WO2018152660A1 - 一种基站、用户设备中的用于信道编码的方法和装置 - Google Patents

一种基站、用户设备中的用于信道编码的方法和装置 Download PDF

Info

Publication number
WO2018152660A1
WO2018152660A1 PCT/CN2017/074187 CN2017074187W WO2018152660A1 WO 2018152660 A1 WO2018152660 A1 WO 2018152660A1 CN 2017074187 W CN2017074187 W CN 2017074187W WO 2018152660 A1 WO2018152660 A1 WO 2018152660A1
Authority
WO
WIPO (PCT)
Prior art keywords
block
bit
bits
sub
bit sub
Prior art date
Application number
PCT/CN2017/074187
Other languages
English (en)
French (fr)
Inventor
张晓博
Original Assignee
南通朗恒通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南通朗恒通信技术有限公司 filed Critical 南通朗恒通信技术有限公司
Priority to PCT/CN2017/074187 priority Critical patent/WO2018152660A1/zh
Priority to CN201780069400.XA priority patent/CN109937547B/zh
Publication of WO2018152660A1 publication Critical patent/WO2018152660A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/13Linear codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received

Definitions

  • the present invention relates to a transmission scheme for wireless signals in a wireless communication system, and more particularly to a method and apparatus for transmission of channel coding.
  • Polar Codes is a coding scheme first proposed by Professor Erdal Arikan of the University of Birken in Turkey in 2008. It can realize the Binary input Discrete Memoryless Channel (B-DMC). Code construction method for capacity.
  • B-DMC Binary input Discrete Memoryless Channel
  • 3GPP 3rd Generation Partner Project
  • 3GPP determined a control channel coding scheme using a Polar code scheme as a 5GeMBB (Enhanced Mobile Broadband) scenario.
  • DCI Downlink Control Information
  • PDCCH Physical Downlink Control Channel
  • the inventors have found through research that the length of the input bit block corresponding to the polarization code generator is 2 to the power of N, and the N is a positive integer. Therefore, for a certain number of information bits, the channel coding based on the polarization code
  • the length of the input bit block corresponding to the device is fixed to the polarization code used, except that the number of frozen bits is different.
  • This characteristic of the polarization code can be used to form a bit block composed of bits, DCI bits, and freeze bits corresponding to the indication information of the number of DCI bits into a block of input bits for generating a polarization code.
  • the receiving end first decodes the indication information of the number of the DCI bits by using the characteristics of the polarization code serial decoder, and secondly determines the exact number of frozen bits in the input bit block by using the indication information, and then freezes the The exact number of bits is used for subsequent decoding to obtain DCI bits, thereby reducing the UE The number of blind checks and the processing burden.
  • the location of the indication information in the input bit block needs to be pre-configured. Different locations correspond to different transmission reliability and decoding complexity. There is a certain exchange relationship between the reliability and the decoding complexity.
  • the base station needs to pre-configure the indication information at which position of the input bit block according to the specific needs of the communication system.
  • the present invention provides a solution. It should be noted that, in the case of no conflict, the features in the embodiments and the embodiments of the present application may be combined with each other arbitrarily. For example, features in embodiments and embodiments in the base station of the present application may be applied to user equipment, and vice versa.
  • the invention discloses a method used in a base station for channel coding, which comprises the following steps:
  • Step A Performing a first channel coding
  • Step B Send the first wireless signal.
  • the first block of bits is used for the input of the first channel coding.
  • the first channel coding is based on a polarization code.
  • the first channel encoded output is used to generate the first wireless signal.
  • the first bit block is composed of a first bit subblock, a second bit subblock, and a third bit subblock.
  • the first set of bits includes a first set of bits.
  • the first bit sub-block, the second bit sub-block, the third bit sub-block and the first bit set respectively comprise a positive integer number of bits.
  • the value of the first bit sub-block is related to the number of bits in the first set of bits.
  • the number of bits in the first set of bits is one of the K candidate values.
  • the candidate value is a positive integer and the K is a positive integer greater than one.
  • the third bit sub-block, the first bit sub-block and the second bit sub-block are sequentially arranged in the first bit block.
  • the number of bits in the first bit sub-block and the number of bits in the second bit sub-block are P1 and P2, respectively, and the P1 and the P2 are predetermined positive integers.
  • the above method has the advantage that the same channel coding is used for the first bit set of different sizes, thereby reducing the number of blind detections and time-frequency occupied resources at the UE side.
  • the indication information of the first bit set size is fixed in the channel coding input bit block and is decoded before the partial bits in the first bit set, thereby reducing the decoding complexity of the UE side.
  • the first wireless signal is a multi-carrier symbol.
  • the first wireless signal is an OFDM (Orthogonal Frequency Division Multiplexing) symbol.
  • the first wireless signal is DFT-S-OFDM (Discrete Fourier) Transform Spread OFDM, Discrete Fourier Transform Orthogonal Frequency Division Multiplexing (OFDM) symbol.
  • DFT-S-OFDM Discrete Fourier Transform Spread OFDM
  • OFDM Orthogonal Frequency Division Multiplexing
  • the output of the first channel coding is modulated to generate the first wireless signal.
  • the output of the first channel coding is multi-antenna pre-coded to generate the first wireless signal.
  • the first block of bits is an input of the first channel code.
  • the first bit block corresponds to all bits of the first channel coding input.
  • the first block of bits is an input to a generator matrix of the polarization code.
  • the first block of bits includes freeze bits and information bits.
  • the information bits comprise parity bits.
  • the information bits comprise the first set of bits.
  • the information bits consist of bits in the first set of bits and bits in the first set of bit sub-blocks.
  • the first block of bits does not include a check bit.
  • the first bit block does not include a parity bit corresponding to the first bit set
  • the first bit sub-block includes a parity bit related to the number of bits in the first bit set
  • the number of bits in the first set of bits is used by the base station to determine a value of the first bit sub-block.
  • an index of the number of bits in the first set of bits in the K candidate values is used by the base station to determine a value of the first bit sub-block.
  • the value of the first bit sub-block is equal to the number of bits in the first set of bits.
  • the number of bits in the first set of bits is used to determine a first bit packet
  • the first bit packet is used for input of a first encoding
  • the first bit sub-block is The output of the first code.
  • the first encoding is used to improve transmission reliability of the first bit packet.
  • the first encoding is based on an error-detecting code.
  • the first encoding is based on an error correction code (error-correcting Code).
  • the first bit sub-block is further used to determine a position of a bit in the first bit set in the first bit block, an information format of the first bit set, At least one of the polynomials ⁇ corresponding to the redundancy check bits of the first bit block.
  • the bits in the first bit packet are further used to determine ⁇ the position of the bit in the first bit set in the first bit block, the information format of the first bit set, At least one of a polynomial ⁇ corresponding to a redundancy check bit of the first bit block.
  • the value of the first bit sub-block is independent of the value of the bit in the first set of bits.
  • the pre-determined means that the number of bits in the first set of bits is not used to determine the number of bits in the first bit sub-block and the second bit sub-block The number of bits.
  • the predetermined is determined by default.
  • the default determination refers to that no downlink signaling configuration is required.
  • the default determination refers to an explicit configuration that does not require downlink signaling.
  • the default determination is fixed.
  • the pre-determined refers to being configured by higher layer signaling.
  • the predetermined is meant to be configured over a broadcast channel.
  • ⁇ the number of bits in the first bit sub-block, the number of bits in the second bit sub-block ⁇ and the number of bits in the first bit block are in one-to-one correspondence.
  • the P2 is one of the K candidate values.
  • the position of the P2 in the K candidate values is fixed.
  • the P2 does not belong to the K candidate values.
  • the P1 power of 2 is greater than the K.
  • the P1 power of 2 is equal to the K.
  • any bit in the first bit block belongs to one of ⁇ the first bit sub-block, the second bit sub-block, the third bit sub-block ⁇ .
  • the number of bits in the first bit set in the second bit sub-block is greater than a minimum of the K candidate values.
  • the number of bits in the first bit set in the second bit sub-block is equal to a minimum of the K candidate values.
  • the P2 is smaller than the number of bits in the first set of bits.
  • any bit in the second bit sub-block belongs to the first bit set.
  • any bit in the first bit set belongs to a second set, and the second set is composed of ⁇ the second bit sub-block, the third bit sub-block ⁇ .
  • the bits in the first bit sub-block are consecutive in the corresponding sequence number in the first bit block.
  • the bits in the second bit sub-block are consecutive in the corresponding sequence number in the first bit block.
  • the bits in the third bit sub-block are consecutive in the corresponding sequence number in the first bit block.
  • the corresponding sequence number of any bit in the second bit sub-block in the first bit block is greater than the corresponding sequence number of any bit in the first bit sub-block in the first bit block. .
  • the corresponding sequence number of any bit in the first bit sub-block in the first bit block is greater than the corresponding sequence number of any bit in the third bit sub-block in the first bit block.
  • the bits in the first bit block are sequentially decoded according to the base station hypothesis that the receiver sequentially decodes according to the bit number.
  • the bits in the first block of bits are arranged in increasing order of subchannel capacity.
  • the first bit block corresponds to an input of the polarization code
  • the bit arrangement in the first bit block is in an increasing order according to a column number of a generation matrix of the polarization code.
  • the first bit block corresponds to an input of the polarization code
  • the bit arrangement in the first bit block is in an increasing order according to a row number of a generation matrix of the polarization code.
  • the generation matrix of the polarization code is based on a Kronecker matrix.
  • the generation matrix of the polarization code is a Kronecker matrix.
  • the generation matrix of the polarization code is a product of a switching matrix and a Kronecker matrix.
  • the switching matrix is used for bit flipping the sequence numbers of the bits in the input bit block.
  • the first block of bits is an input to the polarization code generation matrix.
  • the first set of bits includes dynamically configured information.
  • the first set of bits is used to determine DCI (Downlink Control Information).
  • DCI Downlink Control Information
  • the first set of bits includes DCI bits and parity bits.
  • the first set of bits includes parity bits corresponding to DCI bits.
  • the first set of bits includes a DCI bit and a parity bit corresponding to the first bit sub-block.
  • the first set of bits and the first bit sub-block belong to one DCI.
  • the first set of bits and the first bit sub-block constitute a DCI.
  • the first bit packet and the second bit packet are used for the input of the first encoding and the second encoding, respectively.
  • the outputs of the first code and the second code are used to generate the first bit sub-block and the first bit set, respectively, and the first bit packet and the second bit packet form a DCI.
  • the first code and the second code are used to generate a CRC (Circular Redundancy Check) code.
  • CRC Chemical Redundancy Check
  • the first encoding is used to generate a TBCC (Tail-Biting Convolutional Code), and the second encoding is used to generate a cyclic redundancy check code.
  • TBCC Transmission-Biting Convolutional Code
  • the K candidate values respectively correspond to K types of DCI (Downlink Control Information) format.
  • the K candidate values are in one-to-one correspondence with the DCI payload sizes of the DC DCIs.
  • the load length of the K DCIs is used by the base station to determine the K candidate values.
  • the load lengths of the K DCIs plus T1 obtain the K candidate values, and the T1 is a positive integer.
  • the number of parity bits in the first set of bits is C1
  • the T1 is equal to the C1
  • the C1 is a positive integer
  • the number of parity bits in the first bit sub-block is C2, the T1 is equal to C1+C2-P1, and the C2 is a positive integer.
  • the C1 check bits and the C2 check bits are used to carry RNTI (Radio Network Temporary Identity) information of a target receiver.
  • RNTI Radio Network Temporary Identity
  • the C1 check bits and the C2 check bits are scrambled by a sequence corresponding to the RNTI.
  • the C1 check bits carry RNTI information of a user group or a beam group in which the target receiver is located, and the C1 and check bits are used together with the C2 check bits to determine a bearer.
  • User-specific RNTI of the target recipient User-specific RNTI of the target recipient.
  • the number of bits in the first bit block is L
  • the number of bits in the first bit set is L1
  • the L1 is smaller than the P2.
  • the third bit sub-block is composed of L-P1-P2 frozen bits.
  • the second bit sub-block is composed of a fourth bit sub-block and a fifth bit sub-block.
  • the fourth bit sub-block is composed of P2-L1 frozen bits
  • the fifth bit sub-block is composed of L1 bits in the first bit set.
  • the third bit sub-block, the first bit sub-block, the fourth bit sub-block and the fifth bit sub-block are sequentially arranged in the first bit block.
  • the L1 is greater than the P2.
  • the third bit sub-block is composed of a sixth bit sub-block and a seventh bit sub-block, the sixth bit sub-block is composed of L-P1-L1 frozen bits, and the seventh bit sub-block is composed of L1-P2
  • the bits in the first set of bits are composed.
  • the second bit sub-block is composed of P2 bits in the first bit set.
  • the sixth bit sub-block, the seventh bit sub-block, the first bit sub-block and the second bit sub-block are sequentially arranged in the first bit block.
  • the L1 is equal to the P2.
  • the third bit sub-block is composed of L-P1-L1 frozen bits, and the second bit sub-block is composed of L1 bits in the first bit set.
  • the third bit sub-block, the first bit sub-block and the second bit sub-block are sequentially arranged in the first bit block.
  • At least one of the K candidate values and the candidate number The number of RE groups occupied by a wireless signal, the RE group including a positive integer number of REs.
  • the maximum of the K candidate values is related to the number of RE groups occupied by the first wireless signal.
  • the minimum of the K candidate values is independent of the number of RE groups occupied by the first wireless signal.
  • the RE group is a CCE (Control Channel Element).
  • the RE group is an eCCE (enhanced control channel element).
  • the RE occupies one subcarrier in the frequency domain and occupies one OFDM symbol in the time domain.
  • the RE occupies one subcarrier in the frequency domain and occupies one FBMC symbol in the time domain.
  • the second bit sub-block includes a ⁇ CIF domain, a resource allocation domain, an MCS (Modulation and Coding Status) domain, an NDI domain, a HARQ process number domain, and a TPC domain.
  • a field indicating a parameter of the DMRS, a CRC bit ⁇ At least one of a field indicating a parameter of the DMRS, a CRC bit ⁇ .
  • the P2 is a maximum of the K candidate values.
  • the above method is advantageous in that, for a decoding algorithm in which the bit arrangement order in the first bit block is used for a coding order, an indication for indicating the number of bits in the first bit set Information can be decoded prior to all bits in the first set of bits, thereby improving coding efficiency.
  • the first bit set occupies a subchannel having a higher channel capacity, thereby improving transmission of the first bit set. Sex.
  • any bit in the first set of bits is in the second bit sub-block.
  • the bits in the third bit sub-block are freeze bits.
  • the number of bits in the first bit block is L
  • the number of bits in the first bit set is L1
  • the L1 is one of the K candidate values.
  • Kmax is the maximum of the K candidate values
  • the L1 is not equal to the Kmax.
  • Place The third bit sub-block consists of L-P1-Kmax frozen bits.
  • the second bit sub-block is composed of a fourth bit sub-block and a fifth bit sub-block.
  • the fourth bit sub-block is composed of Kmax-L1 frozen bits
  • the fifth bit sub-block is composed of L1 bits in the first bit set.
  • the third bit sub-block, the first bit sub-block, the fourth bit sub-block and the fifth bit sub-block are sequentially arranged in the first bit block.
  • any one of the fourth bit sub-blocks has a corresponding sequence number in the first bit block that is greater than any bit in the fifth bit sub-block corresponding to the first bit block. Serial number.
  • the L1 is equal to the Kmax.
  • the third bit sub-block is composed of L-P1-Kmax frozen bits, and the second bit sub-block is composed of L1 bits in the first bit set.
  • the third bit sub-block, the first bit sub-block and the second bit sub-block are sequentially arranged in the first bit block.
  • the P2 is a minimum of the K candidate values.
  • the foregoing method is advantageous in that, for a channel coding algorithm in which the bit arrangement in the first bit block is arranged in an increasing order of subchannel capacity, the capacity of the subchannel corresponding to the first bit subblock is higher than The capacity of the subchannel corresponding to the bit is frozen, thereby increasing the transmission reliability of the first bit sub-block.
  • a decoding algorithm in which the bit arrangement order in the first bit block is used for a coding order a partial bit of the first bit set is decoded once only after the first bit sub-block is decoded, Thereby improving the decoding efficiency.
  • the sequence number corresponding to any frozen bit in the first bit block is smaller than the sequence number corresponding to any information bit in the first bit block.
  • the number of bits in the first bit block is L
  • the number of bits in the first bit set is L1
  • the L1 is one of the K candidate values.
  • the L1 is not the minimum of the K candidate values.
  • the third bit sub-block is composed of a sixth bit sub-block and a seventh bit sub-block
  • the sixth bit sub-block is composed of L-P1-L1 frozen bits
  • the seventh bit sub-block is composed of L1-P2
  • the bits in the first set of bits are composed.
  • the second bit sub-block is composed of P2 bits in the first bit set.
  • the sixth bit sub-block, the seventh bit sub-block, the first bit sub-block and the second bit sub-block are sequentially arranged in the first bit block.
  • the L1 is a minimum of the K candidate values.
  • the third ratio The sub-block is composed of L-P1-L1 frozen bits, and the second bit sub-block is composed of L1 bits in the first bit set.
  • the third bit sub-block, the first bit sub-block and the second bit sub-block are sequentially arranged in the first bit block.
  • the P2 is one of the K candidate values, and the P2 is not the maximum of the K candidate values, and Not the minimum of the K candidate values.
