WO2017101023A1 - 通信方法及网络设备、用户设备 - Google Patents

通信方法及网络设备、用户设备 Download PDF

Info

Publication number
WO2017101023A1
WO2017101023A1 PCT/CN2015/097454 CN2015097454W WO2017101023A1 WO 2017101023 A1 WO2017101023 A1 WO 2017101023A1 CN 2015097454 W CN2015097454 W CN 2015097454W WO 2017101023 A1 WO2017101023 A1 WO 2017101023A1
Authority
WO
WIPO (PCT)
Prior art keywords
bit sequence
user equipment
information
user
sequence
Prior art date
Application number
PCT/CN2015/097454
Other languages
English (en)
French (fr)
Inventor
王新征
邓天乐
周凯捷
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2015/097454 priority Critical patent/WO2017101023A1/zh
Publication of WO2017101023A1 publication Critical patent/WO2017101023A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information

Definitions

  • Embodiments of the present invention relate to the field of communications, and more specifically, to a communication method, a network device, and a user equipment.
  • the network side device separately encodes the data to be sent to each user equipment, and the encoded data is sent to the user equipment in the form of a code block, and then the user equipment decodes and obtains the corresponding data.
  • the coding gain is small, resulting in poor communication performance, especially in a Machine to Machine (M2M) communication system, where the network device is to each user equipment.
  • M2M Machine to Machine
  • the transmitted data packet is very small, that is, the code block length sent to each user equipment is very small. At this time, the problem of small coding gain will be more prominent.
  • the embodiments of the present invention provide a communication method, a network device, and a user equipment, which are beneficial to increase coding gain of channel coding and improve transmission performance.
  • a first aspect a method for processing information, comprising: combining a first information bit sequence of at least two user equipments to obtain a first joint bit sequence; and using the first coding mode to the first joint bit sequence Channel coding is performed to obtain a first coded bit sequence; and the first coded bit sequence is transmitted to the receiving end.
  • the first information bit sequence of the user equipment refers to a first information bit sequence that the network equipment is to send to the user equipment.
  • the embodiment of the present invention provides a method for processing information, combining information bit sequences of each of at least two user equipments to obtain a joint bit sequence, and uniformly encoding the joint bit sequence to obtain a coded bit sequence, and the user
  • the device can obtain its own corresponding information bit sequence from the coded bit sequence, which is beneficial to improve coding gain and improve channel coding performance.
  • the coding error probability generated by using the first coding mode is inversely proportional to the number of bits in the first joint bit sequence.
  • the first coding mode when the first coding mode is adopted, the more the number of bits in the first joint bit, the larger the coding gain, for example, the first coding mode may be a polarization Polar code, a Turbo code or a low density parity check ( English: Low-density Parity-check, shorthand: LDPC) code.
  • the joint bit when the joint bit is encoded by the first coding mode, it is encoded compared to the information bits of a single user to obtain a larger coding gain.
  • the first information bit sequence of each user equipment includes a redundant cyclic check CRC bit sequence.
  • the method further includes: employing a user equipment corresponding to the identifier information of each user equipment of the at least two user equipments
  • the CRC bit sequence included in the first information bit sequence is subjected to a scrambling operation.
  • the foregoing method may enable the user equipment to determine whether there is a bit belonging to itself by solving the CRC of all users participating in the first information bit combination of the multiple user equipments, and then performing operations with the C-RNTI or its user equipment identifier.
  • the beneficial effect is that there is no need to increase the overhead of transmission.
  • the first joint bit sequence includes a CRC bit sequence.
  • the first joint bit sequence further includes a control bit sequence, where the control bit sequence carries the first indication information, where The first indication information is used to indicate a location of a first information bit sequence of each of the at least two user equipments in the first joint bit sequence, the first indication information including the at least two Identification information of each user equipment in the user equipment.
  • the method further includes: sending, to the user equipment, the second indication information,
  • the second indication information is used to indicate a location of the first information bit sequence of each of the at least two user equipments in the first joint bit sequence.
  • the at least two user equipments are modulated in the same manner, and any two of the at least two user equipments
  • the difference in the code rate of the device transmission is less than the first threshold; or the channel quality difference of any two of the at least two user equipments is less than the second threshold; or the at least two user equipments are in the device-to-device M2M communication system
  • the coverage levels are the same.
  • the method further includes: determining a modulation mode of the first coded bit sequence as a preset modulation And performing channel mapping on the first coded bit sequence to obtain a frequency band occupied by the first coded bit sequence, and determining the first code according to a partial bandwidth of the frequency band or a current channel state over a full bandwidth a modulation scheme of a bit sequence, wherein a better the channel state over a partial bandwidth or a full bandwidth of the frequency band, a modulation order of the modulation mode is higher; according to the information bit sequence size and available time of each user equipment The relationship between the size of the frequency resources determines the modulation mode of the first joint bit sequence. When the same information bit sequence size is used, the larger the available time-frequency resources, the lower the modulation order.
  • the receiving end is each user of the at least two user equipments, and the at least two user equipments
  • the quantity is N
  • the M user equipments in the at least two user equipments cannot correctly decode the first information bit sequence corresponding to each of the M user equipments
  • each of the NM user equipments The user equipment can correctly decode the corresponding first information bit sequence, where N and M are positive integers
  • the method further includes: when M ⁇ Q, to each of the plurality of user equipments
  • the device sends a second coded bit sequence, where the second coded bit sequence is obtained by channel coding by using the first coding mode by the first joint bit sequence; when M ⁇ Q, to the multiple user equipments
  • Each user equipment sends a third coded bit sequence obtained by channel coding of the second joint bit sequence by using the first coding mode, and the second joint bit sequence is obtained by the M
  • the first coding mode is one of: a turbo code, a low density parity check LDPC code, and a Polar code.
  • the receiving end is a second network device.
  • the first information bit sequence of the user equipment refers to the first information bit sequence sent by the user equipment to the first network device.
  • a second aspect provides a method for processing information, including: receiving, by a first user equipment, a first coded bit sequence sent by a network device, where the first coded bit sequence is used by the network device to use a first coding mode to a first joint
  • the bit sequence is encoded, and the first joint bit sequence is obtained by
  • the first information bit sequence is obtained by combining the first information bit sequence sent by the network device to each of the plurality of user equipments, wherein the plurality of user equipments comprise the first user equipment; the first user equipment is according to the first joint bit Sequence, obtaining a first sequence of information bits required by the first user equipment.
  • the coding error probability generated by using the first coding mode decreases as the number of bits in the first joint bit sequence increases.
  • the method further includes: if the first joint bit sequence further includes a control bit sequence, the control bit sequence carries Determining, by the first indication information of the first user equipment, a location of the first information bit sequence of the first user equipment in the first joint bit sequence according to the first indication information, where The first indication information bit sequence of a user equipment includes device identification information of the first user equipment.
  • the method further includes: receiving, by the network device, second indication information, where the second indication information is used Determining a location of the first information bit sequence of the first user equipment in the first joint bit sequence; determining, according to the second indication information, a first information bit sequence of the first user equipment in the A position in a joint bit sequence.
  • the method further includes: if the first information bit sequence of the first user equipment includes a first redundant cyclic Detecting a CRC bit sequence, the first CRC bit sequence has been scrambled with the identification information of the first user equipment, and the first user equipment determines the first according to the scrambled first CRC bit sequence A first sequence of information bits of a user equipment.
  • the first information bit sequence required by the first user equipment is obtained according to the first joint bit sequence
  • the method includes: receiving a second coded bit sequence sent by the network device, where the second coded bit sequence is obtained by the network device by using the first coding mode to encode the first joint bit sequence.
  • the first information bit sequence required by the first user equipment is obtained according to the first joint bit sequence
  • the method includes: performing demodulation processing on the first coded bit sequence to obtain a first soft value sequence; performing demodulation processing on the second coded bit sequence to obtain a second soft value sequence; The first soft value sequence and the second soft value sequence are combined to obtain a third soft value sequence, and the third soft value sequence is decoded to obtain a first information bit sequence of the first user equipment.
  • the first information bit sequence required by the first user equipment is obtained according to the first joint bit sequence And including: if the first user equipment cannot correctly decode the first information bit sequence corresponding to the first user equipment, receive a third coding bit sequence sent by the network device, where the third coding bit sequence is used by the network The device obtains a channel coding of the second joint bit sequence by using the first coding mode, where the second joint bit sequence is used by the first information bit sequence of the first user equipment and the second user equipment of the multiple user equipments The second information bit sequence is combined.
  • the first information bit sequence required by the first user equipment is obtained according to the first joint bit sequence
  • the method includes: decoding the first coded bit sequence to obtain a fourth soft value sequence corresponding to the first user equipment, and decoding the third coded bit sequence to obtain the first user equipment corresponding to a fifth soft value sequence; combining the fourth soft value sequence and the fifth soft value sequence to obtain a sixth soft value sequence; performing a soft value hard decision on the sixth soft value sequence to obtain the A first sequence of information bits of the first user equipment.
  • the first information bit sequence required by the first user equipment is obtained according to the first joint bit sequence
  • the method includes: decoding the first coded bit sequence to obtain a first hard value bit sequence corresponding to the first user equipment, and decoding the third coded bit sequence to obtain the first user equipment Corresponding second hard value bit sequence; determining N exception bits in the second hard value bit sequence that are the same as the first hard value bit sequence and different bit values, and N is a positive integer;
  • the M abnormal bits of the N abnormal bits of the two hard value bit sequence are bit inverted, where 0 ⁇ M ⁇ N, M is a positive integer; when the M abnormal bits are bit inverted, the second When the hard-valued bit sequence passes the check, the second hard-valued bit sequence after the M abnormal bit inversion is used as the first information bit sequence of the first user equipment.
  • the first coding mode is one of: a turbo code, an LDPC code, and a Polar code.
  • a network device for performing the method of any of the first aspect or the first aspect of the first aspect.
  • the apparatus comprises means for performing the method of any of the above-described first aspect or any of the possible implementations of the first aspect.
  • a first user equipment is provided for performing the method of any of the above-described second aspect or any of the possible implementations of the second aspect.
  • the apparatus comprises means for performing the method of any of the above-described second aspect or any of the possible implementations of the second aspect.
  • an apparatus for information processing comprising: a receiver, a transmitter, a memory, a processor, and a bus system.
  • the receiver, the transmitter, the memory and the processor are connected by the bus system, the memory is for storing instructions for executing the instructions stored by the memory to control the receiver to receive signals and control the sending
  • the transmitter transmits a signal, and when the processor executes the memory stored instructions, the execution causes the processor to perform the method of the first aspect or any of the possible implementations of the first aspect.
  • an apparatus for information processing comprising: a receiver, a transmitter, a memory, a processor, and a bus system.
  • the receiver, the transmitter, the memory and the processor are connected by the bus system, the memory is for storing instructions for executing the instructions stored by the memory to control the receiver to receive signals and control the sending
  • the transmitter transmits a signal, and when the processor executes the memory stored instructions, the execution causes the processor to perform the method of any of the second aspect or any of the possible implementations of the second aspect.
  • a seventh aspect a computer readable medium for storing a computer program, the computer program comprising instructions for performing the method of the first aspect or any of the possible implementations of the first aspect.
  • a computer readable medium for storing a computer program, the computer program comprising instructions for performing the method of any of the second aspect or any of the possible implementations of the second aspect.
  • the embodiment of the present invention provides a method for processing information, combining information bit sequences of each of at least two user equipments to obtain a joint bit sequence, and uniformly encoding the joint bit sequence to obtain a coded bit sequence, and the user
  • the device can obtain its own corresponding information bit sequence from the coded bit sequence, which is beneficial to improve coding gain and improve channel coding performance.
  • FIG. 1 illustrates a wireless communication system 100 in accordance with various embodiments described herein.
  • FIG. 2 illustrates a wireless communication system 200 in accordance with various embodiments described herein.
  • FIG. 3 shows a schematic flow chart of a method of processing information according to an embodiment of the present invention.
  • FIG. 4 is a schematic flowchart of a method of information processing according to another embodiment of the present invention.
  • FIG. 5 is a schematic flowchart of a process of multi-user joint coding according to an embodiment of the present invention.
  • FIG. 6 is a schematic flowchart of a process of multi-user joint coding according to another embodiment of the present invention.
  • FIG. 7 is a schematic flowchart of a process of multi-user joint coding according to another embodiment of the present invention.
  • FIG. 8 is a schematic flowchart of a process of multi-user joint coding according to another embodiment of the present invention.
  • FIG. 9 is a schematic diagram of a multi-user joint bit according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of a multi-user joint bit according to another embodiment of the present invention.
  • FIG. 11 is a schematic diagram of a multi-user joint bit according to another embodiment of the present invention.
  • FIG. 12 is a schematic diagram of resource mapping after multi-user joint coding according to an embodiment of the present invention.
  • 13(a) and 13(b) are diagrams showing a communication method according to another embodiment of the present invention.
  • 14(a) and 14(b) are diagrams showing a communication method of another embodiment of the present invention.
  • 15(a), 15(b) and 15(c) are diagrams showing a communication method of another embodiment of the present invention.
  • 16(a), 16(b) and 16(c) are diagrams showing a communication method of another embodiment of the present invention.
  • 17(a), 17(b) and 17(c) are diagrams showing a communication method of another embodiment of the present invention.
  • Figure 18 is a diagram showing a communication method according to another embodiment of the present invention.
  • 19(a) and 19(b) are diagrams showing a communication method according to another embodiment of the present invention.
  • 20(a) and 20(b) are schematic diagrams showing applications in an uplink unscheduled system according to another embodiment of the present invention.
  • 21(a) and 21(b) are diagrams showing the application of multi-user joint coding in a relay communication system according to an embodiment of the present invention.
  • FIG. 22 is a schematic block diagram of a network device according to an embodiment of the present invention.
  • FIG. 23 is a schematic block diagram of a first user equipment according to an embodiment of the present invention.
  • FIG. 24 is a schematic diagram of an apparatus for information processing according to an embodiment of the present invention.
  • FIG. 25 is a schematic diagram of an apparatus for information processing according to an embodiment of the present invention.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • FIG. 1 illustrates a wireless communication system 100 suitable for use in accordance with various embodiments of the present invention.
  • System 100 includes a base station 102 that can include multiple antenna groups.
  • one antenna group may include antennas 104 and 106
  • another antenna group may include antennas 108 and 110
  • additional groups may include antennas 112 and 114.
  • Two antennas are shown for each antenna group, however more or fewer antennas may be used for each group.
  • Base station 102 can additionally include a transmitter chain and a receiver chain, as will be understood by those of ordinary skill in the art, which can include multiple components associated with signal transmission and reception (e.g., processor, modulator, multiplexer, demodulation) , demultiplexer or antenna, etc.).
  • Base station 102 can communicate with one or more access terminals, such as access terminal 116 and access terminal 122. However, it will be appreciated that base station 102 can communicate with substantially any number of access terminals similar to access terminals 116 and 122.
  • the user equipment mentioned in the embodiment of the present invention may be the access terminals 116 and 122 in FIG. 1, and the user equipment may also be, for example, a cellular phone, a smart phone, a portable computer, a handheld communication device, a handheld computing device, a satellite radio,
  • the present invention is not limited to the global positioning system, the PDA, and/or any other suitable device for communicating on the wireless communication system 100, and the wireless terminal in the M2M communication system.
