TWI596602B - 位元格狀態保持之技術 - Google Patents

位元格狀態保持之技術 Download PDF

Info

Publication number
TWI596602B
TWI596602B TW105104946A TW105104946A TWI596602B TW I596602 B TWI596602 B TW I596602B TW 105104946 A TW105104946 A TW 105104946A TW 105104946 A TW105104946 A TW 105104946A TW I596602 B TWI596602 B TW I596602B
Authority
TW
Taiwan
Prior art keywords
column
bit
magnetic field
access
word line
Prior art date
Application number
TW105104946A
Other languages
English (en)
Other versions
TW201701284A (zh
Inventor
查爾斯 奧古斯汀
冨嶋茂樹
詹姆斯W 查恩茲
士濂 呂
Original Assignee
英特爾公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 英特爾公司 filed Critical 英特爾公司
Publication of TW201701284A publication Critical patent/TW201701284A/zh
Application granted granted Critical
Publication of TWI596602B publication Critical patent/TWI596602B/zh

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1659Cell access
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1653Address circuits or decoders
    • G11C11/1657Word-line or row circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1673Reading or sensing circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1675Writing or programming circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1693Timing circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1695Protection circuits or methods

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Hall/Mr Elements (AREA)
  • Mram Or Spin Memory Techniques (AREA)

Description

位元格狀態保持之技術 發明領域
本發明之某些實施例大體而言係關於非依電性記憶體。
發明背景
記憶體裝置經常包括排列成列及行之矩陣的位元格。每一位元格儲存一位元,該位元之值取決於位元格之狀態。因此,位元格通常具有至少兩個位元值儲存狀態,其中在一個位元值儲存狀態中,位元格狀態表示邏輯0位元,且另一位元值儲存狀態表示邏輯1位元。
記憶體之一或多個位元格可能歸因於各種因素而未能恰當地保留其位元值儲存狀態。在動態隨機存取記憶體(DRAM)中,一個此因素在於常常被稱作「列-錘擊(row-hammer)」(RH)之故障機制,其中位元格可歸因於反覆存取位元格之鄰近列而無意中改變狀態。舉例而言,對常常被稱作「攻擊者列(attacker row)」之一個列的重複存取可導致常常被稱作「未存取」或「受害者(victim)」列之鄰近列中的位元格歸因於對攻擊者列的反覆存取而改變位 元值儲存狀態。此列-錘擊故障機構可在可靠性降級方面歸因於未偵測之資料訛誤而存在問題,以及如果懷有惡意的使用者有目的地翻轉受害者列中之位元以獲得對記憶體之受限區域的未經授權存取,那麼在安全漏洞方面存在問題。
自旋轉移力矩隨機存取記憶體(STTRAM)為一種類型之磁阻式隨機存取記憶體(MRAM),其具有非依電性且通常用於記憶體電路,諸如快取記憶體、記憶體、二級儲存器、及其他記憶體應用。與其他類型之記憶體之位元格相比較,STTRAM記憶體之位元格可為較小的,且具有較大耐久性。因此,STTRAM可特別適合於晶粒上記憶體,諸如用於處理器之記憶體,且亦適合於晶粒外記憶體,諸如DRAM及非依電性記憶體,諸如快閃記憶體及其他應用。舉例而言,STTRAM可用以替換晶粒上記憶體,諸如靜態隨機存取記憶體(SRAM)及嵌入式或增強型動態隨機存取記憶體(eDRAM)。STTRAM記憶體亦可常常在降低之功率位準處操作且相較於其他記憶體類型可能較便宜。
依據本發明之一實施例,係特地提出一種一種設備,其包含:磁阻式(MRAM)位元格之一陣列,其具有MRAM位元格之第一及第二列,其中每一位元格包括具有一極化之一鐵磁裝置,該極化在一第一位元值儲存狀態中為平行及反向平行極化中的一者,且在一第二位元值儲存 狀態中為平行及反向平行極化中之另一者;以及控制電路,其經組配以存取該第一列之一位元格,其中該存取產生一第一磁場,且其中該控制電路經進一步組配以減輕該第一列之一第一磁場,以維持該第二列之一位元格的一位元值儲存狀態。
10‧‧‧系統/裝置
20‧‧‧微處理器
25‧‧‧快取記憶體/記憶體裝置
30‧‧‧記憶體控制器/裝置
40‧‧‧系統記憶體/裝置
50‧‧‧周邊組件/儲存器/裝置
60‧‧‧陣列
60a‧‧‧部分
64、64a1、64a2、64an、64b1、64b2、64bn‧‧‧位元格
66‧‧‧STT記憶體/STTRAM
68‧‧‧控制電路
70‧‧‧磁性穿隧接面(MTJ)裝置/鐵磁裝置
70'‧‧‧受害者磁性穿隧接面(MTJ) 裝置
71‧‧‧開關電晶體
72‧‧‧鐵磁層/固定層
74a‧‧‧鐵磁層/自由層
74b、118‧‧‧層
76‧‧‧中間層
78、81‧‧‧電接觸層
80、82a、82b‧‧‧箭頭
100‧‧‧第一列
102‧‧‧第二鄰近列
108‧‧‧導體金屬化控制線
110‧‧‧通孔
114‧‧‧摻雜區
200、210、220、230、300、310、400、410、414、420、424、430、434、440、444、450、454‧‧‧區塊
240‧‧‧可程式字線驅動器邏輯/可程式字線驅動器
244‧‧‧列位址解碼器邏輯
250‧‧‧行位址解碼器邏輯
254‧‧‧行選擇邏輯
260‧‧‧感測放大器
264‧‧‧讀取鎖存器
320‧‧‧偵測器
330‧‧‧記憶體存取計數器
340‧‧‧比較器
350‧‧‧列存取暫時中止邏輯
BL‧‧‧位元線
SL‧‧‧源極線
WL‧‧‧字線
Rmem‧‧‧可變電阻性元件/可變電阻器/可變電阻電晶體元件
WLaccess、WLnot_access‧‧‧字線(WL)控制線
Hstray、+Hstray、-Hstray‧‧‧雜散磁場
Hcancel、+Hcancel、-Hcancel‧‧‧抵消磁場
Hnet‧‧‧淨磁場
-IUND‧‧‧受驅動電流/電容放電補償電流
d1、d2‧‧‧距離
ION‧‧‧接通電流/電容充電電流
VON‧‧‧高狀態/電壓/存取控制信號
-VUND‧‧‧受驅動狀態/相反極性電壓
本發明之實施例藉助於實例但並非以限制方式說明於隨附圖式之諸圖中,在該等圖式中,相似參考編號係指類似元件。
圖1描繪高階方塊圖,其說明根據本發明之實施例的採用位元格位元值儲存狀態保持之系統之選定態樣。
圖2描繪根據本發明之實施例的採用位元格位元值儲存狀態保持之雜散磁場減輕之STTRAM記憶體的基礎架構。
圖3a至圖3d為圖2之STTRAM記憶體之位元格的一個實例之示意圖。
圖4a至圖4b描繪圖3a至圖3d之位元格之磁性穿隧接面(MTJ)裝置的鐵磁層之各種極化之實例。
圖5為描繪圖2之STTRAM記憶體之位元格的讀取、寫入及保持電壓之一個實例之圖表。
圖6為圖2之STTRAM記憶體之位元格的鄰近列之俯視圖示意性表示。
圖7為描繪根據本發明之實施例之用於位元格位元值儲存狀態保持的雜散磁場減輕之抵消磁場之產生的一 個實例之示意圖。
圖8為描繪根據本發明之實施例的字線補償控制信號之產生之一個實例的曲線圖,字線補償控制信號之該產生導致產生抵消磁場以補償雜散磁場,從而維持位元格之鄰近列的位元值儲存位元值儲存狀態。
圖9a為描繪可列-錘擊位元格之列的振盪雜散磁場之產生之一個實例的曲線圖。
圖9b為描繪根據本發明之實施例之用於位元格位元值儲存狀態保持的雜散磁場減輕之抵消磁場之產生的一個實例之曲線圖。
圖10為描繪根據本發明之實施例之在不存在位元格位元值儲存狀態保持的雜散磁場減輕的情況下歸因於列-錘擊之位元格翻轉之位元值儲存狀態的一個實例之曲線圖。
圖11為描繪根據本發明之實施例之用於位元格位元值儲存狀態保持的雜散磁場減輕之操作之一個實例的流程圖。
圖12為描繪根據本發明之實施例之用於位元格位元值儲存狀態保持的雜散磁場減輕之操作之另一實例的流程圖。
圖13為圖2之STTRAM記憶體之記憶體控制電路的更詳細示意圖。
圖14為描繪根據本發明之實施例之用於位元格位元值儲存狀態保持的雜散磁場減輕之操作之又一實例的 流程圖。
圖15為圖13之STTRAM記憶體之可程式字線驅動器邏輯的一個實施例之更詳細示意圖。
圖16為描繪圖15之可程式字線驅動器邏輯之操作的一個實例之曲線圖。
圖17為描繪根據本發明之實施例之圖15的可程式字線驅動器邏輯之操作之一個實例的曲線圖,該等操作藉由暫時中止對位元格之列的存取而終止產生振盪雜散磁場。
圖18為描繪根據本發明之實施例的藉由暫時中止對位元格之列的存取而保持位元格之位元值儲存狀態之一個實例的曲線圖。
圖19為描繪根據本發明之實施例之用於位元格位元值儲存狀態保持的雜散磁場減輕之圖14之流程圖的操作之更詳細實例之流程圖。
較佳實施例之詳細說明
在以下描述中,同一參考編號已給予相同組件,而不管該等組件是否展示於不同實施例中。為了以清晰及簡明方式說明本發明之實施例,圖式可能未必按比例繪製且可能按略微示意性形式展示某些特徵。可以相同方式或以類似方式在一或多個其他實施例中及/或組合或代替其他實施例之特徵使用關於一實施例所描述及/或說明之特徵。
根據本發明之各種實施例,描述諸如STTRAM之MRAM記憶體中的雜散磁場減輕。在一個實施例中,STTRAM中之位元格位元值儲存狀態的保持可藉由產生磁場以補償雜散磁場來促進,該等雜散磁場可導致記憶體之位元格改變狀態。在另一實施例中,STTRAM中之位元格位元值儲存狀態之保持可藉由選擇性地暫時中止對記憶體之列的存取以暫時終止雜散磁場來促進,該等雜散磁場可導致記憶體之位元格改變狀態。
舉例而言,本文中應認識到,在不存在根據本描述之位元格位元值儲存狀態保持的情況下,STTRAM位元格之受害者列中的位元格之狀態可歸因於雜散磁場而翻轉,藉由對附近攻擊者列之重複存取而產生該等雜散磁場。根據本描述之一態樣,此等列-錘擊雜散磁場實際上可藉由產生抵消磁場以至少部分抵消雜散磁場來中和。以此方式,可保護受害者列之位元格的位元值儲存狀態免於歸因於列-錘擊而翻轉,該列-錘擊導致存取位元格之附近列。在本描述之另一態樣中,此列-錘擊雜散磁場可實際上藉由選擇性地暫時中止對所存取之位元格之列的存取來中和。結果,雜散磁場之產生可在歸因於導致存取位元格之附近列的受害者列翻轉之位元值儲存狀態之前暫時終止。
根據本描述,應認識到諸如STTRAM之MRAM記憶體中的雜散磁場之主要貢獻者為記憶體控制線中流動之電流,該記憶體控制線常常被稱作字線(WL)控制線。在 一個實施例中,為了增強STTRAM中之位元格位元值儲存狀態的保持,提供可程式WL驅動器邏輯以減輕雜散磁場,該等雜散磁場列-錘擊位元格之列。舉例而言,在選擇所存取之列(亦即「存取」列)的讀取或寫入操作之特定位址後,將對應於選定位址之WL控制線的字線(WL)控制信號切換至高狀態,該高狀態接通耦接至WL控制線之開關電晶體。在一個實施例中,WL控制線上之控制信號可升至在此描述中指定為VON的高狀態,導致在本文中被稱作ION的電流流動通過鄰近於經列-錘擊之列的列之WL控制線。
作為接通WL控制線及與WL控制線之狀態之此改變相關聯的電流的結果,產生雜散磁場Hstray。根據本描述,可程式WL驅動器邏輯可將未經存取之鄰近列(亦即「未存取」列)之WL控制線的狀態改變為受驅動狀態,在該受驅動狀態中,未存取列之WL控制線經受驅動至相反極性電壓狀態,該相反極性電壓狀態在此描述中被指定為-VUND。因此,在此實施例中,未存取列之WL控制線的受驅動狀態-VUND的極性與存取列之WL控制線的高狀態VON相反。作為未存取列之鄰近WL控制線的狀態改變至受驅動狀態的結果,產生在本文中被稱作受驅動電流-IUND之相反極性電流,該相反極性電流又產生抵消磁場H抵消,以完全或部分抵消雜散磁場Hstray。因此,可在不承受列之列-錘擊的情況下促進未存取列之位元格之位元值儲存狀態的保持。此外,未存取列之WL控制線上的相反極性電壓 -VUND可促使未存取列之位元格中的漏電減少。
在起始寫入或其他存取操作後,產生之雜散磁場Hstray可具有表示為+Hstray之特定定向。在完成所存取之列的寫入或其他存取操作後,WL控制信號改變至斷開狀態,該斷開狀態常由零電壓表示。作為自VON狀態轉變至零或較低電壓狀態的結果,與先前電流ION極性相反的電流-ION流動通過所存取之列的WL控制線。結果,產生另一雜散磁場-Hstray,但其定向的方向與早期雜散磁場+Hstray之方向相反。
根據本描述,可程式WL驅動器邏輯可將未經存取之鄰近列(亦即「未存取」列)之WL控制線的狀態再次改變為另一狀態,亦即斷開狀態,例如在該斷開狀態中,將未存取列之WL控制線驅動至諸如零伏特之較高電壓狀態。作為將未存取列之鄰近WL控制線的狀態自受驅動狀態-VUND改變為諸如零伏特之較高電壓狀態的結果,產生電流+IUND(其極性與受驅動電流-IUND相反),該電流+IUND又產生抵消磁場+H抵消,以完全或部分抵消雜散磁場-Hstray。因此,可在不承受對附近列之重複存取的情況下再次促進未存取列之位元格之狀態的保持。
如先前所提到,在本描述之另一態樣中,此列-錘擊雜散磁場實際上可藉由選擇性地暫時中止對所存取之位元格之列的存取來中和。結果,雜散磁場之產生可在歸因於列-錘擊之受害者列翻轉的狀態之前暫時終止,該列-錘擊導致存取位元格之附近列。
本文中應認識到,列-錘擊STTRAM之鄰近(未存取)列可導致STTRAM之鄰近(未存取)列的一或多個位元格之自旋力矩磁化向量開始進動遠離其原始穩定狀態。因此,若附近列之列-錘擊持續足夠長的時間週期,則磁化向量可充分進動以翻轉未存取列之位元格的狀態。
