WO2015114937A1 - 太陽電池セルおよび太陽電池セルの製造方法 - Google Patents

太陽電池セルおよび太陽電池セルの製造方法 Download PDF

Info

Publication number
WO2015114937A1
WO2015114937A1 PCT/JP2014/081746 JP2014081746W WO2015114937A1 WO 2015114937 A1 WO2015114937 A1 WO 2015114937A1 JP 2014081746 W JP2014081746 W JP 2014081746W WO 2015114937 A1 WO2015114937 A1 WO 2015114937A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor substrate
electrode
conductive paste
firing
solar cell
Prior art date
Application number
PCT/JP2014/081746
Other languages
English (en)
French (fr)
Inventor
怜 三田
渡部 武紀
大塚 寛之
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to EP14880771.2A priority Critical patent/EP3101696B1/en
Priority to MYPI2016702512A priority patent/MY186101A/en
Priority to KR1020167017876A priority patent/KR102154890B1/ko
Priority to US15/110,570 priority patent/US9691918B2/en
Priority to RU2016134449A priority patent/RU2016134449A/ru
Priority to CN201480074059.3A priority patent/CN105934828B/zh
Publication of WO2015114937A1 publication Critical patent/WO2015114937A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02363Special surface textures of the semiconductor body itself, e.g. textured active layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Definitions

