觀點,較佳為50μm以上、10mm以下,更佳為50μm以上、1.0mm以下,進而佳為50μm以上、500μm以下,進而更佳為60μm以上、400μm以下,進而更佳為70μm以上、300μm以下。又,由使用前述樹脂薄片的電子零件等之輕薄化之觀點係較佳為50μm以上、150μm以下,更佳為60μm以上、130μm以下,進而佳為70μm以上、110μm以下之範圍。   [0047] 本發明之樹脂薄片係由熱傳導性構件之散熱性之觀點,較佳為厚度方向之熱傳導率較佳為20 W/m.K以上,進而更佳為21 W/m.K以上。   前述熱傳導率係可將藉由NETZSCH公司製,機種名「LFA447 NanoFlash」測定熱擴散率,藉由對該熱擴散率乘以各自之樹脂薄片之比熱和密度之理論值而算出的值,設為樹脂薄片之厚度方向之熱傳導率。   另,樹脂薄片之比熱之理論值係例如在作為有機基質而使用液狀硬化性環氧樹脂的情況下,將氮化硼之理論密度設為2.27 g/cm3 、將樹脂成分之理論密度設為1.17 g/cm3 、將氮化硼之理論比熱設為0.80 J/(g‧k)、將樹脂成分之理論比熱設為1.80 J/(g‧k),將對各自之理論比熱乘以各自之理論密度與各自之樹脂薄片中之含量(體積%)的值合計,再將此合計值除以將對各自之理論密度乘以各自之樹脂薄片中之含量(體積%)的值合計之值,可藉由下述式而計算。   樹脂薄片之比熱之理論值=[(0.80×2.27×氮化硼之含量(體積%)+1.80×1.17×樹脂成分之含量(體積%)) / (2.27×氮化硼之含量(體積%)+1.17×樹脂成分之含量(體積%))]   又,樹脂薄片之密度之理論值係例如在作為有機基質而使用液狀硬化性環氧樹脂的情況下,將氮化硼之理論密度設為2.27 g/cm3 、將樹脂成分之理論密度設為1.17 g/cm3 ,將對各自之理論密度乘以各自之樹脂薄片中之含量(體積%)的值合計而乘百分之一,可藉由下述式而計算。   樹脂薄片之密度之理論值=[(2.27×氮化硼之含量(體積%)+1.17×樹脂成分之含量(體積%))×(1/100)]   [0048] 本發明之樹脂薄片係由電絕緣性之觀點,較佳為比重率為90%以上、100%以下,更佳為95%以上、100%以下,進而佳為98%以上、100%以下,進而更佳為100%。   前述比重率係將使用Sartorius Mechatronics Japan公司製之電子天秤(機種名「CP224S」)及比重/密度測定套組(機種名「YDK01/YDK01-OD/YDK01LP」)藉由阿基米德法測定而得到的樹脂薄片之比重,除以樹脂薄片之理論比重而乘100倍,可藉由下述式而算出。   比重率=[(以測定得到的樹脂薄片之比重/樹脂薄片之理論比重)×100]   另,樹脂薄片之理論比重係例如在作為有機基質使用液狀硬化性環氧樹脂的情況下,將氮化硼之理論密度設為2.27 g/cm3 、將樹脂成分之理論密度設為1.17 g/cm3 ,將對各自之理論密度乘以各自之樹脂薄片中之含量(體積%)的值合計而乘百分之一,可藉由下述式而計算。   樹脂薄片之理論比重=[(2.27×氮化硼之含量(體積%)+1.17×樹脂成分之含量(體積%))×(1/100)]   [0049] 如此而得到的樹脂薄片係可由脫模性薄膜剝離,或是將脫模性薄膜設為保護薄膜的狀態,設為用以供於作為樹脂薄片之使用之製品之形態。   又,本發明之樹脂薄片係亦可作為進而設置黏著性層於樹脂薄片之上面或下面的構成,藉此而製品使用時之便利性提高。   進而,本發明之樹脂薄片,亦可於其單面或兩面及薄片內,以作業性提高或補強的目的而層合或埋沒薄片狀、纖維狀、網目狀之構件而使用。   [0050] 本發明之樹脂薄片係可使用作為例如將來自MPU或功率電晶體、變壓器等之發熱性電子零件之熱, 傳熱至散熱鰭片或散熱扇等之散熱零件的熱傳導性薄片,夾入發熱性電子零件與散熱零件之間而使用。藉此,發熱性電子零件和散熱零件間之傳熱變為良好,可使發熱性電子零件之誤動作顯著變輕微。 [實施例]   [0051] 以下,舉出實施例及比較例而更具體地說明本發明,但本發明係不因此等之例而受到任何限定。   [0052] <hBN粉末之製造> [實施例1] (步驟1)   將市售之碳化硼粉末(50%體積累積粒徑D50 :13μm、純度:95質量%)100 g放入石墨製坩堝,使用高頻電爐且在氮氣環境下,以2000℃燒成10小時。所得到的燒成物係因為含有作為不純物之碳份所以呈現黑色。 (步驟2)   將上述燒成物放入氧化鋁製坩堝,使用電爐而於空氣環境下,以900℃加熱10小時。將所得到的生成物進行脫碳,呈現灰色。 (步驟3)   相對於上述脫碳後之生成物100質量份,將加入25質量份作為前述硼化合物之關東化學公司製造之氧化硼(B2 O3 、硼酸酐)與100質量份碳酸鈣(CaCO3 )者混合而得到混合物後,將該混合物放入石墨製坩堝,再次使用高頻電爐且在氮氣環境下,以1600℃~2200℃合計燒成10小時,藉此可得到包含白色之高結晶化的hBN粉末之生成物。   另,藉由依據X射線繞射裝置(PANalytical公司製,機種名「X’Pert PRO」)所致之分析進行hBN的結晶結構的確認。亦同樣地進行以下實施例及比較例之hBN的結晶結構的確認。   針對將上述生成物以鹽酸清洗而得到的hBN粉末,實施依後述之手法所致的評價。   又,使用上述hBN粉末,藉由後述之樹脂組成物之製作及樹脂薄片的製作手法製作樹脂薄片。   針對上述樹脂薄片,藉由後述之手法測定熱傳導率。   [0053] [實施例2] (步驟1)   將與實施例1同樣之碳化硼粉末100 g放入石墨製坩堝,使用高頻電爐且在氮氣環境下,以2000℃燒成8小時。所得到的燒成物係因為含有作為不純物之碳份所以呈現黑色。 (步驟2)   將上述燒成物放入氧化鋁製坩堝,使用電爐而在空氣環境下,以700℃加熱15小時。將所得到的生成物進行脫碳,呈現灰色。 (步驟3)   相對於上述脫碳後之生成物100質量份,將加入50質量份作為前述硼化合物之關東化學公司製之氧化硼(B2 O3 、硼酸酐)與80質量份碳酸鈣(CaCO3 )者混合而得到混合物後,將該混合物放入石墨製坩堝,再次使用高頻電爐且在氮氣環境下,以1600℃~2200℃合計燒成10小時,藉此可得到包含白色之高結晶化的hBN粉末之生成物。   針對將上述生成物以鹽酸清洗而得到的hBN粉末,實施依後述之手法所致的評價。   又,使用上述hBN粉末,藉由後述之樹脂組成物之製作及樹脂薄片之製作手法製作樹脂薄片。   針對上述樹脂薄片,藉由後述之手法測定熱傳導率。   [0054] [比較例1] (步驟1)   將與實施例1同樣之碳化硼粉末100 g放入石墨製坩堝,使用高頻電爐且在氮氣環境下,以2000℃燒成10小時。所得到的燒成物係因為含有作為不純物之碳份所以呈現黑色。 (步驟3’)   相對於上述燒成物100質量份,將加入120質量份作為前述硼化合物之關東化學公司製造之氧化硼(B2 O3 、硼酸酐)與80質量份碳酸鈣(CaCO3 )者混合後,放入石墨製坩堝,再次使用高頻電爐且在氮氣環境下,以1600℃~2200℃合計燒成10小時,藉此可得到包含高結晶化的hBN粉末之生成物。   針對將上述生成物以鹽酸清洗而得到的hBN,實施依後述之手法所致的評價。   又,使用上述hBN粉末,藉由後述之樹脂組成物之製作及樹脂薄片之製作手法製作樹脂薄片。   針對上述樹脂薄片,藉由後述之手法測定熱傳導率。   [0055] [比較例2]   將加入硼酸4 g、三聚氰胺2 g及水1 g者攪拌混合,放入模具內而加壓,得到密度0.7 g/cm3 之成形體。將此成形體在乾燥機中以300℃、乾燥100分鐘者,在NH3 氣體環境下,以1100℃煅燒120分鐘。將此所得到的煅燒物(粗製hBN)粉碎而得到粗製hBN粉末(氧化硼之含量:35質量%)。   相對於上述粗製hBN粉末100質量份,加入10質量份作為碳源之昭和電工公司製之人造石墨微粉「UF-G30」、加入0.4質量份作為Ca化合物之碳酸鈣及加入10質量份PVA水溶液(濃度2.5質量%),藉此得到相對於粗製hBN粉末100質量份的碳源之碳換算含量為10質量份的混合物。   將此混合物以混合機攪拌混合後,放入模具內進行加壓,得到密度1.2 g/cm3 之成形體。使此成形體在乾燥機中以300℃乾燥6小時而得到乾燥物。將此乾燥物,使用高頻電爐而在氮氣環境下,以1750℃~2200℃合計燒成6小時,藉此得到hBN燒成物。針對將此hBN燒成物解碎所得到的hBN粉末,實施依後述之手法所致的評價。   又,使用上述hBN粉末,藉由後述之樹脂組成物之製作及樹脂薄片之製作手法製作樹脂薄片。   針對上述樹脂薄片,藉由後述之手法測定熱傳導率。   [0056] [比較例3]   使用昭和電工公司製之hBN粉末「UHP-EX」,實施依後述之手法所致的評價。   又,使用上述hBN粉末,藉由後述之樹脂組成物之製作及樹脂薄片之製作手法製作樹脂薄片。   針對上述樹脂薄片,藉由後述之手法測定熱傳導率。   [0057] <樹脂組成物之製作>   使用在實施例及比較例所得到之各hBN粉末製作樹脂組成物。   首先,混合100質量份液狀硬化性環氧樹脂(日本環氧樹脂公司製,商品名「jER828」,雙酚A型,環氧當量184-194 g/eq),與5質量份作為硬化劑之咪唑(四國化成工業公司製,商品名「2E4MZ-CN」),調製有機基質。   接著,將在實施例及比較例所得到的各hBN粉末,以相對於該hBN粉末及該有機基質之合計量hBN粉末之含量成為60體積%之方式加入,使用倉敷紡織公司製MAZERUSTAR(登錄商標)而攪拌混合製作樹脂組成物。   另,前述hBN粉末之體積基準之含量(體積%)係可由在25℃的hBN粉末之比重(2.27)及作為有機基質使用的液狀硬化性環氧樹脂之比重(1.17)而求出。   [0058] <樹脂薄片之製作>   使用上述樹脂組成物,於裁切為橫10.5 cm、縱13 cm的脫模性薄膜上,以硬化膜厚成為500μm以下之方式使用模具而成形後,連模具一起夾至脫模性薄膜,介隔脫模性薄膜,以120℃、18MPa之條件壓著10分鐘,藉此製作使樹脂組成物硬化而成的樹脂薄片。   [0059] [評價]   針對在實施例及比較例所使用的碳化硼粉末,在實施例及比較例所得到的各hBN粉末,以及在實施例及比較例所得到的各樹脂薄片,實施以下之評價。將評價結果示於表1。   [0060] (碳化硼粉末之D50 )   調製包含0.1 g的在實施例及比較例所使用的碳化硼粉末、50 g水及0.005g作為分散劑之市售之洗劑(商品名「MAMA LEMON」,LION公司製)的分散液。接著,藉由使用粒度分布計(日機裝公司製,機種名「Microtrac MT3300EXII」),將該分散液,使用磁力攪拌器而以旋轉數400 rpm之條件攪拌同時可得到的粒度分布,而測定碳化硼粉末之50%體積累積粒徑D50 。   [0061] (hBN粉末中之一次粒子之平均長徑(L)、平均厚度(D)及長寬比[L/D])   針對在實施例及比較例所得的各hBN粉末,使用掃描式電子顯微鏡而拍攝SEM圖像,將依所得到的SEM圖像而可測定長徑和厚度的hBN一次粒子,任意地抽出100個,測定長徑之長度及厚度,將長徑之數平均值設為平均長徑(L)、將厚度之數平均值設為平均厚度(D),算出長寬比[L/D]。   [0062] (長寬比為3.0以上、5.0以下之一次粒子之含有率)   針對在實施例及比較例所得的各hBN粉末,使用掃描式電子顯微鏡而拍攝SEM圖像,將依所得到的SEM圖像而可測定長徑和厚度的hBN一次粒子,任意地抽出100個,將長寬比[l/d]為3.0以上、5.0以下之個數比例作為前述含有率(%)算出。   [0063] (分級hBN粉末之超音波處理前後之D50 (1)及D50 (2))   將在實施例及比較例所得到的hBN粉末,使用孔徑106μm之篩,以過篩時間60分鐘使用乾式振動篩裝置(晃榮產業公司製,商品名「佐藤式振動分選機」)而分級,得到該篩下之分級hBN粉末後,調製包含0.06 g該分級hBN粉末、50 g水及0.005 g作為分散劑之市售之洗劑(商品名「MAMA LEMON」,LION公司製)的分散液。藉由使用粒度分布計(日機裝公司製,機種名「Microtrac MT3300EXII」),將該分散液,使用磁力攪拌器而以旋轉數400 rpm之條件攪拌的同時可得到的粒度分布,而測定超音波處理前之D50 (1)。   接著,將包含0.06g前述分級hBN粉末、50g水及0.005g作為分散劑之市售之洗劑(商品名「MAMA LEMON」,LION公司製)的分散液放入50ml之容器,使用超音波處理裝置(日本精機製作所公司製,機種名「超音波均質機US-150V」),以輸出150W、振盪頻率19.5 kHz之條件進行3分鐘超音波處理後,藉由使用前述粒度分布計,將超音波處理後之分散液,使用磁力攪拌器而以旋轉數400 rpm之條件攪拌的同時可得到的粒度分布,而測定超音波處理後之D50 (2)。   更進一步,使用藉由上述之測定而得到的超音波處理前後之D50 (1)及D50 (2)將比[D50 (2)/D50 (1)]四捨五入而算出至小數點以下第2位。   [0064] (hBN粉末之BET比表面積)   針對在實施例及比較例所得到的各hBN粉末,使用全自動BET比表面積測定裝置(yuasa-ionics公司製,機種名「MULTISORB 16」),以流動法所致的BET1點法測定比表面積。   [0065] (hBN粉末中之氧化硼(B2 O3 )含量)   將在實施例及比較例所得到的各hBN粉末,以0.1N稀硫酸水溶液(以下,亦稱為「酸溶液」)進行酸處理。藉由此酸處理,hBN粉末中之氧化硼(B2 O3 )溶解於酸溶液中。接著,將存在於酸處理後之酸溶液中的B元素量藉由ICP分析裝置(SII Nano Technology公司製,機種名「SPS3500」)而測定。由存在於此酸處理後之酸溶液中的B元素量,將藉由酸處理而溶解的B2 O3 量作為B2 O3 含量算出。   [0066] (hBN粉末中之碳含量)   使用碳分析裝置(LECO JAPAN有限公司製,機種名「CS230」),測定在實施例及比較例所得的各hBN粉末之碳含量。   [0067] (hBN粉末之純度)   將如上述所測定的hBN粉末之B2 O3 含量及碳含量之總量設為不純物量,求出hBN粉末之純度。   [0068] (樹脂薄片之熱傳導率)   藉由NETZSCH公司製,機種名「LFA447 NanoFlash」測定在實施例及比較例所得之樹脂薄片之熱擴散率,對該熱擴散率乘以各自之樹脂薄片之比熱和密度之理論值,藉此算出樹脂薄片之厚度方向之熱傳導率。   另,樹脂薄片之比熱之理論值係將氮化硼之理論密度設為2.27 g/cm3 、將樹脂成分之理論密度設為1.17 g/cm3 、將氮化硼之理論比熱設為0.80 J/(g‧k)、將樹脂成分之理論比熱設為1.80 J/(g‧k),將對各自之理論比熱乘以各自之理論密度與各自之樹脂薄片中之含量(體積%)的值合計,再將此合計值除以將對各自之理論密度乘以各自之樹脂薄片中之含量(體積%)的值合計之值,藉由下述式而計算。   樹脂薄片之比熱之理論值=[(0.80×2.27×氮化硼之含量(體積%)+1.80×1.17×樹脂成分之含量(體積%)) / (2.27×氮化硼之含量(體積%)+1.17×樹脂成分之含量(體積%))]   藉由上述式而計算樹脂薄片之比熱之理論值的結果為1.06 J/(g‧k)。   又,樹脂薄片之密度之理論值係將氮化硼之理論密度設為2.27 g/cm3 、將液狀硬化性環氧樹脂成分之理論密度設為1.17 g/cm3 ,將對各自之理論密度乘以各自之樹脂薄片中之含量(體積%)的值合計而乘以百分之一,藉由下述式而計算。   樹脂薄片之密度之理論值=[(2.27×氮化硼之含量(體積%)+1.17×樹脂成分之含量(體積%))×(1/100)]   藉由上述式而計算樹脂薄片之密度之理論值的結果為1.83 g/cm3 。   [0069][0070] 由表1可了解,實施例1及2之hBN粉末相較於比較例1~3,平均長徑(L)大至超過10μm,且長寬比[L/D]低至3.0以上、5.0以下,而且為高純度。   又,可認為在實施例1及2係因為長寬比[l/d]為3.0以上、5.0以下之一次粒子之含有率為25%以上,所以由包含該hBN粉末的樹脂組成物成形樹脂薄片時,在與樹脂之複合化過程中,進而在所得到的樹脂薄片內,hBN之一次粒子維持隨機配向,可抑制配向向異性,可顯現高的熱傳導率。
[0012]   [圖1]在實施例1所得到的hBN粉末之SEM圖像。   [圖2]在實施例1所得到的hBN粉末之放大SEM圖像。   [圖3]在比較例1所得到的hBN粉末之SEM圖像。   [圖4]在比較例1所得到的hBN粉末之放大SEM圖像。

Claims (9)

  1. 一種六方晶氮化硼粉末,其特徵在於:六方晶氮化硼粉末中的一次粒子之平均長徑(L)為超過10.0μm、30.0μm以下,平均厚度(D)為1.0μm以上,平均長徑(L)相對於平均厚度(D)之比[L/D]為3.0以上、5.0以下,且,長徑(l)相對於厚度(d)之比[l/d]為3.0以上、5.0以下之一次粒子的含有率為25%以上。
  2. 如請求項1之六方晶氮化硼粉末,其中前述含有率為50%以上。
  3. 如請求項1或2之六方晶氮化硼粉末,其中前述六方晶氮化硼粉末含有2個以上的一次粒子凝聚而成之凝聚體,使該六方晶氮化硼粉末通過孔徑106μm的篩時,其篩下之六方晶氮化硼粉末的50%體積累積粒徑D50(1)為25μm以上、100μm以下,對將該篩下之六方晶氮化硼粉末分散於水中而得到之分散液進行3分鐘超音波處理後之50%體積累積粒徑D50(2)為50μm以下。
  4. 如請求項1或2之六方晶氮化硼粉末,其中BET比表面積為2.0 m2/g以下。
  5. 一種樹脂組成物,其係含有如請求項1~4中任一項記載之六方晶氮化硼粉末及有機基質,相對於該六方晶氮化硼粉末及該有機基質的合計量,該六方晶氮化硼粉末的含量為10體積%以上、90體積%以下。
  6. 一種樹脂薄片,其係由如請求項5記載之樹脂組成物或其硬化物所構成者。
  7. 一種六方晶氮化硼粉末之製造方法,其係具有下述步驟1~3之如請求項1~4中任一項記載之六方晶氮化硼粉末之製造方法,   步驟1:將碳化硼粉末於氮氣環境下以1600℃以上、2200℃以下進行燒成之步驟;   步驟2:將於步驟1所得到之燒成物於含有氧氣之氣體環境下以500℃以上、未達1500℃進行加熱並脫碳之步驟;   步驟3:將於步驟2所得到之脫碳後的生成物再次於氮氣環境下以1500℃以上、2200℃以下進行燒成之步驟。
  8. 如請求項7之六方晶氮化硼粉末之製造方法,其中,步驟3中,相對於脫碳後之生成物100質量份,添加10質量份以上、80質量份以下之以組成式B2O(3+X)H2X[惟,X=0~3]所示之硼化合物。
  9. 如請求項7或8之六方晶氮化硼粉末之製造方法,其中,步驟3中,相對於脫碳後之生成物100質量份,添加10質量份以上、200質量份以下之鈣化合物。
TW106145968A 2016-12-28 2017-12-27 六方晶氮化硼粉末、其製造方法、樹脂組成物及樹脂薄片 TWI651262B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016255975 2016-12-28
JP2016-255975 2016-12-28

Publications (2)

Publication Number Publication Date
TW201829301A TW201829301A (zh) 2018-08-16
TWI651262B true TWI651262B (zh) 2019-02-21

Family

ID=62710074

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106145968A TWI651262B (zh) 2016-12-28 2017-12-27 六方晶氮化硼粉末、其製造方法、樹脂組成物及樹脂薄片

Country Status (7)

Country Link
US (1) US11577957B2 (zh)
EP (1) EP3564185B1 (zh)
JP (1) JP6729898B2 (zh)
KR (1) KR102265035B1 (zh)
CN (1) CN110099865B (zh)
TW (1) TWI651262B (zh)
WO (1) WO2018124126A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112218820A (zh) * 2018-08-07 2021-01-12 电化株式会社 六方晶氮化硼粉末、及六方晶氮化硼粉末的制造方法
TWI832979B (zh) * 2019-03-01 2024-02-21 日商德山股份有限公司 六方晶氮化硼粉末、樹脂組合物、樹脂片及六方晶氮化硼粉末的製造方法
JPWO2021149690A1 (zh) * 2020-01-20 2021-07-29
WO2021200877A1 (ja) * 2020-03-31 2021-10-07 デンカ株式会社 塊状窒化ホウ素粒子及びその製造方法
CN118103447A (zh) * 2021-10-20 2024-05-28 株式会社有泽制作所 热固性树脂组合物、散热片、散热板、散热片的制造方法及散热板的制造方法
WO2023190528A1 (ja) * 2022-03-30 2023-10-05 デンカ株式会社 窒化ホウ素粉末、樹脂組成物及び窒化ホウ素粉末の製造方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201510016A (zh) * 2013-06-19 2015-03-16 Esk Ceramics Gmbh & Co Kg 自聚合物/氮化硼化合物製得之組成部件、用於製造此組成部件之聚合物/氮化硼化合物及其用途

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61256905A (ja) 1985-05-10 1986-11-14 Kawasaki Steel Corp 高純度六方晶窒化硼素微粉末の製造方法
JPS61286207A (ja) 1985-06-08 1986-12-16 Showa Denko Kk 窒化ホウ素の製造法
FR2677947A1 (fr) 1991-03-26 1992-12-24 Outboard Marine Corp Ensemble d'equilibrage ameliore.
JP2922096B2 (ja) 1993-07-30 1999-07-19 川崎製鉄株式会社 六方晶窒化硼素粉末の製造方法
JP3461651B2 (ja) 1996-01-24 2003-10-27 電気化学工業株式会社 六方晶窒化ほう素粉末及びその用途
WO1998005590A1 (fr) 1996-08-06 1998-02-12 Otsuka Kagaku Kabushiki Kaisha Nitrure de bore et son procede de preparation
JP4152920B2 (ja) 2004-06-02 2008-09-17 電気化学工業株式会社 窒化ホウ素粉末及びその用途
JP5081488B2 (ja) 2006-04-20 2012-11-28 Jfeスチール株式会社 六方晶窒化ホウ素粉末
JP4750220B2 (ja) 2009-10-09 2011-08-17 水島合金鉄株式会社 六方晶窒化ホウ素粉末およびその製造方法
JP5618734B2 (ja) 2010-09-28 2014-11-05 株式会社トクヤマ 球状窒化アルミニウム粉末
JP6109466B2 (ja) * 2011-02-25 2017-04-05 水島合金鉄株式会社 化粧料用の六方晶窒化ホウ素粉末およびその製造方法
WO2013081061A1 (ja) 2011-11-29 2013-06-06 三菱化学株式会社 窒化ホウ素凝集粒子、該粒子を含有する組成物、及び該組成物からなる層を有する三次元集積回路
WO2014109134A1 (ja) 2013-01-10 2014-07-17 株式会社カネカ 六方晶窒化ホウ素及びそれを用いた高熱伝導性樹脂成形体
JP6022061B2 (ja) 2013-06-14 2016-11-09 三菱電機株式会社 熱硬化性樹脂組成物、熱伝導性シートの製造方法、及びパワーモジュール
CN106029562B (zh) * 2014-02-12 2019-01-22 电化株式会社 氮化硼微粒及其制造方法
JP6483508B2 (ja) * 2014-04-18 2019-03-13 株式会社トクヤマ 六方晶窒化ホウ素粉末及びその製造方法
JP6357247B2 (ja) 2014-12-08 2018-07-11 昭和電工株式会社 六方晶窒化ホウ素粉末、その製造方法、樹脂組成物及び樹脂シート
JP6603965B2 (ja) 2015-02-02 2019-11-13 三菱ケミカル株式会社 六方晶窒化ホウ素単結晶およびその製造方法、該六方晶窒化ホウ素単結晶を配合した複合材組成物並びに該複合材組成物を成形してなる放熱部材
JP6516553B2 (ja) * 2015-05-14 2019-05-22 株式会社トクヤマ 六方晶窒化硼素粉末
WO2017126608A1 (ja) 2016-01-19 2017-07-27 株式会社トクヤマ 熱伝導性フィラー組成物、その利用および製法
KR102669764B1 (ko) 2016-02-22 2024-05-28 가부시끼가이샤 레조낙 육방정 질화 붕소 분말, 그 제조 방법, 수지 조성물 및 수지 시트
JP6676479B2 (ja) * 2016-06-13 2020-04-08 株式会社トクヤマ 六方晶窒化ホウ素粉末及びその製造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201510016A (zh) * 2013-06-19 2015-03-16 Esk Ceramics Gmbh & Co Kg 自聚合物/氮化硼化合物製得之組成部件、用於製造此組成部件之聚合物/氮化硼化合物及其用途

Also Published As

Publication number Publication date
WO2018124126A1 (ja) 2018-07-05
KR20190082952A (ko) 2019-07-10
US11577957B2 (en) 2023-02-14
KR102265035B1 (ko) 2021-06-15
EP3564185B1 (en) 2023-11-08
CN110099865A (zh) 2019-08-06
US20200148537A1 (en) 2020-05-14
CN110099865B (zh) 2022-05-13
TW201829301A (zh) 2018-08-16
EP3564185A4 (en) 2020-08-19
JP6729898B2 (ja) 2020-07-29
EP3564185A1 (en) 2019-11-06
JPWO2018124126A1 (ja) 2019-06-27

Similar Documents

Publication Publication Date Title
TWI715729B (zh) 六方晶氮化硼粉末、其製造方法、樹脂組成物及樹脂薄片
JP6678999B2 (ja) 六方晶窒化ホウ素粉末、その製造方法、樹脂組成物及び樹脂シート
JP7069485B2 (ja) 六方晶窒化ホウ素粉末及びその製造方法、並びにそれを用いた組成物及び放熱材
TWI651262B (zh) 六方晶氮化硼粉末、其製造方法、樹脂組成物及樹脂薄片
JP6822836B2 (ja) 六方晶窒化ホウ素粉末、その製造方法、樹脂組成物及び樹脂シート
JP6357247B2 (ja) 六方晶窒化ホウ素粉末、その製造方法、樹脂組成物及び樹脂シート
JP6348610B2 (ja) 六方晶窒化ホウ素粉末、その製造方法、樹脂組成物及び樹脂シート