  • "User" as an abbreviation of "user equipment” it should be understood that they refer to the same concept, and the two can be replaced with each other.
  • access terminal 116 is in communication with antennas 112 and 114, with antennas 112 and 114 transmitting information to access terminal 116 over forward link 118 and receiving information from access terminal 116 over reverse link 120.
  • access terminal 122 is in communication with antennas 104 and 106, wherein antennas 104 and 106 transmit information to access terminal 122 over forward link 124 and from access end through reverse link 126. End 122 receives the information.
  • FDD Frequency Division Duplex
  • the forward link 118 can utilize different frequency bands than those used by the reverse link 120, and the forward link 124 can be utilized and reversed. Different frequency bands used by link 126.
  • TDD Time Division Duplex
  • the forward link 118 and the reverse link 120 can use a common frequency band, and the forward link 124 and the reverse link 126 can be used together. frequency band.
  • Base station 102, access terminal 116, and/or access terminal 122 may be transmitting wireless communication devices and/or receiving wireless communication devices.
  • the transmitting wireless communication device can encode the data for transmission.
  • the transmitting wireless communication device can have (eg, generate, obtain, store in memory, etc.) a certain number of information bits to be transmitted over the channel to the receiving wireless communication device.
  • Such information bits may be included in a transport block (or multiple transport blocks) of data that may be segmented to produce a plurality of code blocks.
  • the transmitting wireless communication device may use a Low Density Parity Check Code (English: Low Density Parity Check Code, LDPC) for encoding, or may use a Polar Code (Polar code), a Turbo code for encoding, and may also use other
  • LDPC Low Density Parity Check Code
  • Polar Code Polar code
  • Turbo code Turbo code
  • FIG. 2 illustrates a wireless communication system 200 in accordance with various embodiments described herein.
  • the present invention is applicable to a communication system as shown.
  • the base station sends downlink data information or control information to the plurality of terminal devices through the air interface technology.
  • Air interface technologies include, but are not limited to, the following technologies: LTE, air interface technology with similar time-frequency structure as LTE, GSM, UMTS, TD-SCDMA, CDMA2000, and the like.
  • the application scenario of the embodiment of the present invention is applicable to the fifth generation mobile communication technology, including specific application scenarios such as M2M.
  • the network device mentioned in the embodiment of the present invention may be a base station (Base Transceiver Station, abbreviated as "BTS”) in GSM or CDMA, or may be a base station (NodeB, abbreviated as “NB”) in WCDMA. It may also be an Evolved Node B (“ENB or e-NodeB”) in the LTE, or a transmitting end in the M2M system, and the present invention is not limited thereto.
  • BTS Base Transceiver Station
  • NodeB base station
  • Evolved Node B Evolved Node B
  • e-NodeB Evolved Node B
  • FIG. 3 shows a schematic flow diagram of a method 300 of processing information in accordance with an embodiment of the present invention.
  • the method can be performed by a network device, in particular, for example, by an eNB.
  • the method 300 includes:
  • the first joint bit sequence may be spliced together according to a preset rule for the first information bit sequence of multiple user equipments, or may be a bit sequence obtained by splicing and then performing interleaving processing.
  • the combination manner of the first information bit sequence of the plurality of user equipments in the embodiment of the present invention is not limited.
  • the first information bit sequence may be a data information bit sequence, or may be a control information bit sequence, and may further include a data information bit sequence and a control information bit sequence, and each user equipment has data information belonging to the device.
  • the bit sequence and the control information bit sequence when the first joint bit sequence is constructed, the data information bit sequences of the plurality of user equipments may be combined, or the control information bit sequences of the plurality of user equipments may be combined, or more The data information bit sequence and the control information bit sequence of the user equipments are combined at the same time.
  • the first information bit sequence of the user equipment refers to the first information that the network equipment sends to the user equipment. Bit sequence.
  • the first information bit sequence of the user equipment refers to the first information bit sequence sent by the user equipment to the first network device.
  • the network device may send the obtained first coded bit sequence to each of the plurality of user equipments, and the user equipment performs decoding according to the first coded bit sequence to obtain data required by itself.
  • the first information bit sequence of multiple user equipments is combined, the first joint bit sequence is channel-coded, and finally the first coded bit sequence is obtained.
  • the first joint bit sequence is channel-coded, and finally the first coded bit sequence is obtained.
  • multi-user joint coding it may be referred to as multi-user joint coding.
  • the specific manner of combining the information bit sequences of each user equipment may be a concatenation of information bit sequences of multiple users, and the concatenated joint bit sequence may be referred to as a multi-user concatenated bit sequence.
  • the embodiment of the present invention provides a method for processing information, combining information bit sequences of each of at least two user equipments to obtain a joint bit sequence, and uniformly encoding the joint bit sequence to obtain a coded bit sequence, and the user
  • the device can obtain its own corresponding information bit sequence from the coded bit sequence, which is beneficial to improve coding gain and improve channel coding performance.
  • the coding error probability generated by using the first coding mode is inversely proportional to the number of bits in the first joint bit sequence.
  • the coding gain generated by using the first coding mode increases as the number of bits in the first joint bit sequence increases, or the coding error probability generated by using the first coding mode follows the first joint bit sequence.
  • the number of bits increases and increases.
  • the coding probability generated by the first coding mode is P
  • the number of bits in the first joint bit sequence is N
  • the coding error probability may be a bit error rate (English: Bit Error Rate, shorthand: BER), and a block error rate ( English: Block Error Rate, shorthand: BLER).
  • the first coding mode when the first coding mode is adopted, the more the number of bits in the first joint bit sequence, the larger the coding gain.
  • the first coding mode may be a polarization Polar code, a Turbo code, or a low density parity check. (English: Low-density Parity-check, shorthand: LDPC) code.
  • the coding gain is small, resulting in poor communication performance, especially in a Machine to Machine (M2M) communication system, which is sent to each user equipment.
  • M2M Machine to Machine
  • the data packet is very small, that is, the code block length sent to each user equipment is very small, and at this time, the problem of small coding gain will be more prominent.
  • the joint bit sequence is encoded by the first coding mode, it is encoded compared to the information bit sequence of a single user to obtain a larger coding gain.
  • the first information bit sequence of each user equipment includes a Cyclic Redundancy Check (English: Cyclic Redundancy Check, CRC) bit sequence.
  • Cyclic Redundancy Check English: Cyclic Redundancy Check, CRC
  • the method further includes: adding each user to the first information bit sequence of each of the plurality of user equipments.
  • the CRC bit sequence corresponding to the device obtains the first information bit added to the CRC bit sequence corresponding to each user equipment.
  • the method further includes: performing a scrambling operation on the CRC bit sequence included in the first information bit sequence of the user equipment corresponding to the identifier information of each user equipment in the at least two user equipments, The scrambled first information bits of each user equipment are obtained.
  • the CRC check bit sequence added by the first information bit sequence of each user equipment may be scrambled with at least one of the following information: a temporary radio network temporary identifier of each user equipment (English: Cell Radio Network Temporary Identifier, abbreviated: C-RNTI) information or user ID of each user. That is, if you add this separately for each device
  • C-RNTI Cell Radio Network Temporary Identifier
  • the foregoing method may enable the user equipment to determine whether there is a bit belonging to itself by solving a CRC of all user equipments participating in the first information bit combination of the multiple user equipments, and then performing operations with the C-RNTI or its user equipment identifier.
  • the beneficial effect of the method is that there is no need to increase the overhead of transmission.
  • the first joint bit sequence comprises a CRC bit sequence.
  • a CRC bit sequence is added for the first joint bit sequence to obtain a first joint bit sequence to which the CRC bit sequence is added.
  • the CRC check bit sequence can be separately added to the transport block of each user equipment, and then the first information bit sequence of the plurality of user equipments can be combined, or the transport block combination of the plurality of user equipments can be obtained. After a joint bit sequence, the CRC check bit sequence corresponding to the plurality of user equipments is added to the first joint bit sequence.
  • first joint bit sequence to which the CRC check bit sequence is added may also continue to perform code block partitioning, and the CRC bit sequence is added to the divided code block.
  • the control bit sequence carries first indication information, where the first indication information is used to indicate each user equipment of the multiple user equipments. a location of the first information bit sequence in the first joint bit sequence, the first indication information including identification information of each of the plurality of user equipments.
  • the first indication information further includes at least one of the following information: start and stop address information of the first information bit sequence of each user equipment, and first information bits of each user equipment The length information of the sequence, the separator information of the first information bit sequence of each user equipment.
  • a control bit sequence may be added at a header of the first joint bit sequence or other location agreed with the user equipment, the control bit sequence carrying an identifier of each user equipment of all user equipments participating in the first joint bit sequence combination And the start and end addresses of the first information bit sequence of each user, or may also indicate the bit sequence length of the first information bit sequence of each user equipment.
  • the length of the information bit sequence around the user may be agreed with each user equipment. Is an equal value.
  • device identification and delimiter information can be added at the head of each user equipment bit sequence.
  • the separator information is used to help the terminal determine the start and end of the bit sequence. It should be understood that a separator may be present in the user information bit sequence, so the separator string appearing in the user information bit sequence can be converted to other character strings. This method does not require the bit sequence length of the user equipment participating in the combination to be known in advance.
  • the method further includes: sending, to each of the plurality of user equipments, second indication information, where the second indication information is used to indicate each of the multiple user equipments.
  • the downlink data information bit sequence participates in multi-user joint coding
  • the downlink control information bit sequence does not participate in multi-user joint coding. Therefore, the start or end position or the first segment of the data information bit sequence of a certain user in all user bit sequences can be indicated in the control information, for example, if the first segment is indicated, then the multi-user joint coding must be required.
  • the user's original bit sequence is of equal length.
  • the method does not increase the overhead of data information participating in multi-user joint coding, but increases the overhead of control information that does not participate in multi-user joint coding. Since the user has a way to identify which control information is sent to himself. For example, the LTE downlink scrambles the CRC through the P-RNTI and the C-RNTI at the time of paging and the connected state, respectively, and therefore, the overhead required by this method is small.
  • the second indication information may also be carried in other messages, and multiple user equipments participating in the joint coding are sent, and the present invention is not limited thereto.
  • multiple user equipments meet at least one of the following conditions: each user equipment of the multiple user equipments is modulated in the same manner, and any two of the multiple user equipments are transmitted.
  • the code rate difference is smaller than the first threshold.
  • the first threshold may be any preset value.
  • the first threshold may be set to 0.2. It should be understood that other values may be set according to actual needs. Limited to this;
  • the channel quality difference fed by any two user equipments of the multiple user equipments is smaller than the second threshold.
  • the second threshold is used. It can be set to 2. It should be understood that it can also be other equivalent specific parameters that reflect the channel quality.
  • the second threshold can be set according to the selected specific parameters. For example, it can be the reference signal received power (English: Reference Signal Received Power, shorthand: RSRP), reference signal reception quality (English: Reference Signal Received Quality, shorthand: RSRQ), path loss, received signal power (English: Received Signal Code Power, shorthand: RSCP).
  • UEs of both UMTS and LTE report CQI periodically.
  • the UE of LTE can report RSRP and RSRQ. When reporting RSRP or RSRQ, depending on the configuration on the network side, it can be triggered by an event or periodically.
  • the UE of the UMTS may report the RSCP, the periodic trigger or the event trigger, and the present invention is not limited thereto.
  • Each of the plurality of user devices is a user device in the M2M system, and each of the plurality of user devices has the same coverage level.
  • determining whether a user equipment can perform joint coding it may be determined whether the user equipment participates in joint coding, whether the code rate change amount and the code length change amount meet the pre-simulation or test result. Performance does not deteriorate the constraint relationship.
  • a table can be obtained by a large number of simulations or tests in advance, and the table includes a code block change amount item X and a code rate change amount item Y, and the table shows that the transmission performance is substantially unchanged.
  • the value ⁇ BS is found from X, and Y corresponding to X of the value is compared with ⁇ CR. Y> ⁇ CR can participate in joint coding, otherwise it will not participate in joint coding.
  • the foregoing method further includes one of the following:
  • Determining a modulation mode of the first coded bit sequence as a preset modulation mode for example, selecting one of BPSK, QPSK, 16QAM, and 64QAM;
  • Determining a modulation mode of the first joint bit sequence according to a relationship between a first information bit sequence size of each user equipment and an available time-frequency resource size.
  • the available time-frequency resources are larger, and the guaranteed information bit sequence is determined.
  • the modulation order can be lower to achieve higher performance.
  • the constellation symbols modulated by the first coded bit sequence are regularly and uniformly mapped to time-frequency resources (often wide-band sub-bands) allocated to the group of terminals, and the purpose of the distributed mapping is to obtain time diversity. And frequency diversity. Therefore, the original information of each user is scattered more On time-frequency resources, higher time diversity and frequency diversity are obtained.
  • the modulation and resource mapping for multi-user joint coding is as described above.
  • air interface technologies without obvious time-frequency structure such as UMTS, GSM, TD-SCDMA, CDMA2000, etc.
  • users participating in multi-user joint coding can still only choose a common modulation mode.
  • UMTS using multi-user joint coding the multi-user joint coded data uses 1 to 15 high-speed physical downlink shared channels (English: High Speed Physical Downlink Shared Channel, abbreviated: HS-PDSCH). This is similar to existing systems that do not use multi-user joint encoding.
  • each user encoded data is mapped to one or more HS-PDSCHs.
  • Multi-user joint coding makes one user's data occupy more HS-PDSCH. These HS-PDSCHs occupy the same frequency band and time, and are distinguished from each other by spreading codes, so that code diversity can be obtained.
  • Multi-user joint coding for CDMA2000 or TD-SCDMA systems is similar to that for UMTS systems.
  • For GSM systems using multi-user joint coding each user's data needs to occupy more time slot transmissions, enabling time diversity.
  • the receiving end is each of the at least two user equipments, the number of the at least two user equipments is N, and the M user equipments in the at least two user equipments are incorrect.
  • Decoding a first information bit sequence corresponding to each user equipment of the M user equipments each user equipment of the NM user equipments can correctly decode the corresponding first information bit sequence, where, N, M
  • the method further includes: when M ⁇ Q, sending a second coded bit sequence to each of the plurality of user equipments, where the second coded bit sequence is performed by the first joint bit sequence by using the first coding mode.
  • Channel coding is obtained; when M ⁇ Q, a third coded bit sequence is sent to each of the plurality of user equipments, and the third coded bit sequence is obtained by channel coding by using the first coding mode by the second joint bit sequence,
  • the second joint bit sequence is a first information bit sequence corresponding to each user equipment of the M user equipments and a third information ratio corresponding to each user equipment of the NM user equipments. Sequence obtained, wherein, Q is a positive integer, 1 ⁇ Q ⁇ N.
  • N user equipments participate in multi-user joint coding. Only when there are more than or equal to Q users correctly receiving data sent to themselves, the next transmission will send new data packets to those users who have received correctly, otherwise the users who have received correctly will also be transmitted.
  • the user equipment performs Chase combining on the soft value sequence obtained by demodulating the received coded bit sequence when receiving the coded bit sequence; if two transmissions are used Different redundancy versions, when the user equipment receives the coded bit sequence, the soft value sequence obtained by demodulating the received coded bit sequence is incrementally redundant (English: Incremental Redundancy, abbreviated: IR). It should be understood that, in actuality, when receiving the coded bit sequence, the user equipment performs HARQ combining on the soft value sequence obtained by demodulating the received coded bit sequence.
  • both Chase and IR merging can be performed, and IR merging can achieve a higher combining gain than Chase merging. If a user equipment has successfully decoded the first information bit sequence required by itself, that is, the data sent by the network device to the user equipment, if the network device retransmits the same data packet that was received last time, then the terminal device The packet is discarded directly without demodulation and decoding. Specifically, the user equipment can learn from the downlink control information whether the data packet is a new data packet.
  • the coding gain is small, resulting in poor communication performance, especially in a Machine to Machine (M2M) communication system, which is sent to each user equipment.
  • M2M Machine to Machine
  • the data packet is very small, that is, the code block length sent to each user equipment is very small, and at this time, the problem of small coding gain will be more prominent.
  • FIG. 4 is a schematic flowchart of a method for information processing according to another embodiment of the present invention.
  • the execution body of the method may be a user equipment.
  • the method 400 includes:
  • the first user equipment receives a first coded bit sequence sent by the network device, where the first coded bit sequence is obtained by the network device by using a first coding manner to obtain a first joint bit sequence, where the first joint bit sequence is obtained by the network device. And combining, by the first information bit sequence sent by each user equipment of the multiple user equipments, the multiple user equipments include the first user equipment;
  • the first user equipment obtains a first information bit sequence required by the first user equipment according to the first joint bit sequence.
  • step 410 when the first user equipment participates in multi-user joint coding, the base station performs the foregoing combined operation of the first information bit sequence required by the first user equipment and the first information bit sequence of other user equipments to obtain a joint bit sequence. Then, the base station obtains the first coded bit sequence after encoding the joint bit sequence by using the first coding mode, and sends the first coded bit sequence to the first user equipment.
  • step 420 when the first user equipment receives the first coded bit sequence, the first information bit sequence required by the first user equipment is decoded according to the first coded bit sequence.
  • the embodiment of the present invention provides a method for processing information, combining information bit sequences of each of at least two user equipments to obtain a joint bit sequence, and uniformly encoding the joint bit sequence to obtain a coded bit sequence, and the user
  • the device can obtain its own corresponding information bit sequence from the coded bit sequence, which is beneficial to improve coding gain and improve channel coding performance.
  • the coding error probability generated by using the first coding mode decreases as the number of bits in the first joint bit sequence increases.
  • the first coding mode when the first coding mode is adopted, the more the number of bits in the first joint bit sequence, the larger the coding gain, for example, the first coding mode may be a polarization Polar code, a Turbo code or a low density parity check. (English: Low-density Parity-check, shorthand: LDPC) code.
  • the joint bit sequence is encoded by the first coding mode, it is encoded compared to the information bit sequence of a single user to obtain a larger coding gain.
  • the method further includes: if the first joint bit sequence further includes a control bit sequence, the control bit sequence carries first indication information of the first user equipment, and determines, according to the first indication information, A location of the first information bit sequence of the user equipment in the first joint bit sequence, wherein the first indication information bit sequence of the first user equipment comprises device identification information of the first user equipment.
  • the method further includes: receiving, by the network device, second indication information, where the second indication information is used to indicate that the first information bit sequence of the first user equipment is in the first joint bit sequence. a location; determining, according to the second indication information, a location of the first information bit sequence of the first user equipment in the first joint bit sequence.
  • the method further includes: if the first information bit sequence of the first user equipment has added the first cyclic redundancy check CRC bit sequence, the first CRC bit The sequence has been scrambled with the cell radio network temporary identifier C-RNTI information of the first user or the user identifier information of each user.
  • the first user equipment determines the first user equipment according to the scrambled CRC bit sequence.
  • the first data information bit sequence is a code that specifies the first user equipment.
  • the method further includes: if the first user equipment cannot correctly decode the first information bit sequence corresponding to the first user equipment, receive the second coded bit sequence sent by the network device, and second The coded bit sequence is obtained by the network device encoding the first joint bit sequence using a first coding mode.
  • the first information bit sequence is a data information bit sequence
  • the above retransmission process may be performed. That is to say, when only one user equipment data bit sequence of the user equipment participating in the joint coding is not correctly received, all user equipments participating in the multi-user joint coding must retransmit their respective data information bit sequences until all users The device is receiving correctly. Since the different redundancy versions may be selected during the retransmission process, the second coded bit sequence may be different from the first coded bit sequence. When transmitting with the same redundancy version, the first coded bit sequence is identical to the second coded bit sequence; when transmitting with different redundancy versions, the first coded bit sequence is different from the second coded bit sequence.
  • control information needs to indicate whether the redundancy version and all users participating in the multi-user joint coding are retransmitted, that is, the adjacent two transmissions are all users participating in the multi-user joint coding. Whether the original bit sequence is consistent.
  • the first information bit sequence required by the first user equipment is obtained according to the first joint bit sequence, including: performing demodulation processing on the first coding bit sequence to obtain the first a sequence of soft values; demodulating the second coded bit sequence to obtain a second soft value sequence; combining the first soft value sequence and the second soft value sequence to obtain a third soft value sequence; and the third soft value sequence Decoding is performed to obtain a first information bit sequence of the first user equipment.
  • the soft value refers to a log likelihood ratio (English: Logarithm Likelihood Ratio, abbreviated: LLR), so the first soft value sequence here is the corresponding LLR sequence of the first joint bit sequence, and the second soft The sequence of values is also the corresponding LLR sequence of the second joint bit sequence.
  • LLR Logarithm Likelihood Ratio
  • the user equipment performs Chase combining on the soft values obtained by demodulating the received coded bit sequence when receiving the coded bit sequence; if the two transmissions are different
  • the redundancy version when the user equipment receives the coded bit sequence, performs IR combining on the soft values obtained by demodulating the received coded bit sequence. It should be understood that, in practice, the user equipment will receive the received code when receiving the encoded bit sequence.
  • the soft-valued sequence obtained by demodulating the bit sequence can be combined with HRAQ. Based on different retransmission schemes, both Chase combining and IR combining can be performed, and IR combining can obtain a higher combining gain than Chase combining.
  • a user equipment has successfully decoded the first information bit sequence required by itself, that is, the data sent by the network device to the user equipment is obtained, and if the network device retransmits the same data packet that was received last time, then the network device retransmits the same data packet that was received last time.
  • the terminal directly discards the data packet and does not demodulate and decode it. Specifically, the user equipment can learn from the downlink control information whether the data packet is a new data packet.
  • the soft sequence of the first coded bit sequence and the second coded bit sequence may be combined to obtain an information bit sequence of the first user equipment.
  • the control information needs to indicate whether the redundancy version and all users participating in the multi-user joint coding are retransmitted, that is, the adjacent two transmissions participate. Whether the original bit sequence of all users jointly encoded by the multi-user is consistent, and the terminal device determines, by using the indication information sent by the network device, which combination mode is used, and determines whether the demodulated soft value sequence is combined or decoded. The sequence of values is merged.
  • the first user equipment demodulates the first coded bit sequence to obtain the first soft value sequence and the second coded bit.
  • the second soft value sequence obtained after the sequence demodulation is combined to obtain a third soft value sequence, and the third soft value sequence is decoded, so that the first information bit sequence required by the first user equipment can be obtained.
  • the network device will again transmit the coded bit sequence encoded by the first joint bit sequence.
  • the first user equipment demodulates the newly received coded bit sequence to obtain a soft value sequence, and merges with the last buffered soft value sequence to see if the information bit sequence of the first user equipment can be correctly decoded.
  • the soft value sequences decoded by the first coded bit sequence and the second coded bit sequence may also be combined, but such coding gain may be reduced.
  • the method further includes: if the first user equipment cannot correctly decode the first information bit sequence corresponding to the first user equipment, and receive the third coded bit sequence sent by the network device, the third The coded bit sequence is obtained by the network device by channel coding the second joint bit sequence by using a first coding mode, where the second joint bit sequence is used by the first information bit sequence of the first user equipment and the second user equipment of the plurality of user equipments Second information bit sequence combination get.
  • the network device when the network device sends the first coded bit sequence to the plurality of user equipments, the first of the plurality of user equipments The user equipment can be successfully decoded, and the first user equipment cannot be successfully decoded.
  • the original information bit sequence of the first user equipment that is not successfully decoded ie, the first information of the first user equipment is used
  • the bit sequence is combined with the newly decoded information bit sequence of the second user equipment (ie the second information bit sequence of the second user equipment) to obtain a new joint bit sequence (ie, a second joint bit sequence), the second
  • the third coding bit sequence can be obtained by jointly utilizing the first coding mode, and the network device will send the third coding bit sequence to each of the plurality of user equipments.
  • the obtaining, according to the first joint bit sequence, the first information bit sequence required by the first user equipment includes: decoding the first coded bit sequence, to obtain a first user equipment corresponding a fourth soft value sequence; decoding the third coded bit sequence to obtain a fifth soft value sequence corresponding to the first user equipment; combining the fourth soft value sequence and the fifth soft value sequence to obtain a sixth soft a sequence of values; performing a soft-hard decision on the sixth soft-valued sequence to obtain a first information bit sequence of the first user equipment.
  • the third coded bit sequence retransmitted to the first user equipment is If the first information bit sequence of the first user equipment is encoded by the second information bit sequence of the second user equipment, the first user equipment needs to decode the first encoded bit sequence when receiving the retransmitted third coding bit sequence. Encoding the soft value sequence of the bit sequence, and acquiring the fourth soft value sequence corresponding to the first user equipment, and further decoding the soft value sequence of the third coded bit sequence, and combining to obtain the sixth soft value sequence, for the sixth soft The value sequence is subjected to a soft value hard decision to obtain a decoding result.
  • the base station transmits retransmission data to the user A participating in the multi-user joint coding, but transmits new data to another user equipment B participating in the multi-user joint coding
  • the user A cannot perform the hybrid automatic retransmission in a conventional manner.
  • the request (English: Hybrid Automatic Repeat Request, abbreviated: HARQ) is merged and can only be merged after decoding.
  • the output of the existing decoder is 0, 1 bit obtained after hard decoding the decoded soft value sequence, that is, the final hard value is used as the decoding result, and the decoded soft value refers to The value at the time of decoding and when the soft value hard judgment has not been made.
  • the fourth soft value sequence obtained by the first coded bit sequence and the fifth soft value sequence of the third coded bit sequence are combined to refer to: the fourth soft after decoding the last received coded bit sequence.
  • the value sequence is buffered locally, and the fifth soft value sequence decoded by the received coded bit sequence is buffered locally, and the fourth soft value sequence and the fifth soft value sequence are combined.
  • it may be two.
  • the sub-soft values are added, and may be merged in other manners.
  • the merging sixth soft-value sequence is further A hard decision can be made to obtain the final hard value decoding result.
  • the network device will perform the second retransmission on the first user equipment,
  • the soft value sequences obtained by decoding the coded bit sequence of one retransmission and the second retransmission are combined to try to decode to obtain the correct decoding result. That is, when the first user equipment receives the N+1th retransmission of the network device, the soft sequence of the coded bit sequence of the Nth retransmission and the (N+1)th retransmission needs to be decoded. Combine and try to decode to get the correct decoding result.
  • the first information bit sequence required by the first user equipment is obtained according to the first joint bit sequence, including: decoding the first coding bit sequence to obtain the first user equipment. Corresponding a first hard-valued bit sequence; decoding the third coded bit sequence to obtain a second hard-valued bit sequence corresponding to the first user equipment; determining a location in the second hard-valued bit sequence and the first hard-valued bit sequence N exception bits with the same bit value, N is a positive integer; bit inversion is performed on M abnormal bits among the N abnormal bits of the second hard value bit sequence, where 0 ⁇ M ⁇ N, M is positive An integer; when the second hard-valued bit after bit-inverting the M abnormal bits passes the check, the second hard-valued bit sequence after the M abnormal bit inversion is used as the first of the first user equipment Information bit sequence.
  • the first coded bit sequence is decoded to obtain a first hard value bit sequence corresponding to the first user equipment
  • the third coded bit sequence is decoded to obtain a second hard value bit sequence corresponding to the first user equipment, Which bit positions of a hard-valued bit sequence and a second hard-valued bit sequence have different bit values, and N abnormal bits are determined in the second hard-valued bit sequence, at least one of the N abnormal bits is at most N-1 bits are bit-reversed
  • bit inversion refers to changing a bit having a bit value of 0 to a bit having a bit value of 1, or changing a bit having a bit value of 1 to a bit having a bit value of 0.
  • the second hard value bit sequence after the M abnormal bit inversion can pass the CRC check. Then, the second hard value bit sequence after the M abnormal bit inversion is used as the first information bit sequence of the first user equipment.
  • the network device needs to be re-transmitted again, and the corresponding corresponding to the first user equipment is obtained.
  • a three-hard bit sequence wherein K exception bits are determined in the third hard-valued bit sequence, the K exception bits being the same position and bits in any two of the first, second, and second hard-valued bit sequences Different bits in position.
  • bit inversion is performed on L abnormal bits in the third hard value bit sequence, and if the third hard value bit sequence after L abnormal bit inversion passes the CRC check, then L exception bits will pass.
  • the inverted third hard value bit sequence is used as the first information bit sequence of the first user equipment, where K ⁇ N, 0 ⁇ L ⁇ K.
  • the premise of trying to flip the method is that the decoded BER is low, and the length of the original bit sequence of each user is small, which is consistent with the characteristics of packet transmission. Therefore, in this case, the number of erroneous bits in each user's bit sequence is small, and the probability that these erroneous bits fall to the same position is low. The position where the two hard-coded decoding results are inconsistent is the candidate position of the error bit. It is therefore possible to obtain the correct decoding result by the above-mentioned method of attempting to flip.
  • the embodiment of the present invention provides a method for processing information, combining information bit sequences of each of at least two user equipments to obtain a joint bit sequence, and uniformly encoding the joint bit sequence to obtain a coded bit sequence, and the user
  • the device can obtain its own corresponding information bit sequence from the coded bit sequence, which is beneficial to improve coding gain and improve channel coding performance.
  • FIG. 5 is a schematic flowchart of a process of multi-user joint coding according to an embodiment of the present invention.
  • a total of N users are user 1, user 2, ... user N, where N is an integer greater than or equal to 2.
  • the information bit sequence of the N users is first used.
  • the column is respectively added with a CRC check; in step 502, the multi-user concatenated bit sequence obtained by concatenating the information bit sequences of the N users; in step 503, the multi-user concatenated bit sequence obtained according to step 502 Channel coding is performed; in step 504, rate matching is performed on the channel-coded multi-user concatenated bit sequence.
  • the information bit sequence includes a data information bit sequence, and may also include a control information bit sequence.
  • cascading the information bit sequences of the N users is one of the foregoing ways of combining the information bit sequences of the plurality of user equipments, and the combined joint bit sequence obtained is the multi-user cascading bit sequence referred to herein.
  • FIG. 6 is a schematic flowchart of a process of multi-user joint coding according to another embodiment of the present invention.
  • a total of N users are user 1, user 2, ... user N, where N is an integer greater than or equal to 2.
  • the information bit sequences of the N users are first concatenated to obtain a multi-user concatenated bit sequence; in step 602, the multi-user concatenated bit sequence is uniformly added with a CRC check; in step 603, in step 603, The multi-user concatenated bit sequence of the CRC check bit sequence is added for channel coding; in step 604, the coded multi-user concatenated bit sequence is rate matched.
  • the information bit sequence includes a data information bit sequence, and may also include a control information bit sequence.