  • the foregoing method has the following advantages: the K candidate values correspond to K DCI formats, and the first DCI format is a DCI format in which the decoding speed and the transmission reliability are high in the K DCI formats. And P2 is equal to one of the K candidate values corresponding to the first DCI format, thereby ensuring decoding speed and transmission reliability when transmitting the first DCI format.
  • the first DCI format is a DCI format used for sTTI (Short Transmission Time Interval).
  • the first DCI format is a DCI format used for URLLC (Ultra Reliable Low Latency Communications).
  • the first DCI format is a DCI format that is most frequently used in the K DCI formats.
  • the P2 does not belong to the K candidate values.
  • the above method has the advantage that the P2 is a statistically optimal performance value obtained by the communication system according to the test and the simulation, so as to achieve better performance in a statistical sense.
  • the value of the P2 ensures statistically optimal performance.
  • the value of P2 is a statistically optimal simulated experience value.
  • the value of the P2 ensures system compatibility.
  • the probability that the P2 is equal to the number of bits in the first set of bits is zero.
  • the number of bits in the first bit block is L
  • the number of bits in the first bit set is L1
  • the L1 is one of the K candidate values.
  • the L1 is smaller than the P2
  • the bit in the first bit set does not exist in the third bit sub-block
  • the frozen bit in the first bit block exists in the second bit sub-block.
  • the L1 is smaller than the P2.
  • the third bit sub-block is composed of L-P1-P2 frozen bits.
  • the second bit sub-block is composed of a fourth bit sub-block and a fifth bit sub-block.
  • the fourth bit sub-block is composed of P2-L1 frozen bits, and the fifth bit sub-block is composed of L1 bits in the first bit set.
  • the third bit sub-block, the first bit sub-block, the fourth bit sub-block and the fifth bit sub-block are sequentially arranged in the first bit block.
  • the L1 is greater than the P2, the bit in the first bit set exists in the third bit sub-block, and the second bit sub-block does not exist in the first bit block. Freeze bits.
  • the L1 is greater than the P2.
  • the third bit sub-block is composed of a sixth bit sub-block and a seventh bit sub-block, the sixth bit sub-block is composed of L-P1-L1 frozen bits, and the seventh bit sub-block is composed of L1-P2
  • the bits in the first set of bits are composed.
  • the second bit sub-block is composed of P2 bits in the first bit set.
  • the sixth bit sub-block, the seventh bit sub-block, the first bit sub-block and the second bit sub-block are sequentially arranged in the first bit block.
  • the step A further includes the following steps:
  • Step A0 Send the first message.
  • the first information is used to determine ⁇ at least one of the number of bits in the first bit block, the K candidate values, the P1, the P2 ⁇ .
  • the above method has the advantage of supporting more flexible configuration of information bit transmission, thereby improving transmission efficiency and reliability.
  • the first information is semi-statically configured.
  • the first information is UE specific.
  • the first information includes one or more RRC (Radio Resource Control) IEs (Information Element).
  • RRC Radio Resource Control
  • a part of the RRC IEs of the multiple RRC IEs are common to a cell, and the rest of the plurality of RRC IEs are UE-specific.
  • the first information explicitly indicates ⁇ at least one of the number of bits in the first bit block, the K candidate values, the P1, and the P2 ⁇ .
  • the first information implicitly indicates ⁇ bits in the first bit block The number, the K candidate values, the P1, the P2 ⁇ .
  • the first information indicates a current transmission setting of the UE, and the transmission setting implicitly indicates ⁇ the number of bits in the first bit block, the K candidate values, the P1 At least one of the P2 ⁇ .
  • the transmission settings include multiple antenna related parameters.
  • the transmission settings include carrier aggregation related parameters.
  • the step A further includes the following steps:
  • Step A1 Determine a second set of bits in the first block of bits.
  • bits in the second set of bits are freeze bits.
  • the second set of bits and the first set of bits are sequentially arranged in the first block of bits.
  • the above method has the advantage that the transmission reliability of the first set of bits is further ensured.
  • the second set of bits includes all of the frozen bits in the first block of bits.
  • any bit in the first bit block is a bit in one of the first bit sub-block, the first bit set, the second bit set ⁇ . Any two of the first bit sub-block, the first set of bits, and the second set of bits do not include bits in the same first bit block.
  • the corresponding sequence number of any bit in the second bit set is smaller than the corresponding sequence number of any bit in the first bit set in the first bit block.
  • the bits in the second set of bits belong to the third bit sub-block.
  • the number of bits in the third bit sub-block is greater than the number of bits in the second bit set.
  • the number of bits in the first bit block is L
  • the number of bits in the first bit set is L1
  • the L1 is one of the K candidate values.
  • the number of bits in the second set of bits is L-P1-L1.
  • the L1 is smaller than the P2.
  • the third bit sub-block is composed of L-P1-P2 bits in the second bit set, and the second bit sub-block is composed of P2-L1 bits in the second bit set and the first bit A set of bits is arranged in order.
  • the L1 is greater than the P2.
  • the third bit sub-block is composed of all bits in the second bit set and L1-P2 bits in the first bit set, and the second bit sub-block is composed of the first bit set The P2 bits in the composition.
  • the second bit sub-block does not include bits in the second set of bits.
  • the L1 is equal to the P2.
  • the third bit sub-block is composed of all bits in the second set of bits.
  • the second bit sub-block does not include bits in the second set of bits.
  • the second set of bits consists of a first frozen bit subset and a second frozen bit subset.
  • the number of bits in the first set of bits is not used to determine the number of bits in the first set of frozen bits.
  • the number of bits in the first bit block is L
  • the maximum of the K candidate values is Kmax
  • the number of bits in the first frozen bit subset is equal to L-P1-Kmax
  • the number of bits in the second frozen bit subset is Kmax-L1.
  • the bits in the first frozen bit subset correspond to the L-P1-Kmax bits with the smallest sequence number in the first bit block.
  • the base station assumes that when the receiver decodes the first bit sub-block, the bits in the first frozen bit subset are used as known bits, and the second frozen bit subset The bits are used as unknown bits.
  • the first frozen bit subset carries RNTI information of a target receiver.
  • the RNTI of the target recipient is used to scramble the first frozen bit subset.
  • any bit in the first frozen bit subset is a bit in one of ⁇ the first frozen bit subset, the second frozen bit subset ⁇ . Any two of the first frozen bit subset, the second frozen bit subset, do not include bits in the same first bit block.
  • the numbers of the bits in the first frozen bit subset are consecutive in the first bit block.
  • the bits in the second frozen bit subset are consecutive in the first bit block.
  • the bits in the first frozen bit subset are consecutive in the first bit block, and the bits in the second frozen bit subset are discontinuous in the first bit block.
  • the corresponding sequence number of any bit in the first frozen bit subset is smaller than the second frozen bit subset, the first bit sub-block, the first Any bit in the set of bits ⁇ corresponds to the sequence number in the first block of bits.
  • the first wireless signal is transmitted on a physical layer control channel, or the first bit sub-block and the first bit set correspond to a same DCI.
  • the above method has the advantage of reducing the number of blind detections of the physical layer control channel by the UE side.
  • the physical layer control channel is a physical layer channel that can only carry physical layer signaling.
  • the DCI is UE specific.
  • the physical layer control channel is a PDCCH.
  • the physical layer control channel is an ePDCCH (enhanced PDCCH).
  • the physical layer control channel is an sPDCCH (short PDCCH, short physical layer downlink control channel).
  • the physical layer control channel is an NR-PDCCH (New Radio PDCCH, a new radio layer downlink control channel).
  • NR-PDCCH New Radio PDCCH, a new radio layer downlink control channel
  • the same DCI is used to determine the first bit sub-block and the first bit set.
  • the first bit sub-block belongs to a first DCI
  • the first bit set includes information bits of the first DCI and a CRC of the first DCI.
  • the first encoding is used to generate the first bit sub-block, the first encoded input bit belongs to a first DCI, and the first bit set includes information bits of the first DCI And a CRC of the first DCI.
  • the invention discloses a method used in a channel coding user equipment, which comprises the following steps:
  • Step B Perform first channel decoding.
  • the first channel coding corresponds to a first channel coding, the first channel coding is based on a polarization code, and a first bit block is used for the input of the first channel coding.
  • the first channel encoded output is used to generate the first wireless signal.
  • the first bit block is composed of a first bit subblock, a second bit subblock, and a third bit subblock.
  • the first set of bits includes a first set of bits.
  • the first bit sub-block, the second bit sub-block, the third bit sub-block and the first bit set respectively comprise a positive integer number of bits.
  • the value of the first bit sub-block is related to the number of bits in the first set of bits.
  • the number of bits in the first set of bits is one of the K candidate values.
  • the candidate value is a positive integer and the K is a positive integer greater than one.
  • the third bit sub-block, the first bit sub-block and the second bit sub-block are sequentially arranged in the first bit block.
  • the number of bits in the second bit sub-block is one of the K candidate values.
  • the first channel coding is used to recover the first block of bits.
  • the first channel coding is used to recover the first set of bits.
  • the first channel coding is used to recover a portion of the bits in the first set of bits.
  • the first channel coding is used to recover DCI bits in the first set of bits.
  • the first wireless signal carries verification information corresponding to the first bit block, and the channel decoding determines whether the first bit block is correctly restored based on the verification information.
  • the first bit block includes check information corresponding to a DCI bit in the first bit block, and the channel decoding determines whether the first bit block is correctly restored based on the check information.
  • the first channel decoding is based on SC (Successive Cancellation Decoding) decoding.
  • the first channel decoding is based on SCL (Successive Cancellation List) decoding.
  • the UE sequentially decodes in ascending order of bit numbers of the first bit block.
  • the UE first decodes the third bit sub-block and the first bit sub-block, and an estimated value of the first bit sub-block is used to determine the first bit set.
  • the number of bits, the number of bits in the first set of bits is used to determine the location of the frozen bit and the first set of bits in the first block of bits.
  • the number of bits in the first bit block is L
  • the number of bits in the first bit set is L1
  • Kmax is the maximum of the K candidate values.
  • the UE after decoding the estimated value of the first bit sub-block, the UE performs the frozen bit and the first bit sub-block as known bits to the bits in the first bit set. Decoding.
  • the size relationship between the L1 and the P2 is used to determine a freeze bit and the first set. The position of the bit in the first block of bits.
  • the L1 is smaller than the P2.
  • the second bit sub-block is composed of a fourth bit sub-block and a fifth bit sub-block.
  • the fourth bit sub-block is composed of P2-L1 frozen bits
  • the fifth bit sub-block is composed of L1 bits in the first bit set.
  • the third bit sub-block, the first bit sub-block, the fourth bit sub-block and the fifth bit sub-block are sequentially arranged in the first bit block.
  • the L1 is greater than the P2.
  • the third bit sub-block is composed of a sixth bit sub-block and a seventh bit sub-block, the sixth bit sub-block is composed of L-P1-L1 frozen bits, and the seventh bit sub-block is composed of L1-P2
  • the bits in the first set of bits are composed.
  • the second bit sub-block is composed of P2 bits in the first bit set.
  • the sixth bit sub-block, the seventh bit sub-block, the first bit sub-block and the second bit sub-block are sequentially arranged in the first bit block.
  • the L1 is equal to the P2.
  • the third bit sub-block is composed of L-P1-L1 frozen bits, and the second bit sub-block is composed of L1 bits in the first bit set.
  • the third bit sub-block, the first bit sub-block and the second bit sub-block are sequentially arranged in the first bit block.
  • the P2 is a maximum of the K candidate values.
  • the P2 is a minimum of the K candidate values.
  • the P2 is one of the K candidate values, and the P2 is not the maximum of the K candidate values, and Not the minimum of the K candidate values.
  • the P2 does not belong to the K candidate values.
  • the step A further includes the following steps:
  • the first information is used to determine ⁇ at least one of the number of bits in the first bit block, the K candidate values, the P1, the P2 ⁇ .
  • the step B further includes the following steps:
  • Step B0 Determine a second set of bits in the first block of bits.
  • bits in the second set of bits are freeze bits.
  • the second set of bits and the first set of bits are sequentially arranged in the first block of bits.
  • the first wireless signal is transmitted on a physical layer control channel, or the first bit sub-block and the first bit set correspond to a same DCI.
  • the invention discloses a base station device used for channel coding, which comprises the following modules:
  • a first execution module for performing a first channel coding
  • a first transmitting module for transmitting the first wireless signal.
  • the first block of bits is used for the input of the first channel coding.
  • the first channel coding is based on a polarization code.
  • the first channel encoded output is used to generate the first wireless signal.
  • the first bit block is composed of a first bit subblock, a second bit subblock, and a third bit subblock.
  • the first set of bits includes a first set of bits.
  • the first bit sub-block, the second bit sub-block, the third bit sub-block and the first bit set respectively comprise a positive integer number of bits.
  • the value of the first bit sub-block is related to the number of bits in the first set of bits.
  • the number of bits in the first set of bits is one of the K candidate values.
  • the candidate value is a positive integer and the K is a positive integer greater than one.
  • the third bit sub-block, the first bit sub-block and the second bit sub-block are sequentially arranged in the first bit block.
  • the first bit The number of bits in the block and the number of bits in the second bit sub-block are P1 and P2, respectively, and the P1 and the P2 are predetermined positive integers.
  • the above base station device is characterized in that the P2 is a maximum value among the K candidate values.
  • the above base station device is characterized in that the P2 is a minimum value among the K candidate values.
  • the foregoing base station device is characterized in that the P2 is one of the K candidate values, and the P2 is neither the maximum value of the K candidate values nor the The minimum of the K candidate values.
  • the foregoing base station device is characterized in that the P2 does not belong to the K candidate values.
  • the foregoing base station device is characterized in that the first execution module is further configured to send the first information.
  • the first information is used to determine ⁇ at least one of the number of bits in the first bit block, the K candidate values, the P1, the P2 ⁇ .
  • the foregoing base station device is characterized in that the first execution module is further configured to determine a second bit set in the first bit block. Wherein, the bits in the second set of bits are freeze bits. The second set of bits and the first set of bits are sequentially arranged in the first block of bits.
  • the foregoing base station device is characterized in that the first wireless signal is transmitted on a physical layer control channel, or the first bit sub-block and the first bit set correspond to the same DCI.
  • the invention discloses a user equipment used for channel coding, which comprises the following steps:
  • a first receiving module configured to receive the first wireless signal
  • Second execution module for performing first channel decoding.
  • the first channel coding corresponds to a first channel coding, the first channel coding is based on a polarization code, and a first bit block is used for the input of the first channel coding.
  • the first channel encoded output is used to generate the first wireless signal.
  • the first bit block is composed of a first bit subblock, a second bit subblock, and a third bit subblock.
  • the first set of bits includes a first set of bits.
  • the first bit sub-block, the second bit sub-block, the third bit sub-block and the first bit set respectively comprise a positive integer number of bits. a value of the first bit sub-block and the first bit
  • the number of bits in the set is related.
  • the number of bits in the first set of bits is one of the K candidate values.
  • the candidate value is a positive integer and the K is a positive integer greater than one.
  • the third bit sub-block, the first bit sub-block and the second bit sub-block are sequentially arranged in the first bit block.
  • the number of bits in the first bit sub-block and the number of bits in the second bit sub-block are P1 and P2, respectively, and the P1 and the P2 are predetermined positive integers.
  • the user equipment is characterized in that the P2 is a maximum of the K candidate values.
  • the user equipment is characterized in that the P2 is a minimum of the K candidate values.
  • the foregoing user equipment is characterized in that: P2 is one of the K candidate values, and the P2 is neither the maximum value of the K candidate values nor the The minimum of the K candidate values.
  • the foregoing user equipment is characterized in that the P2 does not belong to the K candidate values.
  • the foregoing user equipment is characterized in that the first receiving module is further configured to receive the first information.
  • the first information is used to determine ⁇ at least one of the number of bits in the first bit block, the K candidate values, the P1, the P2 ⁇ .
  • the user equipment is characterized in that the second execution module is further configured to determine a second set of bits in the first block of bits. Wherein, the bits in the second set of bits are freeze bits. The second set of bits and the first set of bits are sequentially arranged in the first block of bits.
  • the foregoing user equipment is characterized in that the first wireless signal is transmitted on a physical layer control channel, or the first bit sub-block and the first bit set correspond to the same DCI.
  • the present invention has the following advantages over the conventional solution:
  • the number of blind detections on the UE side is reduced by the internal indication of the code block;
  • FIG. 1 shows a flow chart of wireless transmission in accordance with one embodiment of the present invention
  • FIG. 2 is a diagram showing the relationship between a first bit block and a first wireless signal according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram showing a first bit sub-block, a second bit sub-block and a third bit sub-block sequentially arranged in a first bit block according to an embodiment of the present invention