在本描述之一個實施例中,可程式字線驅動器邏輯包括偵測器,該偵測器經組配以偵測對記憶體之列的重複存取,其可指示錘擊鄰近(未存取)列。舉例而言,偵測器可包括計數器,該計數器經組配以計數對特定列之連續存取。偵測器可進一步包括比較器,該比較器經組配以比較計數器之計數輸出與如由變數N表示之臨限值,在一些實施例中,該變數N可由使用者規劃。控制電路可經組配以依據計數器之計數輸出與臨限值之比較,暫時中止對特定列之存取。舉例而言,若針對列之存取操作數等於臨限值N,則可暫時中止對彼列之存取。在一個實施例中,暫時中止週期可受限於如由變數M表示之存取循環的特定數目,在一些實施例中,該變數M亦可由使用者規劃。
本文中應認識到,若暫時中止對導致列-錘擊之列的存取,則鄰近位元格之磁化向量的進動停止,且磁化向量之進動反轉,以使得位元格之狀態可在翻轉至新穩定位元格位元值儲存狀態之前返回至其原始穩定狀態。以此方式,在暫時中止時間間隔內導致列-錘擊之列的操作之暫時中止可用以減輕自旋力矩進動,且降低導致存取型樣之列-錘擊的位元翻轉可能性。在一些實施例中,咸信在 少至單個存取循環(M=1)內暫時中止存取可減少或消除歸因於列-錘擊之位元格狀態翻轉。
在一個實施例中,可在導致存取之偵測到之列-錘擊超出特定列-錘擊(RH)準則的情況下應用記憶體存取之暫時中止。相反,若偵測到之記憶體存取未超出RH準則,則可繞過記憶體存取暫時中止。結果,對於不涉及列-錘擊之正常記憶體存取,及對於原本不會超出RH準則之記憶體存取,可降低或消除對記憶體效能之影響。
在其他實施例中,可在諸如M個存取循環之適當有限時間週期內選擇性地產生抵消磁場H抵消、-H抵消,以在偵測到列之列-錘擊後抵消雜散磁場,而非在偵測到列之列-錘擊後暫時中止存取。在再其他實施例中,存取暫時中止及抵消磁場產生之一種或兩種技術可由字線驅動器邏輯選擇性地使用,以單獨或組合地減輕歸因於列-錘擊之位元格狀態翻轉。
應瞭解,在一些受限情況下,操作之暫時中止可對效能具有不良影響。然而,列-錘擊常常與不正常或未批准的存取型樣相關聯。因此,可在此等情況下許可操作之暫時中止,而不管對效能位準之任何潛在不良影響。
在本描述之另一態樣中,應認識到,可針對更可能經受列-錘擊攻擊之記憶體的選定區域使用根據本描述之雜散磁場減輕。相反,可排除不太可能經受列-錘擊之記憶體區域,從而降低對電路複雜度及開銷之影響。
在所說明之實施例中,STTRAM之每一位元格 包括磁性穿隧接面(MTJ)裝置。可使用自旋極化電流來修改磁性穿隧接面(MTJ)裝置中之磁性層的定向。在基於STT之MTJ中,取決於穿隧接面之兩側上的磁性極化之方向之間的相對角度差,裝置電阻可為低或高。
在一個實施例中,顯現位元格之一個位元值儲存狀態,其中每一MTJ之鐵磁層具有平行的磁性定向,且展現低電阻。相反,顯現第二位元值儲存狀態,其中每一MTJ之鐵磁層具有反向平行的磁性定向,且展現高電阻。諸如「1」之邏輯值可由第一(平行定向、低電阻)狀態表示,且諸如「0」之邏輯值可由第二(反向平行、高電阻)狀態表示。應瞭解,在其他實施例中,諸如「0」之邏輯值可由第一(平行定向、低電阻)狀態表示,且諸如「1」之邏輯值可由第二(反向平行、高電阻)狀態表示。
應瞭解,如本文中所描述之磁場減輕技術可適用於除諸如巨磁阻(GMR)MRAM、雙態觸發MRAM及其他MRAM裝置之STT MRAM裝置以外的MRAM裝置。根據本文所描述之實施例之此類基於MRAM之記憶體元件可用於獨立記憶體電路或邏輯陣列中,或可嵌入於微處理器及/或數位信號處理器(DSP)中。另外,應注意,雖然本文主要參考基於微處理器之系統在說明性實例中描述系統及程序,但應瞭解,鑒於本文之揭示內容,本發明之某些態樣、架構及原理同樣適用於其他類型之裝置記憶體及邏輯裝置。
轉而參看諸圖,圖1為高階方塊圖,其說明根據 本發明之實施例的採用位元格位元值儲存狀態保持之系統之選定態樣。系統10可表示數個電子及/或計算裝置中之任一者,其可包括記憶體裝置。此類電子及/或計算裝置可包括計算裝置,諸如大型主機、伺服器、個人電腦、工作站、電話裝置、網路器具、虛擬化裝置、儲存控制器、攜帶型或行動裝置(例如,膝上型電腦、迷你筆記型電腦、平板電腦、個人數位助理(PDA)、攜帶型媒體播放器、攜帶型遊戲裝置、數位攝影機、行動電話、智慧型手機、功能電話等)或組件(例如,系統單晶片、處理器、橋接器、記憶體控制器、記憶體等)。在替代實施例中,系統10可包括較多元件、較少元件及/或不同元件。此外,雖然系統10可經描繪為包含單獨元件,但應瞭解,此類元件可經整合至諸如系統單晶片(SoC)之一個平台上。在說明性實例中,系統10包含微處理器20、記憶體控制器30、記憶體40及周邊組件50,該等周邊組件可包括(例如)視訊控制器、輸入裝置、輸出裝置、儲存器、網路配接器等。微處理器20包括可為儲存指令及資料之記憶體階層架構之一部分之快取記憶體25,且系統記憶體40亦可為記憶體階層架構之一部分。微處理器20與記憶體40之間的通訊可藉由記憶體控制器(或晶片組)30促進,該記憶體控制器亦可促進與周邊組件50之通訊。
周邊組件50之儲存器可為(例如)非依電性儲存器,諸如固態磁碟機、磁碟機、光碟機、磁帶機、快閃記憶體等。儲存器可包含內部儲存裝置或附接的或網路可存 取儲存器。微處理器20經組配以將資料寫入記憶體40及儲存器50中及自記憶體40及儲存器50讀取資料。將儲存器中之程式載入至記憶體中且由處理器來執行該等程式。網路控制器或配接器使得能夠與網路(諸如,乙太網路、光纖通道仲裁迴路等)進行通訊。另外,在某些實施例中,架構可包括經組配以在顯示監視器上顯現儲存於記憶體中之資訊之視訊控制器,其中視訊控制器可體現於視訊卡上或整合於安裝於主機板或其他基體上之積體電路組件上。輸入裝置用以將使用者輸入提供至處理器,且可包括鍵盤、滑鼠、觸控筆、麥克風、觸敏式顯示螢幕、輸入接腳、插口或此項技術中已知之任何其他啟動或輸入機構。輸出裝置能夠顯現自處理器或其他組件(諸如,顯示監視器、印表機、儲存器、輸出接腳、插口等)傳輸之資訊。網路配接器可體現於網路卡(諸如,周邊組件互連(PCI)卡、快速PCI或某一其他I/O卡)上或體現於安裝於主機板或其他基體上之積體電路組件上。
可取決於特定應用而省略裝置10之組件中之一或多者。舉例而言,網路路由器可缺乏(例如)視訊控制器。
記憶體裝置25、40及其他裝置10、30、50中之任何一或多者可包括具有根據本描述之雜散磁場減輕的MRAM記憶體。圖2展示根據本描述之一個實施例之STT記憶體66的位元格64之列及行的陣列60的實例。STT記憶體66亦可包括列解碼器、計時器裝置及I/O裝置(或I/O輸 出)。相同記憶體字之位元可彼此分離以用於有效率I/O設計。多工器(MUX)可用以在讀取操作期間將每一行連接至所需電路系統。另一MUX可用以在「寫入」操作期間將每一行連接至寫入驅動器。控制電路68執行雜散磁場減輕操作及記憶體存取操作,諸如對位元格64之讀取操作及寫入操作,如下文所解釋。控制電路68經組配以使用適當硬體、軟體或韌體或其各種組合執行所描述之操作。
如圖3a至圖3d中所示,所說明實施例之每一STTRAM位元格64包括諸如磁性穿隧接面(MTJ)裝置70之鐵磁裝置、諸如NMOS電晶體之開關電晶體71,及三個控制線,亦即用於位元格存取操作之位元線(BL)、源極線(SL)及字線(WL),該等位元格存取操作包括讀取及寫入操作。如最佳在圖4a、圖4b中所見,位元格之每一鐵磁裝置70包含由中間層76分離之鐵磁材料的兩個層72、74a,該中間層在自旋閥的狀況下為金屬層,或在MTJ的狀況下為薄介電或絕緣層。在此實例中,鐵磁材料之層72藉由電接觸層78接觸並且具有在其中占主導之磁化方向固定之固定極化。因此,層72被稱作固定層。固定層72之主導性磁化方向具有藉由圖4a之橫截面圖中的自右至左指向之箭頭80表示之磁化方向。
鐵磁材料之另一層74a與電接觸層81接觸且被稱作具有可改變之極化之「自由層」,其中可選擇性地改變自由層之主導性磁化方向。自由層74a之主導性磁化方向由圖4a之剖視圖中的亦自右至左指向之箭頭82a表示。在 圖4a、圖4b之實施例中,如由箭頭80、82a、82b表示之磁化方向經指示為大體上平行於中間層76。應瞭解,在其他MTJ裝置中,磁化方向可具有其他定向。舉例而言,磁化方向可正交於中間層76。
在圖4a之實例中,將自由層74a及固定層72兩者之主導性磁化方向描繪為相同的,亦即,在相同方向上。若兩個鐵磁層72、74a之主導性磁化方向相同,則兩個層之極化被稱作「平行」。在平行極化中,位元格展現低電阻狀態,其可經選擇以表示儲存於位元格中之邏輯1或邏輯0中之一者。若兩個鐵磁層之主導性磁化方向如藉由圖4b中之箭頭80(右至左)及箭頭82b(左至右)展示般為相反的,則兩個層72、74b之極化被稱作「反向平行」。在反向平行極化中,位元格展現高電阻狀態,其可經選擇以表示儲存於位元格中之邏輯1或邏輯0中之另一者。因此,每一位元格64之MTJ裝置70可由如圖3b中所示之可變電阻器Rmem示意性地表示。
藉由使自旋極化電流在特定方向上通過位元格64之鐵磁裝置70,極化及因此儲存於STTRAM 66之位元格64中之邏輯位元值可被設定為特定位元值儲存狀態。自旋極化電流為以下情形之電流:其中電荷載流子(諸如,電子)之自旋定向主要為自旋向上或自旋向下之一種類型。因此,控制電路68(圖2)經組配以藉由使自旋極化電流在一方向上通過位元格64之鐵磁裝置70而將邏輯1儲存於STTRAM 66之位元格64中。結果,取決於哪一極化狀態已 經選擇以表示邏輯1,位元格64之鐵磁裝置70之鐵磁層具有為平行或反向平行中之一者之極化。
相反地,可藉由控制電路68使自旋極化電流在相反方向上通過位元格之鐵磁裝置70來將邏輯0儲存於STTRAM 66之位元格64中。結果,取決於選擇哪一種極化來表示邏輯0,位元格64之鐵磁裝置70之鐵磁層具有為平行或反向平行中之另一者的極化。
因此,藉由使電流通過磁性穿隧接面(MTJ)裝置70而寫入至圖3a至圖3d之位元格64,且電流之方向判定MTJ裝置70之位元值儲存狀態。舉例而言:若在足夠長的持續時間(切換時間)內施加電流,則自位元線BL至源極線SL之電流將會將MTJ裝置70切換至平行(P)極化方向,且自源極線SL至位元線BL之電流將會將MTJ裝置70切換至反向平行(AP)極化方向。
根據本描述,應瞭解,除了流動通過MTJ裝置70之電流之外,MTJ裝置70之狀態亦可受磁場的影響,該磁場諸如對MTJ裝置70施加之雜散磁場。因此,在本描述之一態樣中,MTJ裝置70之狀態的控制可藉由降低或消除對MTJ裝置70所施加之雜散磁場之效應而改良。
在一個實施例中,位元格64可藉由對位元線BL預充電至VRD且允許其在用電壓VDD選通字線WL時在位元格間衰減,如圖5之圖表中所示,該電壓接通開關電晶體71。感測放大器參考電壓可同時使用參考位元格耗盡。可使用PMOS電流源箝位參考及存取位元線BL兩者,以使得 在感測放大器輸入端處維持恆定差動,甚至達到極長存取時間。
在此實例中,邏輯1由可變電阻性元件Rmem(圖3b)之高電阻狀態(反向平行極化(圖4b)表示,該可變電阻性元件Rmem為磁性穿隧接面(MTJ)裝置70。相反,邏輯0在此實例中由可變電阻性元件Rmem之低電阻狀態(平行極化(圖4a)表示,該可變電阻性元件Rmem為磁性穿隧接面(MTJ)裝置70。因此,若預充電電壓VRD衰減至相對高值,則邏輯1(高電阻狀態)經指示為儲存於MTJ裝置70中。相反,若預充電電壓VRD衰減至相對低值,則邏輯0(低電阻狀態)經指示為儲存於MTJ裝置70中。(應瞭解,在其他實施例中,邏輯1可由可變電阻電晶體元件Rmem之低電阻狀態(平行極化(圖4a))表示。相反,邏輯0可由可變電阻電晶體元件Rmem之高電阻狀態(反向平行極化(圖4b))表示。)
為了寫入至位元格64中,使用由控制電路68(圖2)控制之雙向寫入方案。為了寫入邏輯0(其中表示為可變電阻性元件Rmem之MTJ裝置70的位元值儲存狀態自反向平行狀態(圖4b)改變至平行狀態(圖4a)),位元線BL被充電至VDD,且源極線SL連接至接地,以使得電流自位元線BL流動至源極線SL。相反,為了寫入邏輯1(其中可變電阻性元件Rmem之狀態自平行狀態(圖4a改變至反向平行狀態(圖4b)),利用具有相反方向之電流。因此,在VDD處之源極線SL及在接地處之位元線BL導致電流自源極線SL流動至位元線BL,亦即方向相反。在完成對位元格64之記憶體存 取操作後,將所存取之列的位元格64之源極線SL、位元線BL及字線WL維持於斷開狀態(諸如零伏特,如圖5中所示),以保留所存取之列的位元格之位元格位元值儲存狀態。
然而,應認識到,在不存在根據本描述之位元格狀態保持之情況下,通過記憶體66之導體的電流可產生雜散磁場,該等雜散磁場可擾亂記憶體66之操作。舉例而言,在諸如字線WL、位元線BL或源極線SL之導體中產生以在讀取或寫入操作中存取一個位元格之電流可產生強度足以翻轉鄰近位元格之位元值儲存狀態的雜散磁場,尤其在位元格整合變得逐漸密集時。
在圖3a之實施例中,MTJ裝置70經展示為具有耦接至位元格控制線BL之自由層及耦接至開關電晶體71之固定層。然而,應瞭解,在其他實施例中,此配置可反轉成自由層耦接至開關電晶體71,且固定層耦接至位元格控制線BL。
圖6為描繪記憶體66(圖2)之位元格64之陣列60的部分60a之示意圖。如最佳在圖2中所見,陣列60包括位元格64之第一列100及位元格64之第二鄰近列102。
圖6將列100描繪為包括由位元格64a1、64a2、......、64an表示之位元格,該等位元格中的每一者包括MTJ裝置70'。類似地,鄰近列102經描繪為包括由位元格64b1、64b2、......、64bn表示之位元格,該等位元格中的每一者包括MTJ裝置70。在圖3c及圖6之實例中,位 元格及其組件相對密集地整合。因此,鄰近位元格及鄰近位元格之組件(包括MTJ裝置70、70'、諸如位元線(BL)、字線(WL)及源極線(SL)之導體金屬化控制線108(圖3c)、層之間的通孔110,及開關電晶體71之摻雜區114及層118)可一起相對密切地間隔開。應瞭解,其他實施例可取決於特定應用而整合至較大或較小密度。
歸因於各種因素(諸如在一些實施例中之密集型整合),可將大量雜散磁場施加於包括MTJ裝置70'之位元格的組件。此等雜散磁場可藉由載流導體(諸如位元線BL、源極線SL及字線WL)產生。根據本描述,應認識到,諸如STTRAM之MRAM記憶體中的雜散磁場之主要貢獻者係歸因於在字線(WL)控制線中流動之電流。在圖6之實例中,位元格64b1、64b2、......、64bn之列102表示以導致列-錘擊鄰近列的方式存取之列。未存取經列錘擊之位元格64a1、64a2、......、64an之鄰近列。因此,列100之字線經標記為WLnot_access。相反,所存取之列102之字線經標記為WLaccess
圖7描繪歸因於在列102(圖6)之字線(WL)控制線WLaccess中流動的電流產生之雜散磁場Hstray。圖8描繪順序記憶體存取循環,其中在順序讀取或寫入操作中存取列102(圖6)之特定位址。在每一記憶體存取循環中,在選擇所存取之列102(亦即「存取」列)的讀取或寫入操作之特定位址後,將由選定位址之WL控制線WLaccess攜載的字線(WL)控制信號切換至高狀態VON,如圖8中所示,其接通 耦接至WL控制線之開關電晶體71(圖3a至圖3d)。歸因於轉變至高狀態VON,在本文中被稱作ION(圖7)之電流流動通過所存取之列102的控制線WLaccess
作為流動通過WL控制線WLaccess之接通電流ION的結果,根據畢-薩定律產生雜散磁場Hstray,如圖7中所示。在未存取鄰近列100(圖6)之鄰近(「受害者」)MTJ裝置70'後雜散磁場Hstray的強度可依據受害者MTJ裝置70'與所存取之列102的WL控制線WLaccess之間的距離變數d1、cos θ1、cos φ1(圖7)被計算為:
圖9a展示已藉由假設給定電流ION之無限長導線(θ1=φ1=0)及導體至MTJ裝置距離d1來簡化之經計算雜散磁場強度的實例。在不存在根據本描述之雜散磁場減輕的情況下,雜散磁場Hstray可導致受害者MTJ裝置70'將其位元值儲存狀態自平行定向、低電阻狀態切換至反向平行定向、高電阻狀態,或反之亦然。此狀態切換藉由流動通過諸如WL控制線WLaccess之導體的雙向電流增強,此情形可產生雜散磁場(+Hstray、-Hstray),該等雜散磁場在本質上為振盪的,如圖9a中所示。舉例而言,在記憶體讀取/寫入存取循環中啟動WL控制線WLaccess以自存取列102之位元格讀取值或將值寫入至存取列102之位元格時,電流流動通過WL控制線WLaccess,以對WL控制線WLaccess中存在之電容充電,自「0」充電至VON,如圖8中所示。在圖5之實例中, 電壓VON經表示為電壓VDD。應認識到,取決於特定應用,電壓VON可具有其他值及源。
作為記憶體存取循環中起始之電流流動的結果,產生磁場Hstray,且其流動通過受害者MTJ裝置70',如圖7中所示。因為終止記憶體讀取(或寫入)存取,所以撤銷啟動WL控制線WLaccess,且放電電流(其可表示為-ION)在相反方向上流動,且產生雜散磁場(其可表示為-Hstray),該雜散磁場在相反方向上流動通過受害者MTJ裝置70'。如圖9a中所描繪,+Hstray繼之以-Hstray之順序及重複施加提供振盪雜散磁場,該振盪雜散磁場可導致切換受害者MTJ裝置70'之位元值儲存狀態,如圖10中所描繪。
舉例而言,本文中應認識到,受害者MTJ裝置70'之極化方向可回應於所施加之振盪雜散磁場進行振盪。因此,位元格位元值儲存狀態亦可振盪,只要施加了振盪雜散磁場。結果,受害者位元格之最終位元值儲存狀態可取決於在振盪雜散磁場停止時位元格之最後位元值儲存狀態。因此,取決於列-錘擊振盪雜散磁場何時停止,受害者位元格之所得位元值儲存狀態可為正確狀態或不正確狀態。
應進一步認識到,MTJ裝置翻轉位元值儲存狀態之磁化係數可為參數程序變化之函數。因此,一些MTJ裝置之狀態可更容易由比其他MTJ裝置弱的雜散磁場翻轉。應進一步瞭解到,由記憶體陣列之連續重複存取產生的熱可減小翻轉MTJ裝置狀態所需要之雜散磁場強度。
因此,在不存在根據本描述之雜散磁場減輕的情況下,記憶體之可靠性可不利地受列-錘擊或產生過度雜散磁場之其他記憶體存取型樣影響。另外,倘若此列錘擊促進寫入於安全性策略所不准許之記憶體列中,則列-錘擊可不利地影響資料安全性。因此,在不存在根據本描述之雜散磁場減輕的情況下,應認識到黑客可能夠寫入至未經授權的記憶體位置。
圖11描繪根據本描述之位元格位元值儲存狀態保持操作的一個實例。在一個操作中,存取諸如MRAM之記憶體的位元格之列(區塊200)。如上文所描述,此存取可產生雜散磁場,在不存在根據本描述之位元格狀態保持的情況下,該等雜散磁場可導致受害者位元格之位元格狀態改變位元值儲存狀態,結果損失了可靠性或資料安全性。在圖11之實施例中,記憶體經組配以減輕(區塊210)雜散磁場以維持鄰近於所存取之列的記憶體列之位元值儲存狀態(區塊200)。
圖12描繪包括根據本描述之磁場減輕操作的一個實施例之位元格位元值儲存狀態保持操作之一個實例。在此實例中,產生諸如針對WL控制線WLaccess(圖8)描繪之控制信號的字線(WL)控制信號(區塊220)以存取列102之位元格,諸如位元格64b1、64b2、......、64bn(圖6)中的一或多者。如上文所指出,此存取可產生雜散磁場+Hstray、-Hstray,在不存在根據本描述之位元格位元值儲存狀態保持的情況下,該等雜散磁場可導致諸如位元格64a1、 64a2、......、64an(圖6)之受害者位元格的位元格狀態改變位元值儲存狀態,如圖10中所描繪。
在根據本描述之磁場減輕的一個實施例中,可產生(區塊230,圖12)字線補償控制信號,以導致產生抵消磁場以補償雜散磁場,從而維持位元格之鄰近列的位元值儲存狀態。圖8描繪WL控制線WLnot_access之此字線補償控制信號的一個實例,該字線補償控制信號由字線驅動器電路邏輯產生,該字線驅動器電路邏輯諸如圖13之記憶體66的可程式字線驅動器邏輯240。圖7描繪回應於WL控制線WLnot_access之字線補償控制信號而產生的磁場Hcancel的一個實例。
如先前所提到,在導致列-錘擊之列的每一記憶體存取循環(圖8)中,將由選定位址之WL控制線WLaccess攜載的字線(WL)控制信號切換至高狀態VON,且電容充電電流ION(圖7)流動通過所存取之列102的控制線WLaccess。作為流動通過WL控制線WLaccess之接通電流ION的結果,產生雜散磁場Hstray
在圖13之記憶體66中,藉由提供包括列102之列位址及如由圖13之位元格64b1表示的位元格64a1、64a2、......、64an中的一或多者之行位址的記憶體位址,可選擇列102之位元格64b1、64b2、......、64bn(圖6)中的一或多者以用於記憶體讀取或寫入存取操作。由列位址解碼器邏輯244解碼列位址以選擇特定字線,諸如列102之WL控制線WLaccess。由行位址解碼器邏輯250解碼行位址以使 用行選擇邏輯254及感測放大器260選擇特定位元線(BL)。可讀取儲存於所存取之位元格中之位元值,且將其鎖存於讀取鎖存器264中。
為了補償每一存取循環中之雜散磁場之產生,在每一記憶體存取循環期間由可程式字線驅動器240產生補償控制信號。將所產生之補償控制信號施加於未存取之一或多個鄰近列的字線,如由列100(圖6)之WL控制線WLnot_access(圖8)表示。因此,在選擇記憶體存取循環中所存取之列102(亦即「存取」列)的讀取或寫入操作之特定位址後,將由選定位址之WL控制線WLnot_access攜載之補償控制信號切換至受驅動狀態-VUND,如圖8中所示。因此,在此實施例中,未存取列之WL控制線的受驅動狀態-VUND之極性與存取列之WL控制線的高狀態VON相反。歸因於轉變至受驅動狀態-VUND,在本文中被稱作-IUND(圖7)之電容充電電流流動通過未經存取之列100的控制線WLnot_access。因此,在此實施例中,未存取列之WL控制線之電流-IUND的極性與存取列之WL控制線的電流ION相反。
作為流動通過WL控制線WLnot_access之補償電流-IUND的結果,根據畢-薩定律產生抵消磁場Hcancel,如圖7中所示。在未存取鄰近列100(圖6)之鄰近(「受害者」)MTJ裝置70'後抵消磁場Hcancel的強度可依據受害者MTJ裝置70'與未經存取之列100的WL控制線WLnot_access之間的距離變數d2、cos θ2、cos φ2(圖7)被計算為:
因此,可選擇受驅動狀態-VUND及流動通過未經存取之列100之控制線WLnot_access的所得電流-IUND(圖7)之量值及極性,以提供所得抵消磁場Hcancel,該所得抵消磁場對未經存取之鄰近列100(圖6)之鄰近(「受害者」)MTJ裝置70'完全或至少部分補償雜散磁場Hstray。舉例而言,圖9b描繪抵消磁場Hcancel,其具有適當極性及量值以對鄰近(「受害者」)MTJ裝置70'抵消雜散磁場Hstray且產生強度為零或近似零的淨磁場Hnet。在一個實施例中,可程式字線驅動器邏輯240可經規劃以提供補償控制信號,該等補償控制信號具有適當極性及量值以對鄰近(「受害者」)MTJ裝置70'抵消雜散磁場Hstray,且產生淨磁場Hnet,該淨磁場足夠低以減少或消除歸因於列錘擊之位元格狀態切換。
如先前所提到,因為終止記憶體讀取(或寫入)存取,所以撤銷啟動WL控制線WLaccess,且電容放電電流(其可表示為-ION)在與先前電流+ION相反的方向上流動,且產生雜散磁場(其可表示為-Hstray),該雜散磁場在先前雜散磁場+Hstray之相反方向上流動通過受害者MTJ裝置70'。如圖9a中所描繪,+Hstray繼之以-Hstray之順序施加提供振盪雜散磁場Hstray,該振盪雜散磁場可導致切換受害者MTJ裝置70'之位元值儲存狀態,如圖10中所描繪。
如先前所提到,在每一記憶體存取循環期間由可程式字線驅動器240產生補償控制信號,且將其施加於未經存取之一或多個鄰近列的字線,如由列100(圖6)之WL控制線WLnot_access(圖8)表示。因此,因為撤銷啟動WL控制 線WLaccess且電流-ION流動並產生雜散磁場-Hstray,所以類似地撤銷啟動WL控制線WLnot_access,且電容放電補償電流(其可表示為+IUND)在先前補償電流-IUND之相反方向上流動,且產生抵消磁場(其可表示為+Hcancel),該抵消磁場在先前抵消磁場-Hcancel之相反方向上流動通過受害者MTJ裝置70'。如圖9b中所描繪,+Hcancel繼之以-Hcancel之順序施加提供在受害者MTJ裝置70'處具有類似量值但極性與振盪雜散磁場Hstray相反之振盪抵消磁場Hcancel,以在受害者MTJ裝置70'處提供淨施加磁場HNET。由藉由抵消磁場Hcancel完全或部分抵消雜散磁場Hstray產生之淨磁場HNET可在受害者MTJ裝置70'處具有足夠小的量值,以便減少或消除歸因於由存取列102(圖6)導致之列-錘擊的受害者MTJ裝置70'之位元值儲存狀態之切換。
在圖7之實施例中,未經存取之列100之字線WLnot_access比所存取之列102的字線WLaccess更接近於受害者MTJ裝置70'。結果,在此實施例中,字線WLnot_access之補償控制信號的量值VUND可小於所存取之列102之字線WLaccess的存取控制信號VON之量值。舉例而言,在一個實施例中,補償控制信號之量值VUND可為距離d2對距離d1之比率的函數,諸如量值VUND=VON * d2/d1。應瞭解,可應用其他函數以判定根據本描述之適當補償控制信號。
因此,可程式字線驅動器240可經組配以提供適當補償控制信號,以減少或消除歸因於列-錘擊之位元格位元值儲存狀態翻轉,該列-錘擊導致存取位元格之鄰近 列。應認識到,由藉由抵消磁場Hcancel完全或部分抵消雜散磁場Hstray產生之淨磁場HNET無需為零以減少或消除歸因於列-錘擊之此狀態翻轉,由重複存取或其他記憶體存取型樣導致該列-錘擊。結果,可程式字線驅動器240可經組配以提供補償控制信號,該等補償控制信號具有足以減少或消除狀態翻轉之強度,但功率相對較低,從而節省電力消耗。儘管字線驅動器邏輯240在一個實施例中描述為可程式的,但應瞭解,在其他實施例中,取決於特定應用,字線驅動器邏輯240可具有固定組態。
圖14描繪位元格狀態保持操作之另一實例,該等位元格狀態保持操作包括根據本描述之磁場減輕的另一實施例。在一個操作中,對MRAM之位元格之列的重複記憶體存取可由記憶體偵測(區塊300)。若偵測到,則對位元格之列的存取暫時中止(區塊310)達一時間間隔,以在暫時中止時間間隔之持續時間內終止雜散磁場,從而維持位元格之鄰近列的位元值儲存狀態。
在一個實施例中,諸如圖13之記憶體66的可程式字線驅動器邏輯240之字線驅動器電路可經組配以偵測對MRAM之位元格之列的重複記憶體存取,且在此偵測後,暫時中止對位元格之列的記憶體存取,以在時間間隔之持續時間內終止雜散磁場。在又一實施例中,可程式字線驅動器邏輯240可經組配以偵測對位元格之列的重複記憶體存取,且在偵測到重複記憶體存取的情況下,藉由以與上文結合圖7所描述之方式類似的方式產生抵消磁場來 減輕雜散磁場。在再其他實施例中,取決於特定應用,可程式字線驅動器邏輯240可經組配以選擇性地藉由暫時中止對反覆存取之位元格之列的記憶體存取或藉由產生抵消磁場或兩者而減輕雜散磁場。
圖15描繪可程式字線驅動器邏輯240之一個實例,該可程式字線驅動器邏輯包括經組配以偵測對位元格之列的重複記憶體存取之偵測器320。儘管圖為簡單起見展示單一偵測器320,但應瞭解,字線驅動器可具有多個此等偵測器320,每一偵測器320可用以偵測針對一或多個相關聯字線WL之重複記憶體存取。
偵測器320包括記憶體存取計數器330,該記憶體存取計數器追蹤對所存取之列之記憶體存取的型樣。在此實施例中,計數器330計數對所存取之列的連續記憶體存取,如圖16中所示。因此,在圖16之實例中,在偵測時間間隔期間展示用於特定記憶體列之四個連續記憶體讀取或寫入存取循環。每次在連續記憶體存取型樣中存取列,計數器330之輸出便遞增。相反,若在偵測時間間隔期間跳過記憶體存取循環,則重設計數器。
圖15之偵測器320進一步包括比較器340,該比較器具有經組配以接收臨限值之第一輸入端、經組配以接收計數器330之計數輸出的第二輸入端。比較器340經組配以比較計數器330之輸出與臨限值,該臨限值可由變數「N」表示,且可在一些實施例中規劃。在圖16之實例中,已將比較器340規劃以比較計數器330之輸出與N=4連續記憶體 存取操作之臨限值。
字線驅動器邏輯240經組配以依據記憶體存取計數器之計數輸出與臨限值之比較及依據存取暫時中止時間間隔,暫時中止對所存取之列的存取。因此,若記憶體存取計數器330之輸出指示已在四個連續記憶體讀取或寫入操作中存取位元格之列,則在存取暫時中止時間間隔(圖16)內藉由可程式字線驅動器240之列存取暫時中止邏輯350暫時中止對列之存取。存取暫時中止時間間隔週期之持續時間可由變數「M」表示,其中M表示存取循環之量。同樣,儘管圖為簡單起見展示單一暫時中止邏輯350,但應瞭解,字線驅動器可具有多個此等暫時中止邏輯350,每一暫時中止邏輯350可用以暫時中止針對一或多個相關聯字線WL之記憶體存取。
在一個實施例中,暫時中止週期之持續時間M可經規劃。在圖16之實例中,將列存取暫時中止邏輯350規劃以在存取暫時中止時間間隔M=2(兩個)記憶體存取循環內暫時中止對列之存取。在另一實施例中,存取暫時中止時間間隔之持續時間可少至M=1(一個)存取循環。應瞭解,取決於特定應用,存取暫時中止時間間隔之持續時間可更長或更短。類似地,應瞭解,取決於特定應用,比較器340之連續存取的臨限值N可大於四或小於四。
圖17描繪藉由在偵測時間間隔N=4期間反覆地存取列而產生振盪雜散磁場。在本文中應認識到,藉由反覆地存取STTRAM之列而產生的振盪雜散磁場可導致 STTRAM之鄰近(未存取)列的位元格之自旋力矩磁化向量開始進動遠離原始穩定狀態。因此,若對附近列之重複存取持續足夠長的時間週期(如由等於臨限值N之連續記憶體存取循環的數目表示),則鄰近位元格之MTJ裝置之磁化向量可充分進動以翻轉未存取列之位元格的狀態。因為在此實例中,在記憶體存取暫時中止時間間隔(亦即,M=2記憶體讀取/寫入存取循環)期間暫時中止對列之記憶體存取,所以在記憶體存取暫時中止時間間隔之持續時間內終止雜散磁場之產生,如圖17中所示。另外,在記憶體存取暫時中止時間間隔之持續時間內將記憶體存取計數器330之輸出重設為零,如圖16中所示。
在本文中應認識到,若在位元格狀態翻轉至另一穩定狀態之前暫時中止對導致列-錘擊之列的記憶體存取,則鄰近位元格之磁化向量的進動停止,且磁化向量之進動反轉,以使得位元格之狀態返回至其原始穩定狀態。以此方式,在「M」記憶體讀取/寫入存取循環之暫時中止窗或時間間隔內導致列-錘擊之列的操作之暫時中止可用以減輕自旋力矩進動,且降低作為導致存取型樣之列-錘擊的結果的位元值儲存狀態翻轉之可能性。因此,如圖18中所示,維持位元值儲存狀態。在一些實施例中,咸信在少至單個記憶體存取循環(M=1)內暫時中止存取可減少或消除歸因於列-錘擊之位元格狀態翻轉。
圖19描繪位元格狀態保持操作之更詳細實例,該等位元格狀態保持操作藉由暫時中止對導致列-錘擊之 列的記憶體讀取/寫入存取而減輕雜散磁場。在此實施例中,在開始(區塊400)操作後,將所有記憶體存取計數器初始化(區塊410)為零。在一些實施例中,可提供記憶體存取計數器以計數每一記憶體列之記憶體讀取/寫入存取循環,該記憶體列被視為列-錘擊之可能來源。在判定(區塊414)存取此等可能目標列中的一者後,與所存取之列相關聯的計數器可遞增(區塊420)合適的值。在圖16之實施例中,對應記憶體存取計數器遞增等於一之值。應瞭解,在其他實施例中,取決於特定應用,可利用其他遞增值(正或負)。
在使對應計數器遞增後,關於由記憶體存取計數器輸出表示之記憶體讀取/寫入存取循環的數目是否已達到臨限值進行判定(區塊424)。在圖16之實施例中,臨限值為N=4(四個)記憶體讀取/寫入存取循環。應瞭解,在其他實施例中,取決於特定應用,可利用其他臨限值(正或負)。
若判定(區塊424)由記憶體存取計數器輸出表示之記憶體讀取/寫入存取循環的數目已達到臨限值,則在存取暫時中止時間間隔之持續時間內暫時中止對與記憶體存取計數器相關聯的列之其他記憶體存取(區塊430)。在圖16之實施例中,存取暫時中止時間間隔之持續時間為M=2(兩個)記憶體讀取/寫入存取循環。應瞭解,在其他實施例中,取決於特定應用,可利用其他暫時中止時間間隔持續時間值(正或負)。
如先前所提到,咸信在連續記憶體存取循環的情況下暫時中止對導致列-錘擊之列的記憶體存取可導致鄰近位元格之磁化向量的進動停止。另外,磁化向量之進動反轉,以使得位元格之狀態返回至其原始穩定位元值儲存狀態。以此方式,在「M」記憶體讀取/寫入存取循環之暫時中止窗或時間間隔內導致列-錘擊之列的記憶體存取操作之暫時中止可用以減輕自旋力矩進動,且降低作為導致記憶體存取型樣之列-錘擊的結果的位元值儲存狀態翻轉之可能性。
在存取暫時中止時間間隔之後,重新繼續暫時中止列之記憶體操作(區塊434),且重設對應於列之記憶體存取計數器。若判定(區塊424)由記憶體存取計數器輸出表示之記憶體讀取/寫入存取循環的數目尚未達到臨限值,則關於當前存取是否為連續記憶體存取進行另一判定(區塊440)。在一個實施例中,若在剛好前一個記憶體讀取/寫入存取循環中出現記憶體存取,則當前記憶體存取可經判定為連續記憶體存取,且若如此,則此先前記憶體存取係針對與當前記憶體存取相同的列。因此,若先前記憶體存取係針對與當前記憶體存取相同之列,且緊接在當前記憶體存取之記憶體讀取/寫入存取循環之前在記憶體讀取/寫入存取循環中出現,則當前記憶體存取經判定(區塊440)為連續記憶體存取。
若當前記憶體存取經判定(區塊440)為連續存取,則關於新增記憶體存取指令是否為未決進行另一判定 (區塊444)。若無其他記憶體存取指令為未決的,則判定終止包括當前存取之記憶體存取的型樣。因此,圖19之雜散磁場減輕操作可結束(區塊450)。相反,若其他記憶體存取指令為未決的,則判定可繼續包括當前記憶體存取之記憶體存取的型樣。因此,控制返回至測試下一未決記憶體存取操作,如上文在區塊414之操作處開始論述。
若當前記憶體存取經判定(區塊440)不是連續記憶體存取,則判定包括當前記憶體存取之記憶體存取的型樣不為導致記憶體存取之型樣的列-錘擊。因此,重設所存取之列的對應記憶體存取計數器(區塊454),且測試下一記憶體存取操作,如上文在區塊414之操作處開始論述。
實例
以下實例係關於其他實施例。
實例1為一種設備,其包含:磁阻式(MRAM)位元格之一陣列,其具有MRAM位元格之第一及第二列,其中每一位元格包括具有一極化之一鐵磁裝置,該極化在一第一位元值儲存狀態中為平行及反向平行極化中的一者,且在一第二位元值儲存狀態中為平行及反向平行極化中之另一者;以及控制電路,其經組配以存取該第一列之一位元格,其中該存取產生一第一磁場,且其中該控制電路經進一步組配以減輕該第一列之一第一磁場,以維持該第二列之一位元格的一位元值儲存狀態。
在實例2中,實例1至8(排除本實例)之標的物可 視情況包括:其中經組配以減輕一第一磁場之該控制電路經組配以在該第二列之一位元格中產生一第二磁場以補償一第一磁場,其中減輕該第一列之一第一磁場以維持該第二列之一位元格的一位元值儲存狀態。
在實例3中,實例1至8(排除本實例)之標的物可視情況包括:其中該等MRAM位元格為自旋轉移力矩(STT)隨機存取記憶體(RAM)位元格。
在實例4中,實例1至8(排除本實例)之標的物可視情況包括:其中位元格之該第一列具有耦接至該第一列之每一位元格的一第一字線,且位元格之該第二列具有耦接至該第二列之每一位元格的一第二字線,其中經組配以存取該第一列之一位元格的該控制電路經組配以在該第一字線上產生具有一第一極性之一第一字線控制信號,其中該第一字線控制信號產生該第一磁場,且其中經組配以在該第二列之一位元格中產生一第二磁場之該控制電路經進一步組配以產生在該第二字線上且具有與該第一極性相反之一第二極性的一字線補償控制信號,以補償一第一磁場,從而維持該第二列之一位元格的一位元值儲存狀態。
在實例5中,實例1至8(排除本實例)之標的物可視情況包括:其中經組配以在該第二列之一位元格中產生一第二磁場之該控制電路包括一可程式字線驅動器,該可程式字線驅動器經組配以在該第二字線上產生一字線補償控制信號,其中該字線補償控制信號之量值為可程式的。
在實例6中,實例1至8(排除本實例)之標的物可視情況包括:其中經組配以減輕一第一磁場之該控制電路包括經組配以偵測對該第一列之重複存取的一偵測器,及經組配以回應於該偵測而暫時中止對該第一列之存取的一驅動器,其中回應於該偵測而減輕該第一列之一第一磁場以維持該第二列之一位元格的一位元值儲存狀態。
在實例7中,實例1至8(排除本實例)之標的物可視情況包括:其中該控制電路偵測器包括:一計數器,其具有一輸出端且經組配以計數對該第一列之連續存取,且輸出一計數,該計數表示對該第一列之連續存取的數目;以及一比較器,其具有經組配以接收一臨限值之一第一輸入端、經組配以接收該計數器之該計數輸出的一第二輸入端,且經組配以比較該計數器之該計數輸出與該臨限值,且其中該控制電路驅動器經組配以依據該計數器之該計數輸出與該臨限值之該比較,暫時中止對該第一列之存取。
在實例8中,實例1至8(排除本實例)之標的物可視情況包括:其中該控制電路經組配以在存取循環中存取該第一列之一位元格,且其中該控制電路比較器經組配為可程式的,以接收一可程式規劃的臨限值,且比較該計數器之該計數輸出與該可程式規劃的臨限值,且其中該控制電路驅動器經組配為可程式的,以接收一可程式規劃的存取循環數目值,且依據該計數器之該計數輸出與該可程式規劃的臨限值之該比較及該可程式規劃的存取循環數目值,暫時中止對該第一列之存取。
實例9係針對一種供一顯示器使用之計算系統,其包含:一記憶體;一處理器,其經組配以將資料寫入該記憶體中並自該記憶體讀取資料;以及一視訊控制器,其經組配以顯示由該記憶體中之資料表示之資訊;其中該記憶體包括一磁阻式隨機存取記憶體(MRAM),該MRAM包含:磁阻式(MRAM)位元格之一陣列,其具有MRAM位元格之第一及第二列,其中每一位元格包括具有一極化之一鐵磁裝置,該極化在一第一位元值儲存狀態中為平行及反向平行極化中的一者,且在一第二位元值儲存狀態中為平行及反向平行極化中之另一者;以及控制電路,其經組配以存取該第一列之一位元格,其中該存取產生一第一磁場,且其中該控制電路經進一步組配以減輕該第一列之一第一磁場,以維持該第二列之一位元格的一位元值儲存狀態。在實例10中,實例9至16(排除本實例)之標的物可視情況包括:其中經組配以減輕一第一磁場之該控制電路經組配以在該第二列之一位元格中產生一第二磁場以補償一第一磁場,其中減輕該第一列之一第一磁場以維持該第二列之一位元格的一位元值儲存狀態。在實例11中,實例9至16(排除本實例)之標的物可視情況包括:其中該等MRAM位元格為自旋轉移力矩(STT)隨機存取 記憶體(RAM)位元格。
在實例12中,實例9至16(排除本實例)之標的物可視情況包括:其中位元格之該第一列具有耦接至該第一列之每一位元格的一第一字線,且位元格之該第二列具有耦接至該第二列之每一位元格的一第二字線,其中經組配以存取該第一列之一位元格的該控制電路經組配以在該第一字線上產生具有一第一極性之一第一字線控制信號,其中該第一字線控制信號產生該第一磁場,且其中經組配以在該第二列之一位元格中產生一第二磁場之該控制電路經進一步組配以產生在該第二字線上且具有與該第一極性相反之一第二極性的一字線補償控制信號,以補償一第一磁場,從而維持該第二列之一位元格的一位元值儲存狀態。
在實例13中,實例9至16(排除本實例)之標的物可視情況包括:其中經組配以在該第二列之一位元格中產生一第二磁場之該控制電路包括一可程式字線驅動器,該可程式字線驅動器經組配以在該第二字線上產生一字線補償控制信號,其中該字線補償控制信號之量值為可程式規劃的。
在實例14中,實例9至16(排除本實例)之標的物可視情況包括:其中經組配以減輕一第一磁場之該控制電路包括經組配以偵測對該第一列之重複存取的一偵測器,及經組配以回應於該偵測而暫時中止對該第一列之存取的一驅動器,其中回應於該偵測而減輕該第一列之一第一磁 場以維持該第二列之一位元格的一位元值儲存狀態。
在實例15中,實例9至16(排除本實例)之標的物可視情況包括:其中該控制電路偵測器包括:一計數器,其具有一輸出端且經組配以計數對該第一列之連續存取,且輸出一計數,該計數表示對該第一列之連續存取的數目;以及一比較器,其具有經組配以接收一臨限值之一第一輸入端、經組配以接收該計數器之該計數輸出的一第二輸入端,且經組配以比較該計數器之該計數輸出與該臨限值,且其中該控制電路驅動器經組配以依據該計數器之該計數輸出與該臨限值之該比較,暫時中止對該第一列之存取。
在實例16中,實例9至16(排除本實例)之標的物可視情況包括:其中該控制電路經組配以在存取循環中存取該第一列之一位元格,且其中該控制電路比較器經組配為可程式的,以接收一可程式規劃的臨限值,且比較該計數器之該計數輸出與該可程式規劃的臨限值,且其中該控制電路驅動器經組配為可程式的,以接收一可程式規劃的存取循環數目值,且依據該計數器之該計數輸出與該可程式規劃的臨限值之該比較及該可程式規劃的存取循環數目值,暫時中止對該第一列之存取。實例17係針對一種操作一磁阻式隨機存取記憶體(MRAM)之方法,其包含:存取磁阻式(MRAM)位元格之一陣列的一第一列,其中每一位元格包括具有一極化之一鐵磁裝置,該極化在一第一位元值儲存狀態中為平行及反向平行極化中的一者,且 在一第二位元值儲存狀態中為平行及反向平行極化中之另一者,且其中該存取包括產生一第一磁場;以及減輕該第一列之一第一磁場以維持一第二列之該等位元值儲存狀態。
在實例18中,實例17至24(排除本實例)之標的物可視情況包括:其中該減輕一第一磁場包括在該第二列之一位元格中產生一第二磁場以補償一第一磁場,其中減輕該第一列之一第一磁場以維持該第二列之一位元格的一位元值儲存狀態。
在實例19中,實例17至24(排除本實例)之標的物可視情況包括:其中該等MRAM位元格為自旋轉移力矩(STT)隨機存取記憶體(RAM)位元格。
在實例20中,實例17至24(排除本實例)之標的物可視情況包括:其中位元格之該第一列具有耦接至該第一列之每一位元格的一第一字線,且位元格之該第二列具有耦接至該第二列之每一位元格的一第二字線,其中該存取一第一列包括在該第一字線上產生具有一第一極性之一第一字線控制信號,其中該第一字線控制信號產生該第一磁場,且其中該在該第二列之一位元格中產生一第二磁場包括產生在該第二字線上且具有與第一極性相反之一第二極性的一字線補償控制信號,以補償一第一磁場,從而維持該第二列之一位元格的一位元值儲存狀態。
在實例21中,實例17至24(排除本實例)之標的 物可視情況包括:其中該在該第二字線上產生一字線補償控制信號包括將該字線補償控制信號之量值規劃。
在實例22中,實例17至24(排除本實例)之標的物可視情況包括:其中該減輕一第一磁場包括偵測對該第一列之重複存取及回應於該偵測而暫時中止對該第一列之存取,其中回應於該偵測而減輕該第一列之一第一磁場,以維持該第二列之一位元格的一位元值儲存狀態。
在實例23中,實例17至24(排除本實例)之標的物可視情況包括:其中該偵測包括計數對該第一列之連續存取及比較一計數輸出與一臨限值,且其中該暫時中止包括依據該計數輸出與該臨限值之該比較,暫時中止對該第一列之存取。
在實例24中,實例17至24(排除本實例)之標的物可視情況包括:其中該存取一第一列包括在存取循環中存取該第一列,且其中該比較包括將一可程式規劃的臨限值及一存取循環數目值規劃,及比較該計數輸出與該可程式規劃的臨限值,且其中該暫時中止包括依據該計數輸出與該可程式規劃的臨限值之該比較及依據該可程式規劃的存取循環數目值,暫時中止對該第一列之存取。
實例25係針對一種包含用以執行如任一前述實例中所描述之方法的構件之設備。
所描述操作可實施為使用標準程式及/或工程設計技術以生產軟體、韌體、硬體或其任何組合之方法、裝置或電腦程式產品。所描述操作可實施為維持於「電腦可 讀儲存媒體」中之電腦程式碼,其中處理器可自電腦儲存可讀媒體讀取並執行該程式碼。電腦可讀儲存媒體包括電子電路、儲存材料、無機材料、有機材料、生物材料、殼體、外殼、塗層及硬體中之至少一者。電腦可讀儲存媒體可包含(但不限於)磁性儲存媒體(例如,硬碟機、軟性磁碟、磁帶等)、光學儲存器(CD-ROM、DVD、光碟等)、依電性及非依電性記憶體裝置(例如,EEPROM、ROM、PROM、RAM、DRAM、SRAM、快閃記憶體、韌體、可程式邏輯等)、固態裝置(SSD)等。實施所描述操作之程式碼可進一步在實施於硬體裝置(例如,積體電路晶片、可程式閘陣列(PGA)、特殊應用積體電路(ASIC)等)中之硬體邏輯中實施。再另外,實施所描述操作之程式碼可在「傳輸信號」中實施,其中傳輸信號可經由空間或經由諸如光纖、銅線等傳輸媒體傳播。編碼有程式碼或邏輯之傳輸信號可進一步包含無線信號、衛星傳輸、無線電波、紅外線信號、藍芽等。嵌入於電腦可讀儲存媒體上之程式碼可作為傳輸信號自傳輸台或電腦傳輸至接收台或電腦。電腦可讀儲存媒體並非僅由傳輸信號組成。熟習此項技術者將認識到,在不背離本描述之範疇的情況下,可對此組態進行諸多修改,且製品可包含此項技術中已知之合適的資訊承載媒體。當然,熟習此項技術者將認識到,在不背離本描述之範疇的情況下,可對此組態進行諸多修改,且製品可包含此項技術中已知之任何可觸資訊承載媒體。
在某些應用中,根據本描述之裝置可體現於電 腦系統中,該電腦系統包括:視訊控制器,其用以顯現來自記憶體之資訊以在耦接至電腦系統之監視器或其他顯示器上顯示;裝置驅動器;以及網路控制器,諸如包含桌上型電腦、工作站、伺服器、大型電腦、膝上型電腦、手持型電腦等電腦系統。替代地,裝置實施例可體現於並不包括(例如)視訊控制器(諸如,開關、路由器等)或並不包括(例如)網路控制器之計算裝置中。
諸圖之所說明邏輯可能展示按某一次序發生之某些事件。在替代實施例中,某些操作可以不同次序執行、修改或移除。此外,可添加操作至上文所描述之邏輯且該等操作仍符合所描述實施例。另外,本文所描述之操作可依序發生或可並行地處理某些操作。又另外,可藉由單一處理單元或藉由分佈式處理單元執行操作。
出於說明及描述之目的呈現對各種實施例之前述描述。其並非意欲為窮盡性的或限於所揭示之精確形式。鑒於上述教示,許多修改及變化係可能的。
10‧‧‧系統/裝置
20‧‧‧微處理器
25‧‧‧快取記憶體/記憶體裝置
30‧‧‧記憶體控制器/裝置
40‧‧‧系統記憶體/裝置
50‧‧‧周邊組件/儲存器/裝置

Claims (21)

  1. 一種電子設備,其包含:磁阻式(MRAM)位元格之一陣列,其具有MRAM位元格之第一及第二列,其中每一位元格包括具有一極化之一鐵磁裝置,該極化在一第一位元值儲存狀態中為平行及反向平行極化中的一者,且在一第二位元值儲存狀態中為平行及反向平行極化中之另一者;以及控制電路,其經組配以存取該第一列之一位元格,其中該存取產生一第一磁場,且其中該控制電路經進一步組配以減輕該第一列之一第一磁場以維持該第二列之一位元格的一位元值儲存狀態,其中經組配以減輕一第一磁場之該控制電路包括經組配以偵測對該第一列之重複存取的一偵測器,及經組配以回應於該偵測而暫時中止對該第一列之存取的一驅動器,其中回應於該偵測而將該第一列之一第一磁場減輕以維持該第二列之一位元格的一位元值儲存狀態。
  2. 如請求項1之電子設備,其中經組配以減輕一第一磁場之該控制電路經組配以在該第二列之該位元格中產生一第二磁場以補償該第一磁場,其中將該第一列之該第一磁場減輕以維持該第二列之該位元格的該位元值儲存狀態。
  3. 如請求項1之電子設備,其中該等MRAM位元格為自旋轉移力矩(STT)隨機存取記憶體(RAM)位元格。
  4. 如請求項2之電子設備,其中該位元格之第一列具有耦接至該第一列之每一位元格的一第一字線,且該位元格之第二列具有耦接至該第二列之每一位元格的一第二字線,其中經組配以存取該第一列之一位元格的該控制電路經組配以在該第一字線上產生具有一第一極性之一第一字線控制信號,其中該第一字線控制信號產生該第一磁場,且其中經組配以在該第二列之一位元格中產生一第二磁場之該控制電路經進一步組配以在該第二字線上產生具有與該第一極性相反之一第二極性的一字線補償控制信號,以補償一第一磁場來維持該第二列之該位元格的該位元值儲存狀態。
  5. 如請求項4之電子設備,其中經組配以在該第二列之一位元格中產生一第二磁場之該控制電路包括一可程式字線驅動器,該可程式字線驅動器經組配以在該第二字線上產生一字線補償控制信號,其中該字線補償控制信號之量值為可程式規劃的。
  6. 如請求項1之電子設備,其中該控制電路偵測器包括:一計數器,其具有一輸出端且經組配以計數對該第一列之連續存取,且輸出一計數,該計數表示對該第一列之連續存取的數目;以及一比較器,其具有經組配以接收一臨限值之一第一輸入端、經組配以接收該計數器之該計數輸出的一第二輸入端,且經組配以比較該計數器之該計數輸出與該臨 限值,其中該控制電路驅動器經組配以依據該計數器之該計數輸出與該臨限值之該比較,暫時中止對該第一列之存取。
  7. 如請求項6之電子設備,其中該控制電路經組配以在存取循環中存取該第一列之一位元格,且其中該控制電路比較器經組配為可程式的,以接收一可程式規劃的臨限值,且比較該計數器之該計數輸出與該可程式規劃的臨限值,且其中該控制電路驅動器經組配為可程式的,以接收一可程式規劃的存取循環數目值,且依據該計數器之該計數輸出與該可程式規劃的臨限值之該比較及該可程式規劃的存取循環數目值,暫時中止對該第一列之存取。
  8. 一種供一顯示器使用之計算系統,其包含:一記憶體;一處理器,其經組配以將資料寫入該記憶體中並自該記憶體讀取資料;以及一視訊控制器,其經組配以顯示由該記憶體中之資料表示之資訊;其中該記憶體包括一磁阻式隨機存取記憶體(MRAM),該MRAM包含:磁阻式(MRAM)位元格之一陣列,其具有MRAM位元格之第一及第二列,其中每一位元格包括具有一極化之一鐵磁裝置,該極化在一第一位元值儲存狀態中為平 行及反向平行極化中的一者,且在一第二位元值儲存狀態中為平行及反向平行極化中之另一者;以及控制電路,其經組配以存取該第一列之一位元格,其中該存取產生一第一磁場,且其中該控制電路經進一步組配以減輕該第一列之一第一磁場以維持該第二列之一位元格的一位元值儲存狀態,其中經組配以減輕一第一磁場之該控制電路包括經組配以偵測對該第一列之重複存取的一偵測器,及經組配以回應於該偵測而暫時中止對該第一列之存取的一驅動器,其中回應於該偵測而將該第一列之一第一磁場減輕以維持該第二列之一位元格的一位元值儲存狀態。
  9. 如請求項8之系統,其中經組配以減輕一第一磁場之該控制電路經組配以在該第二列之該位元格中產生一第二磁場以補償該第一磁場,其中將該第一列之該第一磁場減輕以維持該第二列之該位元格的該位元值儲存狀態。
  10. 如請求項8之系統,其中該等MRAM位元格為自旋轉移力矩(STT)隨機存取記憶體(RAM)位元格。
  11. 如請求項9之系統,其中該位元格之第一列具有耦接至該第一列之每一位元格的一第一字線,且該位元格之第二列具有耦接至該第二列之每一位元格的一第二字線,其中經組配以存取該第一列之一位元格的該控制電路經組配以在該第一字線上產生具有一第一極性之一第一字線控制信號,其中該第一字線控制信號產生該第 一磁場,且其中經組配以在該第二列之一位元格中產生一第二磁場之該控制電路經進一步組配以在該第二字線上產生具有與該第一極性相反之一第二極性的一字線補償控制信號,以補償一第一磁場來維持該第二列之該位元格的該位元值儲存狀態。
  12. 如請求項11之系統,其中經組配以在該第二列之一位元格中產生一第二磁場之該控制電路包括一可程式字線驅動器,該可程式字線驅動器經組配以在該第二字線上產生一字線補償控制信號,其中該字線補償控制信號之量值為可程式規劃的。
  13. 如請求項8之系統,其中該控制電路偵測器包括:一計數器,其具有一輸出端且經組配以計數對該第一列之連續存取,且輸出一計數,該計數表示對該第一列之連續存取的數目;以及一比較器,其具有經組配以接收一臨限值之一第一輸入端、經組配以接收該計數器之該計數輸出的一第二輸入端,且經組配以比較該計數器之該計數輸出與該臨限值,其中該控制電路驅動器經組配以依據該計數器之該計數輸出與該臨限值之該比較,暫時中止對該第一列之存取。
  14. 如請求項13之系統,其中該控制電路經組配以在存取循環中存取該第一列之一位元格,且其中該控制電路比較 器經組配為可程式的,以接收一可程式規劃的臨限值,且比較該計數器之該計數輸出與該可程式規劃的臨限值,且其中該控制電路驅動器經組配為可程式的,以接收一可程式規劃的存取循環數目值,且依據該計數器之該計數輸出與該可程式規劃的臨限值之該比較及該可程式規劃的存取循環數目值,暫時中止對該第一列之存取。
  15. 一種操作磁阻式隨機存取記憶體(MRAM)之方法,其包含:存取磁阻式(MRAM)位元格之一陣列的一第一列,其中每一位元格包括具有一極化之一鐵磁裝置,該極化在一第一位元值儲存狀態中為平行及反向平行極化中的一者,且在一第二位元值儲存狀態中為平行及反向平行極化中之另一者,且其中該存取包括產生一第一磁場;以及減輕該第一列之一第一磁場以維持一第二列之該等位元值儲存狀態,其中該減輕一第一磁場包括偵測對該第一列之重複存取及回應於該偵測而暫時中止對該第一列之存取,其中回應於該偵測而將該第一列之一第一磁場減輕以維持該第二列之一位元格的一位元值儲存狀態。
  16. 如請求項15之方法,其中該減輕一第一磁場包括在該第二列之該位元格中產生一第二磁場以補償該第一磁場,其中將該第一列之該第一磁場減輕以維持該第二列 之該位元格的該位元值儲存狀態。
  17. 如請求項15之方法,其中該等MRAM位元格為自旋轉移力矩(STT)隨機存取記憶體(RAM)位元格。
  18. 如請求項16之方法,其中該位元格之第一列具有耦接至該第一列之每一位元格的一第一字線,且該位元格之第二列具有耦接至該第二列之每一位元格的一第二字線,其中該存取一第一列包括在該第一字線上產生具有一第一極性之一第一字線控制信號,其中該第一字線控制信號產生該第一磁場,且其中該在該第二列之一位元格中產生一第二磁場包括在該第二字線上產生具有與第一極性相反之一第二極性的一字線補償控制信號,以補償一第一磁場來維持該第二列之該位元格的該位元值儲存狀態。
  19. 如請求項18之方法,其中該在該第二字線上產生一字線補償控制信號包括程式規劃該字線補償控制信號之量值。
  20. 如請求項15之方法,其中該偵測包括計數對該第一列之連續存取及比較一計數輸出與一臨限值,且其中該暫時中止包括依據該計數輸出與該臨限值之該比較,暫時中止對該第一列之存取。
  21. 如請求項20之方法,其中該存取一第一列包括在存取循環中存取該第一列,且其中該比較包括程式規劃一可程式規劃的臨限值及一存取循環數目值,及比較該計數輸出與該可程式規劃的臨限值,且其中該暫時中止包括依 據該計數輸出與該可程式規劃的臨限值之該比較及依據該可程式規劃的存取循環數目值,暫時中止對該第一列之存取。
TW105104946A 2015-04-24 2016-02-19 位元格狀態保持之技術 TWI596602B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US14/696,050 US9666257B2 (en) 2015-04-24 2015-04-24 Bitcell state retention

Publications (2)

Publication Number Publication Date
TW201701284A TW201701284A (zh) 2017-01-01
TWI596602B true TWI596602B (zh) 2017-08-21

Family

ID=57143363

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105104946A TWI596602B (zh) 2015-04-24 2016-02-19 位元格狀態保持之技術

Country Status (7)

Country Link
US (2) US9666257B2 (zh)
EP (1) EP3286761B1 (zh)
JP (1) JP6908230B2 (zh)
KR (2) KR102418997B1 (zh)
CN (1) CN107851452B (zh)
TW (1) TWI596602B (zh)
WO (1) WO2016171788A1 (zh)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9324398B2 (en) 2013-02-04 2016-04-26 Micron Technology, Inc. Apparatuses and methods for targeted refreshing of memory
US9047978B2 (en) 2013-08-26 2015-06-02 Micron Technology, Inc. Apparatuses and methods for selective row refreshes
JP2015219938A (ja) 2014-05-21 2015-12-07 マイクロン テクノロジー, インク. 半導体装置
US9666257B2 (en) * 2015-04-24 2017-05-30 Intel Corporation Bitcell state retention
JP2017182854A (ja) 2016-03-31 2017-10-05 マイクロン テクノロジー, インク. 半導体装置
US9606835B1 (en) 2016-09-19 2017-03-28 International Business Machines Corporation Determination of memory access patterns of tasks in a multi-core processor
US10360163B2 (en) 2016-10-27 2019-07-23 Google Llc Exploiting input data sparsity in neural network compute units
US9761297B1 (en) 2016-12-30 2017-09-12 Intel Corporation Hidden refresh control in dynamic random access memory
JP2018129109A (ja) * 2017-02-10 2018-08-16 東芝メモリ株式会社 磁気メモリ装置
US10580475B2 (en) 2018-01-22 2020-03-03 Micron Technology, Inc. Apparatuses and methods for calculating row hammer refresh addresses in a semiconductor device
US11988702B2 (en) * 2018-04-04 2024-05-21 Samsung Electronics Co., Ltd. Method and system for inspection of defective MTJ cell in STT-MRAM
US11152050B2 (en) 2018-06-19 2021-10-19 Micron Technology, Inc. Apparatuses and methods for multiple row hammer refresh address sequences
US11054995B2 (en) 2018-09-07 2021-07-06 Micron Technology, Inc. Row hammer protection for a memory device
US11256427B2 (en) * 2018-12-28 2022-02-22 Micron Technology, Inc. Unauthorized memory access mitigation
US10770127B2 (en) 2019-02-06 2020-09-08 Micron Technology, Inc. Apparatuses and methods for managing row access counts
US11043254B2 (en) 2019-03-19 2021-06-22 Micron Technology, Inc. Semiconductor device having cam that stores address signals
US11264096B2 (en) 2019-05-14 2022-03-01 Micron Technology, Inc. Apparatuses, systems, and methods for a content addressable memory cell with latch and comparator circuits
US11158364B2 (en) 2019-05-31 2021-10-26 Micron Technology, Inc. Apparatuses and methods for tracking victim rows
US11158373B2 (en) 2019-06-11 2021-10-26 Micron Technology, Inc. Apparatuses, systems, and methods for determining extremum numerical values
US11139015B2 (en) 2019-07-01 2021-10-05 Micron Technology, Inc. Apparatuses and methods for monitoring word line accesses
US10832792B1 (en) 2019-07-01 2020-11-10 Micron Technology, Inc. Apparatuses and methods for adjusting victim data
US11386946B2 (en) 2019-07-16 2022-07-12 Micron Technology, Inc. Apparatuses and methods for tracking row accesses
US10943636B1 (en) 2019-08-20 2021-03-09 Micron Technology, Inc. Apparatuses and methods for analog row access tracking
US10964378B2 (en) 2019-08-22 2021-03-30 Micron Technology, Inc. Apparatus and method including analog accumulator for determining row access rate and target row address used for refresh operation
US11200942B2 (en) 2019-08-23 2021-12-14 Micron Technology, Inc. Apparatuses and methods for lossy row access counting
CN114758707A (zh) * 2020-05-19 2022-07-15 长江存储科技有限责任公司 用于存储器的程序暂停和恢复的控制方法与控制器
CN113454722B (zh) 2020-05-19 2022-08-19 长江存储科技有限责任公司 存储器器件及其编程操作
US11222682B1 (en) 2020-08-31 2022-01-11 Micron Technology, Inc. Apparatuses and methods for providing refresh addresses
US11462291B2 (en) 2020-11-23 2022-10-04 Micron Technology, Inc. Apparatuses and methods for tracking word line accesses
US11482275B2 (en) 2021-01-20 2022-10-25 Micron Technology, Inc. Apparatuses and methods for dynamically allocated aggressor detection
US11600314B2 (en) 2021-03-15 2023-03-07 Micron Technology, Inc. Apparatuses and methods for sketch circuits for refresh binning
US11664063B2 (en) 2021-08-12 2023-05-30 Micron Technology, Inc. Apparatuses and methods for countering memory attacks
US11688451B2 (en) 2021-11-29 2023-06-27 Micron Technology, Inc. Apparatuses, systems, and methods for main sketch and slim sketch circuit for row address tracking
US20240038284A1 (en) * 2022-07-29 2024-02-01 Micron Technology, Inc. Memory row-hammer mitigation

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040001353A1 (en) * 2002-06-27 2004-01-01 Hideto Hidaka Thin film magnetic memory device suppressing internal magnetic noises
US20100220516A1 (en) * 2009-03-02 2010-09-02 Qualcomm Incorporated Reducing Source Loading Effect in Spin Torque Transfer Magnetoresisitive Random Access Memory (STT-MRAM)
US20120063214A1 (en) * 2010-09-09 2012-03-15 Magic Technologies, Inc. Pulse field assisted spin momentum transfer MRAM design
US20140043924A1 (en) * 2011-02-25 2014-02-13 Qualcomm Incorporated Configurable memory array
US20140098592A1 (en) * 2012-10-08 2014-04-10 Jae-Kyu Lee Resistive memory device including compensation resistive device and method of compensating resistance distribution
US20140156923A1 (en) * 2012-11-30 2014-06-05 Intel Corporation Row hammer monitoring based on stored row hammer threshold value
US8765490B2 (en) * 2011-11-15 2014-07-01 Semiconductor Manufacturing International (Shanghai) Corporation Semiconductor magnetoresistive random-access memory (MRAM) device and manufacturing method thereof
US20140281805A1 (en) * 2013-03-12 2014-09-18 Suneeta Sah Selective remedial action based on category of detected error for a memory read

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5095344A (en) * 1988-06-08 1992-03-10 Eliyahou Harari Highly compact eprom and flash eeprom devices
US5926414A (en) * 1997-04-04 1999-07-20 Magnetic Semiconductors High-efficiency miniature magnetic integrated circuit structures
DE10053965A1 (de) * 2000-10-31 2002-06-20 Infineon Technologies Ag Verfahren zur Verhinderung unerwünschter Programmierungen in einer MRAM-Anordnung
JP2003091999A (ja) * 2001-09-19 2003-03-28 Seiko Epson Corp 不揮発性半導体記憶装置
JP2003151260A (ja) * 2001-11-13 2003-05-23 Mitsubishi Electric Corp 薄膜磁性体記憶装置
JP4033690B2 (ja) * 2002-03-04 2008-01-16 株式会社ルネサステクノロジ 半導体装置
JP2004241013A (ja) * 2003-02-03 2004-08-26 Renesas Technology Corp 半導体記憶装置
US6859388B1 (en) * 2003-09-05 2005-02-22 Freescale Semiconductor, Inc. Circuit for write field disturbance cancellation in an MRAM and method of operation
JP4819316B2 (ja) * 2004-02-23 2011-11-24 ルネサスエレクトロニクス株式会社 半導体装置
US7545662B2 (en) * 2005-03-25 2009-06-09 Taiwan Semiconductor Manufacturing Co., Ltd. Method and system for magnetic shielding in semiconductor integrated circuit
CN102314927B (zh) * 2010-07-06 2014-02-05 中国科学院物理研究所 一种磁性随机存储单元阵列、存储器及其读写方法
KR20130127180A (ko) * 2012-05-14 2013-11-22 삼성전자주식회사 저항성 랜덤 액세스 메모리의 소거 방법
US8938573B2 (en) 2012-06-30 2015-01-20 Intel Corporation Row hammer condition monitoring
KR20140008702A (ko) * 2012-07-11 2014-01-22 삼성전자주식회사 불휘발성 메모리 장치 및 그것의 쓰기 방법
US8837214B2 (en) * 2012-12-10 2014-09-16 Apple Inc. Applications for inter-word-line programming
US9286964B2 (en) * 2012-12-21 2016-03-15 Intel Corporation Method, apparatus and system for responding to a row hammer event
US9240235B2 (en) * 2013-12-19 2016-01-19 Sandisk Technologies Inc. Mitigating disturb effects for non-volatile memory
KR102246878B1 (ko) * 2014-05-29 2021-04-30 삼성전자 주식회사 반도체 메모리 장치, 이를 포함하는 메모리 모듈, 및 이를 포함하는 메모리 시스템
US9747967B2 (en) * 2014-09-26 2017-08-29 Intel Corporation Magnetic field-assisted memory operation
US9666257B2 (en) * 2015-04-24 2017-05-30 Intel Corporation Bitcell state retention

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040001353A1 (en) * 2002-06-27 2004-01-01 Hideto Hidaka Thin film magnetic memory device suppressing internal magnetic noises
US20100220516A1 (en) * 2009-03-02 2010-09-02 Qualcomm Incorporated Reducing Source Loading Effect in Spin Torque Transfer Magnetoresisitive Random Access Memory (STT-MRAM)
US20120063214A1 (en) * 2010-09-09 2012-03-15 Magic Technologies, Inc. Pulse field assisted spin momentum transfer MRAM design
US20140043924A1 (en) * 2011-02-25 2014-02-13 Qualcomm Incorporated Configurable memory array
US8765490B2 (en) * 2011-11-15 2014-07-01 Semiconductor Manufacturing International (Shanghai) Corporation Semiconductor magnetoresistive random-access memory (MRAM) device and manufacturing method thereof
US20140098592A1 (en) * 2012-10-08 2014-04-10 Jae-Kyu Lee Resistive memory device including compensation resistive device and method of compensating resistance distribution
US20140156923A1 (en) * 2012-11-30 2014-06-05 Intel Corporation Row hammer monitoring based on stored row hammer threshold value
US20140281805A1 (en) * 2013-03-12 2014-09-18 Suneeta Sah Selective remedial action based on category of detected error for a memory read

Also Published As

Publication number Publication date
US10600462B2 (en) 2020-03-24
WO2016171788A1 (en) 2016-10-27
KR20220101012A (ko) 2022-07-18
CN107851452B (zh) 2022-03-01
US20160314826A1 (en) 2016-10-27
EP3286761A4 (en) 2018-12-05
CN107851452A (zh) 2018-03-27
TW201701284A (zh) 2017-01-01
JP2018514048A (ja) 2018-05-31
US20170337958A1 (en) 2017-11-23
KR102418997B1 (ko) 2022-07-11
KR20170140176A (ko) 2017-12-20
US9666257B2 (en) 2017-05-30
JP6908230B2 (ja) 2021-07-21
EP3286761A1 (en) 2018-02-28
EP3286761B1 (en) 2021-12-29

Similar Documents

Publication Publication Date Title
TWI596602B (zh) 位元格狀態保持之技術
KR101985183B1 (ko) 에러 정정 코드에 의한 스핀 토크 자기 랜덤 액세스 메모리에 대한 판독 및 기록 방법
Chintaluri et al. Analysis of defects and variations in embedded spin transfer torque (STT) MRAM arrays
KR102131812B1 (ko) 소스라인 플로팅 회로, 이를 포함하는 메모리 장치 및 메모리 장치의 독출 방법
US10056127B2 (en) Supply-switched dual cell memory bitcell
US20180191512A1 (en) Physically unclonable function generation with direct twin cell activation
Jang et al. Self-correcting STTRAM under magnetic field attacks
US8406029B2 (en) Identification of data positions in magnetic packet memory storage devices, memory systems including such devices, and methods of controlling such devices
US9747967B2 (en) Magnetic field-assisted memory operation
US20160188495A1 (en) Event triggered erasure for data security
US10802827B2 (en) Memory device having in-situ in-memory stateful vector logic operation
US11984164B2 (en) Non-volatile static random access memory (nvSRAM) with multiple magnetic tunnel junction cells
Khan et al. Hardware trojans in emerging non-volatile memories
KR20210036283A (ko) 메모리 셀을 위한 임프린트 복원
Nair et al. Dynamic faults based hardware trojan design in stt-mram
Ferdaus et al. Approximate MRAM: High-performance and power-efficient computing with MRAM chips for error-tolerant applications
Ferdaus et al. Security of emerging memory chips
Nagarajan et al. Trapped: Dram trojan designs for information leakage and fault injection attacks
Khan Assuring security and privacy of emerging non-volatile memories
Karthikeyan Nagarajan TrappeD: DRAM trojan designs for information leakage and fault injection attacks
Nagarajan Exploring Security Challenges and Opportunities in Emerging Memory and Computing Technologies
Chowdhury et al. On Gate Flip Errors in Computing-In-Memory