  • FIG. 7 is a schematic flowchart of a process of multi-user joint coding according to another embodiment of the present invention.
  • a total of N users are user 1, user 2, ... user N, where N is an integer greater than or equal to 2.
  • the information bit sequences of the N users are first added to the CRC check respectively; in step 702, the multi-user concatenation bit sequence obtained by concatenating the information bit sequences of the N users is obtained; Performing code block partitioning on the multi-user cascading bit sequence, and adding a CRC check to each of the divided code blocks; in step 704, performing channel coding on the code block obtained by step 703 to join the CRC check; In 705, rate matching of encoding is performed; in step 706, code block cascading is performed on a plurality of code blocks of the code block division.
  • FIG. 8 is a schematic flowchart of a process of multi-user joint coding according to another embodiment of the present invention.
  • a total of N users are User 1, User 2, ... User N, where N is an integer greater than or equal to 2.
  • the information bit sequences of the N users are first added to the CRC check respectively; in step 802, the multi-user cascaded bit sequences obtained by concatenating the information bit sequences of the N users are obtained;
  • the CRC check block is uniformly added to the multi-user cascading bit sequence; in step 804, the multi-user cascading bit sequence is subjected to code block segmentation, and a CRC check is added to each of the divided code blocks; in step 805 , obtained by step 804
  • the code block into which the CRC check is performed performs channel coding; in step 806, rate matching of the coding is performed; in step 807, code block concatenation is performed on a plurality of code blocks divided by the code block.
  • FIG. 9 is a schematic diagram of a multi-user joint bit sequence in accordance with an embodiment of the present invention.
  • a total of N users are user 1, user 2, ... user N, where N is an integer greater than or equal to 2.
  • the lengths of the bit sequences of the N users are L 1 , L 2 , ..., L N , respectively, which include a sequence of data information bits, and may also include a sequence of control information bits, L 1 , L 2 , ..., L N may be equal. Can also be unequal.
  • the process of combining bit sequences of each user equipment of multiple user equipments may directly splicing the user's bit sequences according to a preset rule, or may be spliced together. After re-interleaving, a multi-user joint bit sequence is obtained. If no interleaving is used, the bit sequences of the N users are cascaded as shown in FIG.
  • the network device In the process of cascading multi-user information bit sequences, the network device also needs to inform each user equipment how to determine its own information bit sequence. How the network device instructs the user equipment to determine the information bit sequence belonging to itself is described below with reference to FIG. 10 and FIG.
  • FIG. 10 is a schematic diagram of a multi-user joint bit sequence according to another embodiment of the present invention.
  • a total of N users are user 1, user 2, ... user N, where N is an integer greater than or equal to 2.
  • the bit sequences of these N users are L 1 , L 2 , ..., L N , respectively .
  • L 1 , L 2 , ..., L N may or may not be equal.
  • the control region may be added at the head of the multi-user cascading bit sequence or other positions agreed with the terminal, that is, the control bit sequence is added.
  • the indication information is added to the control bit sequence, and the control area is added in the header of the cascading bit sequence as shown in FIG.
  • the indication information is used to indicate the user identifier of each user of the N users and the information bit sequence of each user.
  • the start and end addresses may further carry other user information for the user equipment to determine the information bit sequence belonging to itself, for example, the parameter indicating the length of the information bit sequence of each user equipment, and the like, and the present invention is not limited thereto.
  • FIG. 11 is a schematic diagram of a multi-user joint bit sequence in accordance with another embodiment of the present invention.
  • a total of N users are User 1, User 2, ... User N, where N is an integer greater than or equal to 2.
  • the bit sequences of these N users are L 1 , L 2 , ..., L N , respectively .
  • L 1 , L 2 , ..., L N may or may not be equal.
  • a user identifier is added at the head of each user information bit sequence, or a user identifier and separation of each user is added. symbol.
  • each user information bit sequence includes only the user identifier
  • both the network device and the user equipment are required to agree on the bit sequence length (generally agreed to be equal values), ie, L 1 , L 2 , ..., L N
  • the delimiter is used to indicate that the user equipment determines the starting position and the ending position of its corresponding information bit sequence.
  • the delimiter may appear in the user information bit sequence, and the delimiter string appearing in the user information bit sequence may be replaced with another string. This method does not require the bit sequence length of the user participating in the concatenation to be known in advance. .
  • the CRC check bit sequence of each user and the cell radio network temporary identifier (Cell Radio Network Temporary Identifier, C) -RNTI) or scramble or perform other operations on the relevant parameters of the device identification of the user equipment.
  • C Cell Radio Network Temporary Identifier
  • the downlink data information is jointly encoded by multiple users, and the downlink control information is not encoded by multi-user joint coding.
  • the start or end position or the first segment of the data information bit sequence of a certain user in all user bit sequences is indicated in the control information. If the first few segments are indicated, then the original bit sequence length of the users participating in the multi-user joint coding must be equal. This method does not increase the overhead of data information participating in multi-user joint coding, but increases the overhead of control information that does not participate in multi-user joint coding.
  • the LTE downlink is advertised by paging the radio network temporary identification (Paging RNTI, P-RNTI) and C-RNTI to the CRC when paging and connected. Scrambled. This method requires little overhead, especially when the user's data is indicated to be in the first few segments.
  • Paging RNTI radio network temporary identification
  • C-RNTI C-RNTI
  • the network device when the network device performs multi-user joint coding, multiple user equipments need to be selected for joint coding.
  • the bit sequence of multiple users that the network device wishes to select is cascaded and then encoded. It enables each user to get better performance than encoding each user device separately.
  • the downlink control information modulation mode is QPSK
  • the user with the same or similar code rate is selected to perform multi-user joint coding
  • the multi-user joint coding code rate is approximately equal to the original code rate, wherein the multi-user
  • the joint coding rate is approximately equal to the length-to-rate matched length ratio of the multi-user cascaded bit sequence, in which case each user will get a better coding gain. Therefore, when performing user selection of multi-user joint coding, the method includes the following steps: First, users having the same modulation mode and the same or similar code rate are grouped into one group; second, grouping users according to the reported amount of feedback by the user.
  • the channel quality indicator (CQI), etc. divides the users with the same or similar reporting amount into one group; third, selects the terminals with the same coverage level or similar in the M2M system into one group; fourth, passes the test Or the simulation is obtained under different combinations of conditions (for example, modulation mode, code rate interval, block length interval, etc.), and the user equipment participating in the joint coding maintains the performance after joint coding, that is, the code rate (CR).
  • CQI channel quality indicator
  • the correspondence between the amount of change ( ⁇ CR) and the amount of change in block size (BS) ( ⁇ BS) satisfies a certain constraint relationship, which may refer to the code rate if the multi-user is jointly coded (code)
  • code code rate
  • the multi-user joint coding is required to increase the block length at least correspondingly to increase the performance, so that all users participating in multi-user joint coding can obtain more obvious performance.
  • Gain the constraint relationship can be simulated according to various factors such as the number of bits in the bit sequence of the user equipment, the modulation mode, and the like. It should be understood that when the user selection of the multi-user joint coding is performed, it may also be determined according to other factors, and the present invention is not limited thereto.
  • the code rate of the multi-user joint coding is greater than the code rate of the user separately coding (ie, the user does not participate in multi-user joint coding, according to the process of the existing system), but at the same time
  • the block length of the multi-user joint coding becomes larger (here, the block length refers to the length of the bit sequence after cascading, which is certainly larger than the bit sequence length of each user). The user is still likely to gain performance gains. Whether or not the performance gain can be obtained requires detailed simulation or testing, and multi-user joint coding can be obtained by gaining, otherwise the bit sequence of a single user is separately encoded as in the existing system.
  • FIG. 12 is a schematic diagram of resource mapping after multi-user joint coding according to an embodiment of the present invention.
  • the coded joint bit sequence may be fixedly selected by a modulation mode, and QPSK may also be selected from various other modulation modes, such as BPSK, QPSK, 16QAM, and 64QAM.
  • the modulated constellation symbol can be mapped to the entire bandwidth or mapped to a certain sub-band of the entire bandwidth to select a code channel resource or a time slot resource at each user equipment.
  • the modulated constellation symbols can be mapped to all or part of the code channel resources or time slot resources. Taking time-frequency resources as an example, the above process is shown in FIG.
  • the process from the "original bit sequence" to the "multi-user joint coding and the related processed bit sequence” may be as described in the foregoing embodiment, and details are not described herein again. It should be understood that the process shown in Figure 12 can be used for both data information bit sequences and for control.
  • Information bit sequence As shown in FIG. 12, the information bit sequence transmitted to the three user equipments is an information bit sequence transmitted to the user equipment 1, an information bit sequence transmitted to the user equipment 2, and an information bit sequence transmitted to the user equipment 3, After the three users perform multi-user joint coding and related processing as described above, the three users modulate and perform resource mapping using the same modulation scheme.
  • the modulation mode can be fixed like the existing system; for the data information bit sequence, the premise of selecting the modulation mode is to ensure data transmission performance.
  • one basis for selecting the modulation mode is the condition of the channel participating in the mapped sub-band or the full band of the user participating in the multi-user joint coding. The better the channel condition, the higher the modulation order can be.
  • low-order modulation the number of symbols included in each constellation symbol
  • the modulated constellation symbols are distributed to the time-frequency resources (often the sub-bands with wide bandwidth) allocated to the user equipment.
  • Decentralized mapping can achieve time diversity and frequency diversity. Compared with the prior art, the original information of each user in FIG. 12 is spread over more time-frequency resources, which results in higher time diversity and frequency diversity.
  • modulation and resource mapping of multi-user joint coding is as shown in FIG. 12 described embodiments.
  • air interface technologies without obvious time-frequency structure such as UMTS, GSM, TD-SCDMA, CDMA2000, etc.
  • users participating in multi-user joint coding can still only choose a common modulation mode.
  • multi-user joint-encoded data uses 1 to 15 HS-PDSCHs, similar to existing systems that do not use multi-user joint coding.
  • each user encoded data is mapped to one or more HS-PDSCHs, and multi-user joint coding causes one user's data to occupy more HS-PDSCH.
  • These HS-PDSCHs occupy the same frequency band and time, and are distinguished from each other by spreading codes, and code diversity can also be obtained.
  • Multi-user joint coding for CDMA2000 or TD-SCDMA systems is similar to that for UMTS systems. For a GSM system using multi-user joint coding, each user's data needs to occupy more time slots to transmit, so time diversity can be obtained.
  • FIG. 13 is a schematic diagram of a communication method according to an embodiment of the present invention.
  • the execution body of the method is a network device, for example, a base station, and the user equipment 1, the user equipment 2, and the user equipment 3 are included in the figure.
  • FIG. 13( a ) is a first time that the base station sends a data information bit sequence to three user equipments, that is, an initial transmission of the information bit sequence;
  • FIG. 13( b ) is a data information bit sent by the base station to three user equipments for the second time.
  • the sequence, that is, the retransmission of the information bit sequence, the first and second data information bit sequences transmitted to the three user equipments are the same, that is, as long as one user participating in the multi-user joint coding does not receive correctly Then all users participating in multi-user joint coding must be retransmitted until all users receive it correctly. Similar to existing HARQ retransmissions, the same or different redundancy versions can be selected for retransmission rate matching.
  • the user equipment 1 and the user equipment 3 are solved once, and one user is re-transmitted once before being solved.
  • the processing procedures of the base station and the terminal are as shown in FIG.
  • the "multi-user joint coding and related processed bits" of the initial transmission and the retransmission may be different because the redundancy version used for rate matching may be different.
  • the multi-user joint coding in (a) and (b) of FIG. 13 and the schematic long-filled pattern after the correlation processing are different in order to indicate that the redundancy version is different, resulting in "multi-user joint coding and related processed bits". It is not the same, although the input "raw bit" is the same.
  • FIG. 14 is a schematic diagram of a communication method according to an embodiment of the present invention.
  • the execution body of the method is a user equipment, for example, a terminal device, and the user equipment 1, the user equipment 2, and the user equipment 3 are included in the figure.
  • the embodiment shown in FIG. 14 is A flowchart of the receiving side corresponding to the embodiment shown in FIG. FIG. 14(a) shows that the three user equipments respectively receive the first transmission of the data information bit sequence, that is, the initial transmission of the data information bit sequence; and FIG. 14(b) shows that the three user equipments respectively receive the base station for the second transmission.
  • the data information bit sequence that is, the retransmission of the data information bit sequence
  • the three user equipments have the same sequence of data information received in the first and second times, that is, as long as the users participating in the multi-user joint coding have If a user does not receive correctly, all users participating in multi-user joint coding must retransmit until all users receive it correctly.
  • the same or different redundancy versions can be selected for retransmission rate matching. If the same redundancy version is used in the initial transmission and the retransmission, the receiving end can perform Chase combining; if different redundancy versions are used in the initial transmission and the retransmission, the receiving end can perform IR combining.
  • IR combining can achieve a higher combining gain than Chase combining. If a user equipment (or terminal) has decrypted the data sent to itself, because the other user retransmits and receives the last received data packet, the terminal directly discards the data packet without demodulating it. Decoding. Terminal can be controlled from the downlink The information knows whether the packet is a new packet.
  • the three user equipments receive the joint bit sequence and perform demodulation to obtain the first demodulated soft value sequence, where the user equipment 1 and the user equipment 3 are in the first time.
  • the user data information bit sequence is solved, and the user equipment 2 fails to solve the data information bit sequence required by the base station when receiving the joint bit sequence sent by the base station for the first time; then further, such as As shown in FIG. 14(b), the user equipment 1, the user equipment 2, and the user equipment 3 will receive the joint bit sequence transmitted by the base station for the second time, and perform demodulation to obtain a second demodulated soft value sequence, which will be first.
  • the sub-demodulated soft value sequence and the second demodulated soft value sequence are HARQ combined, and the user equipment 2 decodes the HARQ combined soft value sequence to solve the data information bit sequence required by the user.
  • " ⁇ " in Fig. 14 indicates that the terminal receives correctly, and "X" indicates that the terminal receives an error.
  • Figure 15 is a schematic diagram of a communication method in accordance with one embodiment of the present invention.
  • the main body of the method is a network device, for example, a base station, and the user equipment 1, the user equipment 2, and the user equipment 3 are included in the figure.
  • Figure 15 (a) is the first time that the base station transmits the data information bit sequence to the three user equipments, that is, the initial transmission of the information bit sequence;
  • Figure 15 (b) shows the data sent by the base station to the three user equipments for the second time.
  • the information bit sequence because the data equipment bit sequence is sent to the user equipment for the first time, all the three user equipments are not successfully decoded, then the data information bit sequence to be sent to the user equipment for the second time is sent for the first time.
  • the data information bit sequence is identical. As shown in the original bit sequence in 15(a) and 15(b), the user equipment 1, the user equipment 2, and the user equipment 3 have the same filling pattern in the schematic diagrams of the original ratios of the first and second times, respectively. That is to say, the original bit sequence sent by the base station to the user equipment in the first time and the second time is the same; since the different redundancy versions are selected when the bit sequence is retransmitted, the first multi-user joint coding and related processing The subsequent bit sequence may be different from the second multi-user joint coding and related processed bit sequence because the first and second used redundancy versions are different; further, if user equipment 1 and user equipment 3 After receiving the data information bit sequence of the initial transmission and the first retransmission, the decoding is successful, and after the user equipment 2 receives the data information bit sequence of the initial transmission and the first retransmission, the decoding is still successful, and then the base station is the third time to the user equipment.
