TWI649883B - Solar battery unit and method of manufacturing solar battery unit - Google Patents

Solar battery unit and method of manufacturing solar battery unit Download PDF

Info

Publication number
TWI649883B
TWI649883B TW104103208A TW104103208A TWI649883B TW I649883 B TWI649883 B TW I649883B TW 104103208 A TW104103208 A TW 104103208A TW 104103208 A TW104103208 A TW 104103208A TW I649883 B TWI649883 B TW I649883B
Authority
TW
Taiwan
Prior art keywords
solar cell
semiconductor substrate
conductive
electrode
substrate
Prior art date
Application number
TW104103208A
Other languages
English (en)
Other versions
TW201535756A (zh
Inventor
三田怜
渡部武紀
大塚寬之
Original Assignee
日商信越化學工業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商信越化學工業股份有限公司 filed Critical 日商信越化學工業股份有限公司
Publication of TW201535756A publication Critical patent/TW201535756A/zh
Application granted granted Critical
Publication of TWI649883B publication Critical patent/TWI649883B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02363Special surface textures of the semiconductor body itself, e.g. textured active layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本發明提供一種便宜且信賴性高的轉換效率高之太陽能電池單元。
本發明提供一種太陽能電池單元之製造方法,其具有在第一導電型半導體基板上積層形成第二導電型層與抗反射膜,於該抗反射膜之特定位置上塗佈含有導電性粒子及玻璃熔料之導電性糊料,將塗佈有該導電性糊料之半導體基板進行燒成,貫穿該抗反射膜,形成與該第二導電型層電連接之電極的步驟,其中塗佈有導電性糊料之半導體基板進行燒成隨後,不恢復至室溫而連續進行加熱處理。

Description

太陽能電池單元及太陽能電池單元之製造方法
本發明係關於太陽能電池單元及太陽能電池單元之製造方法。
一般而言,太陽能電池元件具有圖1所示之構造。圖1中,1係大小為100~150mm見方,厚度0.1~0.3mm之板狀,且由多結晶或單結晶矽等所成,摻雜有硼等p型雜質之p型半導體基板。太陽能電池元件如以下。首先,於該基板上形成摻雜磷等n型雜質之n型擴散層2。接著,設置SiN(氮化矽)等抗反射膜3,使用網版印刷法,將導電性鋁糊料印刷於背面上。隨後,進行乾燥.燒成而同時形成背面電極6與BSF(Back Surface Field,背面電場)層4。接著,將導電性銀糊料印刷於表面後,乾燥且燒成,形成表面電極5。如此般製造之太陽能電池元件中,表面電極5係由用於將太陽能電池元件所生成之光生成電流取出至外部之匯流排條(bus bar)電極、與連接於該等匯流排條電極之集電用之指型電極所成。又,以下將成為太陽能電池之受光面側之基板之面作為正面(表面), 與受光面側為相反側之基板之面作為反面(背面)。
以該種方法製造之太陽能電池元件,如上述,一般於電極形成中係使用網版印刷法與燒成。網版印刷法中,例如為了形成太陽能電池單元受光面之指型電極或匯流排條電極,一般使用含有銀粉末與有機載劑與玻璃熔料之導電性糊料。該導電性糊料中亦添加用以提高性能之各種無機氧化物或導電性物質等固形物。以網版印刷法將該導電性糊料塗佈於半導體基板上之特定位置,進行燒成時,在高溫下銀粉末彼此燒結而形成銀電極。與此同時玻璃熔料軟化且使抗反射膜熔融而到達至n型擴散層,使銀電極與n型擴散層電連接。該方法一般稱為燒成貫通(fire through),於大多數太陽能電池單元之電極形成方法中被採用。
如上述之電極形成方法中,為了燒成電極,必須於600℃以上之高溫處理半導體基板。因該高溫處理,而對半導體基板造成熱損傷,且以擴散層吸除(gettering)之成為壽命扼殺劑(lifetime killer)之污染物質釋出於半導體基板內,使半導體基板之壽命降低。且,因燒成貫通而形成之電極係由導電性粒子短時間燒結所致者。因此,與例如利用鍍敷形成之電極等比較時密度較小,電極表面或內部觀察到較多空洞,而發生使半導體基板與電極接著之面積不均一,總是形成易剝離之電極之問題。該壽命降低或電極異常由於係成為太陽能電池單元之性能或長期信賴性產生問題之原因,故期望獲得解決。
為解決該問題,例如專利文獻1所揭示之方法係藉由在至少含氫氣之環境下加熱處理藉燒成形成電極之太陽能電池單元,而改善電極之接觸電阻。然而專利文獻1所記載之方法由於在燒成後追加步驟故成本上升,且由於使用處理上困難之氫氣,故產生步驟安全性之問題。因此,期望以更簡易之方法解決該問題。
[先前技術文獻]
[專利文獻]
[專利文獻1]
日本特開2007-294494號公報
因此,本發明係為解決上述問題點而完成者,其目的係提供一種便宜且信賴性高、轉換效率高之太陽能電池單元。
欲解決上述課題之本發明之太陽能電池單元之製造方法,係具有在第一導電型半導體基板上積層形成第二導電型層與抗反射膜,於該抗反射膜之特定位置上塗佈含有導電性粒子及玻璃熔料之導電性糊料,將塗佈有該 導電性糊料之半導體基板進行燒成,貫穿該抗反射膜,形成與該第二導電型層電連接之電極之步驟的太陽能電池單元之製造方法,其特徵係塗佈有導電性糊料之半導體基板進行燒成隨後,不恢復至室溫而連續進行加熱處理。藉由該步驟,可降低電極與矽基板之接觸電阻,同時提高接著強度。
本發明中,塗佈有導電性糊料之半導體基板進行燒成隨後,不恢復至室溫而連續加熱時之加熱溫度宜為300℃以上且500℃以下。
本發明中,塗佈有導電性糊料之半導體基板進行燒成隨後,不恢復至室溫而連續加熱處理時之加熱時間宜為1秒以上且60秒以下。
本發明中,抗反射膜係構成為SiO2、Al2O3、SiN膜之任一者或積層該等之任意組合所得之膜。
本發明中,塗佈有導電性糊料之半導體基板進行燒成隨後,不恢復至室溫而連續加熱處理時之自燒成開始之加熱處理宜以一個裝置連續進行。藉由該構成,可一面使裝置面積之增大達最低限度,一面提高太陽能電池單元特性。
且本發明之太陽能電池單元係使用上述之製造方法製造。藉由該製造方法製造之太陽能電池單元為信賴性優異且轉換效率高者。
1‧‧‧半導體基板
2‧‧‧擴散層
3‧‧‧抗反射膜兼鈍化膜
4‧‧‧BSF層
5‧‧‧表面電極
6‧‧‧背面電極
圖1係太陽能電池元件之剖面圖。
圖2係顯示太陽能電池單元之製造方法之順序之流程圖。
以下,詳細說明本發明之實施形態。然而,本發明除下述說明外亦可以廣泛之其他實施形態實施,本發明之範圍並不受限於下述,而係申請專利範圍中所記載者。進而,圖式並非與原尺寸成比例表示。為了更清楚交代本發明之說明或理解,故依據相關構件係將尺寸放大,且非重要之部分並未圖示。
如前述,圖1係顯示太陽能電池元件之一般構造之剖面圖。圖1中,1表示半導體基板,2表示擴散層,3表示抗反射膜兼鈍化膜,4表示BSF層,5表示表面電極,6表示背面電極。
此處,圖1所示之太陽能電池元件之製造步驟首先係準備半導體基板1。該半導體基板1係由單結晶或多結晶矽等所成,可為p型、n型之任一種,但大多使用含硼等之p型半導體雜質,且比電阻為0.1~4.0Ω.cm之p型矽基板。以下,以使用p型矽基板之太陽能電池元件之製造方法為例加以說明。p型矽基板較好使用大小為100~150mm見方,厚度為0.05~0.30mm之板狀者。將p型矽基板浸漬於例如氫氟酸或氟化氫硝酸等酸性溶液中, 去除藉由切片等所致之表面之損傷,再以氫氧化鈉水溶液或氫氧化鉀水溶液等鹼性溶液進行化學蝕刻而洗淨,並乾燥。藉此,於太陽能電池元件之受光面之p型矽基板之表面形成被稱為紋理之凹凸構造。凹凸構造在太陽能電池元件之受光面產生光的多重反射。因此,藉由形成凹凸構造,能有效降低反射率、提高轉換效率。
隨後,利用例如在含POCl3等之850~1000℃之高溫氣體中設置p型矽基板,使磷等之n型雜質元素擴散於p型矽基板全面之熱擴散法,於正面形成薄片電阻為30~300Ω/□左右之n型擴散層2。又,利用熱擴散法形成n型擴散層時,p型矽基板之兩面及端面上亦有形成n型擴散層之情況,但該情況下,藉由將以耐酸性樹脂被覆必要之n型擴散層之正面之p型矽基板浸漬於氟硝酸溶液中,可去除不要之n型擴散層。隨後,藉由例如浸漬於稀釋之氫氟酸溶液等藥品中,去除擴散時於半導體基板表面形成之玻璃層,且以純水洗淨。
進而,於上述p型矽基板之正面側形成抗反射膜兼鈍化膜3。該抗反射膜兼鈍化膜3係以例如SiN等所成,以例如以N2稀釋SiH4與NH3之混合氣體,且以利用輝光放電分解電漿化而堆積之電漿CVD法等形成。該抗反射膜兼鈍化膜3,考慮與p型矽基板之折射率差等,係形成折射率為1.8~2.3左右,厚度為500~1000Å左右。抗反射膜兼鈍化膜3係為了防止光在p型矽基板表面反射,使光有效地進入到p型矽基板內而設置。此外,該 SiN在形成時亦發揮作為對n型擴散層有鈍化效果之鈍化膜之功能,且一併具有抗反射功能而有提高太陽能電池元件之電特性之效果。
接著,將例如包含鋁與玻璃熔料等之導電性糊料網版印刷於背面上,並乾燥。隨後,將例如包含銀與玻璃熔料與漆料等之導電性糊料網版印刷於正面上,並乾燥。隨後,藉由在500℃~950℃左右之溫度下將塗佈有各電極用之導電性糊料之上述p型矽基板燒成1~60秒左右,形成BSF層4與表面電極5與背面電極6,完成典型之結晶矽太陽能電池單元。
如上述之典型結晶矽太陽能電池元件之製造方法中,藉由導電性糊料之燒成進行電極形成。尤其是正面係藉由包含銀與玻璃熔料與漆料等之導電性糊料之燒成,使玻璃熔料熔解而積存在矽基板與銀電極之間,扮演作為使矽基板與銀電極連接之接著劑之角色。然而,利用網版印刷塗佈於矽基板上之導電性糊料之膜厚或寬度有偏差,或因燒成時間較短等,燒成後形成之銀電極與矽基板間之接著強度或接觸電阻變得不安定的情況為多,伴隨此,有太陽能電池單元之轉換效率或長期信賴性偏差之問題。期望開發出減低該偏差,且安定的太陽能電池單元之製造製程。該等問題利用本發明得以解決。具體而言,發現電極進行燒成隨後,不恢復至室溫而在大氣中連續進行加熱處理,使電極與矽基板之接觸面積變廣而提高接著強度,不僅降低接觸電阻,且使表面缺陷被終結而使表面再 結合速度變小,進一步促進雜質吸除而提高半導體基板之壽命。藉此,發現可藉簡易方法獲得兼具高的接著強度與低的接觸電阻之電極,與兼具低的界面位準密度與高的壽命之太陽能電池單元,因而完成本發明。
亦即,本發明之一實施形態之太陽能電池單元之製造方法係如圖2之流程圖所描述,準備第一導電型之半導體基板(步驟S100),於該半導體基板上形成紋理(步驟S110)。接著,於形成紋理之半導體基板之正面形成第二導電型之擴散層(步驟S120),於其上積層形成抗反射膜(步驟S130)。接著,將含有導電性粒子與玻璃熔料之導電性糊料塗佈於該抗反射膜之特定位置(步驟S140)。此時,亦可視需要將導電型糊料塗佈於背面上。接著,使塗佈該導電性糊料之半導體基板燒成(步驟S150),接著,塗佈有導電性糊料之半導體基板進行燒成隨後不恢復至室溫而連續進行加熱處理(步驟S160)。
本發明之太陽能電池單元之特性改善係基於以下理由者。
依據本發明,藉由電極燒成後於大氣中進行加熱處理,使玻璃熔料熔解而在銀電極與矽基板之間形成之玻璃層由於均勻且薄地擴展,故減低電極與矽基板之接觸電阻,且提高接著強度。且一般導電性銀糊料之燒成中,在上述玻璃層中形成銀之微結晶,該銀之微結晶可確保矽基板與玻璃層與銀電極之間之導電性,使接觸電阻下降。本發明中,電極經燒成後藉由於大氣中加熱處理,而 促進該玻璃層中之銀微結晶成長,故可實現更低之接觸電阻。又本發明之電極剛燒成後不恢復至室溫而連續在大氣中進行加熱處理,藉此促進了因抗反射膜所致之終結矽基板表面之缺陷,故終結表面之缺陷而使表面之再結合速度變小。進而作為壽命扼殺劑之金屬雜質吸除至形成於矽基板之擴散層被促進,故提高矽基板之壽命。藉由該等效果,可藉簡易方法獲得兼具高的接著強度與低的接觸電阻之電極,與兼具低的界面位準密度與高的壽命之太陽能電池單元。
上述太陽能電池單元之製造方法中,塗佈導電性糊料之半導體基板剛經燒成後,不恢復至室溫而連續進行熱處理時之加熱溫度宜為200℃以上600℃以下,更好為300℃以上500℃以下。加熱溫度低於該溫度時,不易發生玻璃熔料之軟化或吸除,處理上需要長時間。又加熱溫度高於該溫度時,銀電極過度收縮而變得容易剝離,經擴散層吸除之壽命扼殺劑再度釋出使壽命降低,會減弱本發明之效果。
另上述之太陽能電池單元之製造方法中,塗佈導電性糊料之半導體基板剛經燒成後,不恢復至室溫而連續在大氣中加熱處理時之加熱時間宜為0.5秒以上90秒以下,更好為1秒以上60秒以下。加熱時間短於該時間時,不易發生熔料之軟化或吸除,且加熱時間長於該時間時,銀電極過度收縮而容易剝離,使生產能力降低,且減弱本發明之效果。
且上述之太陽能電池單元之製造方法中,太陽能電池單元上形成之抗反射膜宜為SiO2、Al2O3、SiN之膜之任一者或積層該等之任意組合所得之膜。該等抗反射膜在形成上比較容易,且易於發揮因加熱所致之表面缺陷終結效果,故容易獲得本發明之效果。
又上述之太陽能電池單元之製造方法中,塗佈有導電性糊料之半導體基板進行燒成隨後,不恢復至室溫而連續在大氣中加熱處理之步驟自燒成後之加熱處理,期望在剛燒成後,不使基板恢復至室溫而於一個裝置連續進行。具體而言,係於連續搬送矽基板之太陽能電池單元用電極燒成爐之高峰加熱燒成區之下一區中,設有可進行本發明之加熱處理之加熱處理區,可一面使裝置面積之增大為最低限度,一面獲得最大限度之太陽能電池單元之特性提高效果。尤其,燒成後不使基板恢復至室溫而施以加熱處理,因此不會因過度冷卻而對基板造成損傷,可藉加熱處理而使降低電極之接觸電阻之效果或吸除效果、鈍化效果達到最大限度。
以下列舉本發明之實施例及比較例更具體地加以說明,但本發明並不受限於該等,可在廣泛用途中活用。
首先,對摻雜硼且切成厚度0.2mm所製作之比電阻約1Ω.cm之由p型單結晶矽所成之p型矽基板進行外徑加工,作成一邊15cm之正方形板狀。接著,將該p型矽基板浸漬於氟硝酸溶液中15秒使之損傷蝕刻,再 以含2%之KOH與2%之IPA之70℃之溶液進行化學蝕刻5分鐘後以純水洗淨,並乾燥。藉此於p型矽基板之表面形成紋理構造。
對上述p型矽基板,在POCl3氣體環境中,以850℃之溫度30分鐘之條件進行熱擴散處理,藉此於P型矽基板上形成n層。此處準備之p型矽基板表面之熱處理後之薄片電阻一面為約80Ω/□,n層之擴散深度為0.3μm。
隨後,於n層上形成耐酸性樹脂後,將p型矽基板浸漬於氟硝酸溶液中10秒,藉此去除未形成耐酸性樹脂之部分之n層。隨後,藉由去除耐酸性樹脂,僅於p型矽基板之表面形成n層。接著,藉由使用SiH4與NH3、N2之電漿CVD法,於p型矽基板之形成n層之表面上以厚度1000Å形成抗反射膜兼鈍化膜之SiN。
接著,使用網版印刷法將導電性鋁糊料印刷於施以至此處理之p型矽基板之背面上,在150℃乾燥。接著,使用網版印刷法,以指型圖型將導電性銀糊料印刷於p型矽基板之正面上,在150℃乾燥形成指型電極。隨後,以使與指型電極正交之方式,使用網版印刷法,將導電性銀糊料印刷於匯流排條電極上且在150℃乾燥。施以至此之前處理之p型矽基板以下稱為已前處理過之p型矽基板。
以使已前處理過之p型矽基板在最高溫度800℃燒成導電性糊料5秒,製作太陽能電池單元者作為比較 例。此外,使已前處理過之p型矽基板在最高溫度800℃燒成5秒後,不恢復至室溫而繼續在150℃加熱6秒者作為參考例1。使已前處理過之p型矽基板在最高溫度800℃燒成5秒後,不恢復至室溫而繼續在300℃加熱6秒者作為實施例1。使已前處理過之p型矽基板在最高溫度800℃燒成5秒後,不恢復至室溫而繼續在450℃加熱6秒者作為實施例2。使已前處理過之p型矽基板在最高溫度800℃燒成5秒後,不恢復至室溫而繼續在600℃加熱6秒者作為參考例2。使已前處理過之p型矽基板在最高溫度800℃燒成5秒後,不恢復至室溫而繼續在450℃加熱20秒者作為實施例3,使已前處理過之p型矽基板在最高溫度800℃燒成5秒後,不恢復至室溫而繼續在400℃加熱80秒者作為參考例3。
表1中顯示以上述之比較例、實施例1~3及參考例1~3之方法,分別製作100片之太陽能電池單元時之電池之接著強度評價結果與太陽能電池單元之平均轉換效率。電極之接著強度係於單元正面之匯流排條電極上焊接安裝突出(tab)線(2mm寬、160μm厚之平板銅線經焊料被覆者),將突出線於與匯流排條電極平行之方向施以180度彎曲拉伸,於電極剝離前基板遭破壞時,接著強度評價為「高」,基板未遭破壞者接著強度評價為「低」。
如表1所示,使用本發明之實施例1~3之加熱條件,與比較例比較時,可提高太陽能電池單元之電極之接著強度,且可提高太陽能電池單元之平均轉換效率,可提高接著強度之理由為玻璃熔料熔解而使在銀電極與矽基板之間形成之玻璃層均一且薄地擴展之故。轉換效率提高之理由係藉由形成良好的玻璃層使接觸電阻降低而改善曲線因子,且由於可兼具低的界面位準密度與高的壽命,故改善短路電流與開放電壓。
且,使用本發明之實施例1~3及參考例1~3之加熱條件之太陽能電池單元與比較例比較,即使長時間保管亦不易使轉換效率降低。銅等之擴散係數高的雜質在常溫下仍可擴散於矽基板中,可說是會使長時間保管後之太陽能電池單元之整體壽命下降,使轉換效率降低。該傾向在使用n型矽基板之太陽能電池單元中尤其容易出現。使用實施例1~3及參考例1~3之加熱條件,可促進銅等雜質之吸除,故認為即使長時間保管,亦不易使太陽能電池 單元之轉換效率降低。
依據以上說明用之本實施形態,可以簡易方法實現兼具高的接著強度與低的接觸電阻之電極、與降低擴散層與抗反射膜之界面之界面位準密度、及半導體基板之高壽命,而可提供便宜且信賴性高且轉換效率高之太陽能電池單元。
又,本發明並不受限於上述實施形態。上述實施形態為例示,凡具有與本發明之申請專利範圍所記載之技術想法實質上相同之構成,且發揮同樣作用效果者,均包含於本發明之技術範圍中。

Claims (4)

  1. 一種太陽能電池單元之製造方法,其係具有在第一導電型半導體基板上積層形成第二導電型層與抗反射膜,於該抗反射膜之特定位置上塗佈含有導電性粒子及玻璃熔料之導電性糊料,將塗佈有該導電性糊料之半導體基板進行燒成,貫穿該抗反射膜,形成與該第二導電型層電連接之電極之步驟之太陽能電池單元之製造方法,其特徵係:前述塗佈有導電性糊料之半導體基板進行燒成隨後,不恢復至室溫而連續進行加熱時間為1秒以上且60秒以下,且加熱溫度為300℃以上且500℃以下之加熱處理。
  2. 如請求項1之太陽能電池單元之製造方法,其中前述抗反射膜係SiO2、Al2O3、SiN膜之任一者或積層該等之任意組合所得之膜。
  3. 如請求項1或2之太陽能電池單元之製造方法,其中前述塗佈有導電性糊料之半導體基板進行燒成隨後,不恢復至室溫而連續加熱處理時之自燒成開始之加熱處理係以一個裝置連續進行。
  4. 一種太陽能電池單元,其係使用如請求項1至3中任一項之方法所製造。
TW104103208A 2014-01-31 2015-01-30 Solar battery unit and method of manufacturing solar battery unit TWI649883B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014016450A JP6030587B2 (ja) 2014-01-31 2014-01-31 太陽電池セルの製造方法
JP2014-016450 2014-01-31

Publications (2)

Publication Number Publication Date
TW201535756A TW201535756A (zh) 2015-09-16
TWI649883B true TWI649883B (zh) 2019-02-01

Family

ID=53756531

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104103208A TWI649883B (zh) 2014-01-31 2015-01-30 Solar battery unit and method of manufacturing solar battery unit

Country Status (9)

Country Link
US (1) US9691918B2 (zh)
EP (1) EP3101696B1 (zh)
JP (1) JP6030587B2 (zh)
KR (1) KR102154890B1 (zh)
CN (1) CN105934828B (zh)
MY (1) MY186101A (zh)
RU (1) RU2016134449A (zh)
TW (1) TWI649883B (zh)
WO (1) WO2015114937A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3333901B1 (en) * 2016-10-05 2020-12-30 Shin-Etsu Chemical Co., Ltd. Method for manufacturing a high photoelectric conversion efficiency solar cell
KR101943711B1 (ko) 2016-10-10 2019-01-29 삼성에스디아이 주식회사 태양전지 전극 형성용 조성물 및 이로부터 제조된 전극
KR102008186B1 (ko) 2017-02-09 2019-08-07 삼성에스디아이 주식회사 태양전지 전극 형성용 조성물 및 이로부터 제조된 전극
CN107993940A (zh) * 2017-10-31 2018-05-04 泰州隆基乐叶光伏科技有限公司 p型太阳能电池的制备方法
CN108198877A (zh) * 2018-01-29 2018-06-22 泰州隆基乐叶光伏科技有限公司 一种单晶掺镓太阳电池及其制备方法
KR102004650B1 (ko) * 2018-02-28 2019-10-01 재단법인대구경북과학기술원 태양전지용 메타소재 전극 및 이의 제조방법
CN113078240B (zh) * 2021-03-29 2023-07-14 无锡奥特维旭睿科技有限公司 N型TOPCon电池的烧结方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050160970A1 (en) * 2003-12-25 2005-07-28 Kyocera Corporation Photovoltaic conversion device and method of manufacturing the device
US20100233840A1 (en) * 2003-10-30 2010-09-16 Georgia Tech Research Corporation Silicon solar cells and methods of fabrication

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5818976A (ja) * 1981-07-27 1983-02-03 Semiconductor Energy Lab Co Ltd 光電変換装置作製方法
US5320684A (en) * 1992-05-27 1994-06-14 Mobil Solar Energy Corporation Solar cell and method of making same
JP2005135942A (ja) * 2003-10-28 2005-05-26 Canon Inc 電極配設方法
JP5376752B2 (ja) 2006-04-21 2013-12-25 信越半導体株式会社 太陽電池の製造方法及び太陽電池
JP2008308345A (ja) * 2007-06-12 2008-12-25 Sanyo Electric Co Ltd 半導体材料の再生装置、太陽電池の製造方法および製造装置
US8241945B2 (en) * 2010-02-08 2012-08-14 Suniva, Inc. Solar cells and methods of fabrication thereof
KR101246686B1 (ko) * 2010-03-19 2013-03-21 제일모직주식회사 태양전지 전극용 페이스트 및 이를 이용한 태양전지
JP5179677B1 (ja) * 2012-03-14 2013-04-10 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 太陽電池セルの製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100233840A1 (en) * 2003-10-30 2010-09-16 Georgia Tech Research Corporation Silicon solar cells and methods of fabrication
US20050160970A1 (en) * 2003-12-25 2005-07-28 Kyocera Corporation Photovoltaic conversion device and method of manufacturing the device

Also Published As

Publication number Publication date
KR20160114580A (ko) 2016-10-05
CN105934828A (zh) 2016-09-07
MY186101A (en) 2021-06-22
EP3101696A4 (en) 2017-08-30
JP6030587B2 (ja) 2016-11-24
TW201535756A (zh) 2015-09-16
RU2016134449A (ru) 2018-03-05
JP2015144162A (ja) 2015-08-06
WO2015114937A1 (ja) 2015-08-06
KR102154890B1 (ko) 2020-09-10
EP3101696B1 (en) 2020-08-26
US9691918B2 (en) 2017-06-27
US20160329442A1 (en) 2016-11-10
EP3101696A1 (en) 2016-12-07
CN105934828B (zh) 2017-07-21

Similar Documents

Publication Publication Date Title
TWI649883B (zh) Solar battery unit and method of manufacturing solar battery unit
JP5649580B2 (ja) 太陽電池の製造方法
JP5301758B2 (ja) 太陽電池
JP5440433B2 (ja) 太陽電池の製造方法及び製膜装置
TWI611589B (zh) 太陽電池及太陽電池模組
CN105247686A (zh) 太阳能电池单元及其制造方法、太阳能电池模块
KR101464001B1 (ko) 태양 전지의 제조 방법 및 에칭 페이스트
US11658251B2 (en) Solar cell, solar cell manufacturing system, and solar cell manufacturing method
CN102959717A (zh) 太阳能电池单元及其制造方法
JP6494414B2 (ja) 太陽電池セルの製造方法
CN110800114B (zh) 高效背面电极型太阳能电池及其制造方法
JP6114205B2 (ja) 太陽電池の製造方法
JP6392717B2 (ja) 太陽電池セルの製造方法
JP5316491B2 (ja) 太陽電池の製造方法
JP5494511B2 (ja) 太陽電池の製造方法
JP2015130405A (ja) 光起電力装置の製造方法