TWI594429B - 半導體裝置 - Google Patents

半導體裝置 Download PDF

Info

Publication number
TWI594429B
TWI594429B TW102113970A TW102113970A TWI594429B TW I594429 B TWI594429 B TW I594429B TW 102113970 A TW102113970 A TW 102113970A TW 102113970 A TW102113970 A TW 102113970A TW I594429 B TWI594429 B TW I594429B
Authority
TW
Taiwan
Prior art keywords
film
oxide semiconductor
semiconductor film
region
electrode
Prior art date
Application number
TW102113970A
Other languages
English (en)
Other versions
TW201351648A (zh
Inventor
山崎舜平
松林大介
村山佳右
Original Assignee
半導體能源研究所股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 半導體能源研究所股份有限公司 filed Critical 半導體能源研究所股份有限公司
Publication of TW201351648A publication Critical patent/TW201351648A/zh
Application granted granted Critical
Publication of TWI594429B publication Critical patent/TWI594429B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78618Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Thin Film Transistor (AREA)

Description

半導體裝置
本發明係關於一種利用氧化物半導體的半導體裝置。
在本說明書中,半導體裝置指的是能夠藉由利用半導體特性而工作的所有裝置,因此電光裝置、半導體電路及電子裝置都是半導體裝置。
使用形成在具有絕緣表面的基板上的半導體薄膜構成電晶體的技術受到關注。該電晶體被廣泛地應用於電子裝置如積體電路(IC)、影像顯示裝置(有時簡稱為顯示裝置)等。作為可以應用於電晶體的半導體薄膜,矽類半導體材料被廣泛地周知。此外,作為其他材料,氧化物半導體受到關注。
例如,專利文獻1公開了使用由包含銦(In)、鎵(Ga)及鋅(Zn)的非晶氧化物(In-Ga-Zn-O類非晶氧化物)構成的半導體薄膜的電晶體。此外,專利文獻2公開了製造與專利文獻1同樣的電晶體並將該電晶體用於顯示裝置的像素的切換元件等的技術。
[專利文獻1]日本專利申請公開第2006-165529號公報
[專利文獻2]日本專利申請公開第2006-165528號公報
用於顯示裝置等半導體裝置的電路的電晶體較佳為在閘極電壓盡可能近於0V的正值的狀態下形成通道。這是因為如下緣故:當電晶體的臨界電壓為負值時,容易變為所謂的常導通(normally-on),即即使在閘極電壓為0V的情況下,也有電流流過源極電極與汲極電極之間;並且包含這種臨界電壓為負值的常導通電晶體的電路的控制非常難。
鑒於上述問題,所公開的發明的一個方式的目的之一是提供一種臨界電壓的負值化得到抑制的使用氧化物半導體膜的電晶體。另一個目的之一是提供一種臨界電壓的負值化得到抑制的所謂的常截止(normally-off)的使用氧化物半導體膜的電晶體。另一個目的之一是提供一種包括該使用氧化物半導體膜的電晶體的高品質的半導體裝置。
在使用氧化物半導體膜的底閘極型電晶體中,該氧化物半導體膜與保護絕緣膜之間的介面附近的電場集中是導致上述臨界電壓的負值化的原因之一。當電場極端集中於與氧化物半導體膜的上表面接觸的源極電極或汲極電極的側面端部時,帶正電荷的可動離子等移動到保護絕緣膜與 氧化物半導體膜之間的介面附近,並且,氧化物半導體膜中的負電荷向該正電荷移動而形成疑似通道(artificial channel)(以下稱為寄生通道)。
針對於此,所公開的發明使用包含第一區域至第三區域的氧化物半導體膜,第一區域中的氧化物半導體膜的上表面與源極電極或汲極電極接觸,第二區域中的氧化物半導體膜的上表面與保護絕緣膜接觸,第二區域的厚度大致均勻且小於第一區域的最大厚度,第三區域中的氧化物半導體膜的上表面及側面與保護絕緣膜接觸。換言之,氧化物半導體膜包含:與源極電極及汲極電極重疊的厚度大的第一區域;設置在該第一區域之間的第三區域;設置在該第三區域之間的比第一區域薄的第二區域。
另外,在本說明書中,在第三區域的一部分和第二區域中氧化物半導體膜具有凹部,並且將該凹部的內壁記作第三區域中的氧化物半導體膜的側面。
藉由採用上述結構,至少可以緩和第二區域附近的電場。因此,可以緩和氧化物半導體膜與保護絕緣膜之間的介面附近的電場集中,由此可以抑制該電晶體的臨界電壓的負值化。更明確地說,可以採用如下方式。
所公開的發明的一個方式是一種半導體裝置,該半導體裝置包括:具有絕緣表面的基板上的閘極電極;閘極電極上的閘極絕緣膜;至少與閘極電極的一部分重疊的位於閘極絕緣膜上的氧化物半導體膜;氧化物半導體膜上的源極電極及汲極電極;氧化物半導體膜、源極電極以及汲極 電極上的保護絕緣膜,其中,氧化物半導體膜包括第一區域、用作通道形成區的第二區域以及第三區域,第一區域中的氧化物半導體膜的上表面與源極電極或汲極電極接觸,第二區域中的氧化物半導體膜的上表面與保護絕緣膜接觸,第二區域的厚度大致均勻且小於第一區域的最大厚度,並且,第三區域中的氧化物半導體膜的上表面及側面與保護絕緣膜接觸。
另外,在上述半導體裝置中,第一區域與第二區域之間的距離較佳為源極電極與汲極電極之間的距離的0.059倍以上且小於0.5倍。
另外,在第三區域中氧化物半導體膜可以具有錐形部。
另外,保護絕緣膜較佳為至少含有氧的絕緣膜。
另外,在本說明書等中,“大致均勻”是指不要求其完全一致。例如,“大致均勻的厚度”是指對一個層進行蝕刻後得到的膜的厚度的均勻程度。
另外,在本說明書等中,“電極”或“佈線”不限定構成要素的功能。例如,有時將“電極”用作“佈線”的一部分,反之亦然。再者,“電極”或“佈線”還包括多個“電極”或“佈線”形成為一體的情況等。
另外,“源極”及“汲極”的功能在使用極性不同的電晶體的情況下或在電路工作中的電流方向變化時,有時互相調換。因此,在本說明書中,“源極”及“汲極”可以互相調換。
另外,在本說明書等中,“電連接”包括藉由“具有某種電作用的元件”連接的情況。這裏,“具有某種電作用的元件”只要可以進行連接目標間的電信號的傳送和接收,就對其沒有特別的限制。例如,“具有某種電作用的元件”不僅包括電極和佈線,而且還包括電晶體等的切換元件、電阻元件、電感器、電容器、其他具有各種功能的元件等。
本發明的一個方式能夠提供一種臨界電壓的負值化得到抑制的使用氧化物半導體膜的電晶體。另外,能夠提供一種臨界電壓的負值化得到抑制的所謂的常截止的使用氧化物半導體膜的電晶體。另外,能夠提供一種包括該使用氧化物半導體膜的電晶體的高品質的半導體裝置。
100‧‧‧基板
101‧‧‧閘極電極
102‧‧‧閘極絕緣膜
103‧‧‧氧化物半導體膜
103a‧‧‧第一區域
103b‧‧‧第二區域
103c‧‧‧第三區域
105a‧‧‧源極電極
105b‧‧‧汲極電極
108‧‧‧保護絕緣膜
109‧‧‧平坦化絕緣膜
110‧‧‧電晶體
113‧‧‧氧化物半導體膜
115‧‧‧導電膜
115a‧‧‧導電膜
115b‧‧‧導電膜
116a‧‧‧光阻遮罩
116b‧‧‧光阻遮罩
500‧‧‧基板
502‧‧‧閘極絕緣膜
505‧‧‧濾色片層
506‧‧‧絕緣膜
507‧‧‧分隔壁
510‧‧‧電晶體
511a‧‧‧閘極電極
511b‧‧‧閘極電極
512‧‧‧氧化物半導體膜
513a‧‧‧導電層
514‧‧‧第一保護絕緣膜
515‧‧‧第二保護絕緣膜
520‧‧‧電容元件
521a‧‧‧導電層
521b‧‧‧導電層
522‧‧‧氧化物半導體膜
523‧‧‧導電層
530‧‧‧佈線層交叉部
533‧‧‧導電層
540‧‧‧發光元件
541‧‧‧電極
542‧‧‧電致發光層
543‧‧‧電極
553‧‧‧絕緣層
601‧‧‧基板
602‧‧‧光電二極體
606a‧‧‧半導體膜
606b‧‧‧半導體膜
606c‧‧‧半導體膜
608‧‧‧黏合層
613‧‧‧基板
631‧‧‧第一保護絕緣膜
632‧‧‧第二保護絕緣膜
633‧‧‧層間絕緣膜
634‧‧‧層間絕緣膜
640‧‧‧電晶體
641a‧‧‧電極
641b‧‧‧電極
642‧‧‧電極
643‧‧‧導電層
645‧‧‧導電層
656‧‧‧電晶體
658‧‧‧光電二極體重設信號線
659‧‧‧閘極信號線
671‧‧‧光電感測器輸出信號線
672‧‧‧光電感測器參考信號線
4001‧‧‧基板
4002‧‧‧像素部
4003‧‧‧信號線驅動電路
4004‧‧‧掃描線驅動電路
4005‧‧‧密封材料
4006‧‧‧基板
4008‧‧‧液晶層
4010‧‧‧電晶體
4011‧‧‧電晶體
4013‧‧‧液晶元件
4015‧‧‧連接端子電極
4016‧‧‧端子電極
4019‧‧‧各向異性導電膜
4020‧‧‧第一保護絕緣膜
4021‧‧‧第二保護絕緣膜
4022‧‧‧絕緣膜
4030‧‧‧電極
4031‧‧‧電極
4032‧‧‧絕緣膜
4035‧‧‧間隔物
4510‧‧‧分隔壁
4511‧‧‧電致發光層
4513‧‧‧發光元件
4514‧‧‧填充材料
9000‧‧‧桌子
9001‧‧‧外殼
9002‧‧‧腿部
9003‧‧‧顯示部
9004‧‧‧顯示按鈕
9005‧‧‧電源供應線
9033‧‧‧卡子
9034‧‧‧開關
9035‧‧‧電源開關
9036‧‧‧開關
9038‧‧‧操作開關
9100‧‧‧電視機
9101‧‧‧外殼
9103‧‧‧顯示部
9105‧‧‧支架
9107‧‧‧顯示部
9109‧‧‧操作鍵
9110‧‧‧遙控器
9201‧‧‧主體
9202‧‧‧外殼
9203‧‧‧顯示部
9204‧‧‧鍵盤
9205‧‧‧外部連接埠
9206‧‧‧指向裝置
9630‧‧‧外殼
9631‧‧‧顯示部
9631a‧‧‧顯示部
9631b‧‧‧顯示部
9632a‧‧‧區域
9632b‧‧‧區域
9633‧‧‧太陽能電池
9634‧‧‧充放電控制電路
9635‧‧‧電池
9636‧‧‧DCDC轉換器
9637‧‧‧轉換器
9638‧‧‧操作鍵
9639‧‧‧按鈕
在圖式中:圖1A和圖1B是說明半導體裝置的一個方式的剖面圖;圖2A至圖2C是說明半導體裝置的製造方法的一個方式的剖面圖;圖3A和圖3B是說明半導體裝置的製造方法的一個方式的剖面圖;圖4A至圖4C是說明半導體裝置的一個方式的剖面圖;圖5A至圖5C是說明半導體裝置的一個方式的平面 圖;圖6A和圖6B是說明半導體裝置的一個方式的平面圖及剖面圖;圖7A和圖7B是示出半導體裝置的一個方式的剖面圖;圖8A和圖8B是示出半導體裝置的一個方式的電路圖及剖面圖;圖9A至圖9C是示出電子裝置的圖;圖10A至圖10C是示出電子裝置的圖;圖11是用於計算的電晶體的模型的圖;圖12是藉由計算得到的電場強度的圖表。
下面,參照圖式詳細地說明本說明書所公開的發明的實施方式。但是,所屬技術領域的普通技術人員可以很容易地理解一個事實,就是本說明書所公開的發明的方式及詳細內容可以被變換為各種各樣的形式而不侷限於以下說明。並且,本說明書所公開的發明不應被看作僅限定於以下實施方式的描述內容。另外,為了方便起見附加了第一、第二等序數詞,其並不表示製程順序或疊層順序。此外,本說明書中的序數不表示特定發明的事項的固有名稱。
實施方式1
在本實施方式中,參照圖1A至圖4C對使用氧化物半導體膜的半導體裝置及該半導體裝置的製造方法的一個方式進行說明。
圖1A和圖1B所示的電晶體110是底閘極結構之一的被稱為反交錯型電晶體的一個例子。另外,圖1A是電晶體110的剖面圖,圖1B是圖1A所示的電晶體110的氧化物半導體膜103附近的放大圖。
圖1A和圖1B所示的電晶體110包含:設置在具有絕緣表面的基板100上的閘極電極101;設置在閘極電極101上的閘極絕緣膜102;以至少與閘極電極101的一部分重疊的方式設置在閘極絕緣膜102上的氧化物半導體膜103;設置在氧化物半導體膜103上的源極電極105a及汲極電極105b;以及設置在氧化物半導體膜103、源極電極105a以及汲極電極105b上的保護絕緣膜108。此外,設置在保護絕緣膜108上的平坦化絕緣膜109也可以作為構成要素包括在電晶體110中。另外,氧化物半導體膜103既可以具有單層結構,也可以具有疊層結構。另外,在通道長度方向上閘極電極101的端部可以位於氧化物半導體膜103的端部的外側。
如圖1A和圖1B所示,氧化物半導體膜103包含第一區域103a、第二區域103b以及第三區域103c。第一區域103a中的氧化物半導體膜103的上表面與源極電極105a或汲極電極105b接觸,第二區域103b中的氧化物半導體膜103的上表面與保護絕緣膜108接觸,第二區域 103b的厚度大致均勻且小於第一區域103a的最大厚度及第三區域103c的最大厚度,第三區域103c中的氧化物半導體膜103的上表面及側面與保護絕緣膜108接觸。
在此,第一區域103a及第三區域103c分別形成在源極電極105a一側及汲極電極105b一側。換言之,第一區域103a夾持第二區域103b及第三區域103c,並且第三區域103c夾持第二區域103b。
另外,雖然在圖1A和圖1B中,第一區域103a及第三區域103c分別對稱地設置於源極電極105a一側及汲極電極105b一側,但是並不需要必須對稱。
另外,如圖1B所示,T1表示第一區域103a的厚度,T2表示第二區域103b的厚度,厚度T2小於厚度T1。例如,可以將厚度T1設定為20nm以上且300nm以下,將厚度T2設定為5nm以上且50nm以下。在此,第二區域103b的厚度為T2且大致均勻。另外,如圖1A所示,當第一區域103a的端部為錐形形狀時,該錐形部的厚度小於厚度T1。
另外,在厚度為T1的第一區域103a與厚度為T2的第二區域103b之間氧化物半導體膜103具有步階,該步階包含在第三區域103c中。第三區域103c中的氧化物半導體膜103的上表面及側面與保護絕緣膜108接觸。換句話說,在第三區域103c的一部分及第二區域103b中氧化物半導體膜103具有凹部。第二區域及第三區域的一部分中的氧化物半導體膜103的凹部與保護絕緣膜108接觸。
另外,第二區域103b及第三區域103c用作電晶體110的通道形成區。如圖1B所示,源極電極105a與汲極電極105b之間的距離,即第二區域103b和第三區域103c的通道長度方向的長度為通道長度L。較佳為將第一區域103a與第二區域103b之間的距離L1設定為通道長度L的0.059倍以上且小於0.5倍。
用於氧化物半導體膜103的氧化物半導體至少包含銦(In)、鋅(Zn)和錫(Sn)中的一種。尤其較佳為包含In及Zn。另外,作為用來降低使用該氧化物半導體的電晶體的電特性的偏差的穩定劑,除了上述元素以外較佳為還包含鎵(Ga)。此外,較佳為作為穩定劑包含錫(Sn)。另外,較佳為作為穩定劑包含鉿(Hf)。另外,較佳為作為穩定劑具有鋯(Zr)。
此外,作為其他穩定劑,也可以包含鑭系元素的鑭(La)、鈰(Ce)、鐠(Pr)、釹(Nd)、釤(Sm)、銪(Eu)、釓(Gd)、鋱(Tb)、鏑(Dy)、鈥(Ho)、鉺(Er)、銩(Tm)、鐿(Yb)、鑥(Lu)中的一種或多種。
例如,作為氧化物半導體,可以使用:氧化銦、氧化錫、氧化鋅;二元金屬氧化物的In-Zn類氧化物、In-Mg類氧化物、In-Ga類氧化物;三元金屬氧化物的In-Ga-Zn類氧化物(也稱為IGZO)、In-Sn-Zn類氧化物、In-Hf-Zn類氧化物、In-La-Zn類氧化物、In-Ce-Zn類氧化物、In-Pr-Zn類氧化物、In-Nd-Zn類氧化物、In-Sm-Zn類氧化 物、In-Eu-Zn類氧化物、In-Gd-Zn類氧化物、In-Tb-Zn類氧化物、In-Dy-Zn類氧化物、In-Ho-Zn類氧化物、In-Er-Zn類氧化物、In-Tm-Zn類氧化物、In-Yb-Zn類氧化物、In-Lu-Zn類氧化物;四元金屬氧化物的In-Sn-Ga-Zn類氧化物、In-Hf-Ga-Zn類氧化物、In-Sn-Hf-Zn類氧化物。
在此,例如,“In-Ga-Zn類氧化物”是指以In、Ga以及Zn為主要成分的氧化物,對In、Ga以及Zn的比率沒有限制。此外,也可以包含In、Ga、Zn以外的金屬元素。
例如,作為In-Ga-Zn類氧化物,例如可以使用原子數比為In:Ga:Zn=1:1:1、In:Ga:Zn=1:3:2、In:Ga:Zn=3:1:2或In:Ga:Zn=2:1:3的氧化物或具有與其類似的組成的氧化物。
另外,作為氧化物半導體,也可以使用表示為InMO3(ZnO)m(m>0且m不是整數)的材料。注意,M表示選自Ga、Fe、Mn和Co中的一種或多種金屬元素。
另外,氧化物半導體不侷限於上述材料,根據所需要的半導體特性(遷移率、臨界值、偏差等)可以使用適當的組成的材料。另外,較佳為採用適當的載流子濃度、雜質濃度、缺陷密度、金屬元素及氧的原子數比、原子間距離以及密度等,以得到所需要的半導體特性。
較佳為藉由充分地去除氫等雜質或供應充分的氧使氧化物半導體膜103處於氧過飽和狀態,來使其高度純化。明確而言,氧化物半導體膜103中的氫濃度為 5×1019atoms/cm3以下,較佳為5×1018atoms/cm3以下,更佳為5×1017atoms/cm3以下。另外,上述氧化物半導體膜103中的氫濃度是藉由二次離子質譜分析法(SIMS:Secondary Ion Mass Spectrometry)來測量的。