  • a new data information bit sequence will be transmitted to the user equipment 1 and the user equipment 3, and it can be seen that the user equipment in FIG. 15(a) 1.
  • the original bit sequence of the user equipment 2 and the user equipment 3 is the same as the original bit sequence of the user equipment 1, the user equipment 2 and the user equipment 3 in FIG. 15(b), and the user equipment 1 and the user equipment 3 in FIG. 15(c)
  • Original bit sequence with the first two transmissions The original bit sequence is different, and the original bit sequence of the second retransmission by the user equipment 2 is the same as the original bit sequence of the previous two transmissions.
  • FIG. 16 is a schematic diagram of a communication method in accordance with one embodiment of the present invention.
  • the execution body of the method is a user equipment, for example, a terminal device, and the user equipment 1, the user equipment 2, and the user equipment 3 are included in the figure.
  • FIG. 16(a) shows that the three user equipments respectively receive the first transmission of the data information bit sequence, that is, the initial transmission of the information bit sequence
  • FIG. 16(b) shows that the three user equipments respectively receive the base station for the second transmission.
  • the data information bit sequence because the data equipment bit sequence is sent to the user equipment for the first time, all the three user equipments are not successfully decoded, then the data information bit sequence sent by the base station to the user equipment for the second time is transmitted with the first time.
  • the data information bit sequence is identical, that is, the original bit sequence of each user in FIG. 16(a) and FIG. 16(b) is the same; in this case, preferably, three user equipments can buffer the softness of the initial transmission and demodulation.
  • the value sequence and the soft sequence after the first retransmission each user equipment decodes the HARQ combined soft value sequence, and the user equipment 1 and the user equipment 3 respectively find the data information bit sequence required by the user equipment;
  • the user equipment may decode the soft-valued sequence after demodulation at the initial transmission to obtain a soft-value sequence after initial transmission, and the soft-value sequence after demodulation at the first retransmission.
  • Translate After obtaining the first retransmission sequence decoded soft values, the soft values are combined after the two coding sequences, in particular, the soft value may be added to the decoded sequence.
  • FIG. 16(c) shows a process in which the three user equipments respectively receive the joint bit sequence transmitted by the base station for the third time. Since the original bit sequence transmitted by the base station to the user equipment 1 and the user equipment 3 is a newly transmitted data bit sequence, and the original bit sequence in which the previous two data transmissions are not successfully decoded is transmitted to the user equipment 2, then the user is at this time.
  • the device 2 needs the second bit retransmission joint bit sequence to perform demodulation of the soft value sequence to obtain a soft value sequence of the second retransmission decoding corresponding to the user equipment 2, and the user equipment 2 corresponds to
  • the soft-value sequence after the secondary retransmission decoding that is, the soft-value sequence after the first retransmission decoding corresponding to the user equipment 2 and the soft-value sequence after the second retransmission decoding are combined, and after combining Soft value
  • the sequence is subjected to a soft-value hard decision, and finally a hard-valued decoding result is obtained.
  • the control information needs to indicate whether the redundancy version and all users participating in the multi-user joint coding are retransmitted, that is, the adjacent two transmissions participate in multiple users. Whether the original bit sequences of all users jointly encoded are consistent.
  • the method can obtain the IR combining gain in a limited manner, because the probability of all users participating in the multi-user joint coding is relatively low, and the user receives the correct one immediately after the retransmission, and the correct user has not been received yet. Can only be combined after decoding.
  • Figure 17 is a diagram showing a communication method of an embodiment of the present invention.
  • the main body of the method is a user equipment, for example, a terminal device, and the user equipment 1, the user equipment 2, and the user equipment 3 are included in the figure.
  • Figure 17 (a) is a first transmission of the data information bit sequence (i.e., the information bit sequence) sent by the base station for the first time by the three user equipments. After the initial transmission, the user equipment 1 and the user equipment 3 are successfully decoded. If the decoding of the device 2 is unsuccessful, the user equipment 2 buffers the decoded bit sequence of the first transmission, that is, the hard-valued bit sequence; as shown in FIG.
  • the data information bit sequence i.e., the information bit sequence
  • the base station when the base station retransmits the first time, if the user equipment 1 is to be used
  • the new transmission bit sequence, the new transmission bit sequence of the user equipment 3, and the original bit sequence transmitted by the user equipment 2 are bit-cascaded for transmission, and the terminal device 2 caches the first retransmission corresponding to the device.
  • the bit sequence is decoded by hard decoding the bit sequence after the first retransmission and the bit sequence after the initial decoding.
  • sequence 1 is the initial transmitted decoded bit sequence buffered by user equipment 2 at the initial transmission as shown in FIG. 17(a); sequence 2 is as shown in FIG. 17(b).
  • the user equipment 2 buffers the first retransmission of the decoded bit sequence.
  • the bits at A, B, and C in the sequence after decoding twice are different. You can try to flip sequence 1 or sequence 2 in turn (select one sequence, you cannot flip both sequences at the same time) one or several bits at the following positions: (1) A, (2) B, (3) C, (4) A and B, (5) A and C, (6) B and C.
  • a CRC check is performed after each flip. Note that the three positions A, B, and C do not need to be flipped at the same time, because after flipping, they become another sequence (ie, sequence 1 becomes sequence 2, sequence 2 becomes sequence 1), and the CRC check must fail. It can be foreseen that when the number of bits with different decodings is increased, the number of attempts will rise sharply, the complexity is high, and it becomes impractical.
  • Sequence 1 and Sequence 2 still fail the CRC check after the 6 flip attempts described above.
  • the base station performs a second retransmission, and after the second retransmission decoding, the sequence 3 shown in 17(c) is obtained.
  • the positions of the three sequences whose bits are not identical are labeled A, B, C, and D.
  • D position is new Wrong candidate location. Therefore, it is very likely that the first two transmissions of the D position are wrong.
  • the bit at the D position is guessed to be 1, and the bits at A, B, and C are determined by an attempt.
  • the sequence 3 in which the M bits are inverted can be used as the decoded bit sequence of the terminal device 2.
  • bits 0 and 1 are respectively designated at these positions to see whether the CRC check is successful under various permutations and combinations.
  • the number of retransmissions increases, the number of bits that are not exactly the same will increase. The number of attempts will become larger and the complexity will become larger.
  • the premise of trying to flip the method is that the bit error rate after decoding (English: Bit Error Rate, shorthand: BER) is low, and the length of the original bit sequence of each user is small (this is consistent with the characteristics of packet transmission). Thus, the number of erroneous bits in each user's bit sequence is small, and the probability that these erroneous bits fall to the same location is low. The position where the two hard-coded decoding results are inconsistent is the candidate position of the error bit. It is therefore possible to obtain the correct decoding result by the above-mentioned method of attempting to flip.
  • the decoder does not need to output soft value sequence information.
  • the decoding may be implemented in a chip provided by a third party. Although there is a soft value sequence but no output, then This method can be used.
  • the terminal selecting the merge mode is as follows: First, if a terminal receives the initial data, the terminal does not perform the merge; second, if a terminal receives the retransmitted data, and transmits the multi-user joint code twice before and after.
  • the original bit sequence of all users is the same, then the terminal performs HARQ merging before decoding like the existing LTE or UMTS system, and selects Chase combining or IR merging according to whether the redundancy version is the same. At this time, the terminal needs buffer demodulation.
  • the subsequent soft value sequence third, if a terminal receives the retransmitted data, and the original bit sequences of all users participating in the multi-user joint coding are not exactly the same before and after, the terminal has the soft value after decoding. The sequences are combined. At this time, the terminal needs to buffer the decoded soft value sequence.
  • the terminal does not know that traditional HARQ is required to receive the next retransmission data.
  • the merged or decoded soft value sequence is combined. Therefore, the terminal needs to buffer the demodulated soft value sequence as well as the decoded soft value sequence.
  • the terminal in order to save the buffer space, the terminal only needs to buffer the HARQ combined soft value sequence (such as the "HARQ merged soft value sequence" in FIG. 17(b)) and the decoded softness when the data packet is received.
  • the result of the combination of the value sequence and the previous soft value sequence for example, "the combination of this decoding and the last decoded soft value sequence" in Fig. 17(c)).
  • the soft-valued sequence after the demodulation is buffered (for example, "the terminal demodulated soft value sequence" in FIG. 17(a)) and the soft-coded sequence after the current decoding.
  • the soft value sequence corresponding to the "bit sequence after the terminal decoding" is not shown in Fig. 17(a)), because there is no previous merge result with the previous one.
  • the terminal selecting the merge mode is as follows: First, if a terminal receives the initial data, the terminal does not perform the merge; second, if a terminal receives the retransmitted data, and transmits the multi-user joint code twice before and after.
  • the terminal performs HARQ combining (including Chase combining and IR combining) before decoding as in the existing LTE or UMTS system. At this time, the terminal needs to buffer the demodulated soft value sequence.
  • HARQ combining including Chase combining and IR combining
  • the terminal needs to buffer the demodulated soft value sequence.
  • the terminal compares and attempts to flip the decoded hard values. At this time, the terminal needs to buffer the decoded bit sequence. In fact, the terminal does not know whether to perform the traditional HARQ merging or the hard value attempt after the retransmission of the next data. Therefore, the terminal needs to buffer the demodulated soft value sequence and also cache the decoded data.
  • the terminal in order to save the buffer space, the terminal only needs to buffer the HARQ combined soft value sequence when receiving the data packet and the bit sequence decoded at the time and the previous time when the data packet is received (for example, if this is The second retransmission of the data packet, then the bit sequence of the second retransmission, the first retransmission and the initial transmission of the data packet is buffered. In this case, since the hard value bits cannot be combined, only the decoded hard value results of each time can be buffered.
  • Figure 18 is a diagram showing a communication method according to another embodiment of the present invention.
  • the downlink control information (English: Downlink Control Information, DCI) of each user equipment needs to be multi-user joint coding, and the coding mode is Turbo. coding.
  • the DCI of multiple user equipments is multi-user joint coding by cascading, and each user's CRC is scrambled by a respective C-RNTI. It is stipulated that the DCI of each user is equal in length and the base station and each user equipment have agreed in advance. In this case, each user equipment performs channel decoding (ie, Turbo decoding) and performs segmentation for CRC check. If the check is passed, it is considered to be sent to its own DCI.
  • the DCI belongs to the control information, and no HARQ retransmission is performed.
  • the network device is a base station.
  • the figure shows that the N user equipments are user equipment 1, user equipment 2, ... user equipment N, respectively.
  • step 1801 first, the DCI of each user equipment is added and the C-RNTI corresponding to the user equipment is scrambled. The CRC bit sequence is obtained, and the DCI with the CRC added to each user equipment is obtained.
  • step 1802 the CRC DCI is added to the N user equipments to perform cascading of bit sequences, and the joint bit sequence corresponding to the N user equipments is obtained.
  • Turbo coding is performed on the joint bit sequence, rate matching in step 1804, step 1805 modulation, and resource mapping in step 1806, and finally transmitted to each user equipment.
  • FIG. 19 is a diagram showing a communication method according to another embodiment of the present invention.
  • the flowchart shown in Fig. 19 corresponds to the flow of the base station shown in Fig. 18.
  • one of the N user equipments is subjected to resource extraction, demodulation, de-rate matching, Turbo code decoding, and data segmentation.
  • Turbo decoding a user gets the DCI and CRC of all N users.
  • the base station directly splicing the DCI and CRC of each user before and after, without interleaving operation, and each user DCI and CRC are equal in length.
  • the DCI and the corresponding CRC of all N users can be obtained through data segmentation, and then the user uses himself.
  • the C-RNTI descrambles the CRC in all the N segments of data, and finally performs CRC check on the N segments of data. If a piece of data is verified correctly, then the DCI of that piece of data is the user's DCI.
  • the DCI of the existing LTE system is separately coded by each user and resource mapping is performed separately.
  • the DCI is transmitted on the PDCCH.
  • the DCI of users with poor channel quality Need to occupy more CCEs, such as 4 or 8 CCEs.
  • the capacity of the PDCCH may be limited.
  • the DCI of the existing LTE system uses convolutional coding.
  • the DCIs of multiple users perform multi-user joint coding, and adopt Turbo coding mode.
  • the performance of convolutional coding is better than Turbo coding, which is why the existing system control information is convolutional coding.
  • the block length becomes larger, and Turbo coding can obtain a larger coding gain than the convolutional coding.
  • the DCI does not need to occupy too many resources to achieve performance indicators, saves resources of the control channel, enables the control channel to serve more users, and improves the capacity of the control channel.
  • FIG. 20 is a schematic flowchart of an application in an uplink unscheduled system according to another embodiment of the present invention.
  • the base station feeds back a physical layer ACK/NACK to the UE to indicate whether the uplink data of the UE is correctly received.
  • the time-frequency resource index used by the ACK/NACK fed back by the base station has a certain relationship with the resource index used by the UE for scheduling uplink allocation. In this way, the UE knows the resources used by the UE to transmit data in the uplink, and also knows the resources used by the base station to feed back ACK/NACK.
  • the UE uses the uplink resources in a contention manner, and it is possible that two UEs simultaneously use the same resource (for example, time-frequency resources) to transmit data to the base station.
  • the two UEs think that the ACK/NACK sent by the base station on a certain resource is sent to itself, but in fact, due to resource collision in the uplink, the base station may only solve the problem.
  • the data of one UE for example, the UE is close to the base station and the power of the base station is high
  • another UE also transmits data (for example, the UE is far away from the base station, and the power of the base station is low, and is interfered) .
  • the base station must carry the UE ID when feeding back the physical layer ACK/NACK to the UE. Otherwise, the UE cannot distinguish whether the ACK/NACK is sent to itself.
  • the UE IDs and ACK/NACK flags of the plurality of UEs are cascaded together for multi-user joint coding, and the coding mode is Turbo coding.
  • the length of the identity of the UE ID and ACK/NACK, and the number of UEs participating in multi-user joint coding are fixed and pre-configured. In this way, after the turbo decoding, the UE can search for the data segment to have its own UE ID and corresponding ACK/NACK, and the ACK/NACK does not need to be retransmitted.
  • the user equipment can obtain its own corresponding ACK/NACK letter from the coded bit sequence.
  • the coding gain is performed by using an encoding method in which the coding gain becomes larger as the code length becomes larger, the coding gain can be improved, the channel coding performance can be improved, and the decoding complexity can be reduced.
  • FIG. 21 is a schematic diagram of applying multi-user joint coding in a relay communication system according to an embodiment of the present invention.
  • the figure includes a host base station, a relay base station, and four terminal devices.
  • the relay base station needs to send the received terminal signal to the host base station.
  • the existing system practice is to demodulate and decode the received signal of each terminal, re-encode, modulate, and then map the resource to the host base station, and the signal of each terminal device is separately transmitted.
  • the relay base station first demodulates and decodes each user's decoding, and then cascades each user's original bit sequence, and then performs channel coding.
  • the modulation and resource mapping are sent to the host base station, that is, the information bit sequences of the plurality of user equipments are sent together to the host base station, and the relay base station uses joint coding to save the link resources of the relay base station to the donor base station.
  • an embodiment of the present invention provides a method for information processing, which combines information bit sequences of each of a plurality of user equipments to obtain a joint bit sequence, and uniformly encodes the joint bit sequence to obtain a coded bit sequence, and the user equipment
  • the information bit sequence corresponding to the coded bit sequence can be obtained from the coded bit sequence, and when the coded gain is encoded with the code length becoming larger as the code length becomes larger, the coding gain can be improved and the channel coding performance can be improved.
  • FIG. 22 is a schematic block diagram of a network device according to an embodiment of the present invention. As shown in FIG. 22, the network device 2200 includes:
  • a combining unit 2201 configured to combine the first information bit sequence of the at least two user equipments to obtain a first joint bit sequence
  • a coding unit 2202 configured to perform channel coding on the first joint bit sequence by using a first coding manner, to obtain a first coded bit sequence
  • the sending unit 2203 is configured to send the first coded bit sequence to the receiving end.
  • an embodiment of the present invention provides a method for information processing, which combines information bit sequences of each of a plurality of user equipments to obtain a joint bit sequence, and uniformly encodes the joint bit sequence to obtain a coded bit sequence, and the user equipment
  • the information bit sequence corresponding to the coded bit sequence can be obtained from the coded bit sequence, and when the coded gain is encoded with the code length becoming larger as the code length becomes larger, the coding gain can be improved and the channel coding performance can be improved.
  • the coding error generated by using the first coding mode is adopted.
  • the probability of error is inversely proportional to the number of bits in the first joint bit sequence.
  • the first information bit sequence of each user equipment includes a redundant cyclic check CRC bit sequence.
  • the combining unit 2201 is specifically configured to: adopt a CRC bit included in a first information bit sequence of the user equipment corresponding to the identifier information of each user equipment in the at least two user equipments. Sequence scrambling
  • the first joint bit sequence includes a CRC bit sequence.
  • the first joint bit sequence further includes a control bit sequence, where the control bit sequence carries first indication information, where the first indication information is used to indicate the at least two The location of the first information bit sequence of each of the user equipments in the first joint bit sequence, the first indication information comprising identification information of each of the at least two user equipments.
  • the sending unit 2203 is further configured to: send, to each user equipment of the at least two user equipments, second indication information, where the second indication information is used to indicate Determining a location of the first information bit sequence of each of the at least two user equipments in the first joint bit sequence.
  • the modulation manners of the at least two user equipments are the same, and the difference in code rates transmitted by any two of the at least two user equipments is less than a first threshold; or The channel quality difference of any two of the at least two user equipments is less than a second threshold; or the coverage levels of the at least two user equipments in the device-to-device M2M communication system are the same.
  • the network device further includes a determining unit, where the determining unit is configured to: perform one of the following operations: determining that a modulation mode of the first coded bit is a preset modulation mode; Performing channel mapping on the first coded bit to obtain a frequency band occupied by the first coded bit, and determining a modulation mode of the first coded bit according to a partial bandwidth of the frequency band or a current channel state over a full bandwidth
  • the modulation state of the modulation mode is higher according to the channel state of the partial bandwidth or the total bandwidth of the frequency band; according to the relationship between the information bit size of each user equipment and the available time-frequency resource size, Determining the modulation mode of the first joint bit, when the same information bit size is used, the larger the available time-frequency resource, the lower the modulation order.
  • the receiving end is the at least two user equipments Each user in the middle, the number of the at least two user equipments is N, and the M user equipments in the at least two user equipments cannot correctly decode the first corresponding to each of the M user equipments.
  • each of the NM user equipments can correctly decode the corresponding first information bit sequence, where N, M are positive integers, and the method further includes: when M ⁇ Q Transmitting, to each of the plurality of user equipments, a second coded bit sequence, where the second coded bit sequence is obtained by the first joint bit sequence by using the first coding mode for channel coding; When M ⁇ Q, sending a third coded bit sequence to each of the plurality of user equipments, where the third coded bit sequence is obtained by channel coding by using the first coding mode by the second joint bit sequence,
  • the second joint bit sequence is a first information bit sequence corresponding to each user equipment of the M user equipments and a third information bit sequence corresponding to each user equipment of the NM user equipments. Obtained, wherein, Q is a positive integer, 1 ⁇ Q ⁇ N.
  • the first coding mode is one of the following modes: a turbo code, a low density parity check LDPC code, and a Polar code.
  • an embodiment of the present invention provides a method for information processing, which combines information bit sequences of each of a plurality of user equipments to obtain a joint bit sequence, and uniformly encodes the joint bit sequence to obtain a coded bit sequence, and the user equipment
  • the information bit sequence corresponding to the coded bit sequence can be obtained from the coded bit sequence, and when the coded gain is encoded with the code length becoming larger as the code length becomes larger, the coding gain can be improved and the channel coding performance can be improved.
  • FIG. 23 is a schematic block diagram of a first user equipment according to an embodiment of the present invention. As shown in FIG. 23, the first user equipment 2300 includes:
  • the receiving unit 2301 is configured to receive a first coded bit sequence sent by the network device, where the first coded bit sequence is obtained by using a first coding mode by using a first joint bit sequence, where the first joint bit is obtained.
  • the sequence is obtained by combining the first information bit sequence sent by the network device to each of the plurality of user equipments, where the plurality of user equipments comprise the first user equipment;
  • the decoding unit 2302 is configured to obtain, according to the first joint bit sequence, a first information bit sequence required by the first user equipment.
  • an embodiment of the present invention provides a method for information processing, which combines information bit sequences of each of a plurality of user equipments to obtain a joint bit sequence, and uniformly encodes the joint bit sequence to obtain a coded bit sequence, and the user equipment It is possible to obtain its own corresponding information bit sequence from the coded bit sequence, and encode it when the coding gain becomes larger as the code length becomes larger. When it is possible, the coding gain can be improved and the channel coding performance can be improved.
  • the coding error probability generated by using the first coding mode decreases as the number of bits in the first joint bit sequence increases.
  • the receiving unit 2301 is specifically configured to: if the first joint bit sequence further includes a control bit sequence, the control bit sequence carries a first indication of the first user equipment Determining, according to the first indication information, a location of the first information bit sequence of the first user equipment in the first joint bit sequence, where the first indication information bit sequence of the first user equipment The device identification information of the first user equipment is included.
  • the receiving unit 2301 is specifically configured to: receive second indication information that is sent by the network device, where the second indication information is used to indicate that the first user equipment is first. a position of the information bit sequence in the first joint bit sequence; determining, according to the second indication information, a location of the first information bit sequence of the first user equipment in the first joint bit sequence.
  • the receiving unit 2301 is specifically configured to: if the first information bit sequence of the first user equipment has added a first redundant cyclic check CRC bit sequence, the first The CRC bit sequence has been scrambled with the cell radio network temporary identifier C-RNTI information of the first user or the user identity information of each user, the first user equipment according to the scrambled CRC bit The sequence determines a first sequence of data information bits of the first user equipment.
  • the receiving unit 2301 is specifically configured to: if the first user equipment cannot correctly decode the first information bit sequence corresponding to the first user equipment, the receiving network device sends a second coded bit sequence, the second coded bit sequence being encoded by the first joint bit sequence using the first coding mode.
  • the decoding unit 2302 is specifically configured to: perform demodulation processing on the first coded bit sequence to obtain a first soft value sequence; and perform solution on the second coded bit sequence. Processing, obtaining a second soft value sequence; combining the first soft value sequence and the second soft value sequence to obtain a third soft value sequence; decoding the third soft value sequence to obtain the A first sequence of information bits of the first user equipment.
  • the receiving unit 2301 is specifically configured to: if the first user equipment cannot correctly decode the first information bit sequence corresponding to the first user equipment, the receiving network device sends a third coded bit sequence, the third coded bit sequence being second combined
  • the bit sequence is obtained by performing channel coding by using the first coding mode, where the second joint bit sequence is used by the first information bit sequence of the first user equipment and the second information of the second user equipment of the multiple user equipments The bit sequence is combined.
  • the decoding unit 2302 is specifically configured to: decode the first coded bit sequence, and obtain a fourth soft value sequence corresponding to the first user equipment; Decoding a third coded bit sequence to obtain a fifth soft value sequence corresponding to the first user equipment; combining the fourth soft value sequence and the fifth soft value sequence to obtain a sixth soft value sequence; Performing a soft value hard decision on the sixth soft value sequence to obtain a first information bit sequence of the first user equipment.
  • the decoding unit 2302 is specifically configured to: decode the first coded bit sequence to obtain a first hard value bit sequence corresponding to the first user equipment; Decoding a third coded bit sequence to obtain a second hard value bit sequence corresponding to the first user equipment; determining a position in the second hard value bit sequence that is the same as the bit value in the first hard value bit sequence Different N abnormal bits, N is a positive integer; bit inversion is performed on M abnormal bits among the N abnormal bits of the second hard value bit sequence, where 0 ⁇ M ⁇ N, M is a positive integer; When the second hard-valued bit sequence after the bit-inversion of the M abnormal bits passes the check, the second hard-valued bit sequence after the M abnormal bit inversion is used as the first user equipment A sequence of information bits.
  • the first coding mode is at least one of the following: a turbo code, an LDPC code, and a Polar code.
  • an embodiment of the present invention provides a method for information processing, which combines information bit sequences of each of a plurality of user equipments to obtain a joint bit sequence, and uniformly encodes the joint bit sequence to obtain a coded bit sequence, and the user equipment
  • the information bit sequence corresponding to the coded bit sequence can be obtained from the coded bit sequence, and when the coded gain is encoded with the code length becoming larger as the code length becomes larger, the coding gain can be improved and the channel coding performance can be improved.
  • FIG. 24 is a schematic diagram of an apparatus for information processing according to an embodiment of the present invention.
  • the apparatus 2400 includes a transmitter 2401, a receiver 2402, a processor 2403, a memory 2404, and a bus system 2405.
  • the transmitter 2401, the receiver 2402, the processor 2403, and the memory 2404 are connected by a bus system 2405.
  • the memory 2404 is configured to store an instruction
  • the processor 2403 is configured to execute the instruction stored by the memory 2404 to control the transmitter 2701.
  • a signal is sent and the receiver 2402 is controlled to receive the signal.
  • Device 2400 is capable of implementing the aforementioned method The corresponding process in the example is not repeated here to avoid repetition.
  • FIG. 25 is a schematic diagram of an apparatus for information processing according to an embodiment of the present invention.
  • the apparatus 2500 includes a receiver 2501, a processor 2502, a memory 2503, and a bus system 2504.
  • the receiver 2501, the processor 2502 and the memory 2503 are connected by a bus system 2504 for storing instructions, and the processor 2502 is configured to execute instructions stored by the memory 2503 to control the transmitter 2501 to send signals, and The receiver 2502 is controlled to receive signals.
  • the device 2500 can implement the corresponding processes in the foregoing method embodiments. To avoid repetition, details are not described herein again.
  • the processor may be a central processing unit (CPU), and the processor may also be other general purpose processors, digital signal processors (DSPs), and application specific integrated circuits (ASICs). ), off-the-shelf programmable gate arrays (FPGAs) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, and the like.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • each step of the above method may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in a memory, and the processor executes instructions in the memory, in combination with hardware to perform the steps of the above method. To avoid repetition, it will not be described in detail here.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, or an electrical, mechanical or other form of connection.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the embodiments of the present invention.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention contributes in essence or to the prior art, or all or part of the technical solution may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a USB flash drive, a mobile hard disk, a Read-Only Memory (ROM), a Random Access Memory (RAM), a disk or a CD.
