TWI565111B - 磁性穿隧接面(mtj)自旋霍爾磁性隨機存取記憶體(mram)位元胞及陣列 - Google Patents

磁性穿隧接面(mtj)自旋霍爾磁性隨機存取記憶體(mram)位元胞及陣列 Download PDF

Info

Publication number
TWI565111B
TWI565111B TW103121368A TW103121368A TWI565111B TW I565111 B TWI565111 B TW I565111B TW 103121368 A TW103121368 A TW 103121368A TW 103121368 A TW103121368 A TW 103121368A TW I565111 B TWI565111 B TW I565111B
Authority
TW
Taiwan
Prior art keywords
mtj
bit line
write
layer
metal
Prior art date
Application number
TW103121368A
Other languages
English (en)
Other versions
TW201517337A (zh
Inventor
沙西坎斯 曼尼佩楚尼
狄米崔 尼可諾夫
艾恩 楊
Original Assignee
英特爾股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 英特爾股份有限公司 filed Critical 英特爾股份有限公司
Publication of TW201517337A publication Critical patent/TW201517337A/zh
Application granted granted Critical
Publication of TWI565111B publication Critical patent/TWI565111B/zh

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/161Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1653Address circuits or decoders
    • G11C11/1655Bit-line or column circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1659Cell access
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1673Reading or sensing circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1675Writing or programming circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/18Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using Hall-effect devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • H10B61/20Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • H10B61/20Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors
    • H10B61/22Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors of the field-effect transistor [FET] type
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B69/00Erasable-and-programmable ROM [EPROM] devices not provided for in groups H10B41/00 - H10B63/00, e.g. ultraviolet erasable-and-programmable ROM [UVEPROM] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N52/00Hall-effect devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Mram Or Spin Memory Techniques (AREA)
  • Hall/Mr Elements (AREA)
  • Semiconductor Memories (AREA)
  • Logic Circuits (AREA)

Description

磁性穿隧接面(MTJ)自旋霍爾磁性隨機存取記憶體(MRAM)位元胞及陣列
本發明係關於一種磁性穿隧接面(MTJ)自旋霍爾磁性隨機存取記憶體(MRAM)位元胞及陣列。
具有非揮發性的晶片上嵌入式記憶體能致能能量及計算效率。然而,諸如STT-MRAM(自旋轉移力矩磁性隨機存取記憶體)的領導嵌入式記憶體選擇在編程(亦即,寫入)位元胞期間遭受高電壓及高電流密度問題。
圖1描繪用於STT-MRAM的二終端1T-1MTJ(磁性穿隧接面)位元胞100。用於位元胞100的讀取及寫入電流路徑係等同的,導致許多設計取捨。例如,在讀取操作期間,期望MTJ裝置的電阻比寫入操作期間更高。然而,將相同電流路徑用於傳送讀取及寫入電流妨礙具有用於讀取及寫入操作的不同電阻。為將邏輯高位準寫至位元胞100,將位元線相對於源極(或選擇)線提昇, 且為將邏輯低位準寫至位元胞100,將位元線相對於源極線降低。為從位元胞100讀取,將源極線設定成邏輯低位準並使用弱電流感測MTJ電阻(例如,寫入電流的1/8)。
1T-1MTJ位元胞100可具有以穿隧接面為基之MTJ的大寫入電流(例如,大於100μA)及大電壓(例如,大於0.7V)要求。以MTJ為基之MRAM中的1T-1MTJ位元胞100可具有高寫入錯誤率或低速度切換(例如,超過20ns)。1T-1MTJ位元胞100也可由於磁性穿隧接面中的穿隧電流而具有可靠性問題。例如,MTJ裝置中的絕緣層係抗拒大電流流的障壁(例如,1KΩ至10KΩ),且較低的電流流導致較高的寫入錯誤。
100、200、300、500‧‧‧位元胞
201‧‧‧GSHE金屬
220‧‧‧材料堆疊
230、330、340‧‧‧頂視圖
240、530、540‧‧‧橫剖面圖
320‧‧‧橫剖面圖
400‧‧‧寫入操作
401、421‧‧‧1T-1MTJ SHE MRAM
402、422、520‧‧‧佈置
420‧‧‧讀取操作
600‧‧‧陣列
700、704、705、800‧‧‧圖
701、702、703‧‧‧GSHE-MTJ裝置
1600‧‧‧計算裝置
1610、1690‧‧‧處理器
1620‧‧‧音訊次系統
1630‧‧‧顯示次系統
1632‧‧‧顯示介面
1640‧‧‧I/O控制器
1650‧‧‧電源管理
1660‧‧‧記憶體次系統
1670‧‧‧連接性
1672‧‧‧蜂巢式連接性
1674‧‧‧無線連接性
1680‧‧‧周邊連接
1682‧‧‧至
1684‧‧‧來自
AA、BB‧‧‧虛線
BL‧‧‧位元線
M1‧‧‧電晶體
M0C、M0B、M2B‧‧‧金屬段
MTJ‧‧‧磁性穿隧接面
SL‧‧‧源極線
TCN‧‧‧金屬層
V1、V2、V3、V4‧‧‧穿孔
WL‧‧‧字線
本揭示發明的實施例將從以下提供的詳細描述及本揭示發明之各種實施例的隨附圖式而更完整地理解,然而,彼等不應用於將本揭示發明限制在該等具體實施例,而僅用於解釋及理解。
圖1描繪用於STT-MRAM的二終端1T-1MTJ位元胞。
圖2A係根據本揭示發明之一實施例的1T-1MTJ自旋霍爾效應(SHE)MRAM位元胞。
圖2B描繪根據本揭示發明的一實施例之用於以巨SHE(GSHE)自旋力矩交換為基之1T-1MTJ的典型 材料堆疊。
圖2C係圖2B之裝置的頂視圖。
圖2D顯示如藉由金屬中的SHE所決定之自旋電流及電荷電流的方向。
圖3A-C係根據本揭示發明的一實施例之1T-1MTJ SHE MRAM位元胞的佈置。
圖3D係根據本揭示發明的一實施例之二個1T-1MTJ SHE MRAM位元胞的橫剖面圖之佈置的頂視圖。
圖4A-B描繪根據本揭示發明的一實施例之1T-1MTJ SHE MRAM的差動讀取及寫入操作。
圖5A-D係根據本揭示發明的另一實施例之1T-1MTJ SHE MRAM位元胞的佈置。
圖6係根據本揭示發明的一實施例之1T-1MTJSHE MRAM位元胞的陣列。
圖7係根據一實施例之用於相對於習知MTJ的1T-1MTJ SHE MRAM位元胞之寫入能量-延遲條件的圖。
圖8係根據一實施例之用於1T-1MTJ SHE MRAM位元胞與習知MTJ的可靠寫入時間的圖。
圖9係根據本揭示發明的一實施例之具有1T-1MTJ SHE MRAM位元胞的智慧型裝置或電腦系統或SoC(系統單晶片)。
【發明內容及實施方式】
實施例描述MTJ(磁性穿隧接面)SHE(自旋霍爾效應)MRAM(磁性隨機存取記憶體)位元胞。在一實施例中,位元胞包含選擇線或源極線;具有SHE材料的互連體,該互連體耦接至寫入位元線;耦接至該選擇線及該互連體的電晶體,該電晶體可由字線控制;及具有耦接至該互連體之自由磁性層的MTJ裝置,其中該MTJ裝置的一端耦接至讀取位元線。在一實施例中,該位元胞係1T(一電晶體)-1MTJ SHE位元胞。實施例也描述用於MTJ SHE MRAM位元胞之佈置的技術。
MTJ SHE MRAM位元胞經由產生高自旋注入效應的巨自旋霍爾效應(GSHE)提供高度緊密的RAM。實施例的部分非限制性技術效應係藉由GSHE致能低編程電壓(或等同電壓的更高電流);實現較低的寫入錯誤率以致能更快的MRAM(例如,少於10ns);將寫入及讀取路徑去耦合以致能更快的讀取延遲;實現容許電流注入或更高電流的低電阻寫入操作以得到MTJ的超快切換行為;以超越寫入電流及超越習知MTJ的程度顯著地降低讀取電流(例如,相較於用於額定寫入操作的100μA電流,少於10μA的讀取電流);及穿隧氧化物的經改善可靠性及實現MTJ等。
在以下描述中,討論許多細節以提供對本揭示發明之實施例的更徹底解釋。然而,可能實現本揭示發明的實施例而無需此等具體細節對熟悉本發明之人士將係明 顯的。在其他實例中,已為人熟知的結構及裝置係以方塊圖而非詳細形式顯示,以避免混淆本揭示發明的實施例。
須注意在實施例的對應圖式中,訊號係以線表示。相同線可能更厚,以指示更多的構成訊號路徑,及/或在一或多端具有箭號,以指示主資訊流方向。不將此種指示視為係限制。更確切地說,該等線結合一或多個例示實施例使用以促進對電路或邏輯單元的更輕易的理解。任何已呈現訊號,如設計需要或偏好所決定的,可能實際包含在任一方向上行進的一或多個訊號並可能以任何合適的訊號格式種類實作。
在本說明書各處及在申請專利範圍中,術語「連接」意指在已連接事物間的直接電連接,沒有任何中間裝置。術語「耦接」意指已連接事物之間的直接電連接或經由一或多個被動或主動中間裝置間接連接的其中一者。術語「電路」意指配置成與另一者合作以提供期望功能的一或多個被動及/或主動組件。術語「訊號」意指至少一種電流訊號、電壓訊號、或資料/時鐘訊號。「一」及「該」的意義包括複數個指涉。「在…中」的意義包括「在…中」及「在…上」。
術語「縮放」通常指將設計(電路及佈局)從一處理技術轉換至另一處理技術。術語「縮放」通常也指在相同技術節點內縮減佈局及裝置的尺寸。術語「縮放」也可能指訊號頻率相對於另一參數,例如,電源供應位準,調整(例如,減緩)。術語「實質上」、「接近」、 「幾乎」、「靠近」、及「大約」通常指在目標值的+/-20%內。
除非另有指定,使用有序形容辭「第一」、「第二」、及「第三」等描述共同物件僅指示所指稱之相似物件的不同實例,且未意圖暗示如此描述的物件必須在時間上、在空間上、在順序上、或在任何其他方式上採用給定的次序。
針對實施例的目的,該等電晶體係金屬氧化物半導體(MOS)電晶體,包括汲極、源極、閘極、及大型終端。電晶體也包括三閘極及鰭式場效應電晶體、閘極全環繞式圓柱形電晶體、或實作電晶體功能的其他裝置,諸如,碳奈米管或自旋裝置。源極及汲極終端可能係完全相同的終端且在本文中互換地使用。熟悉本技術的人士將理解可能使用其他電晶體,例如,雙極性接面電晶體-BJT PNP/NPN、BiCMOS、CMOS、eFET等,而不脫離本揭示發明的範圍。術語「MN」係指n-型電晶體(例如,NMOS、NPN BJT等),且術語「MP」係指p-型電晶體(例如,PMOS、PNP BJT等)。
圖2A係根據本揭示發明之一實施例的1T-1MTJ SHE MRAM位元胞200。需指出具有與任何其他圖式之元件相同的參考數字(或名稱)之圖2A的此等元件可用與所描述之元件相似的任何方式操作或運作,但未受限於此。