另外,剛成膜之後的氧化物半導體膜103較佳為處於包含比化學計量組成多的氧的過飽和狀態。在此,為了對氧化物半導體膜103供應充分的氧來使其處於氧過飽和狀態,較佳為以包覆氧化物半導體膜103並與其接觸的方式設置包含過剩的氧的絕緣膜(SiOx等),在本實施方式中,閘極絕緣膜102及保護絕緣膜108較佳為包含過剩的氧。
氧化物半導體膜103處於單晶、多晶(也稱為polycrystal)或非晶等狀態。
氧化物半導體膜103例如可以處於非單晶狀態。非單晶狀態例如包括c-axis aligned crystal(CAAC:c軸配向結晶)、多晶、微晶和非晶部。非晶部的缺陷態密度高於微晶和CAAC的缺陷態密度。微晶的缺陷態密度高於CAAC的缺陷態密度。注意,將包括CAAC的氧化物半導體稱為CAAC-OS(c-axis aligned crystalline oxide semiconductor:c軸配向結晶氧化物半導體)。
例如,氧化物半導體膜103可以包括CAAC-OS。在CAAC-OS中,例如c軸配向且a軸及/或b軸在宏觀上不一致。氧化物半導體膜103較佳為CAAC-OS膜。
例如,氧化物半導體膜103可以包括微晶。注意,包 括微晶的氧化物半導體膜(也被稱為微晶氧化物半導體膜)例如包括大於或等於1nm且小於10nm的尺寸的微晶(也稱為奈米晶)。
例如,氧化物半導體膜103可以包括非晶部。注意,包括非晶部的氧化物半導體膜(也被稱為非晶氧化物半導體膜)例如具有無秩序的原子排列且不具有結晶成分。或者,非晶氧化物半導體膜例如是完全的非晶,並且不具有結晶部。
另外,氧化物半導體膜可以是CAAC-OS、微晶氧化物半導體和非晶氧化物半導體的混合膜。混合膜例如包括非晶氧化物半導體的區域、微晶氧化物半導體的區域和CAAC-OS的區域。並且,混合膜例如可以具有包括非晶氧化物半導體的區域、微晶氧化物半導體的區域和CAAC-OS的區域的疊層結構。
另外,氧化物半導體膜例如可以處於單晶狀態。
氧化物半導體膜較佳為包括多個結晶部。在每個結晶部中,c軸較佳為在平行於形成有氧化物半導體膜的表面的法線向量或氧化物半導體膜的表面的法線向量的方向上一致。注意,在結晶部之間,一個結晶部的a軸和b軸的方向可以與另一個結晶部的a軸和b軸的方向不同。這種氧化物半導體膜的一個例子是CAAC-OS膜。
在大多情況下,CAAC-OS膜中的結晶部的尺寸相當於一個邊長小於100nm的立方體。在利用透射電子顯微鏡(TEM:Transmission Electron Microscope)所得到的 影像中,不能明確地觀察到CAAC-OS膜中的結晶部與結晶部之間的邊界。另外,在TEM的影像中,不能明確地觀察到CAAC-OS膜中的晶界(grain boundary)。因此,在CAAC-OS膜中,起因於晶界的電子遷移率的降低得到抑制。
在包括在CAAC-OS膜中的每個結晶部中,例如c軸在平行於形成有CAAC-OS膜的表面的法線向量或CAAC-OS膜的表面的法線向量的方向上一致。並且,在每個結晶部中,當從垂直於ab面的方向看時金屬原子排列為三角形或六角形的結構,且當從垂直於c軸的方向看時,金屬原子排列為層狀或者金屬原子和氧原子排列為層狀。注意,在不同的結晶部之間,一個結晶部的a軸和b軸的方向可以與另一個結晶部的a軸和b軸的方向不同。在本說明書中,“垂直”的用語包括從80°到100°的範圍,較佳為包括從85°到95°的範圍。並且,“平行”的用語包括從-10°到10°的範圍,較佳為包括從-5°到5°的範圍。
在CAAC-OS膜中,結晶部的分佈不一定是均勻的。例如,在CAAC-OS膜的形成過程中,在從氧化物半導體膜的表面一側產生結晶生長的情況下,有時氧化物半導體膜的表面附近的結晶部的比例高於形成有氧化物半導體膜的表面附近的結晶部的比例。另外,當將雜質添加到CAAC-OS膜時,有時添加有雜質的區域中的結晶部的結晶性降低。
因為包括在CAAC-OS膜中的結晶部的c軸在平行於 形成有CAAC-OS膜的表面的法線向量或CAAC-OS膜的表面的法線向量的方向上一致,所以有時根據CAAC-OS膜的形狀(形成有CAAC-OS膜的表面的剖面形狀或CAAC-OS膜的表面的剖面形狀)c軸的方向可以彼此不同。另外,結晶部在成膜時或者在成膜之後藉由諸如加熱處理等晶化處理形成。因此,結晶部的c軸在平行於形成有CAAC-OS膜的表面的法線向量或CAAC-OS膜的表面的法線向量的方向上一致。
在使用CAAC-OS膜的電晶體中,起因於可見光或紫外光的照射的電特性的變動小。因此,該電晶體具有高可靠性。
另外,構成氧化物半導體膜的氧的一部分也可以用氮取代。
另外,像CAAC-OS那樣的具有結晶部的氧化物半導體可以進一步降低塊體內缺陷,藉由提高表面的平坦性,可以得到處於非晶狀態的氧化物半導體的遷移率以上的遷移率。為了提高表面的平坦性,較佳為在平坦的表面上形成氧化物半導體,明確而言,在平均面粗糙度(Ra)為1nm以下,較佳為0.3nm以下,更佳為0.1nm以下的表面上形成氧化物半導體。
在此,Ra是為了可以應用於曲面而將在JIS B0601:2001(ISO4287:1997)中定義的算術平均粗糙度擴大為三維來得到的值,可以將Ra表示為“將從基準面到指定面的偏差的絕對值平均來得到的值”,並且Ra以下面算式定 義。
在此,指定面是指成為檢測粗糙度的對象的面,且用座標(x1,y1,f(x1,y1)),(x1,y2,f(x1,y2)),(x2,y1,f(x2,y1)),(x2,y2,f(x2,y2))的4點表示的四角形的區域,S0表示將指定面投影到xy平面上的長方形的面積,Z0表示基準面的高度(指定面的平均高度)。可以利用原子力顯微鏡(AFM:Atomic Force Microscope)來對Ra進行測量。
注意,因為本實施方式所說明的電晶體110是底閘極型,所以在氧化物半導體膜103的下方設置有基板100、閘極電極101及閘極絕緣膜102。因此,可以在形成閘極電極101及閘極絕緣膜102之後進行CMP處理等的平坦化處理來得到上述平坦的表面。
另外,在使用氧化物半導體膜的底閘極結構的反交錯型電晶體中,臨界電壓的負值化及伴隨其的電晶體的常導通化是很大的問題。
該氧化物半導體膜與保護絕緣膜之間的介面附近的電場集中是導致上述臨界電壓的負值化的原因之一。這是由於當電場極端集中於與氧化物半導體膜的上表面接觸的源極電極或汲極電極的側面端部時,帶正電荷的可動離子等移動到保護絕緣膜與氧化物半導體膜之間的介面附近,並且,氧化物半導體膜中的負電荷向該正電荷移動,導致即 使在閘極電壓為負值的情況下也形成寄生通道。
在本實施方式所示的半導體裝置中,藉由使用上述包含第一區域103a至第三區域103c的氧化物半導體膜103,至少用作通道形成區的第二區域103b附近的電場得到緩和。
在此,說明藉由使用模型的計算而得到的驗證結果,該驗證結果示出藉由使用包含第一區域103a至第三區域103c的氧化物半導體膜103,至少用作通道形成區的第二區域103b附近的電場得到緩和。明確而言,使用與圖1A和圖1B所示的電晶體110相同的模型來計算施加閘極偏壓時的汲極電極附近的電位分佈。使用矽谷科技有限公司(Silvaco Inc.)製造的模擬軟體(Atlas)進行計算。
圖11示出計算中實際使用的電晶體的模型。另外,使用與圖1A和圖1B所示的電晶體110相同的符號來表示圖11所示的電晶體的模型的各構成要素。
圖11所示的電晶體的模型包含:設置在閘極電極101上的閘極絕緣膜102;設置在閘極絕緣膜102上的包含第一區域103a至第三區域103c的氧化物半導體膜103;設置在第一區域103a上的源極電極105a及汲極電極105b;以及設置在第二區域103b及第三區域103c上的保護絕緣膜108。
圖11所示的電晶體的模型的各構成要素的條件如下:閘極電極101的功函數為5.0eV,源極電極105a及汲極電極105b的功函數為4.6eV;閘極絕緣膜102的厚度為 250nm;氧化物半導體膜103的帶隙為3.15eV,電子親和勢為4.6eV,相對介電常數為15,電子遷移率為10cm2/Vs,施體密度為1×1016cm-3;保護絕緣膜108的厚度為300nm;第一區域103a的厚度T1為35nm,第二區域103b的厚度T2為10nm,設置在第三區域103c中的步階的角度θ(參照圖4A)為90°;以及第二區域103b通道長度方向的長度L2為3μm。
在上述電晶體中,將第一區域103a與第二區域103b之間的距離L1設定為0μm、0.2μm、0.4μm、0.6μm、0.8μm以及1.0μm。
在各模型中,在閘極電壓為-30V,汲極電壓為0V並且源極電壓為0V的狀態下計算電位分佈,由此算出位於第二區域103b與第三區域103c之間的邊界的點A及點B的電場強度。圖12示出各模型中的點A及點B的電場強度的計算結果。在圖12所示的圖表中,橫軸表示距離L1[μm],縱軸表示電場強度[V/cm]。
如圖12所示,隨著第一區域103a與第二區域103b之間的距離L1增加,點A及點B的電場強度得到緩和。尤其是與L1=0μm的電晶體,即,沒有設置第三區域的電晶體相比,根據本發明的一個方式的L1為0.2μm以上的電晶體的點A的電場強度降低到五分之一以下,點B的電場強度降低到二分之一以下。
在此,L1為0.2μm時的通道長度L為3.4μm,因此,當第一區域103a與第二區域103b之間的距離L1為 通道長度L的0.059倍以上時,可以充分緩和點A及點B的電場。點A及點B位於第二區域103b與第三區域103c之間的邊界,由此可以認為第二區域103b附近的電場也可以得到充分地緩和。
上述結果示出,藉由使用包含第一區域103a、第二區域103b及第三區域103c的氧化物半導體膜103形成電晶體,至少第二區域103b附近的電場得到緩和。其中,第一區域103a為與源極電極105a及汲極電極105b重疊的厚度大的區域。第三區域103c為設置在該第一區域103a之間的區域。第二區域103b為設置在該第三區域103c之間且比第一區域103a薄的區域。
在電晶體110中,第二區域103b位於通道形成區中央,所以藉由緩和該區域的電場集中來抑制寄生通道的形成,可以抑制電晶體110的臨界電壓的負值化。
如此能夠提供一種臨界電壓的負值化得到抑制的使用氧化物半導體膜的電晶體。另外,能夠提供一種臨界電壓的負值化得到抑制的所謂的常截止的使用氧化物半導體膜的電晶體。另外,能夠提供一種包括該使用氧化物半導體膜的電晶體的高品質的半導體裝置。
接著,參照圖2A至圖2C及圖3A和圖3B所示的剖面圖對圖1A和圖1B所示的電晶體110的製造方法的一個例子進行說明。
首先,在具有絕緣表面的基板100上形成導電膜,對該導電膜進行蝕刻來形成閘極電極101(包括由與此相同 的層形成的佈線)。導電膜的蝕刻可以使用乾蝕刻和濕蝕刻中的一者或兩者。
對可用作具有絕緣表面的基板100的基板沒有特別的限制,但是基板100需要至少具有能夠承受後面進行的加熱處理程度的耐熱性。例如,作為基板100,可以使用鋇硼矽酸鹽玻璃或鋁硼矽酸鹽玻璃等玻璃基板、陶瓷基板、石英基板、藍寶石基板等的基板。此外,還可以應用以矽或碳化矽等為材料的單晶半導體基板或多晶半導體基板、以矽鍺等為材料的化合物半導體基板、SOI基板等,並且也可以使用在這些基板上設置有半導體元件的基板作為基板100。
此外,可以作為基板100使用撓性基板製造半導體裝置。當製造具有撓性的半導體裝置時,既可以在撓性基板上直接形成包含氧化物半導體膜103的電晶體110,也可以在其他製造基板上形成包含氧化物半導體膜103的電晶體110,然後從製造基板將電晶體110剝離並轉置到撓性基板上。注意,為了從製造基板將電晶體110剝離並轉置到撓性基板上,較佳為在製造基板與包含氧化物半導體膜的電晶體110之間設置剝離層。
閘極電極101可以使用鉬、鈦、鉭、鎢、鋁、銅、鉻、釹及鈧等金屬材料或以上述金屬材料為主要成分的合金材料形成。此外,作為閘極電極101可以使用以摻雜了磷等雜質元素的多晶矽膜為代表的半導體膜、矽化鎳等矽化膜。閘極電極101既可以具有單層結構也可以具有疊層 結構。
另外,閘極電極101的材料也可以使用氧化銦氧化錫、包含氧化鎢的銦氧化物、包含氧化鎢的銦鋅氧化物、包含氧化鈦的銦氧化物、包含氧化鈦的銦錫氧化物、氧化銦氧化鋅以及添加有氧化矽的銦錫氧化物等導電材料。此外,也可以採用上述導電材料與上述金屬材料的疊層結構。
此外,作為閘極電極101,可以使用包含氮的金屬氧化物膜,明確地說,包含氮的In-Ga-Zn-O膜、包含氮的In-Sn-O膜、包含氮的In-Ga-O膜、包含氮的In-Zn-O膜、包含氮的Sn-O膜、包含氮的In-O膜以及金屬氮化膜(InN、SnN等)。當閘極電極101具有疊層結構時,尤其較佳為將上述材料用於與閘極絕緣膜102接觸的層。這些膜具有5eV(電子伏特)以上,較佳為具有5.5eV(電子伏特)以上的功函數,當將它們用於閘極電極時,可以使電晶體的臨界電壓近於正值,由此可以實現常截止型切換元件。
另外,也可以在基板100上形成基底絕緣膜並在其上形成閘極電極101。作為基底絕緣膜,可以藉由電漿CVD法或濺射法等使用如下材料形成:氧化矽、氧氮化矽、氧化鋁、氧氮化鋁、氧化鉿、氧化鎵等具有絕緣性的氧化物;氮化矽、氮氧化矽、氮化鋁、氮氧化鋁等具有絕緣性的氮化物;它們的混合材料。此外,在本說明書等中,“氧氮化矽”是指在其組成中氧的含量多於氮的含量的物 質。此外,“氮氧化矽”是指在其組成中氮的含量多於氧的含量的物質。
接著,在閘極電極101上形成閘極絕緣膜102。
閘極絕緣膜102可以適當地利用濺射法、MBE(Molecular Beam Epitaxy:分子束磊晶)法、CVD法、脈衝雷射沉積法、ALD(Atomic Layer Deposition:原子層沉積)法等。另外,還可以使用在以大致垂直於濺射靶材表面的方式設置有多個基板表面的狀態下進行成膜的濺射裝置形成閘極絕緣膜102。
閘極絕緣膜102可以使用氧化矽膜、氧化鎵膜、氧化鋁膜、氮化矽膜、氧氮化矽膜、氧氮化鋁膜、氮氧化矽膜或Ga-Zn類氧化物膜等形成。在此,閘極絕緣膜102既可以具有單層結構也可以具有疊層結構。
當作為閘極絕緣膜102使用氧化鎵膜時,例如可以利用有機金屬氣相沉積(MOCVD:Metal Organic Chemical Vapor Deposition)法形成。作為原料氣體,可以使用三甲基鎵或三乙基鎵等。如此藉由使用MOCVD法,可以以不產生粉狀物質的方式形成氧化鎵膜。
例如,作為閘極絕緣膜102可以採用在氮化矽膜上疊層氧化鎵膜的結構。尤其在不設置基底絕緣膜的情況下,藉由作為閘極絕緣膜102設置這種包含大量的氮的膜,可以防止來自基板100的雜質擴散。尤其在作為基板100使用玻璃基板的情況下,水分或金屬元素等雜質的擴散明顯,因此較佳為作為閘極絕緣膜102設置包含大量的氮的 膜。另外,當作為閘極電極101使用包含如銅那樣擴散性高的金屬元素的膜時,藉由作為閘極絕緣膜102設置這種包含大量的氮的膜可以阻擋該金屬元素,所以是較佳的。
此外,藉由作為閘極絕緣膜102的材料使用氧化鉿、氧化釔、矽酸鉿(HfSixOy(x>0,y>0))、添加有氮的矽酸鉿(HfSiOxNy(x>0、y>0))、鋁酸鉿(HfAlxOy(x>0、y>0))以及氧化鑭等high-k材料,可以降低閘極漏電流。
再者,較佳為閘極絕緣膜102中的與氧化物半導體膜103接觸的部分含有氧。尤其是,較佳為閘極絕緣膜102的膜中(塊體中)至少含有超過化學計量成分比的量的氧。在此,作為將氧引入到閘極絕緣膜102的方法,可以使用離子植入法、離子摻雜法、電漿浸沒離子植入法、電漿處理等。
藉由以與氧化物半導體膜103接觸的方式形成成為氧的供應源的包含大量的(過剩的)氧的閘極絕緣膜102,可以從該閘極絕緣膜102對氧化物半導體膜103供應氧。較佳為藉由在氧化物半導體膜103與閘極絕緣膜102的至少一部分接觸的狀態下進行加熱處理來對氧化物半導體膜103供應氧。
藉由對氧化物半導體膜103供應氧,可以填補膜中的氧缺損。再者,較佳為考慮到所製造的電晶體的尺寸和閘極絕緣膜102的步階覆蓋性地形成閘極絕緣膜102。
接著,在閘極絕緣膜102上形成氧化物半導體膜。
在氧化物半導體膜的成膜製程中,為了儘量不使氧化 物半導體膜包含氫或水,作為形成氧化物半導體膜的預處理,較佳為在濺射裝置的預熱室內對形成有閘極絕緣膜102的基板進行預熱,來使吸附於基板及閘極絕緣膜102的氫、水分等的雜質脫離並將其排出。另外,設置在預熱室中的排氣單元較佳為使用低溫泵。
也可以對閘極絕緣膜102中的與後述的島狀的氧化物半導體膜103接觸的區域進行平坦化處理。對平坦化處理沒有特別的限制,可以使用拋光處理(如化學機械拋光(Chemical Mechanical Polishing:CMP))、乾蝕刻處理及電漿處理。
作為電漿處理,例如可以進行引入氬氣體來產生電漿的反濺射。反濺射是指使用RF電源在氬氛圍下對基板一側施加電壓來在基板附近形成電漿以進行表面改性的方法。另外,也可以使用氮、氦、氧等代替氬氛圍。可以藉由反濺射去除附著在閘極絕緣膜102的表面上的粉末物質(也稱為顆粒或粉塵)。
作為平坦化處理,既可以進行多次的拋光處理、乾蝕刻處理以及電漿處理,又可以將上述組合。在組合上述處理的情況下,對步驟順序沒有特別限制,可以根據閘極絕緣膜102的表面糙度適當地設定。
作為氧化物半導體膜的成膜方法,可以適當地利用濺射法、MBE法、CVD法、脈衝雷射沉積法、ALD法等。另外,還可以使用在以大致垂直於濺射靶材表面的方式設置有多個基板表面的狀態下進行成膜的濺射裝置形成氧化 物半導體膜。
氧化物半導體膜的成膜較佳為以厚度成為20nm以上且300nm以下的方式進行。
此外,氧化物半導體膜較佳為以包含大量的氧的條件(例如,在氧為100%的氛圍下利用濺射法等)形成,由此使氧化物半導體膜包含大量的氧(較佳為包含與結晶狀態下的氧化物半導體的化學計量的組成相比氧含量過剩的區域)。
用來形成氧化物半導體膜的濺射氣體較佳為使用被去除了氫、水、羥基或氫化物等的雜質的高純度氣體。
在保持為減壓狀態的成膜室中保持基板。而且,在去除殘留在成膜室內的水分的同時引入被去除了氫及水分的濺射氣體並使用含有可用於上述氧化物半導體膜103的材料的靶材在閘極絕緣膜102上形成氧化物半導體膜。為了去除成膜室內的殘留水分,較佳為使用吸附型的真空泵,例如低溫泵、離子泵、鈦昇華泵。此外,作為排氣單元,也可以使用具備冷阱的渦輪分子泵。因為在使用低溫泵進行排氣的成膜室中,例如將氫原子、水(H2O)等包含氫原子的化合物(更佳的是,包含碳原子的化合物)等排出,所以可以降低在該成膜室中形成的氧化物半導體膜所包含的雜質的濃度。
另外,在藉由濺射法形成氧化物半導體膜的情況下,用於成膜的金屬氧化物靶材的相對密度(填充率)為90%以上且100%以下,較佳為95%以上且100%以下。藉由使 用高相對密度的金屬氧化物靶材,可以形成緻密的氧化物半導體膜。
另外,為了降低有可能包含在氧化物半導體膜中的雜質的濃度,在將基板100保持為高溫的狀態下形成氧化物半導體膜也是有效的。將加熱基板100的溫度設定為150℃以上且450℃以下即可,較佳為設定為200℃以上且350℃以下。另外,藉由在進行成膜時以高溫加熱基板,可以形成結晶氧化物半導體膜。
另外,較佳為以不使閘極絕緣膜102暴露於大氣的方式連續地形成閘極絕緣膜102和氧化物半導體膜。藉由以不使閘極絕緣膜102暴露於大氣的方式連續地形成閘極絕緣膜102和氧化物半導體膜,可以防止氫或水分等雜質附著於閘極絕緣膜102表面。
另外,剛成膜之後的氧化物半導體膜較佳為處於包含比化學計量組成多的氧的過飽和狀態。例如,在使用濺射法形成氧化物半導體膜的情況下,較佳為以在成膜氣體中氧所占的比率高的條件進行成膜,尤其較佳為在氧氛圍(氧氣體為100%)下進行成膜。當以在成膜氣體中氧所占的比率高的條件,尤其在氧氣體為100%的氛圍下進行成膜時,即使如將成膜溫度設定為300℃以上,也可以抑制膜中的Zn釋放到外部。
當作為氧化物半導體膜使用CAAC-OS膜時,作為獲得該CAAC-OS膜的方法,可以舉出三個方法。第一個方法是藉由將成膜溫度設定為200℃以上且450℃以下形成 氧化物半導體膜,並沿著大致垂直於表面的方向進行c軸配向。第二個方法是在形成薄的氧化物半導體膜之後,進行200℃以上且700℃以下的加熱處理,並沿著大致垂直於表面的方向進行c軸配向。第三個方法是在形成薄的第一層之後,進行200℃以上且700℃以下的加熱處理,然後形成第二層,並沿著大致垂直於表面的方向進行c軸配向。
另外,也可以對氧化物半導體膜進行用來去除過剩的氫(包括水或羥基)(脫水化或脫氫化)的加熱處理。將加熱處理的溫度設定為300℃以上且700℃以下或低於基板的應變點的溫度。可以在減壓下或氮氛圍下等進行加熱處理。
此外,當作為氧化物半導體膜使用結晶氧化物半導體膜時,也可以進行加熱處理來實現晶化。
在本實施方式中,將基板放在加熱處理裝置之一的電爐中,在氮氛圍下以450℃的溫度對氧化物半導體膜進行1小時,並且在氮及氧氛圍下以450℃的溫度進行1小時的加熱處理。
另外,加熱處理裝置不侷限於電爐,也可以使用利用來自電阻發熱體等發熱體的熱傳導或熱輻射對被處理物進行加熱的裝置。例如,可以使用GRTA(Gas Rapid Thermal Anneal:氣體快速熱退火)裝置、LRTA(Lamp Rapid Thermal Anneal:燈快速熱退火)裝置等RTA(Rapid Thermal Anneal:快速熱退火)裝置。LRTA裝置 是利用鹵素燈、金屬鹵化物燈、氙弧燈、碳弧燈、高壓鈉燈、高壓汞燈等的燈所發射的光(電磁波)的輻射對被處理物進行加熱的裝置。GRTA裝置是利用高溫氣體進行加熱處理的裝置。作為高溫氣體,使用氬等稀有氣體或氮等即使進行加熱處理也不與被處理物起反應的惰性氣體。
例如,作為加熱處理也可以進行GRTA,其中將基板放在加熱到650℃至700℃的高溫的惰性氣體中,加熱幾分鐘,然後將基板從惰性氣體中取出。
另外,在加熱處理中,氮或諸如氦、氖、氬等稀有氣體較佳為不包含水、氫等。或者,較佳為將引入到加熱處理裝置中的氮或諸如氦、氖、氬等稀有氣體的純度設定為6N(99.9999%)以上,更佳為設定為7N(99.99999%)以上(即,將雜質濃度設定為1ppm以下,較佳為設定為0.1ppm以下)。
此外,也可以在藉由加熱處理加熱氧化物半導體膜之後,對相同的爐中引入高純度的氧氣體、高純度的一氧化二氮氣體或超乾燥空氣(使用CRDS(cavity ring-down laser spectroscopy:光腔衰蕩光譜法)方式的露點儀進行測量時的水分量為20ppm(換算成露點時為-55℃)以下,較佳為1ppm以下,更佳為10ppb以下的空氣)。氧氣體或一氧化二氮氣體較佳為不包含水、氫等。或者,較佳為將引入到加熱處理裝置中的氧氣體或一氧化二氮氣體的純度設定為6N以上,較佳為設定為7N以上(即,將氧氣體或一氧化二氮氣體中的雜質濃度設定為1ppm以 下,較佳為設定為0.1ppm以下)。即使在利用脫水化處理或脫氫化處理的雜質排出製程中氧化物半導體的主要構成要素的氧減少,也可以藉由利用氧氣體或一氧化二氮氣體供應氧,來使氧化物半導體膜高度純化且i型(本質)化。
另外,用於脫水化或脫氫化的加熱處理既可以在形成膜狀的氧化物半導體膜之後進行,又可以在形成後述的島狀的氧化物半導體膜103之後進行。
另外,用於脫水化或脫氫化的加熱處理可以進行多次,還可以兼作其他加熱處理。
藉由在將氧化物半導體膜加工為島狀的氧化物半導體膜103之前在膜狀的氧化物半導體膜覆蓋閘極絕緣膜102的狀態下進行用於脫水化或脫氫化的加熱處理,可以防止因加熱處理使包含在閘極絕緣膜102中的氧釋放到外部,所以是較佳的。
另外,也可以對經過脫水化或脫氫化處理的氧化物半導體膜引入氧(至少包括氧自由基、氧原子和氧離子中的任何一個)來對其供應氧。在此,作為對氧化物半導體膜引入氧的方法,可以採用離子植入法、離子摻雜法、電漿浸沒離子植入法及電漿處理等。
較佳為在進行脫水化或脫氫化處理之後對氧化物半導體膜引入氧,但是不侷限於此。此外,也可以對經過上述脫水化或脫氫化處理的氧化物半導體膜多次引入氧。
設置在電晶體中的氧化物半導體膜較佳為包含與結晶 狀態下的氧化物半導體的化學計量組成相比氧含量過剩的區域。此時,氧含量超過氧化物半導體的化學計量組成。或者,氧含量超過單晶狀態下的氧化物半導體的氧含量。有時氧存在於氧化物半導體的晶格之間。
如上所述,較佳為藉由充分地去除氫等雜質或供應充分的氧使氧化物半導體膜處於氧過飽和狀態,來使其高度純化。明確而言,氧化物半導體膜中的氫濃度為5×1019atoms/cm3以下,較佳為5×1018atoms/cm3以下,更佳為5×1017atoms/cm3以下。
藉由從氧化物半導體去除氫或水分使其儘量不包含雜質而高度純化,並藉由供應氧填補氧缺損,可以實現i型(本質)氧化物半導體或無限趨近於i型(本質)的氧化物半導體。由此,可以使氧化物半導體的費米能階(Ef)成為與本質費米能階(Ei)相同的程度。由此,藉由將該氧化物半導體膜用於電晶體,可以降低因氧缺損而產生的電晶體的臨界電壓Vth的偏差、臨界電壓的漂移△Vth。
接著,藉由光微影製程將上述氧化物半導體膜加工為島狀的氧化物半導體膜113(參照圖2A)。在此,島狀的氧化物半導體膜113的側面端部可以具有錐形形狀。錐角可以適當地設定。例如,可以將錐角設定為20°以上且50°以下。另外,錐角是指:當在從垂直於具有錐形形狀的膜(例如,氧化物半導體膜113)的剖面(與基板表面正交的面)的方向觀察該膜時,該膜的側面與底面或設置有該膜的基板表面所形成的傾斜角。
此外,也可以藉由噴墨法形成用來形成島狀的氧化物半導體膜113的光阻遮罩。當利用噴墨法形成光阻遮罩時不需要光遮罩,由此可以降低製造成本。
另外,氧化物半導體膜的蝕刻可以採用乾蝕刻和濕蝕刻中的一者或兩者。例如,作為用於氧化物半導體膜的濕蝕刻的蝕刻劑,可以使用磷酸、醋酸以及硝酸的混合溶液等。此外,也可以使用ITO-07N(關東化學株式會社(KANTO CHEMICAL CO.,INC.)製造)。另外,也可以藉由利用ICP(Inductively Coupled Plasma:感應耦合電漿)蝕刻法的乾蝕刻進行蝕刻加工。
接著,在閘極電極101、閘極絕緣膜102及氧化物半導體膜113上形成用作源極電極及汲極電極(包括由與此相同的層形成的佈線)的導電膜115。
作為用作源極電極及汲極電極的導電膜115,使用能夠承受後面的加熱處理的材料。例如可以使用含有選自鋁(Al)、鉻(Cr)、銅(Cu)、鉭(Ta)、鈦(Ti)、鉬(Mo)、鎢(W)中的元素的金屬膜或以上述元素為成分的金屬氮化物膜(氮化鈦膜、氮化鉬膜、氮化鎢膜)等。此外,還可以採用在Al、Cu等的金屬膜的下側和上側的一者或兩者層疊Ti、Mo、W等高熔點金屬膜或它們的金屬氮化物膜(氮化鈦膜、氮化鉬膜、氮化鎢膜)的結構。另外,用於源極電極及汲極電極的導電膜115可以使用導電金屬氧化物形成。作為導電金屬氧化物,可以使用氧化銦(In2O3)、氧化錫(SnO2)、氧化鋅(ZnO)、氧化銦 氧化錫(In2O3-SnO2:簡稱為ITO)、氧化銦氧化鋅(In2O3-ZnO)或使這些金屬氧化物材料包含氧化矽的材料。
接著,在導電膜115上利用光微影製程形成光阻遮罩116a及光阻遮罩116b(參照圖2B)。
較佳為在形成光阻遮罩時的曝光中使用紫外線、KrF雷射、ArF雷射。在後面形成的電晶體110的通道長度L取決於在氧化物半導體膜103上對置的源極電極105a的下端部與汲極電極105b的下端部之間的間隔寬度。另外,當以使通道長度L短於25nm的方式進行曝光時,較佳為使用波長極短,即幾nm至幾十nm的極紫外線(Extreme Ultraviolet)進行形成光阻遮罩時的曝光。使用極紫外線的曝光的解析度高且其聚焦深度也大。因此,也可以使在後面形成的電晶體的通道長度L成為10nm以上且1000nm以下,由此可以提高電路的工作速度。
接著,使用光阻遮罩116a及光阻遮罩116b對導電膜115選擇性地進行蝕刻來形成用作源極電極及汲極電極的導電膜115a及導電膜115b(參照圖2C)。此時,氧化物半導體膜113的一部分也同時被蝕刻而形成在中央形成有凹部的氧化物半導體膜103。
該蝕刻製程較佳為利用乾蝕刻進行,例如可以將含有鹵素的氣體用作蝕刻氣體。例如,能夠使用平行板型RIE(Reactive Ion Etching:反應離子蝕刻)法或ICP(Inductively Coupled Plasma:感應耦合電漿)蝕刻法。 以可以蝕刻為所希望的加工形狀的方式適當地調節蝕刻條件(施加到線圈型電極的電力量、施加到基板一側的電極的電力量、基板一側的電極溫度等)。
作為含有鹵素的氣體,可以使用含有氯的氣體,例如,可以使用含有氯(Cl2)、三氯化硼(BCl3)、四氯化矽(SiCl4)、四氯化碳(CCl4)等的氣體。另外,作為含有鹵素的氣體,可以使用含有氟的氣體,例如,含有四氟化碳(CF4)、六氟化硫(SF6)、三氟化氮(NF3)、三氟甲烷(CHF3))或八氟環丁烷(C4F8)等的氣體。或者,對上述氣體添加了氦(He)、氬(Ar)等的稀有氣體的氣體等。
接著,對導電膜115a及導電膜115b進行蝕刻來形成源極電極105a及汲極電極105b(參照圖3A),該源極電極105a及汲極電極105b的側面端部不與上述氧化物半導體膜103的凹部重疊。
藉由作為該蝕刻製程進行濕蝕刻,可以從側面對導電膜115a及導電膜115b進行蝕刻,所以可以繼續使用在圖2C所示的製程中使用的光阻遮罩116a及光阻遮罩116b。此時,用於濕蝕刻的蝕刻劑適當地使用導電膜115a及導電膜115b對氧化物半導體膜103的選擇比充分高的蝕刻劑。
另外,形成源極電極105a及汲極電極105b的蝕刻不侷限於濕蝕刻。例如,也可以先去除光阻遮罩116a及光阻遮罩116b再形成對應於源極電極105a及汲極電極 105b的尺寸的新的光阻遮罩並進行乾蝕刻。此外,也可以對光阻遮罩116a及光阻遮罩116b進行灰化縮小尺寸並進行乾蝕刻。
如此,藉由形成具有其側面端部不與上述氧化物半導體膜103的凹部重疊的形狀的源極電極105a及汲極電極105b,然後形成後述的保護絕緣膜108,可以形成包含與上述源極電極105a及汲極電極105b重疊的厚度大的第一區域103a、設置在該第一區域103a之間的第三區域103c以及設置在該第三區域103c之間的比第一區域103a薄的第二區域103b的氧化物半導體膜103。
藉由使氧化物半導體膜103具有上述形狀,至少可以使第二區域103b附近的電場得到緩和,可以抑制寄生通道的形成,由此可以抑制電晶體110的臨界電壓的負值化。
接著,以覆蓋氧化物半導體膜103、源極電極105a及汲極電極105b的方式形成保護絕緣膜108(參照圖3B)。
保護絕緣膜108可以藉由CVD法、濺射法等形成。作為保護絕緣膜108,典型地可以使用氧化矽膜、氧氮化矽膜、氧化鋁膜、氧氮化鋁膜、氧化鉿膜、氧化鎵膜、氮化矽膜、氮化鋁膜、氮氧化矽膜、氮氧化鋁膜或Ga-Zn類氧化物膜等無機絕緣膜的單層或疊層。
當保護絕緣膜108具有疊層結構時,作為與氧化物半導體膜103接觸的下一側的層較佳為使用氧化矽膜、氧氮 化矽膜、氧化鉿膜、氧化鎵膜或Ga-Zn類氧化物膜等含有氧的絕緣膜。藉由使用這種含有氧的絕緣膜,可以對氧化物半導體膜103供應氧。
另外,藉由對這種含有氧的絕緣膜進行氧添加處理來供應氧(至少包括氧自由基、氧原子和氧離子中的任何一個)。作為氧添加處理,可以採用離子植入法、離子摻雜法、電漿浸沒離子植入法及電漿處理等。另外,作為離子植入法,也可以採用氣體簇離子束(gas cluster ion beam)。可以對整個基板一次性地進行氧添加處理,或者可以移動(掃描)線狀的離子束等地進行氧添加處理。
另外,當保護絕緣膜108具有疊層結構時,較佳為在上述含有氧的絕緣膜上形成氧化鋁膜、氧氮化鋁膜、氮化鋁膜、氮氧化鋁膜、氮化矽膜、氮氧化矽膜等緻密的絕緣膜。藉由形成這種緻密的絕緣膜,可以防止氫、水分等雜質等混入到氧化物半導體膜103。
藉由上述製程製造本實施方式所示的電晶體110(參照圖3B)。
此外,也可以形成平坦化絕緣膜109以減少因電晶體110產生的表面凹凸。作為平坦化絕緣膜109,可以使用聚醯亞胺樹脂、丙烯酸樹脂、苯並環丁烯類樹脂等有機材料。此外,除了上述有機材料之外,還可以使用低介電常數材料(low-k材料)等。另外,也可以藉由層疊多個由這些材料形成的絕緣膜,形成平坦化絕緣膜109。
例如,作為平坦化絕緣膜109可以形成1500nm厚的 丙烯酸樹脂膜。藉由在利用塗敷法塗敷丙烯酸樹脂之後進行焙燒(例如氮氣氛圍下,250℃,1小時),可以形成丙烯酸樹脂膜。
也可以在形成平坦化絕緣膜109之後進行加熱處理。這樣,也可以在形成電晶體110之後進行加熱處理。此外,也可以多次進行加熱處理。
藉由上述步驟能夠提供一種臨界電壓的負值化得到抑制的使用氧化物半導體膜的電晶體。另外,能夠提供一種臨界電壓的負值化得到抑制的所謂的常截止的使用氧化物半導體膜的電晶體。另外,能夠提供一種包括該使用氧化物半導體膜的電晶體的高品質的半導體裝置。
另外,雖然在圖1A和圖1B所示的電晶體110中,在第三區域103c中的氧化物半導體膜103的側面幾乎沒有傾斜,但是本實施方式不侷限於此。例如,有時根據圖3A所示的製程的濕蝕刻中的導電膜115a及導電膜115b對氧化物半導體膜103的選擇比,如圖4A所示那樣第三區域103c中的氧化物半導體膜103具有錐形部。
在此,較佳為將圖4A所示的錐角θ例如設定為30°以上且60°以下。藉由採用上述角度,可以提高保護絕緣膜108對氧化物半導體膜103的覆蓋性,由此可以高效地從保護絕緣膜108對氧化物半導體膜103供應氧。另外,當氧化物半導體膜103的側面端部為錐形形狀時,錐角θ可以大於氧化物半導體膜103的側面端部的錐角。
另外,第三區域103c中的錐形部不一定限於如圖4A 所示的直線狀。例如,錐形部既可以具有曲率中心位於基板100一側的曲面,又可以具有曲率中心位於保護絕緣膜108一側的曲面。
另外,在夾在與源極電極105a及汲極電極105b重疊的第一區域103a與其厚度大致均勻且小於該第一區域103a的最大厚度的第二區域103b之間的第三區域103c中氧化物半導體膜103可以具有曲面。該第三區域103c的最大厚度可以大於該第二區域103b的厚度。
例如,如圖4B所示,第三區域103c中的氧化物半導體膜103可以具有第二區域103b一側的直線部以及第一區域103a一側的曲率中心位於基板100一側的曲面。
另外,如圖4C所示,第三區域103c中的氧化物半導體膜103可以具有具有曲率中心位於保護絕緣膜108一側的曲面的多個步階。
本實施方式所示的結構、方法等可以與其他實施方式所示的結構、方法等適當地組合而使用。
實施方式2
藉由使用實施方式1所示的電晶體可以製造具有顯示功能的半導體裝置(也稱為顯示裝置)。此外,藉由將包括電晶體的驅動電路的一部分或全部形成在與像素部相同的基板上,可以形成系統整合型面板(system-on-panel)。
在圖5A中,第一基板4001上的像素部4002被圍繞 像素部4002的密封材料4005、第一基板4001以及第二基板4006密封。在圖5A中,在第一基板4001上的與由密封材料4005圍繞的區域不同的區域中安裝有使用單晶半導體膜或多晶半導體膜形成在另行準備的基板上的掃描線驅動電路4004、信號線驅動電路4003。此外,供應到另行形成的信號線驅動電路4003、掃描線驅動電路4004或者像素部4002的各種信號及電位由FPC(Flexible printed circuit:撓性印刷電路)4018a、4018b供應。
在圖5B和圖5C中,以圍繞設置在第一基板4001上的像素部4002和掃描線驅動電路4004的方式設置有密封材料4005。此外,在像素部4002和掃描線驅動電路4004上設置有第二基板4006。因此,像素部4002及掃描線驅動電路4004與顯示元件一起由第一基板4001、密封材料4005以及第二基板4006密封。在圖5B和圖5C中,在第一基板4001上的與由密封材料4005圍繞的區域不同的區域中安裝有使用單晶半導體膜或多晶半導體膜形成在另行準備的基板上的信號線驅動電路4003。在圖5B和圖5C中,供應到另行形成的信號線驅動電路4003、掃描線驅動電路4004或者像素部4002的各種信號及電位由FPC4018供應。
此外,圖5B和圖5C示出另行形成信號線驅動電路4003並且將其安裝到第一基板4001的實例,但是不侷限於該結構。既可以另行形成掃描線驅動電路並進行安裝,又可以僅另行形成信號線驅動電路的一部分或者掃描線驅 動電路的一部分並進行安裝。
