TWI549435B - 用以產生可變碼長之極化碼的方法及裝置 - Google Patents

用以產生可變碼長之極化碼的方法及裝置 Download PDF

Info

Publication number
TWI549435B
TWI549435B TW104127566A TW104127566A TWI549435B TW I549435 B TWI549435 B TW I549435B TW 104127566 A TW104127566 A TW 104127566A TW 104127566 A TW104127566 A TW 104127566A TW I549435 B TWI549435 B TW I549435B
Authority
TW
Taiwan
Prior art keywords
bit channels
message
channels
bit
bits
Prior art date
Application number
TW104127566A
Other languages
English (en)
Other versions
TW201635720A (zh
Inventor
黃昱銘
李祥邦
張錫嘉
Original Assignee
旺宏電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旺宏電子股份有限公司 filed Critical 旺宏電子股份有限公司
Application granted granted Critical
Publication of TWI549435B publication Critical patent/TWI549435B/zh
Publication of TW201635720A publication Critical patent/TW201635720A/zh

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/61Aspects and characteristics of methods and arrangements for error correction or error detection, not provided for otherwise
    • H03M13/615Use of computational or mathematical techniques
    • H03M13/616Matrix operations, especially for generator matrices or check matrices, e.g. column or row permutations
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/13Linear codes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/61Aspects and characteristics of methods and arrangements for error correction or error detection, not provided for otherwise
    • H03M13/618Shortening and extension of codes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/63Joint error correction and other techniques
    • H03M13/635Error control coding in combination with rate matching
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0057Block codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0067Rate matching

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mathematical Analysis (AREA)
  • General Physics & Mathematics (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Physics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Algebra (AREA)
  • Computing Systems (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)
  • Error Detection And Correction (AREA)

Description

用以產生可變碼長之極化碼的方法及裝置
本揭露是有關於一種錯誤校正方法和裝置,特別是關於藉由利用一長度可適性延伸極化碼(length-compatible extended polar code)增加編碼可靠度的一種方法和裝置。
在訊息傳輸和處理區域中,多個通訊通道可用來傳輸一條訊息。通訊通道通常都有很多雜訊(noisy)並且有不正確的傳輸資料位元的機率,例如被稱為錯誤機率(probability of error)。也就是說,輸入一二進位資料1,通訊通道可能會輸出一錯誤的二進位資料0,或者相反。相似的,在資料儲存區域中,多個儲存單元被用來儲存資料。由於雜訊或外部干擾,儲存在一儲存單元的一資料位元可能會被改變,以使從儲存單元中讀取出的資料位元不同於被寫到此儲存單元的資料位元。這種儲存資料位元被改變的機率被稱為「錯誤機率」。
為了降低傳輸或儲存訊息/資料的錯誤,而進一步降低錯誤機率,欲被傳輸或儲存的訊息通常在傳輸之前被一錯誤校正方法編碼。在此文中,訊息/資料的傳輸和儲存被統稱為訊息傳輸以簡化描述。因此,除非特別說明,「訊息傳輸」或相似的用以被理解為代表訊息/資料的傳輸或儲存。進一步的,除非特別說明,欲被傳輸的訊息也被簡化描述為訊息。在一編碼訊息的例子中,訊息的位元和多個凍結位元被編碼成為一編碼位元,之後經由通訊通道被傳輸或儲存到儲存單元。這種編碼可被認為是一個輸出向量的轉換,由一訊息位源和凍結位元組成的輸入向量被一產生器矩陣轉換為由欲經由通訊通道被傳輸或儲存在儲存單元的編碼位元組成的一輸出向量。每一輸入位元對於轉換的一位元通道,且每一位元通道具有對應的一錯誤機率。
極化編碼是一種線性方塊錯誤校正編碼方法,可重分配位元通道中的錯誤機率。在極化編碼之後,一些位元通道相較於其他位元通道具有一較低的錯誤機率。具有較低的錯誤機率的位元通道則可被用來傳輸訊息,而其他位元通道則被凍結(frozen),亦即用來傳輸凍結位元。由於傳送端和接收端都知道哪個位元通道被凍結,因此任何資料都可被分配到凍結位元通道。例如,一二進位資料0被分配到每一凍結位元通道。
然而,極化碼的建立使傳統極化碼的碼長度受到特定限制。在本揭露中,傳統極化碼被稱為「標準極化碼」。對應使用一傳統極化碼的一極化碼機制被稱為一「傳統極化碼機制」或一「標準極化碼機制」。特別的說,傳統極化碼機制限制碼長度為2的冪次方,亦即2 n,其中n為正整數。這引起了使用極化碼的系統的一額外複雜度。一種解決此問題的方法是將被編碼的訊息分割為具有合適於編碼機制的長度的片段以創造長度可適性(length-compatible)的極化碼。
一種用於創造長度可適性的示範方法的嘗試包含例如:毀損(puncturing)或縮短。這兩種嘗試藉由從一原始長度2 n的碼長度切斷而達到一任意碼長度以使一些位元不被傳輸。然而,隨著碼長度從2 n被縮短,使碼的效能損失會增加。此碼的效能損失可藉由參數,例如位元錯誤率(bit error rate,BER)或者框錯誤率(frame error rate,FER)測得。第1圖繪示一碼的碼長度和此嘗試毀損或縮短碼的效能損失之間的關係的示意圖。在第1圖中,一較高程度的灰色指示較嚴重的效能損失。如第1圖所示,當此碼長度等於2的冪次方時,沒有效能損失。當此碼的長度從2的冪次方減少時,效能損失增加。
然而,這種示範的嘗試並不適合應用在特定情況,例如記憶體裝置中的資料儲存。舉例來說,這是因為在記憶體裝置中,資料通常以一8倍數的尺寸的單位儲存,例如1024。並且加上一小數量的凍結位元到每一方塊碼使得此碼的長度稍微超過2 n。在這種情況下,毀損或縮短的嘗試會導致如第1圖所示的嚴重的效能損失。
根據本揭露,提供一種方法以增加編碼可靠度。此方法包含產生用於延伸極化碼的產生器矩陣。延伸極化碼包含標準極化碼部分及額外凍結部分。標準極化碼部分有K個訊息位元通道及N-K個凍結位元通道的N個位元通道。額外凍結部分有q個額外凍結位元通道。在K個訊息位元通道中的q個訊息位元通道使用q個額外凍結位元通道被再極化。此方法更包含接收包含K個訊息位元和N+q–K個凍結位元的輸入向量;及使用產生器矩陣轉換輸入向量為包含N+q個編碼位元的輸出向量。K個訊息位元被分配到K個訊息位元通道,N+q–K個凍結位元被分配到N-K個凍結位元通道及q個額外凍結位元通道。N為2 n,n為正整數,K為一小於或等於N的正整數,且q為一正整數。
又根據本揭露,提供一種裝置以增加編碼可靠度。此裝置包含處理器及非暫時性的電腦可讀取儲存媒體。非暫時性的電腦可讀取儲存媒體儲存被處理器執行的指令,以使處理器執行以下步驟。產生用於延伸極化碼的產生器矩陣。延伸極化碼包含標準極化碼部分及額外凍結部分。標準極化碼部分有K個訊息位元通道及N-K個凍結位元通道的N個位元通道。額外凍結部分有q個額外凍結位元通道。在K個訊息位元通道中的q個訊息位元通道使用q個額外凍結位元通道被再極化。此方法更包含接收包含K個訊息位元和N+q–K個凍結位元的輸入向量;及使用產生器矩陣轉換輸入向量為包含N+q個編碼位元的輸出向量。K個訊息位元被分配到K個訊息位元通道,N+q–K個凍結位元被分配到N-K個凍結位元通道及q個額外凍結位元通道。N為2 n,n為正整數,K為一小於或等於N的正整數,且q為一正整數。
又根據本揭露,提供一種非暫時性的電腦可讀取儲存媒體儲存被處理器執行的指令,以使處理器執行以下步驟。產生用於延伸極化碼的產生器矩陣。延伸極化碼包含標準極化碼部分及額外凍結部分。標準極化碼部分有K個訊息位元通道及N-K個凍結位元通道的N個位元通道。額外凍結部分有q個額外凍結位元通道。在K個訊息位元通道中的q個訊息位元通道使用q個額外凍結位元通道被再極化。此方法更包含接收包含K個訊息位元和N+q–K個凍結位元的輸入向量;及使用產生器矩陣轉換輸入向量為包含N+q個編碼位元的輸出向量。K個訊息位元被分配到K個訊息位元通道,N+q–K個凍結位元被分配到N-K個凍結位元通道及q個額外凍結位元通道。N為2 n,n為正整數,K為一小於或等於N的正整數,且q為一正整數。
本揭露的特徵和優點可以從下列的描述中說明,並且部分地是從描述中顯而易見的、或者可通過本揭露的實施而得知。這些特徵和優點可以由所附的申請專利範圍所特別指出的元件和其組合實現。
應當理解的是,前述一般的描述和以下的詳細描述都只是示例性和說明性的,並不如要求保護申請專利範圍用以限制本發明的。
所附的圖式包含在說明書中,並與說明書構成本說明書的一部分,圖式示出了本發明的幾個實施例,並且可參照說明書用於解釋本發明的原理。
200‧‧‧方法
202‧‧‧建立標準極化碼以決定訊息位元通道
204‧‧‧再極化最不可靠的訊息位元通道以降低它們的錯誤機率
206‧‧‧放訊息到用來傳輸的訊息位元通道
C1~C10‧‧‧位元通道
U1~U10、V1~V10‧‧‧輸入位元
X1~X10‧‧‧編碼位元
Y1~Y10‧‧‧位元
W‧‧‧通訊通道
1000‧‧‧裝置
1002‧‧‧處理器
1004‧‧‧記憶體
1006‧‧‧輸入/輸出介面
第1圖繪示一碼的碼長度和此嘗試毀損或縮短碼的效能損失之間的關係的示意圖。
第2圖繪示依據本揭露一實施例使用延伸極化碼機制的流程圖。
第3圖繪示示範的標準極化碼機制的編碼架構的示意圖。
第4A圖和第4B圖繪示再極化之前和之後的位元通道的錯誤機率的示意圖。
第5圖繪示依據示範實施例的延伸極化碼機制的編碼架構的示意圖。
第6圖繪示依據示範實施例的延伸極化碼和縮短極化碼以及標準極化碼之間的效能的比較的示意圖。
第7圖繪示示範實施例的一修正延伸極化碼機制的示意圖。
第8圖繪示依據示範實施例的延伸極化碼、修正延伸極化碼和縮短極化碼以及標準極化碼之間的效能的比較的示意圖。
第9圖繪示延伸極化碼的碼長度和此碼的效能損失之間的關係的示意圖。
第10圖繪示依據本揭露實施例的一裝置的方塊圖。
符合本揭露的實施例包含藉由延伸一極化碼增加編碼可靠度的一方法和一裝置。
在本文中,參照所附圖式仔細地描述本發明的一些實施例。盡可能地,圖式中相同的參考符號用來表示相同或相似的元件。
一傳統的極化碼可被標示為一(N, K)極化碼,也被稱為一(N, K)標準極化碼,其中N代表一碼字元長度,亦即位元通道(位元通道)的總數等於2 n,其中n為正整數,其中K為不大於N的整數且K代表被傳輸的一條訊息的訊息長度。因此,使用一標準極化碼,K位元的訊息被分別分配到K個位元通道中相較於其他位元通道具有一較低機率錯誤的的一個位元通道。N個位元通道的剩餘者,亦即剩餘的N-K個位元通道被凍結(凍結)。用來傳輸訊息的位元通道在此文中被稱為「非凍結位元通道」。
根據本揭露,q個非凍結位元通道被再極化(re-polarized)以增強它們的可靠度,其中q是一不大於K的整數。也就是說,這些q個非凍結位元通道並不僅經過一標準極化程序,也經過一額外極化程序。為了再極化這q個非凍結位元通道,使用額外的q個凍結位元通道。也就是說,為了再極化這q個非凍結位元通道,這(N, K)標準極化碼被延伸為一(N+q, K)延伸極化碼。藉由選擇q的值,延伸極化碼的一碼長度可被調整,而因此使其長度可適性(length-compatible)。在一些實施例中,可根據經驗選擇q。例如可選擇N=1024且q=114以編碼K=800位元的資料。
第2圖繪示依據本揭露一實施例使用延伸極化碼機制編碼一條訊息的一示範方法200。方法200的被執行在一記憶體裝置上,例如一單層式儲存單元(single-level cell)記憶體裝置,或者一多層式儲存單元(multi-level cell)記憶體裝置,或者一通訊裝置。根據方法200,一(N, K)標準極化碼被延伸為具有q個額外凍結位元通道的一(N+q, K)延伸極化碼,用以傳輸K位元的訊息。依據本揭露的實施例,q可遠小於N。例如q小於N/2。再舉一例,q小於N/3。
如第2圖所示,在步驟202中,建立標準極化碼以決定K個最佳(optimal)位元通道。可使用多種不同的建立方法,例如互消息(mutual information)、巴氏參數(Bhattacharyya parameter)、或者錯誤機率。舉例來說,使用錯誤機率建立碼,在碼的建立之後,這些位元通道具有不同的錯誤機率。因此K個位元通道中具有錯誤機率小於其他N-K個位元通道的錯誤機率的位元通道被選定為最佳位元通道。這些最佳位元通道會被用來傳輸訊息,且因此被稱為訊息位元通道。
依據本揭露,這K個訊息位元通道的對應錯誤機率可不同於彼此。當一位元通道具有一較大的錯誤機率時,此位元通道是較可靠的。在步驟204中,q個最不可靠的訊息位元通道藉由使用q個額外凍結位元通道在這q個最不可靠的訊息位元通道上執行一額外通道極化被再極化以降低它們的錯誤機率。
在步驟206中,訊息被分配到K個訊息位元通道,K個位元通道包含用來傳輸的q個再極化訊息位元通道。其餘N+q-K個位元通道被凍結,也就是說一二進位資料0被分配到N+q-K個凍結位元通道的每一個。
依據本揭露,用於延伸極化碼的一產生器矩陣,也被稱為一「延伸產生器矩陣」被q個訊息位元通道再極化而產生,q個訊息位元通道為相較於其他訊息位元通道更可靠。藉由建立包含N個位元通道的標準極化碼決定這K個訊息位元通道以及這些訊息位元通道有多可靠(以訊息位元通道的錯誤機率表示)。延伸產生器矩陣則被用於將由K位元的訊息和N+q-K個凍結位元組成的一輸入向量轉換成由N+q個編碼位元組程的一輸出向量,其中K位元的訊息被分配到延伸產生器矩陣的K個訊息位元通道,且及N+q-K個凍結位元被分配到N+q-K個凍結位元通道。
與傳統的極化碼機制相比,本揭露的延伸極化碼機制使用相同數量的訊息位元通道以傳輸訊息,而最不可靠的訊息位元通道被再極化以降低其錯誤機率。因此,延伸極化碼機制的整體編碼可靠度(total coding reliability)高於傳統的極化碼機制。
以下描述一例以解釋本揭露實施例的延伸極化碼機制。第3圖繪示一(8, 5)標準極化碼機制的一編碼架構(產生器矩陣的視覺化表示),此標準極化碼包含8個位元通道(C 3、C 4、…、C 10)用來傳輸5個訊息位元和3個凍結位元,統稱為「輸入位元」(U 3、U 4、…、U 10),其中每一輸入位元Ui被分配到對應的一位元通道Ci,i=3, 4, . . . 10。藉由建立一(8, 5)標準極化碼而得到此編碼架構。如第3圖所示,這8個位元被分配到8個位元通道,且被編碼以形成編碼位元X 3、X 4、. . . X 10。這些編碼位元之後(在傳輸訊息的情況下)經由通訊通道W被傳輸或者(在儲存資料的情況下)被儲存在儲存單元W。接收端(在傳輸訊息的情況下)接收傳輸的位元Y 3、Y 4、. . . Y 10,或者(在儲存資料的情況下)讀取被儲存的位元Y 3、Y 4、. . . Y 10
輸入位元到位元通道的分配是根據位元通道的錯誤機率(或互消息、巴氏參數)而被決定。第4A圖繪示碼建立之後每一位元通道的錯誤機率的示意圖。如第4A圖所示,位元通道C 6~ C 10相較於位元通道C 3、C 4和C 5具有一較低錯誤機率。由於建立標準極化碼,位元通道C 6~ C 10被決定為相較於位元通道C 3、C 4和C 5是較可靠的,因此被選定為訊息位元通道。
如第4A圖所示,在5個被選定的訊息位元通道中,位元通道C 6和C 7相較於其他被選定的訊息位元通道具有一較大錯誤機率,因此為5個被選定的訊息位元通道中兩個最不可靠的訊息位元通道。在本揭露中,位元通道C 6和C 7藉由使用兩個額外凍結位元通道C 1和C 2中的其中一個對每一位元通道C 6和C 7執行一額外通道極化而被再極化。藉由額外通道極化,位元通道C 6和C 7的每一個的錯誤機率可被降低,如第4B圖所示。
此額外通道極化將(8, 5)標準極化碼延伸為(10, 5)延伸極化碼。(10, 5)延伸極化碼的編碼架構如第5圖所示,(10, 5)延伸極化碼包含如第5圖的虛線框所示的一標準極化碼部分,以及虛線框外的一延伸極化碼部分。此示範機制包含10個位元通道C 1、C 2、. . . C 10,每一個位元通道剛開始被分配到對應的輸入位元V 1、V 2、. . . V 10中的一個。
如第5圖所示,對應(10, 5)延伸極化碼,5個訊息位元V 6~ V 10被分配到位元通道C 6~ C 10(訊息位元通道),而5個凍結位元V 1
~ V 5被分配到位元通道C 1~ C 5(凍結位元通道)。輸入位元V 3
、V 4、V 5、V 8、V 9和V 10直接通到位元U 3、U 4、U 5、U 8、U 9和U 10而沒有被改變,然而輸入位元V 6和V 7被輸入位元V 1和V 2極化,導致結果是位元U 6、U 7、U 1和U 2。位元U 1和U 2在輸出向量中成為編碼位元X 1和X 2而沒有被改變。其他位元U 3~ U 10被標準極化碼部分進一步編碼並在輸出向量中成為編碼位元X 3~ X 10。這些編碼位元之後(在傳輸訊息的情況下)經由通訊通道W被傳輸或者(在儲存資料的情況下)被儲存在儲存單元W。接收端(在傳輸訊息的情況下)接收傳輸的位元Y 1~ Y 10,或者(在儲存資料的情況下)讀取被儲存的位元Y 1~ Y 10
第6圖繪示一(1024, 800)標準極化碼、一(1024, 780)標準極化碼、一(1050, 800)縮短極化碼(shortened polar code)、及一(1050, 800)延伸極化碼之間的效能的比較的示意圖。1024, 800)標準極化碼、(1024, 780)標準極化碼、(1050, 800)縮短極化碼、(1050, 800)延伸極化碼在第6圖中分別被標示為“(1024, 800) Polar code”、“(1024, 780) Polar code”、“(1050, 800) Shortened”及“(1050, 800) Extended”。(1050, 800)縮短極化碼藉由縮短一(2048, 800)標準極化碼而被創造。(1050, 800)延伸極化碼藉由依據本揭露的一方法延伸一(1024, 800)標準極化碼而被創造。在第6圖中,“FER”代表框錯誤機率(frame error rate)而“EbNo”代表每位元的能量與雜訊功率頻譜密度比(energy per bit to noise power spectral density ratio)。
如第6圖所示,雖然(1050, 800)延伸極化碼有與(1050, 800) 縮短極化碼相同的碼率(K/N),(1050, 800)延伸極化碼的效能卻比(1050, 800) 縮短極化碼的效能更好。進一步的,(1050, 800)延伸極化碼的效能接近(1024, 780)標準極化碼的效能,(1024, 780)標準極化碼具有與(1050, 800)延伸極化碼幾乎相同的碼率。並且,如第6圖所示,雖然(1024, 800) 標準極化碼相較於(1050, 800)延伸極化碼可使用較少的總位元以編碼同樣多位元的訊息。然而,(1050, 800)延伸極化碼的效能比(1050, 800)延伸極化碼的效能更好。
第7圖繪示本揭露的實施例的另一延伸極化碼機制。在本文中,如第7圖所示的延伸及化碼也被稱為一「修正延伸極化碼」。修正延伸極化碼同時再極化多個標準極化碼,而因此增加彈性。並且,修正極化碼更可改善錯誤校正效能。
如第7圖所示,p個標準極化碼一起使用q個額外凍結位元通道而被再極化。在p個標準極化碼中,第j個標準極化碼具有一N j的位元數,其中j是一正整數且1≤j≤p。在第j個標準極化碼的這N j個位元中,K j個位元為訊息位元,其中K j≤N j。根據修正延伸極化碼,p個標準極化碼被分開建立以得到每一訊息位元通道的錯誤機率,之後在p個標準極化碼中所有訊息位元通道中的q個最不可靠的訊息位元通道使用q個額外凍結位元通道而被再極化。在第7圖中,每一標準極化碼標示為關聯一額外凍結位元通道。這僅僅用於說明,並不代表每一標準極化碼都使用一額外凍結位元通道而被再極化。根據修正延伸極化碼,有可能一些標準極化碼被再極化但另一些沒有被再極化。並且,在修正延伸極化碼中,額外凍結位元通道的數量並不需要等於標準極化碼的數量。
依據本揭露,在修正極化碼中,可使用不同數量的標準極化碼或不同數量的凍結通道以達到使用相同總數的位元編碼相同數量的訊息位元。不同的標準極化碼的尺寸可相同於或不同於彼此。舉例來說,為了創造(1138, 800)碼,可使用N 1=1024和N 2=64的兩個標準極化碼,而剩餘的50(=1138- N 1- N 2)位元為再極化的額外凍結位元。或者,可使用N 1=512、N 2=512和N 3=64的三個標準極化碼,而剩餘的50位元為再極化的額外凍結位元。又或者,可使用N 1=1024、N 2=64、N 3=32和N 3=16的四個標準極化碼,而剩餘的2位元為再極化的額外凍結位元。由於對於相同碼長度和相同碼率可選擇不同數量的標準極化碼,修正極化碼可增加彈性。
第8圖繪示一(1138, 800)縮短極化碼、一(1138, 800)延伸極化碼、及一(1138, 800)修正延伸極化碼之間的效能的比較的示意圖。(1138, 800)延伸極化碼、及一(1138, 800)修正延伸極化碼在第8圖中分別被標示為“(1138, 800) Shortened”、“(1138, 800) Extended”、“(1138, 800) Modified extended”。(1024, 720)標準極化碼(被標示為“(1024, 720) Polar code”)也被提供以供參考。在第8圖所示的例子中,(1138, 800)修正延伸極化碼利用具有N 1=1024和N 2=64的p=2個標準極化碼以及數量為50的額外凍結位元,對應上面討論的例子。如第8圖所示,修正延伸極化碼的效能比具有相同碼率的延伸極化碼的效能更好,並且相較於具有相同碼率的縮短極化碼又具有更佳的效能。
第9圖繪示一延伸極化碼的碼長度和此碼的效能損失之間的關係的示意圖。如第1圖和第9圖所示,延伸極化碼的效能損失與毀損或縮短極化碼的效能損失的趨勢相反。
本揭露的實施例更包含一硬體裝置被編程以執行符合本揭露的方法,或者包含有一處理器和一非暫時性的電腦可讀取儲存媒體的一裝置。第10圖繪示依據本揭露實施例的一裝置100的方塊圖。裝置100包含處理器1002和記憶體1004。記憶體1004耦接到處理器1002。記憶體1004可為一非暫時性的電腦可讀取儲存媒體,並且儲存引起處理器1002執行符合本揭露的方法的指令。裝置1000更包含一輸入/輸出介面1006以促進裝置100和一外部元件或裝置之間的通訊。
本領域具有通常知識者依據本說明書和本發明揭露的實施方式容易想到其他實例。應當理解的是本說明書和這些例子僅是示範性的而非用以限定本發明。本揭露真正的保護範圍和精神在以下申請專利範圍所表示。
200‧‧‧方法
202‧‧‧建立標準極化碼以決定訊息位元通道
204‧‧‧再極化最不可靠的訊息位元通道以降低它們的錯誤機率
206‧‧‧放訊息到用來傳輸的訊息位元通道

Claims (10)

  1. 一種用以產生可變碼長之極化碼的方法,該方法包含:
    產生用於一延伸極化碼的一產生器矩陣,該延伸極化碼包含:
    一標準極化碼部分,具有N個位元通道,該N個位元通道包含K個訊息位元通道及N-K個凍結位元通道,其中N為2 n,n為正整數,K為一小於或等於N的正整數;以及
    一額外凍結部分,具有q個額外凍結位元通道,q為一正整數;
    其中在該K個訊息位元通道中的q個訊息位元通道使用該q個額外凍結位元通道被再極化;
    接收包含K個訊息位元和N+q–K個凍結位元的一輸入向量;以及
    使用該產生器矩陣轉換該輸入向量為包含N+q個編碼位元的一輸出向量,其中該K個訊息位元被分配到該K個訊息位元通道,且該N+q–K個凍結位元被分配到該N-K個凍結位元通道及該q個額外凍結位元通道。
  2. 如申請專利範圍第1項所述的方法,其中產生該產生器矩陣的步驟包含根據一互消息(mutual information)、一巴氏參數(Bhattacharyya parameter)、或一錯誤機率的至少一個建立標準極化碼以決定用來再極化的該q個額外凍結位元通道。
  3. 如申請專利範圍第1項所述的方法,其中產生該產生器矩陣的步驟包含:
    建立該標準極化碼部分以從該N個位元通道中決定該K個訊息位元通道及該N-K個凍結位元通道,該每一訊息位元通道具有小於該凍結位元通道的一錯誤機率;
    決定q個最不可靠的訊息位元通道,該些最不可靠的訊息位元通道的每一個都具有大於其他訊息位元通道的該錯誤機率;以及
    使用該q個額外凍結位元通道中的一個再極化該q個最不可靠的訊息位元通道的每一個訊息位元通道。
  4. 如申請專利範圍第1項所述的方法,其中產生該產生器矩陣的步驟包含:
    產生該產生器矩陣以包含:
    該標準極化碼部分具有該N個位元通道,該N個位元通道中錯誤率較低之K個位元通道用於存放K個訊息;以及
    該額外極化部分具有該q個額外凍結位元通道,q為一小於K的正整數。
  5. 如申請專利範圍第1項所述的方法,其中產生該產生器矩陣的步驟包含:
    產生該產生器矩陣以包含:
    該第一標準極化碼部分,具有N 1個位元通道,該N 1個位元通道包含K 1個訊息位元通道及N 1–K 1個凍結位元通道,其中N 1為2 n1,n1為正整數,K 1為一小於或等於N 1的正整數;以及
    一第二標準極化碼部分,具有N 2個位元通道,該N 2個位元通道包含K 2個訊息位元通道及N 2–K 2個凍結位元通道,其中N 2為2 n2,n2為正整數,K 2為一小於或等於N 2的正整數;
    其中在該K 1個訊息位元通道和該K 2個訊息位元通道中的該q個訊息位元通道使用該q個額外凍結位元通道被再極化;
    接收該輸入向量的步驟包含:
    接收包含至少K 1+ K 2個訊息位元和N 1+N 2+q–K 1–K 2個凍結位元的該輸入向量。
  6. 如申請專利範圍第5項所述的方法,其中產生該產生器矩陣的步驟包含:
    建立該第一標準極化碼部分以從該N 1個位元通道中決定該K 1個訊息位元通道及該N 1–K 1個凍結位元通道,該K 1個訊息位元通道的每一個具有小於該N 1–K 1個凍結位元通道的該錯誤機率;
    建立該第二標準極化碼部分以從該N 2個位元通道中決定該K 2個訊息位元通道及該N 2–K 2個凍結位元通道,該K 2個訊息位元通道的每一個具有小於該N 2–K 2個凍結位元通道的該錯誤機率;
    從該K 1個訊息位元通道和該K 2個訊息位元通道中決定該q個最不可靠的訊息位元通道,該q個最不可靠的訊息位元通道的每一個都具有大於該K 1個訊息位元通道和該K 2個訊息位元通道中的其他訊息位元通道的該錯誤機率;以及
    使用該q個額外凍結位元通道再極化該q個最不可靠的訊息位元通道。
  7. 如申請專利範圍第1項所述的方法,更包含:
    經由N+q個通訊通道傳輸該N+q個編碼位元,該N+q個編碼位元的每一位元經由該N+q個通訊通道傳輸中的一個被傳輸;以及
    儲存該N+q個編碼位元到一儲存單元。
  8. 如申請專利範圍第7項所述的方法,其中該儲存單元為一單層式儲存單元,且儲存該N+q個編碼位元到該儲存單元的步驟包含:
    儲存該N+q個編碼位元的每一個到N+q個單層式儲存單元中的一個。
  9. 如申請專利範圍第7項所述的方法,其中該儲存單元為一多層式儲存單元,且儲存該N+q個編碼位元到該儲存單元的步驟包含:
    儲存該N+q個編碼位元的每一個到多層式儲存單元中的至少兩個儲存位準的一個位準。
  10. 一種用以產生可變碼長之極化碼的裝置,包含:
    一處理器;以及
    一非暫時性的電腦可讀取儲存媒體,用以儲存被該處理器執行的指令,以使該處理器執行:
    產生用於一延伸極化碼的一產生器矩陣,該延伸極化碼包含:
    一標準極化碼部分,具有N個位元通道,該N個位元通道包含K個訊息位元通道及N-K個凍結位元通道,其中N為2 n,n為正整數,K為一小於或等於N的整數;以及
    一額外凍結部分,具有q個額外凍結位元通道,q為一正整數;
    其中在該K個訊息位元通道中的q個訊息位元通道使用該q個額外凍結位元通道被再極化;
    接收包含K個訊息位元和N+q–k個凍結位元的一輸入向量;以及
    使用該產生器矩陣轉換該輸入向量為包含N+q個編碼位元的一輸出向量,其中該K個訊息位元被分配到該K個訊息位元通道,且該N+q–k個凍結位元被分配到該N-K個凍結位元通道及該q個額外凍結位元通道。
TW104127566A 2015-03-31 2015-08-24 用以產生可變碼長之極化碼的方法及裝置 TWI549435B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201562140531P 2015-03-31 2015-03-31
US14/794,059 US9628114B2 (en) 2015-03-31 2015-07-08 Length-compatible extended polar codes

Publications (2)

Publication Number Publication Date
TWI549435B true TWI549435B (zh) 2016-09-11
TW201635720A TW201635720A (zh) 2016-10-01

Family

ID=57016377

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104127566A TWI549435B (zh) 2015-03-31 2015-08-24 用以產生可變碼長之極化碼的方法及裝置

Country Status (3)

Country Link
US (1) US9628114B2 (zh)
CN (1) CN106027071B (zh)
TW (1) TWI549435B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI665878B (zh) * 2018-02-09 2019-07-11 旺宏電子股份有限公司 極化碼產生方法及應用其的電子裝置及非暫態電腦可讀取儲存媒體
CN110505036A (zh) * 2018-05-17 2019-11-26 财团法人工业技术研究院 传输以极化码编码的数据的方法与使用其的电子装置
TWI721263B (zh) * 2017-05-15 2021-03-11 美商高通公司 極化碼的有效負荷大小不定性和虛警率降低
TWI754670B (zh) * 2016-09-20 2022-02-11 南韓商三星電子股份有限公司 極化碼之並列連續消除解碼與連續消除清單解碼的裝置和方法、製造方法及建立方法

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015074192A1 (zh) 2013-11-20 2015-05-28 华为技术有限公司 极化码的处理方法和设备
US10231121B2 (en) * 2015-06-24 2019-03-12 Lg Electronics Inc. Security communication using polar code scheme
US10623142B2 (en) * 2015-10-30 2020-04-14 Huawei Technologies Canada Co., Ltd. Method for determining an encoding scheme and symbol mapping
TWI629872B (zh) * 2016-02-03 2018-07-11 旺宏電子股份有限公司 調整延伸極化碼的碼長度之方法及裝置
WO2018058352A1 (en) * 2016-09-28 2018-04-05 Qualcomm Incorporated Sub-channel mapping
US10069510B2 (en) 2016-11-21 2018-09-04 Samsung Electronics Co., Ltd. System and method for maximal code polarization
WO2018106001A1 (ko) * 2016-12-06 2018-06-14 엘지전자 주식회사 폴라 코드를 이용한 제어 정보 전송 방법 및 장치
US10049764B2 (en) 2016-12-13 2018-08-14 Macronix International Co., Ltd. Control method for memory device and memory controller
CN106685434B (zh) * 2016-12-28 2019-10-18 北京航空航天大学 一种部分极化的polar码的构造方法
WO2018124779A1 (ko) * 2017-01-02 2018-07-05 엘지전자 주식회사 폴라 코드에 기반한 harq를 수행하는 방법 및 장치
WO2018126378A1 (en) * 2017-01-05 2018-07-12 Qualcomm Incorporated Wireless communication with polar codes using a mask sequence for frozen bits
WO2018126458A1 (en) * 2017-01-06 2018-07-12 Nokia Technologies Oy Retransmission of polar code with reordered information bits
WO2018127155A1 (zh) * 2017-01-06 2018-07-12 株式会社Ntt都科摩 编码方法和编码器
WO2018127156A1 (zh) * 2017-01-06 2018-07-12 株式会社Ntt都科摩 编码方法和编码器
CN108289010B (zh) 2017-01-09 2022-04-15 中兴通讯股份有限公司 一种数据处理方法和装置
WO2018126476A1 (en) * 2017-01-09 2018-07-12 Qualcomm Incorporated Rate-matching scheme for control channels using polar codes
WO2018126496A1 (en) * 2017-01-09 2018-07-12 Qualcomm Incorporated Bit allocation for encoding and decoding
CN115664583A (zh) 2017-01-09 2023-01-31 中兴通讯股份有限公司 一种数据处理方法和装置
WO2018129734A1 (en) * 2017-01-16 2018-07-19 Qualcomm Incorporated Dynamic frozen polar codes
CN106998208B (zh) * 2017-01-17 2020-04-28 北京航空航天大学 一种可变长Polar码的码字构造方法
CN106877885B (zh) * 2017-01-22 2020-04-07 深圳大学 一种利用巴哈塔切亚参数构造极化码的方法及系统
CN108365914B (zh) 2017-01-26 2023-04-18 华为技术有限公司 Polar码编译码方法及装置
CN112910471A (zh) 2017-02-03 2021-06-04 华为技术有限公司 数据处理的方法和装置
US11323727B2 (en) * 2017-02-06 2022-05-03 Telefonaktiebolaget Lm Ericsson (Publ) Alteration of successive cancellation order in decoding of polar codes
WO2018145242A1 (en) * 2017-02-07 2018-08-16 Qualcomm Incorporated A low complexity puncturing method for low-rate polar codes
WO2018152660A1 (zh) * 2017-02-21 2018-08-30 南通朗恒通信技术有限公司 一种基站、用户设备中的用于信道编码的方法和装置
CN108574494B (zh) * 2017-03-13 2020-08-25 华为技术有限公司 编译码方法及装置
WO2018165843A1 (en) 2017-03-14 2018-09-20 Qualcomm Incorporated Mutual information based polar code construction
WO2018174615A1 (en) * 2017-03-23 2018-09-27 Samsung Electronics Co., Ltd. Method and apparatus for rate-matching of polar codes
CN108631931A (zh) * 2017-03-24 2018-10-09 华为技术有限公司 一种构造极化码序列的方法及装置
CN108631930B (zh) * 2017-03-24 2023-08-22 华为技术有限公司 Polar编码方法和编码装置、译码方法和译码装置
CN110495106B (zh) * 2017-04-18 2023-09-22 杜塞尔多夫华为技术有限公司 带有动态冻结比特的极化编码
WO2018191908A1 (en) * 2017-04-20 2018-10-25 Qualcomm Incorporated Dynamic frozen bits and error detection for polar codes
EP3613162A4 (en) 2017-04-20 2021-01-06 QUALCOMM Incorporated DYNAMIC FIXED BITS AND ERROR DETECTION FOR POLAR CODES
EP3625889A4 (en) * 2017-05-15 2020-12-02 Qualcomm Incorporated EARLY END OF SUCCESSIVE CANCELLATION LIST DECODING
CN108880743B (zh) * 2017-05-15 2020-07-28 华为技术有限公司 一种Polar码传输方法及装置
CN107248866B (zh) * 2017-05-31 2020-10-27 东南大学 一种降低极化码译码时延的方法
CN107276720B (zh) * 2017-06-13 2020-09-08 杭州电子科技大学 一种基于删余极化码特性的北斗导航电文编码方法
CN107332571B (zh) * 2017-06-14 2019-10-08 中国农业大学 一种Polar码构造方法及装置
WO2018227604A1 (en) 2017-06-16 2018-12-20 Huawei Technologies Co., Ltd. Methods and apparatus for polar encoding
CN109150376B (zh) 2017-06-16 2022-02-15 大唐移动通信设备有限公司 一种信道编码方法及设备
US10862646B2 (en) * 2017-07-11 2020-12-08 Nokia Technologies Oy Polar coded broadcast channel
WO2019020182A1 (en) * 2017-07-26 2019-01-31 Huawei Technologies Co., Ltd. CONSTRUCTION OF A POLAR CODE BASED ON A DISTANCE CRITERION AND A RELIABILITY CRITERION, PARTICULARLY A POLAR CORE WITH MULTIPLE CORES
KR102409208B1 (ko) 2017-08-23 2022-06-15 삼성전자주식회사 무선 통신 시스템에서 극 부호를 결정하기 위한 장치 및 방법
CN109600194A (zh) 2017-09-30 2019-04-09 华为技术有限公司 Ploar编码方法和编码装置、译码方法和译码装置
KR102426047B1 (ko) 2017-11-06 2022-07-26 삼성전자주식회사 폴라 부호 복호화 장치 및 방법
KR102482876B1 (ko) 2018-01-30 2022-12-29 삼성전자 주식회사 Mimo 채널에 대한 폴라 코드 생성 장치 및 방법
US10447436B2 (en) * 2018-02-07 2019-10-15 Macronix International Co., Ltd. Polar code generating method, and electronic device and non-transitory computer-readable storage medium therefor
CN110166057B (zh) * 2018-02-13 2023-01-06 旺宏电子股份有限公司 极化码产生方法、电子装置及计算机可读取存储介质
WO2019157764A1 (en) * 2018-02-15 2019-08-22 Qualcomm Incorporated Self-decodable redundancy versions for polar codes
US10608669B2 (en) 2018-02-16 2020-03-31 At&T Intellectual Property I, L.P. Performance of data channel using polar codes for a wireless communication system
CN112640314B (zh) * 2018-09-13 2024-04-09 华为技术有限公司 用于在乘积码和分量极化码之间映射冻结集的装置和方法
US10886944B2 (en) * 2018-09-24 2021-01-05 National Chiao Tung University Low-density parity-check code scaling method
US11088713B1 (en) * 2020-01-21 2021-08-10 Diego Melloni Solid state drive implementing a rate-compatible polar code

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014092502A1 (en) * 2012-12-14 2014-06-19 Samsung Electronics Co., Ltd. Encoding method and apparatus using crc code and polar

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7606308B2 (en) * 2003-09-07 2009-10-20 Microsoft Corporation Signaling macroblock mode information for macroblocks of interlaced forward-predicted fields
CN103516476B (zh) * 2012-06-29 2016-12-21 华为技术有限公司 编码方法和设备
CN106899311B (zh) * 2012-09-24 2023-11-03 华为技术有限公司 混合极性码的生成方法和生成装置
KR102015121B1 (ko) * 2012-10-17 2019-08-28 삼성전자주식회사 불휘발성 메모리 장치를 제어하도록 구성되는 컨트롤러 및 컨트롤러의 동작 방법
US9362956B2 (en) * 2013-01-23 2016-06-07 Samsung Electronics Co., Ltd. Method and system for encoding and decoding data using concatenated polar codes
TWI533620B (zh) * 2013-03-15 2016-05-11 國立清華大學 減少硬體緩衝器之低密度奇偶檢查碼階層式解碼架構
US20150333775A1 (en) * 2014-05-15 2015-11-19 Broadcom Corporation Frozen-Bit Selection for a Polar Code Decoder
CN104079382B (zh) * 2014-07-25 2017-07-28 北京邮电大学 一种基于概率计算的极化码译码器和极化码译码方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014092502A1 (en) * 2012-12-14 2014-06-19 Samsung Electronics Co., Ltd. Encoding method and apparatus using crc code and polar

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
D. M. Shin, S. C. Lim and K. Yang, "Design of Length-Compatible Polar Codes Based on the Reduction of Polarizing Matrices," in IEEE Transactions on Communications, vol. 61, no. 7, pp. 2593-2599, July 2013. *
E. Arikan, "Channel Polarization: A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Memoryless Channels," in IEEE Transactions on Information Theory, vol. 55, no. 7, pp. 3051-3073, July 2009 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI754670B (zh) * 2016-09-20 2022-02-11 南韓商三星電子股份有限公司 極化碼之並列連續消除解碼與連續消除清單解碼的裝置和方法、製造方法及建立方法
TWI721263B (zh) * 2017-05-15 2021-03-11 美商高通公司 極化碼的有效負荷大小不定性和虛警率降低
TWI665878B (zh) * 2018-02-09 2019-07-11 旺宏電子股份有限公司 極化碼產生方法及應用其的電子裝置及非暫態電腦可讀取儲存媒體
CN110505036A (zh) * 2018-05-17 2019-11-26 财团法人工业技术研究院 传输以极化码编码的数据的方法与使用其的电子装置

Also Published As

Publication number Publication date
CN106027071A (zh) 2016-10-12
US20160294418A1 (en) 2016-10-06
TW201635720A (zh) 2016-10-01
CN106027071B (zh) 2019-05-14
US9628114B2 (en) 2017-04-18

Similar Documents

Publication Publication Date Title
TWI549435B (zh) 用以產生可變碼長之極化碼的方法及裝置
TW201729544A (zh) 調整延伸極化碼的碼長度之方法及裝置
KR102206307B1 (ko) 폴라 코드를 사용하여 데이터를 인코딩하는 방법 및 장치
US10608667B2 (en) Method of low complexity SCL decoding for polar codes and apparatus thereof
WO2017092543A1 (zh) 用于极化码的速率匹配的方法和装置
EP3364542A1 (en) Error correction coding method based on cascading of polar codes and repetition codes or multi-bit parity check codes
CN107395319B (zh) 基于打孔的码率兼容极化码编码方法及系统
JP2008526163A (ja) マルチレベル低密度パリティ検査符号化変調
US10560123B2 (en) Method for generating a sequence for a pola code and medium therefor and method and apparatus for transmitting data using thereof
CN109768846B (zh) 基于二核三核混合极化码的凿孔方法、系统、装置及介质
CN113162634B (zh) 一种基于比特翻转的码长自适应极化码译码方法
CN110233698B (zh) 极化码的编码及译码方法、发送设备、接收设备、介质
WO2022188752A1 (zh) 一种编译码方法及装置
KR20220085049A (ko) 멀티-레벨 인코딩을 위한 장치
WO2018127140A1 (zh) 数据编码及译码的方法和装置
KR102203607B1 (ko) Mac 계층 레벨에서의 데이터 송신 자원을 최적화하는 방법 및 방법을 구현하는 디바이스
WO2020147527A1 (zh) 一种极化编译码方法及装置
TWI791023B (zh) 編碼輸入資料為極性碼的方法及設備、解碼方法及用以解碼碼字的設備
WO2018210216A1 (zh) 传输数据的方法、芯片、收发机和计算机可读存储介质
CN112953561B (zh) 基于极化码的空间耦合编码方法及系统、译码方法及系统
US20210203362A1 (en) Method of interleaved polar codes and interleaved polar encoder used therein
KR102105428B1 (ko) Sec부호에서 멀티오류정정을 위한 복호기 및 그 복호 방법
US8649342B2 (en) Method of mapping transport sequences to component carriers in a wireless communication system
RU2801163C1 (ru) Устройство для многоуровневого кодирования
CN110166057B (zh) 极化码产生方法、电子装置及计算机可读取存储介质