在一實施例中,位元胞200係相對於二終端位 元胞100的三終端裝置。在此實施例中,將讀取及寫入位元線(BL)終端彼此去耦合形成第一二終端,且亦稱為選擇線的源極線(SL)形成第三終端。在一實施例中,位元胞200包含MTJ裝置,該裝置具有與其係呈現SHE性質的金屬之GSHE金屬直接接觸的自由磁性層。在一實施例中,位元胞200包含電晶體M1,其汲極/源極終端的一者耦接至GSHE金屬201(亦稱為形成自SHE材料的互連體),且其源極/汲極終端的另一者耦接至SL。在一實施例中,電晶體M1係n-型電晶體,例如,NMOS。在一實施例中,電晶體M1係p-型電晶體。
能將材料的廣泛組合使用為MTJ裝置的材料堆疊。在此實施例中,材料的堆疊包括:CoxFeyBz、MgO、CoxFeyBz、Ru、CoxFeyBz、IrMn、Ru、Ta、及Ru,其中「x」、「y」、及「z」係整數。在其他實施例中,可使用其他材料以形成包括固定磁性層及自由磁性層的MTJ裝置。
在一實施例中,GSHE金屬201專屬於該MTJ裝置,亦即,其不與其他MTJ裝置共享。在一實施例中,將GSHE金屬201直接耦接至寫入BL。在一實施例中,將讀取BL耦接至MTJ裝置的另一終端。在一實施例中,將字線(WL)耦接至電晶體M1的閘極終端。在一實施例中,選擇電晶體M1係以飽和模式放置以克服高縮放MRAM陣列中的既存限制。
在一實施例中,為寫入資料至位元胞200,將 自旋電流注入與形成自SHE材料的互連體直接接觸之MTJ裝置中的自由磁性層中。在一實施例中,為從位元胞200讀取資料,感測放大器感測讀取BL及SL。
位元胞200有數個超越位元胞100的優點。例如,將位元胞200的寫入及讀取操作彼此去耦合容許具有非常低的BER(位元錯誤率)的高度優化寫入操作,例如,少於10ns。其他優點包括,例如,讀取路徑電阻現在能針對讀取感測放大器需求優化;由於自旋霍爾強化而實現約100%或更高之自旋注入效率的可行性;相較於位元胞100的密度,更小或相等的密度。
圖2B描繪根據本揭示發明的一實施例之用於以GSHE自旋力矩交換為基之1T-1MTJ的典型材料堆疊220。在一實施例中,MTJ堆疊包含自由磁性層(FM1)、MgO穿隧氧化物、具有人工反鐵磁(SAF)-CoFe/Ru底質-及反鐵磁(AFM)的固定磁性層(FM2)。SAF層容許取消自由磁性層周圍的偶極場。能將材料的廣泛組合用於材料堆疊。
寫入電極包含以,諸如,銥、鉍及週期表中的3d、4d、5d、及4f、5f週期群之任何元素摻雜的β-鉭(β-Ta)、β-鎢(β-W)、Pt、銅(Cu)製造的GSHE金屬(與圖2A的201相同)。在一實施例中,將寫入電極轉換為正常高導電性金屬(例如,Cu)以最小化寫入電極電阻。
圖2C係圖2B之裝置的頂視圖230。在圖2C 中,磁鐵針對適當的自旋注入沿著GSHE電極的寬度定向。磁性胞係藉由經由GSHE電極施加電荷電流而寫入。磁性寫入的方向係由所施加之電荷電流的方向決定。正電流(沿著+y)產生具有傳輸方向(沿著+z)且指向(+x)方向之自旋的自旋注入電流。
圖2D係顯示如金屬中的SHE所決定之自旋電流及電荷電流的方向之GSHE材料的橫剖面圖240。經注入自旋電流依次產生自旋力矩以在+x或-x方向上對準磁鐵。將用於寫入電極中之電荷電流()的橫向自旋電流(具有自旋方向)表示為: 其中係橫向自旋電流對縱向電荷電流之幅度比率的自旋霍爾注入效率、「w」係磁鐵的寬度、「t」係GSHE金屬電極的厚度、λsf係GSHE金屬中的自旋翻轉長度、θGSHE係GSHE金屬對FM1介面的自旋霍爾角。將負責自旋力矩的經注入自旋角動量表示為:
圖3A-C係根據本揭示發明的一實施例之1T-1MTJ SHE MRAM位元胞的佈置。需指出具有與任何其他圖式之元件相同的參考數字(或名稱)之圖3A-C的此等元件可用與所描述之元件相似的任何方式操作或運作,但未受限於此。
圖3A係1T-1MTJ SHE MRAM位元胞300的 實施例,其中SL係以零階金屬(M0)形成、寫入BL係以第二金屬層(M2)形成、讀取BL係以第四金屬層(M4)形成、且MTJ裝置形成在專用於第三金屬層(M3)的區域中。在此實施例中,M0係最接近電晶體M1(亦即,最接近擴散區)的層、M2在M1之上、M3在M2之上、且M4在M3之上。
在此實施例中,位元胞300包含具有藉由字線WL控制之閘極的選擇電晶體M1。在一實施例中,位元胞300的寫入終端經由型樣化以與MTJ之自由磁性層產生接觸的底電極耦接。在一實施例中,寫入電流係藉由偏壓型樣化為垂直於位元胞300之字線的M2及M0而提供。
在一實施例中,選擇線係以M2形成、寫入BL係以M4形成、讀取BL係以第六金屬層(M6)形成、並將MTJ裝置定位在專用於第五金屬層(M5)的區域中,亦即,使用穿孔V5、M5、及穿孔V6的區域。在此實施例中,M5在M4之上、且M6在M5之上。在另一實施例中,選擇線係以M4形成、寫入BL係以M6形成、讀取BL係以第八金屬層(M8)形成、並將MTJ裝置定位在專用於第七金屬層(M7)的區域中,亦即,使用穿孔V7、M7、及穿孔V8的區域。在此實施例中,M7在M6之上、且M8在M7之上。
圖3B係根據本揭示發明的一實施例之1T-1MTJ SHE MRAM位元胞300的橫剖面圖320。在一實施 例中,將電晶體M1的源極及汲極區域耦接至金屬層TCN並依次分別耦接至M0C及M0B線,其中M0C及M0B係M0層中的金屬段。在一實施例中,M0C係用於陣列中之一列位元胞的連續線。在一實施例中,將源極線(SL)耦接至M0C。在一實施例中,經由穿孔V1、第一金屬層(M1)、及穿孔V2,將M0B耦接至M2層。在一實施例中,穿孔V2耦接至M2B(M2層中的段)並經由M2C間接耦接至寫入BL。在一實施例中,M2B經由穿孔V2、M1的另一段、且如點區域所示地經由耦接至M1的另一穿孔V2回到M2C而耦接至M2C。在一實施例中,MTJ裝置位於穿孔V3、M3、及穿孔V4的區域中。將MTJ裝置的一端經由穿孔V3耦接至M2B,同時將MTJ裝置的另一端經由穿孔V4耦接M4上的讀取BL。在此實施例中,M2B係具有SHE材料的金屬。
圖3C係根據本揭示發明的一實施例之1T-1MTJ SHE MRAM位元胞300的橫剖面圖320之佈置的頂視圖330。MTJ層位於佔據V3-M3-V4之垂直位置的CMOS堆疊的背端。
圖3D係根據本揭示發明的一實施例之二個1T-1MTJ SHE MRAM位元胞300的橫剖面圖320之佈置的頂視圖340。在此實施例中,互連體性顯示M2C(在M2上)BL寫入、M4 BL讀取、及M0 SL在位元胞之間共享。在此實施例中,直接耦接至二位元胞之個別MTJ裝置的自由磁性層之具有SHE材料的區域互連體未於位 元胞之間共享,亦即,SHE互連體未與位元胞行的相鄰胞共享。
圖4A-B描繪根據本揭示發明的一實施例之1T-1MTJ SHE MRAM的差動讀取及寫入操作。需指出具有與任何其他圖式之元件相同的參考數字(或名稱)之圖4A-B的此等元件可用與所描述之元件相似的任何方式操作或運作,但未受限於此。在一實施例中,位元胞300致能差動(雙端)讀取及寫入操作以致能寫入1及0以及經改善讀取功能。
圖4A描繪1T-1MTJ SHE MRAM 401(其與圖3A的300相同)的寫入操作400。佈置402對應於圖3C的佈置330。此處,僅顯示說明寫入操作路徑的佈置部分。在此實施例中,因為自旋霍爾材料僅存在於各位元胞的第二M2線上,相鄰胞未由該行中的寫入電流所干擾。在一實施例中,寫入電流係藉由偏壓型樣化為垂直於位元胞300之字線的M2及M0而提供。
圖4B描繪1T-1MTJ SHE MRAM 421(其與圖3A的300相同)的讀取操作420。佈置422對應於圖3C的佈置330。此處,僅顯示說明寫入操作路徑的佈置部分。在讀取操作期間,將M4及M0耦接至感測放大器(未圖示)。在此實施例中,電流從M4(讀取BL)經由MTJ流入電晶體M1至M0 SL。MTJ上的雙圓指示流入電晶體M1之汲極/源極區域並出來至M0 SL之讀取電流的方向。
圖5A-D係根據本揭示發明的另一實施例之1T-1MTJ SHE MRAM位元胞的佈置。需指出具有與任何其他圖式之元件相同的參考數字(或名稱)之圖5A-D的此等元件可用與所描述之元件相似的任何方式操作或運作,但未受限於此。
圖5A係1T-1MTJ SHE MRAM位元胞500的實施例,其中SL係以M0形成、寫入BL係以M0形成、讀取BL係以M4形成、且MTJ裝置形成在專用於M3的區域中。在此實施例中,位元胞500包含具有藉由字線WL控制之閘極的選擇電晶體M1。在一實施例中,位元胞的寫入終端經由型樣化以與MTJ之自由磁性層產生接觸的底電極耦接。在此實施例中,MTJ裝置位於層V2-M2-V3中。
圖5B係1T-1MTJ SHE MRAM位元胞500的佈置520。虛線AA及BB分別顯示在圖5C及5D中。在此實施例中,MTJ裝置位於層V2-M2-V3中。由於在MTJ堆疊位置上的改變,位元胞520的面積比位元胞330的面積放大30%。然而,維持差動寫入及讀取操作。在一實施例中,為降低面積增加的影響,M0-BL寫入在二相鄰行之間共享。
圖5C顯示根據一實施例之與磁鐵的長度平行之區段AA的橫剖面圖530。在此實施例中,SL係形成在M0-C層上(亦即,在M0上)。在此實施例中,SHE材料位於M1區域上並直接耦接至MTJ裝置的自由磁性層。 讀取BL在M4上並經由穿孔V4、M3的段、及穿孔V3耦接至MTJ裝置。觸墊「y」將電晶體M1之源極/汲極終端的一者耦接至以SHE材料為底質的M1層。圖5D顯示根據一實施例之與磁鐵的長度垂直之區段BB的橫剖面圖540。在此實施例中,寫入BL、讀取BL、及選擇線平行並在相同方向上流動以致能MTJ的差動寫入。
圖6係根據本揭示發明的一實施例之1T-1MTJ SHE MRAM位元胞的陣列600。需指出具有與任何其他圖式之元件相同的參考數字(或名稱)之圖6的此等元件可用與所描述之元件相似的任何方式操作或運作,但未受限於此。為不混淆實施例,顯示具有三水平列及四垂直行之MRAM的3×4陣列。然而,實施例可應用至任何陣列尺寸。
在此實施例中,陣列600包含複數個MTJ位元胞,亦即,在M0上的複數條選擇線(SL),亦即,M0 SL1-3、複數條寫入位元線-BL1-3寫入;複數條讀取位元線-BL1-3讀取、具有耦接至複數個MTJ裝置的對應自由磁性層之SHE材料的複數個互連體,使得SHE互連體不在MTJ裝置之間共享;及複數列電晶體,其中將各列中的電晶體耦接至複數條選擇線之選擇線的一者;且其中將電晶體列中的複數個互連體的各互連體耦接至寫入位元線的一者。在一實施例中,將複數條讀取位元線各者耦接至複數列MTJ裝置之中的一列MTJ裝置。位元胞可根據此揭示發明的任何實施例實作。
圖7係根據一實施例之用於相對於習知MTJ的1T-1MTJ SHE MRAM位元胞之寫入能量-延遲條件的圖700。x-軸係能量(fJ/寫入)且y-軸至以奈秒為單位的延遲。圖700顯示五個波型。圖700比較當經施用寫入電壓改變時,用於平面內磁鐵切換的GSHE及MTJ(GSHE-MTJ)裝置的能量-延遲軌跡。能將能量-延遲軌跡(針對平面內磁鐵切換)寫為: 其中Rwrite係裝置(RGSHE或RMTJ-P、RMTJ-AP)的寫入電阻、「P」係自旋電流極性(PGSHE或PMTJ)、μ0係真空磁導率、且「e」係電子電荷。在給定延遲的能量直接比例於吉柏阻尼的平方。當自旋極性對各種GSHE金屬電極改變時,改變。將自旋霍爾電極之自旋霍爾極性、阻尼、及電阻率的組合效果畫在圖700中。
在圖700中考慮的所有情形均假設具有40kT熱能量障壁及3.5nm GSHE電極厚度的30×60nm的磁鐵。該等裝置的能量-延遲軌跡係依據經縮放CMOS的電壓限制假設從0-0.7V的電壓掃掠而得到。GSHE-MTJ裝置的能量-延遲軌跡大致呈現二操作區域。將能量延遲乘積大致為常數的區域1表示如下: 將能量比例於延遲的區域2表示為: 二區域藉由在以下方程式的能量最小值分離:τ opt =M s Ve/I c Pμ B (6)其中最小切換能量對自旋力矩裝置得到。
STT-MTJ裝置的能量-延遲軌跡(圖704及705)受限於在0.7V最大施加電壓的平面內裝置的1ns最小延遲,P-AP及AP-P的切換能量在1pJ/寫入的範圍中。相反地,GSHE-MTJ(平面內各向異性)裝置701、702、及703的能量-延遲軌跡能致能低達20ps的切換時間(具有0.7V,20fJ/位元的β-W)或小至2fJ的切換能量(具有0.1V,1.5ns切換時間的β-W)。圖700顯示具有相同能量的1T-1 SHE MTJ裝置呈現較低的寫入操作延遲。
圖8係根據一實施例之用於1T-1MTJ SHE MRAM位元胞與習知MTJ的可靠寫入時間的圖800。圖800顯示使用耦接有蘭道-李佛西茲-吉爾伯特(Landau-Lifshitz-Gilbert)奈米磁鐵動力學的位元胞電路模擬之1T-1 SHE MTJ裝置的寫入時間。自旋霍爾MTJ顯示相對垂直及平面內MTJ的顯著寫入時間改善。
圖9係根據本揭示發明的一實施例之具有1T-1MTJ SHE MRAM位元胞的智慧型裝置或電腦系統或SoC (系統單晶片)。需指出具有與任何其他圖式之元件相同的參考數字(或名稱)之圖9的此等元件可用與所描述之元件相似的任何方式操作或運作,但未受限於此。
圖9描繪可將平面介面連接器使用於其中的行動裝置之實施例的方塊圖。在一實施例中,計算裝置1600代表行動計算裝置,諸如,計算平板電腦、行動電話或智慧型手機、無線致能的電子書閱讀器、或其他無線行動裝置。將理解通常顯示特定組件,且未將此種裝置的所有組件顯示在計算裝置1600中。
在一實施例中,計算裝置1600包括具有根據所討論的實施例之MTJ SHE MRAM位元胞的第一處理器1610。計算裝置1600的其他區塊也可包括實施例的MTJ SHE MRAM位元胞。本揭示發明的各種實施例也可能包含在1670內的網路介面,諸如,無線介面,使得可能將系統實施例併入無線裝置中,例如,行動電話或個人數位助理。
在一實施例中,處理器1610(及處理器1690)可包括一或多個實體裝置,諸如,微處理器、應用處理器、微控制器、可程式化邏輯裝置、或其他處理機構。由處理器1610實施的處理操作包括執行在其上執行應用程式及/或裝置功能的操作平台或作業系統。處理操作包括與人類使用者或與其他裝置的I/O(輸入/輸出)相關的操作,相關於電源管理的操作、及/或相關於將計算裝置1600連接至另一裝置的操作。處理操作也可能包括 相關於音訊I/O及/或顯示I/O的操作。
在一實施例中,計算裝置1600包括音訊次系統1620,其代表與將音訊功能提供給計算裝置關聯的硬體(例如,音訊硬體及音訊電路)及軟體(例如,驅動程式、編碼解碼器)組件。音訊功能可包括揚聲器及/或耳機輸出,以及麥克風輸入。可將用於此種功能的裝置積集入計算裝置1600中,或連接至計算裝置1600。在一實施例中,使用者藉由提供由處理器1610接收及處理的音訊指令與計算裝置1600互動。
顯示次系統1630代表提供使用者視覺及/或觸覺顯示以與計算裝置1600互動的硬體(例如,顯示裝置)及軟體(例如,驅動程式)組件。顯示次系統1630包括顯示介面1632,其包括用於提供顯示給使用者的特定螢幕或硬體裝置。在一實施例中,顯示介面1632包括與處理器1610分離的邏輯,以實施與顯示相關的至少部分處理。在一實施例中,顯示次系統1630包括將輸出及輸入提供給使用者的觸控螢幕(或觸控板)裝置。
I/O控制器1640代表與使用者互動有關的硬體裝置及軟體組件。可操作I/O控制器1640以管理係音訊次系統1620及/或顯示次系統1630之一部分的硬體。此外,I/O控制器1640描繪額外裝置連接至計算裝置1600的連接點,使用者可能經由其與系統互動。例如,可附接至計算裝置1600的裝置可能包括麥克風裝置、揚聲器或立體系統、視訊系統或其他顯示裝置、鍵盤或鍵板裝置、 或用於特定應用的其他I/O裝置,諸如,讀卡機或其他裝置。
如上文提及的,I/O控制器1640可與音訊次系統1620及/或顯示次系統1630互動。例如,經由麥克風或其他音訊裝置的輸入可針對計算裝置1600之一或多個應用程式或功能提供輸入或命令。此外,除了顯示輸出外,可提供音訊輸出或以音訊輸出取代顯示輸出。在另一範例中,若顯示次系統1630包括觸控螢幕,顯示裝置也作為輸入裝置使用,其可至少部分地由I/O控制器1640管理。也可有額外按鍵或開關在計算裝置1600上,以提供由I/O控制器1640管理的I/O功能。
在一實施例中,I/O控制器1640管理裝置,諸如,加速度計、照相機、光感測器或其他環境感測器、或可包括在計算裝置1600中的其他硬體。輸入可係直接使用者互動的一部分,並提供環境輸入給系統,以影響其操作(諸如,過濾雜訊、針對亮度偵測調整顯示、對照相機施用閃光、或其他特性)。
在一實施例中,計算裝置1600包括管理電池電源使用、電池充電、及與省電操作有關之特性的電源管理1650。記憶體次系統1660包括用於將資訊儲存在計算裝置1600中的記憶體裝置。記憶體可包括非揮發性(若至記憶體裝置的電力中斷,狀態不改變)及/或揮發性(若至記憶體的電力中斷,狀態不確定)記憶體裝置。記憶體次系統1660可儲存應用程式資料、使用者資料、音 樂、相片、文件、或其他資料、以及與計算裝置1600之應用程式及功能執行有關的系統資料(長期或暫時的)。
也將實施例的元件提供為用於儲存電腦可執行指令(例如,實作本文討論的任何其他處理的指令)的機器可讀媒體(例如,記憶體1660)。該機器可讀媒體(例如,記憶體1660)可能包括,但未受限於快閃記憶體、光碟、CD-ROM、DVD ROM、RAM、EPROM、EEPROM、磁或光學卡、相變記憶體(PCM)、或適於儲存電子或電腦可執行指令之其他種類的機器可讀媒體。例如,可能將本揭示發明的實施例作為電腦程式(例如,BIOS)下載,其可能經由通訊鏈路(例如,數據機或網路連接)藉由資料訊號從遠端電腦(例如,伺服器)轉移至請求電腦(例如,用戶端)。
連接性1670包括硬體裝置(例如,無線及/或有線連接器及通訊硬體)及軟體組件(例如,驅動程式、協定堆疊),以致能計算裝置1600與外部裝置通訊。計算裝置1600可係分離式裝置,諸如,其他計算裝置、無線存取點或基地台,以及周邊,諸如,耳機、印表機、或其他裝置。
連接性1670可包括多種不同種類的連接性。為一般化,以蜂巢式連接性1672及無線連接性1674說明計算裝置1600。蜂巢式連接性1672通常指由無線營運商提供的蜂巢式網路連接性,諸如,經由GSM(全球行動通信系統)或變化或衍生、CDMA(分碼多重存取)或變 化或衍生、TDM(分時多工)或變化或衍生、或其他蜂巢式服務標準提供。無線連接性(或無線介面)1674係指不係蜂巢式的無線連接性,並可包括個人區域網路(諸如,藍牙、近場等)、區域網路(諸如,Wi-Fi)、及/或廣域網路(諸如,WiMax)、或其他無線通訊。
周邊連接1680包括硬體介面及連接器,以及軟體組件(例如,驅動程式、協定堆疊)以產生周邊連接。將理解計算裝置1600可係至其他計算裝置的周邊裝置(「至」1682),並具有連接至其的周邊裝置(「來自」1684」)。計算裝置1600常具有「對接」連接器,以針對,諸如,管理(例如,下載及/或上傳、改變、同步)計算裝置1600上的內容之目的連接至其他計算裝置。此外,對接連接器可容許計算裝置1600連接至容許計算裝置1600控制,例如,至視聽或其他系統之內容輸出的特定周邊。
除了周邊對接連接器或其他周邊連接硬體外,計算裝置1600可經由共用或標準為基的連接器產生周邊連接1680。共用種類可包括通用串列匯流排(USB)連接器(其可包括任何數量的不同硬體介面)、包括MiniDisplayPort(MDP)的DisplayPort、高解析多媒體介面(HDMI)、火線、或其他種類。
在本說明書中對「實施例」、「一實施例」、「部分實施例」、或「其他實施例」的引用意指將相關於該等實施例描述的特定性質、結構、或特徵包括在至少部 分實施例中,但不必在所有實施例中。「實施例」、「一實施例」、或「部分實施例」的各種形式不必然全部指向相同實施例。若本說明書陳述組件、特性、結構、或特徵「可能」、「或許」、或「可」被包括,該組件、特性、結構、或特徵並不需要被包括。若本說明書或申請專利範圍指稱「一」元件,並不意謂著該元件僅有一個。若本說明書或申請專利範圍參考至「額外」元件,並不排除有多於一個的額外元件。
此外,該等特定特性、結構、功能、或特徵可能在一或多個實施例中以任何適當方式組合。例如,與二實施例關聯的特定特性、結構、功能、或特徵無論在何處均未互斥,第一實施例可能與第二實施例結合。
雖然已連同本揭示發明的具體實施例描述其,根據以上描述,此等實施例的許多替換選擇、修改及變化對熟悉本發明之人士將係明顯的。例如,其他記憶體架構,例如,動態RAM(DRAM)可能使用所討論的實施例。將本揭示發明的實施例視為包含落在隨附之申請專利範圍之廣泛範圍內的所有此種替換選擇、修改、及變化。
此外,為簡化說明及討論,及不混淆本揭示發明,可能或可能不將已為人熟知之至積體電路(IC)晶片及其他組件的電源/接地連接顯示在該等圖式內。另外,配置可能以方塊圖的形式顯示,以避免混淆本揭示發明,並也有鑑於與此種方塊圖配置之實作相關的具體細節高度相依於實作本揭示發明的平台(亦即,此種具體細節應良 好地在熟悉本技術之人士的知識範圍內)。在陳述具體細節(例如,電路)以描述本揭示發明的範例實施例時,本揭示發明可不使用或使用此等具體細節的變化實踐對熟悉本技術之人士應係明顯的。因此將本描述視為係說明性的而非限制性的。
以下範例關於其他實施例。範例中的具體內容可能在一或多個實施例中的任何位置使用。也可能對照方法或處理實作本文描述之設備的所有選擇性特性。
例如,在一實施例中,一種設備包含:選擇線;具有SHE材料的互連體,該互連體耦接至寫入位元線;耦接至該選擇線及該互連體的電晶體,該電晶體可由字線控制;及具有耦接至該互連體之自由磁性層的MTJ裝置。在一實施例中,該MTJ裝置的一端耦接至讀取位元線。在一實施例中,該選擇線形成在零階金屬(M0)層上。在一實施例中,該讀取位元線形成在第四金屬(M4)層上,且其中該寫入位元線形成在第二金屬(M2)層上。
在一實施例中,該MTJ裝置可操作以在讀取操作期間增加其電阻,且其中該MTJ裝置可操作以在寫入操作期間減少其電阻。在一實施例中,該互連體專屬於單一MTJ裝置。在一實施例中,該電晶體係單一電晶體,且該MTJ裝置係單一MTJ裝置。在一實施例中,該單一電晶體形成自多個擴散或共享擴散,使得該電晶體之通道區域的行為如同二或多個並聯電晶體。在一實施例 中,該MTJ裝置實體地位於該讀取位元線及該寫入位元線之間,且其中該讀取位元線、該寫入位元線、及該選擇線彼此平行並在相同方向上流動。
在另一範例中,一種方法包含:形成具有源極區域、汲極區域、及閘極區域的電晶體;形成選擇線在零階金屬(M0)中;將該選擇線耦接至該電晶體的該源極區域;形成具有SHE材料的互連體;將該互連體耦接至第一金屬(M1)層及至該電晶體的該汲極終端;且將字線耦接至該電晶體的該閘極區域。
在一實施例中,該方法更包含:形成寫入位元線在第二金屬(M2)層中;及耦接該寫入位元線至該互連體,其中該MTJ裝置實體地位於該讀取位元線及該寫入位元線之間,且其中該讀取位元線、該寫入位元線、及該選擇線彼此平行並在相同方向上流動。在一實施例中,該方法更包含:形成MTJ裝置在專用於第三金屬(M3)層的區域中;及將該MTJ裝置的自由磁性層耦接至該互連體。
在一實施例中,該方法更包含:形成讀取位元線在第四金屬(M4)層中;及耦接該讀取位元線至該MTJ裝置,其中該MTJ裝置實體地位於該讀取位元線及該寫入位元線之間,且其中該讀取位元線、該寫入位元線、及該選擇線彼此平行並在相同方向上流動。在一實施例中,該方法更包含:形成MTJ裝置在專用於第二金屬(M2)層的區域中;及將該MTJ裝置的自由磁性層耦接 至該互連體。在一實施例中,該方法更包含:形成讀取位元線在第四金屬(M4)層中;及經由第三金屬(M3)層將該讀取位元線耦接至該MTJ裝置。在一實施例中,該互連體專屬於單一MTJ裝置。
在另一範例中,在一實施例中,一種設備包含:複數條選擇線;複數條寫入位元線;複數條具有SHE材料的互連體;及複數列的電晶體;其中將各列中的電晶體耦接至該複數條選擇線的一選擇線,其中將一列電晶體中的該複數條互連體的各互連體耦接至該寫入位元線的一者。在一實施例中,設備更包含:複數條讀取位元線;及複數列MTJ裝置,各者具有耦接至該等互連體之一者的自由磁性層,其中各互連體彼此間接耦接。在一實施例中,將複數條讀取位元線各者耦接至複數列MTJ裝置之中的一列MTJ裝置。在一實施例中,該MTJ裝置各者可操作以在讀取操作期間增加其電阻,且其中該MTJ裝置各者可操作以在寫入操作期間減少其電阻。
發明摘要的提供將容許讀者確定本技術揭示的本質及要點。發明摘要係以不將其用於限制申請專利範圍之範圍或意義的理解提出。藉此將下文的申請專利範圍併入實施方式中,各申請專利範圍依據其本身作為本發明獨立的實施例。
200‧‧‧位元胞
201‧‧‧GSHE金屬
M1‧‧‧電晶體
MTJ‧‧‧磁性穿隧接面
SL‧‧‧源極線
WL‧‧‧字線