  • the present invention relates to a solar battery cell and a method for manufacturing the solar battery cell.
  • a solar cell element has a structure shown in FIG.
  • 1 is a plate having a size of 100 to 150 mm square and a thickness of 0.1 to 0.3 mm, and is made of polycrystal, single crystal silicon or the like, and doped with p-type impurities such as boron. It is a p-type semiconductor substrate.
  • the solar cell element is as follows. First, an n-type diffusion layer 2 is formed by doping this substrate with an n-type impurity such as phosphorus. Next, an antireflection film 3 such as SiN (silicon nitride) is provided, and a conductive aluminum paste is printed on the back surface using a screen printing method.
  • SiN silicon nitride
  • the surface electrode 5 includes a bus bar electrode for taking out a photo-generated current generated in the solar cell element to the outside, and a finger electrode for collecting current connected to these bus bar electrodes. Consists of.
  • the surface of the substrate that is the light receiving surface side of the solar cell is referred to as the front surface (front surface), and the surface of the substrate that is opposite to the light receiving surface side is referred to as the back surface (back surface).
  • a solar cell element manufactured by such a method it is common to use screen printing and firing for electrode formation.
  • a conductive paste containing silver powder, an organic vehicle, and glass frit is generally used to form finger electrodes and bus bar electrodes on the light receiving surface of solar cells.
  • This conductive paste may contain solids such as various inorganic oxides and conductive substances in order to improve performance.
  • silver powders are sintered at a high temperature to form a silver electrode.
  • the glass frit is softened to melt the antireflection film and reach the n-type diffusion layer, and the silver electrode and the n-type diffusion layer are electrically connected.
  • Such a method is generally called “fire-through” and is adopted in many solar cell electrode forming methods.
  • the semiconductor substrate In the electrode forming method as described above, the semiconductor substrate must be processed at a high temperature of 600 ° C. or higher for firing the electrode. This high-temperature treatment reduces the lifetime of the semiconductor substrate by causing thermal damage to the semiconductor substrate and releasing contaminants that have become gettering in the diffusion layer into the semiconductor substrate. I will let you.
  • the electrode formed by fire-through is due to short-time sintering of conductive particles. For this reason, for example, an electrode having a small density compared to an electrode formed by plating, a large number of cavities are observed on the electrode surface or inside, and an area where the semiconductor substrate and the electrode are bonded becomes uneven and is easily peeled off. Problems such as being prone to end up tend to occur. Such a decrease in lifetime and electrode abnormality cause problems in the performance and long-term reliability of the solar battery cell, and therefore a solution is desired.
  • the contact resistance of the electrode is reduced by heat-treating the solar battery cell on which the electrode is formed by firing in an atmosphere containing at least hydrogen gas. It has improved.
  • a process is added after firing, which leads to an increase in cost.
  • hydrogen gas that is difficult to handle is used, there is a problem in process safety. For this reason, it is desired to solve this problem by a simpler method.
  • the present invention has been made to solve the above-described problems, and an object thereof is to provide a solar cell that is inexpensive, reliable, and has high conversion efficiency.
  • a second conductive type layer and an antireflection film are laminated on a first conductive type semiconductor substrate, and the antireflection film is placed at a predetermined position.
  • a conductive paste containing conductive particles and glass frit was applied, a semiconductor substrate coated with the conductive paste was baked, penetrated through the antireflection film, and electrically connected to the second conductive type layer
  • the semiconductor substrate coated with the conductive paste is subjected to continuous heat treatment immediately after firing without returning to room temperature. By such a process, the contact resistance between the electrode and the silicon substrate can be lowered and the adhesive strength can be increased.
  • the heating temperature when the semiconductor substrate coated with the conductive paste is continuously heated without being returned to room temperature immediately after baking is preferably set to 300 ° C. or more and 500 ° C. or less.
  • the heating time when the semiconductor substrate coated with the conductive paste is continuously heat-treated immediately after firing without returning to room temperature is 1 second or more and 60 seconds or less.
  • the antireflection film may be configured to be a film obtained by laminating any of SiO 2 , Al 2 O 3 , SiN films, or any combination thereof.
  • the semiconductor substrate coated with the conductive paste may be subjected to the heat treatment from the firing continuously in one apparatus immediately after firing without returning to room temperature.
  • the solar battery cell according to the present invention is manufactured using the above-described manufacturing method.
  • the solar battery cell manufactured by the manufacturing method has excellent reliability and high conversion efficiency.
  • FIG. 1 is a cross-sectional view showing a general structure of a solar cell element.
  • 1 is a semiconductor substrate
  • 2 is a diffusion layer
  • 3 is an antireflection film / passivation film
  • 4 is a BSF layer
  • 5 is a front electrode
  • 6 is a back electrode.
  • the semiconductor substrate 1 is prepared in the manufacturing process of the solar cell element shown in FIG.
  • the semiconductor substrate 1 is made of single crystal or polycrystalline silicon, and may be either p-type or n-type, but contains p-type semiconductor impurities such as boron, and has a specific resistance of 0.1 to 4.0 ⁇ ⁇ cm.
  • a p-type silicon substrate is often used.
  • a solar cell element manufacturing method using a p-type silicon substrate will be described as an example.
  • As the p-type silicon substrate a plate-shaped substrate having a size of 100 to 150 mm square and a thickness of 0.05 to 0.30 mm is preferably used.
  • the p-type silicon substrate is immersed in an acidic solution such as hydrofluoric acid or hydrofluoric nitric acid to remove surface damage caused by slicing, and further, an alkaline solution such as an aqueous sodium hydroxide solution or an aqueous potassium hydroxide solution is used. Clean by chemical etching and dry.
  • an acidic solution such as hydrofluoric acid or hydrofluoric nitric acid to remove surface damage caused by slicing
  • an alkaline solution such as an aqueous sodium hydroxide solution or an aqueous potassium hydroxide solution
  • a concavo-convex structure called a texture is formed on the surface of the p-type silicon substrate serving as the light receiving surface of the solar cell element.
  • the concavo-convex structure causes multiple reflection of light on the light receiving surface of the solar cell element. Therefore, by forming the concavo-convex structure, the reflectance is effectively reduced and the conversion efficiency is improved
  • a sheet resistance is formed by a thermal diffusion method in which a p-type silicon substrate is placed in a high-temperature gas of 850 to 1000 ° C. containing, for example, POCl 3 and diffuses an n-type impurity element such as phosphorus over the entire surface of the p-type silicon substrate.
  • An n-type diffusion layer 2 having a thickness of about 30 to 300 ⁇ / ⁇ is formed on the front side.
  • the n-type diffusion layer may be formed on both sides and the end face of the p-type silicon substrate.
  • An unnecessary n-type diffusion layer can be removed by immersing a p-type silicon substrate in which the front side of the layer is coated with an acid-resistant resin in a hydrofluoric acid solution. Thereafter, the glass layer formed on the surface of the semiconductor substrate at the time of diffusion is removed by immersing in a chemical such as a diluted hydrofluoric acid solution, and washed with pure water.
  • an antireflection film / passivation film 3 is formed on the front side of the p-type silicon substrate.
  • the antireflection film / passivation film 3 is made of, for example, SiN, and is formed by, for example, a plasma CVD method in which a mixed gas of SiH 4 and NH 3 is diluted with N 2 and is plasmatized by glow discharge decomposition and deposited.
  • the This antireflection film / passivation film 3 is formed with a refractive index of about 1.8 to 2.3 and a thickness of about 500 to 1000 mm in consideration of the difference in refractive index from the p-type silicon substrate.
  • the antireflection film / passivation film 3 is provided in order to prevent light from being reflected from the surface of the p-type silicon substrate and to effectively incorporate light into the p-type silicon substrate.
  • this SiN also functions as a passivation film that has a passivation effect on the n-type diffusion layer when formed, and has the effect of improving the electrical characteristics of the solar cell element together with the antireflection function.
  • a conductive paste containing, for example, aluminum, glass frit, varnish, etc. is screen printed on the back surface and dried.
  • a conductive paste containing, for example, silver, glass frit, varnish and the like is screen-printed on the front surface and dried.
  • the p-type silicon substrate coated with the conductive paste for each electrode is baked at a temperature of about 500 ° C. to 950 ° C. for about 1 to 60 seconds, whereby the BSF layer 4, the front electrode 5, the back electrode 6, And a typical crystalline silicon solar cell is completed.
  • the electrodes are formed by firing a conductive paste.
  • the glass frit melts and accumulates between the silicon substrate and the silver electrode and serves as an adhesive that connects the silicon substrate and the silver electrode.
  • the adhesive strength between the silver electrode formed after firing and the silicon substrate due to variations in the film thickness and width of the conductive paste applied on the silicon substrate by screen printing and due to the short firing time.
  • the contact resistance often becomes unstable, and accordingly, there is a problem that the conversion efficiency and long-term reliability of the solar battery cells vary. It is desired to reduce this variation and develop a stable solar cell manufacturing process.