另外,對另行形成的驅動電路的連接方法沒有特別的限制,而可以採用COG(Chip On Glass:玻璃覆晶封裝)方法、打線接合方法或者TAB(Tape Automated Bonding:捲帶式自動接合)方法等。圖5A是藉由COG方法安裝信號線驅動電路4003、掃描線驅動電路4004的例子,圖5B是藉由COG方法安裝信號線驅動電路4003的例子,而圖5C是藉由TAB方法安裝信號線驅動電路4003的例子。
此外,顯示裝置包括顯示元件為密封狀態的面板和在該面板中安裝有IC諸如控制器等的模組。
注意,本說明書中的顯示裝置是指影像顯示裝置、顯示裝置或光源(包括照明設備)。另外,顯示裝置還包括:安裝有諸如FPC或TCP的連接器的模組;在TCP的端部設置有印刷線路板的模組;或者藉由COG方式將IC(積體電路)直接安裝到顯示元件的模組。
此外,設置在第一基板上的像素部及掃描線驅動電路具有多個電晶體,可以應用實施方式1所示的電晶體。
作為設置在顯示裝置中的顯示元件,可以使用液晶元件(也稱為液晶顯示元件)、發光元件(也稱為發光顯示元件)。發光元件將由電流或電壓控制亮度的元件包括在其範疇內,明確而言,包括無機EL(Electro Luminescence:電致發光)元件、有機EL元件等。此外,也可以應用如電子墨水等的因電作用而對比度發生變 化的顯示媒介。
參照圖5A至圖7B對半導體裝置的一個方式進行說明。圖7A和圖7B是沿著圖5B的線M-N的剖面圖。
如圖5A至圖5C及圖7A和圖7B所示,半導體裝置包括連接端子電極4015及端子電極4016,連接端子電極4015及端子電極4016藉由各向異性導電膜4019電連接到FPC4018所具有的端子。
連接端子電極4015由與第一電極4030相同的導電膜形成,並且,端子電極4016由與電晶體4010、電晶體4011的源極電極及汲極電極相同的導電膜形成。
此外,設置在第一基板4001上的像素部4002、掃描線驅動電路4004具有多個電晶體,在圖7A和圖7B中例示出像素部4002所包括的電晶體4010、掃描線驅動電路4004所包括的電晶體4011。在圖7A中,在電晶體4010及電晶體4011上設置有第一保護絕緣膜4020及第二保護絕緣膜4021,在圖7B中在第二保護絕緣膜4021上還設置有絕緣膜4022。
作為電晶體4010及電晶體4011,可以使用實施方式1所示的電晶體。在本實施方式中示出使用具有與實施方式1所示的電晶體110相同的結構的電晶體的例子。電晶體4010及電晶體4011是底閘極結構的反交錯型電晶體。
在藉由利用與實施方式1所示的電晶體110相同的結構及製造方法得到的電晶體4010及電晶體4011中,臨界電壓的負值化得到抑制。
因此,在本實施方式中,可以使圖5A至圖5C及圖7A和圖7B所示的半導體裝置為包括使用氧化物半導體膜的常截止的電晶體4010、電晶體4011的可靠性高的半導體裝置。
此外,還可以在與驅動電路用電晶體4011的氧化物半導體膜的通道形成區重疊的位置設置導電層。藉由將導電層設置在與氧化物半導體膜的通道形成區重疊的位置,可以進一步降低偏壓溫度壓力測試(BT測試)前後的電晶體4011的臨界電壓的變化量。此外,導電層的電位既可以與電晶體4011的閘極電極的電位相同,又可以不同,並且,該導電層還可以用作第二閘極電極。此外,導電層的電位也可以為GND、0V或者導電層可以處於浮動狀態。
此外,該導電層還具有遮蔽外部的電場的功能,即不使外部的電場作用到內部(包括電晶體的電路部)的功能(尤其是,遮蔽靜電的靜電遮蔽功能)。利用導電層的遮蔽功能,可以防止由於靜電等外部的電場的影響而使電晶體的電特性變動。
設置在像素部4002中的電晶體4010電連接到顯示元件,而構成顯示面板。顯示元件只要能夠進行顯示就沒有特別的限制,而可以使用各種各樣的顯示元件。
圖7A示出作為顯示元件使用液晶元件的液晶顯示裝置的例子。在圖7A中,作為顯示元件的液晶元件4013包含第一電極4030、第二電極4031以及液晶層4008。另 外,以夾持液晶層4008的方式設置有用作配向膜的絕緣膜4032、4033。第二電極4031設置在第二基板4006一側,第一電極4030和第二電極4031夾著液晶層4008而層疊。
此外,間隔物4035是藉由對絕緣膜選擇性地進行蝕刻而獲得的柱狀間隔物,並且它是為控制液晶層4008的厚度(液晶盒間隙(cell gap))而設置的。另外,也可以使用球狀間隔物。
當作為顯示元件使用液晶元件時,可以使用熱致液晶、低分子液晶、高分子液晶、高分子分散型液晶、鐵電液晶、反鐵電液晶等。上述液晶材料(液晶組成物)根據條件而呈現膽固醇相、近晶相、立方相、手性向列相、各向同性相等。
另外,也可以將不使用配向膜的呈現藍相的液晶組成物用於液晶層4008。在此情況下,液晶層4008與第一電極4030及第二電極4031接觸。藍相是液晶相的一種,是指當使膽固醇相液晶的溫度上升時從膽固醇相轉變到各向同性相之前出現的相。藍相可以使用混合液晶及手性試劑的液晶組成物呈現。此外,為了擴大呈現藍相的溫度範圍,對呈現藍相的液晶組成物添加聚合性單體及聚合引發劑等,進行高分子穩定化的處理來可以形成液晶層。由於呈現藍相的液晶組成物的回應時間短,並且其具有光學各向同性,所以不需要配向處理,且視角依賴性小。另外,由於不需要設置配向膜而不需要摩擦處理,因此可以防止 由於摩擦處理而引起的靜電破壞,並可以降低製程中的液晶顯示裝置的故障、破損。從而,可以提高液晶顯示裝置的生產率。在使用氧化物半導體膜的電晶體中,電晶體的電特性因靜電的影響而有可能顯著地變動而越出設計範圍。因此,將呈現藍相的液晶組成物用於具有使用氧化物半導體膜的電晶體的液晶顯示裝置是更有效的。
此外,液晶材料的固有電阻為1×109Ω.cm以上,較佳為1×1011Ω.cm以上,更佳為1×1012Ω.cm以上。另外,本說明書中的固有電阻的值為在20℃的溫度下測量的值。
考慮到配置在像素部中的電晶體的汲極電流等而以能夠在指定期間中保持電荷的方式設定設置在液晶顯示裝置中的儲存電容器的大小。可以考慮到電晶體的關態電流(off-state current)等設定儲存電容器的大小。
使用本說明書所公開的氧化物半導體膜的電晶體可以抑制截止狀態下的電流值(關態電流值)。因此,可以延長影像信號等電信號的保持時間,在開啟電源的狀態下也可以延長寫入間隔。因此,可以降低更新工作的頻率,所以可以獲得抑制耗電量的效果。
此外,使用本說明書所公開的氧化物半導體膜的電晶體可以得到比較高的場效應遷移率,所以能夠進行高速驅動。例如,藉由將這種能夠進行高速驅動的電晶體用於液晶顯示裝置,可以在同一基板上形成像素部中的開關電晶體及驅動電路部中的驅動電晶體。也就是說,因為作為驅動電路不需要另行使用由矽晶片等形成的半導體裝置,所 以可以縮減半導體裝置的部件數。另外,在像素部中也藉由使用能夠進行高速驅動的電晶體,可以提供高品質的影像。
液晶顯示裝置可以採用TN(Twisted Nematic:扭曲向列)模式、IPS(In-Plane-Switching:平面內轉換)模式、FFS(Fringe Field Switching:邊緣電場轉換)模式、ASM(Axially Symmetric aligned Micro-cell:軸對稱排列微單元)模式、OCB(Optical Compensated Birefringence:光學補償彎曲)模式、FLC(Ferroelectric Liquid Crystal:鐵電性液晶)模式、AFLC(Anti Ferroelectric Liquid Crystal:反鐵電性液晶)模式等。
此外,也可以使用常黑型液晶顯示裝置,例如採用垂直配向(VA)模式的透過型液晶顯示裝置。作為垂直配向模式,可以列舉幾個例子,例如可以使用MVA(Multi-Domain Vertical Alignment:多象限垂直配向)模式、PVA(Patterned Vertical Alignment:垂直配向構型)模式、ASV(Advanced Super View:高級超視覺)模式等。另外,也可以將本實施方式應用於VA型液晶顯示裝置。VA型液晶顯示裝置是控制液晶顯示面板的液晶分子的排列的方式之一。VA型液晶顯示裝置是在不被施加電壓時液晶分子朝向垂直於面板的方向的方式。此外,也可以使用被稱為多域化或多域設計的方法,即將像素(pixel)分成幾個區域(子像素)且使分子分別倒向不同方向的方法。
此外,在顯示裝置中,適當地設置黑矩陣(遮光層)、偏振構件、相位差構件、抗反射構件等的光學構件(光學基板)等。例如,也可以使用利用偏振基板以及相位差基板的圓偏振。此外,作為光源,也可以使用背光、側光燈等。
此外,作為像素部中的顯示方式,可以採用逐行掃描方式或隔行掃描方式等。此外,作為當進行彩色顯示時在像素中控制的顏色因素,不侷限於RGB(R表示紅色,G表示綠色,B表示藍色)這三種顏色。例如,也可以採用RGBW(W表示白色)或對RGB追加黃色(yellow)、青色(cyan)、洋紅色(magenta)等中的一種以上的顏色。另外,也可以按每個顏色因素的點使其顯示區的大小不同。但是,所公開的發明不侷限於彩色顯示的顯示裝置,而也可以應用於單色顯示的顯示裝置。
此外,作為顯示裝置所包含的顯示元件,可以應用利用電致發光的發光元件。利用電致發光的發光元件根據發光材料是有機化合物還是無機化合物被區分,一般地,前者被稱為有機EL元件,而後者被稱為無機EL元件。
在有機EL元件中,藉由對發光元件施加電壓,電子及電洞分別從一對電極注入到包含發光有機化合物的層,以使電流流過。並且,藉由這些載流子(電子及電洞)重新結合,發光有機化合物形成激發態,當從該激發態回到基態時發光。由於這種機制,這種發光元件被稱為電流激發型發光元件。在本實施方式中,示出作為發光元件使用 有機EL元件的例子。
無機EL元件根據其元件結構而分類為分散型無機EL元件和薄膜型無機EL元件。分散型無機EL元件具有發光層,其中發光材料的粒子分散在黏合劑中,並且其發光機制是利用施體能階和受體能階的施體-受體重新結合型發光。薄膜型無機EL元件具有一種結構,其中,發光層夾在介電層之間,並且由電極夾持該夾著發光層的介電層,其發光機制是利用金屬離子的內殼層電子躍遷的定域型發光(localized type light emission)。另外,這裏作為發光元件使用有機EL元件進行說明。
為了取出發光,使發光元件的一對電極中的至少一個具有透光性即可。並且,在基板上形成電晶體及發光元件。發光元件可以採用下述結構中的任何一個:從與基板相反一側的表面取出發光的頂部發射結構;從基板一側的表面取出發光的下面發射結構;以及從基板一側的表面及與基板相反一側的表面取出發光的雙面發射結構。
圖6A和圖6B及圖7B示出作為顯示元件使用發光元件的發光裝置的例子。
圖6A是發光裝置的平面圖,圖6B是沿著圖6A中的鎖鏈線V1-W1、V2-W2及V3-W3切斷的剖面。另外,在圖6A的平面圖中,未圖示電致發光層542及第二電極543等。
圖6A和圖6B所示的發光裝置在基板500上具有電晶體510、電容元件520及佈線層交叉部530,其中電晶 體510與發光元件540電連接。另外,圖6A和圖6B示出經過基板500提取發光元件540所發射的光的下面發射型結構的發光裝置。
作為電晶體510,可以使用實施方式1所示的電晶體。在本實施方式中示出使用具有與實施方式1所示的電晶體110相同的結構的電晶體的例子。電晶體510是底閘極結構的反交錯型電晶體。
電晶體510包括閘極電極511a、511b、閘極絕緣膜502、氧化物半導體膜512以及用作源極電極或汲極電極的導電層513a、513b。
在藉由利用與實施方式1所示的電晶體110相同的結構及製造方法得到的電晶體510中,臨界電壓的負值化得到抑制。
因此,在本實施方式中,可以使圖6A和圖6B所示的半導體裝置為包括使用氧化物半導體膜的常截止的電晶體510的高品質的半導體裝置。
電容元件520包括導電層521a、521b、閘極絕緣膜502、氧化物半導體膜522及導電層523,其中由導電層521a、521b及導電層523夾持閘極絕緣膜502及氧化物半導體膜522而形成電容。另外,如圖6A和圖6B所示,在電晶體510的通道寬度方向上導電層521a、521b或導電層523的端部可以位於氧化物半導體膜522的端部的內側。
佈線層交叉部530是閘極電極511a、511b與導電層 533的交叉部,閘極電極511a、511b與導電層533隔著閘極絕緣膜502及絕緣層553交叉。在本實施方式所示的結構中,在佈線層交叉部530的閘極電極511a、511b與導電層533之間不僅可以設置閘極絕緣膜502還可以設置絕緣層553,因此可以降低閘極電極511a、511b與導電層533之間產生的寄生電容。
在本實施方式中,作為閘極電極511a及導電層521a使用30nm厚的鈦膜,作為閘極電極511b及導電層521b使用200nm厚的銅薄膜。由此,閘極電極為鈦膜與銅薄膜的疊層結構。
氧化物半導體膜512、522使用25nm厚的IGZO膜。
在電晶體510、電容元件520及佈線層交叉部530上形成有第一保護絕緣膜514及第二保護絕緣膜515,並且在第一保護絕緣膜514及第二保護絕緣膜515上的與發光元件540重疊的區域中設置有濾色片層505。在第一保護絕緣膜514、第二保護絕緣膜515及濾色片層505上設置有用作平坦化絕緣膜的絕緣膜506。
在絕緣膜506上設置有包括依次層疊第一電極541、電致發光層542及第二電極543的疊層結構的發光元件540。在形成在絕緣膜506、第一保護絕緣膜514及第二保護絕緣膜515中的到達導電層513a的開口中第一電極541與導電層513a接觸,由此發光元件540與電晶體510電連接。另外,以覆蓋第一電極541的一部分及該開口的方式設置有分隔壁507。
例如,第一保護絕緣膜514可以使用利用電漿CVD法形成的厚度為200nm以上且600nm以下的氧氮化矽膜。另外,第二保護絕緣膜515可以使用利用濺射法形成的氧化鋁膜。另外,絕緣膜506可以使用1500nm厚的光敏丙烯酸樹脂膜,分隔壁507可以使用1500nm厚的光敏聚醯亞胺膜。
作為濾色片層505,例如可以使用彩色的透光樹脂。作為彩色的透光樹脂,可以使用感光或非感光有機樹脂。較佳為使用感光有機樹脂層,因為可以縮減光阻遮罩的數量來簡化製程。
彩色是指除了黑、灰、白等無彩色之外的顏色,濾色片層使用只透過被著色的彩色光的材料來形成。至於彩色,可以使用紅色、綠色、藍色等。另外,還可以使用青色(cyan)、洋紅色(magenta)、黃色(yellow)等。只透過被著色的彩色光意味著濾色片層中的透過光在彩色光的波長中具有峰值。濾色層片考慮所包含的著色材料的濃度與光的透過率的關係適當地控制最適合的厚度即可。例如,可以濾色片層505的厚度為1500nm以上且2000nm以下。
在圖7B所示的發光裝置中,作為顯示元件的發光元件4513電連接到設置在像素部4002中的電晶體4010。另外,發光元件4513的結構是第一電極4030、電致發光層4511、第二電極4031的疊層結構,但是,不侷限於所示結構。根據從發光元件4513取出的光的方向等,可以 適當地改變發光元件4513的結構。
分隔壁4510、507使用有機絕緣材料或無機絕緣材料形成。尤其較佳為使用感光樹脂材料,在第一電極4030、541上形成開口部,並且將該開口部的側壁形成為具有連續曲率的傾斜面。
電致發光層4511、542可以使用一個層構成,也可以使用多個層的疊層構成。
為了防止氧、氫、水分、二氧化碳等侵入到發光元件4513、540中,也可以在第二電極4031、543及分隔壁4510、507上形成保護膜。作為保護膜,可以形成氮化矽膜、氮氧化矽膜、DLC膜等。
另外,為了防止氧、氫、水分、二氧化碳等侵入到發光元件4513、540中,也可以藉由蒸鍍法形成覆蓋發光元件4513、540的包含有機化合物的層。
此外,在由第一基板4001、第二基板4006以及密封材料4005密封的空間中設置有填充材料4514並被密封。如此,為了不暴露於外部氣體,較佳為使用氣密性高且脫氣少的保護薄膜(黏合薄膜、紫外線固化樹脂薄膜等)或覆蓋材料進行封裝(封入)。
作為填充材料4514,除了氮或氬等惰性氣體以外,也可以使用紫外線固化樹脂或熱固性樹脂,例如可以使用PVC(聚氯乙烯)、丙烯酸樹脂、聚醯亞胺樹脂、環氧樹脂、矽酮樹脂、PVB(聚乙烯醇縮丁醛)或EVA(乙烯-醋酸乙烯酯)。例如,作為填充材料使用氮,即可。
另外,如果需要,則也可以在發光元件的射出表面上適當地設置諸如偏光板或者圓偏光板(包括橢圓偏光板)、相位差板(λ/4板,λ/2板)、濾色片等光學薄膜。此外,也可以在偏光板或者圓偏光板上設置防反射膜。例如,可以進行抗眩光處理,該處理是利用表面的凹凸來擴散反射光而可以降低眩光的處理。
此外,作為顯示裝置,也可以提供驅動電子墨水的電子紙。電子紙也稱為電泳顯示裝置(電泳顯示器),並具有如下優點:與紙同樣的易讀性;其耗電量比其他顯示裝置的耗電量低;形狀薄且輕。
電泳顯示裝置可以採用各種各樣的形式。電泳顯示裝置是如下裝置,即在溶劑或溶質中分散有包含具有正電荷的第一粒子和具有負電荷的第二粒子的多個微囊,並且藉由對微囊施加電場使微囊中的粒子向相互相反的方向移動,以僅顯示集中在一方的粒子的顏色。另外,第一粒子或第二粒子包含染料,當沒有電場時不移動。此外,第一粒子的顏色和第二粒子的顏色不同(該顏色包括無色)。
如此,電泳顯示裝置是利用介電常數高的物質移動到高電場區域,即所謂的介電泳效應(dielectrophoretic effect)的顯示器。
分散有上述微囊的溶劑被稱為電子墨水,並且該電子墨水可以印刷到玻璃、塑膠、布、紙等的表面上。另外,還可以藉由使用濾色片、具有色素的粒子來進行彩色顯示。
此外,微囊中的第一粒子及第二粒子可以使用選自導電材料、絕緣材料、半導體材料、磁性材料、液晶材料、鐵電性材料、電致發光材料、電致變色材料、磁泳材料中的一種材料或這些材料的複合材料。
此外,作為電子紙,也可以應用使用旋轉球(twisting ball)顯示方式的顯示裝置。旋轉球顯示方式是如下方法,即將分別塗為白色和黑色的球形粒子配置在作為用於顯示元件的電極的第一電極與第二電極之間,使第一電極與第二電極之間產生電位差來控制球形粒子的方向,以進行顯示。
另外,在圖5A至圖7B中,作為第一基板4001、基板500、第二基板4006,除了玻璃基板以外,也可以使用撓性的基板。例如,可以使用具有透光性的塑膠基板等。作為塑膠,可以使用FRP(Fiberglass-Reinforced Plastics:玻璃纖維強化塑膠)板、PVF(聚氟乙烯)薄膜、聚酯薄膜或丙烯酸樹脂薄膜。此外,若不需要透光性,則也可以使用以鋁或不鏽鋼等為材料的金屬基板(金屬薄膜)。例如,也可以使用具有由PVF薄膜或聚酯薄膜夾持鋁箔的結構的薄片。
在本實施方式中,作為第一保護絕緣膜4020使用利用電漿CVD法形成的氧氮化矽膜,並且作為第二保護絕緣膜4021使用利用濺射法形成的氧化鋁膜。
在氧化物半導體膜上作為第二保護絕緣膜4021設置的氧化鋁膜具有高遮斷效果(阻擋效果),即,不使氫、 水分等雜質以及氧這兩者透過膜的效果。
因此,氧化鋁膜用作保護膜,而防止在製程中及製造之後導致電晶體的特性變動的氫、水分等雜質混入到氧化物半導體膜,並且防止從氧化物半導體膜釋放氧化物半導體的主要構成材料的氧。
另外,作為用作平坦化絕緣膜的絕緣膜4022、506,可以使用丙烯酸樹脂、聚醯亞胺樹脂、苯並環丁烯類樹脂、聚醯胺樹脂、環氧樹脂等具有耐熱性的有機材料。此外,除了上述有機材料以外,也可以使用低介電常數材料(low-k材料)、矽氧烷類樹脂、PSG(磷矽玻璃)、BPSG(硼磷矽玻璃)等。另外,也可以藉由層疊多個由這些材料形成的絕緣膜來形成絕緣膜。
對絕緣膜4022、506的形成方法沒有特別的限制,可以根據其材料利用如濺射法、SOG法、旋塗法、浸漬法、噴塗法、液滴噴射法(噴墨法等)、印刷法(絲網印刷、膠版印刷等)等以及如刮刀、輥塗機、幕式塗布機、刮刀式塗布機等來形成絕緣膜4022、絕緣膜506。
顯示裝置藉由使來自光源或顯示元件的光透過來進行顯示。因此,設置在光透過的像素部中的基板、絕緣膜、導電膜等薄膜全都對可見光的波長區域的光具有透光性。
關於對顯示元件施加電壓的第一電極及第二電極(也稱為像素電極、共用電極、反電極等),可以根據取出光的方向、設置電極的地方以及電極的圖案結構選擇透光性或反射性。
作為第一電極4030、541及第二電極4031、543,可以使用含有氧化鎢的銦氧化物、含有氧化鎢的銦鋅氧化物、含有氧化鈦的銦氧化物、含有氧化鈦的銦錫氧化物、銦錫氧化物(以下稱為ITO)、銦鋅氧化物、添加有氧化矽的銦錫氧化物、石墨烯等具有透光性的導電材料。
此外,第一電極4030、第一電極541、第二電極4031及第二電極543可以使用鎢(W)、鉬(Mo)、鋯(Zr)、鉿(Hf)、釩(V)、鈮(Nb)、鉭(Ta)、鉻(Cr)、鈷(Co)、鎳(Ni)、鈦(Ti)、鉑(Pt)、鋁(Al)、銅(Cu)、銀(Ag)等金屬、其合金或其金屬氮化物中的一種或多種來形成。
在本實施方式中,圖6A和圖6B所示的發光裝置具有下面發射型結構,所以第一電極541具有透光性,而第二電極543具有反射性。因此,當將金屬膜用於第一電極541時,較佳為將金屬膜形成得薄,以並使其具有透光性。另外,當將具有透光性的導電膜用於第二電極543時,較佳為將具有反射性的導電膜層疊在其上。
此外,第一電極4030、541、第二電極4031、543可以使用包括導電高分子(也稱為導電聚合體)的導電組成物來形成。作為導電高分子,可以使用所謂的π電子共軛類導電高分子。例如,可以舉出聚苯胺或其衍生物、聚吡咯或其衍生物、聚噻吩或其衍生物、或者由苯胺、吡咯和噻吩中的兩種以上構成的共聚物或其衍生物等。
此外,由於電晶體容易因靜電等而損壞,所以較佳為 設置用來保護驅動電路的保護電路。保護電路較佳為使用非線性元件構成。
如上所述,藉由應用實施方式1所示的電晶體,可以提供具有各種各樣的功能的半導體裝置。
本實施方式所示的結構或方法等可以與其他實施方式所示的結構或方法等適當地組合而實施。
實施方式3
藉由使用實施方式1所示的電晶體,可以製造具有讀取目標物的資訊的影像感測器功能的半導體裝置。
圖8A示出具有影像感測器功能的半導體裝置的一個例子。圖8A是光電感測器的等效電路,而圖8B是示出光電感測器的一部分的剖面圖。
光電二極體602的一個電極電連接到光電二極體重設信號線658,而光電二極體602的另一個電極電連接到電晶體640的閘極。電晶體640的源極和汲極中的一個電連接到光電感測器參考信號線672,而電晶體640的源極和汲極中的另一個電連接到電晶體656的源極和汲極中的一個。電晶體656的閘極電連接到閘極信號線659,電晶體656的源極和汲極中的另一個電連接到光電感測器輸出信號線671。
注意,在本說明書的電路圖中,為了使使用氧化物半導體膜的電晶體一目了然,將使用氧化物半導體膜的電晶體的符號表示為“OS”。在圖8A中,電晶體640和電晶體 656可以應用實施方式1所示的電晶體,是使用氧化物半導體膜的電晶體。在本實施方式中示出應用具有與實施方式1所示的電晶體110同樣的結構的電晶體的例子。
圖8B是示出光電感測器中的光電二極體602和電晶體640的剖面圖,其中在具有絕緣表面的基板601(TFT基板)上設置有用作感測器的光電二極體602和電晶體640。在光電二極體602和電晶體640上使用黏合層608設置有基板613。
在電晶體640上設置有第一保護絕緣膜631、第二保護絕緣膜632、層間絕緣膜633以及層間絕緣膜634。光電二極體602設置在層間絕緣膜633上,並且光電二極體602具有如下結構:在形成於層間絕緣膜633上的電極641a、641b與設置在層間絕緣膜634上的電極642之間從層間絕緣膜633一側依次層疊有第一半導體膜606a、第二半導體膜606b及第三半導體膜606c。
電極641b與形成在層間絕緣膜634中的導電層643電連接,並且電極642藉由電極641a與導電層645電連接。導電層645與電晶體640的閘極電極電連接,並且光電二極體602與電晶體640電連接。
在此,例示出一種pin型光電二極體,其中層疊用作第一半導體膜606a的具有p型導電型的半導體膜、用作第二半導體膜606b的高電阻的半導體膜(i型半導體膜)、用作第三半導體膜606c的具有n型導電型的半導體膜。
第一半導體膜606a是p型半導體膜,而可以由包含賦予p型的雜質元素的非晶矽膜形成。使用包含屬於週期表中的第13族的雜質元素(例如,硼(B))的半導體材料氣體藉由電漿CVD法形成第一半導體膜606a。作為半導體材料氣體,可以使用矽烷(SiH4)。另外,可以使用Si2H6、SiH2Cl2、SiHCl3、SiCl4、SiF4等。另外,也可以使用如下方法:在形成不包含雜質元素的非晶矽膜之後,使用擴散法或離子植入法將雜質元素引入到該非晶矽膜。較佳為在使用離子植入法等引入雜質元素之後進行加熱等來使雜質元素擴散。在此情況下,作為形成非晶矽膜的方法,可以使用LPCVD法、氣相沉積法或濺射法等。較佳為將第一半導體膜606a的厚度設定為10nm以上且50nm以下。
第二半導體膜606b是i型半導體膜(本質半導體膜),而可以由非晶矽膜形成。為了形成第二半導體膜606b,藉由電漿CVD法使用半導體材料氣體來形成非晶矽膜。作為半導體材料氣體,可以使用矽烷(SiH4)。或者,也可以使用Si2H6、SiH2Cl2、SiHCl3、SiCl4或SiF4等。也可以藉由LPCVD法、氣相沉積法、濺射法等形成第二半導體膜606b。較佳為將第二半導體膜606b的厚度設定為200nm以上且1000nm以下。
第三半導體膜606c是n型半導體膜,而可以由包含賦予n型的雜質元素的非晶矽膜形成。使用包含屬於週期表中的第15族的雜質元素(例如,磷(P))的半導體材 料氣體藉由電漿CVD法形成第三半導體膜606c。作為半導體材料氣體,可以使用矽烷(SiH4)。或者,也可以使用Si2H6、SiH2Cl2、SiHCl3、SiCl4或SiF4等。另外,也可以使用如下方法:在形成不包含雜質元素的非晶矽膜之後,使用擴散法或離子植入法將雜質元素引入到該非晶矽膜。較佳為在使用離子植入法等引入雜質元素之後進行加熱等來使雜質元素擴散。在此情況下,作為形成非晶矽膜的方法,可以使用LPCVD法、氣相沉積法或濺射法等。較佳為將第三半導體膜606c的厚度設定為20nm以上且200nm以下。
此外,第一半導體膜606a、第二半導體膜606b以及第三半導體膜606c也可以不使用非晶半導體形成,而使用多晶半導體或微晶半導體(半非晶半導體,Semi Amorphous Semiconductor:SAS)形成。
此外,由於光電效應生成的電洞的遷移率低於電子的遷移率,因此當p型半導體膜一側的表面用作光接收面時,pin型光電二極體具有良好的特性。這裏示出將光電二極體602從形成有pin型光電二極體的基板601的面接收的光轉換為電信號的例子。此外,來自其導電型與用作光接收面的半導體膜一側相反的半導體膜一側的光是干擾光,因此,電極較佳為使用具有遮光性的導電膜。另外,也可以將n型半導體膜一側的表面用作光接收面。
藉由使用絕緣材料且根據材料使用濺射法、電漿CVD法、SOG法、旋塗法、浸漬法、噴塗法、液滴噴射 法(噴墨法等)、印刷法(絲網印刷、膠版印刷等)等,來可以形成第一保護絕緣膜631、第二保護絕緣膜632、層間絕緣膜633以及層間絕緣膜634。
第一保護絕緣膜631及第二保護絕緣膜632可以使用無機絕緣材料形成,例如可以使用氧化矽層、氧氮化矽層、氧化鋁層、氧氮化鋁層等氧化物絕緣膜、氮化矽層、氮氧化矽層、氮化鋁層、氮氧化鋁層等氮化物絕緣膜的單層或疊層。
在本實施方式中,作為第一保護絕緣膜631使用利用電漿CVD法形成的氧氮化矽膜,並且作為第二保護絕緣膜632使用利用濺射法形成的氧化鋁膜。
設置在氧化物半導體膜上的用作第二保護絕緣膜632的氧化鋁膜具有高遮斷效果(阻擋效果),即不使氫、水分等雜質及氧的兩者透過膜的效果。
因此,氧化鋁膜用作保護膜,而防止在製程中及製造之後導致電晶體的電特性變動的氫、水分等雜質混入到氧化物半導體膜,並且防止從氧化物半導體膜釋放氧化物半導體的主要構成材料的氧。
作為層間絕緣膜633、634,較佳為採用用作減少表面凹凸的平坦化絕緣膜的絕緣膜。作為層間絕緣膜633、634,例如可以使用聚醯亞胺樹脂、丙烯酸樹脂、苯並環丁烯類樹脂、聚醯胺樹脂或環氧樹脂等具有耐熱性的有機絕緣材料。除了上述有機絕緣材料之外,也可以使用低介電常數材料(low-k材料)、矽氧烷類樹脂、PSG(磷矽 玻璃)、BPSG(硼磷矽玻璃)等的單層或疊層。
藉由檢測入射到光電二極體602的光,可以讀取檢測目標的資訊。另外,在讀取檢測目標的資訊時,可以使用背光等的光源。
在藉由利用與實施方式1所示的電晶體110相同的結構及製造方法得到的電晶體640中,臨界電壓的負值化得到抑制。
因此,在本實施方式中,可以使圖8A和圖8B所示的半導體裝置為包括使用氧化物半導體膜的常截止的電晶體640的高品質的半導體裝置。另外,以高良率製造上述高可靠性的半導體裝置,而可以實現高生產化。
本實施方式所示的結構、方法等可以與其他實施方式所示的結構、方法等適當地組合而實施。
實施方式4
可將本說明書中公開的半導體裝置應用於多種電子裝置(包括遊戲機)。作為電子裝置,可以舉出電視機(也稱為電視或電視接收機)、用於電腦等的顯示器、數位相機、數位攝影機、數位相框、行動電話機、可攜式遊戲機、移動資訊終端、音頻再生裝置、遊戲機(彈子機、投幣機等)外殼遊戲機等。圖9A至圖9C示出這些電子裝置的具體例子。
圖9A示出具有顯示部的桌子9000。在桌子9000中,外殼9001組裝有顯示部9003,利用顯示部9003可 以顯示影像。另外,在此示出利用四個腿部9002支撐外殼9001的結構。另外,外殼9001具有用來供應電力的電源供應線9005。
實施方式1至實施方式3中的任一所示的半導體裝置可以應用於顯示部9003,由此可以對電子裝置賦予高可靠性。
顯示部9003具有觸屏輸入功能。當用指頭等接觸顯示於桌子9000的顯示部9003中的顯示按鈕9004時,可以進行屏面操作或資訊輸入。並且當使桌子具有能夠與其他家電產品進行通訊的功能,可以將桌子用作藉由屏面操作控制其他家電產品的控制裝置。例如,藉由使用實施方式3所示的具有影像感測器功能的半導體裝置,可以使顯示部9003具有觸屏輸入功能。
另外,利用設置於外殼9001的鉸鏈也可以將顯示部9003的屏面以垂直於地板的方式立起來,從而也可以將桌子用作電視機。雖然如果在小房間裏設置大屏面的電視機則自由使用的空間變小,然而,如果在桌子內安裝有顯示部則可以有效地利用房間的空間。
圖9B示出電視機9100。在電視機9100中,外殼9101組裝有顯示部9103。利用顯示部9103可以顯示影像。此外,在此示出利用支架9105支撐外殼9101的結構。
可以藉由利用外殼9101所具備的操作開關、另外提供的遙控器9110進行電視機9100的操作。藉由利用遙控 器9110所具備的操作鍵9109,可以進行頻道及音量的操作,並可以對在顯示部9103上顯示的影像進行操作。此外,也可以採用在遙控器9110中設置顯示從該遙控器9110輸出的資訊的顯示部9107的結構。
圖9B所示的電視機9100具備接收機及數據機等。電視機9100可以利用接收機接收一般的電視廣播。再者,電視機9100藉由數據機連接到有線或無線方式的通信網路,也可以進行單向(從發送者到接收者)或雙向(發送者和接收者之間或接收者之間等)的資訊通信。
實施方式1至實施方式3中的任一所示的半導體裝置可以應用於顯示部9103、9107,由此可以對電視機及遙控器賦予高可靠性。
圖9C示出電腦,該電腦包括主體9201、外殼9202、顯示部9203、鍵盤9204、外部連接埠9205、指向裝置9206等。
實施方式1至實施方式3中的任一個所示的半導體裝置可以用於顯示部9203,並可以賦予電腦高可靠性。
圖10A和圖10B是能夠進行折疊的平板終端。圖10A示出打開的狀態。平板終端包括外殼9630、顯示部9631a、顯示部9631b、顯示模式切換開關9034、電源開關9035、省電模式切換開關9036、卡子9033以及操作開關9038。
實施方式1至實施方式3中的任一所示的半導體裝置可以應用於顯示部9631a及顯示部9631b,由此可以對平 板終端賦予高可靠性。
在顯示部9631a中,可以將其一部分用作觸摸屏的區域9632a,並且可以藉由接觸所顯示的操作鍵9638來輸入資料。此外,作為一個例子,顯示部9631a的一半只具有顯示的功能,並且另一半具有觸摸屏的功能,但是不侷限於該結構。也可以採用顯示部9631a的整個區域具有觸摸屏的功能的結構。例如,可以在顯示部9631a的全面顯示鍵盤來將其用作觸摸屏,並且將顯示部9631b用作顯示畫面。
此外,在顯示部9631b中,與顯示部9631a同樣也可以將顯示部9631b的一部分用作觸摸屏的區域9632b。此外,藉由使用指頭或觸控筆等接觸觸摸屏上的鍵盤顯示切換按鈕9639的位置上,可以在顯示部9631b上顯示鍵盤。
此外,也可以對觸摸屏的區域9632a和觸摸屏的區域9632b同時進行觸摸輸入。
另外,顯示模式切換開關9034能夠進行豎屏顯示和橫屏顯示等顯示的方向的切換以及黑白顯示和彩色顯示的切換等。根據藉由平板終端所內置的光感測器所檢測的使用時的外光的光量,省電模式切換開關9036可以使顯示的亮度設定為最適合的亮度。平板終端除了光感測器以外還可以內置陀螺儀和加速度感測器等檢測傾斜度的感測器等的其他檢測裝置。
此外,圖10A示出顯示部9631b的顯示面積與顯示部 9631a的顯示面積相同的例子,但是不侷限於此,一方的尺寸可以與另一方的尺寸不同,其顯示品質也可以不同。例如,可以使用顯示部中的一方能夠進行比另一方更高精細度的顯示的顯示面板。
圖10B示出合上的狀態,並且平板終端包括外殼9630、太陽能電池9633、充放電控制電路9634、電池9635以及DCDC轉換器9636。此外,在圖10B中,作為充放電控制電路9634的一個例子示出具有電池9635和DCDC轉換器9636的結構。
此外,平板終端能夠進行折疊,因此不使用時可以合上外殼9630。因此,可以保護顯示部9631a和顯示部9631b,而可以提供一種具有良好的耐久性且從長期使用的觀點來看具有良好的可靠性的平板終端。
此外,圖10A和圖10B所示的平板終端還可以具有如下功能:顯示各種各樣的資訊(靜態影像、動態影像、文字影像等);將日曆、日期或時刻等顯示在顯示部上;對顯示在顯示部上的資訊進行操作或編輯的觸摸輸入;藉由各種各樣的軟體(程式)控制處理等。
藉由利用安裝在平板終端的表面上的太陽能電池9633,可以將電力供應到觸摸屏、顯示部或影像信號處理部等。另外,可以將太陽能電池9633設置在外殼9630的一方面或雙面,而可以採用高效地進行電池9635的充電的結構。另外,當作為電池9635使用鋰離子電池時,有可以實現小型化等的優點。
另外,參照圖10C所示的方塊圖對圖10B所示的充放電控制電路9634的結構和工作進行說明。圖10C示出太陽能電池9633、電池9635、DCDC轉換器9636、轉換器9637、開關SW1至SW3以及顯示部9631,電池9635、DCDC轉換器9636、轉換器9637、開關SW1至SW3對應於圖10B所示的充放電控制電路9634。
說明在利用外光使太陽能電池9633發電時的工作的例子。使用DCDC轉換器9636對太陽能電池9633所發的電力的電壓進行升壓或降壓以使它成為用來對電池9635進行充電的電壓。並且,當利用太陽能電池9633所發的電力使顯示部9631工作時,使開關SW1導通,並且,利用轉換器9637將該電力的電壓升壓或降壓到顯示部9631所需要的電壓。另外,可以採用當不進行顯示部9631中的顯示時,使開關SW1截止且使開關SW2導通來對電池9635進行充電的結構。
注意,作為發電單元的一個例子示出太陽能電池9633,但是不侷限於此,也可以使用壓電元件(piezoelectric element)或熱電轉換元件(珀耳帖元件(Peltier element))等其他發電單元進行電池9635的充電。例如,也可以使用以無線(不接觸)的方式能夠收發電力來進行充電的無線電力傳輸模組或組合其他充電方法進行充電。
本實施方式所示的結構或方法等可以與其他實施方式所示的結構或方法等適當地組合而實施。
100‧‧‧基板
101‧‧‧閘極電極
102‧‧‧閘極絕緣膜
103‧‧‧氧化物半導體膜
103a‧‧‧第一區域
103b‧‧‧第二區域
103c‧‧‧第三區域
105a‧‧‧源極電極
105b‧‧‧汲極電極
108‧‧‧保護絕緣膜
109‧‧‧平坦化絕緣膜
110‧‧‧電晶體

Claims (20)

  1. 一種半導體裝置,包括:具有絕緣表面的基板上的閘極電極;該閘極電極上的第一絕緣膜;該第一絕緣膜上的第一氧化物半導體膜,該第一氧化物半導體膜至少與該閘極電極的一部分重疊;該第一氧化物半導體膜上的源極電極及汲極電極;以及該第一氧化物半導體膜、該源極電極以及該汲極電極上的第二絕緣膜,其中該第一氧化物半導體膜具有單層結構,其中該第一氧化物半導體膜包括一對第一區域、第二區域以及一對第三區域,其中該一對第一區域中的該第一氧化物半導體膜的上表面與該源極電極或該汲極電極接觸,其中該第二區域中的該第一氧化物半導體膜的上表面與該第二絕緣膜接觸,其中該第二區域中的該第一氧化物半導體膜的厚度小於該一對第一區域中的該第一氧化物半導體膜的最大厚度,其中該一對第三區域中的該第一氧化物半導體膜的上表面及側面與該第二絕緣膜接觸,並且其中該第二區域及該一對第三區域包括通道形成區。
  2. 根據申請專利範圍第1項之半導體裝置, 其中在該第二區域及該一對第三區域的一部分中該第一氧化物半導體膜包括凹部,並且該一對第三區域中的該第一氧化物半導體膜的該側面包括該凹部的內壁。
  3. 根據申請專利範圍第1項之半導體裝置,其中該一對第一區域中的一方與該第二區域之間的距離為該源極電極與該汲極電極之間的距離的0.059倍以上且小於0.5倍。
  4. 根據申請專利範圍第1項之半導體裝置,其中在該一對第三區域中該第一氧化物半導體膜包括第一錐形部。
  5. 根據申請專利範圍第1項之半導體裝置,其中在該一對第三區域中的該第一氧化物半導體膜的該上表面及該側面所形成的角度為30°以上且60°以下。
  6. 根據申請專利範圍第4項之半導體裝置,其中在該一對第一區域中該第一氧化物半導體膜包括第二錐形部,並且其中該第一錐形部的角度大於該第二錐形部的角度。
  7. 根據申請專利範圍第1項之半導體裝置,其中在通道長度方向上該閘極電極的端部位於該第一氧化物半導體膜的端部的外側。
  8. 根據申請專利範圍第1項之半導體裝置,其中該第二絕緣膜至少含有氧。
  9. 根據申請專利範圍第1項之半導體裝置,其中該第二區域位於該一對第三區域之間。
  10. 根據申請專利範圍第1項之半導體裝置,其中該第 二區域中的該第一氧化物半導體膜的該厚度小於該一對第三區域中的該第一氧化物半導體膜的最大厚度。
  11. 根據申請專利範圍第1項之半導體裝置,還包括電容元件,其中該電容元件包括:第一電極;隔著該第一絕緣膜位於該第一電極上的第二氧化物半導體膜;以及該第二氧化物半導體膜上的第二電極,其中該第二電極的端部位於該第二氧化物半導體膜的端部的內側,並且其中該第一氧化物半導體膜及該第二氧化物半導體膜包括相同的材料。
  12. 根據申請專利範圍第1項之半導體裝置,其中該第一氧化物半導體膜是IGZO膜。
  13. 一種半導體裝置,包括:具有絕緣表面的基板上的閘極電極;該閘極電極上的閘極絕緣膜;該閘極絕緣膜上的氧化物半導體膜,該氧化物半導體膜至少與該閘極電極的一部分重疊;該氧化物半導體膜上的源極電極及汲極電極;以及該氧化物半導體膜、該源極電極以及該汲極電極上的絕緣膜,其中該氧化物半導體膜具有單層結構, 其中該氧化物半導體膜包括一對第一區域、第二區域以及一對第三區域,其中該一對第一區域中的該氧化物半導體膜的上表面與該源極電極或該汲極電極接觸,其中該第二區域中的該氧化物半導體膜的上表面與該絕緣膜接觸,其中該第二區域中的該氧化物半導體膜的厚度大致均勻且小於該一對第一區域中的該氧化物半導體膜的最大厚度以及該一對第三區域中的該氧化物半導體膜的最大厚度,其中在該一對第三區域中該氧化物半導體膜包括曲面,並且其中該第二區域及該一對第三區域包括通道形成區。
  14. 根據申請專利範圍第13項之半導體裝置,其中該一對第一區域中的一方與該第二區域之間的距離為該源極電極與該汲極電極之間的距離的0.059倍以上且小於0.5倍。
  15. 根據申請專利範圍第13項之半導體裝置,其中在該一對第三區域中的該氧化物半導體膜的該上表面及該側面所形成的角度為30°以上且60°以下。
  16. 根據申請專利範圍第13項之半導體裝置,其中該絕緣膜至少含有氧。
  17. 根據申請專利範圍第13項之半導體裝置,其中該一對第三區域中的一方位於該第二區域與該一對第一區域 中的一方之間。
  18. 根據申請專利範圍第13項之半導體裝置,其中該曲面的曲率中心位於基板一側。
  19. 根據申請專利範圍第13項之半導體裝置,其中該曲面的曲率中心位於絕緣膜一側。
  20. 根據申請專利範圍第13項之半導體裝置,其中該氧化物半導體膜是IGZO膜。
TW102113970A 2012-04-27 2013-04-19 半導體裝置 TWI594429B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012103551 2012-04-27
JP2013052035A JP6199583B2 (ja) 2012-04-27 2013-03-14 半導体装置

Publications (2)

Publication Number Publication Date
TW201351648A TW201351648A (zh) 2013-12-16
TWI594429B true TWI594429B (zh) 2017-08-01

Family

ID=49476510

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102113970A TWI594429B (zh) 2012-04-27 2013-04-19 半導體裝置

Country Status (4)

Country Link
US (1) US9236490B2 (zh)
JP (1) JP6199583B2 (zh)
KR (1) KR102053762B1 (zh)
TW (1) TWI594429B (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9318484B2 (en) 2013-02-20 2016-04-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
DE102014203176A1 (de) * 2014-02-21 2015-09-10 MAHLE Behr GmbH & Co. KG Thermoelektrische Vorrichtung, insbesondere thermoelektrischer Generator oder Wärmepumpe
JP2015204368A (ja) * 2014-04-14 2015-11-16 日本放送協会 薄膜トランジスタおよび表示装置
KR102280449B1 (ko) * 2015-01-19 2021-07-23 삼성디스플레이 주식회사 산화물 박막트랜지스터의 제조방법
US10747081B2 (en) 2016-03-18 2020-08-18 Mitsubishi Electric Corporation Thin-film transistor, thin-film transistor substrate, and liquid crystal display device
KR20180071452A (ko) 2016-12-19 2018-06-28 삼성디스플레이 주식회사 트랜지스터 표시판 및 그 제조 방법
US11189733B2 (en) * 2018-01-10 2021-11-30 Intel Corporation Thin-film transistors with low contact resistance
JP2020107622A (ja) * 2018-12-26 2020-07-09 株式会社ジャパンディスプレイ 表示装置及び半導体装置
CN113284915A (zh) * 2021-05-24 2021-08-20 信利半导体有限公司 一种双栅π型薄膜晶体管光学感应器的制作方法及光学感应器及电子设备
CN113388823A (zh) * 2021-06-11 2021-09-14 苏州尚勤光电科技有限公司 一种氧化镓mocvd装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090090916A1 (en) * 2007-10-05 2009-04-09 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor, display device having thin film transistor, and method for manufacturing the same
US20100072468A1 (en) * 2008-09-19 2010-03-25 Semiconductor Energy Laboratory Co., Ltd. Display device
US20100102315A1 (en) * 2008-10-24 2010-04-29 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US20110068852A1 (en) * 2009-09-24 2011-03-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, power circuit, and manufacturing mkethod of semiconductor device

Family Cites Families (113)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60198861A (ja) 1984-03-23 1985-10-08 Fujitsu Ltd 薄膜トランジスタ
JPH0244256B2 (ja) 1987-01-28 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn2o5deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH0244260B2 (ja) 1987-02-24 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn5o8deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPS63210023A (ja) 1987-02-24 1988-08-31 Natl Inst For Res In Inorg Mater InGaZn↓4O↓7で示される六方晶系の層状構造を有する化合物およびその製造法
JPH0244258B2 (ja) 1987-02-24 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn3o6deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH0244262B2 (ja) 1987-02-27 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn6o9deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH0244263B2 (ja) 1987-04-22 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn7o10deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH05251705A (ja) 1992-03-04 1993-09-28 Fuji Xerox Co Ltd 薄膜トランジスタ
JP3479375B2 (ja) 1995-03-27 2003-12-15 科学技術振興事業団 亜酸化銅等の金属酸化物半導体による薄膜トランジスタとpn接合を形成した金属酸化物半導体装置およびそれらの製造方法
DE69635107D1 (de) 1995-08-03 2005-09-29 Koninkl Philips Electronics Nv Halbleiteranordnung mit einem transparenten schaltungselement
JP3625598B2 (ja) 1995-12-30 2005-03-02 三星電子株式会社 液晶表示装置の製造方法
JP4170454B2 (ja) 1998-07-24 2008-10-22 Hoya株式会社 透明導電性酸化物薄膜を有する物品及びその製造方法
JP2000150861A (ja) 1998-11-16 2000-05-30 Tdk Corp 酸化物薄膜
JP3276930B2 (ja) 1998-11-17 2002-04-22 科学技術振興事業団 トランジスタ及び半導体装置
TW460731B (en) 1999-09-03 2001-10-21 Ind Tech Res Inst Electrode structure and production method of wide viewing angle LCD
JP4089858B2 (ja) 2000-09-01 2008-05-28 国立大学法人東北大学 半導体デバイス
KR20020038482A (ko) 2000-11-15 2002-05-23 모리시타 요이찌 박막 트랜지스터 어레이, 그 제조방법 및 그것을 이용한표시패널
US7071037B2 (en) 2001-03-06 2006-07-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
JP3997731B2 (ja) 2001-03-19 2007-10-24 富士ゼロックス株式会社 基材上に結晶性半導体薄膜を形成する方法
JP2002289859A (ja) 2001-03-23 2002-10-04 Minolta Co Ltd 薄膜トランジスタ
JP3925839B2 (ja) 2001-09-10 2007-06-06 シャープ株式会社 半導体記憶装置およびその試験方法
JP4090716B2 (ja) 2001-09-10 2008-05-28 雅司 川崎 薄膜トランジスタおよびマトリクス表示装置
JP4164562B2 (ja) 2002-09-11 2008-10-15 独立行政法人科学技術振興機構 ホモロガス薄膜を活性層として用いる透明薄膜電界効果型トランジスタ
US7061014B2 (en) 2001-11-05 2006-06-13 Japan Science And Technology Agency Natural-superlattice homologous single crystal thin film, method for preparation thereof, and device using said single crystal thin film
JP4083486B2 (ja) 2002-02-21 2008-04-30 独立行政法人科学技術振興機構 LnCuO(S,Se,Te)単結晶薄膜の製造方法
US7049190B2 (en) 2002-03-15 2006-05-23 Sanyo Electric Co., Ltd. Method for forming ZnO film, method for forming ZnO semiconductor layer, method for fabricating semiconductor device, and semiconductor device
JP3933591B2 (ja) 2002-03-26 2007-06-20 淳二 城戸 有機エレクトロルミネッセント素子
US7339187B2 (en) 2002-05-21 2008-03-04 State Of Oregon Acting By And Through The Oregon State Board Of Higher Education On Behalf Of Oregon State University Transistor structures
JP2004022625A (ja) 2002-06-13 2004-01-22 Murata Mfg Co Ltd 半導体デバイス及び該半導体デバイスの製造方法
US7105868B2 (en) 2002-06-24 2006-09-12 Cermet, Inc. High-electron mobility transistor with zinc oxide
US7067843B2 (en) 2002-10-11 2006-06-27 E. I. Du Pont De Nemours And Company Transparent oxide semiconductor thin film transistors
JP4166105B2 (ja) 2003-03-06 2008-10-15 シャープ株式会社 半導体装置およびその製造方法
JP2004273732A (ja) 2003-03-07 2004-09-30 Sharp Corp アクティブマトリクス基板およびその製造方法
JP4108633B2 (ja) 2003-06-20 2008-06-25 シャープ株式会社 薄膜トランジスタおよびその製造方法ならびに電子デバイス
US7262463B2 (en) 2003-07-25 2007-08-28 Hewlett-Packard Development Company, L.P. Transistor including a deposited channel region having a doped portion
EP1737044B1 (en) 2004-03-12 2014-12-10 Japan Science and Technology Agency Amorphous oxide and thin film transistor
US7282782B2 (en) 2004-03-12 2007-10-16 Hewlett-Packard Development Company, L.P. Combined binary oxide semiconductor device
US7297977B2 (en) 2004-03-12 2007-11-20 Hewlett-Packard Development Company, L.P. Semiconductor device
US7145174B2 (en) 2004-03-12 2006-12-05 Hewlett-Packard Development Company, Lp. Semiconductor device
US7211825B2 (en) 2004-06-14 2007-05-01 Yi-Chi Shih Indium oxide-based thin film transistors and circuits
JP2006100760A (ja) 2004-09-02 2006-04-13 Casio Comput Co Ltd 薄膜トランジスタおよびその製造方法
US7285501B2 (en) 2004-09-17 2007-10-23 Hewlett-Packard Development Company, L.P. Method of forming a solution processed device
US7298084B2 (en) 2004-11-02 2007-11-20 3M Innovative Properties Company Methods and displays utilizing integrated zinc oxide row and column drivers in conjunction with organic light emitting diodes
US7829444B2 (en) 2004-11-10 2010-11-09 Canon Kabushiki Kaisha Field effect transistor manufacturing method
JP5126729B2 (ja) 2004-11-10 2013-01-23 キヤノン株式会社 画像表示装置
EP1810335B1 (en) 2004-11-10 2020-05-27 Canon Kabushiki Kaisha Light-emitting device
CA2708335A1 (en) 2004-11-10 2006-05-18 Canon Kabushiki Kaisha Amorphous oxide and field effect transistor
US7863611B2 (en) 2004-11-10 2011-01-04 Canon Kabushiki Kaisha Integrated circuits utilizing amorphous oxides
US7791072B2 (en) 2004-11-10 2010-09-07 Canon Kabushiki Kaisha Display
JP5138163B2 (ja) 2004-11-10 2013-02-06 キヤノン株式会社 電界効果型トランジスタ
US7453065B2 (en) 2004-11-10 2008-11-18 Canon Kabushiki Kaisha Sensor and image pickup device
AU2005302964B2 (en) 2004-11-10 2010-11-04 Canon Kabushiki Kaisha Field effect transistor employing an amorphous oxide
US7579224B2 (en) 2005-01-21 2009-08-25 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a thin film semiconductor device
TWI412138B (zh) 2005-01-28 2013-10-11 Semiconductor Energy Lab 半導體裝置,電子裝置,和半導體裝置的製造方法
TWI569441B (zh) 2005-01-28 2017-02-01 半導體能源研究所股份有限公司 半導體裝置,電子裝置,和半導體裝置的製造方法
US7858451B2 (en) 2005-02-03 2010-12-28 Semiconductor Energy Laboratory Co., Ltd. Electronic device, semiconductor device and manufacturing method thereof
US7948171B2 (en) 2005-02-18 2011-05-24 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US20060197092A1 (en) 2005-03-03 2006-09-07 Randy Hoffman System and method for forming conductive material on a substrate
US8681077B2 (en) 2005-03-18 2014-03-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, and display device, driving method and electronic apparatus thereof
WO2006105077A2 (en) 2005-03-28 2006-10-05 Massachusetts Institute Of Technology Low voltage thin film transistor with high-k dielectric material
US7645478B2 (en) 2005-03-31 2010-01-12 3M Innovative Properties Company Methods of making displays
US8300031B2 (en) 2005-04-20 2012-10-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising transistor having gate and drain connected through a current-voltage conversion element
JP2006344849A (ja) 2005-06-10 2006-12-21 Casio Comput Co Ltd 薄膜トランジスタ
US7691666B2 (en) 2005-06-16 2010-04-06 Eastman Kodak Company Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby
US7402506B2 (en) 2005-06-16 2008-07-22 Eastman Kodak Company Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby
US7507618B2 (en) 2005-06-27 2009-03-24 3M Innovative Properties Company Method for making electronic devices using metal oxide nanoparticles
KR100711890B1 (ko) 2005-07-28 2007-04-25 삼성에스디아이 주식회사 유기 발광표시장치 및 그의 제조방법
JP2007059128A (ja) 2005-08-23 2007-03-08 Canon Inc 有機el表示装置およびその製造方法
JP4850457B2 (ja) 2005-09-06 2012-01-11 キヤノン株式会社 薄膜トランジスタ及び薄膜ダイオード
JP5116225B2 (ja) 2005-09-06 2013-01-09 キヤノン株式会社 酸化物半導体デバイスの製造方法
JP4280736B2 (ja) 2005-09-06 2009-06-17 キヤノン株式会社 半導体素子
JP2007073705A (ja) 2005-09-06 2007-03-22 Canon Inc 酸化物半導体チャネル薄膜トランジスタおよびその製造方法
EP1998375A3 (en) 2005-09-29 2012-01-18 Semiconductor Energy Laboratory Co, Ltd. Semiconductor device having oxide semiconductor layer and manufacturing method
JP5037808B2 (ja) 2005-10-20 2012-10-03 キヤノン株式会社 アモルファス酸化物を用いた電界効果型トランジスタ、及び該トランジスタを用いた表示装置
KR101112652B1 (ko) 2005-11-15 2012-02-16 가부시키가이샤 한도오따이 에네루기 켄큐쇼 액티브 매트릭스 디스플레이 장치 및 텔레비전 수신기
TWI292281B (en) 2005-12-29 2008-01-01 Ind Tech Res Inst Pixel structure of active organic light emitting diode and method of fabricating the same
US7867636B2 (en) 2006-01-11 2011-01-11 Murata Manufacturing Co., Ltd. Transparent conductive film and method for manufacturing the same
JP4977478B2 (ja) 2006-01-21 2012-07-18 三星電子株式会社 ZnOフィルム及びこれを用いたTFTの製造方法
US7576394B2 (en) 2006-02-02 2009-08-18 Kochi Industrial Promotion Center Thin film transistor including low resistance conductive thin films and manufacturing method thereof
US7977169B2 (en) 2006-02-15 2011-07-12 Kochi Industrial Promotion Center Semiconductor device including active layer made of zinc oxide with controlled orientations and manufacturing method thereof
KR20070101595A (ko) 2006-04-11 2007-10-17 삼성전자주식회사 ZnO TFT
US20070252928A1 (en) 2006-04-28 2007-11-01 Toppan Printing Co., Ltd. Structure, transmission type liquid crystal display, reflection type display and manufacturing method thereof
JP5028033B2 (ja) 2006-06-13 2012-09-19 キヤノン株式会社 酸化物半導体膜のドライエッチング方法
JP4609797B2 (ja) 2006-08-09 2011-01-12 Nec液晶テクノロジー株式会社 薄膜デバイス及びその製造方法
JP4999400B2 (ja) 2006-08-09 2012-08-15 キヤノン株式会社 酸化物半導体膜のドライエッチング方法
JP4332545B2 (ja) 2006-09-15 2009-09-16 キヤノン株式会社 電界効果型トランジスタ及びその製造方法
JP5164357B2 (ja) 2006-09-27 2013-03-21 キヤノン株式会社 半導体装置及び半導体装置の製造方法
JP4274219B2 (ja) 2006-09-27 2009-06-03 セイコーエプソン株式会社 電子デバイス、有機エレクトロルミネッセンス装置、有機薄膜半導体装置
US7622371B2 (en) 2006-10-10 2009-11-24 Hewlett-Packard Development Company, L.P. Fused nanocrystal thin film semiconductor and method
US7772021B2 (en) 2006-11-29 2010-08-10 Samsung Electronics Co., Ltd. Flat panel displays comprising a thin-film transistor having a semiconductive oxide in its channel and methods of fabricating the same for use in flat panel displays
JP2008140684A (ja) 2006-12-04 2008-06-19 Toppan Printing Co Ltd カラーelディスプレイおよびその製造方法
KR101303578B1 (ko) 2007-01-05 2013-09-09 삼성전자주식회사 박막 식각 방법
US8207063B2 (en) 2007-01-26 2012-06-26 Eastman Kodak Company Process for atomic layer deposition
KR100851215B1 (ko) 2007-03-14 2008-08-07 삼성에스디아이 주식회사 박막 트랜지스터 및 이를 이용한 유기 전계 발광표시장치
US7795613B2 (en) 2007-04-17 2010-09-14 Toppan Printing Co., Ltd. Structure with transistor
KR101325053B1 (ko) 2007-04-18 2013-11-05 삼성디스플레이 주식회사 박막 트랜지스터 기판 및 이의 제조 방법
KR20080094300A (ko) 2007-04-19 2008-10-23 삼성전자주식회사 박막 트랜지스터 및 그 제조 방법과 박막 트랜지스터를포함하는 평판 디스플레이
KR101334181B1 (ko) 2007-04-20 2013-11-28 삼성전자주식회사 선택적으로 결정화된 채널층을 갖는 박막 트랜지스터 및 그제조 방법
CN101663762B (zh) 2007-04-25 2011-09-21 佳能株式会社 氧氮化物半导体
KR101345376B1 (ko) 2007-05-29 2013-12-24 삼성전자주식회사 ZnO 계 박막 트랜지스터 및 그 제조방법
US8330887B2 (en) 2007-07-27 2012-12-11 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and electronic device
US8101444B2 (en) 2007-08-17 2012-01-24 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
JP2009071289A (ja) * 2007-08-17 2009-04-02 Semiconductor Energy Lab Co Ltd 半導体装置およびその作製方法
JP2009105390A (ja) 2007-10-05 2009-05-14 Semiconductor Energy Lab Co Ltd 半導体装置およびその作製方法
TWI521712B (zh) 2007-12-03 2016-02-11 半導體能源研究所股份有限公司 薄膜電晶體,包括該薄膜電晶體的顯示裝置,和其製造方法
US8202365B2 (en) 2007-12-17 2012-06-19 Fujifilm Corporation Process for producing oriented inorganic crystalline film, and semiconductor device using the oriented inorganic crystalline film
WO2009093462A1 (ja) * 2008-01-25 2009-07-30 Sharp Kabushiki Kaisha 半導体素子およびその製造方法
TWI500159B (zh) 2008-07-31 2015-09-11 Semiconductor Energy Lab 半導體裝置和其製造方法
JP4623179B2 (ja) 2008-09-18 2011-02-02 ソニー株式会社 薄膜トランジスタおよびその製造方法
JP5451280B2 (ja) 2008-10-09 2014-03-26 キヤノン株式会社 ウルツ鉱型結晶成長用基板およびその製造方法ならびに半導体装置
CN105789322B (zh) * 2009-09-16 2018-09-28 株式会社半导体能源研究所 半导体器件及其制造方法
US8803143B2 (en) 2010-10-20 2014-08-12 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor including buffer layers with high resistivity
US8569754B2 (en) 2010-11-05 2013-10-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090090916A1 (en) * 2007-10-05 2009-04-09 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor, display device having thin film transistor, and method for manufacturing the same
US20100072468A1 (en) * 2008-09-19 2010-03-25 Semiconductor Energy Laboratory Co., Ltd. Display device
US20100102315A1 (en) * 2008-10-24 2010-04-29 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US20110068852A1 (en) * 2009-09-24 2011-03-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, power circuit, and manufacturing mkethod of semiconductor device

Also Published As

Publication number Publication date
US9236490B2 (en) 2016-01-12
TW201351648A (zh) 2013-12-16
JP2013243343A (ja) 2013-12-05
KR20130121723A (ko) 2013-11-06
JP6199583B2 (ja) 2017-09-20
KR102053762B1 (ko) 2019-12-09
US20130285047A1 (en) 2013-10-31

Similar Documents

Publication Publication Date Title
KR102174289B1 (ko) 반도체 장치 및 반도체 장치의 제작 방법
KR102124848B1 (ko) 반도체 장치 및 반도체 장치의 제작 방법
JP6338640B2 (ja) 半導体装置の作製方法
TWI545765B (zh) 半導體裝置
TWI596770B (zh) 半導體裝置及半導體裝置的製造方法
TWI581431B (zh) 半導體裝置及半導體裝置的製造方法
TWI605590B (zh) 半導體裝置及其製造方法
TWI567827B (zh) 半導體裝置以及半導體裝置的製造方法
TWI594429B (zh) 半導體裝置
JP6096452B2 (ja) 半導体装置の作製方法
TWI584383B (zh) 半導體裝置及其製造方法
TWI570925B (zh) 半導體裝置以及半導體裝置的製造方法

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees