TWI586644B - 氫甲醯化方法 - Google Patents
氫甲醯化方法 Download PDFInfo
- Publication number
- TWI586644B TWI586644B TW104139257A TW104139257A TWI586644B TW I586644 B TWI586644 B TW I586644B TW 104139257 A TW104139257 A TW 104139257A TW 104139257 A TW104139257 A TW 104139257A TW I586644 B TWI586644 B TW I586644B
- Authority
- TW
- Taiwan
- Prior art keywords
- vaporizer
- stream
- catalyst
- kpa
- group
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/16—Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
- B01J31/18—Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
- B01J31/1845—Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing phosphorus
- B01J31/185—Phosphites ((RO)3P), their isomeric phosphonates (R(RO)2P=O) and RO-substitution derivatives thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/16—Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
- B01J31/22—Organic complexes
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C45/00—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
- C07C45/49—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with carbon monoxide
- C07C45/50—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with carbon monoxide by oxo-reactions
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C45/00—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
- C07C45/78—Separation; Purification; Stabilisation; Use of additives
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C47/00—Compounds having —CHO groups
- C07C47/02—Saturated compounds having —CHO groups bound to acyclic carbon atoms or to hydrogen
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00002—Chemical plants
- B01J2219/00027—Process aspects
- B01J2219/00033—Continuous processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2231/00—Catalytic reactions performed with catalysts classified in B01J31/00
- B01J2231/30—Addition reactions at carbon centres, i.e. to either C-C or C-X multiple bonds
- B01J2231/32—Addition reactions to C=C or C-C triple bonds
- B01J2231/321—Hydroformylation, metalformylation, carbonylation or hydroaminomethylation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2531/00—Additional information regarding catalytic systems classified in B01J31/00
- B01J2531/80—Complexes comprising metals of Group VIII as the central metal
- B01J2531/82—Metals of the platinum group
- B01J2531/822—Rhodium
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
- Catalysts (AREA)
Description
本發明係關於一種氫甲醯化方法。更特定言之,本發明係關於催化劑再循環流中之重物質的量受到控制之此類方法。
眾所周知,可藉由使烯烴與一氧化碳及氫氣在金屬-有機磷配位體錯合物催化劑存在下反應產生醛,且較佳方法涉及含有金屬-有機磷配位體錯合物催化劑之催化劑溶液之連續氫甲醯化及再循環,其中金屬選自第8族、第9族或第10族。銠為較佳第9族金屬。US 4,148,830、US 4,717,775及US 4,769,498揭示此方法之實例。所得醛可用於生產大量產物,包含醇、胺以及酸。慣例為在反應區後採用汽化器用於將產物與催化劑分離之目的。
已知包括銠及有機亞磷酸酯配位體之氫甲醯化催化劑能夠達成極高反應速率;參見「Rhodium Catalyzed Hydroformylation」,van Leeuwen,Claver,Kluwer Academic Pub.(2000)。此類催化劑具有工業效用,因為其可用於提高生
產速率,或用於使反應速率比直鏈α烯烴慢的內部及/或分支鏈內部烯烴有效發生氫甲醯化。然而,亦自例如US 4,774,361已知,在一些條件下,此等催化劑在液體再循環氫甲醯化方法中發生銠損耗。銠連續損耗可大大增加催化劑成本,因為銠極其昂貴。
儘管銠損耗之確切原因尚不清楚,但US 4,774,361及其他處已假設所述損耗因一氧化碳(CO)之低濃度及典型產物分離步驟之高溫環境而加劇。US 6,500,991描述一種藉由在產物移除後冷卻經濃縮之催化劑且隨後添加CO至濃縮流中來減緩有機亞磷酸酯促進之方法中之銠損耗的手段。US 6,500,991亦描述在分離步驟之前添加CO至降壓/閃蒸容器中。對於任一選項而言,分離區中之總壓力教示為小於或等於1巴。因此,US 6,500,991之方法試圖使催化劑在分離區之前及之後穩定,而不直接解決可能在分離步驟之苛刻環境期間發生的損耗。
US 8,404,903描述一種在大於大氣壓同時採用相對適中溫度下移除醛產物之手段。然而,所述方法除了改變分離區之冷凝器溫度以外未提供任何手段控制CO含量。此控制手段限於窄範圍之CO分壓且需要昂貴製冷單元來調節此類大的氣流。在US 8,404,903中所述之最大總壓(100磅/平方吋)及CO莫耳百分比(16%)下,16磅/平方吋之最大CO分壓為可能的,儘管在此高壓下,分離區生產率甚至對於移除相對揮發性C5醛而言為不可接受地低。此是因為需要汽化器溫度與再循環氣流之可接受平衡以達成可接受之產物回收
率及銠損耗率。US 8,404,903提及再循環氣體中存在CO應有益於亞磷酸酯配位體之穩定,但未提及減緩或防止銠損耗。
鑒於先前技術之缺陷,仍需要一種自銠-有機亞磷酸酯氫甲醯化催化劑分離高沸點醛同時降低銠損耗之手段。
本發明方法為此類包括以下之連續氫甲醯化方法:(a)自反應器移除粗產物;(b)將粗產物傳送至汽化器;(c)使汽化器中之粗產物分離產生含催化劑之液體流及氣相流;以及(d)維持汽化器中之平均CO分壓大於16磅/平方吋(110千帕)。
在一個實施例中,所述方法包括:(a)將包括一或多種產物、一或多種重質副產物、過渡金屬-有機亞磷酸酯配位體錯合物催化劑、一或多種未經轉化之反應物以及一或多種惰性輕物質之粗產物流饋入汽化器中;(b)自汽化器移除包括一或多種產物、一或多種未經轉化之反應物、一或多種惰性輕物質以及一部分重質副產物之塔頂氣流,且將所述塔頂氣流饋入冷凝器中;(c)自冷凝器移除包括一或多種未經轉化之反應物及一或多種惰性輕物質之冷凝器塔頂氣流;(d)將至少一部分所述冷凝器塔頂氣流再循環至汽化器中;
(e)除冷凝器塔頂氣流之外,還將包括CO之氣流引入汽化器中,使得汽化器中之平均CO分壓大於16磅/平方吋(110千帕);以及(f)自汽化器移除包括過渡金屬-有機亞磷酸酯配位體錯合物催化劑及其餘部分之重質副產物之液體再循環催化劑流作為尾流。
超大氣壓力通常避免作為C5及高級醛之汽化之方法條件。因此,出人意料的為增加汽化器之苛刻超大氣壓力環境中之CO分壓使銠-有機亞磷酸酯催化劑穩定,而同時允許在適中溫度下移除此類高沸點醛。
1‧‧‧烯烴饋料流
2‧‧‧氣態饋料流
20‧‧‧流
21‧‧‧粗氫甲醯化產物流
22‧‧‧塔頂氣流
23‧‧‧再循環催化劑流
24‧‧‧再循環流/管線
25‧‧‧流/管線
26‧‧‧液體產物流
27‧‧‧反應器排氣流
28‧‧‧冷凝器塔頂氣流
55‧‧‧流/管線
100‧‧‧氫甲醯化反應器系統
200‧‧‧汽提氣汽化器單元/汽提氣汽化器
300‧‧‧冷凝器
400‧‧‧鼓風機
圖1為本發明方法之一個實施例之示意性流程圖。
一種氫甲醯化方法包括使CO、H2以及至少一種烯烴在足以形成至少一種醛產物之氫甲醯化條件下在包括過渡金屬及可水解配位體作為組分之催化劑存在下接觸。視情況選用之方法組分包含胺及/或水。
對元素週期表及其中多種族之所有參考為對公佈於CRC Handbook of Chemistry and Physics,第72版(1991-1992)CRC Press,第I-11頁中之版本的參考。
除非相反陳述或自上下文暗示,否則所有份數及
百分比均以重量計且所有測試方法為截至本申請案申請日期之現行方法。出於美國專利實務之目的,任何所參考專利、專利申請案或公開案之內容均以全文引用的方式併入(或其等效US版本如此以引用的方式併入),尤其在此項技術中之定義(在與本發明中特定提供之任何定義不一致的程度上)及常識之揭示方面。
如本文所用,「一(a/an)」、「所述」、「至少一種」以及「一或多種」可互換使用。術語「包括」、「包含」以及其變化形式在此等術語出現在說明書及申請專利範圍中時不具有限制性含義。因此,例如,包含「一種」疏水性聚合物之粒子的水性組成物可解釋為意謂組成物包含「一或多種」疏水性聚合物之粒子。
亦在本文中,以端點對數值範圍進行之敍述包含所述範圍內所含之所有數字(例如,1至5包含1、1.5、2、2.75、3、3.80、4、5等)。出於本發明之目的,應理解,與一般技術者將理解一致,數值範圍意欲包含且支持所述範圍內所包含之所有可能的子範圍。舉例而言,範圍1至100意欲表達1.01至100、1至99.99、1.01至99.99、40至60、1至55等。亦在本文中,數值範圍及/或數值之敍述,包含申請專利範圍中之此類敍述可解讀為包含術語「約」。在此等情況下,術語「約」係指與本文所述之彼等數值範圍及/或數值實質上相同之數值範圍及/或數值。
如本文所用,術語「百萬分率(ppm)」及「重量百萬分率(ppmw)」意謂按重量計百萬分率。
出於本發明之目的,術語「烴」預期包含具有至少一個氫原子及一個碳原子之所有可容許化合物。此類可容許化合物亦可具有一或多個雜原子。在一廣泛態樣中,可容許烴包含可經取代或未經取代之非環狀(具有或不具有雜原子)及環狀、分支鏈及非分支鏈、碳環及雜環、芳族及非芳族有機化合物。
如本文所用,除非另外指示,否則預期術語「經取代」包含有機化合物之所有可容許取代基。在一廣泛態樣中,可容許取代基包含有機化合物之非環及環狀、分支鏈及非分支鏈、碳環及雜環、芳族及非芳族取代基。說明性取代基包含例如烷基、烷氧基、芳基、芳氧基、羥烷基、胺基烷基(其中碳原子數目可在1至20或大於20,較佳1至12之範圍內)以及羥基、鹵基及胺基。對於適當有機化合物,可容許取代基可為一或多個且相同或不同。本發明並不意欲以任何方式受有機化合物之可容許取代基限制。
術語「反應流體」、「反應介質」以及「催化劑溶液」在本文中可互換使用,且可包含(但不限於)包括以下各者之混合物:(a)金屬-有機磷配位體錯合物催化劑;(b)自由有機磷配位體;(c)在反應中形成的醛產物;(d)未反應之反應物;(e)所述金屬-有機磷配位體錯合物催化劑及所述自由有機磷配位體之溶劑;以及視情況(f)在反應中形成的一或多種磷酸性化合物(其可為均質或非均質的,且此等化合物包含黏著於處理設備表面之彼等化合物)。反應流體可涵蓋(但不限於)(a)反應區中之流體;(b)進入分離區途
中之流體流;(c)分離區中之流體;(d)再循環流;(e)退出反應區或分離區之流體;(f)經水性緩衝溶液處理之退出流體;(g)返回至反應區或分離區中之經處理流體;(h)外部冷卻器中之流體;以及(i)配位體分解產物及其鹽。
「可水解磷配位體」為含有至少一個P-Z鍵之三價磷配位體,其中Z為氧、氮、氯、氟或溴。實例包含(但不限於)亞磷酸酯、膦基-亞磷酸酯、雙亞磷酸酯、亞膦酸二酯、雙亞膦酸二酯、次膦酸酯、胺基磷酸酯、膦基-胺基磷酸酯、雙胺基磷酸酯、氟亞磷酸酯及其類似物。配位體可包含螯合結構及/或可含有多個P-Z部分,諸如聚亞磷酸酯、聚胺基磷酸酯等,及混合P-Z部分,諸如亞磷酸酯-胺基磷酸酯、氟亞磷酸酯-亞磷酸酯及其類似物。
如本文所用之術語「錯合物」意謂由一或多個電子富集分子或原子(亦即,配位體)與一或多個電子稀少分子或原子(亦即,過渡金屬)之聯合形成之配位化合物。舉例而言,本文可採用之有機磷配位體擁有具有一個未共用電子對之一個磷(III)供體原子,其能夠與金屬形成配位共價鍵。本文可採用之聚有機磷配位體擁有兩個或大於兩個磷(III)供體原子,各具有一個未共用電子對,電子中之每一者能夠獨立或可能與過渡金屬共同(例如,經由螯合)形成配位共價鍵。一氧化碳亦可存在且可與過渡金屬錯合。錯合物催化劑之最終組成物亦可含有額外配位體,諸如上文所述之例如氫、單烯烴或滿足金屬之配位部位或核電荷之陰離子。
出於本發明之目的,術語「重質副產物」及「重
物質」可互換使用,且係指正常沸點高於所述方法之所要產物的正常沸點至少25℃之氫甲醯化方法液體副產物。在氫甲醯化反應中,例如在反應物包括一或多種烯烴時,所要產物經常包括一或多種異構醛以及重物質。
出於本發明之目的,術語「饋料比尾料」及「饋料與尾料比」可互換使用,且係指進入分離區之反應流體的質量相對於離開分離區底部且返回至第一氫甲醯化反應器之經濃縮之流出物(汽化器尾料)的質量。「饋料比尾料」指示自反應流體移除揮發物(諸如醛產物)之速率。舉例而言,「饋料與尾料比」為2意謂進入分離區之反應流體的重量比返回至第一反應器之經濃縮之流出物的重量大兩倍。
出於本發明之目的,術語「分離罐」、「分離容器」以及「閃蒸容器」可互換使用,且係指反應區與汽化器之間的低壓部分。閃蒸容器允許反應流體快速脫氣且促進控制汽化器分壓。此類容器典型地維持在遠低於氫甲醯化反應器中建立之彼等壓力及溫度的壓力及溫度下。
出於本發明之目的,術語「輕物質」係指正常沸點在大氣壓下為25℃或小於25℃之物質。如本文所用,術語「惰性輕物質」或「輕惰性物質」係指在所述方法中基本上未反應之輕物質。「反應性輕物質」應指在所述方法中在顯著程度上具反應性之輕物質。作為一實例,在氫甲醯化方法中,反應性輕物質包含一氧化碳及氫;而惰性輕物質包含烷烴(諸如反應之烯烴饋料中所存在之烷烴)及其他惰性氣體(諸如氮氣)。
「基本上恆壓」及相似術語意謂在基本上恆定壓力下或在1巴(100千帕)或小於1巴、較佳0.5巴(50千帕)或小於0.5巴之壓力差內。換言之,在本發明之一個實施例中,橫跨產物相汽提器及產物冷凝器中之最大壓力差為1巴(100千帕)或小於1巴,較佳0.5巴(50千帕)或小於0.5巴。
術語「汽化器」、「汽提氣汽化器」、「汽提器」以及「產物相汽提器」在本文中可互換使用,且係指採用汽提氣來輔助自產物分離含產物流之組分的分離裝置。
如本文所用,術語「平均CO分壓」意謂在穩定狀態操作下歷經至少10分鐘時段在汽化器之蒸氣出口測定之平均一氧化碳分壓。使用氣相層析(GC)測定氣體組成物中CO之莫耳%為熟知的;隨後藉由量測總壓及使用拉烏爾定律(Raoult’s Law)計算CO分壓。
如本文所用,術語「平均H2分壓」意謂在穩定狀態操作下歷經至少10分鐘時段在汽化器之蒸氣出口測定之平均氫分壓。使用氣相層析(GC)測定氣體組成物中H2之莫耳%為熟知的;隨後藉由量測總壓及使用拉烏爾定律計算氫分壓。
可自任何適合之來源(包含石油裂解及精煉廠操作)獲得氫氣及一氧化碳。合成氣混合物為氫氣及CO之較佳來源。
合成氣(來自合成氣體)為給予含有不同量之CO及H2之氣體混合物的名稱。生產方法為熟知的。氫氣及
CO典型地為合成氣之主要組分,但合成氣可含有CO2及諸如N2及Ar之惰性氣體。H2與CO之莫耳比變化極大但一般在1:100至100:1範圍內且較佳在1:10與10:1之間。合成氣為可商購的且通常用作燃料源或作為生產其他化學品的中間物。化學生產之最佳H2:CO莫耳比在3:1與1:3之間,且大部分氫甲醯化應用通常靶向約1:2與2:1之間。
可用於氫甲醯化方法中之經取代或未經取代之烯烴反應物包含含有2至40個、較佳3至30個碳原子、更佳4至20個碳原子之光學活性(前掌性及對掌性)及非光學活性(非對掌性)烯烴不飽和化合物。此等化合物詳細描述於US 7,863,487中。此類烯烴不飽和化合物可為末端或內部不飽和的且具有直鏈、分支鏈或環狀結構,以及烯烴混合物,諸如自混合丁烯之二聚、丙烯、丁烯、異丁烯等之寡聚獲得(諸如所謂的二聚、三聚或四聚丙烯及其類似物,如揭示於例如US 4,518,809及4,528,403中)。
適用於不對稱氫甲醯化之前掌性及對掌性烯烴可用於生產對映異構醛混合物。適用於不對稱氫甲醯化之說明性光學活性或前掌性烯烴化合物描述於例如美國專利4,329,507、5,360,938以及5,491,266中。
在氫甲醯化方法中宜採用溶劑。可使用並不過度地干擾氫甲醯化方法之任何適合溶劑。藉助於說明,用於銠催化之氫甲醯化方法之適合溶劑包含揭示於例如美國專利3,527,809、4,148,830、5,312,996以及5,929,289中之彼等溶劑。在銠催化之氫甲醯化方法中,可較佳採用對應於所要產
生之醛產物及/或較高沸點醛液體縮合副產物(例如,如可在如描述於例如US 4,148,380及US 4,247,486中之氫甲醯化方法期間原位生成)的醛化合物作為主要溶劑。由於連續法之性質,主要溶劑將通常最終包括醛產物及較高沸點醛液體縮合副產物(「重物質」)。溶劑之量並不尤其關鍵且僅需要足以為反應介質提供所需量之過渡金屬濃度。典型地,溶劑之量在以反應流體之總重量計約5重量%至約95重量%範圍內。可採用溶劑之混合物。
可用於此類氫甲醯化反應中之說明性金屬-有機磷配位體錯合物包含金屬-有機磷配位體錯合物催化劑。此等催化劑以及其製備方法在此項技術中為熟知的且包含揭示於本文所提及之專利中之彼等催化劑及方法。一般而言,此類催化劑可預先形成或原位形成,且包括與有機磷配位體、一氧化碳及視情況氫錯合組合之金屬。催化劑之確切結構為未知的。
金屬-有機磷配位體錯合物催化劑可為光學活性或非光學活性的。金屬可包含選自銠(Rh)、鈷(Co)、銥(Ir)、釕(Ru)、鐵(Fe)、鎳(Ni)、鈀(Pd)、鉑(Pt)、鋨(Os)以及其混合物之第8族、第9族以及第10族金屬,其中較佳金屬為銠、鈷、銥以及釕,更佳為銠、鈷以及釕,尤其為銠。可使用此等金屬之混合物。構成金屬-有機磷配位體錯合物及自由有機磷配位體之可容許有機磷配位體包含單、二、三及更高聚有機磷配位體。可在金屬-有機磷配位體錯合物催化劑及/或自由配位體中採用配位體之混合物,且此類混合物可相
同或不同。在本發明之一個實施例中,可採用單有機亞磷酸酯與有機聚亞磷酸酯(例如,雙亞磷酸酯)配位體之混合物。
可充當金屬-有機磷配位體錯合物催化劑之配位體及/或自由配位體之有機磷化合物可為非對掌性(光學非活性)或對掌性(光學活性)類型且在此項技術中為熟知的。非對掌性有機磷配位體為較佳的。
在有機磷配位體中,可充當金屬-有機磷配位體錯合物催化劑之配位體的為單有機亞磷酸酯、二有機亞磷酸酯、三有機亞磷酸酯以及有機聚亞磷酸酯化合物。此類有機磷配位體及其製備方法在此項技術中為熟知的。
代表性單有機亞磷酸酯可包含具有下式之彼等單有機亞磷酸酯:
其中R10表示含有4至40個或大於40個碳原子之經取代或未經取代之三價烴基,諸如三價非環狀及三價環狀基團,例如三價伸烷基,諸如來源於1,2,2-三羥甲基丙烷及其類似物之彼等基團,或三價伸環烷基,諸如來源於1,3,5-三羥基環己烷及其類似物之彼等基團。可發現此類單有機亞磷酸酯更詳細描述於例如US 4,567,306中。
代表性二有機亞磷酸酯可包含具有下式之彼等二有機亞磷酸酯:
其中R20表示含有4至40個碳原子或大於40個碳原子之經取代或未經取代之二價烴基,且W表示含有1至18個碳原子或大於18個碳原子之經取代或未經取代之單價烴基。
在以上式(II)中由W表示之代表性經取代及未經取代之單價烴基包含烷基及芳基,而由R20表示之代表性經取代及未經取代之二價烴基包含二價非環狀基團及二價芳族基團。說明性二價非環狀基團包含例如伸烷基、伸烷基-氧基-伸烷基、伸烷基-S-伸烷基、伸環烷基及伸烷基-NR24-伸烷基,其中R24為氫或經取代或未經取代之單價烴基,例如具有1至4個碳原子之烷基。更佳二價非環狀基團為諸如更全面地揭示於例如美國專利3,415,906及4,567,302中之二價伸烷基及其類似基團。說明性二價芳族基團包含例如伸芳基、雙伸芳基、伸芳基-伸烷基、伸芳基-伸烷基-伸芳基、伸芳基-氧基-伸芳基、伸芳基-NR24-伸芳基(其中R24如上文所定義)、伸芳基-S-伸芳基、伸芳基-S-伸烷基及其類似基團。R20更佳為諸如更全面地揭示於例如美國專利4,599,206、4,717,775、4,835,299中之二價芳族基團及其類似基團。
更佳類別之二有機亞磷酸酯之代表為下式之彼等二有機亞磷酸酯:
其中W如上文所定義,各Ar相同或不同且表示經取代或未經取代之芳基,各y相同或不同且為0或1之值,Q表示選自-C(R33)2-、-O-、-S-、-NR24-、Si(R35)2及-CO-之二價橋聯基團,其中各R33相同或不同且表示氫、烷基(具有1至12個碳原子)、苯基、甲苯基及茴香基,R24如上文所定義,各R35相同或不同且表示氫或甲基,且m具有0或1之值。此類二有機亞磷酸酯更詳細描述於例如美國專利4,599,206、4,717,775以及4,835,299中。
代表性三有機亞磷酸酯可包含具有下式之彼等三有機亞磷酸酯:
其中各R46相同或不同且為經取代或未經取代之單價烴基,例如可含有1至24個碳原子之烷基、環烷基、芳基、烷芳基及芳烷基。說明性三有機亞磷酸酯包含例如亞磷酸三烷基酯、亞磷酸二烷基芳基酯、亞磷酸烷基二芳基酯、亞磷酸三芳基酯及其類似物,例如亞磷酸三甲酯、亞磷酸三乙酯、
亞磷酸丁基二乙酯、亞磷酸二甲基苯酯、亞磷酸三苯酯、亞磷酸三萘酯、雙(3,6,8-三-第三丁基-2-萘基)甲基亞磷酸酯、雙(3,6,8-三-第三丁基-2-萘基)環己基亞磷酸酯、參(3,6-二-第三丁基-2-萘基)亞磷酸酯、雙(3,6,8-三-第三丁基-2-萘基)苯基亞磷酸酯以及雙(3,6,8-三-第三丁基-2-萘基)(4-磺醯基苯基)亞磷酸酯及其類似物。最佳三有機亞磷酸酯為三苯基亞磷酸酯。此類三有機亞磷酸酯更詳細描述於例如美國專利3,527,809及5,277,532中。
代表性有機聚亞磷酸酯含有兩個或大於兩個三級(三價)磷原子且可包含具有下式之彼等有機聚亞磷酸酯:
其中X表示含有2至40個碳原子之經取代或未經取代之n價有機橋聯基團,各R57相同或不同且表示含有4至40個碳原子之二價有機基團,各R58相同或不同且表示含有1至24個碳原子之經取代或未經取代之單價烴基,a與b可相同或不同且各具有0至6之值,其限制條件為a+b之總和為2至6且n等於a+b。應理解,當a具有2或大於2之值時,各R57基團可相同或不同。各R58基團在任何給定化合物中亦可相同或不同。
由X表示之代表性n價(較佳二價)有機橋聯基團及由以上R57表示之代表性二價有機基團包含非環狀基團及芳族基團,諸如伸烷基、伸烷基-Qm-伸烷基、伸環烷基、
伸芳基、雙伸芳基、伸芳基-伸烷基以及伸芳基-(CH2)y-Qm-(CH2)y-伸芳基及其類似基團,其中各Q、y及m如上文在式(III)中所定義。由以上X及R57表示之更佳非環狀基團為二價伸烷基,而由以上X及R57表示之更佳芳族基團為二價伸芳基及雙伸芳基,諸如更全面地揭示於例如美國專利4,769,498;4,774,361;4,885,401;5,179,055;5,113,022;5,202,297;5,235,113;5,264,616;5,364,950以及5,527,950中。由以上各R58基團表示之代表性較佳單價烴基包含烷基及芳族基團。
說明性較佳有機聚亞磷酸酯可包含雙亞磷酸酯,諸如以下式(VI)至(VIII)之彼等雙亞磷酸酯:
其中式(VI)至式(VIII)之各R57、R58以及X與上文關於式(V)所定義的相同。較佳地,各R57及X表示選自伸烷基、伸芳基、伸芳基-伸烷基-伸芳基以及雙伸芳基之二價烴基,而各R58基團表示選自烷基及芳基之單價烴基。可發現此
類式(V)至式(VIII)之有機亞磷酸酯配位體揭示於例如美國專利4,668,651;4,748,261;4,769,498;4,774,361;4,885,401;5,113,022;5,179,055;5,202,297;5,235,113;5,254,741;5,264,616;5,312,996;5,364,950以及5,391,801中。
式(VI)至式(VIII)中之R10、R20、R46、R57、R58、Ar、Q、X、m以及y如上文所定義。最佳地,X表示二價芳基-(CH2)y-(Q)m-(CH2)y-芳基,其中各y單獨地具有0或1之值;m具有0或1之值且Q為-O-、-S-或-C(R35)2-,其中各R35相同或不同且表示氫或甲基。更佳地,上文所定義之R58基團之各烷基可含有1至24個碳原子,且以上式(VI)至(VIII)之上文所定義之Ar、X、R57以及R58基團的各芳基可含有6至18個碳原子且所述基團可相同或不同,而X之較佳伸烷基可含有2至18個碳原子且R57之較佳伸烷基可含有5至18個碳原子。另外,較佳地,上式之X之二價Ar基團及二價芳基為伸苯基,其中由-(CH2)y-(Q)m-(CH2)y-表示之橋聯基團與所述伸苯基在與所述式之氧原子鄰位之位置鍵結,氧原子連接所述式之伸苯基與其磷原子。亦較佳地,任何取代基在存在於此類伸苯基上時,其在相對於鍵結給定經取代之伸苯基至其磷原子之氧原子之伸苯基的對位及/或鄰位鍵結。
若需要,以上式(I)至式(VIII)之此類有機亞磷酸酯之R10、R20、R57、R58、W、X、Q以及Ar基團中之任一者可經含有1至30個碳原子之任何適合取代基取代,而並不過度地不利影響本發明方法之所要結果。可能在所述基團
上之取代基除了相應烴基(諸如烷基、芳基、芳烷基、烷芳基以及環己基)取代基之外還可包含例如矽烷基,諸如--Si(R35)3;胺基,諸如-N(R15)2;膦基,諸如-芳基-P(R15)2;醯基,諸如-C(O)R15;醯氧基,諸如-OC(O)R15;醯胺基,諸如--CON(R15)2及-N(R15)COR15;磺醯基,諸如-SO2R15;烷氧基,諸如-OR15;亞磺醯基,諸如-SOR15;膦醯基,諸如-P(O)(R15)2;以及鹵基、硝基、氰基、三氟甲基、羥基及其類似基團,其中各R15基團單獨地表示具有1至18個碳原子之相同或不同單價烴基(例如,烷基、芳基、芳烷基、烷芳基以及環己基),其限制條件為在諸如-N(R15)2之胺基取代基中,各R15一起亦可表示形成具有氮原子之雜環基團之二價橋聯基團,且在諸如-C(O)N(R15)2及-N(R15)COR15之醯胺基取代基中,鍵結至N之各R15亦可為氫。應理解,構成特別給定的有機亞磷酸酯之經取代或未經取代之烴基中之任一者可相同或不同。
更特定言之,說明性取代基包含一級、二級及三級烷基,諸如甲基、乙基、正丙基、異丙基、丁基、第二丁基、第三丁基、新戊基、正己基、戊基、第二戊基、第三戊基、異辛基、癸基、十八基及其類似基團;芳基,諸如苯基、萘基及其類似基團;芳烷基,諸如苄基、苯乙基、三苯甲基及其類似基團;烷芳基,諸如甲苯基、二甲苯基及其類似基團;脂環族基團,諸如環戊基、環己基、1-甲基環己基、環辛基、環己基乙基及其類似基團;烷氧基,諸如甲氧基、乙氧基、丙氧基、第三丁氧基、-OCH2CH2OCH3、-O(CH2CH2)2OCH3、-O(CH2CH2)3OCH3及其類似基團;芳氧基,諸如
苯氧基及其類似基團;以及矽烷基,諸如-Si(CH3)3、-Si(OCH3)3、-Si(C3H7)3及其類似基團;胺基,諸如-NH2、-N(CH3)2、-NHCH3、-NH(C2H5)及其類似基團;芳基膦基,諸如-P(C6H5)2及其類似基團;醯基,諸如-C(O)CH3、-C(O)C2H5、-C(O)C6H5及其類似基團;羰氧基,諸如-C(O)OCH3及其類似基團;氧基羰基,諸如-O(CO)C6H5及其類似基團;醯胺基,諸如-CONH2、-CON(CH3)2、-NHC(O)CH3及其類似基團;磺醯基,諸如-S(O)2C2H5及其類似基團;亞磺醯基,諸如-S(O)CH3及其類似基團;亞硫基,諸如-SCH3、-SC2H5、-SC6H5及其類似基團;膦醯基,諸如-P(O)(C6H5)2、-P(O)(CH3)2、-P(O)(C2H5)2、-P(O)(C3H7)2、-P(O)(C4H9)2、-P(O)(C6H13)2、-P(O)CH3(C6H5)、-P(O)(H)(C6H5)及其類似基團。
此類有機亞磷酸酯配位體之特定說明性實例包含以下:參(2,4-二-第三丁基苯基)亞磷酸酯、2-第三丁基-4-甲氧苯基(3,3'-二-第三丁基-5,5'-二甲氧基-1,1'-聯苯-2,2'-二基)亞磷酸酯、(3,3'-二-第三丁基-5,5'-二甲氧基-1,1'-聯苯-2,2'-二基)亞磷酸甲酯、6,6'-[[3,3'-雙(1,1-二甲基乙基)-5,5'-二甲氧基-[1,1'-聯苯]-2,2'-二基]雙(氧基)]雙-二苯并[d,f][1,3,2]二氧雜磷雜庚英、6,6'-[[3,3',5,5'-肆(1,1-二甲基乙基)-1,1'-聯苯]-2,2'-二基]雙(氧基)]雙-二苯并[d,f][1,3,2]-二氧雜磷雜庚英、(2R,4R)-二[2,2'-(3,3',5,5'-肆-第三丁基-1,1-聯苯)]-2,4-戊基二亞磷酸酯、(2R,4R)二[2,2'-(3,3'-二-第三丁基-5,5'-二甲氧基-1,1'-聯苯)]-2,4-苯基二亞磷酸酯、2-[[2-[[4,8,-雙(1,1-二甲基乙基),2,10-二甲氧基二苯并-[d,f][1,3,2]二氧代磷雜庚英-6-
基]氧基]-3-(1,1-二甲基乙基)-5-甲氧苯基]甲基]-4-甲氧基,亞甲基二-2,1-伸苯基肆[2,4-雙(1,1-二甲基乙基)苯基]亞磷酸酯以及[1,1'-聯苯]-2,2'-二基肆[2-(1,1-二甲基乙基)-4-甲氧苯基]亞磷酸酯。
在一個實施例中,有機亞磷酸酯配位體包括有機雙亞磷酸酯配位體。在一個實施例中,配位體為胺基磷酸酯配位體,諸如揭示於例如WO 00/56451 A1中之類別的雙齒胺基磷酸酯配位體。
金屬-有機磷配位體錯合物催化劑可呈均質或非均質形式。舉例而言,可製備預先形成之銠氫-羰基-有機磷配位體催化劑且將其引入氫甲醯化反應混合物中。更佳地,銠-有機磷配位體錯合物催化劑可來源於可引入原位形成活性催化劑之反應介質中之銠催化劑前驅體。舉例而言,可將銠催化劑前驅體,諸如二羰基乙醯基丙酮酸銠、Rh2O3、Rh4(CO)12、Rh6(CO)16、Rh(NO3)3及其類似物與有機磷配位體一起引入反應混合物中以用於原位形成活性催化劑。在一較佳實施例中,二羰基乙醯基丙酮酸銠用作銠前驅體且在溶劑存在下與有機磷配位體反應形成催化銠-有機磷配位體錯合物前驅體,將其與過量(自由)有機磷配位體一起引入反應器中以用於原位形成活性催化劑。在任何情況下,一氧化碳、氫氣以及有機磷配位體為能夠與金屬錯合之所有配位體且活性金屬-有機磷配位體催化劑在用於氫甲醯化反應之條件下存在於反應混合物中為足夠的。可在氫甲醯化方法之前或期間原位將羰基及有機磷配位體與銠錯合。
藉助於說明,較佳催化劑前驅體組成物基本上由溶解銠羰基有機亞磷酸酯配位體錯合物前驅體、溶劑以及視情況自由有機亞磷酸酯配位體組成。可藉由形成二羰基乙醯基丙酮酸銠、有機溶劑以及有機亞磷酸酯配位體之溶液來製備較佳催化劑前驅體組成物。如由一氧化碳氣體之釋放證明,有機磷配位體易於置換乙醯基丙酮酸銠錯合物前驅體之羰基配位體中之一者。
因此,金屬-有機磷配位體錯合物催化劑宜包括與一氧化碳錯合之金屬及有機磷配位體,所述配位體以螯合及/或非螯合方式與金屬鍵結(錯合)。
可採用催化劑之混合物。存在於反應流體中之金屬-有機磷配位體錯合物催化劑之量僅需要為必需提供所要採用之給定金屬濃度之最低量且將為必需催化所涉及之特定氫甲醯化方法(諸如揭示於例如上文提及之專利中)之金屬之至少催化量提供基礎。一般而言,以反應介質中之自由金屬計算,催化金屬(例如銠)濃度在10重量百萬分率至1000重量百萬分率範圍內對於大多數方法而言應為足夠的,而一般較佳採用10重量百萬分率至500重量百萬分率金屬,且更佳25重量百萬分率至350重量百萬分率金屬。
除了金屬-有機磷配位體錯合物催化劑之外,自由有機磷配位體(亦即,不與金屬錯合之配位體)亦可存在於反應介質中。自由有機磷配位體可對應於任何上文所論述之上文所定義之有機磷配位體。較佳地,自由有機磷配位體與所用之金屬-有機磷配位體錯合物催化劑之有機磷配位體相
同。然而,此類配位體在任何給定方法中不必相同。本發明之氫甲醯化方法可涉及在反應介質中每莫耳金屬0.1莫耳或小於0.1莫耳至100莫耳或高於100莫耳之自由有機磷配位體。較佳地,在存在於反應介質中之每莫耳金屬1莫耳至50莫耳有機磷配位體存在下進行氫甲醯化方法。更佳地,對於有機聚亞磷酸酯,每莫耳金屬採用1.1莫耳至4莫耳有機聚亞磷酸酯配位體。有機磷配位體之所述量為與存在之金屬結合(錯合)之有機磷配位體的量與存在之自由有機磷配位體的量之總和。若需要,可在任何時間且以任何適合方式將額外有機磷配位體供應至氫甲醯化方法之反應介質,例如以維持反應介質中自由配位體之預定含量。
水性緩衝溶液諸如在萃取系統中防止及/或減少有機亞磷酸酯配位體水解降解及金屬-有機亞磷酸酯配位體錯合物失活之用途為熟知的且揭示於例如US 5,741,942及US 5,741,944中。可採用緩衝劑之混合物。
視情況,可將有機氮化合物添加至氫甲醯化反應流體中以清除在水解有機磷配位體時形成之酸性水解副產物,如教示於例如US 4,567,306及US 5,731,472中。此類有機氮化合物可用於與酸性化合物反應及用於藉由與其形成轉化產物鹽來中和酸性化合物,從而防止催化金屬與酸性水解副產物錯合且因此幫助保護催化劑在反應條件下存在於反應區中時之活性。
氫甲醯化方法及其操作條件為熟知的。氫甲醯化方法可為不對稱或非不對稱的,較佳方法為非不對稱的,且
可以任何分批、連續或半連續方式進行且可涉及任何所需催化劑液體及/或氣體再循環操作。
所用之氫甲醯化反應條件將由所要醛產物之類型決定。舉例而言,氫甲醯化方法之氫氣、一氧化碳以及烯烴起始化合物之總氣體壓力可在1千帕至69,000千帕範圍內。然而,一般而言,方法較佳在小於14,000千帕且更佳小於3,400千帕之氫氣、一氧化碳以及烯烴起始化合物之總氣體壓力下操作。最小總壓主要受必需獲得所要反應速率之反應物的量限制。更特定言之,氫甲醯化方法之一氧化碳分壓較佳為1千帕至6,900千帕且更佳21千帕至5,500千帕,而氫分壓較佳為34千帕至3,400千帕且更佳69千帕至2,100千帕。一般而言,氣態H2:CO之莫耳比可在1:10至100:1或更高範圍內,更佳莫耳比為1:10至10:1。
一般而言,氫甲醯化方法可在任何可操作反應溫度下進行。氫甲醯化方法宜在-25℃至200℃、較佳50℃至120℃之反應溫度下進行。
氫甲醯化方法可使用一或多個適合反應器進行,諸如固定床反應器、流化床反應器、連續攪拌槽反應器(CSTR)或漿料反應器。催化劑之最佳大小及形狀將視所用反應器之類型而定。所用反應區可為單一容器或可包括兩個或大於兩個離散容器。
本發明之氫甲醯化方法可在一或多個步驟或階段中進行。反應步驟或階段之確切數目將由資金成本與達成高催化劑選擇性、活性、壽命及操作容易性之間的最佳綜合
考慮以及所討論之起始物質的固有反應性及起始物質及所要反應產物對反應條件之穩定性決定。
在一個實施例中,適用於本發明之氫甲醯化方法可在諸如描述於例如US 5,728,893中之多階段反應器中進行。此類多階段反應器可經設計具有每一容器建立多於一個理論反應性階段之內部物理障壁。
一般較佳以連續方式進行氫甲醯化方法。連續氫甲醯化方法在此項技術中為熟知的;最佳氫甲醯化方法包括連續液體催化劑再循環方法。適合之液體催化劑再循環程序揭示於例如美國專利4,668,651;4,774,361;5,102,505及5,110,990中。
圖1說明本發明之一體化氫甲醯化方法。參看圖1,將包括一或多種烯烴化合物以及視情況存在之一或多種惰性輕物質的烯烴饋料流1饋入包括一或多個氫甲醯化反應器(羰基合成反應器(Oxo reactor))之氫甲醯化反應器系統100中。同時,亦將包括一氧化碳、氫氣及視情況存在之一或多種氣態惰性物質之氣態饋料流2饋入氫甲醯化反應器系統100中。為簡單起見,氫甲醯化反應器系統以單個單元展示於圖1中,但其宜包括一系列依序連接之氫甲醯化反應器。
亦將包括過渡金屬-有機單亞磷酸酯配位體錯合物催化劑(較佳為銠-有機單亞磷酸酯配位體錯合物催化劑)及視情況存在之自由或未經錯合之有機單亞磷酸酯配位體之增溶及溶解於液體重質副產物相中的再循環催化劑流23饋入氫甲醯化反應器系統100中,其中烯烴發生氫甲醯化而產生
包括一或多種醛產物、一或多種重質副產物、一或多種未經轉化之烯烴反應物、過渡金屬-有機亞磷酸酯配位體錯合物催化劑、自由有機亞磷酸酯配位體以及輕物質(包含惰性輕物質、一氧化碳及視情況存在之氫氣)的粗氫甲醯化產物流21。在本發明之一個實施例中,粗氫甲醯化產物流21為包括液體及氣體之流,所述氣體可部分溶解於液體中。可自反應器系統100中之任何一或多個反應器獲取主要包括輕質組分(包含惰性輕物質、氫氣以及一氧化碳)之反應器排氣流27作為塔頂氣體流。流21中可視情況使用閃蒸罐(圖中未示)降低壓力且移除過量H2。
將液體氫甲醯化產物流21饋入汽提氣汽化器單元200中,自所述單元獲得包括一或多種醛產物、一或多種未經轉化之烯烴反應物、一部分重質副產物以及輕物質(包含一或多種惰性輕物質、一氧化碳及視情況存在之氫氣)的塔頂氣流22。將來自汽提氣汽化器之塔頂氣流22饋入產物冷凝器300中,自所述冷凝器獲得包括一或多種烯烴反應物之一部分以及惰性輕物質、一氧化碳及視情況存在之氫氣之一部分的冷凝器塔頂氣流28。自冷凝器300獲得包括一或多種醛產物、來自汽化器之塔頂氣流的部分重質副產物以及未經轉化之烯烴反應物之其餘部分的液體產物流26。將冷凝器塔頂氣流28分成再循環流24及流25,再循環流24經由鼓風機400傳送回至汽提氣汽化器200,流25可再循環至氫甲醯化反應器系統100,或燃燒,或用作燃料,或用於另一下游製程。再循環流24包括一或多種未經轉化之烯烴反應物及輕物質
(包含一或多種惰性輕物質、一氧化碳以及視情況存在之氫氣),且傳送至鼓風機400。流25包括一或多種未經轉化之烯烴反應物及輕物質(包含一或多種惰性輕物質、一氧化碳以及視情況存在之氫氣)。自汽提氣汽化器200獲得再循環催化劑流23作為汽化器尾流,其包括其餘部分之重質副產物、過渡金屬-有機亞磷酸酯配位體錯合物催化劑以及視情況存在之自由有機亞磷酸酯配位體。再循環催化劑流23作為液體催化劑流再循環回至羰基合成反應器系統100。
流55可在經由流20進入汽化器200之前用於直接添加CO至汽化器200及/或流24中之任何地方。汽化器中之CO分壓可在汽化器中直接量測,或藉由分析一或多個適當汽化器輸入流及/或輸出流,諸如適當選擇流20、22、24、25、55及/或28來間接量測。
在不添加CO之情況下,塔頂氣體再循環流中之CO分壓將隨冷凝器300之操作溫度而變化。在此情況下,操縱冷凝器300之操作溫度幾乎不對將再循環至汽化器200之穩定氫甲醯化催化劑所需之CO數量提供控制,且不提供足夠量之CO來達到所要CO分壓,例如大於16磅/平方吋(110千帕)至50磅/平方吋(345千帕)。因此,本發明之一個特徵為例如經由如圖1中所示之管線55添加CO至汽化器200。
經由管線55添加之大量CO將視管線24/管線25分流比而定經由管線24再循環。與習知汽化器相比,此再循環減少維持汽提氣汽化器中之CO分壓所需的管線55之流的總量,因為CO在液體產物出口流中之溶解度相對較低。管線
55之流經調節以維持汽化器中觀測到之CO分壓在所要範圍內。此管線亦可用於在啟動期間引入含CO汽提氣,在啟動時可能不可獲得來自上游製程之適合氣體。在本發明之各種實施例中,等效於流55之流可在汽化器中任何地方添加。然而,較佳藉由在進入汽化器之前混合補充CO饋料流與汽提氣24作為流20來將CO引入汽化器中。
流55宜為含CO流,且較佳實質上不含含硫或含鹵化物之雜質及氧氣(O2)。流55之來源可與進入氫甲醯化反應區之CO及H2之來源為相同來源,但較佳使用諸如變壓吸附、膜分離或其他已知技術之習知技術來富含CO。此等濃縮技術可饋入有新鮮合成氣及/或來自氫甲醯化單元之排出物中之一者。一般而言,流55中CO含量愈高,排氣流25之流量愈小,導致排出物損耗愈低。
來自氫甲醯化反應器之反應流體可直接饋入汽提氣汽化器中。汽提氣汽化器以單個單元200展示於圖1中,但汽化器可包括一系列在不同壓力下操作之依序連接之汽化器。
或者,反應流體可首先饋入閃蒸容器中以使壓力下降且移除反應性及惰性輕物質,之後可將其餘液體饋入汽提氣汽化器中。舉例而言,在反應器(100)壓力與汽化器(200)壓力之間的壓力下操作之閃蒸容器能夠在氣體進入汽化器之前移除諸如氫氣、CO2、甲烷、氮氣、氬氣及其類似氣體之氣體。此不僅允許此等氣體之濃度快速降低,而且幫助防止氣體在再循環汽提氣中積聚。此類氣體之積聚將需要較高新鮮
CO饋料速率(流55)及吹掃流動速率(流25)以便達成汽化器中之所要CO分壓。因此,在汽化器之前使用閃蒸容器可延長汽化器之可行操作壓力(亦即,允許較低總壓)且可導致更經濟的操作。
來自氫甲醯化反應器之反應流體之組成物(不包含過渡金屬-有機磷配位體錯合物催化劑及任何自由配位體)宜包括約38重量%至約58重量%之一或多種醛產物、約16重量%至約36重量%重物質副產物、約2重量%至約22重量%未經轉化之烯烴反應物、約1重量%至約22重量%惰性輕物質、約0.02重量%至約0.5重量%一氧化碳以及小於約100重量百萬分率氫氣,全部相加為100重量%。
汽化器硬體之設計可為習知的,且許多實例為熟習此項技術者所已知。汽化器宜設計為在熱交換器內包含一垂直系列管。最佳汽化器尺寸(管數目、直徑以及長度)藉由設備容量測定,且可易於藉由熟習此項技術者測定。汽化器及其用途之實例描述於US 8,404,903中。
為維持本發明之CO分壓,可能必需藉助於排氣流25排放一部分再循環汽提氣。排氣流中夾帶之醛、未反應之烯烴以及烷烴可藉由冷凝回收。可使用任何適合之熱傳遞流體在任何適合冷凝器中進行冷凝。此類流體之實例包含例如冷凍水、鹽水或其他鹽溶液、道氏(DOWTHERM)牌熱傳遞流體或其他熱交換流體,包含其混合物。
由於汽提氣汽化器及產物冷凝器可在基本上恆定壓力下操作,在本發明方法之一些實施例中不需要氣流之
廣泛壓縮。鼓風機或風扇可適合用於再循環氣體自產物冷凝器循環至汽提器。相較於壓縮單元,鼓風機或風扇涉及顯著較低資本費用及維護費用;然而,若需要則可使用壓縮單元。一般而言,汽提器及產物冷凝器在範圍為1.5絕對巴(150千帕)至4絕對巴(400千帕)、較佳2絕對巴至3絕對巴(200-300千帕)之壓力下操作。
汽提氣汽化器中之CO分壓宜藉由例如如圖1中所示經由管線55添加含CO流而維持在大於16磅/平方吋(110千帕)至50磅/平方吋(345千帕)範圍內。在本發明之一個實施例中,汽化器在高至足以自氣體塔頂流中之產物流體移除至少一部分重物質而又低至足以確保汽化器中催化劑及有機磷配位體之穩定的溫度下操作。較佳地,汽化器製程出口溫度為至少80℃,且更佳為至少90℃。較佳地,汽化器製程出口溫度不超過130℃,且更佳不超過120℃。汽化器總壓宜較大,至少16磅/平方吋(110千帕),且較佳為至少20磅/平方吋(138千帕),且最佳為至少25磅/平方吋(172千帕)。汽化器總壓宜不超過100磅/平方吋(689千帕),且較佳不超過60磅/平方吋(414千帕)。CO分壓大於16磅/平方吋(110千帕),較佳大於20磅/平方吋(138千帕)且最佳高於25磅/平方吋(172千帕)。CO分壓高於50磅/平方吋(345千帕)無任何優勢,因為此使較高汽化器溫度成為維持生產力的必要;因此CO分壓較佳不超過50磅/平方吋(345千帕),較佳小於40磅/平方吋(276千帕)且更佳小於35磅/平方吋(241千帕)。汽化器宜以粗液體產物饋料與液體尾料之質量比在
1.5/1至5/1、較佳2/1至3/1之範圍內操作。粗液體產物饋料與進入汽化器之再循環氣體饋料之質量比較佳大於0.1/1,更佳大於0.25/1,但較佳小於2/1且更佳小於1/1。在本發明之一個實施例中,在汽化器中,H2分壓為0.1磅/平方吋(0.7千帕)或3磅/平方吋(21千帕)至小於CO分壓之一半。在一個實施例中,本發明為一種如本文所述之方法,其中汽提氣汽化器及產物冷凝器為基本上恆壓操作。
將來自汽化器之塔頂氣流饋入冷凝器中。冷凝器可採用任何所需冷卻介質,且冷卻介質之類型並不尤其關鍵。在本發明之一個實施例中,冷凝器採用習知水冷卻。在範圍為高於冷凍(亦即,大於0℃)至約50℃、較佳約34℃至約45℃之操作溫度下水為較佳冷卻介質。
來自冷凝器之塔頂流宜分成氣體排氣流及氣體再循環流(進入汽化器)。在本發明之一個實施例中,自冷凝器進入汽化器之氣體再循環流包括小於5重量%醛產物。
使用含有大約50莫耳% H2之合成氣增加汽化器之總壓,因此經純化之CO為較佳的。若使用合成氣,則不必呈與饋入氫甲醯化單元之合成氣相同的H2/CO比,因為幾乎無此合成氣將存在於流23中再循環回至氫甲醯化系統。此含CO流55之較佳來源為已通過冷凝器以移除大部分可冷凝物(諸如醛產物及烯烴起始物質)之反應器排氣流,視情況與膜分離器或其他分離裝置結合以進一步使流富含CO。
在一個實施例中,本發明為一種連續法,其包括:(a)使CO、H2、烯烴以及催化劑(包括銠及有機亞磷酸
酯配位體,較佳單有機亞磷酸酯配位體)在反應器中在氫甲醯化反應條件下接觸以產生醛產物;(b)自反應器移除含液體產物流;(c)將含液體產物流傳送至汽化器;(d)將包括CO之氣相流引入汽化器中;(e)使汽化器中之含液體產物流分離產生含催化劑液體流及氣相流;以及(f)維持汽化器中之平均CO分壓大於16磅/平方吋(110千帕),較佳至少17磅/平方吋(117千帕)。
本發明方法相較於不維持所指示CO分壓之比較方法宜導致較低銠損耗且從而較低催化劑成本。在本發明之一個實施例中,藉由使CO、H2、烯烴以及催化劑(包括銠及有機亞磷酸酯配位體)在反應區中在氫甲醯化反應條件下接觸以產生粗產物流形式之醛產物來獲得粗產物流。在本發明之一個實施例中,所述方法進一步包括自汽化器移除包括過渡金屬-有機亞磷酸酯配位體錯合物催化劑及重質副產物之液體再循環催化劑流作為尾流。
在一個實施例中,本發明提供一種在液體再循環氫甲醯化方法中移除產物之手段,其包括:(a)將包括一或多種產物、一或多種重質副產物、過渡金屬-有機亞磷酸酯配位體錯合物催化劑、一或多種未經轉化之反應物以及一或多種惰性輕物質之粗產物流饋入汽提氣汽化器中;(b)自汽化器移除塔頂氣流,其包括一或多種產物、一或多種未經轉化之反應物、一或多種惰性輕物質以及一部分重質副產物;(c)將塔頂氣流饋入冷凝器中;(d)自冷凝器移除包括一或多種未經轉化之反應物及一或多種惰性輕物質之塔頂氣流;(e)
使一部分冷凝器塔頂氣流再循環至汽化器;以及(f)自汽化器移除包括催化劑及其餘部分之重質副產物之液體再循環催化劑流作為尾流,其中汽化器中之CO分壓維持在17磅/平方吋(117千帕)至50磅/平方吋(345千帕)之平均值。
在一個實施例中,本發明提供一種氫甲醯化、催化劑-產物分離以及控制催化劑再循環流中之重質副產物之一體化方法,所述方法包括:(a)使包括一或多種烯烴反應物及一或多種惰性輕物質之氫甲醯化饋料流與CO及氫氣在過渡金屬-有機亞磷酸酯配位體錯合物催化劑及視情況自由有機亞磷酸酯配位體存在下在足以製備粗液體氫甲醯化產物流之氫甲醯化條件下接觸,粗液體氫甲醯化產物流包括一或多種醛產物、一或多種重質副產物、過渡金屬-有機亞磷酸酯配位體錯合物催化劑、視情況自由有機亞磷酸酯配位體、一或多種未經轉化之烯烴反應物以及輕物質(包含一或多種惰性輕物質)、一氧化碳及視情況氫氣;(b)將粗液體氫甲醯化產物流饋入汽提氣汽化器中;(c)自汽提氣汽化器移除塔頂氣流,其包括一或多種醛產物、一或多種未經轉化之烯烴反應物、一或多種重質副產物之一部分以及輕物質(包含一或多種惰性輕物質)、一氧化碳及視情況氫氣;且將汽化器塔頂氣流饋入冷凝器中;(d)自冷凝器移除包括一或多種未經轉化之烯烴反應物及輕物質(包含一或多種惰性輕物質)、一氧化碳以及視情況氫氣之塔頂氣流;(e)使一部分冷凝器塔頂氣流再循環至汽化器;以及(f)自汽化器移除包括其餘部分之重質副產物、過渡金屬-配位體錯合物催化劑以及視情況自由有機
亞磷酸酯配位體之液體再循環催化劑流作為尾流,且使液體再循環催化劑流再循環至步驟(a),其中步驟(c)中冷凝器塔頂氣流中之CO分壓為17磅/平方吋(117千帕)至50磅/平方吋(345千帕)。
說明性非光學活性醛產物包含例如丙醛、正丁醛、異丁醛、正戊醛、2-甲基1-丁醛、己醛、羥基己醛、2-甲基1-庚醛、壬醛、2-甲基-1-辛醛、癸醛、己二醛、2-甲基戊二醛、2-甲基己二醛、3-羥基丙醛、6-羥基己醛、烯醛(例如,2-戊烯醛、3-戊烯醛以及4-戊烯醛)、5-甲醯基戊酸烷基酯、2-甲基-1-壬醛、2-甲基1-癸醛、3-丙基-1-十一醛、十五醛、3-丙基-1-十六醛、二十醛、2-甲基-1-二十三醛、二十五醛、2-甲基-1-二十四醛、二十九醛、2-甲基-1-二十八醛、三十一醛、2-甲基-1-三十醛及其類似物。
說明性光學活性醛產物包含藉由本發明之不對稱氫甲醯化方法製備之(對映異構)醛化合物,例如S-2-(對異丁基苯基)-丙醛、S-2-(6-甲氧基-2-萘基)丙醛、S-2-(3-苯甲醯基苯基)-丙醛、S-2-(3-氟-4-苯基)苯丙醛以及S-2-(2-甲基乙醛)-5-苯甲醯基噻吩。
除非另外指示,否則以下實例中之所有份數及百分比均按重量計。除非另外指示,否則以下實例中之壓力給定為絕對壓力。除非另外指示,否則諸如催化劑溶液製備之所有操控均在惰性氛圍下進行。比較實驗不為本發明之實施
例。
藉由空氣/乙炔原子吸收(AA)或藉由感應耦合電漿(ICP)進行銠分析。已發現空氣/乙炔AA將不可靠地定量叢集銠,但儘管如此,此方法仍可用於指示「銠損耗」(例如,銠叢集或以其他方式不再在溶液中)。咸信ICP偵測樣品中之所有銠而不管因電漿高溫所致之形式,因此如藉由ICP所量測之銠下降指示一部分銠不再在溶液中。顏色變化(以無色或淡黃色溶液為起始物)、暗化或形成黑色膜或固體亦指示催化劑降解。
藉由氣相層析(GC)量測氣體組成(莫耳%),且隨後使用拉烏爾定律基於總壓計算分壓。應理解,汽提氣典型地包含除了所列組分之外的微量組分(例如0.5磅/平方吋)。
除非另外指示,否則實例及比較實驗在裝備有用於準確控制溫度及氣流的構件之90毫升流通費舍爾波特反應器(Fisher Porter reactor)中進行。藉由聯機GC分析反應器廢氣以測定分壓。經由反應器底部之噴佈器藉由連續氣流實現流通反應器中之混合。此反應器設計詳細描述於US 5,731,472中,其教示內容以引用的方式併入。
在典型實驗中,在氮氣下在反應溫度下將溶劑(TEXANOL或四乙二醇二甲醚)添加至組裝反應器中。隨後添加配位體A於甲苯中之儲備溶液,隨後由二羰基-乙醯丙酮根-銠製備之銠於甲苯中之儲備溶液。使1:1 CO:H2混合物在110℃下在165磅/平方吋(1138千帕)下通過反應器中之液體持續30-60分鐘,形成銠-配位體錯合物。隨後進行反應器分壓之調整;隨後將反應器密封且不經攪拌維持在溫度下。
藉由在反應器中在110℃下在氮氣(總壓為165磅/平方吋;(1138千帕))下在無合成氣或烯烴之情況下加熱包括百萬分之300銠及10莫耳當量配位體A之Texanol溶液在一般程序之設備中進行實驗來模擬「汽化器條件」。此等條件將在後續實驗中用作典型汽化器之模型。結果如下:
在此等條件下,催化劑快速分解,開始為澄清黃色溶液隨後改變為具有深色沈澱物之深色溶液,且實質性損耗所溶解之銠。
遵循一般程序,將百萬分之525銠及6當量配位體A於四乙二醇二甲醚中之溶液饋入個別反應器中。在與1:1 CO:H2氣體接觸30-60分鐘之後,將比較實驗B(C.E.B)用氮氣沖洗約60分鐘,隨後在165磅/平方吋(1138千帕)下密封。其餘反應器用CO沖洗約60分鐘且隨後在表1中所示之壓力下密封。7天後,取樣反應器以測定銠損耗,且結果概述於表1中。
比較實驗B展示藉由原子吸收光譜法(AA)及目測外觀(銠黑色)之實質性銠損耗。實例1-3展示實質性改良。雖然分析結果展示幾乎無損耗,目測外觀展示催化劑降解開始但速率相較於比較實驗大大降低。
遵循一般程序,將百萬分之300銠及10當量配位體A於四乙二醇二甲醚中之溶液饋入個別反應器中。在與1:1 CO:H2氣體接觸30-60分鐘之後,將比較實驗D(C.E.D)用氮氣沖洗約60分鐘,隨後在165磅/平方吋(1138千帕)下密封。其餘反應器用CO沖洗約60分鐘且隨後在表2中所示之壓力下密封。6天後,取樣反應器以測定銠損耗,且結果概述於表2中。
表1及表2中之結果展示銠損耗藉由維持CO氛圍顯著降低,且更特定言之,大於16磅/平方吋(110千帕)
之壓力提供所要結果。
遵循一般程序,將百萬分之300銠及10當量配位體A於四乙二醇二甲醚中之溶液在110℃下饋入個別反應器中。在與1:1 CO:H2氣體接觸30-60分鐘之後,將比較實驗E(C.E.E)用氮氣沖洗約60分鐘,隨後在165磅/平方吋(1138千帕)下密封。實例9用CO沖洗約60分鐘,且隨後在表3中所指示之壓力下密封。其餘反應器用CO與H2之混合物沖洗約60分鐘,且隨後在表3中所示之氛圍下密封。取樣反應器以測定銠損耗,且結果概述於表3中。
表3中之結果展示:
1)在CO不存在下觀測到嚴重催化劑分解。
2)1:1合成氣之氛圍相對於CO耗盡環境提供一些益處。然而,富含CO或幾乎純CO氛圍為較佳的。
3)1:1合成氣之氛圍相對於1:2 CO:H2氛圍為有益的。
4)在H2不存在下CO提供最佳效能。
因為銠催化劑之氫甲醯化可展現對[H2]之高階反應,在富含氫氣氛圍下運行將明顯有益於最大化烯烴轉化;然而,此並不為催化劑之最佳環境。維持富含一氧化碳之氛圍減緩銠叢集之事實強調使催化劑在汽提氣汽化器(亦即,流動氣體用於增強產物移除之汽化器)中穩定之能力。
在裝備有用於準確控制一氧化碳、氫氣以及氮氣之質量流量計以及用於準確控制反應器溫度之電加熱器的100毫升攪拌不鏽鋼高壓釜中進行測試。各高壓釜饋入有百萬分之185銠及10當量配位體A於50毫升甲苯中之溶液,且用115磅/平方吋之1:1合成氣沖洗三次。反應器隨後用1:1合成氣加壓至115磅/平方吋,且在攪拌下加熱至85℃後持續30分鐘,之後關斷熱量,且使溶液冷卻至室溫。將反應器排氣且用如表4中所指示之不同氣體混合物加壓至599.5-607.5磅/平方吋(4133.4-4188.6千帕)。溶液在攪拌下加熱至110℃後持續4天,之後將反應器冷卻且排氣;藉由GC分析排氣流以確認氣體組成。隨後將反應器拆卸;藉由ICP量測各溶液之銠濃度且注意各溶液之外觀。結果概述於表4中。
表4之結果進一步確立一氧化碳之益處及氫氣之不利影響。
圖1說明一種氫甲醯化方法,其具有:隨後自氫甲醯化產物流分離醛產物及催化劑;使液體催化劑流再循環回至氫甲醯化反應區;以及將含CO流添加至汽提氣中(管線55)。使用可購自美國馬薩諸塞州劍橋之艾斯本技術有限公司(ASPEN Technology,Inc.of Cambridge,Massachusetts,USA)之ASPEN Plus軟體來建模圖1之汽化器製程。在反應區與汽化器之間不採用分離容器。將來自汽化器冷凝器之排氣塔頂
經由鼓風機400經由管線24轉移回至汽化器,且經由管線55添加額外CO(95%純度)。模型假定C8烯烴與一氧化碳及氫氣在配位體A之銠-有機亞磷酸酯配位體錯合物催化劑存在下之氫甲醯化。如表4中所示,ASPEN模型為與汽化器操作相關之圖1流提供質量平衡。在穩定狀態下,汽化器200條件為如下:總壓為27.6磅/平方吋(190千帕),CO分壓為24.9磅/平方吋(172千帕),且汽化區溫度為115℃。汽化器冷凝器300出口製程溫度為40℃。汽提氣流20(流24與流55之總和)在31.9磅/平方吋(220千帕)及58℃下,其中CO分壓為28.9磅/平方吋(199千帕)。
表5展示在添加極小流55作為CO流之情況下,相較於總生產率26,CO分壓易於控制在>24磅/平方吋(165
千帕)而不對上游氫甲醯化反應有任何影響,亦即,可忽略量之CO經由流23自汽化器轉移至反應器。在流55不存在下,汽化器CO分壓將小於5磅/平方吋(34千帕),如教示於US 8,404,903中。表4亦展示對於模型重物質而言在其形成速率下移除二聚物及三聚物保持其在反應區中之濃度隨時間推移為恆定。其他烯烴同樣可獲得類似結果,主要不同之處在於汽化器總壓及汽化器溫度。
在由三個串聯連接之1公升不鏽鋼攪拌槽反應器組成之液體再循環氫甲醯化系統中進行測試。所述系統裝備有質量流量計用於準確控制一氧化碳、氫氣以及氮氣,以及電加熱器用於準確控制反應器溫度。C8烯烴混合物以受控制之速率饋入第一反應器中。將一部分液體反應溶液自最終反應器連續饋入閃蒸容器中,在閃蒸容器中發生氣體與液體之初始分離。用氮氣吹掃閃蒸容器,且將液體流出物過濾且饋入經加熱之垂直安裝管(汽化器)的頂部上之分配器盤中。液體流出物在流動氣流(汽提氣)下流下汽化器內之管表面。使用壓縮機上游之控制閥控制汽提氣之流動速率,且使用壓縮機下游之流量計精確量測流量;藉由GC分析測定汽提氣之莫耳百分比組成。將來自汽化器之流出物流傳送至定位於汽化器底部之氣-液分離器中,其中汽化醛與液體反應溶液之非揮發性組分分離。將汽化醛產物冷凝且收集於產物接收器中;將包括殘餘醛、醛重物質以及經濃縮之催化劑的非揮發
性組分泵送回至系列中第一反應器。揮發性非可冷凝氣體使用壓縮機再循環且用於汽提氣。
將連續3公升氫甲醯化系統最初饋入銠及配位體A於混合C8烯烴及甲苯中之溶液;在連續操作過程期間,產物醛及醛重質縮合產物開始充當反應溶劑(例如,大約兩天後)。反應參數確立為如表6中概述:
汽提氣組成為變化的,且使用ICP在整個系統中量測對銠損耗的影響。結果概述於表7中。
表7中之結果展示;
●在汽提氣主要為氮氣(比較實驗J)時發生最高銠損耗
●由合成氣組成之汽提氣(比較實驗I)相對於氮氣汽提氣(比較實驗J)降低銠損耗速率。
●在汽提氣主要為CO(實例16及17)時達成最佳結果。
●再次展現氫氣之不利影響(比較實驗I相較於實例16及17)。
1‧‧‧烯烴饋料流
2‧‧‧氣態饋料流
20‧‧‧流
21‧‧‧粗氫甲醯化產物流
22‧‧‧塔頂氣流
23‧‧‧再循環催化劑流
24‧‧‧再循環流/管線
25‧‧‧流/管線
26‧‧‧液體產物流
27‧‧‧反應器排氣流
28‧‧‧冷凝器塔頂氣流
55‧‧‧流/管線
100‧‧‧氫甲醯化反應器系統
200‧‧‧汽提氣汽化器單元/汽提氣汽化器
300‧‧‧冷凝器
400‧‧‧鼓風機
Claims (12)
- 一種連續氫甲醯化方法,其包括:(a)自反應器移除反應流體;(b)將所述反應流體傳送至汽化器;(c)使所述汽化器中之所述反應流體分離以產生含催化劑液體流及氣相流;以及(d)維持所述汽化器中之平均CO分壓大於16磅/平方吋(110千帕)。
- 一種連續氫甲醯化方法,其包括:(a)將包括一或多種產物、一或多種重質副產物、過渡金屬-有機亞磷酸酯配位體錯合物催化劑、一或多種未經轉化之反應物以及一或多種惰性輕物質之反應流體饋入汽化器中;(b)自所述汽化器移除包括一或多種產物、一或多種未經轉化之反應物、一或多種惰性輕物質以及一部分所述重質副產物之塔頂氣流,且將所述塔頂氣流饋入冷凝器中;(c)自所述冷凝器移除包括一或多種未經轉化之反應物及一或多種惰性輕物質之冷凝器塔頂氣流;(d)將至少一部分所述冷凝器塔頂氣流再循環至所述汽化器中;(e)除所述冷凝器塔頂氣流之外,還將包括CO之氣流引入所述汽化器中,使得所述汽化器中之平均CO分壓大於16磅/平方吋(110千帕);以及(f)自所述汽化器移除作為尾流的液體再循環催化劑流,所述催化劑流包括所述過渡金屬-有機亞磷酸酯配位 體錯合物催化劑及其餘部分之所述重質副產物。
- 如申請專利範圍第1或2項的連續氫甲醯化方法,其中所述汽化器中之所述平均CO分壓為至少20磅/平方吋(138千帕)。
- 如申請專利範圍第1或2項所述的連續氫甲醯化方法,其中所述汽化器中之所述平均CO分壓為至少25磅/平方吋(172千帕)。
- 如申請專利範圍第1或2項所述的連續氫甲醯化方法,其中所述汽化器之製程出口溫度為至少80℃。
- 如申請專利範圍第2項所述的連續氫甲醯化方法,其中所述產物包括醛。
- 如申請專利範圍第1或2項所述的連續氫甲醯化方法,其中在所述汽化器中,H2分壓為0.1磅/平方吋(0.7千帕)至小於所述CO分壓之一半。
- 如申請專利範圍第1或2項所述的連續氫甲醯化方法,其中在所述汽化器中,所述H2分壓為0.1磅/平方吋(0.7千帕)至不超過所述CO分壓之10%。
- 如申請專利範圍第1或2項所述的連續氫甲醯化方法,其 中所述反應流體是藉由使CO、H2、烯烴以及包括銠及有機亞磷酸酯配位體之催化劑在反應區中在氫甲醯化反應條件下接觸來獲得,以產生存在於所述反應流體中之醛產物。
- 如申請專利範圍第1或2項所述的連續氫甲醯化方法,其中所述催化劑為過渡金屬-有機亞磷酸酯配位體錯合物催化劑,其中所述配位體包括有機單亞磷酸酯配位體。
- 如申請專利範圍第1或2項所述的連續氫甲醯化方法,其進一步包括維持所述汽化器中之平均H2分壓小於2磅/平方吋(14千帕)。
- 如申請專利範圍第1或2項所述的連續氫甲醯化方法,其進一步包括在將所述反應流體傳送至所述汽化器之前將所述反應流體傳送至閃蒸容器。
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201462087572P | 2014-12-04 | 2014-12-04 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201620863A TW201620863A (zh) | 2016-06-16 |
TWI586644B true TWI586644B (zh) | 2017-06-11 |
Family
ID=54705909
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW104139257A TWI586644B (zh) | 2014-12-04 | 2015-11-25 | 氫甲醯化方法 |
Country Status (13)
Country | Link |
---|---|
US (1) | US10023516B2 (zh) |
EP (1) | EP3230248B1 (zh) |
JP (2) | JP7128622B2 (zh) |
KR (1) | KR102507703B1 (zh) |
CN (1) | CN107001218B (zh) |
BR (1) | BR112017011447B1 (zh) |
CA (1) | CA2969527C (zh) |
MX (1) | MX2017006792A (zh) |
MY (1) | MY184826A (zh) |
PL (1) | PL3230248T3 (zh) |
RU (1) | RU2699368C2 (zh) |
TW (1) | TWI586644B (zh) |
WO (1) | WO2016089602A1 (zh) |
Families Citing this family (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2719438C2 (ru) | 2015-11-10 | 2020-04-17 | Дау Текнолоджи Инвестментс Ллк | Способ получения альдегидов |
BR112018016320B1 (pt) | 2016-02-11 | 2022-07-12 | Dow Technology Investments Llc | Processo para converter olefinas em álcoois, éteres ou combinações dos mesmos |
CN107469860B (zh) * | 2017-08-22 | 2020-05-19 | 中国海洋石油集团有限公司 | 一种提高铑/双亚膦酸酯催化剂稳定性的方法 |
TWI793216B (zh) | 2017-12-07 | 2023-02-21 | 美商陶氏科技投資公司 | 氫甲醯化方法 |
EP3887348B1 (en) * | 2018-11-29 | 2022-11-02 | Dow Technology Investments LLC | Hydroformylation process |
GB201907659D0 (en) | 2019-05-30 | 2019-07-17 | Johnson Matthey Davy Technologies Ltd | Process |
WO2021247177A1 (en) | 2020-06-05 | 2021-12-09 | SCION Holdings LLC | Alcohols production |
EP4161696A1 (en) * | 2020-06-05 | 2023-04-12 | Scion Holdings LLC | Branched alcohols |
WO2021247516A1 (en) | 2020-06-05 | 2021-12-09 | SCION Holdings LLC | Branched alcohols |
GB202012930D0 (en) | 2020-08-19 | 2020-09-30 | Johnson Matthey Davy Technologies Ltd | Process for hydroformylation with removal of dissolved hydrogen |
EP4229066A1 (en) | 2020-10-13 | 2023-08-23 | Dow Silicones Corporation | Preparation of organosilicon compounds with aldehyde functionality |
CN112403401B (zh) * | 2020-11-06 | 2022-06-21 | 中国海洋石油集团有限公司 | 一种烯烃氢甲酰化制醛中醛和催化剂分离的装置和方法 |
CA3201268A1 (en) | 2020-12-14 | 2022-06-23 | Michael A. Brammer | Processes to improve catalytic metal accountability in hydroformylation processes |
US20220194886A1 (en) | 2020-12-17 | 2022-06-23 | SCION Holdings LLC | Branched Products |
WO2023060155A1 (en) | 2021-10-06 | 2023-04-13 | Dow Global Technologies Llc | Preparation of propylimine-functional organosilicon compounds and primary aminopropyl-functional organosilicon compounds |
CN118019747A (zh) | 2021-10-06 | 2024-05-10 | 陶氏环球技术有限责任公司 | 丙基亚胺官能化有机硅化合物和伯氨基丙基官能化有机硅化合物的制备 |
KR20240074835A (ko) | 2021-10-06 | 2024-05-28 | 다우 글로벌 테크놀로지스 엘엘씨 | 아미노-작용성 유기규소 화합물의 제조 |
EP4430218A1 (en) | 2021-11-11 | 2024-09-18 | Dow Technology Investments LLC | Processes for recovering rhodium from hydroformylation processes |
KR20240101860A (ko) | 2021-11-22 | 2024-07-02 | 다우 글로벌 테크놀로지스 엘엘씨 | 카르비놀 관능기를 갖는 유기규소 화합물의 제조 |
EP4448171A1 (en) | 2021-12-16 | 2024-10-23 | Dow Technology Investments LLC | Transition metal complex hydroformylation catalyst precuror compositions comprising such compounds, and hydroformylation processes |
WO2023114579A1 (en) | 2021-12-16 | 2023-06-22 | Dow Technology Investments Llc | Compounds, transition metal complex hydroformylation catalyst precuror compositions comprising such compounds, and hydroformylation processes |
WO2023183682A1 (en) | 2022-03-21 | 2023-09-28 | Dow Global Technologies Llc | Preparation of organosilicon compounds with carboxy functionality |
WO2023201154A1 (en) | 2022-04-13 | 2023-10-19 | Dow Global Technologies Llc | Silicone - vinylester functional compounds and methods for their preparation and use in personal care compositions |
WO2023200684A1 (en) | 2022-04-13 | 2023-10-19 | Dow Silicones Corporation | Composition, urethane prepolymer, and related methods and uses |
WO2023201146A1 (en) | 2022-04-13 | 2023-10-19 | Dow Global Technologies Llc | Preparation of organosilicon compounds with vinylester functionality |
WO2023201138A1 (en) | 2022-04-13 | 2023-10-19 | Dow Global Technologies Llc | Preparation of polyether-functional organosilicon compounds |
CN114773172B (zh) * | 2022-06-20 | 2022-10-18 | 中海油天津化工研究设计院有限公司 | 一种烯烃氢甲酰化制醛工艺优化方法 |
GB202213997D0 (en) | 2022-09-26 | 2022-11-09 | Johnson Matthey Davy Technologies Ltd | Parallel zone hydroformylation reaction |
WO2024123510A1 (en) | 2022-12-06 | 2024-06-13 | Dow Technology Investments Llc | Process of controlling heavies in a recycle catalyst stream |
GB202303617D0 (en) | 2023-03-13 | 2023-04-26 | Johnson Matthey Davy Technologies Ltd | Method and apparatus for producing aldehyde |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4737588A (en) * | 1984-12-28 | 1988-04-12 | Union Carbide Corporation | Transition metal complex catalyzed reactions |
CN1346821A (zh) * | 2000-09-29 | 2002-05-01 | 奥克森诺奥勒芬化学股份有限公司 | 用于烯烃醛化的铑催化剂的稳定化方法 |
CN102143933A (zh) * | 2008-07-03 | 2011-08-03 | 陶氏技术投资有限公司 | 控制再循环催化剂料流中重物质的方法 |
Family Cites Families (47)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3415906A (en) | 1964-05-29 | 1968-12-10 | Hooker Chemical Corp | Phosphite phospholane and phosphorinane compounds |
US3527809A (en) | 1967-08-03 | 1970-09-08 | Union Carbide Corp | Hydroformylation process |
US4148830A (en) | 1975-03-07 | 1979-04-10 | Union Carbide Corporation | Hydroformylation of olefins |
DE2646792C2 (de) | 1975-10-23 | 1985-05-09 | Mitsubishi Petrochemical Co., Ltd., Tokio/Tokyo | Verfahren zur Herstellung einer α-(arylsubstituierten)-Propionsäure und/oder eines Esters derselben |
US4247486A (en) | 1977-03-11 | 1981-01-27 | Union Carbide Corporation | Cyclic hydroformylation process |
US4518809A (en) | 1981-06-11 | 1985-05-21 | Monsanto Company | Preparation of pentyl nonanols |
US4528403A (en) | 1982-10-21 | 1985-07-09 | Mitsubishi Chemical Industries Ltd. | Hydroformylation process for preparation of aldehydes and alcohols |
GB8334359D0 (en) | 1983-12-23 | 1984-02-01 | Davy Mckee Ltd | Process |
ZA851189B (en) * | 1984-02-17 | 1985-09-25 | Union Carbide Corp | Transition metal complex catalyzed reactions |
US4599206A (en) | 1984-02-17 | 1986-07-08 | Union Carbide Corporation | Transition metal complex catalyzed reactions |
US5110990A (en) | 1984-03-30 | 1992-05-05 | Union Carbide Chemicals & Plastics Technology Corporation | Process for recovery of phosphorus ligand from vaporized aldehyde |
US4567302A (en) | 1984-07-20 | 1986-01-28 | Angus Chemical | Polymeric quaternary ammonium salts possessing antimicrobial activity and methods for preparation and use thereof |
US4748261A (en) | 1985-09-05 | 1988-05-31 | Union Carbide Corporation | Bis-phosphite compounds |
US4885401A (en) | 1985-09-05 | 1989-12-05 | Union Carbide Corporation | Bis-phosphite compounds |
US4668651A (en) | 1985-09-05 | 1987-05-26 | Union Carbide Corporation | Transition metal complex catalyzed processes |
US4774361A (en) | 1986-05-20 | 1988-09-27 | Union Carbide Corporation | Transition metal complex catalyzed reactions |
US4835299A (en) | 1987-03-31 | 1989-05-30 | Union Carbide Corporation | Process for purifying tertiary organophosphites |
US5113022A (en) | 1988-08-05 | 1992-05-12 | Union Carbide Chemicals & Plastics Technology Corporation | Ionic phosphites used in homogeneous transition metal catalyzed processes |
US5001274A (en) | 1989-06-23 | 1991-03-19 | Union Carbide Chemicals And Plastics Company Inc. | Hydroformylation process |
US5277532A (en) | 1989-07-31 | 1994-01-11 | Cefin S.P.A. | Mechanical acceleration device in can welding machines |
DE4026406A1 (de) | 1990-08-21 | 1992-02-27 | Basf Ag | Rhodiumhydroformylierungskatalysatoren mit bis-phosphit-liganden |
US5179055A (en) | 1990-09-24 | 1993-01-12 | New York University | Cationic rhodium bis(dioxaphosphorus heterocycle) complexes and their use in the branched product regioselective hydroformylation of olefins |
US5102505A (en) | 1990-11-09 | 1992-04-07 | Union Carbide Chemicals & Plastics Technology Corporation | Mixed aldehyde product separation by distillation |
TW213465B (zh) | 1991-06-11 | 1993-09-21 | Mitsubishi Chemicals Co Ltd | |
US5360938A (en) | 1991-08-21 | 1994-11-01 | Union Carbide Chemicals & Plastics Technology Corporation | Asymmetric syntheses |
DE4204808A1 (de) | 1992-02-18 | 1993-08-19 | Basf Ag | Verfahren zur herstellung von (omega)-formylalkancarbonsaeureestern |
US5312996A (en) | 1992-06-29 | 1994-05-17 | Union Carbide Chemicals & Plastics Technology Corporation | Hydroformylation process for producing 1,6-hexanedials |
US5364950A (en) | 1992-09-29 | 1994-11-15 | Union Carbide Chimicals & Plastics Technology Corporation | Process for stabilizing phosphite ligands in hydroformylation reaction mixtures |
FR2700535B1 (fr) | 1993-01-19 | 1995-04-14 | Hoechst France | Procédé continu de fabrication industrielle du diméthoxyéthanal. |
US5426238A (en) | 1993-06-10 | 1995-06-20 | Mitsubishi Kasei Corporation | Method for producing an aldehyde |
BE1008017A3 (nl) | 1994-01-06 | 1995-12-12 | Dsm Nv | Werkwijze voor de bereiding van 5-formylvaleriaanzure ester. |
US5756855A (en) | 1994-08-19 | 1998-05-26 | Union Carbide Chemicals & Plastics Technology Corporation | Stabilization of phosphite ligands in hydroformylation process |
US5648553A (en) | 1994-12-09 | 1997-07-15 | Mitsubishi Chemical Corporation | Method for producing aldehydes |
DE19530698A1 (de) | 1995-08-21 | 1997-02-27 | Basf Ag | Verfahren zur Aufarbeitung eines flüssigen Hydroformylierungsaustrags |
US5731472A (en) | 1995-12-06 | 1998-03-24 | Union Carbide Chemicals & Plastics Technology Corporation | Metal-ligand complex catalyzed processes |
US5728893A (en) | 1995-12-06 | 1998-03-17 | Union Carbide Chemicals & Plastics Technology Corporation | Process using multistaged reactors |
JP3812095B2 (ja) | 1997-10-28 | 2006-08-23 | 三菱化学株式会社 | アルデヒド類の製造方法及びこれに用いるビスホスファイト |
DE19913352A1 (de) | 1999-03-24 | 2000-09-28 | Basf Ag | Katalysator, umfassend einen Komplex eines Metalls der VIII. Nebengruppe auf Basis eines Phospinamiditliganden |
AU2003225156A1 (en) | 2002-04-24 | 2003-11-10 | Symyx Technologies, Inc. | Bridged bi-aromatic ligands, complexes, catalysts and processes for polymerizing and poymers therefrom |
PL209549B1 (pl) | 2004-08-02 | 2011-09-30 | Dow Technology Investments Llc | Sposób hydroformylowania |
CN101657407B (zh) | 2007-03-20 | 2014-02-12 | 陶氏技术投资有限公司 | 改善对产物同分异构体的控制的加氢甲酰基化方法 |
KR101060375B1 (ko) | 2007-05-29 | 2011-08-29 | 주식회사 엘지화학 | 하이드로포르밀화 방법 및 장치 |
KR101310552B1 (ko) | 2010-04-20 | 2013-09-23 | 주식회사 엘지화학 | 올레핀의 하이드로포르밀화에 의한 알데히드 제조 방법 |
KR101788892B1 (ko) | 2010-05-17 | 2017-11-15 | 다우 글로벌 테크놀로지스 엘엘씨 | 에틸렌의 선택적 중합 방법 및 그를 위한 촉매 |
CN102826972B (zh) | 2011-06-17 | 2015-05-13 | 中国石油化工股份有限公司 | 一种烯烃氢甲酰化反应制备醛的方法 |
ES2835807T3 (es) | 2011-12-20 | 2021-06-23 | Dow Global Technologies Llc | Interpolímeros de etileno/alfa-olefina/polieno no conjugado y procesos para formar los mismos |
DE102012223572A1 (de) | 2012-12-18 | 2014-06-18 | Evonik Industries Ag | Steuerung der Viskosität von Reaktionslösungen in Hydroformylierungverfahren |
-
2015
- 2015-11-08 MY MYPI2017000834A patent/MY184826A/en unknown
- 2015-11-18 MX MX2017006792A patent/MX2017006792A/es unknown
- 2015-11-18 RU RU2017121307A patent/RU2699368C2/ru active
- 2015-11-18 WO PCT/US2015/061332 patent/WO2016089602A1/en active Application Filing
- 2015-11-18 PL PL15801645T patent/PL3230248T3/pl unknown
- 2015-11-18 JP JP2017529301A patent/JP7128622B2/ja active Active
- 2015-11-18 BR BR112017011447-0A patent/BR112017011447B1/pt active IP Right Grant
- 2015-11-18 KR KR1020177016356A patent/KR102507703B1/ko active IP Right Grant
- 2015-11-18 US US15/522,137 patent/US10023516B2/en active Active
- 2015-11-18 CA CA2969527A patent/CA2969527C/en active Active
- 2015-11-18 EP EP15801645.1A patent/EP3230248B1/en active Active
- 2015-11-18 CN CN201580064234.5A patent/CN107001218B/zh active Active
- 2015-11-25 TW TW104139257A patent/TWI586644B/zh active
-
2020
- 2020-09-25 JP JP2020160278A patent/JP2021008477A/ja active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4737588A (en) * | 1984-12-28 | 1988-04-12 | Union Carbide Corporation | Transition metal complex catalyzed reactions |
CN1346821A (zh) * | 2000-09-29 | 2002-05-01 | 奥克森诺奥勒芬化学股份有限公司 | 用于烯烃醛化的铑催化剂的稳定化方法 |
CN102143933A (zh) * | 2008-07-03 | 2011-08-03 | 陶氏技术投资有限公司 | 控制再循环催化剂料流中重物质的方法 |
Also Published As
Publication number | Publication date |
---|---|
RU2699368C2 (ru) | 2019-09-05 |
JP7128622B2 (ja) | 2022-08-31 |
KR102507703B1 (ko) | 2023-03-09 |
CN107001218A (zh) | 2017-08-01 |
EP3230248B1 (en) | 2019-12-25 |
MX2017006792A (es) | 2017-09-08 |
KR20170093152A (ko) | 2017-08-14 |
JP2021008477A (ja) | 2021-01-28 |
CN107001218B (zh) | 2021-02-26 |
TW201620863A (zh) | 2016-06-16 |
EP3230248A1 (en) | 2017-10-18 |
BR112017011447B1 (pt) | 2020-12-15 |
RU2017121307A3 (zh) | 2019-02-01 |
US20170355656A1 (en) | 2017-12-14 |
BR112017011447A2 (pt) | 2018-02-27 |
CA2969527A1 (en) | 2016-06-09 |
MY184826A (en) | 2021-04-24 |
US10023516B2 (en) | 2018-07-17 |
WO2016089602A1 (en) | 2016-06-09 |
RU2017121307A (ru) | 2018-12-19 |
PL3230248T3 (pl) | 2020-05-18 |
JP2017537918A (ja) | 2017-12-21 |
CA2969527C (en) | 2023-08-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI586644B (zh) | 氫甲醯化方法 | |
US9174907B2 (en) | Hydroformylation process | |
US10478812B2 (en) | Methods to store transition metal organophosphorous ligand based catalysts | |
JP6885963B2 (ja) | オレフィンを、アルコール、エーテル、またはそれらの組み合わせに転化するためのプロセス | |
JP6174711B2 (ja) | ヒドロホルミル化方法 | |
KR102131204B1 (ko) | 촉매 제조 방법 | |
JP7547397B2 (ja) | 貴金属回収のためのヒドロホルミル化プロセスから溶液を調製するプロセス | |
CN114072231B (zh) | 从加氢甲酰化工艺制备溶液以用于贵金属回收的工艺 | |
TW201918564A (zh) | 自氫甲醯化方法回收銠之方法 |