  • FIG. 4 shows a schematic diagram of the structure of a first bit block in accordance with one embodiment of the present invention
  • Figure 5 shows a schematic diagram of a first channel coding in accordance with one embodiment of the present invention
  • Figure 6 shows a schematic diagram of first channel decoding in accordance with one embodiment of the present invention
  • FIG. 7 is a block diagram showing the structure of a processing device used in a base station according to an embodiment of the present invention.
  • Figure 8 shows a block diagram of a structure for a processing device in a user equipment in accordance with one embodiment of the present invention.
  • Embodiment 1 illustrates a flow chart of wireless transmission, as shown in FIG.
  • base station N1 is a serving cell maintenance base station of UE U2.
  • the steps in block F1, block F2 and block F3 are optional, respectively.
  • the first information is transmitted in step S11; the second bit set in the first bit block is determined in step S12; the first channel coding is performed in step S13; and the first wireless signal is transmitted in step S14.
  • the first information is received in step S21; the first wireless signal is received in step S22; the second set of bits in the first bit block is determined in step S23; the first channel decoding is performed in step S24 .
  • the first bit block is used by N1 for the input of the first channel coding.
  • the first channel coding is based on a polarization code.
  • the first channel decoding corresponds to the first channel coding.
  • the output of the first channel code is used by N1 to generate the first wireless signal.
  • the first bit block is composed of a first bit subblock, a second bit subblock, and a third bit subblock.
  • the first bit includes the first bit set.
  • the first bit sub-block, the second bit sub-block, the third bit sub-block and the first bit set respectively comprise a positive integer number of bits.
  • the value of the first bit sub-block is related to the number of bits in the first set of bits.
  • the number of bits in the first set of bits is one of the K candidate values.
  • the candidate value is a positive integer and the K is a positive integer greater than one.
  • the third bit sub-block, the first bit sub-block and the second bit sub-block are sequentially arranged in the first bit block.
  • the number of bits in the first bit sub-block and the number of bits in the second bit sub-block are P1 and P2, respectively, and the P1 and the P2 are predetermined positive integers.
  • the P2 is the maximum of the K candidate values.
  • the P2 is the minimum of the K candidate values.
  • the P2 is one of the K candidate values, and the P2 is neither the maximum value of the K candidate values nor the K The smallest of the candidate values.
  • the P2 does not belong to the K candidate values.
  • the steps in block F1 exist, the first information is used by U2 to determine ⁇ the number of bits in the first bit block, the K candidate values, the P1, at least one of the P2 ⁇ .
  • the steps in block F2 exist, and the bits in the second set of bits are freeze bits.
  • the second set of bits and the first set of bits are sequentially arranged in the first block of bits.
  • the steps in block F3 exist, and the bits in the second set of bits are freeze bits.
  • the second set of bits and the first set of bits are sequentially arranged in the first block of bits.
  • the first wireless signal is transmitted on a physical layer control channel.
  • the first bit sub-block and the first bit set correspond to the same DCI.
  • any of the above-described sub-embodiments 1-4 and any of the above-described sub-embodiments 5-9 can be arbitrarily combined.
  • Embodiment 2 illustrates a schematic diagram of the relationship between the first bit block and the first wireless signal, as shown in FIG.
  • the first bit block is used for input of the first channel coding module, and the output of the first channel coding module obtains the first wireless signal after passing through the post-processing module.
  • the output of the first wireless signal after passing through the pre-processing module is used for input of a first channel decoding module, and the first bit block is an output of the first channel decoding module.
  • the first channel coding module and the first channel coding module are respectively an encoding module and a decoding module based on a polarization code.
  • the operations in the first channel coding module correspond to operations in the first channel coding module.
  • the first wireless signal is an OFDM symbol carrying the first bit block
  • the post-processing operation in the post-processing module includes a modulation mapping, a multi-antenna pre-coding, and a RE (Resource) Element, resource particle) mapping and operation of OFDM signal generation.
  • the first wireless signal is an OFDM symbol carrying the first bit block
  • pre-processing operations in the pre-processing module include OFDM signal demodulation, channel estimation, channel equalization, RE demapping, demodulation mapping operations.
  • the output of the first channel coding is the result of multiplying the first bit block by a Kronecker matrix.
  • the output of the first channel coding is a result of multiplying a bit sequence formed by bit-inversion of the bit number in the first bit block by a Kronecker matrix.
  • the first channel decoding module is a SC (Successive Cancelation Decoding) decoder based on a polarization code.
  • the first channel decoding module is a SCL (Successive Cancellation List) decoder based on a polarization code.
  • the first channel decoding module is based on an SCS (Successive Cancellation Stack) decoder.
  • SCS Successessive Cancellation Stack
  • the first channel coding module includes CRC calculation, code block segmentation, CRC attachment, polarization code generation, rate matching, and code block-connected operations.
  • Embodiment 3 exemplifies a schematic diagram in which a first bit sub-block, a second bit sub-block and a third bit sub-block are sequentially arranged in a first bit block, as shown in FIG.
  • the first bit subblock, the second bit subblock, and the third bit subblock are sequentially arranged in the first bit block.
  • the number of bits in the first block of bits is L.
  • the number of bits in the first bit sub-block is P1.
  • the number of bits in the second bit sub-block is P2.
  • the number of bits in the third bit sub-block is L-P1-P2.
  • the sequence number of any bit in the third bit sub-block in the first bit block is smaller than the sequence number of any bit in the first bit sub-block in the first bit block, the first bit
  • the sequence number of any bit in the block in the first bit block is smaller than the sequence number of any bit in the second bit sub-block in the first bit block.
  • the numbers in the first bit sub-block are consecutive in the first bit block.
  • the numbers in the second bit sub-block are consecutive in the first bit block.
  • the bits in the third bit sub-block are consecutive in the first bit block.
  • the bits in the first bit block are sequentially decoded and arranged according to the base station's assumption that the receiver is sequentially updated according to the bit number.
  • bits in the first bit block are arranged in ascending order of subchannel capacity.
  • Embodiment 4 exemplifies a structure of a first bit block as shown in FIG.
  • the long square filled with dense dots is the first frozen bit subset
  • the long square filled by the sparse dot is the second frozen bit subset
  • the long square filled by the oblique line is the first bit sub-block
  • the long square filled by the grid is the first set of bits.
  • the pattern 1, the pattern 2, and the pattern 3 are patterns corresponding to the structures of the three first bit blocks, respectively.
  • the structure of the first bit block is a distribution of a frozen bit, a first bit sub-block, and a first bit set in the first bit block.
  • the first bit block is composed of the first bit subblock, the second bit subblock, and the third bit subblock.
  • the number of bits in the first bit block is L
  • the number of bits in the second bit sub-block is P2
  • the number of bits in the first bit sub-block is P1.
  • the number of bits in the third bit sub-block is L-P1-P2.
  • the P1 and the P2 are pre-configured.
  • the number of bits in the first set of bits is L1.
  • L1 is one of K candidate values, and the maximum of the K candidate values is Kmax.
  • the frozen bit consists of a first frozen bit subset and a second frozen
  • the knot bit subset is composed.
  • the number of bits in the first frozen bit subset is L-P1-Kmax, and the number of bits in the second frozen bit subset is Kmax-L1.
  • the bits in the first frozen bit subset correspond to the L-P1-Kmax bits with the smallest sequence number in the first bit block.
  • the pattern 1 is used for the structure of the first bit block when the P2 is greater than the L1 and the P2 is less than or equal to Kmax.
  • the first frozen bit subset, the Kmax-P2 frozen bits in the second frozen bit subset, the first bit sub-block, and the other P2-L1 frozen bits in the second frozen bit subset The first set of bits is sequentially arranged in the first block of bits.
  • the pattern 2 when P2 is smaller than the L1, the pattern 2 is used for the structure of the first bit block.
  • the first frozen bit subset, the second frozen bit subset, the L1-P2 bits in the first bit set, the first bit sub-block and another P2 in the first bit set The bits are sequentially arranged in the first bit block.
  • Embodiment 4 when P2 is equal to the L1, the pattern 3 is used for the structure of the first bit block.
  • the first frozen bit subset, the second frozen bit subset, the first bit sub-block and the first bit set are sequentially arranged in the first bit block.
  • the P2 is one of the K candidate values.
  • the P2 is the maximum of the K candidate values.
  • the P2 is the minimum of the K candidate values.
  • the P2 does not belong to the K candidate values.
  • the bits in the first bit block are sequentially decoded and arranged according to the base station hypothesis that the receiver is sequentially updated according to the bit number.
  • bits in the first bit block are arranged in ascending order of subchannel capacity.
  • the bits in the first frozen bit subset are used as known bits, and the second frozen bit subset
  • the bits are used as unknown bits; when decoding the first set of bits, the first frozen bit subset, the second frozen bit subset and the first bit sub-block are used as known bits .
  • Embodiment 5 illustrates a schematic diagram of the first channel coding, as shown in FIG.
  • the first channel coding includes a polarization code generation module, and the first bit block is used for input of a polarization code generation module, and an output of the polarization code generation module is an output of the first channel coding .
  • the first bit sub-block generating module and the first bit block generating module are processing modules before the first channel encoding.
  • the first bit block is composed of the first bit sub-block, the second bit sub-block and the third bit sub-block, and the bits in the first bit block
  • the number of bits is L
  • the number of bits in the second bit sub-block is P2
  • the number of bits in the first bit sub-block is P1
  • the number of bits in the third bit sub-block is L- P1-P2.
  • the P1 and the P2 are pre-configured.
  • the number of bits in the first bit set is L1
  • the L1 is used for input of the first bit sub-block generating module
  • the output of the first bit sub-block generating module is The first bit sub-block.
  • the first set of bits, the first bit sub-block, and the P2 are used for input by a first block generation module.
  • the first bit block generating module generates the first bit block according to the size relationship between the P2 and the L1 as shown in Embodiment 4.
  • the first block of bits consists of freeze bits, bits in the first bit sub-block and bits in the first set of bits.
  • a check bit is included in the first bit set.
  • the length of the first bit block is a power of N of 2, and the N is a positive integer.
  • the polarization code generating module multiplies an input bit block and a polarization code generation matrix to multiply a result as an output.
  • the polarization code generation matrix is a Kronecker matrix.
  • Embodiment 6 illustrates a schematic diagram of first channel decoding, as shown in FIG.
  • the first channel decoding includes a polarization code decoding I module, a structure generating module of the first bit block, and a polarization code decoding II module.
  • the first bit block is composed of the first bit sub-block, the second bit sub-block and the third bit sub-block.
  • the first bit block is used by a transmitter to generate a first wireless signal.
  • Demodulation result of the first wireless signal is used for input of the polarization code decoding I module, the pole
  • the coded decoding I module corresponds to a polarization code generating module used by the transmitter for the first bit block.
  • the output of the polarization code decoding I module is used to determine the first bit sub-block.
  • the first bit sub-block is used for input of a structure generation module of the first bit block.
  • the value of the first bit sub-block is used to determine the number of bits in the first bit set, thereby being used for determining The structure of the first block of bits.
  • An output of the structure generating module of the first bit block is used to determine a distribution of the frozen bit, the first bit sub-block, and the first bit set in the first bit block, ie, the The structure of a one-bit block.
  • the structure of the first bit block and the demodulation result of the first wireless signal are used for input of the polarization code decoding II module.
  • the polarization code decoding II module corresponds to a polarization code generating module used by the transmitter for the first bit block, and the frozen bit and the first bit sub-block are in the polarization code decoding II module It is used as a known bit.
  • the first frozen bit set in the fourth embodiment is used as a known bit, and the second in the fourth embodiment The bits in the frozen bit set are used as unknown bits.
  • Embodiment 7 exemplifies a structural block diagram of a processing device used in a base station, as shown in FIG.
  • the base station apparatus 200 is mainly composed of a first execution module 201 and a first transmission module 202.
  • the first execution module 201 is configured to perform first channel coding
  • the first sending module 202 is configured to send the first wireless signal.
  • the first bit block is used for the input of the first channel coding.
  • the first channel coding is based on a polarization code.
  • the first channel encoded output is used to generate the first wireless signal.
  • the first bit block is composed of a first bit subblock, a second bit subblock, and a third bit subblock.
  • the first set of bits includes a first set of bits.
  • the first bit sub-block, the second bit sub-block, the third bit sub-block and the first bit set respectively comprise a positive integer number of bits.
  • the value of the first bit sub-block is related to the number of bits in the first set of bits.
  • the number of bits in the first set of bits is one of the K candidate values.
  • the candidate value is a positive integer and the K is a positive integer greater than one.
  • the third bit sub-block, the first bit sub-block and the second bit sub-block are sequentially arranged in the first bit block.
  • the number of bits in the first bit sub-block and the number of bits in the second bit sub-block are respectively P1 and P2, the P1 and the P2 are predetermined positive integers.
  • the P2 is the maximum of the K candidate values.
  • the P2 is the minimum of the K candidate values.
  • the P2 is one of the K candidate values, and the P2 is neither the maximum of the K candidate values nor the K The smallest of the candidate values.
  • the P2 does not belong to the K candidate values.
  • the first execution module 201 is further configured to send the first information.
  • the first information is used to determine ⁇ at least one of the number of bits in the first bit block, the K candidate values, the P1, the P2 ⁇ .
  • the first execution module 201 is further configured to determine a second set of bits in the first block of bits. Wherein, the bits in the second set of bits are freeze bits. The second set of bits and the first set of bits are sequentially arranged in the first block of bits.
  • the first wireless signal is transmitted on a physical layer control channel, or the first bit sub-block and the first bit set correspond to the same DCI.
  • Embodiment 8 exemplifies a structural block diagram of a processing device for use in a user equipment, as shown in FIG.
  • the user device 300 is mainly composed of a first receiving module 301 and a second executing module 302.
  • the first receiving module 301 is configured to receive the first wireless signal; and the second executing module 302 is configured to perform the first channel decoding.
  • the first channel coding corresponds to a first channel coding
  • the first channel coding is based on a polarization code
  • a first bit block is used for the input of the first channel coding.
  • the first channel encoded output is used to generate the first wireless signal.
  • the first bit block is composed of a first bit subblock, a second bit subblock, and a third bit subblock.
  • the first set of bits includes a first set of bits.
  • the first bit sub-block, the second bit sub-block, the third bit sub-block and the first bit set respectively comprise a positive integer number of bits.
  • the value of the first bit sub-block is related to the number of bits in the first set of bits.
  • the number of bits in the first set of bits is one of the K candidate values.
  • the candidate value is a positive integer, and the K is greater than A positive integer of 1.
  • the third bit sub-block, the first bit sub-block and the second bit sub-block are sequentially arranged in the first bit block.
  • the number of bits in the first bit sub-block and the number of bits in the second bit sub-block are P1 and P2, respectively, and the P1 and the P2 are predetermined positive integers.
  • the P2 is the maximum of the K candidate values.
  • the P2 is the minimum of the K candidate values.
  • the P2 is one of the K candidate values, and the P2 is neither the maximum of the K candidate values nor the K The smallest of the candidate values.
  • the P2 does not belong to the K candidate values.
  • the first receiving module 301 is further configured to receive the first information.
  • the first information is used to determine ⁇ at least one of the number of bits in the first bit block, the K candidate values, the P1, the P2 ⁇ .
  • the second execution module 302 is further configured to determine a second set of bits in the first block of bits. Wherein, the bits in the second set of bits are freeze bits. The second set of bits and the first set of bits are sequentially arranged in the first block of bits.
  • the first wireless signal is transmitted on a physical layer control channel, or the first bit sub-block and the first bit set correspond to the same DCI.
  • each module unit in the above embodiment may be implemented in hardware form or in the form of a software function module.
  • the application is not limited to any specific combination of software and hardware.
  • the UE or the terminal in the present invention includes, but is not limited to, a wireless communication device such as a mobile phone, a tablet computer, a notebook, a network card, an NB-IOT terminal, and an eMTC terminal.
  • the base station or system equipment in the present invention includes, but is not limited to, a macro communication base station, a micro cell base station, a home base station, a relay base station, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Theoretical Computer Science (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种基站、用户设备中的用于信道编码的的方法和装置。基站依次执行第一信道编码、发送第一无线信号。其中,第一比特块被用于所述第一信道编码的输入。所述第一信道编码基于极化码。所述第一信道编码的输出被用于生成所述第一无线信号。所述第一比特块由第一比特子块,第二比特子块和第三比特子块组成。所述第一比特子块的值和所述第一比特集合中的比特的数量有关。所述第三比特子块,所述第一比特子块和所述第二比特子块在所述第一比特块中依次排列。所述第一比特子块中比特的数量和所述第二比特子块中比特的数量分别是P1和P2,所述P1和所述P2是被预确定的正整数。本发明能减轻用户设备盲检负担,或者支持更灵活的信息传输格式。

Description

一种基站、用户设备中的用于信道编码的方法和装置 技术领域
本发明涉及无线通信系统中的无线信号的传输方案,特别是涉及信道编码的传输的方法和装置。
背景技术
极化码(Polar Codes)是一种于2008年由土耳其毕尔肯大学Erdal Arikan教授首次提出的编码方案,其可以实现对称二进制输入离散无记忆信道(B-DMC,Binary input Discrete Memoryless Channel)的容量的代码构造方法。在3GPP(3rd Generation Partner Project,第三代合作伙伴项目)RAN1#87会议上,3GPP确定了采用Polar码方案作为5GeMBB(增强移动宽带)场景的控制信道编码方案。
传统的LTE(Long Term Evolution,长期演进)系统中不同的DCI(Downlink Control Information,下行控制信息)格式对应不同的编码比特数量,UE(User Equipment,用户设备)根据当前传输模式所对应的所有可能的DCI格式对承载DCI的PDCCH(Physical Downlink Control Channel,)进行盲检。这种PDCCH的接收方法会造成DCI所对应的比特数量候选项增加时UE侧的盲检次数也随之增加。
发明内容
发明人通过研究发现,极化码生成器对应的输入比特块的长度为2的N次幂,所述N为正整数,因此,对于一定数量范围内的信息比特,基于极化码的信道编码器所对应的输入比特块的长度与所使用的极化码都是固定的,区别只是在于冻结比特数量的不同。极化码的这一特性可以用于将DCI比特数量的指示信息对应的比特、DCI比特、冻结比特组成固定长度的比特块组成输入比特块,用于生成极化码。接收端利用极化码串行译码器的特性首先译码得到所述DCI比特的数量的指示信息,其次通过所述指示信息确定输入比特块中的冻结比特的确切数量,然后将所述冻结比特的确切数量用于后续译码得到DCI比特,从而减少UE 的盲检次数和处理负担。所述指示信息在所述输入比特块中的位置需要被预配置。不同的位置对应不同的传输的可靠性和译码复杂度。所述可靠性和所述译码复杂度存在一定的交换关系。基站需要根据通信系统的具体需求决定将所述指示信息预配置在所述输入比特块的哪个位置上。
针对上述问题,本发明提供了解决方案。需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。例如,本申请的基站中的实施例和实施例中的特征可以应用到用户设备中,反之亦然。
本发明公开了一种被用于信道编码的基站中的方法,其中,包括如下步骤:
-步骤A.执行第一信道编码;
-步骤B.发送第一无线信号。
其中,第一比特块被用于所述第一信道编码的输入。所述第一信道编码基于极化码。所述第一信道编码的输出被用于生成所述第一无线信号。所述第一比特块由第一比特子块,第二比特子块和第三比特子块组成。所述第一比特块中包括第一比特集合。所述第一比特子块,所述第二比特子块,所述第三比特子块和所述第一比特集合中分别包括正整数个比特。所述第一比特子块的值和所述第一比特集合中的比特的数量有关。所述第一比特集合中的比特的数量是K个候选值中的一个所述候选值。所述候选值是正整数,所述K是大于1的正整数。所述第三比特子块,所述第一比特子块和所述第二比特子块在所述第一比特块中依次排列。所述第一比特子块中比特的数量和所述第二比特子块中比特的数量分别是P1和P2,所述P1和所述P2是被预确定的正整数。
作为一个实施例,上述方法的好处在于,对于不同大小的所述第一比特集合使用相同的信道编码,从而减少了UE端的盲检次数和时频占用资源。所述第一比特集合大小的指示信息在信道编码输入比特块中的位置固定且在所述第一比特集合中的部分比特之前译码,从而减少UE端的译码复杂度。
作为一个实施例,所述第一无线信号是多载波符号。
作为一个实施例,所述第一无线信号是OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号。
作为一个实施例,所述第一无线信号是DFT-S-OFDM(Discrete Fourier  Transform Spread OFDM,离散傅里叶变化正交频分复用)符号。
作为一个实施例,所述第一信道编码的输出经过调制后生成所述第一无线信号。
作为一个实施例,所述第一信道编码的输出经过多天线预编码后生成所述第一无线信号。
作为一个实施例,所述第一比特块是所述第一信道编码的输入。
作为一个实施例,所述第一比特块对应所述第一信道编码输入的所有比特。
作为一个实施例,所述第一比特块是所述极化码的生成矩阵的输入。
作为一个实施例,所述第一比特块包括冻结比特和信息比特。
作为一个实施例,所述信息比特包括校验比特。
作为一个实施例,所述信息比特包括所述第一比特集合。
作为一个实施例,所述信息比特由所述第一比特集合中的比特和所述第一比特子块中的比特组成。
作为一个实施例,所述第一比特块不包括校验比特。
作为一个实施例,所述第一比特块不包括第一比特集合对应的校验比特,所述第一比特子块包括和所述第一比特集合中的比特的数量有关的校验比特。
作为一个实施例,所述第一比特集合中的比特的数量被所述基站用于确定所述第一比特子块的值。
作为一个实施例,所述第一比特集合中的比特的数量在所述K个候选值中的索引被所述基站用于确定所述第一比特子块的值。
作为一个实施例,所述第一比特子块的值等于所述第一比特集合中的比特的数量。
作为一个实施例,所述第一比特集合中的比特的数量被用于确定第一比特包,所述第一比特包被用于第一编码的输入,所述第一比特子块是所述第一编码的输出。所述第一编码被用于提高所述第一比特包的传输可靠性。
作为一个实施例,所述第一编码基于错误检测码(error-detecting code)。
作为一个实施例,所述第一编码基于错误纠正码(error-correcting  code)。
作为一个实施例,所述第一比特子块还被用于确定{所述第一比特集合中的比特在所述第一比特块中的位置,所述第一比特集合的信息格式,所述第一比特块的冗余校验位所对应的多项式}中的至少之一。
作为一个实施例,所述第一比特包中的比特还被用于确定{所述第一比特集合中的比特在所述第一比特块中的位置,所述第一比特集合的信息格式,所述第一比特块的冗余校验位所对应的多项式}中的至少之一。
作为一个实施例,所述第一比特子块的值和所述第一比特集合中的比特的值无关。
作为一个实施例,所述被预确定的是指:所述第一比特集合中比特的数量不被用于确定所述第一比特子块中的比特的数量和所述第二比特子块中的比特的数量。
作为一个实施例,所述被预确定的是指缺省确定的。
作为一个实施例,所述缺省确定的是指不需要下行信令配置的。
作为一个实施例,所述缺省确定的是指不需要下行信令显式的配置的。
作为一个实施例,所述缺省确定的是指固定的。
作为一个实施例,所述被预确定的是指通过高层信令配置的。
作为一个实施例,所述被预确定的是指通过广播信道配置的。
作为一个实施例,{所述第一比特子块中的比特的数量,所述第二比特子块中的比特的数量}和所述第一比特块中的比特的数量一一对应。
作为一个实施例,所述P2是所述K个候选值中的一个所述候选值。
作为一个实施例,所述P2在所述K个候选值中的位置是固定的。
作为一个实施例,所述P2不属于所述K个候选值。
作为一个实施例,2的所述P1次幂大于所述K。
作为一个实施例,2的所述P1次幂等于所述K。
作为一个实施例,不存在一个比特同时属于所述第一比特子块和所述第一比特集合。
作为一个实施例,不存在一个比特同时属于{所述第一比特子块,所述第二比特子块,所述第三比特子块}三者中的任意两者。
作为一个实施例,所述第一比特块中的任意比特属于{所述第一比特子块,所述第二比特子块,所述第三比特子块}之一。
作为一个实施例,所述第一比特集合中的比特在所述第二比特子块中的数量大于所述K个候选值中的最小值。
作为一个实施例,所述第一比特集合中的比特在所述第二比特子块中的数量等于所述K个候选值中的最小值。
作为一个实施例,所述P2小于所述第一比特集合中的比特的数量。
作为一个实施例,所述第二比特子块中的任意比特都属于所述第一比特集合。
作为上述实施例的一个子实施例,所述第一比特集合中的任意比特都属于第二集合,所述第二集合由{所述第二比特子块,所述第三比特子块}组成。
作为一个实施例,所述第一比特子块中的比特在所述第一比特块中对应的序号连续。
作为一个实施例,所述第二比特子块中的比特在所述第一比特块中对应的序号连续。
作为一个实施例,所述第三比特子块中的比特在所述第一比特块中对应的序号连续。
作为一个实施例,所述第二比特子块中的任意比特在所述第一比特块中对应的序号大于所述第一比特子块中的任意比特在所述第一比特块中对应的序号。所述第一比特子块中的任意比特在所述第一比特块中对应的序号大于所述第三比特子块中的任意比特在所述第一比特块中对应的序号。
作为一个实施例,所述第一比特块中的比特按照所述基站假设接收机根据比特序号的升序依次译码排列。
作为一个实施例,所述第一比特块中的比特按照子信道容量的递增顺序排列。
作为一个实施例,所述第一比特块对应所述极化码的输入,所述第一比特块中的比特排列按照所述极化码的生成矩阵的列序号递增顺序。
作为一个实施例,所述第一比特块对应所述极化码的输入,所述第一比特块中的比特排列按照所述极化码的生成矩阵的行序号递增顺序。
作为一个实施例,所述极化码的生成矩阵基于Kronecker矩阵。
作为一个实施例,所述极化码的生成矩阵是Kronecker矩阵。
作为一个实施例,所述极化码的生成矩阵是一个交换矩阵和一个Kronecker矩阵的乘积。
作为一个实施例,所述交换矩阵用于对所述输入比特块中比特的序号做比特翻转。
作为一个实施例,所述第一比特块是所述极化码生成矩阵的输入。
作为一个实施例,所述第一比特集合包括了动态配置的信息。
作为一个实施例,所述第一比特集合被用于确定DCI(Downlink Control Information)。
作为一个实施例,所述第一比特集合包括了DCI比特和校验比特。
作为一个实施例,所述第一比特集合包括了DCI比特对应的校验比特。
作为一个实施例,所述第一比特集合包括了DCI比特和所述第一比特子块对应的校验比特。
作为一个实施例,所述第一比特集合和所述第一比特子块属于一个DCI。
作为一个实施例,所述第一比特集合和所述第一比特子块组成一个DCI。
作为一个实施例,第一比特包和第二比特包被分别用于第一编码和第二编码的输入。所述第一编码和所述第二编码的输出被分别用于生成所述第一比特子块和第一比特集合,所述第一比特包和所述第二比特包组成一个DCI。
作为一个实施例,所述第一编码和所述第二编码被用于生成CRC(Circular Redundancy Check,循环冗余校验)码。
作为一个实施例,所述第一编码被用于生成TBCC(Tail-Biting Convolutional Code,咬尾卷积码),所述第二编码被用于生成循环冗余校验码。
作为一个实施例,所述K个候选值分别对应K种DCI(Downlink Control Information,下行控制信息)格式(Format)。
作为一个实施例,所述K个候选值和K个DCI的负载长度(DCI payload size)一一对应。
作为一个实施例,所述K个DCI的负载长度被所述基站用于确定所述K个候选值。
作为一个实施例,所述K个DCI的负载长度加上T1得到所述K个候选值,所述T1是正整数。
作为一个实施例,所述第一比特集合中的校验比特的数量是C1,所述T1等于所述C1,所述C1是正整数。
作为一个实施例,所述第一比特子块中的校验比特的数量是C2,所述T1等于C1+C2-P1,所述C2是正整数。
作为一个实施例,所述C1个校验比特和所述C2个校验比特被用于承载目标接收者的RNTI(Radio Network Temporary Identity)信息。
作为一个实施例,所述C1个校验比特和所述C2个校验比特被RNTI对应的序列加扰。
作为一个实施例,所述C1个校验比特承载所述目标接收者所在的用户组或者波束组的RNTI信息,所述C1和校验比特和所述C2个校验比特一起被用于确定承载目标接收者的用户特定的RNTI。
作为一个实施例,所述第一比特块中的比特的数量是L,所述第一比特集合中的比特的数量是L1,所述L1小于所述P2。所述第三比特子块由L-P1-P2个冻结比特组成。所述第二比特子块由第四比特子块和第五比特子块组成。所述第四比特子块由P2-L1个冻结比特组成,所述第五比特子块由L1个所述第一比特集合中的比特组成。所述第三比特子块,所述第一比特子块,所述第四比特子块和所述第五比特子块在所述第一比特块中依次排列。
作为一个实施例,所述L1大于所述P2。所述第三比特子块由第六比特子块和第七比特子块组成,所述第六比特子块由L-P1-L1个冻结比特组成,所述第七比特子块由L1-P2个所述第一比特集合中的比特组成。所述第二比特子块由P2个所述第一比特集合中的比特组成。所述第六比特子块,所述第七比特子块,所述第一比特子块和所述第二比特子块在所述第一比特块中依次排列。
作为一个实施例,所述L1等于所述P2。所述第三比特子块由L-P1-L1个冻结比特组成,所述第二比特子块由所述第一比特集合中的L1个比特组成。所述第三比特子块,所述第一比特子块和所述第二比特子块在所述第一比特块中依次排列。
作为一个实施例,所述K个候选值中至少有一个所述候选值和所述第 一无线信号所占用的RE组的数量有关,所述RE组包括正整数个RE。
作为一个实施例,所述K个候选值中的最大值和所述第一无线信号所占用的RE组的数量有关。
作为一个实施例,所述K个候选值中的最小值和所述第一无线信号所占用的RE组的数量无关。
作为一个实施例,所述RE组是CCE(Control Channel Element,控制信道颗粒)。
作为一个实施例,所述RE组是eCCE(enhanced Control Channel Element,增强控制信道颗粒)。
作为一个实施例,所述RE在频域上占用一个子载波,在时域上占用一个OFDM符号。
作为一个实施例,所述RE在频域上占用一个子载波,在时域上占用一个FBMC符号。
作为上述实施例的一个子实施例,所述第二比特子块包括{CIF域,资源分配域,MCS(Modulation and Coding Status,调制编码状态)域,NDI域,HARQ进程号域,TPC域,用于指示DMRS的参数的域,CRC比特}中的至少之一。
具体的,根据本发明的一个方面,其特征在于,所述P2是所述K个候选值中的最大值。
作为一个实施例,上述方法的好处在于,对于所述第一比特块中的比特排列顺序被用于译码顺序的译码算法,用于指示所述第一比特集合中的比特的数量的指示信息可以先于所述第一比特集合中的所有比特译码,从而提高译码效率。对于所述第一比特块中的比特排列按照子信道容量的递增顺序排列的信道编码算法,所述第一比特集合占据信道容量较高的子信道,从而提高所述第一比特集合的传输可靠性。
作为一个实施例,所述第一比特集合中的任意比特都在所述第二比特子块中。
作为一个实施例,所述第三比特子块中的比特是冻结比特。
作为一个实施例,所述第一比特块中的比特的数量是L,所述第一比特集合中的比特的数量是L1,所述L1是所述K个候选值中的一个所述候选值,Kmax是所述K个候选值中的最大值,所述L1不等于所述Kmax。所 述第三比特子块由L-P1-Kmax个冻结比特组成。所述第二比特子块由第四比特子块和第五比特子块组成。所述第四比特子块由Kmax-L1个冻结比特组成,所述第五比特子块由L1个所述第一比特集合中的比特组成。所述第三比特子块,所述第一比特子块,所述第四比特子块和所述第五比特子块在所述第一比特块中依次排列。
作为一个实施例,所述第四比特子块中的任意比特在所述第一比特块中对应的序号要大于所述第五比特子块中的任意比特在所述第一比特块中对应的序号。
作为一个实施例,所述L1等于所述Kmax。所述第三比特子块由L-P1-Kmax个冻结比特组成,所述第二比特子块由所述第一比特集合中的L1个比特组成。所述第三比特子块,所述第一比特子块和所述第二比特子块在所述第一比特块中依次排列。
具体的,根据本发明的一个方面,其特征在于,所述P2是所述K个候选值中的最小值。
作为一个实施例,上述方法的好处在于,对于所述第一比特块中的比特排列按照子信道容量的递增顺序排列的信道编码算法,所述第一比特子块对应的子信道的容量高于冻结比特对应的子信道的容量,从而增加所述第一比特子块的传输可靠性。对于所述第一比特块中的比特排列顺序被用于译码顺序的译码算法,所述第一比特集合的部分比特只在所述第一比特子块被译码后被译码一次,从而提高译码效率。
作为一个实施例,所述第一比特块中的任意冻结比特对应的序号要小于所述第一比特块中的任意信息比特对应的序号。
作为一个实施例,所述第一比特块中的比特的数量是L,所述第一比特集合中的比特的数量是L1,所述L1是所述K个候选值中的一个所述候选值,所述L1不是所述K个候选值中的最小值。所述第三比特子块由第六比特子块和第七比特子块组成,所述第六比特子块由L-P1-L1个冻结比特组成,所述第七比特子块由L1-P2个所述第一比特集合中的比特组成。所述第二比特子块由P2个所述第一比特集合中的比特组成。所述第六比特子块,所述第七比特子块,所述第一比特子块和所述第二比特子块在所述第一比特块中依次排列。
作为一个实施例,所述L1是所述K个候选值中的最小值。所述第三比 特子块由L-P1-L1个冻结比特组成,所述第二比特子块由所述第一比特集合中的L1个比特组成。所述第三比特子块,所述第一比特子块和所述第二比特子块在所述第一比特块中依次排列。
具体的,根据本发明的一个方面,其特征在于,所述P2是所述K个候选值中的一个所述候选值,且所述P2既不是所述K个候选值中的最大值,也不是所述K个候选值中的最小值。
作为一个实施例,上述方法的好处在于,所述K个候选值对应K个DCI格式,第一DCI格式是所述K个DCI格式中对译码速度和传输可靠性要求都较高的DCI格式,P2等于所述第一DCI格式所对应的所述K个候选值中的一个所述候选值,从而保证了传输所述第一DCI格式时的译码速度和传输可靠性。
作为一个实施例,所述第一DCI格式是被用于sTTI(short Transmission Time Interval,短传输时间间隔)的一个DCI格式。
作为一个实施例,所述第一DCI格式是被用于URLLC(Ultra Reliable Low Latency Communications,超可靠低延时通信)的一个DCI格式。
作为一个实施例,所述第一DCI格式是所述K个DCI格式中使用频率最高的DCI格式。
具体的,根据本发明的一个方面,其特征在于,所述P2不属于所述K个候选值。
作为一个实施例,上述方法的好处在于,所述P2是通信系统根据测试和仿真计算得到的具有统计意义上性能最优的经验值,从而达到在统计意义上的较好的性能。
作为一个实施例,所述P2的取值保证了统计意义上的性能最优。
作为一个实施例,所述P2的取值为统计最优的仿真经验值。
作为一个实施例,所述P2的取值保证了系统的兼容性。
作为一个实施例,所述P2等于所述第一比特集合中的比特的数量的概率为0。
作为一个实施例,所述第一比特块中的比特的数量是L,所述第一比特集合中的比特的数量是L1,所述L1是所述K个候选值中的一个所述候选值,所述L1小于所述P2,所述第三比特子块中不存在所述第一比特集合中的比特,所述第二比特子块中存在所述第一比特块中的冻结比特。
作为一个实施例,所述L1小于所述P2。所述第三比特子块由L-P1-P2个冻结比特组成。所述第二比特子块由第四比特子块和第五比特子块组成。所述第四比特子块由P2-L1个冻结比特组成,所述第五比特子块由L1个所述第一比特集合中的比特组成。所述第三比特子块,所述第一比特子块,所述第四比特子块和所述第五比特子块在所述第一比特块中依次排列。
作为一个实施例,所述L1大于所述P2,所述第三比特子块中存在所述第一比特集合中的比特,所述第二比特子块中不存在所述第一比特块中的冻结比特。
作为一个实施例,所述L1大于所述P2。所述第三比特子块由第六比特子块和第七比特子块组成,所述第六比特子块由L-P1-L1个冻结比特组成,所述第七比特子块由L1-P2个所述第一比特集合中的比特组成。所述第二比特子块由P2个所述第一比特集合中的比特组成。所述第六比特子块,所述第七比特子块,所述第一比特子块和所述第二比特子块在所述第一比特块中依次排列。
具体的,根据本发明的一个方面,其特征在于,所述步骤A还包括如下步骤:
-步骤A0.发送第一信息。
其中,所述第一信息被用于确定{所述第一比特块中的比特的数量,所述K个候选值,所述P1,所述P2}中的至少之一。
作为一个实施例,上述方法的好处在于,支持对信息比特传输进行更灵活的配置,从而提高传输效率和可靠性。
作为一个实施例,所述第一信息是半静态配置的。
作为一个实施例,所述第一信息是UE特定的。
作为一个实施例,所述第一信息包括一个或者多个RRC(Radio Resource Control,无线资源控制)IE(Information Element,信息粒子)。
作为上述实施例的一个子实施例,所述多个RRC IE中的部分所述RRC IE是小区公共的,所述多个RRC IE中的其余部分所述RRC IE是UE特定的。
作为一个实施例,所述第一信息显式的指示{所述第一比特块中的比特的数量,所述K个候选值,所述P1,所述P2}中的至少之一。
作为一个实施例,所述第一信息隐式的指示{所述第一比特块中的比特 的数量,所述K个候选值,所述P1,所述P2}中的至少之一。
作为一个实施例,所述第一信息指示所述UE当前的传输设置,所述传输设置隐式的指示{所述第一比特块中的比特的数量,所述K个候选值,所述P1,所述P2}中的至少之一。
作为一个实施例,所述传输设置包括多天线相关的参数。
作为一个实施例,所述传输设置包括载波聚合相关的参数。
具体的,根据本发明的一个方面,其特征在于,所述步骤A还包括如下步骤:
-步骤A1.确定所述第一比特块中的第二比特集合。
其中,所述第二比特集合中的比特是冻结比特。所述第二比特集合与所述第一比特集合在所述第一比特块中依次排列。
作为一个实施例,上述方法的好处在于,进一步保证了所述第一比特集合的传输可靠性。
作为一个实施例,所述第二比特集合包括了所述第一比特块中的所有冻结比特。
作为一个实施例,所述第一比特块中的任意比特是{所述第一比特子块,所述第一比特集合,所述第二比特集合}之一中的比特。{所述第一比特子块,所述第一比特集合,所述第二比特集合}中的任意两个不包括同一个所述第一比特块中的比特。
作为一个实施例,所述第二比特集合中的任意比特在所述第一比特块中对应的序号小于所述第一比特集合中的任意比特在所述第一比特块中对应的序号。
作为一个实施例,所述第二比特集合中的比特属于所述第三比特子块。
作为上述实施例的一个子实施例,所述第三比特子块中的比特的数量大于所述第二比特集合中的比特的数量。
作为一个实施例,所述第一比特块中的比特的数量是L,所述第一比特集合中的比特的数量是L1,所述L1是所述K个候选值中的一个所述候选值。所述第二比特集合中的比特的数量是L-P1-L1。
作为一个实施例,所述L1小于所述P2。所述第三比特子块由所述第二比特集合中的L-P1-P2个比特组成,所述第二比特子块由所述第二比特集合中的P2-L1个比特和所述第一比特集合依次排列组成。
作为一个实施例,所述L1大于所述P2。所述第三比特子块由所述第二比特集合中的所有比特和所述第一比特集合中的L1-P2个比特依次排列组成,所述第二比特子块由所述第一比特集合中的P2个比特组成。所述第二比特子块不包括所述第二比特集合中的比特。
作为一个实施例,所述L1等于所述P2。所述第三比特子块由所述第二比特集合中的所有比特组成。所述第二比特子块不包括所述第二比特集合中的比特。
作为一个实施例,所述第二比特集合由第一冻结比特子集和第二冻结比特子集组成。
作为一个实施例,所述第一比特集合中的比特的数量不被用于确定所述第一冻结比特子集中的比特的数量。
作为一个实施例,所述第一比特块中的比特的数量是L,所述K个候选值中的最大值是Kmax,所述第一冻结比特子集中的比特的数量等于L-P1-Kmax,所述第二冻结比特子集中的比特的数量是Kmax-L1。
作为一个实施例,所述第一冻结比特子集中的比特对应所述第一比特块中序号最小的L-P1-Kmax个比特。
作为一个实施例,所述基站假设:接收机在对所述第一比特子块进行译码时,所述第一冻结比特子集中的比特作为已知比特使用,所述第二冻结比特子集中的比特作为未知比特使用。
作为一个实施例,所述第一冻结比特子集承载了目标接收者的RNTI信息。
作为一个实施例,目标接收者的RNTI被用于对所述第一冻结比特子集加扰。
作为一个实施例,所述第一冻结比特子集中的任意比特是{所述第一冻结比特子集,所述第二冻结比特子集}之一中的比特。{所述第一冻结比特子集,所述第二冻结比特子集}中的任意两个不包括同一个所述第一比特块中的比特。
作为一个实施例,所述第一冻结比特子集中的比特在所述第一比特块中的序号连续。
作为一个实施例,所述第二冻结比特子集中的比特在所述第一比特块中的序号连续。
作为一个实施例,所述第一冻结比特子集中的比特在所述第一比特块中的序号连续,所述第二冻结比特子集中的比特在所述第一比特块中的序号不连续。
作为一个实施例,所述第一冻结比特子集中的任意比特在所述第一比特块中对应的序号小于{所述第二冻结比特子集,所述第一比特子块,所述第一比特集合}中的任意比特在所述第一比特块中对应的序号。
具体的,根据本发明的一个方面,所述第一无线信号在物理层控制信道上传输,或者所述第一比特子块和所述第一比特集合对应同一个DCI。
作为一个实施例,上述方法的好处在于,减少UE侧对物理层控制信道的盲检次数。
作为一个实施例,所述物理层控制信道是只能承载物理层信令的物理层信道。
作为一个实施例,所述DCI是UE特定的。
作为一个实施例,所述物理层控制信道是PDCCH。
作为一个实施例,所述物理层控制信道是ePDCCH(enhanced PDCCH,增强物理层下行控制信道)。
作为一个实施例,所述物理层控制信道是sPDCCH(short PDCCH,短物理层下行控制信道)。
作为一个实施例,所述物理层控制信道是NR-PDCCH(New Radio PDCCH,新无线物理层下行控制信道)。
作为一个实施例,同一个DCI被用于确定所述第一比特子块和所述第一比特集合。
作为一个实施例,所述第一比特子块属于第一DCI,所述第一比特集合包括所述第一DCI的信息比特和所述第一DCI的CRC。
作为一个实施例,所述第一编码被用于生成所述第一比特子块,所述第一编码的输入比特属于第一DCI,所述第一比特集合包括所述第一DCI的信息比特和所述第一DCI的CRC。
本发明公开了一种被用于信道编码的用户设备中的方法,其中,包括如下步骤:
-步骤A.接收第一无线信号;
-步骤B.执行第一信道译码。
其中,所述第一信道译码对应第一信道编码,所述第一信道编码基于极化码,第一比特块被用于所述第一信道编码的输入。所述第一信道编码的输出被用于生成所述第一无线信号。所述第一比特块由第一比特子块,第二比特子块和第三比特子块组成。所述第一比特块中包括第一比特集合。所述第一比特子块,所述第二比特子块,所述第三比特子块和所述第一比特集合中分别包括正整数个比特。所述第一比特子块的值和所述第一比特集合中的比特的数量有关。所述第一比特集合中的比特的数量是K个候选值中的一个所述候选值。所述候选值是正整数,所述K是大于1的正整数。所述第三比特子块,所述第一比特子块和所述第二比特子块在所述第一比特块中依次排列。所述第二比特子块中的比特的数量是所述K个候选值中的一个所述候选值。
作为一个实施例,所述第一信道译码被用于恢复所述第一比特块。
作为一个实施例,所述第一信道译码被用于恢复所述第一比特集合。
作为一个实施例,所述第一信道译码被用于恢复所述第一比特集合中的部分比特。
作为一个实施例,所述第一信道译码被用于恢复所述第一比特集合中的DCI比特。
作为一个实施例,所述第一无线信号携带所述第一比特块对应的校验信息,所述信道译码基于所述校验信息判断是否正确恢复所述第一比特块。
作为一个实施例,所述第一比特块中包括所述第一比特块中的DCI比特对应的校验信息,所述信道译码基于所述校验信息判断是否正确恢复所述第一比特块。
作为一个实施例,所述第一信道译码基于SC(Successive Cancellation Decoding,串行干扰消除)译码。
作为一个实施例,所述第一信道译码基于SCL(Successive Cancellation List,串行消除清单)译码。
作为一个实施例,所述UE基于所述第一比特块的比特序号的升序依次译码。
作为一个实施例,所述UE首先对所述第三比特子块和所述第一比特子块进行译码,所述第一比特子块的估计值被用于确定所述第一比特集合中 的比特的数量,所述第一比特集合中的比特的数量被用于确定冻结比特和所述第一比特集合在所述第一比特块中的位置。
作为一个实施例,所述第一比特块中的比特的数量是L,所述第一比特集合中的比特的数量是L1,Kmax是所述K个候选值中的最大值。所述UE在对所述第一比特子块进行译码时假设:所述第三比特子块中的序号最小的L-P1-Kmax个比特是冻结比特,其余比特是信息比特。
作为一个实施例,所述UE在译码得到所述第一比特子块的估计值之后,将冻结比特和所述第一比特子块作为已知比特对所述第一比特集合中的比特进行译码。
作为一个实施例,所述UE在译码得到所述第一比特子块的估计值之后,所述L1和所述P2之间的大小关系被用于确定冻结比特和所述第一集合中的比特在所述第一比特块中的位置。
作为一个实施例,所述L1小于所述P2。所述第二比特子块由第四比特子块和第五比特子块组成。所述第四比特子块由P2-L1个冻结比特组成,所述第五比特子块由L1个所述第一比特集合中的比特组成。所述第三比特子块,所述第一比特子块,所述第四比特子块和所述第五比特子块在所述第一比特块中依次排列。
作为一个实施例,所述L1大于所述P2。所述第三比特子块由第六比特子块和第七比特子块组成,所述第六比特子块由L-P1-L1个冻结比特组成,所述第七比特子块由L1-P2个所述第一比特集合中的比特组成。所述第二比特子块由P2个所述第一比特集合中的比特组成。所述第六比特子块,所述第七比特子块,所述第一比特子块和所述第二比特子块在所述第一比特块中依次排列。
作为一个实施例,所述L1等于所述P2。所述第三比特子块由L-P1-L1个冻结比特组成,所述第二比特子块由所述第一比特集合中的L1个比特组成。所述第三比特子块,所述第一比特子块和所述第二比特子块在所述第一比特块中依次排列。
具体的,根据本发明的一个方面,其特征在于,所述P2是所述K个候选值中的最大值。
具体的,根据本发明的一个方面,其特征在于,所述P2是所述K个候选值中的最小值。
具体的,根据本发明的一个方面,其特征在于,所述P2是所述K个候选值中的一个所述候选值,且所述P2既不是所述K个候选值中的最大值,也不是所述K个候选值中的最小值。
具体的,根据本发明的一个方面,其特征在于,所述P2不属于所述K个候选值。
具体的,根据本发明的一个方面,其特征在于,所述步骤A还包括如下步骤:
-步骤A0.接收第一信息。
其中,所述第一信息被用于确定{所述第一比特块中的比特的数量,所述K个候选值,所述P1,所述P2}中的至少之一。
具体的,根据本发明的一个方面,其特征在于,所述步骤B还包括如下步骤:
-步骤B0.确定所述第一比特块中的第二比特集合。
其中,所述第二比特集合中的比特是冻结比特。所述第二比特集合与所述第一比特集合在所述第一比特块中依次排列。
具体的,根据本发明的一个方面,其特征在于,所述第一无线信号在物理层控制信道上传输,或者所述第一比特子块和所述第一比特集合对应同一个DCI。
本发明公开了一种被用于信道编码的基站设备,其中,包括如下模块:
-第一执行模块:用于执行第一信道编码;
-第一发送模块:用于发送第一无线信号。
其中,第一比特块被用于所述第一信道编码的输入。所述第一信道编码基于极化码。所述第一信道编码的输出被用于生成所述第一无线信号。所述第一比特块由第一比特子块,第二比特子块和第三比特子块组成。所述第一比特块中包括第一比特集合。所述第一比特子块,所述第二比特子块,所述第三比特子块和所述第一比特集合中分别包括正整数个比特。所述第一比特子块的值和所述第一比特集合中的比特的数量有关。所述第一比特集合中的比特的数量是K个候选值中的一个所述候选值。所述候选值是正整数,所述K是大于1的正整数。所述第三比特子块,所述第一比特子块和所述第二比特子块在所述第一比特块中依次排列。所述第一比特子 块中比特的数量和所述第二比特子块中比特的数量分别是P1和P2,所述P1和所述P2是被预确定的正整数。
作为一个实施例,上述基站设备的特征在于,所述P2是所述K个候选值中的最大值。
作为一个实施例,上述基站设备的特征在于,所述P2是所述K个候选值中的最小值。
作为一个实施例,上述基站设备的特征在于,所述P2是所述K个候选值中的一个所述候选值,且所述P2既不是所述K个候选值中的最大值,也不是所述K个候选值中的最小值。
作为一个实施例,上述基站设备的特征在于,所述P2不属于所述K个候选值。
作为一个实施例,上述基站设备的特征在于,所述第一执行模块还被用于发送第一信息。其中,所述第一信息被用于确定{所述第一比特块中的比特的数量,所述K个候选值,所述P1,所述P2}中的至少之一。
作为一个实施例,上述基站设备的特征在于,所述第一执行模块还被用于确定所述第一比特块中的第二比特集合。其中,所述第二比特集合中的比特是冻结比特。所述第二比特集合与所述第一比特集合在所述第一比特块中依次排列。
作为一个实施例,上述基站设备的特征在于,所述第一无线信号在物理层控制信道上传输,或者所述第一比特子块和所述第一比特集合对应同一个DCI。
本发明公开了一种被用于信道编码的用户设备,其中,包括如下步骤:
-第一接收模块:用于接收第一无线信号;
-第二执行模块:用于执行第一信道译码。
其中,所述第一信道译码对应第一信道编码,所述第一信道编码基于极化码,第一比特块被用于所述第一信道编码的输入。所述第一信道编码的输出被用于生成所述第一无线信号。所述第一比特块由第一比特子块,第二比特子块和第三比特子块组成。所述第一比特块中包括第一比特集合。所述第一比特子块,所述第二比特子块,所述第三比特子块和所述第一比特集合中分别包括正整数个比特。所述第一比特子块的值和所述第一比特 集合中的比特的数量有关。所述第一比特集合中的比特的数量是K个候选值中的一个所述候选值。所述候选值是正整数,所述K是大于1的正整数。所述第三比特子块,所述第一比特子块和所述第二比特子块在所述第一比特块中依次排列。所述第一比特子块中比特的数量和所述第二比特子块中比特的数量分别是P1和P2,所述P1和所述P2是被预确定的正整数。
作为一个实施例,上述用户设备的特征在于,所述P2是所述K个候选值中的最大值。
作为一个实施例,上述用户设备的特征在于,所述P2是所述K个候选值中的最小值。
作为一个实施例,上述用户设备的特征在于,所述P2是所述K个候选值中的一个所述候选值,且所述P2既不是所述K个候选值中的最大值,也不是所述K个候选值中的最小值。
作为一个实施例,上述用户设备的特征在于,所述P2不属于所述K个候选值。
作为一个实施例,上述用户设备的特征在于,所述第一接收模块还被用于接收第一信息。其中,所述第一信息被用于确定{所述第一比特块中的比特的数量,所述K个候选值,所述P1,所述P2}中的至少之一。
作为一个实施例,上述用户设备的特征在于,所述第二执行模块还被用于确定所述第一比特块中的第二比特集合。其中,所述第二比特集合中的比特是冻结比特。所述第二比特集合与所述第一比特集合在所述第一比特块中依次排列。
作为一个实施例,上述用户设备的特征在于,所述第一无线信号在物理层控制信道上传输,或者所述第一比特子块和所述第一比特集合对应同一个DCI。
作为一个实施例,和传统方案相比,本发明具备如下优势:
-利用了Polar码串行译码的特性,通过码块内部指示,减少了UE侧的盲检次数;
-支持更灵活更多样的DCI格式;
-保证了DCI传输的可靠性;
-通过优化预配置的指示信息的位置优化系统性能。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更加明显:
图1示出了根据本发明的一个实施例的无线传输的流程图;
图2示出了根据本发明的一个实施例的第一比特块与第一无线信号之间的关系的示意图;
图3示出了根据本发明的一个实施例的第一比特子块,第二比特子块和第三比特子块在第一比特块中依次排列的示意图;
图4示出了根据本发明的一个实施例的第一比特块的结构的示意图;
图5示出了根据本发明的一个实施例的第一信道编码的示意图;
图6示出了根据本发明的一个实施例的第一信道译码的示意图;
图7示出了根据本发明的一个实施例的用于基站中的处理装置的结构框图;
图8示出了根据本发明的一个实施例的用于用户设备中的处理装置的结构框图。
实施例1
实施例1示例了无线传输的流程图,如附图1所示。附图1中,基站N1是UE U2的服务小区维持基站。附图1中,方框F1、方框F2和方框F3中的步骤分别是可选的。
对于N1,在步骤S11中发送第一信息;在步骤S12中确定所述第一比特块中的第二比特集合;在步骤S13中执行第一信道编码;在步骤S14中发送第一无线信号。
对于U2,在步骤S21中接收第一信息;在步骤S22中接收第一无线信号;在步骤S23中确定所述第一比特块中的第二比特集合;在步骤S24中执行第一信道译码。
在实施例1中,第一比特块被N1用于第一信道编码的输入。所述第一信道编码基于极化码。第一信道译码对应第一信道编码。所述第一信道编码的输出被N1用于生成所述第一无线信号。所述第一比特块由第一比特子块,第二比特子块和第三比特子块组成。所述第一比特块中包括第一比特 集合。所述第一比特子块,所述第二比特子块,所述第三比特子块和所述第一比特集合中分别包括正整数个比特。所述第一比特子块的值和所述第一比特集合中的比特的数量有关。所述第一比特集合中的比特的数量是K个候选值中的一个所述候选值。所述候选值是正整数,所述K是大于1的正整数。所述第三比特子块,所述第一比特子块和所述第二比特子块在所述第一比特块中依次排列。所述第一比特子块中比特的数量和所述第二比特子块中比特的数量分别是P1和P2,所述P1和所述P2是被预确定的正整数。
作为实施例1的子实施例1,所述P2是所述K个候选值中的最大值。
作为实施例1的子实施例2,所述P2是所述K个候选值中的最小值。
作为实施例1的子实施例3,所述P2是所述K个候选值中的一个所述候选值,且所述P2既不是所述K个候选值中的最大值,也不是所述K个候选值中的最小值。
作为实施例1的子实施例4,所述P2不属于所述K个候选值。
作为实施例1的子实施例5,方框F1中的步骤存在,所述第一信息被U2用于确定{所述第一比特块中的比特的数量,所述K个候选值,所述P1,所述P2}中的至少之一。
作为实施例1的子实施例6,方框F2中的步骤存在,所述第二比特集合中的比特是冻结比特。所述第二比特集合与所述第一比特集合在所述第一比特块中依次排列。
作为实施例1的子实施例7,方框F3中的步骤存在,所述第二比特集合中的比特是冻结比特。所述第二比特集合与所述第一比特集合在所述第一比特块中依次排列。
作为实施例1的子实施例8,所述第一无线信号在物理层控制信道上传输。
作为实施例1的子实施例9,所述第一比特子块和所述第一比特集合对应同一个DCI。
不冲突的情况下,上述子实施例1-4中的任意一个与上述子实施例5-9能够任意组合。
实施例2
实施例2示例了第一比特块与第一无线信号之间的关系的示意图,如附图2所示。
在实施例2中,在基站端,第一比特块被用于第一信道编码模块的输入,所述第一信道编码模块的输出在经过后处理模块后得到第一无线信号。在UE端,所述第一无线信号在经过预处理模块后的输出被用于第一信道译码模块的输入,所述第一比特块是所述第一信道译码模块的输出。所述第一信道编码模块和所述第一信道译码模块分别是基于极化码的编码模块和译码模块。所述第一信道译码模块中的操作对应所述第一信道编码模块中的操作。
作为实施例2的子实施例1,所述第一无线信号是承载所述第一比特块的OFDM符号,所述后处理模块中的后处理操作包括调制映射、多天线预编码、RE(Resource Element,资源颗粒)映射和OFDM信号产生的操作。
作为实施例2的子实施例2,所述第一无线信号是承载所述第一比特块的OFDM符号,所述预处理模块中的预处理操作包括OFDM信号解调、信道估计、信道均衡、RE解映射、解调映射的操作。
作为实施例2的子实施例3,所述第一信道编码的输出是所述第一比特块与一个Kronecker矩阵相乘的结果。
作为实施例2的子实施例4,所述第一信道编码的输出是将所述第一比特块中比特序号做比特反转后形成的比特序列与一个Kronecker矩阵相乘的结果。
作为实施例2的子实施例5,所述第一信道译码模块是基于极化码的SC(Successive Cancelation Decoding,串行消除)译码器。
作为实施例2的子实施例6,所述第一信道译码模块是基于极化码的SCL(Successive Cancellation List,串行消除清单)译码器。
作为实施例2的子实施例7,所述第一信道译码模块是基于SCS(Successive Cancellation Stack)译码器。
作为实施例2的子实施例8,所述第一信道编码模块包括CRC计算,码块分段,CRC附件,极化码生成,速率匹配和码块相连的操作。
实施例3
实施例3示例了第一比特子块,第二比特子块和第三比特子块在第一比特块中依次排列的示意图,如附图3所示。
在实施例3中,第一比特子块,第二比特子块和第三比特子块在第一比特块中依次排列。所述第一比特块中的比特的数量是L。所述第一比特子块中的比特的数量是P1。所述第二比特子块中的比特的数量是P2。所述第三比特子块中的比特的数量是L-P1-P2。所述第三比特子块中的任意比特在所述第一比特块中的序号小于所述第一比特子块中的任意比特在所述第一比特块中的序号,所述第一比特子块中的任意比特在所述第一比特块中的序号小于所述第二比特子块中的任意比特在所述第一比特块中的序号。所述第一比特子块中的比特在所述第一比特块中的序号连续。所述第二比特子块中的比特在所述第一比特块中的序号连续。所述第三比特子块中的比特在所述第一比特块中的序号连续。
作为实施例3的子实施例1,所述第一比特块中的比特按照基站假设接收机根据比特序号的升序依次译码排列
作为实施例3的子实施例2,所述第一比特块中的比特按照子信道容量的递增顺序排列。
实施例4
实施例4示例了第一比特块的结构的示意图,如附图4所示。在附图4中,密集圆点填充的长方块是第一冻结比特子集,稀疏圆点填充的长方块是第二冻结比特子集,斜线填充的长方块是第一比特子块,方格填充的长方块是第一比特集合。
在实施例4中,图案1,图案2和图案3分别是三种第一比特块的结构对应的图案。所述所述第一比特块的结构是冻结比特、第一比特子块和第一比特集合在所述第一比特块中的分布。如实施例3所示,所述第一比特块由所述第一比特子块,第二比特子块和第三比特子块组成。如实施例3所示,所述第一比特块中的比特的数量是L,所述第二比特子块中的比特的数量是P2,所述第一比特子块中的比特的数量是P1,所述第三比特子块中的比特的数量是L-P1-P2。所述P1和所述P2是预配置的。所述第一比特集合中的比特的数量是L1。L1是K个候选值中的一个候选值,所述K个候选值中的最大值是Kmax。所述冻结比特由第一冻结比特子集和第二冻 结比特子集组成。所述第一冻结比特子集中的比特的数量是L-P1-Kmax,所述第二冻结比特子集中的比特的数量是Kmax-L1。所述第一冻结比特子集中的比特对应所述第一比特块中序号最小的L-P1-Kmax个比特。
在实施例4中,当所述P2大于所述L1且所述P2小于或者等于Kmax时,所述图案1被用于所述第一比特块的结构。所述第一冻结比特子集,所述第二冻结比特子集中的Kmax-P2个冻结比特,所述第一比特子块,所述第二冻结比特子集中的另外P2-L1个冻结比特和所述第一比特集合在所述第一比特块中依次排列。
在实施例4中,当所述P2小于所述L1时,所述图案2被用于所述第一比特块的结构。所述第一冻结比特子集,所述第二冻结比特子集,所述第一比特集合中的L1-P2个比特,所述第一比特子块和所述第一比特集合中的另外P2个比特在所述第一比特块中依次排列。
在实施例4中,当所述P2等于所述L1时,所述图案3被用于所述第一比特块的结构。所述第一冻结比特子集,所述第二冻结比特子集,所述第一比特子块和所述第一比特集合在所述第一比特块中依次排列。
作为实施例4的子实施例1,所述P2是所述K个候选值中的一个所述候选值。
作为实施例4的子实施例2,所述P2是所述K个候选值中的最大值。
作为实施例4的子实施例3,所述P2是所述K个候选值中的最小值。
作为实施例4的子实施例4,所述P2不属于所述K个候选值。
作为实施例4的子实施例5,所述第一比特块中的比特按照基站假设接收机根据比特序号的升序依次译码排列
作为实施例4的子实施例6,所述第一比特块中的比特按照子信道容量的递增顺序排列。
作为实施例4的子实施例7,接收机在对所述第一比特子块进行译码时,所述第一冻结比特子集中的比特作为已知比特使用,所述第二冻结比特子集中的比特作为未知比特使用;在对所述第一比特集合进行译码时,所述第一冻结比特子集,所述第二冻结比特子集和所述第一比特子块作为已知比特使用。
实施例5
实施例5示例了第一信道编码的示意图,如附图5所示。
在实施例5中,第一信道编码包括极化码生成模块,第一比特块被用于极化码生成模块的输入,所述极化码生成模块的输出即所述第一信道编码的输出。第一比特子块生成模块和第一比特块生成模块是所述第一信道编码之前的处理模块。
在实施例5中,如实施例3所示,所述第一比特块由所述第一比特子块,第二比特子块和第三比特子块组成,所述第一比特块中的比特的数量是L,所述第二比特子块中的比特的数量是P2,所述第一比特子块中的比特的数量是P1,所述第三比特子块中的比特的数量是L-P1-P2。所述P1和所述P2是预配置的。
在实施例5中,第一比特集合中的比特的数量是L1,所述L1被用于所述第一比特子块生成模块的输入,所述第一比特子块生成模块的输出是所述第一比特子块。所述第一比特集合、所述第一比特子块和所述P2被用于第一比特块生成模块的输入。所述第一比特块生成模块根据所述P2和所述L1之间的大小关系按照实施例4所示生成所述第一比特块。所述第一比特块由冻结比特,所述第一比特子块中的比特和所述第一比特集合中的比特构成。
作为实施例5的子实施例1,所述第一比特集合中包括了校验比特。
作为实施例5的子实施例2,所述第一比特块的长度是2的N次幂,所述N为正整数。
作为实施例5的子实施例3,所述极化码生成模块是将输入比特块和极化码生成矩阵相乘将相乘结果作为输出。
作为实施例5的子实施例4,所述极化码生成矩阵是Kronecker矩阵。
实施例6
实施例6示例了第一信道译码的示意图,如附图6所示。
在实施例6中,第一信道译码包括极化码译码I模块,第一比特块的结构生成模块和极化码译码II模块。如实施例3所示,所述第一比特块由所述第一比特子块,第二比特子块和第三比特子块依次排列组成。
在实施例6中,所述第一比特块被发射机用于生成第一无线信号。所述第一无线信号的解调结果被用于所述极化码译码I模块的输入,所述极 化码译码I模块对应被发射机用于所述第一比特块的极化码生成模块。所述极化码译码I模块的输出被用于确定所述第一比特子块。所述第一比特子块被用于所述第一比特块的结构生成模块的输入。在所述第一比特块的结构生成模块中,如实施例4所示,所述第一比特子块的值被用于确定所述第一比特集合中的比特的数量,从而被用于确定所述第一比特块的结构。所述第一比特块的结构生成模块的输出被用于确定所述冻结比特、所述第一比特子块和所述第一比特集合在所述第一比特块中的分布,即所述第一比特块的结构。所述第一比特块的结构和所述第一无线信号的解调结果被用于所述极化码译码II模块的输入。所述极化码译码II模块对应被发射机用于所述第一比特块的极化码生成模块,所述冻结比特和所述第一比特子块在所述极化码译码II模块中被作为已知比特使用。
在实施例6的子实施例1中,在所述极化码译码I模块中,所述实施例4中的第一冻结比特集合作为已知比特使用,所述实施例4中的第二冻结比特集合中的比特作为未知比特使用。
实施例7
实施例7示例了用于基站中的处理装置的结构框图,如附图7所示。在附图7中,基站装置200主要由第一执行模块201和第一发送模块202组成。
在实施例7中,第一执行模块201用于执行第一信道编码,第一发送模块202用于发送第一无线信号。
在实施例7中,第一比特块被用于所述第一信道编码的输入。所述第一信道编码基于极化码。所述第一信道编码的输出被用于生成所述第一无线信号。所述第一比特块由第一比特子块,第二比特子块和第三比特子块组成。所述第一比特块中包括第一比特集合。所述第一比特子块,所述第二比特子块,所述第三比特子块和所述第一比特集合中分别包括正整数个比特。所述第一比特子块的值和所述第一比特集合中的比特的数量有关。所述第一比特集合中的比特的数量是K个候选值中的一个所述候选值。所述候选值是正整数,所述K是大于1的正整数。所述第三比特子块,所述第一比特子块和所述第二比特子块在所述第一比特块中依次排列。所述第一比特子块中比特的数量和所述第二比特子块中比特的数量分别是P1和 P2,所述P1和所述P2是被预确定的正整数。
作为实施例7的子实施例1,所述P2是所述K个候选值中的最大值。
作为实施例7的子实施例2,所述P2是所述K个候选值中的最小值。
作为实施例7的子实施例3,所述P2是所述K个候选值中的一个所述候选值,且所述P2既不是所述K个候选值中的最大值,也不是所述K个候选值中的最小值。
作为实施例7的子实施例4,所述P2不属于所述K个候选值。
作为实施例7的子实施例5,所述第一执行模块201还被用于发送第一信息。其中,所述第一信息被用于确定{所述第一比特块中的比特的数量,所述K个候选值,所述P1,所述P2}中的至少之一。
作为实施例7的子实施例6,所述第一执行模块201还被用于确定所述第一比特块中的第二比特集合。其中,所述第二比特集合中的比特是冻结比特。所述第二比特集合与所述第一比特集合在所述第一比特块中依次排列。
作为实施例7的子实施例7,所述第一无线信号在物理层控制信道上传输,或者所述第一比特子块和所述第一比特集合对应同一个DCI。
实施例8
实施例8示例了用于用户设备中的处理装置的结构框图,如附图8所示。在附图8中,用户装置300主要由第一接收模块301和第二执行模块302组成。
在实施例8中,第一接收模块301用于接收第一无线信号;第二执行模块302用于执行第一信道译码。
在实施例8中,所述第一信道译码对应第一信道编码,所述第一信道编码基于极化码,第一比特块被用于所述第一信道编码的输入。所述第一信道编码的输出被用于生成所述第一无线信号。所述第一比特块由第一比特子块,第二比特子块和第三比特子块组成。所述第一比特块中包括第一比特集合。所述第一比特子块,所述第二比特子块,所述第三比特子块和所述第一比特集合中分别包括正整数个比特。所述第一比特子块的值和所述第一比特集合中的比特的数量有关。所述第一比特集合中的比特的数量是K个候选值中的一个所述候选值。所述候选值是正整数,所述K是大于 1的正整数。所述第三比特子块,所述第一比特子块和所述第二比特子块在所述第一比特块中依次排列。所述第一比特子块中比特的数量和所述第二比特子块中比特的数量分别是P1和P2,所述P1和所述P2是被预确定的正整数。
作为实施例8的子实施例1,所述P2是所述K个候选值中的最大值。
作为实施例8的子实施例2,所述P2是所述K个候选值中的最小值。
作为实施例8的子实施例3,所述P2是所述K个候选值中的一个所述候选值,且所述P2既不是所述K个候选值中的最大值,也不是所述K个候选值中的最小值。
作为实施例8的子实施例4,所述P2不属于所述K个候选值。
作为实施例8的子实施例5,所述第一接收模块301还被用于接收第一信息。其中,所述第一信息被用于确定{所述第一比特块中的比特的数量,所述K个候选值,所述P1,所述P2}中的至少之一。
作为实施例8的子实施例6,所述第二执行模块302还被用于确定所述第一比特块中的第二比特集合。其中,所述第二比特集合中的比特是冻结比特。所述第二比特集合与所述第一比特集合在所述第一比特块中依次排列。
作为实施例8的子实施例7,所述第一无线信号在物理层控制信道上传输,或者所述第一比特子块和所述第一比特集合对应同一个DCI。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本发明中的UE或者终端包括但不限于手机,平板电脑,笔记本,上网卡,NB-IOT终端,eMTC终端等无线通信设备。本发明中的基站或者系统设备包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站等无线通信设备。
以上所述,仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所做的任何修改,等同替换, 改进等,均应包含在本发明的保护范围之内。

Claims (18)

  1. 一种被用于信道编码的基站中的方法,其中,包括如下步骤:
    -步骤A.执行第一信道编码;
    -步骤B.发送第一无线信号。
    其中,第一比特块被用于所述第一信道编码的输入。所述第一信道编码基于极化码。所述第一信道编码的输出被用于生成所述第一无线信号。所述第一比特块由第一比特子块,第二比特子块和第三比特子块组成。所述第一比特块中包括第一比特集合。所述第一比特子块,所述第二比特子块,所述第三比特子块和所述第一比特集合中分别包括正整数个比特。所述第一比特子块的值和所述第一比特集合中的比特的数量有关。所述第一比特集合中的比特的数量是K个候选值中的一个所述候选值。所述候选值是正整数,所述K是大于1的正整数。所述第三比特子块,所述第一比特子块和所述第二比特子块在所述第一比特块中依次排列。所述第一比特子块中比特的数量和所述第二比特子块中比特的数量分别是P1和P2,所述P1和所述P2是被预确定的正整数。
  2. 根据权利要求1所述的方法,其特征在于,所述P2是所述K个候选值中的最大值。
  3. 根据权利要求1所述的方法,其特征在于,所述P2是所述K个候选值中的最小值。
  4. 根据权利要求1所述的方法,其特征在于,所述P2是所述K个候选值中的一个所述候选值,且所述P2既不是所述K个候选值中的最大值,也不是所述K个候选值中的最小值。
  5. 根据权利要求1所述的方法,其特征在于,所述P2不属于所述K个候选值。
  6. 根据权利要求1-5所述的方法,其特征在于,所述步骤A还包括如下步骤:
    -步骤A0.发送第一信息。
    其中,所述第一信息被用于确定{所述第一比特块中的比特的数量,所述K个候选值,所述P1,所述P2}中的至少之一。
  7. 根据权利要求1-6所述的方法,其特征在于,所述步骤A还包括如下步骤:
    -步骤A1.确定所述第一比特块中的第二比特集合。
    其中,所述第二比特集合中的比特是冻结比特。所述第二比特集合与所述第一比特集合在所述第一比特块中依次排列。
  8. 根据权利要求1-7所述的方法,其特征在于,所述第一无线信号在物理层控制信道上传输,或者所述第一比特子块和所述第一比特集合对应同一个DCI。
  9. 一种被用于信道编码的用户设备中的方法,其中,包括如下步骤:
    -步骤A.接收第一无线信号;
    -步骤B.执行第一信道译码。
    其中,所述第一信道译码对应第一信道编码,所述第一信道编码基于极化码,第一比特块被用于所述第一信道编码的输入。所述第一信道编码的输出被用于生成所述第一无线信号。所述第一比特块由第一比特子块,第二比特子块和第三比特子块组成。所述第一比特块中包括第一比特集合。所述第一比特子块,所述第二比特子块,所述第三比特子块和所述第一比特集合中分别包括正整数个比特。所述第一比特子块的值和所述第一比特集合中的比特的数量有关。所述第一比特集合中的比特的数量是K个候选值中的一个所述候选值。所述候选值是正整数,所述K是大于1的正整数。所述第三比特子块,所述第一比特子块和所述第二比特子块在所述第一比特块中依次排列。所述第一比特子块中比特的数量和所述第二比特子块中比特的数量分别是P1和P2,所述P1和所述P2是被预确定的正整数。
  10. 根据权利要求9所述的方法,其特征在于,所述P2是所述K个候选值中的最大值。
  11. 根据权利要求9所述的方法,其特征在于,所述P2是所述K个候选值中的最小值。
  12. 根据权利要求9所述的方法,其特征在于,所述P2是所述K个候选值中的一个所述候选值,且所述P2既不是所述K个候选值中的最大值,也不是所述K个候选值中的最小值。
  13. 根据权利要求9所述的方法,其特征在于,所述P2不属于所述K个候选值。
  14. 根据权利要求9-13所述的方法,其特征在于,所述步骤A还包括如下步骤:
    -步骤A0.接收第一信息。
    其中,所述第一信息被用于确定{所述第一比特块中的比特的数量,所述K个候选值,所述P1,所述P2}中的至少之一。
  15. 根据权利要求9-14所述的方法,其特征在于,所述步骤B还包括如下步骤:
    -步骤B0.确定所述第一比特块中的第二比特集合。
    其中,所述第二比特集合中的比特是冻结比特。所述第二比特集合与所述第一比特集合在所述第一比特块中依次排列。
  16. 根据权利要求9-15所述的方法,其特征在于,所述第一无线信号在物理层控制信道上传输,或者所述第一比特子块和所述第一比特集合对应同一个DCI。
  17. 一种被用于信道编码的基站设备,其中,包括如下模块:
    -第一执行模块:用于执行第一信道编码;
    -第一发送模块:用于发送第一无线信号。
    其中,第一比特块被用于所述第一信道编码的输入。所述第一信道编码基于极化码。所述第一信道编码的输出被用于生成所述第一无线信号。所述第一比特块由第一比特子块,第二比特子块和第三比特子块组成。所述第一比特块中包括第一比特集合。所述第一比特子块,所述第二比特子块,所述第三比特子块和所述第一比特集合中分别包括正整数个比特。所述第一比特子块的值和所述第一比特集合中的比特的数量有关。所述第一比特集合中的比特的数量是K个候选值中的一个所述候选值。所述候选值是正整数,所述K是大于1的正整数。所述第三比特子块,所述第一比特子块和所述第二比特子块在所述第一比特块中依次排列。所述第一比特子块中比特的数量和所述第二比特子块中比特的数量分别是P1和P2,所述P1和所述P2是被预确定的正整数。
  18. 一种被用于信道编码的用户设备,其中,包括如下步骤:
    -第一接收模块:用于接收第一无线信号;
    -第二执行模块:用于执行第一信道译码。
    其中,所述第一信道译码对应第一信道编码,所述第一信道编码基于极化码,第一比特块被用于所述第一信道编码的输入。所述第一信道编码的输出被用于生成所述第一无线信号。所述第一比特块由第一比特子块,第二比特子块和第三比特子块组成。所述第一比特块中包括第一比特集合。 所述第一比特子块,所述第二比特子块,所述第三比特子块和所述第一比特集合中分别包括正整数个比特。所述第一比特子块的值和所述第一比特集合中的比特的数量有关。所述第一比特集合中的比特的数量是K个候选值中的一个所述候选值。所述候选值是正整数,所述K是大于1的正整数。所述第三比特子块,所述第一比特子块和所述第二比特子块在所述第一比特块中依次排列。所述第一比特子块中比特的数量和所述第二比特子块中比特的数量分别是P1和P2,所述P1和所述P2是被预确定的正整数。
PCT/CN2017/074187 2017-02-21 2017-02-21 一种基站、用户设备中的用于信道编码的方法和装置 WO2018152660A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2017/074187 WO2018152660A1 (zh) 2017-02-21 2017-02-21 一种基站、用户设备中的用于信道编码的方法和装置
CN201780069400.XA CN109937547B (zh) 2017-02-21 2017-02-21 一种基站、用户设备中的用于信道编码的方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/074187 WO2018152660A1 (zh) 2017-02-21 2017-02-21 一种基站、用户设备中的用于信道编码的方法和装置

Publications (1)

Publication Number Publication Date
WO2018152660A1 true WO2018152660A1 (zh) 2018-08-30

Family

ID=63252306

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/074187 WO2018152660A1 (zh) 2017-02-21 2017-02-21 一种基站、用户设备中的用于信道编码的方法和装置

Country Status (2)

Country Link
CN (1) CN109937547B (zh)
WO (1) WO2018152660A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114448448B (zh) * 2022-01-24 2023-07-28 电子科技大学 一种基于ca-scl的极化码编译码方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104683069A (zh) * 2015-02-13 2015-06-03 大唐联仪科技有限公司 一种物理下行控制信道pdcch盲检测方法和系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9954645B2 (en) * 2014-12-05 2018-04-24 Lg Electronics Inc. Method and device for providing secure transmission based on polar code
US9628114B2 (en) * 2015-03-31 2017-04-18 Macronix International Co., Ltd. Length-compatible extended polar codes
EP3926864A1 (en) * 2015-07-01 2021-12-22 Huawei Technologies Co., Ltd. Uplink data transmission method and device
US10461779B2 (en) * 2015-08-12 2019-10-29 Telefonaktiebolaget Lm Ericsson (Publ) Rate-compatible polar codes
CN106130690A (zh) * 2016-06-21 2016-11-16 东南大学 结合极化码的mimo系统联合检测译码方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104683069A (zh) * 2015-02-13 2015-06-03 大唐联仪科技有限公司 一种物理下行控制信道pdcch盲检测方法和系统

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Design Aspects of Polar Code for Control Channels", 3GPP TSG RAN WGL MEETING #88 RL-1702712, 17 February 2017 (2017-02-17), XP051209859 *
"Polar Code Design for DCI", 3GPPTSG RAN WG1 MEETING #88 RL-1702277, 17 February 2017 (2017-02-17), XP051209432 *
ERICSSON: "Design of CRC-assisted Polar Code", 3GPP TSG RAN WG1 MEETING #88 RL-1701630, 17 February 2017 (2017-02-17), XP051208797 *

Also Published As

Publication number Publication date
CN109937547A (zh) 2019-06-25
CN109937547B (zh) 2021-08-27

Similar Documents

Publication Publication Date Title
CN111954982B (zh) 无线通信系统和广播系统中使用极性码进行编码和解码的装置和方法
CN109314952B (zh) 新无线电物理下行控制信道设计的方法及其发送设备
JP6731115B2 (ja) 情報送信方法、送信端デバイス及び受信端デバイス
US10455607B2 (en) Communication methods and apparatus employing rateless codes
JP7165954B2 (ja) チャネル符号化に用いるユーザー装置、基地局における方法及び装置
WO2017101023A1 (zh) 通信方法及网络设备、用户设备
WO2018152660A1 (zh) 一种基站、用户设备中的用于信道编码的方法和装置
CN110611546A (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2018145284A1 (zh) 一种被用于信道编码的终端、基站中的方法和设备
WO2018145306A1 (zh) 一种基站、用户设备中的用于信道编码的的方法和装置
CN108631977A (zh) 一种广播信息指示的发送方法和发送设备
Čarapić et al. A Comparison of 5G Channel Coding Techniques
WO2018148952A1 (zh) 一种被用于无线通信的终端、基站中的方法和装置
WO2022174818A1 (zh) 一种用于无线通信的节点中的方法和装置
US11245418B2 (en) Method and device in UE and base station for wireless communication
WO2018145256A1 (zh) 一种被用于无线通信的终端、基站中的方法和装置
KR20240018495A (ko) 채널 인코딩을 수행하는 방법, 통신 기기, 프로세싱장치, 및 저장 매체, 그리고 채널 디코딩을 수행하는 방법 및 통신 기기
CN114979967A (zh) 一种用于无线通信的节点中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17897376

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17897376

Country of ref document: EP

Kind code of ref document: A1