  • the present invention Specifically, immediately after firing the electrode, the heat treatment is continuously performed in the air without returning to room temperature, so that the contact area between the electrode and the silicon substrate is expanded, the adhesive strength is increased, and the contact resistance is decreased.
  • the present inventors have found that surface defects are terminated to reduce the surface recombination rate, and further, impurity gettering is promoted to increase the lifetime of the semiconductor substrate. As a result, it was found that an electrode that achieves both high adhesive strength and low contact resistance and a solar battery cell that achieves both low interface state density and high lifetime can be obtained by a simple method, and the present invention has been completed. .
  • a first conductivity type semiconductor substrate is prepared (step S100), and the semiconductor substrate is textured. Is formed (step S110). Then, a diffusion layer of the second conductivity type is formed on the front surface of the semiconductor substrate on which the texture is formed (step S120), and an antireflection film is stacked thereon (step S130). Then, a conductive paste containing conductive particles and glass frit is applied to a predetermined position of the antireflection film (step S140). At this time, you may apply
  • the improvement of the characteristics of the solar battery cell according to the present invention is due to the following reason.
  • the glass frit melts and the glass layer formed between the silver electrode and the silicon substrate spreads uniformly and thinly by heating in the air after firing the electrode. Resistance is lowered and adhesive strength is increased.
  • silver microcrystals are formed in the glass layer, and the silver microcrystals ensure the conductivity between the silicon substrate, the glass layer, and the silver electrode, and are in contact with each other. Reduce resistance.
  • the heat treatment in the air after firing the electrode promotes the growth of silver microcrystals in the glass layer, so that a lower contact resistance can be realized.
  • the termination of the surface of the silicon substrate is promoted by the antireflection film by continuously performing the heat treatment in the atmosphere without returning to room temperature immediately after firing the electrode of the present invention, the surface defect is terminated. As a result, the surface recombination rate is reduced. Furthermore, gettering of metal impurities as a lifetime killer is promoted to the diffusion layer formed on the silicon substrate, so that the lifetime of the silicon substrate is increased. With these effects, an electrode that achieves both high adhesive strength and low contact resistance, and a solar battery cell that achieves both low interface state density and high lifetime can be obtained by a simple method.
  • the heating temperature is 200 ° C. or more and 600 ° C. or less when the semiconductor substrate coated with the conductive paste is continuously heat-treated immediately after firing without returning to room temperature. It is desirable that the temperature is 300 ° C. or more and 500 ° C. or less. If the heating temperature is lower than this, softening and gettering of the glass frit hardly occur, and a long time is required for the treatment. Further, when the heating temperature is higher than this, the silver electrode is excessively contracted and easily peeled, or the lifetime killer gettering to the diffusion layer is re-released and the lifetime is decreased, Will weaken the effect of
  • the heating time when the semiconductor substrate coated with the conductive paste is continuously heat-treated in the atmosphere without returning to room temperature immediately after firing is 0.5 seconds. It is desirable that it be 90 seconds or less, and more desirably 1 second or more and 60 seconds or less. If the heating time is shorter than this, softening and gettering of the glass frit is difficult to occur, and if the heating time is longer than this, the silver electrode is excessively shrunk and easily peeled off or the production capacity is lowered. Thus, the effect of the present invention is weakened.
  • the antireflection film formed on the solar battery cell is a film obtained by laminating any one of SiO 2 , Al 2 O 3 , SiN films, or any combination thereof. It is desirable to be. These antireflection films are relatively easy to form, and the effect of surface defect termination by heating is easily exhibited, and the effects of the present invention are easily obtained.
  • the process from baking to heat processing is carried out.
  • the process from baking to heat processing is carried out.
  • the process from baking to heat processing is carried out.
  • the process from baking to heat processing is carried out.
  • the process continuously in one apparatus without returning the substrate to room temperature.
  • the solar cell electrode firing furnace in which the silicon substrate is continuously conveyed has a heat treatment zone in which the heat treatment of the present invention can be performed in the zone next to the peak heat firing zone.
  • the maximum effect of improving the solar cell characteristics can be obtained while minimizing the increase in the device area.
  • the effect of reducing the contact resistance of the electrode by heat treatment, gettering effect, and passivation effect without damaging the substrate due to excessive cooling. It can bring as much as possible.
  • a side of 15 cm is formed.
  • This p-type silicon substrate is immersed in a hydrofluoric acid solution for 15 seconds for damage etching, and further chemically etched with a 70 ° C. solution containing 2% KOH and 2% IPA for 5 minutes, and then washed with pure water. , Dried. As a result, a texture structure was formed on the surface of the p-type silicon substrate.
  • n layer was formed on the p-type silicon substrate by performing a thermal diffusion process on the p-type silicon substrate in a POCl 3 gas atmosphere at a temperature of 850 ° C. for 30 minutes.
  • the sheet resistance after heat treatment of the surface of the p-type silicon substrate prepared here was about 80 ⁇ / ⁇ on one side, and the diffusion depth of the n layer was 0.3 ⁇ m.
  • the p-type silicon substrate was immersed in a hydrofluoric acid solution for 10 seconds to remove the portion of the n layer where the acid resistant resin was not formed. Thereafter, the acid-resistant resin was removed to form an n layer only on the surface of the p-type silicon substrate. Subsequently, SiN serving as an antireflection film and a passivation film is formed with a thickness of 1000 mm on the surface of the p-type silicon substrate on which the n layer is formed by plasma CVD using SiH 4 , NH 3 , and N 2. did.
  • a conductive aluminum paste was printed on the back surface of the p-type silicon substrate that had been treated so far, using a screen printing method, and dried at 150 ° C.
  • a conductive silver paste was printed with a finger pattern on the front surface of the p-type silicon substrate using a screen printing method, and dried at 150 ° C. to form a finger electrode.
  • the bus bar electrode was printed with a conductive silver paste using a screen printing method so as to be orthogonal to the finger electrodes, and dried at 150 ° C.
  • the p-type silicon substrate that has been subjected to the pre-processing up to this point is hereinafter referred to as a pre-processed p-type silicon substrate.
  • a pre-treated p-type silicon substrate was baked with a conductive paste at a maximum temperature of 800 ° C. for 5 seconds to produce a solar cell as a comparative example.
  • Reference Example 1 was obtained by heating a pretreated p-type silicon substrate at a maximum temperature of 800 ° C. for 5 seconds and then heating it at 150 ° C. for 6 seconds without returning to room temperature.
  • a pre-treated p-type silicon substrate was baked at a maximum temperature of 800 ° C. for 5 seconds and then heated to 300 ° C. for 6 seconds without returning to room temperature.
  • a pre-treated p-type silicon substrate was baked at a maximum temperature of 800 ° C. for 5 seconds and then heated to 450 ° C. for 6 seconds without returning to room temperature.
  • Reference Example 2 was obtained by baking a pretreated p-type silicon substrate at a maximum temperature of 800 ° C. for 5 seconds and then heating it at 600 ° C. for 6 seconds without returning to room temperature.
  • a pre-treated p-type silicon substrate was baked at a maximum temperature of 800 ° C. for 5 seconds and then heated to 450 ° C. for 20 seconds without returning to room temperature.
  • Example 3 a pre-treated p-type silicon substrate was heated to a maximum temperature
  • Reference Example 3 was obtained by heating at 800 ° C. for 5 seconds and then heating at 400 ° C. for 80 seconds without returning to room temperature.
  • Table 1 shows the results of the evaluation of the adhesive strength of the electrodes and the average of the solar cells when 100 solar cells were produced by the methods of Comparative Example, Examples 1 to 3 and Reference Examples 1 to 3, respectively. Indicates conversion efficiency.
  • the adhesive strength of the electrode is that the bus bar electrode on the cell face is soldered with a tab wire (2 mm wide, 160 ⁇ m thick flat copper wire soldered), and the tab wire is bent 180 degrees parallel to the bus bar electrode. When the substrate was broken before the electrode was peeled, the adhesive strength was evaluated as “high”, and the substrate not broken was evaluated as “low”.
  • the solar cells using the heating conditions of Examples 1 to 3 and Reference Examples 1 to 3 according to the present invention are less likely to decrease the conversion efficiency even when stored for a long period of time as compared with the comparative example. It was. Impurities with a high diffusion coefficient, such as copper, are said to diffuse in the silicon substrate even at room temperature, reducing the bulk lifetime of solar cells after long-term storage and reducing conversion efficiency. . This tendency tends to appear particularly in solar cells using an n-type silicon substrate.
  • the gettering of impurities such as copper can be promoted, so that the conversion efficiency of solar cells is not easily lowered even after storage for a long period of time. It is thought that it has become.
  • an electrode having both high adhesive strength and low contact resistance by a simple method, reduction of interface state density at the interface between the diffusion layer and the antireflection film, and a semiconductor substrate
  • a solar cell that is inexpensive, reliable, and has high conversion efficiency

Abstract

【課題】 安価で信頼性が高く変換効率の高い太陽電池セルを提供する。 【解決手段】 第一導電型半導体基板上に第二導電型層と反射防止膜を積層形成し、該反射防止膜の所定の位置に導電性粒子とガラスフリットを含有する導電性ペーストを塗布し、該導電性ペーストを塗布した半導体基板を焼成して、該反射防止膜を貫通し、該第二導電型層と電気的に接続した電極を形成する工程を有する太陽電池セルの製造方法において、導電性ペーストを塗布した半導体基板を、焼成した直後に、室温に戻すことなく連続して加熱処理する。

Description

太陽電池セルおよび太陽電池セルの製造方法
 本発明は、太陽電池セルおよび太陽電池セルの製造方法に関する。
 一般に、太陽電池素子は、図1に示す構造を有する。図1において、1は、大きさが100~150mm角、厚みが0.1~0.3mmの板状で、かつ、多結晶や単結晶シリコン等からなり、ボロン等のp型不純物がドープされたp型の半導体基板である。太陽電池素子以下の通りである。はじめに、この基板に、リン等のn型不純物をドープしてn型拡散層2を形成する。次に、SiN(窒化シリコン)等の反射防止膜3を設け、スクリーン印刷法を用いて、裏面に導電性アルミニウムペーストを印刷する。その後、乾燥・焼成することで裏面電極6とBSF(Back Surface Field)層4を同時に形成する。続いて、表面に導電性銀ペーストを印刷後、乾燥して焼成し、表面電極5を形成する。このように製造される太陽電池素子において、表面電極5は、太陽電池素子で生じた光生成電流を外部へ取出すためのバスバー電極と、これらのバスバー電極に接続される集電用のフィンガー電極とからなる。なお、以下、太陽電池の受光面側となる基板の面をオモテ面(表面)、受光面側と反対側になる基板の面をウラ面(裏面)とする。
 このような方法で製造される太陽電池素子にあっては、上記のように、電極形成にスクリーン印刷法と焼成を用いることが一般的である。スクリーン印刷方法においては、例えば太陽電池セル受光面のフィンガー電極やバスバー電極を形成するためには、一般に銀粉末と有機ビヒクルとガラスフリットとを含有する導電性ペーストが使用される。この導電性ペーストには、性能向上のために各種の無機酸化物や導電性物質などの固形物が添加されていることもある。この導電性ペーストをスクリーン印刷法により半導体基板上の所定の位置に塗布し、焼成すると、高温下では銀粉末同士が焼結して銀電極を形成する。これと同時にガラスフリットが軟化して反射防止膜を溶融させてn型拡散層に到達し、銀電極とn型拡散層が電気的に接続される。かかる方法は、一般にファイヤースルーと呼ばれており、多くの太陽電池セルの電極形成方法に採用されている。
 上記のような電極形成方法においては、電極の焼成のために半導体基板を600℃以上の高温にて処理しなければならない。この高温処理により、半導体基板に熱ダメージが与えられたり、また拡散層にてゲッタリングしていたライフタイムキラーとなる汚染物質が半導体基板内に放出されたりして、半導体基板のライフタイムを低下させてしまう。また、ファイヤースルーによって形成された電極は、導電性粒子の短時間の焼結によるものである。このため、例えばめっきにより形成した電極などと比較すると密度が小さい、電極表面や内部に空洞が多く観察される、半導体基板と電極の接着する面積が不均一になり剥離しやすい電極が形成されてしまいがちである、といった問題が生じやすい。このようなライフタイム低下や電極の異常は、太陽電池セルの性能や長期信頼性に問題を生じさせる原因になるため、解決が望まれている。
 この問題を解決するために、例えば、特許文献1に開示された方法では、焼成により電極を形成した太陽電池セルを、少なくとも水素ガスを含む雰囲気下で加熱処理することで、電極の接触抵抗を改善している。しかし特許文献1に記載の方法では、焼成後に工程が追加されるためコスト上昇につながり、更に取り扱いの難しい水素ガスを使用するため、工程の安全性に問題が生じる。このため、より簡便な方法でこの問題を解決することが望まれている。
特開2007-294494号公報
 そこで、本発明は上記の問題点を解消するためになされたものであり、安価で信頼性が高く変換効率の高い太陽電池セルを提供することを目的とする。
 上記の課題を解決すべく本発明に係る太陽電池セルの製造方法では、第一導電型半導体基板上に第二導電型層と反射防止膜を積層形成し、該反射防止膜の所定の位置に導電性粒子とガラスフリットを含有する導電性ペーストを塗布し、該導電性ペーストを塗布した半導体基板を焼成して、該反射防止膜を貫通し、該第二導電型層と電気的に接続した電極を形成する工程を有する太陽電池セルの製造方法において、導電性ペーストを塗布した半導体基板を、焼成した直後に、室温に戻すことなく連続して加熱処理することを特徴とする。このような工程により、電極とシリコン基板の接触抵抗を低下するとともに、接着強度を高めることができる。
 本発明では、導電性ペーストを塗布した半導体基板を、焼成した直後に、室温に戻すことなく連続して加熱する際の、加熱温度を300℃以上500℃以下とするとよい。
 本発明では、導電性ペーストを塗布した半導体基板を、焼成した直後に、室温に戻すことなく連続して加熱処理する際の、加熱時間を1秒以上60秒以下とするとよい。
 本発明では、反射防止膜がSiO、Al、SiNの膜いずれかもしくはそれらの任意の組み合わせを積層して得られる膜であるように構成するとよい。
 本発明では、導電性ペーストを塗布した半導体基板を、焼成した直後に、室温に戻すことなく連続して加熱処理する際の、焼成から加熱処理を、一つの装置にて連続して行うとよい。このような構成により、装置面積の増大を最低限にしつつ、太陽電池セル特性を向上することができる。
 また本発明に係る太陽電池セルは、上述の製造方法を用いて製造される。当該製造方法により製造された太陽電池セルは、信頼性に優れ、変換効率の高いものとなる。
太陽電池素子の断面図である。 太陽電池セルの製造方法の手順を示すフローチャートである。
 以下、本発明の実施形態を詳細に説明する。しかし、本発明は下記説明に加えて広範な他の実施形態で実施することが可能であり、本発明の範囲は、下記に制限されるものではなく、請求の範囲に記載されるものである。更に、図面は原寸に比例して示されていない。本発明の説明や理解をより明瞭にするために、関連部材によっては寸法が拡大されており、また、重要でない部分については図示されていない。
 前述したように、図1は太陽電池素子の一般的な構造を示す断面図である。図1において、1は半導体基板、2は拡散層、3は反射防止膜兼パッシベーション膜、4はBSF層、5は表面電極、6は裏面電極を示す。
 ここで、図1に示す太陽電池素子の製造工程を、まず、半導体基板1を用意する。この半導体基板1は、単結晶または多結晶シリコン等からなり、p型、n型いずれでもよいが、ボロン等のp型の半導体不純物を含み、比抵抗は0.1~4.0Ω・cmのp型シリコン基板が用いられることが多い。以下、p型シリコン基板を用いた太陽電池素子製造方法を例にとって説明する。p型シリコン基板としては、大きさは100~150mm角、厚みは0.05~0.30mmの板状のものが好適に用いられる。p型シリコン基板を、例えばフッ化水素酸またはフッ化水素硝酸等の酸性溶液中に浸漬してスライス等による表面のダメージを除去し、更に水酸化ナトリウム水溶液や水酸化カリウム水溶液等のアルカリ溶液で化学エッチングして洗浄、乾燥する。これにより、太陽電池素子の受光面となるp型シリコン基板の表面に、テクスチャとよばれる凹凸構造が形成される。凹凸構造は、太陽電池素子の受光面において光の多重反射を生じさせる。そのため、凹凸構造を形成することにより、実効的に反射率が低減し、変換効率が向上する。
 その後、例えばPOCl等を含む、850~1000℃の高温ガス中にp型シリコン基板を設置し、p型シリコン基板の全面にリン等のn型不純物元素を拡散させる熱拡散法により、シート抵抗が30~300Ω/□程度のn型拡散層2をオモテ面に形成する。なお、n型拡散層を熱拡散法により形成する場合には、p型シリコン基板の両面および端面にもn型拡散層が形成されることがあるが、この場合には、必要なn型拡散層のオモテ面を耐酸性樹脂で被覆したp型シリコン基板をフッ硝酸溶液中に浸漬することによって、不要なn型拡散層を除去することができる。その後、例えば希釈したフッ酸溶液等の薬品に浸漬させることにより、拡散時に半導体基板の表面に形成されたガラス層を除去し、純水で洗浄する。
 更に、上記p型シリコン基板のオモテ面側に反射防止膜兼パッシベーション膜3を形成する。この反射防止膜兼パッシベーション膜3は、例えばSiN等からなり、例えばSiHとNHとの混合ガスをNで希釈し、グロー放電分解でプラズマ化させて堆積させるプラズマCVD法等で形成される。この反射防止膜兼パッシベーション膜3は、p型シリコン基板との屈折率差等を考慮して、屈折率が1.8~2.3程度、厚みが500~1000Å程度に形成される。反射防止膜兼パッシベーション膜3は、p型シリコン基板の表面で光が反射するのを防止して、p型シリコン基板内に光を有効に取り込むために設けられる。また、このSiNは、形成の際にn型拡散層に対してパッシベーション効果があるパッシベーション膜としても機能し、反射防止の機能と併せて太陽電池素子の電気特性を向上させる効果がある。
 次に、ウラ面に、例えばアルミニウムとガラスフリットとワニス等を含む導電性ペーストをスクリーン印刷し、乾燥させる。しかる後、オモテ面に、例えば銀とガラスフリットとワニス等を含む導電性ペーストをスクリーン印刷し、乾燥させる。この後、各電極用の導電性ペーストを塗布した上記p型シリコン基板を500℃~950℃程度の温度で1~60秒程度焼成することで、BSF層4と表面電極5と裏面電極6とを形成し、典型的な結晶シリコン太陽電池セルが完成する。
 上記のような典型的な結晶シリコン太陽電池素子の製造方法においては、電極形成を導電性ペーストの焼成によって行っている。特にオモテ面では、銀とガラスフリットとワニスなどを含む導電性ペーストの焼成によって、ガラスフリットが溶けてシリコン基板と銀電極の間に溜まり、シリコン基板と銀電極をつなぐ接着剤としての役割を果たしている。しかし、スクリーン印刷によってシリコン基板上に塗布される導電性ペーストの膜厚や幅にバラつきがあることや、焼成時間が短いことなどによって、焼成後に形成される銀電極とシリコン基板の間の接着強度や接触抵抗が不安定になることが多く、それに伴い太陽電池セルの変換効率や長期信頼性がばらつくという問題がある。このばらつきを低減し、安定した太陽電池セル製造プロセスを開発することが望まれている。これらの問題は、本発明により解決される。具体的には、電極を焼成した直後に、室温に戻すことなく連続して大気中で加熱処理することにより、電極とシリコン基板の接触面積が広がって接着強度が高くなり、接触抵抗が低くなるだけでなく、表面の欠陥が終端されて表面再結合速度が小さくなり、更に不純物ゲッタリングが促進されて半導体基板のライフタイムが高くなることを見出した。これにより、高い接着強度と低い接触抵抗を両立する電極と、低い界面準位密度と高いライフタイムを両立した太陽電池セルを簡便な方法で得られることを見出し、本発明を完成するに至った。
 すなわち、本発明の位置実施形態に係る太陽電池セルの製造方法は、図2のフローチャートに描かれているように、第一導電型の半導体基板を用意し(ステップS100)、該半導体基板にテクスチャを形成する(ステップS110)。そして、テクスチャが形成された半導体基板のオモテ面に第二導電型の拡散層を形成し(ステップS120)、その上に反射防止膜を積層形成する(ステップS130)。そして、該反射防止膜の所定の位置に導電性粒子とガラスフリットを含有する導電性ペーストを塗布する(ステップS140)。このとき、必要に応じてウラ面にも導電性ペーストを塗布してもよい。続いて、該導電性ペーストを塗布した半導体基板を焼成する(ステップS150)。そして、導電性ペーストを塗布した半導体基板を、焼成した直後に、室温に戻すことなく連続して加熱処理する(ステップS160)。
 本発明による太陽電池セルの特性の改善は、以下の理由によるものである。
 本発明によって、電極を焼成した後に大気中で加熱処理することにより、ガラスフリットが溶けて銀電極とシリコン基板の間に形成されるガラス層が、均一に薄く広がるので、電極とシリコン基板の接触抵抗が低くなり、かつ接着強度が高くなる。また一般に、導電性銀ペーストの焼成においては、上記ガラス層の中に銀の微結晶が形成され、この銀の微結晶がシリコン基板とガラス層と銀電極の間の導電性を確保し、接触抵抗を下げる。本発明では、電極を焼成した後に大気中で加熱処理することにより、このガラス層中の銀の微結晶の成長が促進されるので、より低い接触抵抗を実現することが出来る。また本発明の、電極を焼成した直後に室温に戻すことなく連続して大気中で加熱処理することにより、シリコン基板表面の欠陥が反射防止膜による終端が促進されるので、表面の欠陥が終端されて表面再結合速度が小さくなる。更にシリコン基板に形成された拡散層へ、ライフタイムキラーとしての金属不純物のゲッタリングが促進されるので、シリコン基板のライフタイムが高くなる。これらの効果により、高い接着強度と低い接触抵抗を両立する電極と、低い界面準位密度と高いライフタイムを両立した太陽電池セルを簡便な方法で得られる。
 上述の太陽電池セルの製造方法において、導電性ペーストを塗布した半導体基板を、焼成した直後に、室温に戻すことなく連続して加熱処理する際の、加熱温度は200℃以上600℃以下であることが望ましく、より好適には300℃以上500℃以下であることが望ましい。加熱温度がこれより低いと、ガラスフリットの軟化やゲッタリングが発生しにくく、処理に長い時間が必要になる。また加熱温度がこれより高いと、銀電極が過剰に収縮して剥離しやすくなったり、拡散層にゲッタリングしているライフタイムキラーが再放出されてライフタイムが低下したりして、本発明の効果を弱めてしまう
 また上述の太陽電池セルの製造方法において、導電性ペーストを塗布した半導体基板を、焼成した直後に、室温に戻すことなく連続して大気中で加熱処理する際の、加熱時間は0.5秒以上90秒以下であることが望ましく、より好適には1秒以上60秒以下であることが望ましい。加熱時間がこれより短いと、ガラスフリットの軟化やゲッタリングが発生しにくく、また加熱時間がこれより長いと、銀電極が過剰に収縮して剥離しやすくなったり、生産能力が低くなったりして、本発明の効果を弱めてしまう。
 また上述の太陽電池セルの製造方法において、太陽電池セルに形成されている反射防止膜がSiO、Al、SiNの膜いずれかもしくはそれらの任意の組み合わせを積層して得られる膜であることが望ましい。これらの反射防止膜は形成が比較的容易で、また加熱による表面の欠陥終端の効果が発揮されやすく、本発明の効果が得られやすい。
 また上述の太陽電池セルの製造方法において、導電性ペーストを塗布した半導体基板を、焼成した直後に、室温に戻すことなく連続して大気中で加熱処理する工程の、焼成から加熱処理を、焼成直後に基板を室温に戻すことなく、一つの装置にて連続して行うことが望ましい。具体的には、シリコン基板が連続的に搬送されていく太陽電池セル用電極焼成炉の、ピーク加熱焼成ゾーンの次のゾーンに、本発明の加熱処理が可能になる加熱処理ゾーンを持たせることで、装置面積の増大を最低限にしつつ、最大限の太陽電池セル特性向上効果が得られる。特に、焼成後に基板を室温に戻すことなく加熱処理を施すことにより、過剰な冷却による基板へのダメージを与えることなく、加熱処理による電極の接触抵抗を低くする効果やゲッタリング効果、パッシベーション効果を最大限もたらすことが出来る。
 以下に本発明の実施例および比較例をあげて更に具体的に説明するが、本発明はこれらに限定されるものではなく、幅広い用途で活用できるものである。
 まず、ボロンがドープされ、厚さ0.2mmにスライスして作製された比抵抗が約1Ω・cmのp型の単結晶シリコンからなるp型シリコン基板に外径加工を行うことによって、一辺15cmの正方形の板状とした。そして、このp型シリコン基板をフッ硝酸溶液中に15秒間浸漬させてダメージエッチし、更に2%のKOHと2%のIPAを含む70℃の溶液で5分間化学エッチングした後に純水で洗浄し、乾燥した。これにより、p型シリコン基板の表面にテクスチャ構造を形成した。
 上記p型シリコン基板に対して、POClガス雰囲気中において、850℃の温度で30分間の条件で熱拡散処理を行うことにより、p型シリコン基板にn層を形成した。ここで用意したp型シリコン基板表面の熱処理後のシート抵抗は、一面が約80Ω/□、n層の拡散深さは0.3μmであった。
 その後、n層上に耐酸性樹脂を形成した後に、p型シリコン基板をフッ硝酸溶液中に10秒間浸漬することによって、耐酸性樹脂が形成されていない部分のn層を除去した。その後、耐酸性樹脂を除去することによって、p型シリコン基板の表面のみにn層を形成した。続いて、SiHとNH、Nを用いたプラズマCVD法により、p型シリコン基板のn層が形成されている表面上に、反射防止膜兼パッシベーション膜となるSiNを厚さ1000Åで形成した。
 次に、ここまでの処理を施したp型シリコン基板のウラ面に、スクリーン印刷法を用いて、導電性アルミペーストを印刷し、150℃で乾燥させた。更に、p型シリコン基板のオモテ面に、スクリーン印刷法を用いて、導電性銀ペーストをフィンガーパターンで印刷し、150℃で乾燥させてフィンガー電極を形成した。その後、フィンガー電極と直交するように、バスバー電極を、スクリーン印刷法を用いて、導電性銀ペーストを印刷し、150℃で乾燥させた。ここまでの前処理を施したp型シリコン基板を、以下では前処理済みp型シリコン基板と呼称する。
 前処理済みp型シリコン基板を、最高温度800℃で5秒間導電性ペーストを焼成して、太陽電池セルを作製したものを比較例とした。また、前処理済みp型シリコン基板を最高温度800℃で5秒間の焼成の後、室温に戻さずに続けて150℃で6秒間加熱したものを参考例1とした。前処理済みp型シリコン基板を最高温度800℃で5秒間の焼成の後、室温に戻さずに続けて300℃で6秒間加熱したものを実施例1とした。前処理済みp型シリコン基板を最高温度800℃で5秒間の焼成の後、室温に戻さずに続けて450℃で6秒間加熱したものを実施例2とした。前処理済みp型シリコン基板を最高温度800℃で5秒間の焼成の後、室温に戻さずに続けて600℃で6秒間加熱したものを参考例2とした。前処理済みp型シリコン基板を最高温度800℃で5秒間の焼成の後、室温に戻さずに続けて450℃で20秒間加熱したものを実施例3、前処理済みp型シリコン基板を最高温度800℃で5秒間の焼成の後、室温に戻さずに続けて400℃で80秒間加熱したものを参考例3とした。
 表1に、上記の比較例、実施例1~3および参考例1~3の方法で、それぞれ100枚ずつの太陽電池セルを作製した際の、電極の接着強度評価結果と太陽電池セルの平均変換効率を示す。電極の接着強度は、セルオモテ面のバスバー電極にタブ線(2mm幅、160μm厚の平板銅線をはんだ被覆したもの)を、はんだ付けして取り付け、タブ線をバスバー電極と平行方向に180度曲げて引っ張って、電極が剥がれる前に基板が破壊されたときに、接着強度が「高い」、基板が破壊されなかったものを接着強度が「低い」と評価した。
Figure JPOXMLDOC01-appb-T000001
 表1に示したように、本発明による実施例1~3の加熱条件を用いることで、比較例と比較すると、太陽電池セルの電極の接着強度を高めることが可能な上、太陽電池セルの平均変換効率を高めることができる。接着強度を高めることが可能な理由は、ガラスフリットが溶けて銀電極とシリコン基板の間に形成されるガラス層が、均一に薄く広がるためである。変換効率が高くなる理由は、良好なガラス層形成により接触抵抗が低くなって曲線因子が改善し、低い界面準位密度と高いライフタイムを両立できるので短絡電流と開放電圧が改善するためである。
 また、本発明による実施例1~3および参考例1~3の加熱条件を用いた太陽電池セルは、比較例と比較して、長期間保管しておいても変換効率が低下しにくくなっていた。銅などの拡散係数の高い不純物は、常温においてもシリコン基板中を拡散していき、長期間の保管後に太陽電池セルのバルクライフタイムを低下させ、変換効率を低下させてしまうと言われている。この傾向は、特にn型シリコン基板を使用した太陽電池セルにおいて現れやすい。実施例1~3および参考例1~3の加熱条件を用いることで、銅などの不純物のゲッタリングを促進できるため、長期間保管しておいても、太陽電池セルの変換効率が低下しにくくなっていると考えられる。
 以上で説明した用の本実施形態によれば、簡便な方法で高い接着強度と低い接触抵抗を両立する電極と、拡散層と反射防止膜との界面における界面準位密度の低減、及び半導体基板の高いライフタイムを実現することで、安価で信頼性が高く変換効率の高い太陽電池セルを提供することができる。
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。
1 半導体基板
2 拡散層
3 反射防止膜兼パッシベーション膜
4 BSF層
5 表面電極
6 裏面電極

Claims (6)

  1.  第一導電型半導体基板上に第二導電型層と反射防止膜を積層形成し、該反射防止膜の所定の位置に導電性粒子とガラスフリットを含有する導電性ペーストを塗布し、該導電性ペーストを塗布した半導体基板を焼成して、該反射防止膜を貫通し、該第二導電型層と電気的に接続した電極を形成する工程を有する太陽電池セルの製造方法において、
     前記導電性ペーストを塗布した半導体基板を、焼成した直後に、室温に戻すことなく連続して加熱処理することを特徴とする、太陽電池セルの製造方法。
  2.  前記導電性ペーストを塗布した半導体基板を、焼成した直後に、室温に戻すことなく連続して加熱する際の、加熱温度が300℃以上500℃以下であることを特徴とする、請求項1に記載の太陽電池セルの製造方法。
  3.  前記導電性ペーストを塗布した半導体基板を、焼成した直後に、室温に戻すことなく連続して加熱処理する際の、加熱時間が1秒以上60秒以下であることを特徴とする、請求項1または請求項2に記載の太陽電池セルの製造方法。
  4.  前記反射防止膜がSiO、Al、SiNの膜いずれかもしくはそれらの任意の組み合わせを積層して得られる膜であることを特徴とする、請求項1から3のいずれか1項に記載の太陽電池セルの製造方法。
  5.  前記導電性ペーストを塗布した半導体基板を、焼成した直後に、室温に戻すことなく連続して加熱処理する際の、焼成から加熱処理を、一つの装置にて連続して行うことを特徴とする、請求項1から4のいずれか1項に記載の太陽電池セルの製造方法。
  6.  請求項1から5のいずれか1項に記載の方法を用いて製造した太陽電池セル。
PCT/JP2014/081746 2014-01-31 2014-12-01 太陽電池セルおよび太陽電池セルの製造方法 WO2015114937A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP14880771.2A EP3101696B1 (en) 2014-01-31 2014-12-01 Solar cell and solar cell manufacturing method
MYPI2016702512A MY186101A (en) 2014-01-31 2014-12-01 Solar battery cell and manufacturing method for the solar battery cell
KR1020167017876A KR102154890B1 (ko) 2014-01-31 2014-12-01 태양전지 셀 및 태양전지 셀의 제조 방법
US15/110,570 US9691918B2 (en) 2014-01-31 2014-12-01 Solar battery cell and manufacturing method for the solar battery cell
RU2016134449A RU2016134449A (ru) 2014-01-31 2014-12-01 Элемент солнечной батареи и способ изготовления элемента солнечной батареи
CN201480074059.3A CN105934828B (zh) 2014-01-31 2014-12-01 太阳能电池单元和太阳能电池单元的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-016450 2014-01-31
JP2014016450A JP6030587B2 (ja) 2014-01-31 2014-01-31 太陽電池セルの製造方法

Publications (1)

Publication Number Publication Date
WO2015114937A1 true WO2015114937A1 (ja) 2015-08-06

Family

ID=53756531

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/081746 WO2015114937A1 (ja) 2014-01-31 2014-12-01 太陽電池セルおよび太陽電池セルの製造方法

Country Status (9)

Country Link
US (1) US9691918B2 (ja)
EP (1) EP3101696B1 (ja)
JP (1) JP6030587B2 (ja)
KR (1) KR102154890B1 (ja)
CN (1) CN105934828B (ja)
MY (1) MY186101A (ja)
RU (1) RU2016134449A (ja)
TW (1) TWI649883B (ja)
WO (1) WO2015114937A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6285612B1 (ja) * 2016-10-05 2018-02-28 信越化学工業株式会社 高光電変換効率太陽電池の製造方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101943711B1 (ko) 2016-10-10 2019-01-29 삼성에스디아이 주식회사 태양전지 전극 형성용 조성물 및 이로부터 제조된 전극
KR102008186B1 (ko) 2017-02-09 2019-08-07 삼성에스디아이 주식회사 태양전지 전극 형성용 조성물 및 이로부터 제조된 전극
CN107993940A (zh) * 2017-10-31 2018-05-04 泰州隆基乐叶光伏科技有限公司 p型太阳能电池的制备方法
CN108198877A (zh) * 2018-01-29 2018-06-22 泰州隆基乐叶光伏科技有限公司 一种单晶掺镓太阳电池及其制备方法
KR102004650B1 (ko) * 2018-02-28 2019-10-01 재단법인대구경북과학기술원 태양전지용 메타소재 전극 및 이의 제조방법
CN113078240B (zh) * 2021-03-29 2023-07-14 无锡奥特维旭睿科技有限公司 N型TOPCon电池的烧结方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5818976A (ja) * 1981-07-27 1983-02-03 Semiconductor Energy Lab Co Ltd 光電変換装置作製方法
JP2005135942A (ja) * 2003-10-28 2005-05-26 Canon Inc 電極配設方法
JP2005191315A (ja) * 2003-12-25 2005-07-14 Kyocera Corp 光電変換装置およびその製造方法
JP2007294494A (ja) 2006-04-21 2007-11-08 Shin Etsu Handotai Co Ltd 太陽電池の製造方法及び太陽電池

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5320684A (en) * 1992-05-27 1994-06-14 Mobil Solar Energy Corporation Solar cell and method of making same
US20050189015A1 (en) * 2003-10-30 2005-09-01 Ajeet Rohatgi Silicon solar cells and methods of fabrication
JP2008308345A (ja) * 2007-06-12 2008-12-25 Sanyo Electric Co Ltd 半導体材料の再生装置、太陽電池の製造方法および製造装置
US8241945B2 (en) * 2010-02-08 2012-08-14 Suniva, Inc. Solar cells and methods of fabrication thereof
KR101246686B1 (ko) 2010-03-19 2013-03-21 제일모직주식회사 태양전지 전극용 페이스트 및 이를 이용한 태양전지
JP5179677B1 (ja) * 2012-03-14 2013-04-10 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 太陽電池セルの製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5818976A (ja) * 1981-07-27 1983-02-03 Semiconductor Energy Lab Co Ltd 光電変換装置作製方法
JP2005135942A (ja) * 2003-10-28 2005-05-26 Canon Inc 電極配設方法
JP2005191315A (ja) * 2003-12-25 2005-07-14 Kyocera Corp 光電変換装置およびその製造方法
JP2007294494A (ja) 2006-04-21 2007-11-08 Shin Etsu Handotai Co Ltd 太陽電池の製造方法及び太陽電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3101696A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6285612B1 (ja) * 2016-10-05 2018-02-28 信越化学工業株式会社 高光電変換効率太陽電池の製造方法
WO2018066016A1 (ja) * 2016-10-05 2018-04-12 信越化学工業株式会社 高光電変換効率太陽電池の製造方法及び高光電変換効率太陽電池
US11538957B2 (en) 2016-10-05 2022-12-27 Shin-Etsu Chemical Co., Ltd. Methods for manufacturing high photoelectric conversion efficiency solar cell

Also Published As

Publication number Publication date
MY186101A (en) 2021-06-22
US20160329442A1 (en) 2016-11-10
EP3101696A1 (en) 2016-12-07
CN105934828A (zh) 2016-09-07
TWI649883B (zh) 2019-02-01
US9691918B2 (en) 2017-06-27
JP2015144162A (ja) 2015-08-06
KR20160114580A (ko) 2016-10-05
RU2016134449A (ru) 2018-03-05
JP6030587B2 (ja) 2016-11-24
EP3101696A4 (en) 2017-08-30
EP3101696B1 (en) 2020-08-26
CN105934828B (zh) 2017-07-21
KR102154890B1 (ko) 2020-09-10
TW201535756A (zh) 2015-09-16

Similar Documents

Publication Publication Date Title
JP6030587B2 (ja) 太陽電池セルの製造方法
JP5440433B2 (ja) 太陽電池の製造方法及び製膜装置
JP5301758B2 (ja) 太陽電池
CN105247686A (zh) 太阳能电池单元及其制造方法、太阳能电池模块
US11658251B2 (en) Solar cell, solar cell manufacturing system, and solar cell manufacturing method
JP5991945B2 (ja) 太陽電池および太陽電池モジュール
JP6392717B2 (ja) 太陽電池セルの製造方法
JP6371894B2 (ja) 高効率裏面電極型太陽電池セル、太陽電池モジュール、及び太陽光発電システム
JP6494414B2 (ja) 太陽電池セルの製造方法
JP5494511B2 (ja) 太陽電池の製造方法
CN110800114B (zh) 高效背面电极型太阳能电池及其制造方法
JP6211743B1 (ja) 高効率裏面電極型太陽電池セル、太陽電池モジュール、及び太陽光発電システム
JP2015130405A (ja) 光起電力装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14880771

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167017876

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15110570

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014880771

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014880771

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016134449

Country of ref document: RU

Kind code of ref document: A