Claims (19)

  1. 一種用於自旋霍爾效應之設備,包含:選擇線;具有自旋霍爾效應(SHE)材料的互連體,該互連體耦接至寫入位元線;電晶體,耦接至該選擇線及該互連體,該電晶體可由字線控制;及磁性穿隧接面(MTJ)裝置,具有耦接至該互連體的自由磁性層,其中該選擇線形成在零階金屬(M0)層上。
  2. 如申請專利範圍第1項的設備,其中該MTJ裝置的一端耦接至讀取位元線。
  3. 如申請專利範圍第1項的設備,其中該讀取位元線形成在第四金屬(M4)層上,且其中該寫入位元線形成在第二金屬(M2)層上。
  4. 如申請專利範圍第1項的設備,其中該MTJ裝置可操作以在讀取操作期間增加其電阻,且其中該MTJ裝置可操作以在寫入操作期間減少其電阻。
  5. 如申請專利範圍第1項的設備,其中該互連體專屬於單一MTJ裝置。
  6. 如申請專利範圍第1項的設備,其中該電晶體係單一電晶體,且該MTJ裝置係單一MTJ裝置。
  7. 如申請專利範圍第6項的設備,其中該單一電晶體形成自多個擴散或共享擴散,使得該電晶體之通道區域 的行為如同二或多個並聯電晶體。
  8. 如申請專利範圍第2項的設備,其中該MTJ裝置實體地位於該讀取位元線及該寫入位元線之間,且其中該讀取位元線、該寫入位元線、及該選擇線彼此平行並在相同方向上流動。
  9. 一種用於自旋霍爾效應之方法,包含:形成具有源極區域、汲極區域、及閘極區域的電晶體;形成選擇線在零階金屬(M0)中;將該選擇線耦接至該電晶體的該源極區域;形成具有自旋霍爾效應(SHE)材料的互連體;將該互連體耦接至第一金屬(M1)層及至該電晶體的該汲極終端;且將字線耦接至該電晶體的該閘極區域。
  10. 如申請專利範圍第9項的方法,更包含:形成寫入位元線在第二金屬(M2)層中;及耦接該寫入位元線至該互連體,其中該MTJ裝置實體地位於該讀取位元線及該寫入位元線之間,且其中該讀取位元線、該寫入位元線、及該選擇線彼此平行並在相同方向上流動。
  11. 如申請專利範圍第10項的方法,更包含:形成磁性穿隧接面(MTJ)裝置在專用於第三金屬(M3)層的區域中;及將該MTJ裝置的自由磁性層耦接至該互連體。
  12. 如申請專利範圍第11項的方法,更包含:形成讀取位元線在第四金屬(M4)層中;及耦接該讀取位元線至該MTJ裝置,其中該MTJ裝置實體地位於該讀取位元線及該寫入位元線之間,且其中該讀取位元線、該寫入位元線、及該選擇線彼此平行並在相同方向上流動。
  13. 如申請專利範圍第9項的方法,更包含:形成磁性穿隧接面(MTJ)裝置在專用於第二金屬(M2)層的區域中;及將該MTJ裝置的自由磁性層耦接至該互連體。
  14. 如申請專利範圍第13項的方法,更包含:形成讀取位元線在第四金屬(M4)層中;及經由第三金屬(M3)層將該讀取位元線耦接至該MTJ裝置。
  15. 如申請專利範圍第9項的方法,其中該互連體專屬於單一MTJ裝置。
  16. 一種用於自旋霍爾效應之設備,包含:複數條選擇線;複數條寫入位元線;複數條具有自旋霍爾效應(SHE)材料的互連體;及複數列的電晶體;其中將各列中的電晶體耦接至該複數條選擇線的一選擇線,其中將一列電晶體中的該複數條互連體的各互連體耦接至該寫入位元線的一者。
  17. 如申請專利範圍第16項的設備,更包含: 複數條讀取位元線;及複數列磁性穿隧接面(MTJ)裝置,各者具有耦接至該等互連體之一者的自由磁性層,其中各互連體彼此間接耦接。
  18. 如申請專利範圍第17項的設備,其中將該複數條讀取位元線各者耦接至該複數列MTJ裝置之中的一列MTJ裝置。
  19. 如申請專利範圍第17項的設備,其中該MTJ裝置各者可操作以在讀取操作期間增加其電阻,且其中該MTJ裝置各者可操作以在寫入操作期間減少其電阻。
TW103121368A 2013-06-21 2014-06-20 磁性穿隧接面(mtj)自旋霍爾磁性隨機存取記憶體(mram)位元胞及陣列 TWI565111B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2013/047153 WO2014204492A1 (en) 2013-06-21 2013-06-21 Mtj spin hall mram bit-cell and array

Publications (2)

Publication Number Publication Date
TW201517337A TW201517337A (zh) 2015-05-01
TWI565111B true TWI565111B (zh) 2017-01-01

Family

ID=52105058

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103121368A TWI565111B (zh) 2013-06-21 2014-06-20 磁性穿隧接面(mtj)自旋霍爾磁性隨機存取記憶體(mram)位元胞及陣列

Country Status (7)

Country Link
US (1) US9620188B2 (zh)
KR (1) KR20160022809A (zh)
CN (1) CN105229741B (zh)
DE (1) DE112013007149T5 (zh)
GB (1) GB2529773B (zh)
TW (1) TWI565111B (zh)
WO (1) WO2014204492A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI716666B (zh) * 2017-08-08 2021-01-21 日商日立全球先端科技股份有限公司 磁性穿隧接合元件、使用此之磁性記憶體及磁性穿隧接合元件之製造方法

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150213867A1 (en) * 2014-01-28 2015-07-30 Qualcomm Incorporated Multi-level cell designs for high density low power gshe-stt mram
US9864950B2 (en) * 2014-01-29 2018-01-09 Purdue Research Foundation Compact implementation of neuron and synapse with spin switches
JP6561395B2 (ja) 2014-06-18 2019-08-21 インテル・コーポレーション 装置
CN104778967B (zh) * 2015-04-20 2017-04-26 北京航空航天大学 一种自旋霍尔效应辅助的自旋转移矩非易失性触发器
CN107660304B (zh) * 2015-06-24 2022-05-10 英特尔公司 用于逻辑器件和存储器件的金属自旋超晶格
US9720599B2 (en) * 2015-08-28 2017-08-01 University Of South Florida Magnetic coprocessor and method of use
US10198402B1 (en) 2015-08-28 2019-02-05 University Of South Florida Magnetic coprocessor and method of use
WO2017052561A1 (en) * 2015-09-24 2017-03-30 Intel Corporation Memory with high overlay tolerance
US9490297B1 (en) 2015-09-30 2016-11-08 HGST Netherlands B.V. Half select method and structure for gating rashba or spin hall MRAM
JP6777093B2 (ja) 2015-11-27 2020-10-28 Tdk株式会社 スピン流磁化反転素子、磁気抵抗効果素子、および磁気メモリ
CN108713261B (zh) * 2016-03-07 2023-06-02 英特尔公司 用于将自旋霍尔mtj器件嵌入逻辑处理器中的方法和所得到的结构
WO2017159432A1 (ja) * 2016-03-14 2017-09-21 Tdk株式会社 磁気メモリ
JP6178451B1 (ja) 2016-03-16 2017-08-09 株式会社東芝 メモリセルおよび磁気メモリ
CN107481749A (zh) * 2016-06-13 2017-12-15 中电海康集团有限公司 一种自旋霍尔效应辅助写入的多态磁性随机存取存储器位元及自旋霍尔效应辅助写入方法
US9858975B1 (en) * 2016-08-24 2018-01-02 Samsung Electronics Co., Ltd. Zero transistor transverse current bi-directional bitcell
US10381060B2 (en) * 2016-08-25 2019-08-13 Qualcomm Incorporated High-speed, low power spin-orbit torque (SOT) assisted spin-transfer torque magnetic random access memory (STT-MRAM) bit cell array
US10957844B2 (en) 2016-12-23 2021-03-23 Intel Corporation Magneto-electric spin orbit (MESO) structures having functional oxide vias
KR102631843B1 (ko) * 2016-12-27 2024-02-01 인텔 코포레이션 다수의 유형의 임베디드 비휘발성 메모리 디바이스들을 갖는 모놀리식 집적회로
US10923648B2 (en) 2017-01-17 2021-02-16 Agency For Science, Technology And Research Memory cell, memory array, method of forming and operating memory cell
US9947383B1 (en) 2017-02-23 2018-04-17 International Business Machines Corporation Spin hall write select for magneto-resistive random access memory
JP6316474B1 (ja) 2017-03-21 2018-04-25 株式会社東芝 磁気メモリ
WO2019005147A1 (en) * 2017-06-30 2019-01-03 Intel Corporation PERPENDICULAR MAGNET ANISOTROPIC SPIN HALL EFFECT MEMORY USING THE SPIN ORBIT EFFECT AND THE EXCHANGE FIELD
WO2019005129A1 (en) * 2017-06-30 2019-01-03 Intel Corporation BINARY MEMORY CELL MAGNETIC WITH SPIN HALL EFFECT
US10229722B2 (en) * 2017-08-01 2019-03-12 International Business Machines Corporation Three terminal spin hall MRAM
KR102403731B1 (ko) * 2017-11-01 2022-05-30 삼성전자주식회사 가변 저항 메모리 소자
US11575083B2 (en) 2018-04-02 2023-02-07 Intel Corporation Insertion layer between spin hall effect or spin orbit torque electrode and free magnet for improved magnetic memory
US10790002B2 (en) 2018-06-21 2020-09-29 Samsung Electronics Co., Ltd. Giant spin hall-based compact neuromorphic cell optimized for differential read inference
US11398596B2 (en) 2018-06-28 2022-07-26 Intel Corporation Magnetic tunnel junction (MTJ) integration on backside of silicon
US11165012B2 (en) 2018-10-29 2021-11-02 Taiwan Semiconductor Manufacturing Co., Ltd. Magnetic device and magnetic random access memory
US10930843B2 (en) * 2018-12-17 2021-02-23 Spin Memory, Inc. Process for manufacturing scalable spin-orbit torque (SOT) magnetic memory
US10971677B2 (en) * 2018-12-27 2021-04-06 Academia Sinica Electrically controlled nanomagnet and spin orbit torque magnetic random access memory including the same
US11062752B2 (en) * 2019-01-11 2021-07-13 Intel Corporation Spin orbit torque memory devices and methods of fabrication
US11276730B2 (en) * 2019-01-11 2022-03-15 Intel Corporation Spin orbit torque memory devices and methods of fabrication
US11574666B2 (en) * 2019-01-11 2023-02-07 Intel Corporation Spin orbit torque memory devices and methods of fabrication
US11054438B2 (en) 2019-03-29 2021-07-06 Honeywell International Inc. Magnetic spin hall effect spintronic accelerometer
US10762942B1 (en) 2019-03-29 2020-09-01 Honeywell International Inc. Magneto-resistive random access memory cell with spin-dependent diffusion and state transfer
EP3731289B1 (en) * 2019-04-23 2024-06-12 IMEC vzw A magnetic tunnel junction device
KR102657583B1 (ko) * 2019-07-19 2024-04-15 삼성전자주식회사 가변 저항 메모리 소자
CN112863575B (zh) * 2019-11-12 2023-12-29 上海磁宇信息科技有限公司 具有磁性隧道结的非易失寄存器
TW202127438A (zh) 2020-01-07 2021-07-16 聯華電子股份有限公司 記憶體
US20210313395A1 (en) * 2020-04-03 2021-10-07 Nanya Technology Corporation Semiconductor device with embedded magnetic storage structure and method for fabricating the same
CN112164706B (zh) * 2020-09-21 2022-11-08 上海磁宇信息科技有限公司 磁性存储器及其制作方法
US11869561B2 (en) 2021-09-23 2024-01-09 International Business Machines Corporation Spin orbit-torque magnetic random-access memory (SOT-MRAM) with cross-point spin hall effect (SHE) write lines and remote sensing read magnetic tunnel-junction (MTJ)
US11948616B2 (en) 2021-11-12 2024-04-02 Changxin Memory Technologies, Inc. Semiconductor structure and manufacturing method thereof
CN116133438A (zh) * 2021-11-12 2023-05-16 长鑫存储技术有限公司 半导体结构及其制备方法

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004179483A (ja) * 2002-11-28 2004-06-24 Hitachi Ltd 不揮発性磁気メモリ
US7372722B2 (en) * 2003-09-29 2008-05-13 Samsung Electronics Co., Ltd. Methods of operating magnetic random access memory devices including heat-generating structures
US8363457B2 (en) * 2006-02-25 2013-01-29 Avalanche Technology, Inc. Magnetic memory sensing circuit
JP4682367B2 (ja) * 2007-09-28 2011-05-11 キヤノンアネルバ株式会社 磁気抵抗効果を用いた負性抵抗素子
US8159870B2 (en) * 2008-04-04 2012-04-17 Qualcomm Incorporated Array structural design of magnetoresistive random access memory (MRAM) bit cells
US9368716B2 (en) * 2009-02-02 2016-06-14 Qualcomm Incorporated Magnetic tunnel junction (MTJ) storage element and spin transfer torque magnetoresistive random access memory (STT-MRAM) cells having an MTJ
JP4745414B2 (ja) * 2009-03-30 2011-08-10 株式会社東芝 磁気抵抗素子及び磁気メモリ
US8450818B2 (en) 2009-06-18 2013-05-28 Dmitri E. Nikonov Methods of forming spin torque devices and structures formed thereby
US8063460B2 (en) 2009-12-18 2011-11-22 Intel Corporation Spin torque magnetic integrated circuits and devices therefor
DE102011013998A1 (de) * 2010-03-25 2011-12-15 Schaeffler Technologies Gmbh & Co. Kg Doppelkupplung
GB2469375A (en) 2010-04-01 2010-10-13 David John Bowman Tharp User interface presentation and wagering system
US8796794B2 (en) 2010-12-17 2014-08-05 Intel Corporation Write current reduction in spin transfer torque memory devices
US8604886B2 (en) 2010-12-20 2013-12-10 Intel Corporation Spin torque oscillator having multiple fixed ferromagnetic layers or multiple free ferromagnetic layers
US8933521B2 (en) 2011-03-30 2015-01-13 Intel Corporation Three-dimensional magnetic circuits including magnetic connectors
US9105832B2 (en) * 2011-08-18 2015-08-11 Cornell University Spin hall effect magnetic apparatus, method and applications
KR101853874B1 (ko) 2011-09-21 2018-05-03 삼성전자주식회사 메모리 장치의 동작 방법 및 상기 방법을 수행하기 위한 장치들
WO2013147781A1 (en) 2012-03-29 2013-10-03 Sasikanth Manipatruni Magnetic state element and circuits
US9281467B2 (en) * 2012-06-29 2016-03-08 Intel Corporation Spin hall effect memory
US8890120B2 (en) 2012-11-16 2014-11-18 Intel Corporation Tunneling field effect transistors (TFETs) for CMOS approaches to fabricating N-type and P-type TFETs
US9195787B2 (en) 2012-11-20 2015-11-24 Intel Corporation Methods and apparatus for modeling and simulating spintronic integrated circuits
US9711284B2 (en) 2012-12-11 2017-07-18 Intel Corporation Structure to make supercapacitor
US9355242B2 (en) 2012-12-17 2016-05-31 Intel Corporation Method and apparatus for managing and accessing personal data
US9209288B2 (en) 2012-12-21 2015-12-08 Intel Corporation Reduced scale resonant tunneling field effect transistor
US8889433B2 (en) * 2013-03-15 2014-11-18 International Business Machines Corporation Spin hall effect assisted spin transfer torque magnetic random access memory
US9294035B2 (en) 2013-03-28 2016-03-22 Intel Corporation Multigate resonant channel transistor
US9391262B1 (en) * 2013-12-23 2016-07-12 Intel Corporation Nanomagnetic devices switched with a spin hall effect
US9230627B2 (en) * 2014-01-28 2016-01-05 Qualcomm Incorporated High density low power GSHE-STT MRAM

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
L. Q. Liu, C.-F. Pai, D. C. Ralph, and R. A. Buhrman, "Gate voltage modulation of spin-Hall-torque-driven magnetic switching," arXiv:1209.0962 (2012). *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI716666B (zh) * 2017-08-08 2021-01-21 日商日立全球先端科技股份有限公司 磁性穿隧接合元件、使用此之磁性記憶體及磁性穿隧接合元件之製造方法

Also Published As

Publication number Publication date
GB2529773B (en) 2020-10-28
CN105229741B (zh) 2018-03-30
WO2014204492A1 (en) 2014-12-24
US9620188B2 (en) 2017-04-11
CN105229741A (zh) 2016-01-06
KR20160022809A (ko) 2016-03-02
DE112013007149T5 (de) 2016-02-25
GB201520164D0 (en) 2015-12-30
GB2529773A (en) 2016-03-02
US20160042778A1 (en) 2016-02-11
TW201517337A (zh) 2015-05-01

Similar Documents

Publication Publication Date Title
TWI565111B (zh) 磁性穿隧接面(mtj)自旋霍爾磁性隨機存取記憶體(mram)位元胞及陣列
CN106688041B (zh) 应变辅助自旋力矩翻转自旋转移力矩存储器
US10170185B2 (en) Hybrid memory and MTJ based MRAM bit-cell and array
US10333523B2 (en) Exclusive-OR logic device with spin orbit torque effect
US10897364B2 (en) Physically unclonable function implemented with spin orbit coupling based magnetic memory
US9865322B2 (en) Low resistance bitline and sourceline apparatus for improving read and write operations of a nonvolatile memory
US20170345496A1 (en) Asymmetrical write driver for resistive memory
CN107924695B (zh) 采用共享源极线的互补磁性隧道结mtj位单元及相关方法
TWI537941B (zh) 用以最佳化自旋轉移力矩-磁性隨機存取記憶體(stt-mram)尺寸和寫入錯誤率之裝置和方法
TW201721644A (zh) 具有磁電自旋軌道裝置的大信號雙電晶體記憶體
TW201803164A (zh) 用以使底部電極與垂直磁性穿隧接面(pmtj)裝置解耦的紋理斷裂層

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees