CN107001218B - 氢甲酰化方法 - Google Patents

氢甲酰化方法 Download PDF

Info

Publication number
CN107001218B
CN107001218B CN201580064234.5A CN201580064234A CN107001218B CN 107001218 B CN107001218 B CN 107001218B CN 201580064234 A CN201580064234 A CN 201580064234A CN 107001218 B CN107001218 B CN 107001218B
Authority
CN
China
Prior art keywords
evaporator
stream
catalyst
partial pressure
hydroformylation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201580064234.5A
Other languages
English (en)
Other versions
CN107001218A (zh
Inventor
M·A·布莱默
G·R·菲利普斯
T·C·埃森施密特
I·B·考克斯
R·亨特尔利
M·J·班布里奇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dow Technology Investments LLC
Original Assignee
Dow Technology Investments LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dow Technology Investments LLC filed Critical Dow Technology Investments LLC
Publication of CN107001218A publication Critical patent/CN107001218A/zh
Application granted granted Critical
Publication of CN107001218B publication Critical patent/CN107001218B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/49Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with carbon monoxide
    • C07C45/50Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with carbon monoxide by oxo-reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1845Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing phosphorus
    • B01J31/185Phosphites ((RO)3P), their isomeric phosphonates (R(RO)2P=O) and RO-substitution derivatives thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/78Separation; Purification; Stabilisation; Use of additives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C47/00Compounds having —CHO groups
    • C07C47/02Saturated compounds having —CHO groups bound to acyclic carbon atoms or to hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00002Chemical plants
    • B01J2219/00027Process aspects
    • B01J2219/00033Continuous processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/30Addition reactions at carbon centres, i.e. to either C-C or C-X multiple bonds
    • B01J2231/32Addition reactions to C=C or C-C triple bonds
    • B01J2231/321Hydroformylation, metalformylation, carbonylation or hydroaminomethylation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/822Rhodium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Abstract

通过向汽提气体蒸发器添加CO来改善使用包含有机亚磷酸酯配体的氢甲酰化催化剂时的催化金属损失。

Description

氢甲酰化方法
背景技术
本发明涉及一种氢甲酰化方法。更确切地说,其涉及这样一种方法,其中催化剂再循环流中重物质的量受到控制。
众所周知,可以通过在金属-有机磷配体络合物催化剂存在下,使烯烃与一氧化碳和氢气反应产生醛,并且优选的方法包括连续氢甲酰化和再循环含有金属-有机磷配体络合物催化剂的催化剂溶液,其中金属选自第8族、第9族或第10族。铑是优选的第9族金属。US4,148,830、US 4,717,775以及US 4,769,498披露了此方法的实例。所得醛可以用于产生许多产物,包括醇、胺以及酸。出于从催化剂中分离产物的目的,常见的做法是在反应区之后使用蒸发器。
众所周知,包含铑和有机亚磷酸酯配体的氢甲酰化催化剂具有极高反应速率;参见《铑催化的氢甲酰化(Rhodium Catalyzed Hydroformylation)》,van Leeuwen,Claver,Kluwer Academic Pub.(2000)。所述催化剂具有工业效用,因为其可以用于提高生产速率,或用于使内部烯烃和/或分支的内部烯烃有效地氢甲酰化,所述烯烃的反应比线性α烯烃慢。然而,例如还从US 4,774,361得知,在一些条件下,这些催化剂在液体再循环氢甲酰化方法中损失铑。因为铑十分昂贵,所以铑的连续损失会大大提高催化剂成本。
尽管铑损失的确切起因还不明确,但在US 4,774,361中和其它地方已经假设:所述损失是由典型产物分离步骤的低一氧化碳(CO)浓度和高温环境所加剧。US 6,500,991描述一种通过在移出产物之后冷却浓缩的催化剂,并随后将CO添加到浓缩流中来减缓有机亚磷酸酯推动的方法中铑损失的手段。US 6,500,991还描述在分离步骤之前将CO添加到减压/闪蒸容器中。对于任一选择方案,分离区中的总压力教示为小于或等于1巴。因此,US 6,500,991的方法尝试在分离区前后使催化剂稳定化,而不直接处理在分离步骤的严苛环境期间可能出现的损失。
US 8,404,903描述一种在超过大气压下同时使用相对中等温度移出醛产物的手段。然而,除改变分离区的冷凝器温度以外,所述方法未提供控制CO含量的手段。此控制手段限于CO分压的狭窄范围内并且需要昂贵的制冷单元来调节如此大流量的气体。在US 8,404,903中描述的最大总压力(100psia)和CO摩尔百分比(16%)下,16psia的最大CO分压是可能的,尽管处于此高压下,即便是移出具有相对挥发性的C5醛,分离区生产率仍低得难以接受。这是由于以下事实:需要蒸发器温度和再循环气体流量的可接受平衡来达成可接受的产物回收率和铑损失速率。US 8,404,903提到,再循环气体中CO的存在应该有益于亚磷酸酯配体的稳定性,但未提到减缓或防止铑损失。
鉴于先前技术的不足,仍需要一种从铑-有机亚磷酸酯氢甲酰化催化剂中分离高沸点醛同时减少铑损失的手段。
发明内容
本发明的方法是这样一种连续氢甲酰化方法,其包含:(a)从反应器中移出粗产物;(b)将粗产物传送到蒸发器;(c)在蒸发器中分离粗产物产生含有催化剂的液体流和气相流;以及(d)将蒸发器中的平均CO分压维持在大于16psia(110kPa)。
在一个实施例中,所述方法包含:
(a)将粗产物流馈入蒸发器中,所述粗产物流包含:一种或多种产物、一种或多种重副产物、过渡金属-有机亚磷酸酯配体络合物催化剂、一种或多种未转化的反应物以及一种或多种惰性轻物质;
(b)从蒸发器中移出顶部气体流,所述顶部气体流包含:一种或多种产物、一种或多种未转化的反应物、一种或多种惰性轻物质以及重副产物的一部分,并且将所述顶部气体流馈入冷凝器中;
(c)从冷凝器中移出冷凝器顶部气体流,所述冷凝器顶部气体流包含:一种或多种未转化的反应物和一种或多种惰性轻物质;
(d)将所述冷凝器顶部气体流的至少一部分再循环到蒸发器;
(e)将除冷凝器顶部气体流之外的包含CO的气体流引入蒸发器中,以使蒸发器中的平均CO分压大于16psia(110kPa);以及
(f)从蒸发器中移出作为尾料流的液体再循环催化剂流,所述液体再循环催化剂流包含:过渡金属-有机亚磷酸酯配体络合物催化剂和重副产物的其余部分。
通常避免超大气压力作为用于蒸发C5和更高碳数醛的工艺条件。因此,出人意料的是,在蒸发器的严苛、超大气压力环境中提高CO分压使铑-有机亚磷酸酯催化剂稳定,同时允许在中等温度下移出所述高沸点醛。
附图说明
图1是本发明方法的一个实施例的示意性流程图。
具体实施方式
氢甲酰化方法包含:在足以形成至少一种醛产物的氢甲酰化条件下,在催化剂(包含过渡金属和可水解配体作为组分)存在下,使CO、H2以及至少一种烯烃接触。任选的方法组分包括胺和/或水。
对元素周期表和其中不同族的所有参考都是对公布于《化学和物理的CRC手册(CRC Handbook of Chemistry and Physics)》,第72版(1991-1992)CRC出版社(CRCPress),第I-11页中的版本的参考。
除非相反陈述或上下文暗示,否则所有份数和百分比都以重量计,并且所有测试方法都是截至本申请的申请日期的现行方法。出于美国专利实践的目的,任何所参考的专利、专利申请或公开的内容都以全文引用的方式并入(或其等效美国版本如此以引用的方式并入),尤其在所属领域中的定义(在不会与本发明具体提供的任何定义不一致的程度上)和常识的披露方面。
如本文所用,“一种(a/an)”、“所述”、“至少一种”和“一种或多种”可互换使用。术语“包含”、“包括”和其变化形式在这些术语在说明书和权利要求书中出现时不具有限制含义。因此,举例来说,包括“一种”疏水性聚合物的粒子的水性组合物可以解释为意指组合物包括“一种或多种”疏水性聚合物的粒子。
另外,在本文中,通过端点对数值范围的叙述包括所述范围内所包含的所有数字(例如,1到5包括1、1.5、2、2.75、3、3.80、4、5等)。出于本发明的目的,应理解,与所属领域的一般技术人员将理解的一致,数值范围意图包括并且支持所述范围内所包括的所有可能的子范围。举例来说,范围1到100意图表达1.01到100、1到99.99、1.01到99.99、40到60、1到55等。另外,在本文中,对数值范围和/或数值的叙述(包括权利要求书中的此类叙述)可以理解为包括术语“约”。在所述情况下,术语“约”是指与本文所列举的数值范围和/或数值大体上相同的数值范围和/或数值。
如本文所用,术语“ppm”和“ppmw”意指以重量计百万分之一。
出于本发明的目的,涵盖术语“烃”以包括所有具有至少一个氢原子和一个碳原子的可容许化合物。所述可容许化合物还可以具有一个或多个杂原子。在一广泛方面,可容许烃包括可以被取代或未被取代的非环状(具有或不具有杂原子)和环状、分支和未分支、碳环和杂环、芳香族和非芳香族有机化合物。
如本文所用,除非另外指示,否则涵盖术语“取代的”以包括有机化合物的所有可容许取代基。在一广泛方面,可容许取代基包括有机化合物的非环状和环状、分支和未分支、碳环和杂环、芳香族和非芳香族取代基。说明性取代基包括例如烷基、烷氧基、芳基、芳氧基、羟烷基、氨基烷基(其中碳的数目可以在1到20或更大、优选地1到12范围内)以及羟基、卤基以及氨基。对于适当的有机化合物,可容许取代基可以是一个或多个并且可以相同或不同。本发明并不意图以任何方式受有机化合物的可容许取代基的限制。
术语“反应流体”、“反应介质”以及“催化剂溶液”在本文中可互换使用,并且可以包括(但不限于)包含以下的混合物:(a)金属-有机磷配体络合物催化剂,(b)游离有机磷配体,(c)在反应中形成的醛产物,(d)未反应的反应物,(e)所述金属-有机磷配体络合物催化剂和所述游离有机磷配体的溶剂,以及任选地(f)在反应中形成的一种或多种磷酸性化合物(其可以是均质或异质的,并且这些化合物包括粘着于工艺设备表面的那些化合物)。反应流体可以涵盖(但不限于)(a)反应区中的流体,(b)进入分离区途中的流体流,(c)分离区中的流体,(d)再循环流,(e)从反应区或分离区排出的流体,(f)用缓冲水溶液处理的排出流体,(g)回到反应区或分离区的经过处理的流体,(h)外部冷却器中的流体,以及(i)配体分解产物和其盐。
“可水解磷配体”是含有至少一个P-Z键的三价磷配体,其中Z是氧、氮、氯、氟或溴。实例包括(但不限于)亚磷酸酯、膦基-亚磷酸酯、双亚磷酸酯、亚膦酸二酯、双亚膦酸二酯、次膦酸酯、氨基磷酸酯、膦基-氨基磷酸酯、双氨基磷酸酯、氟亚磷酸酯等。配体可以包括螯合结构和/或可以含有多个P-Z部分(如聚亚磷酸酯、聚氨基磷酸酯等)和混合P-Z部分(如亚磷酸酯-氨基磷酸酯、氟亚磷酸酯-亚磷酸酯等)。
如本文所用,术语“络合物”意指通过使一个或多个电子富集分子或原子(即,配体)与一个或多个电子稀少分子或原子(即,过渡金属)联合所形成的配位化合物。举例来说,本文中可使用的有机磷配体拥有具有一个未共用电子对的一个磷(III)施体原子,其能够与金属形成配位共价键。本文中可使用的聚有机磷配体拥有各自具有一个未共用电子对的两个或更多个磷(III)施体原子,其中的每一个能够独立地或可能共同(例如,经由螯合)与过渡金属形成配位共价键。一氧化碳也可以存在并且与过渡金属络合。络合物催化剂的最终组合物还可以含有额外配体,如上文所描述的例如氢、单烯烃或满足金属的配位位点或核电荷的阴离子。
出于本发明的目的,术语“重副产物”与“重物质”可互换使用,并且是指氢甲酰化方法液体副产物,其标准沸点比所述方法的所需产物的标准沸点高至少25℃。举例来说,在氢甲酰化反应中,当反应物包含一种或多种烯烃时,所需产物常包含一种或多种异构醛以及重物质。
出于本发明的目的,术语“进料:尾料”与“进料:尾料比”可互换使用,并且是指进入分离区的反应流体的质量相对于离开分离区底部并且回到第一氢甲酰化反应器的浓缩流出物(蒸发器尾料)的质量。“进料:尾料”指示从反应流体中移出挥发物(如醛产物)的速率。举例来说,“进料:尾料比”是2意指进入分离区的反应流体的重量比回到第一反应器的浓缩流出物的重量大两倍。
出于本发明的目的,术语“气液分离罐(knock-out pot)”、“气液分离容器”和“闪蒸容器”可互换使用,并且是指反应区与蒸发器之间的低压区段。闪蒸容器使反应流体快速脱气并且有助于蒸发器分压的控制。通常使所述容器维持在远低于在氢甲酰化反应器中形成的压力和温度的压力和温度下。
出于本发明的目的,术语“轻物质”是指在大气压下标准沸点是25℃或更低的材料。如本文所用,术语“惰性轻物质”或“轻惰性物质”是指在所述方法中基本上不起反应的轻物质。“反应性轻物质”应指在所述方法中以显著程度反应的轻物质。举例来说,在氢甲酰化方法中,反应性轻物质包括一氧化碳和氢;而惰性轻物质包括烷烃(如反应的烯烃进料中存在的烷烃)和其它惰性气体(如氮气)。
“基本上恒压地”和类似术语意指在基本上恒定的压力下或在1巴(100kPa)或更低、优选地0.5巴(50kPa)或更低的压力差内。换句话说,在本发明的一个实施例中,整个产物相汽提器和产物冷凝器中的最大压力差是1巴(100kPa)或更低、优选地0.5巴(50kPa)或更低。
术语“蒸发器”、“汽提气体蒸发器”、“汽提器”以及“产物相汽提器”在本文中可互换使用,并且是指使用汽提气体来帮助从产物中分离含产物流的组分的分离装置。
如本文所用,术语“平均CO分压”意指在稳态操作下,在至少10分钟时间段内于蒸发器的蒸气出口处测定的平均一氧化碳分压。熟知的是使用气相色谱法(GC)测定气体组成中CO的摩尔%;随后通过测量总压力并且使用拉乌尔定律(Raoult's Law)计算CO分压。
如本文所用,术语“平均H2分压”意指在稳态操作下,在至少10分钟时间段内于蒸发器的蒸气出口处测定的平均氢气分压。熟知的是使用气相色谱法(GC)测定气体组成中H2的摩尔%;随后通过测量总压力并且使用拉乌尔定律计算氢气分压。
氢气和一氧化碳可以获自任何适合的来源,包括石油裂解和精炼厂操作。合成气混合物是氢气和CO的优选来源。
合成气(来自合成气体(synthesis gas))是给予含有不同量的CO和H2的气体混合物的名称。生产方法是众所周知的。氢气和CO通常是合成气的主要组分,但合成气可以含有CO2和如N2和Ar的惰性气体。H2与CO的摩尔比变化极大,但一般在1:100到100:1范围内,并且优选地在1:10与10:1之间。合成气是可商购的并且经常用作燃料源或用作生产其它化学品的中间物。化学生产最优选的H2:CO摩尔比在3:1与1:3之间,并且对于大部分氢甲酰化应用,目标通常在约1:2与2:1之间。
可以用于氢甲酰化方法中的取代的或未取代的烯烃反应物包括:光学活性(前手性和手性)和非光学活性(非手性)烯烃不饱和化合物,其含有2到40个、优选地3到30个碳原子、更优选地4到20个碳原子。这些化合物详细描述于US 7,863,487中。所述烯烃不饱和化合物可以是端不饱和或内部不饱和的并且具有直链、分支链或环状结构,以及是烯烃混合物,如获自混合丁烯的二聚合、丙烯、丁烯、异丁烯等的寡聚合。(如所谓的二聚、三聚或四聚丙烯等,如US 4,518,809和4,528,403中所披露)。
适用于不对称氢甲酰化的前手性和手性烯烃可以用于产生对映异构醛混合物。适用于不对称氢甲酰化的说明性光学活性或前手性烯烃化合物描述于例如美国专利4,329,507、5,360,938以及5,491,266中。
有利地,在氢甲酰化方法中使用溶剂。可以使用不会过度干扰氢甲酰化方法的任何适合溶剂。借助于说明,用于铑催化的氢甲酰化方法的适合溶剂包括例如美国专利3,527,809、4,148,830、5,312,996以及5,929,289中所披露的溶剂。在铑催化的氢甲酰化方法中,可以优选地使用对应于所要产生的醛产物和/或较高沸点的醛液态冷凝副产物(举例来说,如可能在氢甲酰化方法期间就地产生,如例如US 4,148,380和US 4,247,486中所描述)的醛化合物作为主要溶剂。由于连续方法的性质,因此主要溶剂通常将最终包含醛产物和较高沸点醛液态冷凝副产物(“重物质”)。溶剂的量并非特别关键并且只需要足以向反应介质提供所需量的过渡金属浓度。通常,以反应流体的总重量计,溶剂的量在约5重量百分比到约95重量百分比范围内。可以使用溶剂的混合物。
所述氢甲酰化反应中可使用的说明性金属-有机磷配体络合物包括金属-有机磷配体络合物催化剂。这些催化剂以及其制备方法在所属领域中是众所周知的,并且包括本文中所提及的专利中所披露的催化剂以及其制备方法。一般来说,所述催化剂可以预先形成或就地形成,并且包含与有机磷配体、一氧化碳以及任选地氢气络合组合的金属。催化剂的准确结构是未知的。
金属-有机磷配体络合物催化剂可以是光学活性或非光学活性的。金属可以包括选自铑(Rh)、钴(Co)、铱(Ir)、钌(Ru)、铁(Fe)、镍(Ni)、钯(Pd)、铂(Pt)、锇(OS)以及其混合物的第8族、第9族以及第10族金属,其中优选的金属是铑、钴、铱以及钌,更优选地是铑、钴以及钌,特别是铑。可以使用这些金属的混合物。构成金属-有机磷配体络合物和游离有机磷配体的可容许有机磷配体包括单、二、三以及更高聚有机磷配体。可以在金属-有机磷配体络合物催化剂和/或游离配体中使用配体的混合物,并且所述混合物可以相同或不同。在本发明的一个实施例中,可以使用单有机亚磷酸酯与有机聚亚磷酸酯(例如,双亚磷酸酯)配体的混合物。
可以用作金属-有机磷配体络合物催化剂的配体和/或游离配体的有机磷化合物可以是非手性(光学非活性)或手性(光学活性)类型并且在所属领域中是众所周知的。非手性有机磷配体是优选的。
在有机磷配体中,可以用作金属-有机磷配体络合物催化剂的配体的是单有机亚磷酸酯、二有机亚磷酸酯、三有机亚磷酸酯以及有机聚亚磷酸酯化合物。所述有机磷配体和其制备方法在所属领域中是众所周知的。
代表性单有机亚磷酸酯可以包括具有下式的单有机亚磷酸酯:
Figure BDA0001304639560000071
其中R10表示取代的或未取代的三价烃基,其含有4到40个或更多个碳原子,如三价非环状和三价环状基团,例如三价亚烷基,如衍生自1,2,2-三羟甲基丙烷等的三价亚烷基,或三价亚环烷基,如衍生自1,3,5-三羟基环己烷等的三价亚环烷基。可以发现所述单有机亚磷酸酯更详细地描述于例如US 4,567,306中。
代表性二有机亚磷酸酯可以包括具有下式的二有机亚磷酸酯:
Figure BDA0001304639560000072
其中R20表示取代的或未取代的二价烃基,其含有4到40个或更多个碳原子,并且W表示取代的或未取代的单价烃基,其含有1到18个或更多个碳原子。
在上式(II)中,由W表示的代表性取代的和未取代的单价烃基包括烷基和芳基,而由R20表示的代表性取代的和未取代的二价烃基包括二价非环状基团和二价芳香族基团。说明性二价非环状基团包括例如亚烷基、亚烷基-氧基-亚烷基、亚烷基-S-亚烷基、亚环烷基以及亚烷基-NR24-亚烷基,其中R24是氢或取代的或未取代的单价烃基,例如具有1到4个碳原子的烷基。更优选的二价非环状基团是如更充分地披露于例如美国专利3,415,906和4,567,302等中的二价亚烷基。说明性二价芳香族基团包括例如亚芳基、双亚芳基、亚芳基-亚烷基、亚芳基-亚烷基-亚芳基、亚芳基-氧基-亚芳基、亚芳基-NR24-亚芳基(其中R24如上文所定义)、亚芳基-S-亚芳基、亚芳基-S-亚烷基等。更优选地,R20是如更充分地披露于例如美国专利4,599,206、4,717,775、4,835,299等中的二价芳香族基团。
更优选类别的二有机亚磷酸酯的代表是下式的二有机亚磷酸酯:
Figure BDA0001304639560000081
其中W如上文所定义,各Ar相同或不同并且表示取代的或未取代的芳基,各y相同或不同并且是0或1的值,Q表示选自-C(R33)2-、-O-、-S-、-NR24-、Si(R35)2以及-CO-的二价桥连基,其中各R33相同或不同并且表示氢、具有1到12个碳原子的烷基、苯基、甲苯基以及茴香基,R24如上文所定义,各R35相同或不同并且表示氢或甲基,并且m具有0或1的值。所述二有机亚磷酸酯更详细地描述于例如美国专利4,599,206、4,717,775以及4,835,299中。
代表性三有机亚磷酸酯可以包括具有下式的三有机亚磷酸酯:
Figure BDA0001304639560000082
其中各R46相同或不同并且是取代的或未取代的单价烃基,例如可以含有1到24个碳原子的烷基、环烷基、芳基、烷芳基以及芳烷基。说明性三有机亚磷酸酯包括例如亚磷酸三烷酯、亚磷酸二烷基芳酯、亚磷酸烷基二芳酯、亚磷酸三芳酯等,如亚磷酸三甲酯、亚磷酸三乙酯、亚磷酸丁基二乙酯、亚磷酸二甲基苯酯、亚磷酸三苯酯、亚磷酸三萘酯、双(3,6,8-三-叔丁基-2-萘基)甲基亚磷酸酯、双(3,6,8-三-叔丁基-2-萘基)环己基亚磷酸酯、三(3,6-二-叔丁基-2-萘基)亚磷酸酯、双(3,6,8-三-叔丁基-2-萘基)苯基亚磷酸酯以及双(3,6,8-三-叔丁基-2-萘基)(4-磺酰基苯基)亚磷酸酯等。最优选的三有机亚磷酸酯是亚磷酸三苯酯。所述三有机亚磷酸酯更详细地描述于例如美国专利3,527,809和5,277,532中。
代表性有机聚亚磷酸酯含有两个或更多个叔(三价)磷原子,并且可以包括具有下式的有机聚亚磷酸酯:
Figure BDA0001304639560000091
其中X表示取代的或未取代的n价有机桥连基,其含有2到40个碳原子,各R57相同或不同并且表示含有4到40个碳原子的二价有机基团,各R58相同或不同并且表示含有1到24个碳原子的取代的或未取代的单价烃基,a与b可以相同或不同并且各具有0到6的值,其条件是a+b的总和是2到6并且n等于a+b。应理解,当a具有2或更大的值时,各R57基团可以相同或不同。在任何给定化合物中,各R58基团也可以相同或不同。
由X表示的代表性n价(优选地二价)有机桥接基和由上文R57表示的代表性二价有机基团包括非环状基团和芳香族基团,如亚烷基、亚烷基-Qm-亚烷基、亚环烷基、亚芳基、双亚芳基、亚芳基-亚烷基以及亚芳基-(CH2)y-Qm-(CH2)y-亚芳基等,其中各Q、y以及m如上文在式(III)中所定义。由上文X和R57表示的更优选的非环状基团是二价亚烷基,而由上文X和R57表示的更优选的芳香族基团是二价亚芳基和双亚芳基,如更充分地披露于例如美国专利4,769,498、4,774,361、4,885,401、5,179,055、5,113,022、5,202,297、5,235,113、5,264,616、5,364,950以及5,527,950中。由上文各R58基团表示的代表性优选的单价烃基包括烷基和芳香族基团。
说明性优选的有机聚亚磷酸酯可以包括双亚磷酸酯,如具有下文式(VI)到式(VIII)的双亚磷酸酯:
Figure BDA0001304639560000092
其中式(VI)到式(VIII)的各R57、R58以及X与上文式(V)所定义的相同。优选地,各R57和X表示选自亚烷基、亚芳基、亚芳基-亚烷基-亚芳基以及双亚芳基的二价烃基,而各R58基团表示选自烷基和芳基的单价烃基。可以发现所述式(V)到式(VIII)的有机亚磷酸酯配体披露于例如美国专利4,668,651、4,748,261、4,769,498、4,774,361、4,885,401、5,113,022、5,179,055、5,202,297、5,235,113、5,254,741、5,264,616、5,312,996、5,364,950以及5,391,801中。
式(VI)到式(VIII)中的R10、R20、R46、R57、R58、Ar、Q、X、m以及y如上文所定义。最优选地,X表示二价芳基-(CH2)y-(Q)m-(CH2)y-芳基,其中各y单独地具有0或1的值;m具有0或1的值并且Q是-O-、-S-或-C(R35)2-,其中各R35相同或不同并且表示氢或甲基。更优选地,上文定义的R58基团的各烷基可以含有1到24个碳原子,并且上文式(VI)到式(VIII)的上文定义的Ar、X、R57以及R58基团的各芳基可以含有6到18个碳原子,并且所述基团可以相同或不同,而X的优选亚烷基可以含有2到18个碳原子,并且R57的优选亚烷基可以含有5到18个碳原子。此外,优选地,上式的X的二价Ar基团和二价芳基是亚苯基,其中由-(CH2)y-(Q)m-(CH2)y-表示的桥连基与所述亚苯基在与所述式的氧原子邻位的位置上键结,所述氧原子使所述式的亚苯基与其磷原子连接。另外,优选地,当任何取代基存在于所述亚苯基上时,其在相对于键结给定取代的亚苯基与其磷原子的氧原子的亚苯基的对位和/或邻位位置上键结。
必要时,上文式(I)到式(VIII)的所述有机亚磷酸酯的R10、R20、R57、R58、W、X、Q以及Ar基团中的任一个可以被含有1到30个碳原子的任何适合的取代基取代,而不过度不利地影响本发明方法的所需结果。可能位于所述基团上的取代基除了相应烃基(如烷基、芳基、芳烷基、烷芳基以及环己基取代基)之外还可以包括例如硅烷基,如--Si(R35)3;氨基,如-N(R15)2;膦基,如-芳基-P(R15)2;酰基,如-C(O)R15;酰氧基,如-OC(O)R15;酰胺基,如--CON(R15)2和-N-(R15)COR15;磺酰基,如-SO2R15;烷氧基,如-OR15;亚磺酰基,如-SOR15;膦酰基,如-P(O)(R15)2;以及卤基、硝基、氰基、三氟甲基、羟基等,其中各R15基团单独地表示具有1到18个碳原子的相同或不同单价烃基(例如,烷基、芳基、芳烷基、烷芳基以及环己基),其条件是在如-N(R15)2的氨基取代基中,各R15综合起来还可以表示形成具有氮原子的杂环基团的二价桥连基,并且在如-C(O)N(R15)2和-N(R15)COR15的酰胺基取代基中,键结到N的各R15还可以是氢。应理解,构成特定给定的有机亚磷酸酯的取代的或未取代的烃基中的任一个可以相同或不同。
更确切地说,说明性取代基包括伯、仲以及叔烷基,如甲基、乙基、正丙基、异丙基、丁基、仲丁基、叔丁基、新戊基、正己基、戊基、仲戊基、叔戊基、异辛基、癸基、十八基等;芳基,如苯基、萘基等;芳烷基,如苯甲基、苯乙基、三苯甲基等;烷芳基,如甲苯基、二甲苯基等;脂环族基团,如环戊基、环己基、1-甲基环己基、环辛基、环己基乙基等;烷氧基,如甲氧基、乙氧基、丙氧基、叔丁氧基、-OCH2CH2OCH3、-O(CH2CH2)2OCH3、-O(CH2CH2)3OCH3等;芳氧基,如苯氧基等;以及硅烷基,如-Si(CH3)3、-Si(OCH3)3、-Si(C3H7)3等;氨基,如-NH2、-N(CH3)2、-NHCH3、-NH(C2H5)等;芳膦基,如-P(C6H5)2等;酰基,如-C(O)CH3、-C(O)C2H5、-C(O)C6H5等;羰氧基,如-C(O)OCH3等;氧羰基,如-O(CO)C6H5等;酰胺基,如-CONH2、-CON(CH3)2、-NHC(O)CH3等;磺酰基,如-S(O)2C2H5等;亚磺酰基,如-S(O)CH3等;硫醚基,如-SCH3、-SC2H5、-SC6H5等;膦酰基,如-P(O)(C6H5)2、-P(O)(CH3)2、-P(O)(C2H5)2、-P(O)(C3H7)2、-P(O)(C4H9)2、-P(O)(C6H13)2、-P(O)CH3(C6H5)、-P(O)(H)(C6H5)等。
所述有机亚磷酸酯配体的特定说明性实例包括以下:三(2,4-二-叔丁基苯基)亚磷酸酯、2-叔丁基-4-甲氧基苯基(3,3'-二-叔丁基-5,5'-二甲氧基-1,1'-二苯基-2,2'-二基)亚磷酸酯、甲基(3,3'-二-叔丁基-5,5'-二甲氧基-1,1'-二苯基-2,2'-二基)亚磷酸酯、6,6'-[[3,3'-双(1,1-二甲基乙基)-5,5'-二甲氧基-[1,1'-二苯基]-2,2'-二基]双(氧基)]双-二苯并[d,f][1,3,2]二氧杂磷杂庚英、6,6'-[[3,3',5,5'-四(1,1-二甲基乙基)-1,1'-二苯基]-2,2'-二基]双(氧基)]双-二苯并[d,f][1,3,2]-二氧杂磷杂庚英、(2R,4R)-二[2,2'-(3,3',5,5'-四-第三丁基-1,1-二苯基)]-2,4-戊基二亚磷酸酯、(2R,4R)二[2,2'-(3,3'-二-第三丁基-5,5'-二甲氧基-1,1'-二苯基)]-2,4-戊基二亚磷酸酯、2-[[2-[[4,8,-双(1,1-二甲基乙基)、2,10-二甲氧基二苯并-[d,f][1,3,2]二氧杂磷杂庚英-6-基]氧基]-3-(1,1-二甲基乙基)-5-甲氧基苯基]甲基]-4-甲氧基、亚磷酸的亚甲基二-2,1-亚苯基四[2,4-双(1,1-二甲基乙基)苯基]酯以及亚磷酸的[1,1'-二苯基]-2,2'-二基四[2-(1,1-二甲基乙基)-4-甲氧基苯基]酯。
在一个实施例中,有机亚磷酸酯配体包含有机双亚磷酸酯配体。在一个实施例中,配体是二齿胺基磷酸酯配体,如披露于例如WO 00/56451 Al中的类别的二齿胺基磷酸酯配体。
金属-有机磷配体络合物催化剂可以呈均质或异质形式。举例来说,可以制备预先形成的铑氢-羰基-有机磷配体催化剂并且将其引入氢甲酰化反应混合物中。更优选地,铑-有机磷配体络合物催化剂可以衍生自铑催化剂前体,可以将所述铑催化剂前体引入反应介质中以就地形成活性催化剂。举例来说,可以将铑催化剂前体,如二羰基乙酰基丙酮酸铑、Rh2O3、Rh4(CO)12、Rh6(CO)16、Rh(NO3)3等与有机磷配体一起引入反应混合物中以就地形成活性催化剂。在一优选实施例中,二羰基乙酰基丙酮酸铑用作铑前体,并且在溶剂存在下与有机磷配体反应形成催化铑-有机磷配体络合物前体,将所述前体与过量(游离)有机磷配体一起引入反应器中以就地形成活性催化剂。在任何情况下,足够的是,一氧化碳、氢气以及有机磷配体是能够与金属络合的所有配体,并且活性金属-有机磷配体催化剂在用于氢甲酰化反应的条件下存在于反应混合物中。可以在氢甲酰化方法之前或期间就地使羰基和有机磷配体与铑络合。
借助于说明,优选的催化剂前体组合物基本上由溶解的铑羰基有机亚磷酸酯配体络合物前体、溶剂以及任选地游离有机亚磷酸酯配体组成。可以通过形成二羰基乙酰基丙酮酸铑、有机溶剂以及有机亚磷酸酯配体的溶液来制备优选的催化剂前体组合物。如一氧化碳气体的释放所证明,有机磷配体轻易地置换乙酰基丙酮酸铑络合物前体的羰基配体中的一个。
因此,金属-有机磷配体络合物催化剂有利地包含与一氧化碳和有机磷配体络合的金属,所述配体以螯合和/或非螯合方式与金属键结(络合)。
可以使用催化剂的混合物。存在于反应流体中的金属-有机磷配体络合物催化剂的量只需要是提供所需使用的给定金属浓度的必需最小量并且将为至少催化所涉及的特定氢甲酰化方法(如例如上文所提及的专利中所披露)的金属所必需的催化量提供基础。一般来说,以反应介质中的游离金属计算,在10ppmw到1000ppmw范围内的催化金属(例如,铑)浓度对于大多数方法来说应该是足够的,同时一般优选地使用10到500ppmw的金属,并且更优选地使用25到350ppmw的金属。
除了金属-有机磷配体络合物催化剂之外,游离有机磷配体(即,未与金属络合的配体)也可以存在于反应介质中。游离有机磷配体可以对应于上文所论述的上文所定义的有机磷配体中的任一种。优选的是,游离有机磷配体与使用的金属-有机磷配体络合物催化剂的有机磷配体相同。然而,所述配体不必在任何给定方法中相同。本发明的氢甲酰化方法可以涉及在反应介质中每摩尔金属0.1摩尔或更低到100摩尔或更高的游离有机磷配体。优选地,氢甲酰化方法在反应介质中存在的每摩尔金属1到50摩尔有机磷配体的存在下进行。更优选地,对于有机聚亚磷酸酯,每摩尔金属使用1.1到4摩尔的有机聚亚磷酸酯配体。有机磷配体的所述量是与存在的金属结合(络合)的有机磷配体的量与存在的游离有机磷配体的量的总和。必要时,可以在任何时间并且以任何适合的方式向氢甲酰化方法的反应介质供应额外有机磷配体,例如以维持反应介质中游离配体的预定含量。
如在提取系统中使用缓冲水溶液来防止和/或减少有机亚磷酸酯配体的水解降解和金属-有机亚磷酸酯配体络合物的失活是众所周知的并且披露于例如US 5,741,942和US5,741,944中。可以使用缓冲液的混合物。
任选地,可以将有机氮化合物添加到氢甲酰化反应流体中以清除在有机磷配体水解后形成的酸性水解副产物,如教示于例如US 4,567,306和US 5,731,472中。所述有机氮化合物可以用于与酸性化合物反应并且通过与其形成转化产物盐来中和酸性化合物,进而防止催化金属与酸性水解副产物络合,并且因此帮助保护催化剂在反应条件下存在于反应区中时的活性。
氢甲酰化方法和其操作条件是众所周知的。氢甲酰化方法可以是不对称或非不对称的,优选的方法是非不对称的,并且可以任何分批、连续或半连续方式进行并且可以涉及任何所需的催化剂液体和/或气体再循环操作。
使用的氢甲酰化反应条件将由所需醛产物的类型决定。举例来说,氢甲酰化方法的氢气、一氧化碳以及烯烃起始化合物的总气体压力可以在1到69,000kPa范围内。然而,一般来说,优选的是所述方法在小于14,000kPa并且更优选地小于3,400kPa的氢气、一氧化碳以及烯烃起始化合物的总气体压力下操作。最小总压力主要受获得所需反应速率所必需的反应物的量限制。更确切地说,氢甲酰化方法的一氧化碳分压优选地是1到6,900kPa并且更优选地是21到5,500kPa,而氢气分压优选地是34到3,400kPa并且更优选地是69到2,100kPa。一般来说,气态H2:CO的摩尔比可以在1:10到100:1或更高范围内,更优选的摩尔比是1:10到10:1。
一般来说,氢甲酰化方法可以在任何可操作反应温度下进行。有利地,氢甲酰化方法在-25℃到200℃、优选地50℃到120℃的反应温度下进行。
可以使用一个或多个适合的反应器进行氢甲酰化方法,所述反应器例如固定床反应器、流体床反应器、连续搅拌槽反应器(CSTR)或浆料反应器。催化剂的最佳尺寸和形状将取决于所用反应器的类型。所使用的反应区可以是单一容器或可以包含两个或更多个分散容器。
本发明的氢甲酰化方法可以在一个或多个步骤或阶段中进行。反应步骤或阶段的准确数目将由资金成本与达成高催化剂选择性、活性、使用期限以及操作容易性之间的最佳折衷,以及所讨论的起始材料的固有反应性以及起始材料和所需反应产物对反应条件的稳定性决定。
在一个实施例中,适用于本发明的氢甲酰化方法可以在如描述于例如US 5,728,893中的多阶段反应器中进行。所述多阶段反应器可以经过设计具有内部物理屏障,其形成每容器多于一个理论反应性阶段。
一般优选地以连续方式进行氢甲酰化方法。连续氢甲酰化方法在所属领域中是众所周知的;最优选的氢甲酰化方法包含连续液体催化剂再循环方法。适合的液体催化剂再循环程序披露于例如美国专利4,668,651、4,774,361、5,102,505以及5,110,990中。
图1说明本发明的整合式氢甲酰化方法。参考图1,将包含一种或多种烯烃化合物和任选地一种或多种惰性轻物质的烯烃进料流1馈入包含一个或多个氢甲酰化反应器(羰基合成反应器)的氢甲酰化反应器系统100中。同时,还将包含一氧化碳、氢气以及任选地一种或多种气态惰性物质的气态进料流2馈入氢甲酰化反应器系统100中。为简单起见,氢甲酰化反应器系统在图1中显示为单一单元,但其有利地包含一系列依次连接的氢甲酰化反应器。
还将再循环催化剂流23馈入氢甲酰化反应器系统100中,所述再循环催化剂流包含溶解在液体重副产物相中的过渡金属-有机单亚磷酸酯配体络合物催化剂、优选地铑-有机单亚磷酸酯配体络合物催化剂和任选地游离或未络合的有机单亚磷酸酯配体,其中发生烯烃的氢甲酰化,产生粗氢甲酰化产物流21,其包含:一种或多种醛产物、一种或多种重副产物、一种或多种未转化的烯烃反应物、过渡金属-有机亚磷酸酯配体络合物催化剂、游离有机亚磷酸酯配体以及包括惰性轻物质、一氧化碳和任选地氢气的轻物质。在本发明的一个实施例中,粗氢甲酰化产物流21是包含液体和气体的流,所述气体可以部分溶解在所述液体中。主要包含轻组分(包括惰性轻物质、氢气以及一氧化碳)的反应器排放流27可以在顶部作为来自反应器系统100的气态流从其中的任何一个或多个反应器中获得。流21中任选的闪蒸罐(未显示)可以用于减小压力并且去除过量H2
将液体氢甲酰化产物流21馈入汽提气体蒸发器单元200中,从所述汽提气体蒸发器单元获得包含以下的顶部气体流22:一种或多种醛产物、一种或多种未转化的烯烃反应物、重副产物的一部分以及包括一种或多种惰性轻物质、一氧化碳和任选地氢气的轻物质。将来自汽提气体蒸发器的顶部气体流22馈入产物冷凝器300中,从所述产物冷凝器获得包含以下的顶部气体流28:一种或多种烯烃反应物的一部分以及惰性轻物质、一氧化碳和任选地氢气的一部分。从冷凝器300获得包含以下的液体产物流26:一种或多种醛产物、来自蒸发器顶部气体流的重副产物的所述部分以及未转化的烯烃反应物的其余部分。将冷凝器顶部气体流28分成再循环流24,其经由风机400传送回汽提气体蒸发器200;和流25,其可以再循环到氢甲酰化反应器系统100、或燃烧、或用作燃料、或用于另一下游方法。将再循环流24传送到风机400,所述再循环流包含:一种或多种未转化的烯烃反应物以及包括一种或多种惰性轻物质、一氧化碳和任选地氢气的轻物质。流25包含:一种或多种未转化的烯烃反应物以及包括一种或多种惰性轻物质、一氧化碳和任选地氢气的轻物质。从汽提气体蒸发器200获得作为蒸发器尾料流的再循环催化剂流23,所述再循环催化剂流包含:重副产物的其余部分、过渡金属-有机亚磷酸酯配体络合物催化剂以及任选地游离有机亚磷酸酯配体。将再循环催化剂流23作为液体催化剂流再循环回到羰基合成反应器系统100。
流55可以用于在经由流20进入蒸发器200之前,将CO直接添加到蒸发器200和/或流24中的任何位置。可以在蒸发器中直接测量蒸发器中的CO分压或通过分析一种或多种适当的蒸发器输入流和/或输出流(例如,适当选择的流20、22、24、25、55和/或28)间接测量蒸发器中的CO分压。
在不添加CO的情况下,顶部气体再循环流中的CO分压将随冷凝器300的操作温度而变化。在此情况下,控制冷凝器300的操作温度几乎不会控制再循环到蒸发器200以使氢甲酰化催化剂稳定化的所需CO量,并且不会提供到达所需CO分压(例如,大于16psia(110kPa)到50psia(345kPa))的足量CO。因此,本发明的一个特征是例如经由如图1中所示的线55将CO添加到蒸发器200中。
取决于线24/线25分流比,经由线55添加的大量CO将经由线24再循环。由于CO在液体产物出口流中相对较低的可溶性,因此相比于常规蒸发器,此再循环减少了用于维持汽提气体蒸发器中CO分压所需的来自线55的总流量。调节线55的流量来将观测到的蒸发器中的CO分压维持在所需范围内。当可能无法从上游方法获得适合的气体时,此线还可以在启动期间用于引入含CO的汽提气体。在本发明的各种实施例中,可以将与流55等效的流添加到蒸发器中的任何位置。然而,优选地,通过在作为流20进入蒸发器之前,使补偿CO进料流与汽提气体24混合来将CO引入蒸发器中。
流55有利地是含CO的流,并且优选地是大体上不含含硫或含卤化物的杂质和氧气(O2)。流55的来源可以是与进入氢甲酰化反应区的CO和H2的来源相同的来源,但优选地使用常规技术(如变压吸附、膜分离或其它已知技术)使其富含CO。这些浓缩技术可以馈入有新鲜合成气和/或来自氢甲酰化单元的排出物中的一种。一般来说,流55中的CO含量越高,使排放损失降低的排放流25的流量越小。
可以将来自氢甲酰化反应器的反应流体直接馈入汽提气体蒸发器中。汽提气体蒸发器在图1中显示为单一单元200,但蒸发器可以包含一系列在不同压力下操作的依次连接的蒸发器。
或者,可以首先将反应流体馈入闪蒸容器中以降低压力并且移出反应性和惰性轻物质,之后可以将其余液体馈入汽提气体蒸发器中。举例来说,在介于反应器(100)压力与蒸发器(200)压力之间的压力下操作的闪蒸容器能够在如氢气、CO2、甲烷、氮气、氩气等的气体进入蒸发器之前将其移出。此不仅使这些气体的浓度快速降低,而且还有助于防止其聚积在再循环的汽提气体中。所述气体的聚积将需要较高新鲜CO馈入速率(流55)和吹扫流动速率(流25),以便达成蒸发器中的所需CO分压。因此,在蒸发器之前使用闪蒸容器可以扩大蒸发器的可行操作压力(即,允许较低总压力)并且可以促成更经济的操作。
来自氢甲酰化反应器不包括过渡金属-有机磷配体络合物催化剂和任何游离配体的反应流体组合物有利地包含:约38到约58重量百分比的一种或多种醛产物、约16到约36重量百分比的重物质副产物、约2到约22重量百分比的未转化的烯烃反应物、约1到约22重量百分比的惰性轻物质、约0.02到约0.5重量百分比的一氧化碳以及小于约100ppmw的氢气,合计达100重量百分比。
蒸发器硬件的设计可以是常规的,并且许多实例是技术人员所已知的。有利地,蒸发器经过设计以包括热交换器内的一系列竖直管道。最优蒸发器尺寸(管道数目、直径以及长度)通过设备容量来测定,并且可以由所属领域的技术人员轻易地测定。蒸发器的实例和其用途描述于US 8,404,903中。
为了维持本发明的CO分压,可能必须通过排放流25排出再循环汽提气体的一部分。排放流中所夹带的醛、未反应的烯烃和烷烃可以通过冷凝来回收。冷凝可以在使用任何适合的热传递流体的任何适合的冷凝器中进行。所述流体的实例包括例如冷冻水、盐水或其它盐溶液、DOWTHERM牌热传递流体或其它热交换流体,包括其混合物。
因为汽提气体蒸发器和产物冷凝器可以在基本上恒定的压力下操作,所以在本发明方法的一些实施例中,不需要大量压缩气态流。风机或风扇可以适当地用于将再循环气体从产物冷凝器循环到汽提器。相比于压缩单元,风机或风扇涉及非常少的资金费用和维护费用;然而,必要时可以使用压缩单元。一般来说,汽提器和产物冷凝器在介于以下范围内的压力下操作:1.5巴绝对压力(150kPa)到4巴绝对压力(400kPa),优选地2到3巴绝对压力(200-300kPa)。
有利地,通过经由例如图1中显示的线55添加含CO的流来将汽提气体蒸发器中的CO分压维持在大于16psia(110kPa)到50psia(345kPa)范围内。在本发明的一个实施例中,在高到足以从气体顶部流中的产物流体中移出重物质的至少一部分,又低到足以确保蒸发器中催化剂和有机磷配体的稳定性的温度下操作蒸发器。优选地,蒸发器工艺出口温度是至少80℃,并且更优选地是至少90℃。优选地,蒸发器工艺出口温度不超过130℃,并且更优选地不超过120℃。有利地,蒸发器总压力大于至少16psia(110kPa),并且优选地是至少20psia(138kPa),并且最优选地是至少25psia(172kPa)。有利地,蒸发器总压力不超过100psia(689kPa),并且优选地不超过60psia(414kPa)。CO分压大于16psia(110kPa),优选地大于20psia(138kPa),并且最优选地大于25psia(172kPa)。CO分压大于50psia(345kPa)并非是有利的,因为这样必须提高蒸发器温度来维持生产率;因此,优选的是,CO分压不超过50psia(345kPa),优选地小于40psia(276kPa),并且更优选地小于35psia(241kPa)。有利地,在介于1.5/1到5/1、优选地2/1到3/1范围内的粗液体产物进料/液体尾料的质量比下操作蒸发器。粗液体产物进料/进入蒸发器的再循环气体进料的质量比优选地大于0.1/1,更优选地大于0.25/1,但优选地小于2/1,并且更优选地小于1/1。在本发明的一个实施例中,在蒸发器中,H2分压是0.1psia(0.7kPa)或3psia(21kPa)到小于CO分压的一半。在一个实施例中,本发明是如本文所描述的方法,其中基本上恒压地操作汽提气体蒸发器和产物冷凝器。
将来自蒸发器的顶部气体流馈入冷凝器中。任何所需的冷却介质可以与冷凝器一起使用,并且冷却介质的类型并非特别关键。在本发明的一个实施例中,冷凝器使用常规水冷却。水是优选的冷却介质,其操作温度在大于冻结温度(即,大于0℃)到约50℃、优选地约34℃到约45℃范围内。
有利地,将来自冷凝器的顶部流分成气体排放流和进入蒸发器的气体再循环流。在本发明的一个实施例中,从冷凝器再循环到蒸发器的气体再循环流包含小于5重量百分比的醛产物。
使用含有约50mol%H2的合成气提高了蒸发器的总压力,因此纯化的CO是优选的。如果使用合成气,那么H2/CO比不必与馈入氢甲酰化单元的合成气相同,因为此合成气几乎不会存在于将再循环回到氢甲酰化系统的流23中。此含CO的流55的优选来源是已经穿过冷凝器以移出大部分可冷凝物(如醛产物和烯烃起始材料)以及任选地膜分离器或其它分离装置以进一步使所述流富含CO的反应器排放流。
在一个实施例中,本发明是一种连续方法,其包含:(a)在氢甲酰化反应条件下,使反应器中的CO、H2、烯烃以及包含铑和有机亚磷酸酯配体、优选地单有机亚磷酸酯配体的催化剂接触,产生醛产物;(b)从反应器中移出含有液体产物的流;(c)将含有液体产物的流传送到蒸发器;(d)将包含CO的气相流引入蒸发器中;(e)分离蒸发器中含有液体产物的流,产生含有催化剂的液体流和气相流;以及(f)将蒸发器中的平均CO分压维持在大于16psia(110kPa)、优选地至少17psia(117kPa)。
有利地,相比于不维持指定CO分压的比较性方法,本发明的方法使铑损失降低,并且进而降低催化剂成本。在本发明的一个实施例中,粗产物流是通过以下获得:在氢甲酰化反应条件下,使反应区中的CO、H2、烯烃以及包含铑和有机亚磷酸酯配体的催化剂接触,产生粗产物流中的醛产物。在本发明的一个实施例中,所述方法进一步包含:将包含过渡金属-有机亚磷酸酯配体络合物催化剂和重副产物的液体再循环催化剂流作为尾料流从蒸发器中移出。
在一个实施例中,本发明提供一种在液体再循环氢甲酰化方法中移出产物的手段,其包含:(a)将包含一种或多种产物、一种或多种重副产物、过渡金属-有机亚磷酸酯配体络合物催化剂、一种或多种未转化的反应物以及一种或多种惰性轻物质的粗产物流馈入汽提气体蒸发器中;(b)从蒸发器中移出包含产物、一种或多种未转化的反应物、一种或多种惰性轻物质以及一部分重副产物中的一种或多种的顶部气体流;(c)将顶部气体流馈入冷凝器中;(d)从冷凝器中移出包含一种或多种未转化的反应物和一种或多种惰性轻物质的顶部气体流;(e)将冷凝器顶部气体流的一部分再循环到蒸发器;以及(f)将包含催化剂和重副产物的其余部分的液体再循环催化剂流作为尾料流从蒸发器中移出,其中蒸发器中的CO分压维持在17psia(117kPa)到50psia(345kPa)的平均值下。
在一个实施例中,本发明提供一种氢甲酰化、催化剂-产物分离以及控制催化剂再循环流中的重副产物的整合式方法,所述方法包含:(a)在氢甲酰化条件下,在过渡金属-有机亚磷酸酯配体络合物催化剂和任选地游离有机亚磷酸酯配体的存在下,使包含一种或多种烯烃反应物和一种或多种惰性轻物质的氢甲酰化进料流与CO和氢气接触,所述氢甲酰化条件足以制备包含以下的粗液体氢甲酰化产物流:一种或多种醛产物、一种或多种重副产物、过渡金属-有机亚磷酸酯配体络合物催化剂、任选地游离有机亚磷酸酯配体、一种或多种未转化的烯烃反应物以及包括一种或多种惰性轻物质、一氧化碳和任选地氢气的轻物质;(b)将粗液体氢甲酰化产物流馈入汽提气体蒸发器中;(c)从汽提气体蒸发器中移出包含以下的顶部气体流:一种或多种醛产物、一种或多种未转化的烯烃反应物、一种或多种重副产物的一部分以及包括一种或多种惰性轻物质、一氧化碳和任选地氢气的轻物质;并且将蒸发器顶部气体流馈入冷凝器中;(d)从冷凝器中移出包含以下的顶部气体流:一种或多种未转化的烯烃反应物和包括一种或多种惰性轻物质、一氧化碳和任选地氢气的轻物质;(e)将冷凝器顶部气体流的一部分再循环到蒸发器;以及(f)将包含重副产物的其余部分、过渡金属-配体络合物催化剂以及任选地游离有机亚磷酸酯配体的液体再循环催化剂流作为尾料流从蒸发器中移出,并且将液体再循环催化剂流再循环到步骤(a),其中步骤(c)中冷凝器顶部气体流中的CO分压是17psia(117kPa)到50psia(345kPa)。
说明性非光学活性醛产物包括例如丙醛、正丁醛、异丁醛、正戊醛、2-甲基1-丁醛、己醛、羟基己醛、2-甲基1-庚醛、壬醛、2-甲基-1-辛醛、癸醛、己二醛、2-甲基戊二醛、2-甲基己二醛、3-羟基丙醛、6-羟基己醛、烯醛(例如,2-戊烯醛、3-戊烯醛以及4-戊烯醛)、5-甲酰基戊酸烷酯、2-甲基-1-壬醛、2-甲基1-癸醛、3-丙基-1-十一醛、十五醛、3-丙基-1-十六醛、二十醛、2-甲基-1-二十三醛、二十五醛、2-甲基-1-二十四醛、二十九醛、2-甲基-1-二十八醛、三十一醛、2-甲基-1-三十醛等。
说明性光学活性醛产物包括通过本发明的不对称氢甲酰化方法制备的(对映异构)醛化合物,例如S-2-(对异丁基苯基)-丙醛、S-2-(6-甲氧基-2-萘基)丙醛、S-2-(3-苯甲酰基苯基)-丙醛、S-2-(3-氟-4-苯基)苯丙醛以及S-2-(2-甲基乙醛)-5-苯甲酰基噻吩。
本发明的特定实施例
在以下实例中,除非另外指示,否则所有份数和百分比都以重量计。除非另外指示,否则以下实例中的压力给定为绝对压力。除非另外指示,否则所有如制备催化剂溶液的操作都在惰性气氛下进行。比较实验不是本发明的实施例。
通过空气/乙炔原子吸收(AA)或通过电感耦合等离子体(ICP)进行铑分析。已经发现,空气/乙炔AA无法可靠地量化簇合的铑,但尽管如此,此方法仍可以用于指示“铑损失”(例如,铑簇合或者不再处于溶液中)。由于等离子体的高温,因此认为不论形式如何,ICP都能够检测样品中的所有铑,从而如ICP所测量的铑减少表明一部分铑不再处于溶液中。颜色变化(始于无色或淡黄色溶液)、暗化或形成黑色膜或固体也表示催化剂降解。
通过气相色谱法(GC)测量气体组成(摩尔%),并且随后使用拉乌尔定律基于总压力计算分压。应理解,除了所列出的组分之外,汽提气体通常还包括痕量组分(例如,≤0.5psia)。
一般程序
除非另外指示,否则在配备有用于准确控制温度和气流的构件的90mL流通式费舍尔波特反应器(Fisher Porter reactor)中进行实例和比较实验。通过在线GC分析反应器排出气体以测定分压。通过经过反应器底部喷雾器的连续气流来实现流通式反应器中的混合。此反应器设计详细地描述于US 5,731,472中,其教示内容以引用的方式并入。
Figure BDA0001304639560000191
配体A
在一典型实验中,在反应温度下,在氮气下将溶剂(十二醇酯(TEXANOL)或四乙二醇二甲醚)添加到组装的反应器中。随后添加内含配体A的甲苯储备溶液,之后添加由内含二羰基-乙酰丙酮根-铑的甲苯制备的铑储备溶液。在110℃下,在165psia(1138kPa)下历时30-60分钟使1:1CO:H2混合物穿过反应器中的液体以形成铑-配体络合物。随后调整反应器分压;接着使反应器密封并且维持在温度下且不搅拌。
比较实验A-非本发明的实施例
在一般程序的设备中进行实验以通过以下来模拟“蒸发器条件”:在110℃下于氮气下(总压力165psia(1138kPa))且在无合成气或烯烃的情况下,加热反应器中包含300ppm铑和10摩尔当量配体A的十二醇酯溶液。这些条件将在随后的实验中用作典型蒸发器的模型。结果如下:
Figure BDA0001304639560000201
在这些条件下,催化剂快速分解,始于澄清黄色溶液,随后变成深色溶液,其伴有深色沉淀物并且大量损失溶解的铑。
实例1-3和C.E.B&C
在一般程序之后,将525ppm铑与6当量内含配体A的四乙二醇二甲醚的溶液装入个别反应器中。在与1:1CO:H2气体接触30-60分钟之后,用氮气吹扫比较实验B(C.E.B)约60分钟,随后在165psia(1138kPa)下密封。用CO吹扫其余反应器约60分钟,并且随后在表1中显示的压力下密封。7天后,对反应器取样以测定铑损失,并且结果概括于表1中。
表1.在不同低压下检验CO的影响;110℃下的铑可计量性。
Figure BDA0001304639560000202
比较实验B通过原子吸收光谱法(AA)和视觉外观(铑黑)显示大量铑损失。实例1-3显示显著的改良。尽管分析结果显示极少损失乃至无损失,但视觉外观仍显示催化剂开始降解,不过其速率相比于比较实验大大降低。
实例4-8和C.E.D
在一般程序之后,将300ppm铑与10当量内含配体A的四乙二醇二甲醚的溶液装入个别反应器中。在与1:1CO:H2气体接触30-60分钟之后,用氮气吹扫比较实验D(C.E.D)约60分钟,随后在165psia(1138kPa)下密封。用CO吹扫其余反应器约60分钟,并且随后在表2中显示的压力下密封。6天后,对反应器取样以测定铑损失,并且结果概括于表2中。
表2.在不同压力下检验CO的影响;110℃下的铑可计量性。
CO psia(kPa) 6天后由AA分析的初始铑%
C.E.D 0 20
Ex.4 19.7(135.8) 88
Ex.5 24.7(170.3) 86
Ex.6 29.7(204.8) 82
Ex.7 34.7(239.2) 105
Ex.8 39.7(273.7) 93
表1和表2中的结果显示,铑损失通过维持CO气氛而显著降低,并且更确切地说,大于16psia(110kPa)的压力提供所需结果。
实例9-11和C.E.E
在一般程序之后,在110℃下,将300ppm铑与10当量内含配体A的四乙二醇二甲醚的溶液装入个别反应器中。在与1:1CO:H2气体接触30-60分钟之后,用氮气吹扫比较实例E(C.E.E)约60分钟,随后在165psia(1138kPa)下密封。用CO吹扫实例9约60分钟,并且随后在表3中指定的压力下密封。用CO与H2的混合物吹扫其余反应器约60分钟,并且随后在表3中显示的气氛下密封。对反应器取样以测定铑损失,并且结果概括于表3中。
表3.检验CO和H2分压的影响;在110℃下加热后的铑可计量性。注意:在氮气下加热“0psia”CO反应器。
Figure BDA0001304639560000211
表3中的结果显示:
1)在无CO存在下,观测到严重催化剂分解。
2)相对于缺乏CO的环境,1:1合成气的气氛提供一些益处。然而,富含CO或几乎纯CO气氛是优选的。
3)相对于1:2CO:H2气氛,1:1合成气的气氛是有益的。
4)无H2的CO提供最佳性能。
因为使用铑催化剂的氢甲酰化可以显示针对[H2]的高阶反应,所以在富含氢气的气氛下进行将明显有益于烯烃转化的最大化;然而,这不是催化剂的最佳环境。维持富含一氧化碳的气氛会减缓铑簇合这一事实突显了使汽提气体蒸发器中的催化剂稳定化的能力(即,使用流动气体促进产物移出的蒸发器)。
实例12-14以及C.E.F、G和H
在100mL搅拌不锈钢高压釜中进行测试,所述高压釜配备有用于准确控制一氧化碳、氢气以及氮气的质量流量计以及用于准确控制反应器温度的电加热器。将185ppm铑与10当量内含配体A的50mL甲苯的溶液装入各高压釜中,并且用115psia的1:1合成气体吹扫三次。随后用1:1合成气体将反应器加压到115psia,并且在搅拌下历时30分钟加热到85℃,之后切断热量,并且使溶液冷却到室温。排放反应器,并且用如表4中指定的不同气体混合物加压到599.5-607.5psia(4133.4-4188.6kPa)。在搅拌下历时4天将溶液加热到110℃,之后冷却并排放反应器;通过GC分析排放流以确定气体组成。随后拆卸反应器;通过ICP测量各溶液的铑浓度并且注意到各溶液的外观。结果概述于表4中。
表4.检验H2分压在110℃下对铑可计量性的影响。
Figure BDA0001304639560000221
表4的结果进一步确定一氧化碳的益处和氢气的不利影响。
实例15
图1说明一种氢甲酰化方法,其后从氢甲酰化产物流中分离醛产物和催化剂,其中将液体催化剂流再循环回到氢甲酰化反应区,并且其中将含CO的流添加到汽提气体中(线55)。使用可购自美国马萨诸塞州剑桥的艾斯本技术公司(ASPEN Technology,Inc.)的艾斯本+(ASPEN Plus)软件使图1的蒸发器工艺模型化。在反应区与蒸发器之间不使用气液分离容器。通过风机400经由线24将来自蒸发器冷凝器的顶部排放物转移回到蒸发器,并且经由线55添加额外CO(95%纯度)。所述模型呈现在配体A的铑-有机亚磷酸酯配体络合物催化剂存在下,用一氧化碳和氢气使C8烯烃氢甲酰化。如表4中所示,艾斯本模型为涉及蒸发器操作的图1流提供质量平衡。在稳定状态下,蒸发器200条件如下:总压力是27.6psia(190kPa),CO分压是24.9psia(172kPa)并且蒸发区温度是115℃。蒸发器冷凝器300出口工艺温度是40℃。汽提气体流20、流24和55的总和处于31.9psia(220kPa)和58℃下,其中CO分压是28.9psia(199kPa)。
表5:将CO添加到汽提气体时蒸发器输入/输出的质量流量
流ID 21 22 23 24 25 26 55
流量(kg/h) 25300 90312 12550 77562 223 12527 200
质量流量(kg/h)
惰性物质 <0.1 3468 <0.1 3458 10 <0.1 10
H<sub>2</sub> .8 265 <0.1 264 1 <0.1 0
CO 17 72152 .03 71952 207 <0.1 190
辛烯/辛烷 1255 2736 97.5 1578 4.6 1153 0
壬醛 17602 11668 6244 310 1 11357 0
二聚物和三聚物 6224 16 6208 <0.1 <0.1 16 0
表5显示,相比于总生产率26,当添加作为CO流的极小流55时,CO分压被轻易地控制在>24psia(165kPa)且不对上游氢甲酰化反应造成任何影响,即可忽略量的CO经由流23从蒸发器转移到反应器。如US 8,404,903中所教示,当不存在流55时,蒸发器CO分压将小于5psia(34kPa)。表4还显示在二聚物和三聚物的形成速率下,将其移出到模型重物质,随时间保持其在反应区中的浓度不变。用其它烯烃也可以获得类似结果,主要不同在于蒸发器总压力和蒸发器温度。
实例16、17以及比较实验I和J.
在由三个串联连接的1升不锈钢搅拌槽反应器组成的液体再循环氢甲酰化系统中进行测试。系统配备有用于准确控制一氧化碳、氢气以及氮气的质量流量计,以及用于准确控制反应器温度的电加热器。以可控的速率将C8烯烃混合物馈入第一反应器中。将液体反应溶液的一部分从最终反应器连续馈入闪蒸容器中,在所述闪蒸容器中进行气体和液体的初始分离。用氮气吹扫闪蒸容器,并且过滤液体流出物并将其馈入加热竖装管道(蒸发器)顶部的分布器板中。在流动气体流(汽提气体)下,液体流出物流下蒸发器内的管道的表面。使用压缩机上游的控制阀控制汽提气体的流动速率,并且使用压缩机下游的流量计精确地测量流量;通过GC分析测定汽提气体组成的摩尔百分比。将来自蒸发器的流出物流传送到位于蒸发器底部的气体-液体分离器中,在所述气体-液体分离器中,蒸发的醛与液体反应溶液的非挥发性组分分离。冷凝蒸发的醛产物并且收集于产物接收器中;将包含残余醛、醛重物质以及浓缩催化剂的非挥发性组分泵吸回到串联反应器中的第一反应器中。使用压缩机再循环挥发性、非冷凝性气体,并且将其用于汽提气体。
起初,将内含铑和配体A的混合C8烯烃与甲苯的溶液装入连续3升氢甲酰化系统中;在连续操作过程期间,产物醛和醛类重冷凝产物开始充当反应溶剂(例如,在大约两天后)。如表6中所概括形成反应参数:
表6:连续操作3升反应系统的反应参数
反应器1 1:1CO:H<sub>2</sub> 290psia(1999.5kPa)
反应器2 1:1CO:H<sub>2</sub> 261psia(1799.5kPa)
反应器3 1:1CO:H<sub>2</sub> 232psia(1599.6kPa)
反应器温度(全部) 85℃
配体A摩尔数:铑摩尔数 8-12
闪蒸容器压力 50.8psia(350.3kPa)
闪蒸容器温度 22℃
蒸发器压力 21.8psia(150.3kPa)
蒸发器温度 110℃
汽提气体流动速率 300-520L/hr
C8烯烃馈入速率 107.5g/hr
滞留时间 28hr
生产率 0.32gmol/hr
汽提气体组成是不同的,并且使用ICP在整个系统中测量对铑损失的影响。结果概述于表7中。
表7:汽提气体组成对铑损失的影响
Figure BDA0001304639560000241
Figure BDA0001304639560000251
表7中的结果显示:
●当汽提气体主要是氮气时(C.E.J),出现最高铑损失。
●相对于氮气汽提气体(C.E.J),由合成气体构成的汽提气体(C.E.I)减小了铑损失速率。
●当汽提气体主要是CO时(Ex.16和17),达成最佳结果。
●再次显示氢气的不利影响(C.E.I相比于实例16和17)。

Claims (14)

1.一种连续氢甲酰化方法,其包含:(a)从反应器中移出反应流体;(b)将所述反应流体传送到蒸发器;(c)在所述蒸发器中分离所述反应流体以产生含有催化剂的液体流和气相流;以及(d)将所述蒸发器中的平均CO分压维持在大于110kPa。
2.一种连续氢甲酰化方法,其包含:
(a)将反应流体馈入蒸发器中,所述反应流体包含:一种或多种产物、一种或多种重副产物、过渡金属-有机亚磷酸酯配体络合物催化剂、一种或多种未转化的反应物以及一种或多种惰性轻物质;
(b)从所述蒸发器中移出顶部气体流,所述顶部气体流包含:一种或多种产物、一种或多种未转化的反应物、一种或多种惰性轻物质以及所述重副产物的一部分,并且将所述顶部气体流馈入冷凝器中;
(c)从所述冷凝器中移出冷凝器顶部气体流,所述冷凝器顶部气体流包含:一种或多种未转化的反应物和一种或多种惰性轻物质;
(d)将所述冷凝器顶部气体流的至少一部分再循环到所述蒸发器;
(e)将除所述冷凝器顶部气体流之外的包含CO的气体流引入所述蒸发器中,以使所述蒸发器中的所述平均CO分压大于110kPa;以及
(f)从所述蒸发器中移出作为尾料流的液体再循环催化剂流,所述液体再循环催化剂流包含:所述过渡金属-有机亚磷酸酯配体络合物催化剂和所述重副产物的其余部分。
3.根据权利要求1所述的方法,其中所述蒸发器中的所述平均CO分压是至少138kPa。
4.根据权利要求2所述的方法,其中所述蒸发器中的所述平均CO分压是至少138kPa。
5.根据权利要求1-4中任一项所述的方法,其中所述蒸发器中的所述平均CO分压是至少172kPa。
6.根据权利要求1-4中任一项所述的方法,其中所述蒸发器的工艺出口温度是至少80℃。
7.根据权利要求1-4中任一项所述的方法,其中所述蒸发器的工艺出口温度是至少90℃。
8.根据权利要求1-4中任一项所述的方法,其中所述产物包含醛。
9.根据权利要求1-4中任一项所述的方法,其中在所述蒸发器中,H2分压是0.7kPa到小于所述CO分压的一半。
10.根据权利要求1-4中任一项所述的方法,其中在所述蒸发器中,所述H2分压是0.7kPa到不超过所述CO分压的10%。
11.根据权利要求1-4中任一项所述的方法,其中通过以下获得所述反应流体:在氢甲酰化反应条件下,使反应区中的CO、H2、烯烃以及包含铑和有机亚磷酸酯配体的催化剂接触,产生所述反应流体中的醛产物。
12.根据权利要求1-4中任一项所述的方法,其中所述催化剂是过渡金属-有机亚磷酸酯配体络合物催化剂,其中所述配体包含有机单亚磷酸酯配体。
13.根据权利要求1-4中任一项所述的方法,其进一步包含将所述蒸发器中的平均H2分压维持在小于14kPa。
14.根据权利要求1-4中任一项所述的方法,其进一步包含在将所述反应流体传送到所述蒸发器之前,将所述反应流体传送到闪蒸容器。
CN201580064234.5A 2014-12-04 2015-11-18 氢甲酰化方法 Active CN107001218B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201462087572P 2014-12-04 2014-12-04
US62/087572 2014-12-04
PCT/US2015/061332 WO2016089602A1 (en) 2014-12-04 2015-11-18 Hydroformylation process

Publications (2)

Publication Number Publication Date
CN107001218A CN107001218A (zh) 2017-08-01
CN107001218B true CN107001218B (zh) 2021-02-26

Family

ID=54705909

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201580064234.5A Active CN107001218B (zh) 2014-12-04 2015-11-18 氢甲酰化方法

Country Status (13)

Country Link
US (1) US10023516B2 (zh)
EP (1) EP3230248B1 (zh)
JP (2) JP7128622B2 (zh)
KR (1) KR102507703B1 (zh)
CN (1) CN107001218B (zh)
BR (1) BR112017011447B1 (zh)
CA (1) CA2969527C (zh)
MX (1) MX2017006792A (zh)
MY (1) MY184826A (zh)
PL (1) PL3230248T3 (zh)
RU (1) RU2699368C2 (zh)
TW (1) TWI586644B (zh)
WO (1) WO2016089602A1 (zh)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108349863B (zh) * 2015-11-10 2021-07-27 陶氏技术投资有限责任公司 用于生产醛的方法
EP3414220B1 (en) 2016-02-11 2021-10-13 Dow Technology Investments LLC Processes for converting olefins to alcohols, ethers, or combinations thereof
CN107469860B (zh) * 2017-08-22 2020-05-19 中国海洋石油集团有限公司 一种提高铑/双亚膦酸酯催化剂稳定性的方法
TWI793216B (zh) 2017-12-07 2023-02-21 美商陶氏科技投資公司 氫甲醯化方法
JP7447116B2 (ja) * 2018-11-29 2024-03-11 ダウ テクノロジー インベストメンツ リミティド ライアビリティー カンパニー ヒドロホルミル化プロセス
GB201907659D0 (en) * 2019-05-30 2019-07-17 Johnson Matthey Davy Technologies Ltd Process
WO2021247177A1 (en) 2020-06-05 2021-12-09 SCION Holdings LLC Alcohols production
EP4161696A1 (en) * 2020-06-05 2023-04-12 Scion Holdings LLC Branched alcohols
GB202012930D0 (en) * 2020-08-19 2020-09-30 Johnson Matthey Davy Technologies Ltd Process for hydroformylation with removal of dissolved hydrogen
US20230242711A1 (en) 2020-10-13 2023-08-03 Dow Silicones Corporation Preparation of organosilicon compounds with aldehyde functionality
CN112403401B (zh) * 2020-11-06 2022-06-21 中国海洋石油集团有限公司 一种烯烃氢甲酰化制醛中醛和催化剂分离的装置和方法
US20230406801A1 (en) 2020-12-14 2023-12-21 Dow Technology Investments Llc Processes to improve catalytic metal accountability in hydroformylation processes
US20220194886A1 (en) 2020-12-17 2022-06-23 SCION Holdings LLC Branched Products
WO2023060154A1 (en) 2021-10-06 2023-04-13 Dow Global Technologies Llc Preparation of imine-functional organosilicon compounds and primary amino-functional organosilicon compounds
WO2023060155A1 (en) 2021-10-06 2023-04-13 Dow Global Technologies Llc Preparation of propylimine-functional organosilicon compounds and primary aminopropyl-functional organosilicon compounds
CN118019747A (zh) 2021-10-06 2024-05-10 陶氏环球技术有限责任公司 丙基亚胺官能化有机硅化合物和伯氨基丙基官能化有机硅化合物的制备
CN118103532A (zh) 2021-11-11 2024-05-28 陶氏技术投资有限责任公司 用于从加氢甲酰化过程中回收铑的方法
WO2023091868A2 (en) 2021-11-22 2023-05-25 Dow Global Technologies Llc Preparation of organosilicon compounds with carbinol functionality
WO2023114578A1 (en) 2021-12-16 2023-06-22 Dow Technology Investments Llc Transition metal complex hydroformylation catalyst precuror compositions comprising such compounds, and hydroformylation processes
WO2023114579A1 (en) 2021-12-16 2023-06-22 Dow Technology Investments Llc Compounds, transition metal complex hydroformylation catalyst precuror compositions comprising such compounds, and hydroformylation processes
WO2023183682A1 (en) 2022-03-21 2023-09-28 Dow Global Technologies Llc Preparation of organosilicon compounds with carboxy functionality
WO2023201154A1 (en) 2022-04-13 2023-10-19 Dow Global Technologies Llc Silicone - vinylester functional compounds and methods for their preparation and use in personal care compositions
WO2023201146A1 (en) 2022-04-13 2023-10-19 Dow Global Technologies Llc Preparation of organosilicon compounds with vinylester functionality
WO2023200684A1 (en) 2022-04-13 2023-10-19 Dow Silicones Corporation Composition, urethane prepolymer, and related methods and uses
WO2023201138A1 (en) 2022-04-13 2023-10-19 Dow Global Technologies Llc Preparation of polyether-functional organosilicon compounds
CN114773172B (zh) * 2022-06-20 2022-10-18 中海油天津化工研究设计院有限公司 一种烯烃氢甲酰化制醛工艺优化方法
GB202213997D0 (en) 2022-09-26 2022-11-09 Johnson Matthey Davy Technologies Ltd Parallel zone hydroformylation reaction

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4774361A (en) * 1986-05-20 1988-09-27 Union Carbide Corporation Transition metal complex catalyzed reactions

Family Cites Families (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3415906A (en) 1964-05-29 1968-12-10 Hooker Chemical Corp Phosphite phospholane and phosphorinane compounds
US3527809A (en) 1967-08-03 1970-09-08 Union Carbide Corp Hydroformylation process
US4148830A (en) 1975-03-07 1979-04-10 Union Carbide Corporation Hydroformylation of olefins
DE2646792C2 (de) 1975-10-23 1985-05-09 Mitsubishi Petrochemical Co., Ltd., Tokio/Tokyo Verfahren zur Herstellung einer &alpha;-(arylsubstituierten)-Propionsäure und/oder eines Esters derselben
US4247486A (en) 1977-03-11 1981-01-27 Union Carbide Corporation Cyclic hydroformylation process
US4518809A (en) 1981-06-11 1985-05-21 Monsanto Company Preparation of pentyl nonanols
US4528403A (en) 1982-10-21 1985-07-09 Mitsubishi Chemical Industries Ltd. Hydroformylation process for preparation of aldehydes and alcohols
GB8334359D0 (en) 1983-12-23 1984-02-01 Davy Mckee Ltd Process
US4599206A (en) 1984-02-17 1986-07-08 Union Carbide Corporation Transition metal complex catalyzed reactions
ZA851189B (en) * 1984-02-17 1985-09-25 Union Carbide Corp Transition metal complex catalyzed reactions
US5110990A (en) 1984-03-30 1992-05-05 Union Carbide Chemicals & Plastics Technology Corporation Process for recovery of phosphorus ligand from vaporized aldehyde
US4567302A (en) 1984-07-20 1986-01-28 Angus Chemical Polymeric quaternary ammonium salts possessing antimicrobial activity and methods for preparation and use thereof
US4737588A (en) 1984-12-28 1988-04-12 Union Carbide Corporation Transition metal complex catalyzed reactions
US4885401A (en) 1985-09-05 1989-12-05 Union Carbide Corporation Bis-phosphite compounds
US4668651A (en) 1985-09-05 1987-05-26 Union Carbide Corporation Transition metal complex catalyzed processes
US4748261A (en) 1985-09-05 1988-05-31 Union Carbide Corporation Bis-phosphite compounds
US4835299A (en) 1987-03-31 1989-05-30 Union Carbide Corporation Process for purifying tertiary organophosphites
US5113022A (en) 1988-08-05 1992-05-12 Union Carbide Chemicals & Plastics Technology Corporation Ionic phosphites used in homogeneous transition metal catalyzed processes
US5001274A (en) 1989-06-23 1991-03-19 Union Carbide Chemicals And Plastics Company Inc. Hydroformylation process
US5277532A (en) 1989-07-31 1994-01-11 Cefin S.P.A. Mechanical acceleration device in can welding machines
DE4026406A1 (de) 1990-08-21 1992-02-27 Basf Ag Rhodiumhydroformylierungskatalysatoren mit bis-phosphit-liganden
US5179055A (en) 1990-09-24 1993-01-12 New York University Cationic rhodium bis(dioxaphosphorus heterocycle) complexes and their use in the branched product regioselective hydroformylation of olefins
US5102505A (en) 1990-11-09 1992-04-07 Union Carbide Chemicals & Plastics Technology Corporation Mixed aldehyde product separation by distillation
TW213465B (zh) 1991-06-11 1993-09-21 Mitsubishi Chemicals Co Ltd
US5360938A (en) 1991-08-21 1994-11-01 Union Carbide Chemicals & Plastics Technology Corporation Asymmetric syntheses
DE4204808A1 (de) 1992-02-18 1993-08-19 Basf Ag Verfahren zur herstellung von (omega)-formylalkancarbonsaeureestern
US5312996A (en) 1992-06-29 1994-05-17 Union Carbide Chemicals & Plastics Technology Corporation Hydroformylation process for producing 1,6-hexanedials
US5364950A (en) 1992-09-29 1994-11-15 Union Carbide Chimicals & Plastics Technology Corporation Process for stabilizing phosphite ligands in hydroformylation reaction mixtures
FR2700535B1 (fr) 1993-01-19 1995-04-14 Hoechst France Procédé continu de fabrication industrielle du diméthoxyéthanal.
US5426238A (en) 1993-06-10 1995-06-20 Mitsubishi Kasei Corporation Method for producing an aldehyde
BE1008017A3 (nl) 1994-01-06 1995-12-12 Dsm Nv Werkwijze voor de bereiding van 5-formylvaleriaanzure ester.
US5756855A (en) 1994-08-19 1998-05-26 Union Carbide Chemicals & Plastics Technology Corporation Stabilization of phosphite ligands in hydroformylation process
US5648553A (en) 1994-12-09 1997-07-15 Mitsubishi Chemical Corporation Method for producing aldehydes
DE19530698A1 (de) 1995-08-21 1997-02-27 Basf Ag Verfahren zur Aufarbeitung eines flüssigen Hydroformylierungsaustrags
US5731472A (en) 1995-12-06 1998-03-24 Union Carbide Chemicals & Plastics Technology Corporation Metal-ligand complex catalyzed processes
US5731473A (en) 1995-12-06 1998-03-24 Union Carbide Chemicals & Plastics Technology Corporation Metal-ligand complex catalyzed processes
JP3812095B2 (ja) 1997-10-28 2006-08-23 三菱化学株式会社 アルデヒド類の製造方法及びこれに用いるビスホスファイト
DE19913352A1 (de) 1999-03-24 2000-09-28 Basf Ag Katalysator, umfassend einen Komplex eines Metalls der VIII. Nebengruppe auf Basis eines Phospinamiditliganden
DE10048301A1 (de) 2000-09-29 2002-04-11 Oxeno Olefinchemie Gmbh Stabilisierung von Rhodiumkatalysatoren für die Hydroformylierung von Olefinen
US6869904B2 (en) 2002-04-24 2005-03-22 Symyx Technologies, Inc. Bridged bi-aromatic ligands, catalysts, processes for polymerizing and polymers therefrom
CA2575122C (en) 2004-08-02 2013-06-25 Union Carbide Chemicals & Plastics Technology Corporation Stabilization of a hydroformylation process
WO2008115740A1 (en) 2007-03-20 2008-09-25 Union Carbide Chemicals & Plastics Technology Llc Hydroformylation process with improved control over product isomers
KR101060375B1 (ko) 2007-05-29 2011-08-29 주식회사 엘지화학 하이드로포르밀화 방법 및 장치
MX2010014570A (es) * 2008-07-03 2011-08-15 Dow Technology Investments Llc Proceso para controlar pesados en una corriente de catalizador de reciclado.
KR101310552B1 (ko) 2010-04-20 2013-09-23 주식회사 엘지화학 올레핀의 하이드로포르밀화에 의한 알데히드 제조 방법
CN102906129B (zh) 2010-05-17 2015-02-25 陶氏环球技术有限责任公司 选择性聚合乙烯的方法及其催化剂
CN102826972B (zh) 2011-06-17 2015-05-13 中国石油化工股份有限公司 一种烯烃氢甲酰化反应制备醛的方法
EP2794693B1 (en) 2011-12-20 2020-09-23 Dow Global Technologies LLC Ethylene/alpha-olefin/nonconjugated polyene interpolymers and processes to form the same
DE102012223572A1 (de) 2012-12-18 2014-06-18 Evonik Industries Ag Steuerung der Viskosität von Reaktionslösungen in Hydroformylierungverfahren

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4774361A (en) * 1986-05-20 1988-09-27 Union Carbide Corporation Transition metal complex catalyzed reactions

Also Published As

Publication number Publication date
CN107001218A (zh) 2017-08-01
KR20170093152A (ko) 2017-08-14
JP2021008477A (ja) 2021-01-28
MX2017006792A (es) 2017-09-08
EP3230248A1 (en) 2017-10-18
CA2969527C (en) 2023-08-22
CA2969527A1 (en) 2016-06-09
MY184826A (en) 2021-04-24
US10023516B2 (en) 2018-07-17
RU2017121307A (ru) 2018-12-19
BR112017011447B1 (pt) 2020-12-15
RU2699368C2 (ru) 2019-09-05
JP2017537918A (ja) 2017-12-21
US20170355656A1 (en) 2017-12-14
KR102507703B1 (ko) 2023-03-09
PL3230248T3 (pl) 2020-05-18
TWI586644B (zh) 2017-06-11
TW201620863A (zh) 2016-06-16
WO2016089602A1 (en) 2016-06-09
BR112017011447A2 (pt) 2018-02-27
EP3230248B1 (en) 2019-12-25
RU2017121307A3 (zh) 2019-02-01
JP7128622B2 (ja) 2022-08-31

Similar Documents

Publication Publication Date Title
CN107001218B (zh) 氢甲酰化方法
KR102362007B1 (ko) 하이드로포르밀화 공정
US10478812B2 (en) Methods to store transition metal organophosphorous ligand based catalysts
JP7187556B2 (ja) ヒドロホルミル化プロセス
US11033890B2 (en) Processes for recovery of rhodium from a hydroformylation process
US9382180B2 (en) Hydroformylation process
JP6885963B2 (ja) オレフィンを、アルコール、エーテル、またはそれらの組み合わせに転化するためのプロセス
US9539566B2 (en) Catalyst preparation process
US20220143590A1 (en) Process to prepare solution from hydroformylation process for precious metal recovery

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant