TWI603339B - 具有接合在一起的模組晶粒區域的單石積體電路晶粒 - Google Patents
具有接合在一起的模組晶粒區域的單石積體電路晶粒 Download PDFInfo
- Publication number
- TWI603339B TWI603339B TW103122467A TW103122467A TWI603339B TW I603339 B TWI603339 B TW I603339B TW 103122467 A TW103122467 A TW 103122467A TW 103122467 A TW103122467 A TW 103122467A TW I603339 B TWI603339 B TW I603339B
- Authority
- TW
- Taiwan
- Prior art keywords
- die
- region
- die region
- regions
- area
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/26—Testing of individual semiconductor devices
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/317—Testing of digital circuits
- G01R31/31721—Power aspects, e.g. power supplies for test circuits, power saving during test
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/317—Testing of digital circuits
- G01R31/31723—Hardware for routing the test signal within the device under test to the circuits to be tested, e.g. multiplexer for multiple core testing, accessing internal nodes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/317—Testing of digital circuits
- G01R31/3181—Functional testing
- G01R31/3185—Reconfiguring for testing, e.g. LSSD, partitioning
- G01R31/318505—Test of Modular systems, e.g. Wafers, MCM's
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/317—Testing of digital circuits
- G01R31/3181—Functional testing
- G01R31/3185—Reconfiguring for testing, e.g. LSSD, partitioning
- G01R31/318516—Test of programmable logic devices [PLDs]
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K19/00—Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
- H03K19/02—Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components
- H03K19/173—Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using elementary logic circuits as components
- H03K19/177—Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using elementary logic circuits as components arranged in matrix form
- H03K19/17724—Structural details of logic blocks
- H03K19/17728—Reconfigurable logic blocks, e.g. lookup tables
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K19/00—Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
- H03K19/02—Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components
- H03K19/173—Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using elementary logic circuits as components
- H03K19/177—Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using elementary logic circuits as components arranged in matrix form
- H03K19/17736—Structural details of routing resources
- H03K19/1774—Structural details of routing resources for global signals, e.g. clock, reset
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K19/00—Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
- H03K19/02—Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components
- H03K19/173—Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using elementary logic circuits as components
- H03K19/177—Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using elementary logic circuits as components arranged in matrix form
- H03K19/17748—Structural details of configuration resources
- H03K19/17772—Structural details of configuration resources for powering on or off
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K19/00—Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
- H03K19/02—Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components
- H03K19/173—Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using elementary logic circuits as components
- H03K19/177—Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using elementary logic circuits as components arranged in matrix form
- H03K19/1778—Structural details for adapting physical parameters
- H03K19/17788—Structural details for adapting physical parameters for input/output [I/O] voltages
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Mathematical Physics (AREA)
- Semiconductor Integrated Circuits (AREA)
- Computer Hardware Design (AREA)
- Design And Manufacture Of Integrated Circuits (AREA)
- Computing Systems (AREA)
- Environmental & Geological Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Tests Of Electronic Circuits (AREA)
- Logic Circuits (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Power Engineering (AREA)
Description
以下說明係關於積體電路裝置(IC)。更特別的係,以下說明係關於一種用於積體電路的單石積體電路晶粒,其係具有接合在一起的模組晶粒區域。
積體電路隨著時間過去已變得越來越密集,也就是說,已有更多的邏輯特色係實行於在一個給定尺寸的IC中。因此,電力消耗已變得一個越來越重要的議題,包括在晶圓級測試中的電力消耗。因此,其希望能提供具有更適合用於晶圓級測試的功率消耗的IC。
一種設備通常係關於一個單石積體電路晶粒。在此設備中,該單石積體電路晶粒具有複數個模組晶粒區域。該模組晶粒區域個別具有複數個電力分配網路,用於獨立地對每一個該模組晶粒區域進行供電。該模組晶粒區域的每一個鄰近對係與個別的複數個金屬線路接合在一起。
一種方法通常係關於一個單石積體電路晶粒。在此方法中,一個獲得的單石積體電路晶粒具有一個第一晶粒區域及一個第二晶粒區域。該第一晶粒區域係具有一個第一電力分配網路,且該第二晶粒區域係
具有一個第二電力分配網路。該第一電力分配網路係與該第二電力分配網路相隔開,以便該第一晶粒區域和該第二晶粒區域係獨立地操作。該第一晶粒區域與該第二晶粒區域係透過第一複數個金屬線路和第二複數個金屬線路而彼此互連。該第一複數個金屬線路和該第二複數個金屬線路係耦合至第一複數個選擇電路和第二複數個選擇電路。該第一晶粒區域係用該第一電力分配網路來進行供電,同時使得該第二晶粒區域的該第二電力分配網路進行斷電。該第一晶粒區域係設定於一個迴圈返回模式。當處在該迴圈返回模式時,對該第一晶粒區域進行測試。
另一種設備通常係關於一個單石積體電路晶粒。在此設備中,該單石積體電路晶粒具有具有一個第一晶粒區域和一個第二晶粒區域。該第一晶粒區域係具有一個第一電力分配網路,且該第二晶粒區域係具有一個第二電力分配網路。該第一電力分配網路係與該第二電力分配網路相隔開,以便該第一晶粒區域和該第二晶粒區域係獨立地操作。該第一晶粒區域與該第二晶粒區域係透過第一複數個金屬線路和第二複數個金屬線路而彼此互連。該第一複數個金屬線路和該第二複數個金屬線路係耦合至第一複數個選擇電路和第二複數個選擇電路。該第一晶粒區域係具有一個瑕疵部分。該第二晶粒區域係用於提供該單石積體電路晶粒作為一個功能性晶粒,而該瑕疵部分係與該第二晶粒區域相隔離。
100‧‧‧現場可程式規劃閘極陣列(FPGA)架構
101‧‧‧多個十億位元收發器(MGT)
102‧‧‧可組態邏輯方塊(CLB)
103‧‧‧隨機存取記憶體方塊(BRAM)
104‧‧‧輸入/輸出方塊(IOB)
105‧‧‧組態及計時邏輯(CONFIG/CLOCK)
106‧‧‧數位信號處理器(DSP)
107‧‧‧輸入/輸出方塊
108‧‧‧可程式規劃邏輯
109‧‧‧組態/時脈分配
110‧‧‧處理器方塊(PROC)
111‧‧‧互連元件(INT)
112‧‧‧可組態邏輯元件(CLE)
113‧‧‧隨機存取記憶體方塊邏輯元件(BRL)
114‧‧‧數位信號處理器邏輯元件(DSPL)
115‧‧‧輸入/輸出邏輯元件(IOL)
200‧‧‧單石積體電路晶粒
201‧‧‧輸入/輸出方塊
201B‧‧‧輸入/輸出
201C‧‧‧輸入/輸出
203‧‧‧線路
210‧‧‧遮罩接合區域
211‧‧‧晶粒區域
212‧‧‧晶粒區域
221‧‧‧整體長度
222‧‧‧長度
223‧‧‧寬度
224‧‧‧長度
241‧‧‧壁部
242‧‧‧壁部
260‧‧‧導體
271‧‧‧電力分配網路
272‧‧‧電力分配網路
281‧‧‧組態方塊
282‧‧‧組態方塊
300‧‧‧單石積體電路晶粒
301‧‧‧接合線路
302‧‧‧接合線路
303‧‧‧接合線路
304‧‧‧接合線路
311‧‧‧下方層
312‧‧‧上方層
321‧‧‧導電線路
322‧‧‧導電線路
400‧‧‧晶圓
401‧‧‧晶粒區域
402‧‧‧晶粒區域
410‧‧‧劃線區域
411‧‧‧互連線路
412‧‧‧互連線路
421‧‧‧迴圈返回
422‧‧‧迴圈返回
500‧‧‧晶圓
511‧‧‧多工器
512‧‧‧選擇信號
513‧‧‧節點
514‧‧‧輸入線路
515‧‧‧輸出線路
516‧‧‧輸入線路
517‧‧‧可程式規劃終端方塊
521‧‧‧多工器
522‧‧‧選擇信號
523‧‧‧節點
514‧‧‧輸入線路
515‧‧‧輸出線路
516‧‧‧輸入線路
527‧‧‧可程式規劃終端方塊
571‧‧‧控制器方塊
572‧‧‧控制器方塊
600‧‧‧層堆疊
601‧‧‧層
602‧‧‧金屬層
602B‧‧‧金屬層
602T‧‧‧金屬層
603‧‧‧穿孔層
604‧‧‧金屬層
604B‧‧‧金屬層
604T‧‧‧金屬層
605‧‧‧穿孔層
606‧‧‧金屬層
606B‧‧‧金屬層
606T‧‧‧金屬層
607‧‧‧穿孔重分布層
608‧‧‧金屬重分布層
701‧‧‧晶粒區域
702‧‧‧晶粒區域
703‧‧‧晶粒區域
800‧‧‧晶圓級測試流程
801-809‧‧‧方法的步驟
900‧‧‧晶片級測試流程
901-904‧‧‧步驟
隨附圖式係顯示範例性設備及/或方法。然而,該等隨附圖式係不應被拿來限制本發明申請專利範圍之範疇,而其僅作為解釋和理解之用。
圖1係一個簡化方塊圖,其描述一個範例性直向現場可程式規劃閘極陣列(“FPGA”)架構。
圖2係一個俯視圖的方塊圖,其描述一個具有晶粒區域的範例性單石積體電路晶粒(簡稱“晶粒”)。
圖3係一個橫截面視圖的方塊圖,其描述一個單石積體電路晶粒(簡稱“晶粒”)的範例性部分,該晶粒可為圖2的晶粒。
圖4係一個俯視圖的方塊圖,其描述一個具有多個晶粒區域的先前晶圓的範例性部分。
圖5係一個俯視圖的方塊圖,其描述一個具有多個晶粒區域(例如,圖2的晶粒區域)的晶圓的範例性部分。
圖6係一個方塊圖,其描述一個範例性層堆疊,諸如圖2之晶粒區域。
圖7係一個方塊圖,其描述一個圖2之範例性晶粒,其具有三個不同尺寸的晶粒區域。
圖8係一個流程圖,其描述一個範例性晶圓級測試流程。
圖9係一個流程圖,其描述一個範例性晶片級測試流程。
在下述說明中,多個特定細節係被闡述以對本發明之特定範例提供更詳盡敘述。然而,該項領域中的技術人士應瞭解:一個或多個範例及/或此等範例中的變化例可在沒有於下文給出所有該等特定細節的情況下來實現。在其它實例中,並未詳細描述衆所周知的特徵,以便不對本發明範例的說明發生混淆。為方便說明,相同的數字編號係被使用在不同圖
式中以指稱相同的項目;然而,在替代性範例中,該等項目可以有所不同。
在說明在許多圖形中所例示地描繪的範例之前,茲提供一個通常介紹以作進一步了解。
單石積體電路晶粒之形成可因所使用的微影製程的最大場尺寸而有所限制。進一步言之,即使單石積體電路晶粒係超過此最大場尺寸而形成,該單石積體電路晶粒以一晶圓級來測試可消耗太多電力。然而,單石積體電路晶粒比起功能上相同的堆疊晶粒或堆疊中介層晶粒可具有效能的優點。
鑒於以上通常理解,用於具有模組晶粒區域的單石積體電路晶粒的各種組態係一般如下說明。此單石積體電路晶粒具有個別地供電的模組晶粒區域,其可彼此隔離。進一步言之,單石積體電路晶粒可操作在一個迴圈返回模式或是一個互連晶粒區域模式(“接合模式”)。
因為一個或多個上述所說明的範例在此係使用一個特別類型的積體電路來說明,所以此積體電路的詳細說明會在以下提供。然而,應了解的係,其他類型的積體電路可從在此所說明的一個或多個技術中獲得利益。
可程式規劃邏輯元件(PLD)係一種衆所周知類型的積體電路,其係可經程式規劃以執行特定的邏輯功能。現場可程式規劃閘極陣列(FPGA)之一種類型的可程式規劃邏輯元件通常係包含一可程式規劃瓦片陣列。該些可程式規劃瓦片係可包含例如輸入/輸出方塊(IOB)、可組態邏輯方塊(CLB)、專用隨機存取記憶體方塊(BRAM)、倍增器、數位信號處理方塊(DSP)、處理器、時脈管理器、延遲鎖定迴路(DLL)等。如本文
中所使用,“包含”係意謂在沒有限制下的包括。
各個可程式規劃瓦片典型係包含可程式規劃互連件及可程式規劃邏輯兩者。該可程式規劃互連件典型係包含具有不同長度之大量的的互連線路,其等係通過多個可程式規劃互連點(PIP)進行互連。該可程式規劃邏輯係使用多個可程式規劃元件(其可包含例如函數產生器、暫存器、算術邏輯等等)來實施一使用者設計的邏輯。
該可程式規劃互連件及該可程式規劃邏輯典型係藉由將一組態資料串流載入內部組態記憶體單元中以進行程式規劃,其中該內部組態記憶體單元係定義如何組態該等可程式規劃元件。該組態資料係可讀取自記憶體(例如從一外部可程式規劃唯讀記憶體),或藉由一外部裝置以被寫入該現場可程式規劃閘極陣列。各別記憶體單元之一總集狀態係決定該現場可程式規劃閘極陣列的功能。
另一類型的可程式規劃邏輯元件係為複雜可程式規劃邏輯元件或CPLD。該複雜可程式規劃邏輯元件係包含藉由一互連交換器矩陣以連接在一起且連接至輸入/輸出(I/O)資源的兩個或更多“功能方塊”。該複雜可程式規劃邏輯元件係之各個功能方塊係包含類似於可程式規劃邏輯陣列(PLA)及可程式規劃陣列邏輯(PAL)元件中所使用到的一兩階及/或(AND/OR)結構。在該複雜可程式規劃邏輯元件中,組態資料典型係以晶片上方式而被儲存在非揮發性記憶體中。在一些複雜可程式規劃邏輯元件中,組態資料係被以晶片上方式而被儲存在非揮發性記憶體中,接著被下載至揮發性記憶體以作為一初始組態(程式規劃)順序的一部分。
對於所有該些可程式規劃邏輯元件(PLD)來說,該元件之
功能性係可藉由用於控制目的而予以提供之資料位元進行控制。該等資料位元係能被儲存在揮發性記憶體(例如:靜態記憶體單元,如在現場可程式規劃閘極陣列及一些複雜可程式規劃邏輯元件中)、非揮發性記憶體(例如:快閃記憶體,如在一些複雜可程式規劃邏輯元件中)、或其它類型的記憶體單元中。
其它可程式規劃邏輯元件係藉由應用諸如一金屬層之一處理層以進行程式規劃,該處理層係可程式規劃地使該元件上的各種元件互連。該些可程式規劃邏輯元件係已知為遮罩可程式規劃元件。該些可程式規劃邏輯元件係能以其它方式來實施,例如使用熔絲或反熔絲技術。該術語“可程式規劃邏輯元件”係包含但不限於這些示範性元件,而且涵蓋僅部分可程式規劃的元件。舉例來說,一種類型的可程式規劃邏輯元件係包含一經硬體編碼電晶體邏輯和一可程式規劃交換器結構(用以可程式規劃的方式互連該經硬體編碼電晶體邏輯)的一組合。
如上文所註記,先進現場可程式規劃閘極陣列係能包含數種不同類型的可程式規劃邏輯方塊。舉例來說:圖1所例示一現場可程式規劃閘極陣列架構100係包含許多個不同的可程式規劃瓦片,其包含多個十億位元收發器(MGT)101、可組態邏輯方塊(CLB)102、隨機存取記憶體方塊(BRAM)103、輸入/輸出方塊(IOB)104、組態及計時邏輯(CONFIG/CLOCK)105、數位信號處理方塊(DSP)106、專用輸入/輸出方塊(I/O)107(例如:組態連接埠及時脈連接埠),和其它可程式規劃邏輯108,諸如數位時脈管理器、類比至數位轉換器、系統監視邏輯等等。一些現場可程式規劃閘極陣列係亦包含專用處理器方塊(PROC)110。
在一些現場可程式規劃閘極陣列中,各個可程式規劃瓦片係包含可程式規劃互連元件(INT)111,其係具有來回在各個鄰近瓦片中之一對應互連元件的標準化連接。因此,使該等可程式規劃互連元件一起係實施用於所例示現場可程式規劃閘極陣列的可程式規劃互連結構。該可程式規劃互連元件(INT)111係亦包含來回在相同瓦片內之可程式規劃邏輯元件的連接,如由所包含在圖1之上部處的實例來顯示。
舉例來說:一可組態邏輯方塊102係可包含一可組態邏輯元件(CLE)112(其係可經程式規劃以實施使用者邏輯)加上單一可程式規劃互連元件(INT)111。除了一個或更多可程式規劃互連元件,該隨機存取記憶體方塊103係亦可包含一隨機存取記憶體方塊邏輯元件(BRL)113。典型地,在一瓦片中所包含互連元件之數目係取決於該瓦片的高度。在所繪示實施例中,隨機存取記憶體方塊瓦片係具有等同於五個可組態邏輯方塊之相同高度,但其它數目係亦能予以使用(例如:四個)。除了適當數目的可程式規劃互連元件,一數位信號處理方塊瓦片106係亦可包含一數位信號處理方塊邏輯元件(DSPL)114。除了該可程式規劃互連元件(INT)111之一個實例,一輸入/輸出方塊104係可包含例如一輸入/輸出邏輯元件(IOL)115的兩個實例。該項領域中的技術人員將容易瞭解到:例如被連接到輸入/輸出方塊邏輯元件115之實際輸入/輸出方塊襯墊典型係不被侷限到該輸入/輸出邏輯元件115的區域。
在所繪示實施例中,接近該晶粒(圖1中所示)中心的水平區域係被使用於組態、時脈及其它控制邏輯。從該水平區域延伸之垂直行109係被用來於跨越於該現場可程式規劃閘極陣列之廣度來分配該等時脈
及組態信號。
利用圖1中所例示架構之一些現場可程式規劃閘極陣列係包含額外邏輯方塊,以擾亂用以構成該現場可程式規劃閘極陣列之一絕大部分的規則柱狀結構。該等額外邏輯方塊係能多個可程式規劃方塊及/或專用邏輯。舉例來說:處理器方塊110係跨距數行的可組態邏輯方塊及隨機存取記憶體方塊。
注意到:圖1係傾向僅例示一示範性的現場可程式規劃閘極陣列架構。例如:在一列中的邏輯方塊數目、多列之相對寬度、多列的數目及次序、在該等列中所包含的邏輯方塊類型、該等邏輯方塊之相對大小、並且於圖1之上部處所包含的互連件/邏輯實施方式係純粹示範性的。例如:在一實際的現場可程式規劃閘極陣列中,超過一個鄰近例之可組態邏輯方塊典型地係予以包含而不論該等可組態邏輯方塊的出現,以促進使用者邏輯的有效實施方式,不過鄰近可組態邏輯方塊列的數目係隨著該現場可程式規劃閘極陣列的整體尺寸而變化。
遮罩可以用微影方式接合在一起以製作一個大型晶粒,諸如用於堆疊矽中介層技術。然而,此微影接合可同樣地被使用來形成一單石積體電路晶粒,如下會以額外細節所述。依照上述說法,用來製作超大尺寸的單石積體電路晶粒的超高解析度遮罩之數目可受到在最高金屬層所實施的接合而有所限制。進一步言之,如下以額外細節所述,用於接合跨越一遮罩場邊界的層之數目可實質上藉由再次使用自含電路系統(“模組”)的區域而減少,該自含電路系統可藉由劃線線路而相隔開以用於至少一個或多個的該初始半導體製程層。
即使下列說明係針對具有兩個晶粒區域的單石積體電路晶粒的形成,此說明不應受限於僅具有兩個晶粒區域。相反地,兩個或更多個晶粒區域可被接合在一起以形成單一個單石積體電路晶粒。進一步言之,下列說明係以FPGA為此單石積體電路晶粒的觀點來說,目的是藉由範例來闡明而非用於限制;然而,任何類型的大型積體電路晶粒可從在此所說明具有模組晶粒區域獲得利益。依照上述說法,以下說明不應受限於FPGA,反而係包含任何具有模組晶粒區域具有合宜尺寸的積體電路。
在此之前,一個接合晶粒可已具有兩個完整用於每一層的遮罩組,舉例來說,其中有最終晶粒的上半部和下半部。該上半部和該下半部可以是相似的,但是其係該最終晶粒產物的不同半部。舉例來說,對於一個20奈米(nm)製程來說,此可牽涉大量的超高解析度的雙倍圖案遮罩。然而,如下以額外細節所述,實質上較少的遮罩,以及實質上較少的超高解析度的雙倍圖案遮罩可使用來形成一個單石積體電路晶粒。進一步言之,較少的此種遮罩可被一起接合以形成此單石積體電路晶粒。
模組單石晶粒(也就是大型晶粒係由實質上類似的及/或一致的較小晶粒所組成)的另一個好處係減少了驗證開銷。驗證係一個耗時且資源密集的工程任務。將驗證劃分成晶粒的整體尺寸的分式,諸如像是二分之一、三分之一的尺寸,此可實質在時間上進入市場並且減少工程基礎建設的花費。模組單石晶粒的還有另一個好處係減少資料庫管理。隨著科技精進,晶粒變得越來越大型,並且越來越大型的晶粒造成製造製程上的壓力上升。資料從設計者傳送至遮罩廠,或者是任意功能的大型裝置之資料平坦化不可能藉由所有的軟體工具完成,因為此資料可超過1T位元組
(terabyte)。模組設計的單石晶粒實質上減少了用來製造、傳送及或模擬大型單石裝置的資料,該大型單石裝置係由兩個或更多個模組,因為用於一致模組的一致資料組合意指,僅有一個此資料組合可被傳送以代表所有的此資料組合。
圖2係一個俯視圖的方塊圖,其描述一個具有晶粒區域211和晶粒區域212的範例性單石積體電路晶粒(簡稱“晶粒”)200。晶粒區域211和晶粒區域212各者具有相同寬度223。晶粒區域211可具有一個長度222,且晶粒區域212可具有一個相同的或是不同的長度,亦即長度224,比上晶粒區域212的長度222。晶粒200可具有一個整體長度221,其係分別為晶粒區域211和晶粒區域212的長度222和224之總和或組合。在此實施例中,寬度223大約為30釐米(“mm”)並且整體長度221為31mm,其中長度222和224各為15.5mm;然而,此長度、寬度,及/或其他長度及/或寬度可被使用。更一般來說,每一個晶粒區域211和212可在微影製程的最大寬度和長度限制之內;然而,晶粒200的整體長度221可超過此微影製程的最大限制。舉例來說,目前微影製程的最大限制可為26mm或33mm,其中在此之前,習知單石晶粒不具有大於26mm的一個或多個維度,且不具有大於33mm的任何維度。然而,如以下所述,以晶粒模組所形成的模組單石積體電路晶粒可超過此目前的最大值。
即使長度222和224依圖示描繪成相等長,但是它們不需要如此。舉例來說,可使用一個非對稱分割而不是對稱分割。依照上述說法,長度222可接近26mm,且長度221可實質上比26mm還短,其中晶粒區域212係用來提供給晶粒區域211多餘空間。
在此實施例中,晶粒區域211和212可具有相同功能性,如下會以額外細節所述。目的是藉由範例來闡明而非用於限制,晶粒區域211和212兩者皆圖示描繪成相同的方塊,其包含但不受限於CFG和PCIe方塊,並且各者具有一垂直行的輸入/輸出方塊(“I/O”)201;然而,在其他組態中,可使用這些方塊或其他方塊。輸入/輸出201可包含十億位元的收發器(“GT”)。此允許用於形成晶粒區域211和212的遮罩組實質上為相同的,除了一個或多個上方金屬層之外,如下會以額外細節所述。額外地,晶粒區域211可用一壁部241來形成作為晶粒密封件的一部分,一般來說係以一個面朝上的“U”的指示,且晶粒區域212可用另一個壁部242來形成作為晶粒密封件的另一部分,一般來說係以一個面朝下的“U”的指示。換句話說,單石積體電路晶粒的晶粒密封件可包含在一個晶粒區域中所形成的一個第一壁部以及一個鄰近第二晶粒區域中所形成的一個第二壁部,其中該第一壁部和該第二壁部彼此面對,且彼此相連接以提供此單石積體電路晶粒的該晶粒密封件。藉由使此等壁部241和242從晶粒200的相對鄰近晶粒區域或是在此晶粒區域上彼此面對,此等壁部241和242的壁部末端可分別彼此接觸以形成晶粒200的周圍壁部或晶粒密封件。
每一個的晶粒區域211和212可具有一垂直行的I/O 201。一些I/O 201可為專用的。舉例來說,I/O 201B可為長範圍的I/O 201的I/O,其係比此I/O 201的其他I/O以更大的電壓擺幅來操作,並且此其他I/O可為以較小的電壓擺幅來操作的高速I/O。進一步言之,I/O 201C可為一個組態I/O,其中晶粒區域211的組態I/O 201C可為用於控制及/或組態晶粒區域212的從屬I/O方塊201的一個主要方塊,通常用線路203表示。
線路203係分別將晶粒區域211和212的組態(“CFG”)方塊281和282予以互連。線路203代表的係依主要至從屬組態的匯流排。此匯流排在過去係實施於一個將兩個晶粒連接的中介層上。在晶粒200中,分開的晶粒區域211和212的兩個獨立組態方塊之互連係使用一個跨越遮罩場邊界(亦即,遮罩接合區域210)而接合的層得以完成。此互連也可包含聯合測試工作群組(Joint Test Action Group,“JTAG”)互連。按照上述說法,每一個晶粒區域211和212的聯合測試工作群組方塊可在晶粒200之內進行互連。藉著具有獨立的聯合測試工作群組方塊,晶粒區域211和212可在進行晶圓針測時分開地測試,其中只有一個進行測試中的晶粒區域會進行供電。因此,假如一個晶粒區域壞了,另一個晶粒區域係好的,晶粒200可被售出,雖然相較於所有的晶粒區域為良好的情況,其具有較少的功能性。因此,一個具部份功能的晶粒200會售出。進一步言之,如果兩個或是所有的晶粒區域都必須進行供電的話,亦即針對所有晶粒區域的有一個共同的供電組態,及/或僅有一個用於測試聯合測試工作群組方塊,可能不會僅使用具部份功能性的晶粒200的良好晶粒區域。然而,因為僅使用通過測試的此晶粒區域,在失敗的晶粒區域中的聯合測試工作群組方塊不需要使用於已封裝部分。此外,不必要對已封裝部分中的失敗晶粒區域進行供電。
晶粒區域211和晶粒區域212可經由遮罩接合區域210彼此耦合。依照上述說法,導體260可跨越晶粒區域211和212之的邊界,如下會以額外細節所述。在晶圓級中,遮罩接合區域210可以位在一個晶圓上先前給劃線線路所使用的場所。進一步言之,即使假設有用於形成晶粒區
域211和一部份的遮罩接合區域210之一個遮罩組,以及用於形成晶粒區域212的遮罩組和另一部份的遮罩接合區域210之另一個遮罩組,在另一個組態中,遮罩接合區域210可以用其本身的遮罩組而形成。然而,目的是藉由範例來闡明而非用於限制,應假設用來形成晶粒區域211和212的每一個這些遮罩組係具有額外遮罩場部份,以用於遮罩接合區域210的個別部份。
晶粒區域211具有一個電力分配網路(“PDN”),一般為電力分配網路271,且晶粒區域212具有一個電力分配網路,一般為電力分配網路272。電力分配網路271和272係彼此分隔開。依照上述說法,電力分配網路271可與電力分配網路272分開地或是獨立地操作。因此,晶粒區域211可分開地從晶粒區域212進行供電。據此,晶粒區域211可進行供電並且操作,同時晶粒區域212係進行斷電,反之亦然。具有分開地供電的晶粒區域或晶粒模組係允許一個單石晶粒形成而具有多個晶粒模組,其中此單石晶粒的整體不必要在一個時間中測試。相對地,每一個晶粒模組可分開地供電並測試。額外地,如先前所指出,還有其他好處讓多個晶粒模組用於形成一個單石積體電路晶粒,諸如像是減少時間進入市場,減少工程開銷,及/或減少的資料尺寸。
圖3係一個橫截面視圖的方塊圖,其描述一個單石積體電路晶粒(簡稱“晶粒”)300的範例性部分,該晶粒300可為圖2的晶粒200。據此,可同時參考圖2和圖3、晶粒300來進一步說明。
在此實施例中,晶粒區域211和晶粒區域212各者係用相同組的初始層或下方層311來形成,並且因此相同的遮罩組可給此初始層使用。上方導電層或上方金屬層312中的微影製程的限制係實質上較於下方
層311來的寬鬆,上方金屬層312係被使用來提供一個或多個接合線路,諸如像是接合線路301至304。在此實施例中,接合線路或跡線301至304可代表垂直路由的跡線或是垂直路由。下方層311可不具有延伸跨越遮罩接合區域210以用於互連晶粒區域211和212之特徵;然而,上方層312可具有接合線路,諸如像是接合線路301至304,其係延伸跨越遮罩接合區域210以用於互連晶粒區域211和212,如下會以額外細節所述。
接合線路301係跨越遮罩接合區域210而水平地從晶粒區域211延伸至晶粒區域212或者從晶粒區域212延伸至晶粒區域211。相比之下,相同層的導電線路321,如接合線路301係自頁面中延伸出來或是與該頁面的平面正交。同樣地,相同金屬層的導電線路322,像是接合線路303,係自頁面中延伸出來。在此範例中的導電線路或跡線321和322可代表水平路由的跡線或是水平路由。讓大多數的水平線路從一個晶粒區域延伸至另一個晶粒區域可用來增加用於在此等晶粒區域之間通訊的頻帶寬度。接合線路301至304習知為“雙間距”線路,亦即每一個接合線路可以比同一金屬層相等位置的信號線路的兩倍寬度,且同一金屬層的鄰接接合線路之間的間隙可以係此同一金屬層的相等位置的信號線路的兩倍間隙。此外,所有的接合線路,諸如像是接合線路301至304,在其相關的金屬層內可不具有相競爭的正交線路,藉由讓其具有金屬層312超過一個的金屬層而允許更多雙間距線路被使用。藉由不具有垂直線路,可形成更多組的平行接合線路以增加頻寬。在此實施例中,接合區域210可只具有水平線路,其通過接合區域210而運行。正交線路,舉例來說像是線路322和321,係不允許在接合區域210中。線路302和304可只有攜載大約一半的頻寬通過接合
區域210,因為線路302和304的間距係不在接合區域210中的線路的間距的兩倍(“雙倍間距”)。藉由使用相關於線路301和303的層中的正交線路來補足線路302和304的頻寬,跨越接合區域210的頻寬可增加到相關於其他線路的接合線路210外部區域的頻寬,像是具有線路302和304的層。
目前的製程規則係允許金屬跡線跨越一個遮罩場邊界而接合,且具有兩倍的最小寬度以及兩倍的最小間隔以橋接此遮罩場邊界。替代的金屬層可分別垂直地或水平地進行路由。因此,舉例來說,假如垂直的長線路的跡線使用四個金屬層,此金屬層可相隔跨越八個金屬層,而使水平層介於此垂直層的每一層之間。因此,水平跡線不需要位在遮罩接合區域210中,且任何金屬層可給垂直路由跡線使用。
使用雙圖案所形成的下方層311包含但不受限於下方金屬層,且下方層311不需要使用接合。此可減少用於此遮罩的遮罩費用。進一步言之,如下以額外細節所述,遮罩接合區域210可位在曾是劃線區域的位置。依照上述說法,因為此劃線區域先前沒有任何干預裝置電路結構,因此可有相當多的半導體區域要被接合。進一步言之,即使額外遮罩可用來解釋在相關於接合層的模組中的差異,使用針對此模組的每一者的資料庫可減少研發,驗證及/或測試時間,並且相較於涵蓋具有大型單石積體電路的所有電路的大型資料庫而言係減少資料庫大小。
圖4係一個俯視圖的方塊圖,其描述一個具有多個晶粒區域的先前晶圓400的範例性部分。在此實施例中,晶粒區域401係與晶粒區域402藉由一個劃線區域410的劃線線路相隔開。分別與晶粒區域401和402相關連的分開的晶粒可沿著劃線區域410的劃線線路從晶圓400切割或不然
分割。
晶粒區域401的互連線路411各者具有一個迴圈返回421。同樣地,晶粒區域402的互連線路412各者具有一個迴圈返回422。互連線路411和412可以係熟知的“互連長線路”。
圖5係一個俯視圖的方塊圖,其描述一個具有多個晶粒區域(諸如像是晶粒區域211和212)的晶圓500的範例性部分。晶圓500可包含一個或多個晶粒200。
晶粒區域211包含一組的選擇線路,諸如像是多工器511,並且晶粒區域212包含一組的選擇線路,諸如像是多工器521。如前所述,晶粒區域211和212可分別供電,且因此任一組的多工器可開啟,而另一組的此多工器係關閉。進一步言之,兩組的多工器可開啟或是關閉。
多工器511的輸出導電線路(“輸出線路”)515可從多工器511的輸出埠延伸進入晶粒區域211,並且此輸出線路515可以係互連長線路。同樣地,多工器521的輸出線路525可延伸進入晶粒區域212,並且此輸出線路525可以係互連長線路,其具有一對被提供到控制器方塊的個別輸入/輸出線路對,如下會以額外細節所述。
晶粒區域211的輸入導電線路(“輸入線路”)516可延伸進入遮罩接合區域210,用以與晶粒區域212的輸入線路524進行互連。同樣地,晶粒區域212的輸入線路526可延伸進入遮罩接合區域210,用以與晶粒區域211的輸入線路514進行互連。因此,輸入線路514、516、524和526可以係一個或多個的接合線路,諸如像是圖3的接合線路301至304。
輸入線路516可分別在節點513處分接,用以提供資料輸入
給多工器511。其他輸入至多工器511的資料輸入可分別從輸入線路514提供。多工器511的輸出可響應於選擇信號512而可控制地被選擇,該選擇信號512可被提供到每一個多工器511。選擇信號512可從晶粒區域211的可程式規劃終端方塊517處提供。
同樣地,輸入線路526可分別在節點523處分接,用以提供資料輸入給多工器521。其他輸入至多工器521的資料輸入可分別從輸入線路524提供。多工器521的輸出可響應於選擇信號522而可控制地被選擇,該選擇信號522可被提供到每一個多工器521。選擇信號522可從晶粒區域212的可程式規劃終端方塊527處提供。
因此,有效地,有一組或一部分的接合線路組或接合線路係從晶粒區域211延伸至晶粒區域212的選擇電路的一組輸入埠,其中接合線路可有效地被分接及/或路由至晶粒區域211的選擇電路的一組輸入埠。同樣地,有另一個接合線路組或接合線路的部分,其係從晶粒區域212延伸至晶粒區域211的選擇電路的另一組輸入埠,其中接合線路可有效地被分接及/或路由至晶粒區域212的選擇電路的另一組輸入埠。
晶粒區域211和212可以在晶圓級來測試,有時稱作“晶圓針測(wafersort)”,此時對於每一個所測試的晶圓中好的和壞的晶粒區域可被辨認出。然而,晶粒區域211和212各者可相當複雜且具有許多電路元件。換句話說,在測試期間,晶粒區域211和212可個別需要相當多的電力。不幸地,有限的電量可被提供至用於晶圓級測試的晶粒區域,舉例來說,晶圓針測的測試器可能無法對所有的晶粒200進行供電。
因此,為了測試晶粒200,此晶粒200可以模組方式藉由測
試晶粒區域211,且然後測試晶粒區域212而得以測試。因為晶粒區域212可在對晶粒區域211晶圓級測試時予以斷電,對此測試而言提供製晶圓的電量可實質上降低。同樣地,晶粒區域211可在對晶粒區域212晶圓級測試時予以斷電。對測試晶粒200而言,此晶粒區域的模組供電方式係不會限制於晶圓級測試,但是此模組供電方式在晶粒200已從晶圓500中切割之後可被使用。據此,晶粒200可以被組構,使得只有跨越遮罩接合區域210的信號會通過,因為電力係分別供應至晶粒區域211和212的每一者。接地匯流可通過跨越遮罩接合區域210。
再次說明,為了清楚的目的,即使只有圖式地描繪兩個晶粒區域,可形成晶粒200而超過兩個晶粒區域。可使用多個晶粒區域來限制用以測試每一個此晶粒區域的電量。額外地,如先前所述,藉由具有模組晶粒區域,研發、驗證及/或測試時間可予以減少,同時用於形成單石積體電路晶粒裝置的資料庫大小也會減少。
多工器511係被耦合用以接收一個選擇信號512,以在用於晶粒區域211的迴圈返回模式與用於晶粒區域211的接合模式中進行選擇。在用於晶粒區域211的迴圈返回模式中,響應於選擇信號512,在輸入線路516上的發訊可被選擇作為來自多工器511的輸出。在用於晶粒區域211的接合模式中,響應於選擇信號512,在輸入線路514上來自晶粒區域212的發訊可被選擇作為來自多工器511的輸出。換句話說,對於晶粒區域211的迴圈返回模式而言,輸入到多工器511在線路516上的發訊係被選擇作為來自此多工器511的輸出,其中線路516上的此發訊係有效地”迴圈返回”進入晶粒區域211。
同樣地,多工器521係被耦合用以接收一個選擇信號522,以在用於晶粒區域212的迴圈返回模式與用於晶粒區域212的接合模式中進行選擇。在用於晶粒區域212的迴圈返回模式中,響應於選擇信號522,在輸入線路526上的發訊可被選擇作為來自多工器521的輸出。在用於晶粒區域212的接合模式中,響應於選擇信號522,在輸入線路524上來自晶粒區域211的發訊可被選擇作為來自多工器521的輸出。換句話說,對於晶粒區域212的迴圈返回模式而言,輸入到多工器521在線路526上的發訊係被選擇作為來自此多工器521的輸出,其中線路526上的此發訊係有效地“迴圈返回”進入晶粒區域212。
舉例來說,假如晶粒區域211在測試期間失敗,而晶粒區域212在測試期間通過,晶粒200可作為一個晶片而被賣掉,雖然比起晶粒區域211和212兩者皆通過的具有較小的功能性。依照上述說法,選擇信號522可被設定,像是藉由熔絲或其他程式設計,以選擇用於晶粒區域212的迴圈返回模式。此外,晶粒區域211可被設定,以將晶粒區域211失能不會進行供電,再次地,像是藉由熔絲或其他程式設計。因此,可使用“部分”的策略。依照上述說法,以此“部分”的策略,可使用超過兩個的晶粒區域以得到更佳的粒度;然而,可在此一個或多個通過的晶粒區域中指定一個主要晶粒區域,諸如美國專利申請序號為13/587,778,申請時間為2012年8月16日,申請人為Camarota,發明名稱為“使用於多晶粒積體電路可撓曲大小的晶粒(Flexible Sized Die for Use in Multi-Die Integrated Circuit)”以及美國專利申請序號為13/535,102,申請時間為2012年6月27日,申請人為Camarota,發明名稱為“從多圖案區域遮罩的過大中介件(Oversized
Interposer Formed from a Multi-Pattern Region Mask)”中所述的額外細節,為了各種目的其揭示內容全文以引用的方式併入本文中。指定一個主要晶粒可在模組測試之後實施。一個主要晶粒的選擇可以係預定的;然而,在測試期間,任何模組晶粒為了驗證及測試的目的可暫時地呈現為主要晶粒或從屬晶粒,其可以係有用的,使得對於每一個模組而言具有相同的驗證和測試程序。
可選擇地,可能的係,在測試期間只有一部分的晶粒區域211會失敗,並且此失敗的部份可取代晶粒區域212的通過部分。因此,晶粒區域212可提供多餘給晶粒區域211。依照上述說法,選擇信號512和522各者可被設定,諸如藉由電子熔絲(efuse),硬導線,或其他程式規劃,以選擇一個接合模式給其個別的晶粒區域。即使圖5係圖式地描繪全局的選擇信號給個別的晶粒區域、多組的多工器以及相關的選擇信號可給每一個晶粒區域使用,為的係提供更佳的粒度,以便用一個晶粒區域的通過部分來取代另一個晶粒區域的失敗區域。依照上述說法,舉例來說,晶粒區域211和212各者的一部分可能失敗,並且晶粒區域211和212各者的多餘的通過部分可被用來取代對應的失敗部分。換句話說,可有雙重多餘,因為每一個晶粒區域可有用於每一個其他晶粒區域的多餘。
在過去,可有用於單石晶粒的組態控制器以及測試(例如,聯合測試工作群組分接頭)控制器,其中用於組態和掃描所有控制和資料信號係使用接合金屬基線而跨越遮罩場邊界CKK。然而,對於晶粒區域211和212來說,每一個此區域可以係相同的,且因此,舉例來說晶粒區域211和晶粒區域212各者分別可具有一組態控制器以及測試控制器(“控制
器”)方塊571和572。控制器方塊571和572各者分別可被耦合至一個輸入/輸出信號對,該輸入/輸出信號對係分別到多工器511及521,並來自多工器511及521。舉例來說,來自多工器511的輸出線路515可予以輸入至控制器方塊571,並且輸入線路516可從控制器方塊571處輸出。同樣地,來自多工器521的輸出線路525可予以輸入至控制器方塊572,並且輸入線路526可從控制器方塊571處輸出。所有其他的線路515、516、525以及526可延伸至其相關的區域邊緣或從其相關的區域邊緣處延伸。
可使用在晶粒區域211和212中分別具有可程式規劃終端方塊517和527之晶粒200以允許每一個互連,其包括但不受限於每一個時脈輸入,以提供在相關的晶粒區域之內的迴圈返回並且將來自於一個晶粒區域的信號連接到晶粒200的對置側的接合區域上的另一個晶粒區域。依照上述說法,選擇信號521和522可至少一部分沿著由遮罩層所定義的金屬連接而傳播。其中此遮罩層對於不同晶粒區域而言係不同的,如下會以額外細節所述。可選擇地,圖2的組態方塊281和282可分別被使用來驅動信號521和522,係為了允許此信號在測試期間被動態地控制。依照上述說法,此驅動信號521和522可被組態方塊281和282中的電子熔絲值設定在供電。驅動信號521和522的動態控制可提供在測試中的彈性及/或定義一個功能晶粒。
相對於硬導線連接,藉由具有“軟”導線連接的選擇信號521和522,晶粒區域211和212兩者皆不必為了在晶圓針測期間進行測試而在同一時間進行供電。進一步言之,藉由使選擇信號521和522作為組態控制器中的軟信號狀態組,諸如分別像是組態方塊281和282,每一個晶粒
區域211和212在晶圓針測期間可獨立地測試,及/或部分功能晶粒可被賣掉,其中在此晶粒的錯誤晶粒區域在晶片封裝中可被繞開(bypassed)。換句話說,選擇信號521和522可被用來將錯誤晶粒區域予通過晶粒區域進行隔離,或將錯誤晶粒區域予以失能。製造商可設定電子熔絲,以致於避免錯誤晶粒區域的使用,並且據此設定相關的選擇信號。此外,聯合測試工作群組可用於迴圈返回,以便將來自一掃描戀的一晶粒區域中的暫存器予以包含或排除於另一個晶粒區域。依照上述說法,電路設計可允許從一晶粒區域到另一個晶粒區域的信號(“接合信號”),具有電性浮動或是被接地的可能,以允許晶粒區域未使用的狀況。額外地,對於一晶粒區域與其他晶粒區域隔離的晶圓針測的測試來說,在測試中到此晶粒區域的輸入可以至閘極或是通過閘極而具有浮動井,使此晶粒區域的輸出適當地接地,以避免測試中的晶粒區域透過一接合介面對沒有測試中的晶粒區域進行供電。雖然在晶粒區域之間沒有接地端,但是供電信號可從與晶粒區域211和212相關的凸塊或針腳供給,其中此凸塊和針腳係耦合至電力分配網路271和272。電力的等化可使用一封裝基板保持晶粒200的電力面而執行。
接合介面中的接合線路301至304的部份接合可以係多餘的。依照上述說法,額外的跡線可給此接合介面的一些跡線的的每一者使用。
額外地,多工器511和521可包含緩衝器或可提供接合信號緩衝。依照上述說法,跨越接合介面的組態和聯合測試工作群組跡線可被控制器方塊571及/或572進行緩衝。雖然聯合測試工作群組及/或組態信號可以不使用迴圈返回,但是此組態和聯合測試工作群組信號以被隔離,以
響應於晶粒200的晶粒區域,但是仍然允許跨越一接合介面的互連的可能性。舉例來說,聯合測試工作群組掃描鍊可牽涉一晶粒200中超過一個的晶粒區域,及/或用於組態控制的晶粒區域的主-從關係可牽涉一晶粒200中超過一個的晶粒區域。據此,本文所說明的多工器511和521可用於此隔離,並可用於此多晶粒區域互連。
關於互連線路終端方塊517和527,此等方塊的頂部和底部單元(cell)可程式規劃的。每一個終端頂部可以在一個超大尺寸單石(SSM)晶粒200的邊緣處,或是跨越一個接合邊界到一個超大尺寸單石晶粒的另一半或是部分的底部終端之連接處。每一個終端底部可以在一個超大尺寸單石(SSM)晶粒的邊緣處,或是跨越該接合邊界到一個超大尺寸單石裝置的另一半或是部分的頂部終端之連接處。控制每一半的或是部分的頂部終端或底部終端單元可來自於與此每一半或部分的個別組態方塊的每一者相關的電子熔絲,或來自於使用一半或部分的金屬層的製成的硬導線連接。
具有可程式規劃的終端係允許SSM晶粒200每一個晶粒區域,諸如像是晶粒區域211和212藉由一個多視(multi-sight)測試器而同時地測試。額外地,用於晶圓針測的步進器可再基於晶粒小於最大寬度以及最大長度或高度方面有所限制,舉例來說26 x 33mm。在此例子中,晶圓針測步進氣可被用來對SSM晶粒200的每一個晶粒區域,諸如像是晶粒區域211和212進行獨立測試。因此,SSM晶粒200的所有晶粒區域不需要,在相同時間於晶圓針測進行測試和供電,然而可使用晶粒區域模組測試。
圖6係一個方塊圖,其描述一個範例性層堆疊600,諸如像是晶粒區域晶粒區域211和212。在此實施例中,層601上至且包含一個第
N個穿孔層對於晶粒區域211和212兩者來說可以係相同的。
用於一頂部晶粒區域212的一第N個金屬層602T可以不同於用於一底部晶粒區域211的一第N個金屬層602B,且此金屬層602可具有接合金屬線路,如前所述,係跨越一晶粒區域邊界,諸如跨越遮罩接合區域210。同樣地,用於一頂部晶粒區域212的第N+1和N+2個金屬層604T和606T可以不同於用於一底部晶粒區域211的對應第N+1和N+2個金屬層604B和606B,且此金屬層604和606各者可具有接合金屬線路。對應的干預(intervening)第N+1和N+2個穿孔層603和605對晶粒區域211和212來說可以係相同的。此外,穿孔重分布(RD)層607和金屬重分布層608對晶粒區域211和212來說可以係相同的。由於在接合區域中沒有穿孔,即使是用於接合層的穿孔遮罩對晶粒區域211和212來說可以係相同的。此外,像是在晶粒區域之間,藉由具有相同的重分布層608,亦即藉由具有相同的凸塊定義層,具有相同組態的晶圓針測探針卡的每一個晶粒區域的模組測試可以被使用。
在一堆疊中於最高的金屬層具有接合金屬層可以係有用的,係因為:(1)重複(duplicate)較高遮罩層可以係較便宜的;(2)較高層可具有更relaxed的製程集成、設計、繞線、及/或放置規則,其可與接合更加相容;(3)較高層可保有選擇的空間以在不同製造設備中執行接合而非被下方層之處理使用;及/或(4)較高層可使對於初始製程顯影的接合進行視覺上檢查之能力增加。
據此,一個SSM晶粒200不會具有兩倍數目的遮罩,其係因為在晶粒區域之間僅有一些接合層可以係不同的。進一步言之,像是用
於雙圖案下方金屬層之切換遮罩的製程複雜度可以被避免。即使SSM晶粒200的每一個晶粒區域係模組化,SSM晶粒200的晶粒區域可被互連並作用,使得其呈現為單一裝置,其包括,但不受限於主從組態以及聯合測試工作群組掃描鍊(JTAG scan chain)之目的。藉由將SSM晶粒200進行次劃分成可管理尺寸的晶粒區域,晶圓選擇步進器的的步驟範圍可以在其的操作參數之內,即使SSM晶粒200的整體尺寸超過該晶圓選擇步進器的步驟尺寸。此外,藉由次劃分成晶粒區域,在晶圓級測試期間的功率、記憶體、及/或探針點需求可更加受到管理。將每一個晶粒區域或區段隔離的能力係允許建立軟體推衍出的晶粒(software-derived die,SDD)或部分功能的晶粒(partial)。
再次說明,即使說明了相等尺寸且只有兩個晶粒區域,上述說明不該受限。依照上述說法,圖7係一個方塊圖,其描述一個範例性晶粒200,其具有三個不同尺寸的晶粒區域701至703。在圖7中,晶粒200具有一個遮罩接合區域210以用於將晶粒區域701和702彼此互連,並具有另一個遮罩接合區域210以用於將晶粒區域702和703進行互連。晶粒區域701至703可以模組的方式使用選擇電路以及輸入和輸出線路進行互連或隔離,並且諸如先前相關於圖5所說明。在此實施例中,晶粒區域701和703係相同尺寸,但是晶粒區域702係較晶粒區域701或703任一者還大。
圖8係一個流程圖,其描述一個範例性晶圓級測試流程800。圖8係同時相關於圖2、圖3、圖5和圖8來進一步說明。
在801處,一個具有兩個或多個晶粒區域,諸如,舉例來說,晶粒區域211和晶粒區域212係被獲得。再次說明,晶粒區域具有個別的電
力分配網路以便獨立地操作此晶粒區域。在802處,晶粒區域211可以用電力分配網路271來進行供電,同時使得晶粒區域212的電力分配網路272係斷電。在803處,晶粒區域211可被設定於一個迴圈返回模式,以響應於選擇信號512之確認。在804處,當處在此迴圈返回模式時,可對該晶粒區域211進行測試。
在805處,可對晶粒區域211進行斷電。在806處,可用一電力分配網路272對晶粒區域212進行供電。在807處,晶粒區域212可被設定於一迴圈返回模式以響應於選擇信號522之確認。在808處,晶粒區域212可在此一迴圈返回模式來測試。在809處,晶粒區域212可被斷電。
在804和808處兩者的測試可以晶圓級來執行。然而,一旦一晶粒200係從一晶圓500處分離時,晶粒200可以用整體晶粒來進行測試,兩者的區域係進行供電,且選擇信號512和522被確定以允許在晶粒區域之間的信號進行接合。
圖9係一個流程圖,其描述一個範例性晶片級測試流程900。晶片級測試流程900可在晶圓級測試流程800之後執行,諸如作為一整體測試流程的一部分。圖9係進一步同時相關於圖2、圖3、圖5、和圖9來敘述。
在901處,一晶粒的晶粒區域,舉例來說,諸如像是晶粒200的晶粒區域211和212係進行供電。在902處,每一個晶粒區域211和212係被設定於一個接合模式。在903處,晶粒200可以整體的方式來測試,亦即在一晶片級的單石積體電路晶片來測試。在904處,可對進行晶粒200斷電。
據此,單石積體電路晶粒已說明,其中此晶粒係用模組晶粒或晶粒區域來形成。如上所述,此模組設計可促進在測試期間的電力管理。進一步言之,測試向量的深度可減少,其可省下測試時間和儲存空間,因為每一個晶粒區域可獨立地測試。額外地,用於設計的驗證時間可藉由模組設計所造成降低複雜度而減少,亦即模擬時間和與其他大型設計的管理相關的其他複雜性可減少,其係藉由能夠在一個時間驗證個別的模組,而非一定要在同一時間對整個的大型單石積體電路晶粒進行驗證。進一步言之,遮罩定義資料的數量可藉由使用晶粒區域而減少,因為用於晶粒區域的一組遮罩定義資料對於多個晶粒區域可重複,除非在接合層的差異之外。品質和可靠性可藉由使用晶粒區域而同樣提升,因為更大型更複雜的設計更易受到未驗證或未測試的區域和模式影響,造成潛在的失敗。相比之下,模組晶粒區域具有更可管理的尺寸,比起非模組的大型複雜積體電路設計來說,更徹底地驗證和測試。最後,對於可程式規劃邏輯裝置(PLD)來說,模組晶粒區域對於用PLD設計工具的特徵化模型可以係更適合的。
雖然前面已說明了範例性設備及/或方法,然而依據本發明之一個或更多觀點的其它實施例和進一步的實施例係可予以設想到,而沒有悖離由下述申請專利範圍及其等效物所決定之本發明範疇。將多項步驟列出之申請專利範圍係未暗示該等步驟之任何次序。商標係屬於其等各別擁有者的所有權。
200‧‧‧單石積體電路晶粒
201‧‧‧輸入/輸出方塊
201B‧‧‧輸入/輸出
201C‧‧‧輸入/輸出
203‧‧‧線路
210‧‧‧遮罩接合區域
211‧‧‧晶粒區域
212‧‧‧晶粒區域
221‧‧‧整體長度
222‧‧‧長度
223‧‧‧寬度
224‧‧‧長度
241‧‧‧壁部
242‧‧‧壁部
260‧‧‧導體
271‧‧‧電力分配網路
272‧‧‧電力分配網路
281‧‧‧組態方塊
282‧‧‧組態方塊
Claims (15)
- 一種半導體裝置,其係包括:一個單石積體電路晶粒,其具有複數個模組晶粒區域;其中所述模組晶粒區域個別具有複數個電力分配網路,用於獨立地對所述模組晶粒區域的每一個進行供電;以及其中所述模組晶粒區域的每一個鄰近對係使用個別的複數個金屬線路而接合在一起,其中所述複數個金屬線路的每一個金屬線路係連續地延伸於所述模組晶粒區域的所述鄰近對之間並且與所述模組晶粒區域的所述鄰近對進行串聯耦合,其中所述複數個模組晶粒區域係包含一個第一晶粒區域及一個第二晶粒區域;所述第一晶粒區域係包含第一選擇電路,其係耦合至一個第一可程式規劃終端方塊以接收一個第一選擇信號;所述第一選擇電路係所述第一晶粒區域的第一多工器;所述第二晶粒區域係包含第二選擇電路,其係耦合至一個第二可程式規劃終端方塊以接收一個第二選擇信號;以及所述第二選擇電路係所述第二晶粒區域的第二多工器。
- 如申請專利範圍第1項所述之半導體裝置,其中:所述第一晶粒區域係具有所述複數個電力分配網路的一個第一電力分配網路;所述第二晶粒區域係具有所述複數個電力分配網路的一個第二電力分配網路; 所述第一電力分配網路係與所述第二電力分配網路相隔開,以便所述第一晶粒區域和所述第二晶粒區域係獨立地操作;以及所述第一晶粒區域與所述第二晶粒區域係透過複數個金屬線路而彼此互連。
- 如申請專利範圍第1項所述之半導體裝置,其中:所述單石積體電路晶粒具有一個整體長度,其係所述第一晶粒區域的長度和所述第二晶粒區域的長度之組合;以及所述整體長度係超過用於微影操作之一個最大成像維度。
- 如申請專利範圍第3項所述之半導體裝置,其中所述單石積體電路晶粒的一個晶粒密封件係包括:一個第一壁部,其係形成於所述第一晶粒區域中;以及一個第二壁部,其係形成於所述第二晶粒區域中;其中所述第一壁部和所述第二壁部彼此面對,並且所述第一壁部和所述第二壁部係彼此連接以提供所述單石積體電路晶粒的所述晶粒密封件。
- 如申請專利範圍第2項所述之半導體裝置,其中:所述複數個金屬線路的第一部分係自所述第一晶粒區域延伸至所述第二晶粒區域的所述第二選擇電路的第一輸入埠;以及所述複數個金屬線路的第二部分係在所述第二晶粒區域之內延伸至所述第二晶粒區域的所述第二選擇電路的第二輸入埠。
- 如申請專利範圍第5項所述之半導體裝置,其中:所述複數個金屬線路的第三部分係自所述第二晶粒區域延伸至所述第一晶粒區域的所述第一選擇電路的第一輸入埠;以及 所述複數個金屬線路的第四部分係在所述第一晶粒區域之內延伸至所述第一晶粒區域的所述第一選擇電路的第二輸入埠。
- 如申請專利範圍第1項所述之半導體裝置,其中:所述第一多工器係耦合以接收所述第一選擇信號,用於所述第一晶粒區域在一個第一迴圈返回模式及一個第一接合模式之間的選擇;以及所述第二多工器係耦合以接收所述第二選擇信號,用於所述第二晶粒區域在一個第二迴圈返回模式及一個第二接合模式之間的選擇。
- 如申請專利範圍第6項所述之半導體裝置,其中所述複數個金屬線路的所述第一部分和所述第三部份係延伸穿過在所述第一晶粒區域和所述第二晶粒區域之間的一個遮罩接合區域。
- 如申請專利範圍第1項所述之半導體裝置,其中所述第一可程式規劃終端方塊和所述第二可程式規劃終端方塊係個別配有所述第一晶粒區域的一個第一組態方塊和所述第二晶粒區域的一個第二組態方塊。
- 一種半導體裝置,其係包括:一個單石積體電路晶粒,其具有複數個模組晶粒區域;其中所述模組晶粒區域個別具有複數個電力分配網路,用於獨立地對所述模組晶粒區域的每一個進行供電;以及其中所述模組晶粒區域的每一個鄰近對係使用個別的複數個金屬線路而接合在一起,其中所述複數個金屬線路的每一個金屬線路係連續地延伸於所述模組晶粒區域的所述鄰近對之間並且與所述模組晶粒區域的所述鄰近對進行串聯耦合,其中所述複數個模組晶粒區域係包含一個第一晶粒區域及一個第二晶 粒區域;所述第一晶粒區域係包含第一選擇電路,其係耦合至一個第一可程式規劃終端方塊以接收一個第一選擇信號;所述第一選擇電路係所述第一晶粒區域的第一多工器;所述第二晶粒區域係包含第二選擇電路,其係耦合至一個第二可程式規劃終端方塊以接收一個第二選擇信號;所述第二選擇電路係所述第二晶粒區域的第二多工器;其中所述複數個金屬線路的第一部分係自所述第一晶粒區域延伸至所述第二晶粒區域的所述第二選擇電路的第一輸入埠;以及其中所述複數個金屬線路的第二部分係在所述第二晶粒區域之內延伸至所述第二晶粒區域的所述第二選擇電路的第二輸入埠。
- 如申請專利範圍第10項所述之半導體裝置,其中:所述複數個金屬線路的第三部分係自所述第二晶粒區域延伸至所述第一晶粒區域的所述第一選擇電路的第一輸入埠;以及所述複數個金屬線路的第四部分係在所述第一晶粒區域之內延伸至所述第一晶粒區域的所述第一選擇電路的第二輸入埠。
- 如申請專利範圍第10項所述之半導體裝置,其中:所述第一多工器係耦合以接收所述第一選擇信號,用於所述第一晶粒區域在一個第一迴圈返回模式及一個第一接合模式之間的選擇;以及所述第二多工器係耦合以接收所述第二選擇信號,用於所述第二晶粒區域在一個第二迴圈返回模式及一個第二接合模式之間的選擇。
- 如申請專利範圍第11項所述之半導體裝置,其中所述複數個金屬線 路的所述第一部分和所述第三部份係延伸穿過在所述第一晶粒區域和所述第二晶粒區域之間的一個遮罩接合區域。
- 如申請專利範圍第10項所述之半導體裝置,其中所述第一可程式規劃終端方塊和所述第二可程式規劃終端方塊係個別配有所述第一晶粒區域的一個第一組態方塊和所述第二晶粒區域的一個第二組態方塊。
- 如申請專利範圍第10項所述之半導體裝置,其中所述第一選擇信號係源自於所述第一可程式規劃終端方塊,並且其中所述第二選擇信號係源自於所述第二可程式規劃終端方塊。
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/935,066 US9547034B2 (en) | 2013-07-03 | 2013-07-03 | Monolithic integrated circuit die having modular die regions stitched together |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201506946A TW201506946A (zh) | 2015-02-16 |
TWI603339B true TWI603339B (zh) | 2017-10-21 |
Family
ID=50729842
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW103122467A TWI603339B (zh) | 2013-07-03 | 2014-06-30 | 具有接合在一起的模組晶粒區域的單石積體電路晶粒 |
Country Status (7)
Country | Link |
---|---|
US (1) | US9547034B2 (zh) |
EP (1) | EP3017546B1 (zh) |
JP (1) | JP6313436B2 (zh) |
KR (1) | KR102155402B1 (zh) |
CN (1) | CN105379122B (zh) |
TW (1) | TWI603339B (zh) |
WO (1) | WO2015002681A1 (zh) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9543192B2 (en) | 2015-05-18 | 2017-01-10 | Globalfoundries Singapore Pte. Ltd. | Stitched devices |
US10346580B2 (en) * | 2016-03-25 | 2019-07-09 | International Business Machines Corporation | Checking wafer-level integrated designs for rule compliance |
US11152348B2 (en) * | 2017-11-28 | 2021-10-19 | Taiwan Semiconductor Manufacturing Co., Ltd. | Integrated circuit with mixed row heights |
TWI831844B (zh) * | 2018-10-05 | 2024-02-11 | 美商色拉頓系統公司 | 高電壓探針卡系統 |
US11652060B2 (en) | 2018-12-28 | 2023-05-16 | Intel Corporation | Die interconnection scheme for providing a high yielding process for high performance microprocessors |
CN111752780B (zh) * | 2020-06-12 | 2023-03-21 | 苏州浪潮智能科技有限公司 | 一种服务器jtag部件自适应互连系统、方法 |
KR20220018754A (ko) | 2020-08-07 | 2022-02-15 | 삼성전자주식회사 | 전원 연결 배선을 포함하는 반도체 장치 |
US20220293170A1 (en) * | 2021-03-10 | 2022-09-15 | Invention And Collaboration Laboratory Pte. Ltd. | Integrated scaling and stretching platform for optimizing monolithic integration and/or heterogeneous integration in a single semiconductor die |
US20240003974A1 (en) * | 2022-06-30 | 2024-01-04 | Ampere Computing Llc | Component die validation built-in self-test (vbist) engine |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6320400B1 (en) * | 1998-12-09 | 2001-11-20 | Advanced Micro Devices, Inc. | Method and system for selectively disconnecting a redundant power distribution network to indentify a site of a short |
US20080129324A1 (en) * | 2003-11-05 | 2008-06-05 | International Business Machines Corporation | Hot Switchable Voltage Bus for Iddq Current Measurements |
TW200907729A (en) * | 2007-04-20 | 2009-02-16 | Iwatt Inc | Method and apparatus for small die low power system-on-chip design with intelligent power supply chip |
TW200937614A (en) * | 2007-11-07 | 2009-09-01 | Sony Corp | Semiconductor integrated circuit |
TW201027551A (en) * | 2008-09-19 | 2010-07-16 | Freescale Semiconductor Inc | Integrated circuit having boosted array voltage and method therefor |
TW201033988A (en) * | 2009-02-10 | 2010-09-16 | Silicon Works Co Ltd | Source driver IC with separated high voltage power ground and low voltage power ground |
US20120250443A1 (en) * | 2011-03-31 | 2012-10-04 | Ruchir Saraswat | Energy Efficient Power Distribution for 3D INTEGRATED CIRCUIT Stack |
Family Cites Families (168)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4467342A (en) | 1982-07-15 | 1984-08-21 | Rca Corporation | Multi-chip imager |
US4803595A (en) | 1986-11-17 | 1989-02-07 | International Business Machines Corporation | Interposer chip technique for making engineering changes between interconnected semiconductor chips |
JPS63258042A (ja) * | 1987-04-15 | 1988-10-25 | Nec Kyushu Ltd | 半導体装置 |
US5399898A (en) | 1992-07-17 | 1995-03-21 | Lsi Logic Corporation | Multi-chip semiconductor arrangements using flip chip dies |
US5489804A (en) | 1989-08-28 | 1996-02-06 | Lsi Logic Corporation | Flexible preformed planar structures for interposing between a chip and a substrate |
KR0169736B1 (ko) | 1990-03-30 | 1999-01-15 | 엔. 라이스 머레트 | 데이타 통신 인터페이스 및 이의 통신 방법 |
US6675333B1 (en) | 1990-03-30 | 2004-01-06 | Texas Instruments Incorporated | Integrated circuit with serial I/O controller |
US5285236A (en) | 1992-09-30 | 1994-02-08 | Kanti Jain | Large-area, high-throughput, high-resolution projection imaging system |
TW253031B (zh) | 1993-12-27 | 1995-08-01 | At & T Corp | |
US5437946A (en) | 1994-03-03 | 1995-08-01 | Nikon Precision Inc. | Multiple reticle stitching for scanning exposure system |
US5652163A (en) * | 1994-12-13 | 1997-07-29 | Lsi Logic Corporation | Use of reticle stitching to provide design flexibility |
US5715144A (en) | 1994-12-30 | 1998-02-03 | International Business Machines Corporation | Multi-layer, multi-chip pyramid and circuit board structure |
US5787007A (en) | 1996-01-30 | 1998-07-28 | Xilinx, Inc. | Structure and method for loading RAM data within a programmable logic device |
US5814847A (en) | 1996-02-02 | 1998-09-29 | National Semiconductor Corp. | General purpose assembly programmable multi-chip package substrate |
US7166495B2 (en) | 1996-02-20 | 2007-01-23 | Micron Technology, Inc. | Method of fabricating a multi-die semiconductor package assembly |
US5907903A (en) | 1996-05-24 | 1999-06-01 | International Business Machines Corporation | Multi-layer-multi-chip pyramid and circuit board structure and method of forming same |
US5963050A (en) | 1997-02-26 | 1999-10-05 | Xilinx, Inc. | Configurable logic element with fast feedback paths |
US6396303B1 (en) | 1997-02-26 | 2002-05-28 | Xilinx, Inc. | Expandable interconnect structure for FPGAS |
US6204689B1 (en) | 1997-02-26 | 2001-03-20 | Xilinx, Inc. | Input/output interconnect circuit for FPGAs |
US5897986A (en) | 1997-05-28 | 1999-04-27 | Anvik Corporation | Projection patterning of large substrates using limited-travel x-y stage |
US5869894A (en) | 1997-07-18 | 1999-02-09 | Lucent Technologies Inc. | RF IC package |
US6359466B1 (en) | 1997-09-16 | 2002-03-19 | Vantis Corporation | Circuitry to provide fast carry |
US6130551A (en) | 1998-01-19 | 2000-10-10 | Vantis Corporation | Synthesis-friendly FPGA architecture with variable length and variable timing interconnect |
DE19757074A1 (de) | 1997-12-20 | 1999-06-24 | Zeiss Carl Fa | Projektionsbelichtungsanlage und Belichtungsverfahren |
US6043672A (en) | 1998-05-13 | 2000-03-28 | Lsi Logic Corporation | Selectable power supply lines for isolating defects in integrated circuits |
US6369444B1 (en) | 1998-05-19 | 2002-04-09 | Agere Systems Guardian Corp. | Packaging silicon on silicon multichip modules |
JP2000068449A (ja) * | 1998-08-18 | 2000-03-03 | Seiko Epson Corp | 半導体装置 |
US6611635B1 (en) | 1998-10-09 | 2003-08-26 | Fujitsu Limited | Opto-electronic substrates with electrical and optical interconnections and methods for making |
US6157213A (en) | 1998-10-19 | 2000-12-05 | Xilinx, Inc. | Layout architecture and method for fabricating PLDs including multiple discrete devices formed on a single chip |
US6160418A (en) | 1999-01-14 | 2000-12-12 | Xilinx, Inc. | Integrated circuit with selectively disabled logic blocks |
SG93192A1 (en) | 1999-01-28 | 2002-12-17 | United Microelectronics Corp | Face-to-face multi chip package |
TW447009B (en) | 1999-02-12 | 2001-07-21 | Nippon Kogaku Kk | Scanning exposure method and scanning type exposure device |
US7030466B1 (en) | 1999-05-03 | 2006-04-18 | United Microelectronics Corporation | Intermediate structure for making integrated circuit device and wafer |
US6429509B1 (en) | 1999-05-03 | 2002-08-06 | United Microelectronics Corporation | Integrated circuit with improved interconnect structure and process for making same |
JP3767246B2 (ja) | 1999-05-26 | 2006-04-19 | 富士通株式会社 | 複合モジュール及びプリント回路基板ユニット |
US6218864B1 (en) | 1999-08-10 | 2001-04-17 | Xilinx, Inc. | Structure and method for generating a clock enable signal in a PLD |
US6215327B1 (en) | 1999-09-01 | 2001-04-10 | The United States Of America As Represented By The Secretary Of The Air Force | Molecular field programmable gate array |
US6559531B1 (en) | 1999-10-14 | 2003-05-06 | Sun Microsystems, Inc. | Face to face chips |
JP2001154371A (ja) | 1999-11-30 | 2001-06-08 | Nikon Corp | 回路デバイスや表示デバイスの製造方法、及び大型ディスプレー装置 |
US6731009B1 (en) | 2000-03-20 | 2004-05-04 | Cypress Semiconductor Corporation | Multi-die assembly |
JP3420172B2 (ja) * | 2000-04-24 | 2003-06-23 | エヌイーシーマイクロシステム株式会社 | 電源分離間信号接続方法およびその接続ルール確認方法 |
US7247932B1 (en) | 2000-05-19 | 2007-07-24 | Megica Corporation | Chip package with capacitor |
JP2002076250A (ja) | 2000-08-29 | 2002-03-15 | Nec Corp | 半導体装置 |
WO2002069347A2 (en) | 2001-02-27 | 2002-09-06 | Micron Technology, Inc. | Flash cell fuse circuit |
JP4091838B2 (ja) | 2001-03-30 | 2008-05-28 | 富士通株式会社 | 半導体装置 |
JP2002353398A (ja) | 2001-05-25 | 2002-12-06 | Nec Kyushu Ltd | 半導体装置 |
US6525407B1 (en) | 2001-06-29 | 2003-02-25 | Novellus Systems, Inc. | Integrated circuit package |
JP3925615B2 (ja) | 2001-07-04 | 2007-06-06 | ソニー株式会社 | 半導体モジュール |
DE60218498T2 (de) | 2001-09-20 | 2007-11-08 | Koninklijke Philips Electronics N.V. | Elektronisches gerät |
TW523890B (en) | 2002-02-07 | 2003-03-11 | Macronix Int Co Ltd | Stacked semiconductor packaging device |
JP2003289105A (ja) * | 2002-03-28 | 2003-10-10 | Toshiba Corp | 半導体装置 |
US7028281B1 (en) | 2002-07-12 | 2006-04-11 | Lattice Semiconductor Corporation | FPGA with register-intensive architecture |
US6944809B2 (en) | 2002-08-06 | 2005-09-13 | Xilinx, Inc. | Methods of resource optimization in programmable logic devices to reduce test time |
US6870271B2 (en) | 2003-01-29 | 2005-03-22 | Sun Microsystems, Inc. | Integrated circuit assembly module that supports capacitive communication between semiconductor dies |
JP3891123B2 (ja) | 2003-02-06 | 2007-03-14 | セイコーエプソン株式会社 | 半導体装置、電子デバイス、電子機器、及び半導体装置の製造方法 |
JP4110992B2 (ja) | 2003-02-07 | 2008-07-02 | セイコーエプソン株式会社 | 半導体装置、電子デバイス、電子機器、半導体装置の製造方法および電子デバイスの製造方法 |
US6803786B1 (en) | 2003-03-11 | 2004-10-12 | Xilinx, Inc. | Structures and methods providing columns of tightly coupled processor and RAM blocks within an array of logic blocks |
JP4069771B2 (ja) | 2003-03-17 | 2008-04-02 | セイコーエプソン株式会社 | 半導体装置、電子機器および半導体装置の製造方法 |
TW588446B (en) | 2003-03-21 | 2004-05-21 | Advanced Semiconductor Eng | Multi-chips stacked package |
US20050112614A1 (en) | 2003-05-15 | 2005-05-26 | California Institute Of Technology | Self-assembled circuits and circuit patterns |
JP3951966B2 (ja) | 2003-05-30 | 2007-08-01 | セイコーエプソン株式会社 | 半導体装置 |
US7132851B2 (en) | 2003-07-11 | 2006-11-07 | Xilinx, Inc. | Columnar floorplan |
US7095253B1 (en) | 2003-07-21 | 2006-08-22 | Xilinx, Inc. | Programmable multi-chip module |
US7107565B1 (en) | 2003-07-25 | 2006-09-12 | Xilinx, Inc. | PLD device representation with factored repeatable tiles |
US7566960B1 (en) | 2003-10-31 | 2009-07-28 | Xilinx, Inc. | Interposing structure |
US7088134B1 (en) | 2003-11-06 | 2006-08-08 | Lattice Semiconductor Corporation | Programmable logic device with flexible memory allocation and routing |
US7098542B1 (en) | 2003-11-07 | 2006-08-29 | Xilinx, Inc. | Multi-chip configuration to connect flip-chips to flip-chips |
US6930378B1 (en) | 2003-11-10 | 2005-08-16 | Amkor Technology, Inc. | Stacked semiconductor die assembly having at least one support |
DE60314525T2 (de) | 2003-12-17 | 2008-02-28 | Stmicroelectronics Ltd., Almondsbury | TAP Zeitmultiplexen mit Abtasttest |
EP1544632B1 (en) | 2003-12-17 | 2008-08-27 | STMicroelectronics (Research & Development) Limited | TAP sampling at double rate |
US7190190B1 (en) | 2004-01-09 | 2007-03-13 | Altera Corporation | Programmable logic device with on-chip nonvolatile user memory |
US7067910B2 (en) | 2004-04-13 | 2006-06-27 | Sun Microsystems, Inc. | Method and apparatus for using capacitively coupled communication within stacks of laminated chips |
US20060001163A1 (en) | 2004-06-30 | 2006-01-05 | Mohammad Kolbehdari | Groundless flex circuit cable interconnect |
US7284226B1 (en) | 2004-10-01 | 2007-10-16 | Xilinx, Inc. | Methods and structures of providing modular integrated circuits |
US7425760B1 (en) | 2004-10-13 | 2008-09-16 | Sun Microsystems, Inc. | Multi-chip module structure with power delivery using flexible cables |
US7314174B1 (en) | 2004-10-22 | 2008-01-01 | Xilinx, Inc. | Method and system for configuring an integrated circuit |
US20060099736A1 (en) | 2004-11-09 | 2006-05-11 | Nagar Mohan R | Flip chip underfilling |
US7242218B2 (en) * | 2004-12-02 | 2007-07-10 | Altera Corporation | Techniques for combining volatile and non-volatile programmable logic on an integrated circuit |
US7884454B2 (en) | 2005-01-05 | 2011-02-08 | Alpha & Omega Semiconductor, Ltd | Use of discrete conductive layer in semiconductor device to re-route bonding wires for semiconductor device package |
US20060157866A1 (en) | 2005-01-20 | 2006-07-20 | Le Thoai T | Signal redistribution using bridge layer for multichip module |
US7154297B1 (en) * | 2005-01-21 | 2006-12-26 | Altera Corporation | Programmable logic with programmable volatility |
JP4581768B2 (ja) | 2005-03-16 | 2010-11-17 | ソニー株式会社 | 半導体装置の製造方法 |
US20060220227A1 (en) | 2005-04-04 | 2006-10-05 | Data Device Corporation | High density integrated circuit having multiple chips and employing a ball grid array (BGA) and method for making same |
US7671449B2 (en) | 2005-05-04 | 2010-03-02 | Sun Microsystems, Inc. | Structures and methods for an application of a flexible bridge |
US7337422B1 (en) | 2005-05-10 | 2008-02-26 | Xilinx, Inc. | Programmably configurable logic-based macro |
US7253658B1 (en) | 2005-06-14 | 2007-08-07 | Xilinx, Inc. | Integrated circuit providing direct access to multi-directional interconnect lines in a general interconnect structure |
US7205790B1 (en) | 2005-06-14 | 2007-04-17 | Xilinx, Inc. | Programmable integrated circuit providing efficient implementations of wide logic functions |
US7196543B1 (en) | 2005-06-14 | 2007-03-27 | Xilinx, Inc. | Integrated circuit having a programmable input structure with optional fanout capability |
US7233168B1 (en) | 2005-06-14 | 2007-06-19 | Xilinx, Inc. | Methods of setting and resetting lookup table memory cells |
US7199610B1 (en) | 2005-06-14 | 2007-04-03 | Xilinx, Inc. | Integrated circuit interconnect structure having reduced coupling between interconnect lines |
US7215138B1 (en) | 2005-06-14 | 2007-05-08 | Xilinx, Inc. | Programmable lookup table with dual input and output terminals in shift register mode |
US7193433B1 (en) | 2005-06-14 | 2007-03-20 | Xilinx, Inc. | Programmable logic block having lookup table with partial output signal driving carry multiplexer |
US7279929B1 (en) | 2005-06-14 | 2007-10-09 | Xilinx, Inc. | Integrated circuit with programmable routing structure including straight and diagonal interconnect lines |
US7256612B1 (en) | 2005-06-14 | 2007-08-14 | Xilinx, Inc. | Programmable logic block providing carry chain with programmable initialization values |
US7202697B1 (en) | 2005-06-14 | 2007-04-10 | Xilinx, Inc. | Programmable logic block having improved performance when functioning in shift register mode |
US7218143B1 (en) | 2005-06-14 | 2007-05-15 | Xilinx, Inc. | Integrated circuit having fast interconnect paths between memory elements and carry logic |
US7274214B1 (en) | 2005-06-14 | 2007-09-25 | Xilinx, Inc. | Efficient tile layout for a programmable logic device |
US7218139B1 (en) | 2005-06-14 | 2007-05-15 | Xilinx, Inc. | Programmable integrated circuit providing efficient implementations of arithmetic functions |
US7268587B1 (en) | 2005-06-14 | 2007-09-11 | Xilinx, Inc. | Programmable logic block with carry chains providing lookahead functions of different lengths |
US7221186B1 (en) | 2005-06-14 | 2007-05-22 | Xilinx, Inc. | Efficient tile layout for a programmable logic device |
US7202698B1 (en) | 2005-06-14 | 2007-04-10 | Xilinx, Inc. | Integrated circuit having a programmable input structure with bounce capability |
US7265576B1 (en) | 2005-06-14 | 2007-09-04 | Xilinx, Inc. | Programmable lookup table with dual input and output terminals in RAM mode |
US7218140B1 (en) | 2005-06-14 | 2007-05-15 | Xilinx, Inc. | Integrated circuit having fast interconnect paths between carry chain multiplexers and lookup tables |
US7276934B1 (en) | 2005-06-14 | 2007-10-02 | Xilinx, Inc. | Integrated circuit with programmable routing structure including diagonal interconnect lines |
EP1907957A4 (en) | 2005-06-29 | 2013-03-20 | Otrsotech Ltd Liability Company | INVESTMENT METHODS AND SYSTEMS |
US7535105B2 (en) | 2005-08-02 | 2009-05-19 | International Business Machines Corporation | Inter-chip ESD protection structure for high speed and high frequency devices |
US7411293B2 (en) | 2005-09-27 | 2008-08-12 | Kingston Technology Corporation | Flash memory card |
US7301824B1 (en) | 2005-10-04 | 2007-11-27 | Xilinx, Inc. | Method and apparatus for communication within an integrated circuit |
US7498192B1 (en) | 2005-11-01 | 2009-03-03 | Xilinx, Inc. | Methods of providing a family of related integrated circuits of different sizes |
US7402443B1 (en) | 2005-11-01 | 2008-07-22 | Xilinx, Inc. | Methods of providing families of integrated circuits with similar dies partially disabled using product selection codes |
US7491576B1 (en) | 2005-11-01 | 2009-02-17 | Xilinx, Inc. | Yield-enhancing methods of providing a family of scaled integrated circuits |
US7451421B1 (en) | 2005-11-01 | 2008-11-11 | Xilinx, Inc. | Methods of implementing and modeling interconnect lines at optional boundaries in multi-product programmable IC dies |
US7345507B1 (en) | 2005-11-01 | 2008-03-18 | Xilinx, Inc. | Multi-product die configurable as two or more programmable integrated circuits of different logic capacities |
US20070210428A1 (en) | 2006-03-09 | 2007-09-13 | Tan Wooi A | Die stack system and method |
JP4659660B2 (ja) | 2006-03-31 | 2011-03-30 | Okiセミコンダクタ株式会社 | 半導体装置の製造方法 |
JP2007324354A (ja) | 2006-05-31 | 2007-12-13 | Sony Corp | 半導体装置 |
JP5061520B2 (ja) * | 2006-07-18 | 2012-10-31 | 富士通セミコンダクター株式会社 | 半導体装置及び半導体ウェーハ |
US7999383B2 (en) | 2006-07-21 | 2011-08-16 | Bae Systems Information And Electronic Systems Integration Inc. | High speed, high density, low power die interconnect system |
US8124429B2 (en) | 2006-12-15 | 2012-02-28 | Richard Norman | Reprogrammable circuit board with alignment-insensitive support for multiple component contact types |
JP5559452B2 (ja) | 2006-12-20 | 2014-07-23 | 富士通セミコンダクター株式会社 | 半導体装置及びその製造方法 |
US8163600B2 (en) | 2006-12-28 | 2012-04-24 | Stats Chippac Ltd. | Bridge stack integrated circuit package-on-package system |
US8237289B2 (en) | 2007-01-30 | 2012-08-07 | Kabushiki Kaisha Toshiba | System in package device |
US8080874B1 (en) | 2007-09-14 | 2011-12-20 | Google Inc. | Providing additional space between an integrated circuit and a circuit board for positioning a component therebetween |
US8415783B1 (en) | 2007-10-04 | 2013-04-09 | Xilinx, Inc. | Apparatus and methodology for testing stacked die |
US8008764B2 (en) | 2008-04-28 | 2011-08-30 | International Business Machines Corporation | Bridges for interconnecting interposers in multi-chip integrated circuits |
JP2009295959A (ja) | 2008-05-09 | 2009-12-17 | Panasonic Corp | 半導体装置及びその製造方法 |
EP2151717A1 (en) | 2008-08-05 | 2010-02-10 | ASML Holding N.V. | Full wafer width scanning using step and scan system |
US8395446B1 (en) * | 2009-01-31 | 2013-03-12 | Xilinx, Inc. | Dual-mode amplifier |
JP5375946B2 (ja) * | 2009-03-04 | 2013-12-25 | 日本電気株式会社 | 電子回路、および試験システム |
US20100270668A1 (en) | 2009-04-28 | 2010-10-28 | Wafer-Level Packaging Portfolio Llc | Dual Interconnection in Stacked Memory and Controller Module |
TW201101455A (en) | 2009-06-24 | 2011-01-01 | Nat Chip Implementation Ct Nat Applied Res Lab | Fabrication method for system-on-chip (SoC) modules |
US8227904B2 (en) | 2009-06-24 | 2012-07-24 | Intel Corporation | Multi-chip package and method of providing die-to-die interconnects in same |
US8295056B2 (en) | 2009-07-22 | 2012-10-23 | International Business Machines Corporation | Silicon carrier structure and method of forming same |
US20110180317A1 (en) | 2009-09-11 | 2011-07-28 | Eiji Takahashi | Electronic component package, method for producing the same and interposer |
US8946868B2 (en) * | 2009-09-30 | 2015-02-03 | Silicon Laboratories Inc. | Multiple die layout for facilitating the combining of an individual die into a single die |
US8384411B2 (en) | 2009-12-18 | 2013-02-26 | Tektronix, Inc. | Method and device for measuring inter-chip signals |
TWI501380B (zh) | 2010-01-29 | 2015-09-21 | Nat Chip Implementation Ct Nat Applied Res Lab | 多基板晶片模組堆疊之三維系統晶片結構 |
US8519537B2 (en) | 2010-02-26 | 2013-08-27 | Taiwan Semiconductor Manufacturing Company, Ltd. | 3D semiconductor package interposer with die cavity |
US8327201B1 (en) | 2010-05-05 | 2012-12-04 | Xilinx, Inc. | Parallel testing of an integrated circuit that includes multiple dies |
US8058897B1 (en) | 2010-06-28 | 2011-11-15 | Xilinx, Inc. | Configuration of a multi-die integrated circuit |
US8648615B2 (en) | 2010-06-28 | 2014-02-11 | Xilinx, Inc. | Testing die-to-die bonding and rework |
US8536693B2 (en) | 2010-07-20 | 2013-09-17 | Avago Technologies General Ip (Singapore) Pte. Ltd. | Tiered integrated circuit assembly and a method for manufacturing the same |
KR101179268B1 (ko) | 2010-08-05 | 2012-09-03 | 에스케이하이닉스 주식회사 | 관통 비아들을 통한 칩선택이 가능한 반도체 패키지 |
US8217682B1 (en) * | 2010-08-10 | 2012-07-10 | Xilinx, Inc. | Output driver and operation thereof |
US8294490B1 (en) | 2010-10-01 | 2012-10-23 | Xilinx, Inc. | Integrated circuit and method of asynchronously routing data in an integrated circuit |
US8018250B1 (en) * | 2010-10-19 | 2011-09-13 | Xilinx, Inc. | Input/output block and operation thereof |
US8417867B2 (en) | 2010-11-17 | 2013-04-09 | Xilinx, Inc. | Multichip module for communications |
US8615694B2 (en) | 2011-02-07 | 2013-12-24 | Texas Instruments Incorporated | Interposer TAP boundary register coupling stacked die functional input/output data |
KR101817159B1 (ko) | 2011-02-17 | 2018-02-22 | 삼성전자 주식회사 | Tsv를 가지는 인터포저를 포함하는 반도체 패키지 및 그 제조 방법 |
US8436650B2 (en) | 2011-03-30 | 2013-05-07 | Panasonic Corporation | Programmable logic device |
US8338963B2 (en) | 2011-04-21 | 2012-12-25 | Tessera, Inc. | Multiple die face-down stacking for two or more die |
US8779553B2 (en) | 2011-06-16 | 2014-07-15 | Xilinx, Inc. | Stress-aware design for integrated circuits comprising a stress inducing structure and keep out zone |
US20120324305A1 (en) | 2011-06-20 | 2012-12-20 | Texas Instruments Incorporated | Testing interposer method and apparatus |
US8560982B2 (en) | 2011-06-27 | 2013-10-15 | Xilinx, Inc. | Integrated circuit design using through silicon vias |
US8548071B2 (en) | 2011-07-19 | 2013-10-01 | Xilinx, Inc. | Integrated circuit enabling the communication of data and a method of communicating data in an integrated circuit |
US9406738B2 (en) | 2011-07-20 | 2016-08-02 | Xilinx, Inc. | Inductive structure formed using through silicon vias |
US9082633B2 (en) | 2011-10-13 | 2015-07-14 | Xilinx, Inc. | Multi-die integrated circuit structure with heat sink |
US20130134553A1 (en) | 2011-11-30 | 2013-05-30 | Taiwan Semiconductor Manufacturing Co., Ltd. | Interposer and semiconductor package with noise suppression features |
US20130181360A1 (en) | 2012-01-18 | 2013-07-18 | Xilinx, Inc. | Integrated circuit connectivity using flexible circuitry |
US8704384B2 (en) | 2012-02-17 | 2014-04-22 | Xilinx, Inc. | Stacked die assembly |
US8704364B2 (en) | 2012-02-08 | 2014-04-22 | Xilinx, Inc. | Reducing stress in multi-die integrated circuit structures |
US8957512B2 (en) | 2012-06-19 | 2015-02-17 | Xilinx, Inc. | Oversized interposer |
US8703539B2 (en) | 2012-06-29 | 2014-04-22 | Taiwan Semiconductor Manufacturing Company, Ltd. | Multiple die packaging interposer structure and method |
US8810006B2 (en) | 2012-08-10 | 2014-08-19 | Taiwan Semiconductor Manufacturing Company, Ltd. | Interposer system and method |
US8546955B1 (en) | 2012-08-16 | 2013-10-01 | Xilinx, Inc. | Multi-die stack package |
US9026872B2 (en) * | 2012-08-16 | 2015-05-05 | Xilinx, Inc. | Flexible sized die for use in multi-die integrated circuit |
US8963335B2 (en) | 2012-09-13 | 2015-02-24 | Invensas Corporation | Tunable composite interposer |
JP5968736B2 (ja) | 2012-09-14 | 2016-08-10 | ルネサスエレクトロニクス株式会社 | 半導体装置 |
-
2013
- 2013-07-03 US US13/935,066 patent/US9547034B2/en active Active
-
2014
- 2014-04-09 KR KR1020167002971A patent/KR102155402B1/ko active IP Right Grant
- 2014-04-09 CN CN201480037676.6A patent/CN105379122B/zh active Active
- 2014-04-09 EP EP14724269.7A patent/EP3017546B1/en active Active
- 2014-04-09 JP JP2016523730A patent/JP6313436B2/ja active Active
- 2014-04-09 WO PCT/US2014/033526 patent/WO2015002681A1/en active Application Filing
- 2014-06-30 TW TW103122467A patent/TWI603339B/zh active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6320400B1 (en) * | 1998-12-09 | 2001-11-20 | Advanced Micro Devices, Inc. | Method and system for selectively disconnecting a redundant power distribution network to indentify a site of a short |
US20080129324A1 (en) * | 2003-11-05 | 2008-06-05 | International Business Machines Corporation | Hot Switchable Voltage Bus for Iddq Current Measurements |
TW200907729A (en) * | 2007-04-20 | 2009-02-16 | Iwatt Inc | Method and apparatus for small die low power system-on-chip design with intelligent power supply chip |
TW200937614A (en) * | 2007-11-07 | 2009-09-01 | Sony Corp | Semiconductor integrated circuit |
TW201027551A (en) * | 2008-09-19 | 2010-07-16 | Freescale Semiconductor Inc | Integrated circuit having boosted array voltage and method therefor |
TW201033988A (en) * | 2009-02-10 | 2010-09-16 | Silicon Works Co Ltd | Source driver IC with separated high voltage power ground and low voltage power ground |
US20120250443A1 (en) * | 2011-03-31 | 2012-10-04 | Ruchir Saraswat | Energy Efficient Power Distribution for 3D INTEGRATED CIRCUIT Stack |
Also Published As
Publication number | Publication date |
---|---|
JP2016530704A (ja) | 2016-09-29 |
TW201506946A (zh) | 2015-02-16 |
CN105379122B (zh) | 2018-08-17 |
US9547034B2 (en) | 2017-01-17 |
EP3017546A1 (en) | 2016-05-11 |
KR20160029106A (ko) | 2016-03-14 |
JP6313436B2 (ja) | 2018-04-18 |
CN105379122A (zh) | 2016-03-02 |
US20150008954A1 (en) | 2015-01-08 |
KR102155402B1 (ko) | 2020-09-11 |
WO2015002681A1 (en) | 2015-01-08 |
EP3017546B1 (en) | 2020-02-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI603339B (zh) | 具有接合在一起的模組晶粒區域的單石積體電路晶粒 | |
US9887203B2 (en) | 3D semiconductor device and structure | |
US9691760B2 (en) | Semiconductor device and structure | |
US9142553B2 (en) | Semiconductor device and structure | |
US10262911B1 (en) | Circuit for and method of testing bond connections between a first die and a second die | |
US8993385B1 (en) | Method to construct a 3D semiconductor device | |
US8258810B2 (en) | 3D semiconductor device | |
US9577642B2 (en) | Method to form a 3D semiconductor device | |
US9509313B2 (en) | 3D semiconductor device | |
US8378715B2 (en) | Method to construct systems | |
US8373439B2 (en) | 3D semiconductor device | |
US10002865B2 (en) | 3D semiconductor structure and device | |
US8362800B2 (en) | 3D semiconductor device including field repairable logics | |
US9318408B2 (en) | Semiconductor device and structure | |
US20180122686A1 (en) | 3d semiconductor device and structure | |
US8427200B2 (en) | 3D semiconductor device | |
US8823405B1 (en) | Integrated circuit with power gating | |
US20050258857A1 (en) | Fault tolerant selection of die on wafer | |
US8683405B2 (en) | Multi-layer distributed network | |
Lepercq et al. | An interconnection network for a novel reconfigurable circuit board |