  • ROM Read-Only Memory
  • RAM Random Access Memory

Abstract

本发明实施例提供一种信息处理的方法,包括:将多个用户设备中每个用户设备的第一信息比特进行组合处理,得到第一联合比特;采用第一编码方式对所述第一联合比特进行信道编码,得到第一编码比特;向所述多个用户设备中的每个用户设备发送所述第一编码比特。本发明实施例通过将多个用户设备中每个设备的信息比特进行组合得到联合比特,对该联合比特统一进行编码得到编码比特,用户设备能够从编码比特中获得自己对应的信息比特,当采用编码增益随码长变大而变大的编码方式进行编码时,能够提高编码增益,改善信道编码性能。

Description

通信方法及网络设备、用户设备 技术领域
本发明实施例涉及通信领域,并且更具体地,涉及通信方法及网络设备、用户设备。
背景技术
现有的无线通信系统中,网络侧设备对待发送给每个用户设备的数据进行独立编码,编码后的数据以码块的形式发送给用户设备,再由用户设备解码获得相应的数据。
当网络设备向用户设备发送的码块长度较小时,编码的增益较小,从而导致通信性能较差,尤其是机器到机器(Machine to Machine,M2M)通信系统中,网络设备向每个用户设备发送的数据包非常小,即向每个用户设备发送的码块长度非常小,此时,编码增益小的问题将更加突出。
发明内容
本发明实施例提供一种通信方法及网络设备、用户设备,有利于增加信道编码的编码增益,提高传输性能。
第一方面,提供一种处理信息的方法,包括:将由至少两个用户设备的第一信息比特序列进行组合处理,得到第一联合比特序列;采用第一编码方式对所述第一联合比特序列进行信道编码,得到第一编码比特序列;向接收端发送所述第一编码比特序列。
当接收端为所述至少两个用户设备中的每一个用户设备时,用户设备的第一信息比特序列指的是网络设备要发向该用户设备的第一信息比特序列。
因此,本发明实施例提供了一种信息处理的方法,将至少两个用户设备中每个设备的信息比特序列进行组合得到联合比特序列,对该联合比特序列统一进行编码得到编码比特序列,用户设备能够从该编码比特序列中获得自己对应的信息比特序列,该方法有利于够提高编码增益,改善信道编码性能。
结合第一方面,在第一方面的第一种可能的实现方式中,采用所述第一编码方式产生的编码错误概率与所述第一联合比特序列中的比特数量成反比例关系。
也就是说,当采用时第一编码方式,第一联合比特中的比特数量越多,编码增益越大,例如,第一编码方式可以为极化Polar码、Turbo码或者低密度奇偶校验(英文:Low-density Parity-check,简写:LDPC)码。
因此,当采用第一编码方式对联合比特进行编码的时候,会相较于单个用户的信息比特进行编码,获得更大的编码增益。
结合第一方面及其上述实现方式,在第一方面的第二种可能的实现方式中,所述每个用户设备的第一信息比特序列包括冗余循环校验CRC比特序列。
结合第一方面及其上述实现方式,在第一方面的第三种可能的实现方式中,所述方法还包括:采用所述至少两个用户设备中每个用户设备的标识信息对应的用户设备的第一信息比特序列包括的CRC比特序列进行加扰运算。
上述方法可以能够让用户设备通过解出参与多个用户设备的第一信息比特组合的所有用户的CRC,然后与C-RNTI或其用户设备标识进行运算才能确定是否有属于自己的比特,该方法的有益效果是不需要增加传输的开销。
结合第一方面及其上述实现方式,在第一方面的第四种可能的实现方式中,所述第一联合比特序列包括CRC比特序列。
结合第一方面及其上述实现方式,在第一方面的第五种可能的实现方式中,所述第一联合比特序列中还包括控制比特序列,所述控制比特序列携带第一指示信息,所述第一指示信息用于指示所述至少两个用户设备中的每个用户设备的第一信息比特序列在所述第一联合比特序列中的位置,所述第一指示信息包括所述至少两个用户设备中每个用户设备的标识信息。
结合第一方面及其上述实现方式,在第一方面的第五种可能的实现方式中,所述方法还包括:向所述至少两个用户设备中的每个用户设备发送第二指示信息,所述第二指示信息用于指示所述至少两个用户设备中的每个用户设备的第一信息比特序列在所述第一联合比特序列中的位置。
结合第一方面及其上述实现方式,在第一方面的第六种可能的实现方式中,所述至少两个用户设备的调制方式相同,并且所述至少两个用户设备中的任意两个用户设备传输的码率差别小于第一阈值;或者所述至少两个用户设备中的任意两个用户设备的信道质量差别小于第二阈值;或者所述至少两个用户设备在设备到设备M2M通信系统中的覆盖等级相同的。
结合第一方面及其上述实现方式,在第一方面的第七种可能的实现方式中,所述方法还包括以下中的一种:确定所述第一编码比特序列的调制方式为预设调制方式;对所述第一编码比特序列进行信道映射,以得到所述第一编码比特序列占用的频带,并且根据所述频带的部分带宽或全部带宽上的当前信道状态,确定所述第一编码比特序列的调制方式,其中,所述频带的部分带宽或全部带宽上的信道状态越好,所述调制方式的调制阶数越高;根据所述每个用户设备的信息比特序列大小与可用时频资源大小的关系,确定所述第一联合比特序列的调制方式,相同信息比特序列大小时,可用时频资源越大,调制阶数越低。
结合第一方面及其上述实现方式,在第一方面的第八种可能的实现方式中,所述接收端为所述至少两个用户设备中的每个用户,所述至少两个用户设备的数量为N,所述至少两个用户设备中存在M个用户设备无法正确译码所述M个用户设备中每个用户设备对应的第一信息比特序列,所述N-M个用户设备中的每个用户设备能够正确译码其对应的所述第一信息比特序列,其中,N、M为正整数,所述方法还包括:当M≥Q时,向所述多个用户设备中的每个用户设备发送第二编码比特序列,所述第二编码比特序列由所述第一联合比特序列利用所述第一编码方式进行信道编码得到;当M<Q时,向所述多个用户设备中的每个用户设备发送第三编码比特序列,所述第三编码比特序列由第二联合比特序列利用所述第一编码方式进行信道编码得到,所述第二联合比特序列由所述M个用户设备中每个用户设备对应的第一信息比特序列和所述N-M个用户设备中每个用户设备对应的第三信息比特序列得到,其中,Q为正整数,1≤Q≤N。
结合第一方面及其上述实现方式,在第一方面的第九种可能的实现方式中,所述第一编码方式为以下方式中的一种:Turbo码,低密度奇偶校验LDPC码和Polar码。
结合第一方面及其上述实现方式,在第一方面的第十种可能的实现方式中,所述接收端为第二网络设备。在这种情况下,用户设备的第一信息比特序列指的是用户设备发向第一网络设备发送的第一信息比特序列。
第二方面,提供一种信息处理的方法,包括:第一用户设备接收网络设备发送的第一编码比特序列,所述第一编码比特序列由所述网络设备利用第一编码方式对第一联合比特序列进行编码得到,所述第一联合比特序列由所 述网络设备向多个用户设备中每个用户设备发送的第一信息比特序列组合得到,所述多个用户设备包括所述第一用户设备;所述第一用户设备根据所述第一联合比特序列,得到所述第一用户设备所需的第一信息比特序列。
结合第二方面,在第二方面的第一种可能的实现方式中,采用所述第一编码方式产生的编码错误概率随着所述第一联合比特序列中的比特数量的增多而减小。
结合第二方面及其上述实现方式,在第二方面的第二种可能的实现方式中,所述方法还包括:若所述第一联合比特序列还包括控制比特序列,所述控制比特序列携带所述第一用户设备的第一指示信息,根据所述第一指示信息,确定所述第一用户设备的第一信息比特序列在所述第一联合比特序列中的位置,其中,所述第一用户设备的第一指示信息比特序列包括所述第一用户设备的设备标识信息。
结合第二方面及其上述实现方式,在第二方面的第三种可能的实现方式中,所述方法还包括:接收所述网络设备发送的第二指示信息,所述第二指示信息用于指示所述第一用户设备的第一信息比特序列在所述第一联合比特序列中的位置;根据所述第二指示信息,确定所述第一用户设备的第一信息比特序列在所述第一联合比特序列中的位置。
结合第二方面及其上述实现方式,在第二方面的第四种可能的实现方式中,所述方法还包括:若所述第一用户设备的第一信息比特序列包括第一冗余循环校验CRC比特序列,所述第一CRC比特序列已与所述第一用户设备的标识信息进行加扰运算,所述第一用户设备根据加扰后的所述第一CRC比特序列确定所述第一用户设备的第一信息比特序列。
结合第二方面及其上述实现方式,在第二方面的第五种可能的实现方式中,所述根据所述第一联合比特序列,得到所述第一用户设备所需的第一信息比特序列,包括:接收所述网络设备发送的第二编码比特序列,所述第二编码比特序列由所述网络设备利用第一编码方式对所述第一联合比特序列进行编码得到。
结合第二方面及其上述实现方式,在第二方面的第六种可能的实现方式中,所述根据所述第一联合比特序列,得到所述第一用户设备所需的第一信息比特序列,包括:对所述第一编码比特序列进行解调处理,得到第一软值序列;对所述第二编码比特序列进行解调处理,得到第二软值序列;对所述 第一软值序列和所述第二软值序列进行合并,得到第三软值序列;对所述第三软值序列进行译码,得到所述第一用户设备的第一信息比特序列。
结合第二方面及其上述实现方式,在第二方面的第七种可能的实现方式中,所述根据所述第一联合比特序列,得到所述第一用户设备所需的第一信息比特序列,包括:若所述第一用户设备无法正确译码所述第一用户设备对应的第一信息比特序列,接收网络设备发送的第三编码比特序列,所述第三编码比特序列由所述网络设备利用第一编码方式对第二联合比特序列进行信道编码得到,所述第二联合比特序列由所述第一用户设备的第一信息比特序列和所述多个用户设备中第二用户设备的第二信息比特序列组合得到。
结合第二方面及其上述实现方式,在第二方面的第八种可能的实现方式中,所述根据所述第一联合比特序列,得到所述第一用户设备所需的第一信息比特序列,包括:对所述第一编码比特序列进行译码,得到所述第一用户设备对应的第四软值序列;对所述第三编码比特序列进行译码,得到所述第一用户设备对应的第五软值序列;对所述第四软值序列和所述第五软值序列进行合并,得到第六软值序列;对所述第六软值序列进行软值硬判,得到所述第一用户设备的第一信息比特序列。
结合第二方面及其上述实现方式,在第二方面的第九种可能的实现方式中,所述根据所述第一联合比特序列,得到所述第一用户设备所需的第一信息比特序列,包括:对所述第一编码比特序列进行译码,得到所述第一用户设备对应的第一硬值比特序列;对所述第三编码比特序列进行译码,得到所述第一用户设备对应的第二硬值比特序列;确定所述第二硬值比特序列中与所述第一硬值比特序列中位置相同且比特值不同的N个异常比特,N为正整数;对所述第二硬值比特序列的N个异常比特中的M个异常比特进行比特反转,其中,0<M<N,M为正整数;当对所述M个异常比特进行比特反转后的第二硬值比特序列通过校验时,将经过M个异常比特反转后的第二硬值比特序列作为所述第一用户设备的第一信息比特序列。
结合第二方面及其上述实现方式,在第二方面的第十种可能的实现方式中,所述第一编码方式为以下方式中的一种:Turbo码,LDPC码和Polar码。
第三方面,提供一种网络设备,用于执行上述第一方面或第一方面的任意可能的实现方式中的方法。具体地,该装置包括用于执行上述第一方面或第一方面的任意可能的实现方式中的方法的单元。
第四方面,提供一种第一用户设备,用于执行上述第二方面或第二方面的任意可能的实现方式中的方法。具体地,该装置包括用于执行上述第二方面或第二方面的任意可能的实现方式中的方法的单元。
第五方面,提供了一种用于信息处理的装置,该装置包括:接收器、发送器、存储器、处理器和总线系统。其中,该接收器、该发送器、该存储器和该处理器通过该总线系统相连,该存储器用于存储指令,该处理器用于执行该存储器存储的指令,以控制接收器接收信号,并控制发送器发送信号,并且当该处理器执行该存储器存储的指令时,该执行使得该处理器执行第一方面或第一方面的任意可能的实现方式中的方法。
第六方面,提供了一种用于信息处理的装置,该装置包括:接收器、发送器、存储器、处理器和总线系统。其中,该接收器、该发送器、该存储器和该处理器通过该总线系统相连,该存储器用于存储指令,该处理器用于执行该存储器存储的指令,以控制接收器接收信号,并控制发送器发送信号,并且当该处理器执行该存储器存储的指令时,该执行使得该处理器执行第二方面或第二方面的任意可能的实现方式中的方法。
第七方面,提供了一种计算机可读介质,用于存储计算机程序,该计算机程序包括用于执行第一方面或第一方面的任意可能的实现方式中的方法的指令。
八方面,提供了一种计算机可读介质,用于存储计算机程序,该计算机程序包括用于执行第二方面或第二方面的任意可能的实现方式中的方法的指令。
因此,本发明实施例提供了一种信息处理的方法,将至少两个用户设备中每个设备的信息比特序列进行组合得到联合比特序列,对该联合比特序列统一进行编码得到编码比特序列,用户设备能够从该编码比特序列中获得自己对应的信息比特序列,该方法有利于够提高编码增益,改善信道编码性能。
附图说明
图1示出了根据本文所述的各个实施例的无线通信系统100。
图2示出了根据本文所述的各个实施例的无线通信系统200。
图3示出了本发明一个实施例的处理信息的方法的示意性流程图。
图4是发明另一实施例的信息处理的方法的示意性流程图。
图5是本发明一个实施例的多用户联合编码的流程的示意性流程图。
图6是本发明另一实施例的多用户联合编码的流程的示意性流程图。
图7是本发明另一实施例的多用户联合编码的流程的示意性流程图。
图8是本发明另一实施例的多用户联合编码的流程的示意性流程图。
图9是本发明一个实施例的多用户联合比特的示意图。
图10是本发明另一个实施例的多用户联合比特的示意图。
图11是本发明另一个实施例的多用户联合比特的示意图。
图12是本发明一个实施例的多用户联合编码后的资源映射的示意图。
图13(a)、13(b)是本发明另一个实施例的通信方法的示意图。
图14(a)、14(b)是本发明另一个实施例的通信方法的示意图。
图15(a)、15(b)和15(c)是本发明另一个实施例的通信方法的示意图。
图16(a)、16(b)和16(c)是本发明另一个实施例的通信方法的示意图。
图17(a)、17(b)和17(c)是本发明另一个实施例的通信方法的示意图。
图18是本发明另一实施例的通信方法的示意图。
图19(a)、19(b)是本发明另一实施例的通信方法的示意图。
图20(a)、20(b)是本发明另一实施例的上行无调度系统中的应用示意图。
图21(a)、21(b)为本发明实施例的中继通信系统应用多用户联合编码的示意图。
图22为本发明实施例的网络设备的示意性框图。
图23为本发明实施例的第一用户设备的示意性框图。
图24为本发明实施例用于信息处理的装置的示意图。
图25为本发明实施例用于信息处理的装置的示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有付出创 造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例可应用于各种通信系统,因此,下面的描述不限制于特定通信系统。全球移动通讯(Global System of Mobile communication,简称“GSM”)系统、码分多址(Code Division Multiple Access,简称“CDMA”)系统、宽带码分多址(Wideband Code Division Multiple Access,简称“WCDMA”)系统、通用分组无线业务(General Packet Radio Service,简称“GPRS”)、长期演进(Long Term Evolution,简称“LTE”)系统、LTE频分双工(Frequency Division Duplex,简称“FDD”)系统、LTE时分双工(Time Division Duplex,简称“TDD”)、通用移动通信系统(Universal Mobile Telecommunication System,简称“UMTS”)等。在上述的系统中的基站或者终端使用传统Turbo码、LDPC码或极化码进行信息的处理。
图1示出了根据本发明的各个实施例适用的无线通信系统100。系统100包括基站102,后者可包括多个天线组。例如,一个天线组可包括天线104和106,另一个天线组可包括天线108和110,附加组可包括天线112和114。对于每个天线组示出了2个天线,然而可对于每个组使用更多或更少的天线。基站102可附加地包括发射机链和接收机链,本领域普通技术人员可以理解,它们均可包括与信号发送和接收相关的多个部件(例如处理器、调制器、复用器、解调器、解复用器或天线等)。
基站102可以与一个或多个接入终端(例如接入终端116和接入终端122)通信。然而,可以理解,基站102可以与类似于接入终端116和122的基本上任意数目的接入终端通信。
在本发明实施例提到的用户设备可以为图1中的接入终端116和122,用户设备还可以是例如蜂窝电话、智能电话、便携式电脑、手持通信设备、手持计算设备、卫星无线电装置、全球定位系统、PDA和/或用于在无线通信系统100上通信的任意其它适合设备,也包括M2M通信系统中的无线终端,本发明并不作限定,为简洁起见,本发明实施例中将“用户”作为“用户设备”的简称,应理解,它们指的是同一概念,两者之间可以相互替换。如图所示,接入终端116与天线112和114通信,其中天线112和114通过前向链路118向接入终端116发送信息,并通过反向链路120从接入终端116接收信息。此外,接入终端122与天线104和106通信,其中天线104和106通过前向链路124向接入终端122发送信息,并通过反向链路126从接入终 端122接收信息。在频分双工(Frequency Division Duplex,简称为“FDD”)系统中,例如,前向链路118可利用与反向链路120所使用的不同频带,前向链路124可利用与反向链路126所使用的不同频带。此外,在时分双工(Time Division Duplex,简称为“TDD”)系统中,前向链路118和反向链路120可使用共同频带,前向链路124和反向链路126可使用共同频带。
基站102、接入终端116和/或接入终端122可以是发送无线通信装置和/或接收无线通信装置。当发送数据时,发送无线通信装置可对数据进行编码以用于传输。具体地,发送无线通信装置可具有(例如生成、获得、在存储器中保存等)要通过信道发送至接收无线通信装置的一定数目的信息比特。这种信息比特可包含在数据的传输块(或多个传输块)中,其可被分段以产生多个码块。此外,发送无线通信装置可使用低密度奇偶校验码(英文:Low Density Parity Check Code,简写:LDPC)进行编码、也可以使用极化码(Polar码)、Turbo码进行编码,还可以使用其它的编码方式,本发明不限于此。
图2示出了根据本文所述的各个实施例的无线通信系统200。
如图2所示,本发明适用于如图所示的通信系统。基站向多个终端设备通过空口技术发送下行数据信息或控制信息。空口技术包括但不限于以下技术:LTE,与LTE有类似时频结构的空口技术,GSM,UMTS,TD-SCDMA,CDMA2000等。并且,本发明实施例应用场景适用于第五代移动通信技术,包括M2M等具体的应用场景中。
应理解,在本发明实施例中提到的网络设备可以是GSM或CDMA中的基站(Base Transceiver Station,简称为“BTS”),也可以是WCDMA中的基站(NodeB,简称为“NB”),还可以是LTE中的演进型基站(Evolved Node B,简称为“ENB或e-NodeB”),还可以为M2M系统中的发送端等,本发明不限于此。
图3示出了本发明一个实施例的处理信息的方法300的示意性流程图。该方法可以由网络设备执行,具体地,例如可以由eNB执行。如图3所示,该方法300包括:
S310,将至少两个用户设备的第一信息比特序列进行组合处理,得到第一联合比特序列;
S320,采用第一编码方式对第一联合比特序列进行信道编码,得到第一编码比特序列;
S330,向接收端发送所述第一编码比特序列。
具体地,在步骤310中,第一联合比特序列可以为多个用户设备的第一信息比特序列按照预设的规律拼接在一起,也可为拼接后再进行交织处理所得到的比特序列,因此,本发明实施例中对多个用户设备的第一信息比特序列的组合方式不受限制。
具体地,所述第一信息比特序列可以为数据信息比特序列,也可以为控制信息比特序列,还可以包括数据信息比特序列和控制信息比特序列,每个用户设备都会有属于该设备的数据信息比特序列和控制信息比特序列,那么构建第一联合比特序列的时候可以将多个用户设备的数据信息比特序列进行组合,或者将多个用户设备的控制信息比特序列进行组合,也可以是将多个用户设备的数据信息比特序列和控制信息比特序列同时进行组合。
具体地,在步骤330中,当接收端为所述至少两个用户设备中的每一个用户设备时,用户设备的第一信息比特序列指的是网络设备要发向该用户设备的第一信息比特序列。
具体地,在步骤330中,当接收端为第二网络设备时,用户设备的第一信息比特序列指的是用户设备发向第一网络设备发送的第一信息比特序列。
具体地,网络设备可以向多个用户设备中的每个用户设备发送得到的第一编码比特序列,用户设备根据该第一编码比特序列进行译码得到自己所需的数据。
应理解,对多个用户设备的第一信息比特序列进行组合处理,将第一联合比特序列进行信道编码,最终得到第一编码比特序列的过程,为了简洁起见,可以称之为多用户联合编码。
还应理解,具体的将每个用户设备的信息比特序列进行组合的方式可以为多个用户的信息比特序列的级联,级联得到的联合比特序列可以称之为多用户级联比特序列。
因此,本发明实施例提供了一种信息处理的方法,将至少两个用户设备中每个设备的信息比特序列进行组合得到联合比特序列,对该联合比特序列统一进行编码得到编码比特序列,用户设备能够从该编码比特序列中获得自己对应的信息比特序列,该方法有利于够提高编码增益,改善信道编码性能。
可选地,作为本发明一个实施例,采用所述第一编码方式产生的编码错误概率与所述第一联合比特序列中的比特数量成反比例关系。
具体地,采用第一编码方式产生的编码增益随着第一联合比特序列中的比特数量的增多而增大,或者说采用第一编码方式产生的编码错误概率随着第一联合比特序列中的比特数量的增多而增大。例如,第一编码方式产生的编码概率为P,第一联合比特序列中的比特数量为N,那么它们之间的关系满足P×N=A,其中,A为常系数。
应理解,编码的增益越大,意味着达到特定的编码错误概率所需的信噪比越小,编码错误概率可以为误比特率(英文:Bit Error Rate,简写:BER)、误块率(英文:Block Error Rate,简写:BLER)等。
换句话说,当采用时第一编码方式,第一联合比特序列中的比特数量越多,编码增益越大,例如,第一编码方式可以为极化Polar码、Turbo码或者低密度奇偶校验(英文:Low-density Parity-check,简写:LDPC)码。
当网络设备向用户设备发送的码块长度较小时,编码的增益较小,从而导致通信性能较差,尤其是机器到机器(Machine to Machine,M2M)通信系统中,向每个用户设备发送的数据包非常小,即向每个用户设备发送的码块长度非常小,此时,编码增益小的问题将更加突出。
因此,当采用第一编码方式对联合比特序列进行编码的时候,会相较于单个用户的信息比特序列进行编码,获得更大的编码增益。
可选地,作为本发明一个实施例,每个用户设备的第一信息比特序列包括冗余循环校验(英文:Cyclic Redundancy Check,简写:CRC)比特序列。
具体地,在将多个用户设备中每个用户设备的第一信息比特序列进行组合处理之前,上述方法还包括:对多个用户设备中每个用户设备的第一信息比特序列增加每个用户设备对应的CRC比特序列,得到每个用户设备对应的添加了CRC比特序列的第一信息比特。
可选地,作为本发明一个实施例,上述方法还包括:采用至少两个用户设备中每个用户设备的标识信息对应的用户设备的第一信息比特序列包括的CRC比特序列进行加扰运算,以得到每个用户设备的加扰后的所述第一信息比特。
具体地,可以将每个用户设备的第一信息比特序列增加的CRC校验比特序列与下列至少一种信息进行加扰运算:每个用户设备的小区无线网络临时标识(英文:Cell Radio Network Temporary Identifier,简写:C-RNTI)信息或每个用户的用户标识。也就是说,如果对每个用于设备都单独增加该 用户设备对应的CRC校验比特序列,那么每个用户设备的CRC校验比特可以与C-RNTI或与用户设备标识相关的参量进行加扰等运算。
上述方法可以能够让用户设备通过解出参与多个用户设备的第一信息比特组合的所有用户设备的CRC,然后与C-RNTI或其用户设备标识进行运算才能确定是否有属于自己的比特,该方法的有益效果是不需要增加传输的开销。
可选地,作为本发明一个实施例,第一联合比特序列包括CRC比特序列。
具体地,为第一联合比特序列添加CRC比特序列,得到添加了CRC比特序列的第一联合比特序列。
也就是说,可以对每个用户设备的传输块单独加CRC校验比特序列,然后再进行多个用户设备的第一信息比特序列的组合,也可以对多个用户设备的传输块组合得到第一联合比特序列之后,对这第一联合比特序列增加该多个用户设备对应的CRC校验比特序列。
应理解,也可以在得到添加了CRC校验比特序列的第一联合比特序列还可以继续进行码块分割,对分割后的码块加CRC比特序列。
可选地,作为本发明一个实施例,若第一联合比特序列还包括控制比特序列,控制比特序列携带第一指示信息,第一指示信息用于指示多个用户设备中的每个用户设备的第一信息比特序列在第一联合比特序列中的位置,第一指示信息包括所述多个用户设备中每个用户设备的标识信息。
可选地,作为本发明一个实施例,第一指示信息还包括以及下列信息中的至少一种:每个用户设备的第一信息比特序列的起止地址信息、每个用户设备的第一信息比特序列的长度信息、每个用户设备的第一信息比特序列的分隔符信息。
具体地,可以在第一联合比特序列的头部或其它与用户设备约定好的位置增加控制比特序列,该控制比特序列携带参与第一联合比特序列组合的所有用户设备中每个用户设备的标识和每个用户的第一信息比特序列的起始和终止地址,或者也可以指明每个用户设备的第一信息比特序列的比特序列长度。
具体地,当控制比特序列仅携带多个用户设备中每个用户设备的标识信息时,可以与每个用户设备约定好该用户身边的信息比特序列的长度,一般 是相等的数值。
具体地,可以在每个用户设备比特序列的头部增加设备标识和分隔符信息。分隔符信息用来帮助终端确定比特序列的起始和终止的位置。应理解,分隔符有可能出现在用户信息比特序列中,因此可以将用户信息比特序列中出现的分隔符字符串转换成其他字符串。这种方法不要求参与组合的用户设备的比特序列长度接收端事先已知。
可选地,作为本发明一个实施例,上述方法还包括:向多个用户设备中的每个用户设备发送第二指示信息,第二指示信息用于指示多个用户设备中的每个用户设备的第一信息比特序列在所述第一联合比特序列中的位置。
具体地,下行数据信息比特序列参与多用户联合编码,而下行控制信息比特序列不参与多用户联合编码。因此,可以在控制信息中指示某个用户的数据信息比特序列在所有用户比特序列中的起止位置或第几个分段,例如如果指示第几个分段,那么必须要求参与多用户联合编码的用户的原始比特序列长度相等。
具体地,该方法没有增加参与多用户联合编码的数据信息的开销,而是增加没有参与多用户联合编码的控制信息的开销,由于用户本设备来就有办法识别哪些控制信息是发向自己的,例如LTE下行在寻呼时和连接态时分别通过P-RNTI和C-RNTI对CRC加扰,因此,这种方法需要的开销较小。
应理解,该第二指示信息还可以携带在其它的消息中,发送参与联合编码的多个用户设备,本发明不限于此。
可选地,作为本发明一个实施例,多个用户设备满足以下至少一种条件:多个用户设备中的每个用户设备的调制方式相同,并且多个用户设备中任意两个用户设备传输的码率差别小于第一阈值,其中,第一阈值可以是预设的任意值,例如,可以将第一阈值设置为0.2,应理解,还可以根据实际需要,设置为其它的值,本发明不限于此;
多个用户设备中任意两个用户设备反馈的信道质量差别小于第二阈值,具体地,当体现信道质量的参数为信道质量指示符(英文:Channel quality indicator,简写:CQI)时,第二阈值可以设置为2,应理解,还可以是其它等价的体现信道质量的具体参数,该第二阈值可以根据选择的具体参数进行设定,例如,可以是参考信号接收功率(英文:Reference Signal Received Power,简写:RSRP)、参考信号接收质量(英文:Reference Signal Received  Quality,简写:RSRQ)、路径损耗、接收信号码功率(英文:Received Signal Code Power,简写:RSCP)等。UMTS和LTE的UE都会周期上报CQI。LTE的UE可以上报RSRP和RSRQ。上报RSRP或RSRQ时,根据网络侧的配置,可以事件触发,也可以周期触发。UMTS的UE可以上报RSCP,周期触发或事件触发,本发明不限于此。
多个用户设备中的每个用户设备为M2M系统中的用户设备,并且多个用户设备中每个用户的覆盖等级相同。
可选地,作为本发明一个实施例,当确定一个用户设备是否能进行联合编码时,可以判断该用户设备如果参与联合编码后码率变化量与码长变化量是否满足事先仿真或测试得到的性能不恶化约束关系。
例如,某个用户参与联合编码后块长变大了ΔBS(单纯看这一点性能会提升),但是该用户参与联合编码后码率同时上升了ΔCR(单纯看这一点性能会下降)。这个用户究竟应不应该参与联合编码,可以事先已通过大量仿真或测试得到一个表格,表格包括码块变化量表项X和码率变化量表项Y,并且该表格体现了传输性能基本不变时X和Y的对应关系。从X里面找到数值ΔBS,与该数值的X对应的Y与ΔCR相比较。Y>ΔCR就可以参与联合编码,否则就不参与联合编码。
可选地,作为本发明一个实施例,上述方法还包括以下中的一种:
确定所述第一编码比特序列的调制方式为预设调制方式,例如可以在BPSK、QPSK、16QAM和64QAM中选择一种;
对第一编码比特序列进行信道映射,以得到第一编码比特序列占用的频带,并且根据频带的部分带宽或全部带宽上的当前信道状态,确定第一编码比特序列的调制方式,其中,频带的部分带宽或全部带宽上的信道状态越好,在保证性能的前提下,调制方式的调制阶数就可以越高;
根据每个用户设备的第一信息比特序列大小与可用时频资源大小的关系,确定第一联合比特序列的调制方式,信息比特序列一定时,可用时频资源越大,在保证的信息比特序列能够被容纳的前提下,调制阶数就可以越低以获得更高的性能。
进一步地,对第一编码比特序列进行调制后的星座图符号按规律分散映射到分给该组终端的时频资源(往往是带宽较宽的子带)上,分散映射的目的是获得时间分集和频率分集。因此,每个用户的原始信息被分散在了更多 的时频资源上,获得了更高的时间分集和频率分集。
对于LTE以及与LTE有类似时频结构的空口技术(例如,WiFi,WiMAX,以及未来4.5G和5G可能使用的某些空口技术),多用户联合编码后的调制及资源映射如上面所述。对于没有明显的时频结构的空口技术,例如UMTS、GSM、TD-SCDMA、CDMA2000等,参与多用户联合编码的用户仍然只能选择共同的一种调制方式。对于使用了多用户联合编码的UMTS,多用户联合编码后的数据使用1到15个高速物理下行共享信道(英文:High Speed Physical Downlink Shared Channel,简写:HS-PDSCH)。这与不使用多用户联合编码的已有系统类似。在已有UMTS系统,每个用户编码后的数据映射到一个或多个HS-PDSCH。多用户联合编码使得一个用户的数据占用了更多的HS-PDSCH。这些HS-PDSCH占用相同的频带和时间,通过扩频码相互区分,能够获得码分集。多用户联合编码用于CDMA2000或TD-SCDMA系统与用于UMTS系统类似,对于使用多用户联合编码的GSM系统,每个用户的数据需要占用更多的时隙发送,能够获得时间分集。
可选地,作为本发明一个实施例,接收端为所述至少两个用户设备中的每个用户,至少两个用户设备的数量为N,至少两个用户设备中存在M个用户设备无法正确译码M个用户设备中每个用户设备对应的第一信息比特序列,这N-M个用户设备中的每个用户设备能够正确译码其对应的所述第一信息比特序列,其中,N、M为正整数,上述方法还包括:当M≥Q时,向多个用户设备中的每个用户设备发送第二编码比特序列,第二编码比特序列由第一联合比特序列利用第一编码方式进行信道编码得到;当M<Q时,向多个用户设备中的每个用户设备发送第三编码比特序列,第三编码比特序列由第二联合比特序列利用第一编码方式进行信道编码得到,第二联合比特序列由M个用户设备中每个用户设备对应的第一信息比特序列和N-M个用户设备中每个用户设备对应的第三信息比特序列得到,其中,Q为正整数,1≤Q≤N。
具体地,假设N个用户设备参与多用户联合编码。只有当有大于或等于Q个用户正确接收发向自己的数据时,下一次传输才向那些已经正确接收的用户发送新数据包,否则已经正确接收的用户也跟着重传。
当Q=N时,也就是说,当参与联合编码的用户设备中只有一个用户设备的数据信息比特序列没有正确接收,那么参与多用户联合编码的全部用户 设备都要重新传输各自的数据信息比特序列,直到所有的用户设备都正确接收。由于重传过程中可能选择不同的冗余版本,因此第二编码比特序列可能与第一编码比特序列不同。当采用相同的冗余版本进行传输时,第一编码比特序列与第二编码比特序列相同,当采用不同的冗余版本进行传输时,第一编码比特序列与第二编码比特序列不同。
进一步地,如果两次传输使用相同的冗余版本,那么用户设备在接收编码比特序列时,将对接收到的编码比特序列进行解调后得到的软值序列进行Chase合并;如果两次传输使用不同的冗余版本,那么用户设备在接收编码比特序列时,将对接收到的编码比特序列进行解调后得到的软值序列进行增量冗余(英文:Incremental Redundancy,简写:IR)合并。应理解,实际上,用户设备在接收编码比特序列时,将对接收到的编码比特序列进行解调后得到的软值序列进行HARQ合并。基于不同的重传方案,既可以进行Chase,也可以进行IR合并,IR合并能获得比Chase合并更高的合并增益。如果某个用户设备已经成功译码自己所需的第一信息比特序列,即网络设备发向该用户设备的数据,如果网络设备又重传了与上次接收到的相同数据包,那么该终端直接丢弃该数据包,不对其进行解调和译码。具体地,用户设备可以从下行控制信息中得知该数据包是否是新数据包。
当Q=1时,也就是说,当网络设备向多个用户设备发送的编码比特序列后,这多个用户设备中有的用户设备能够译码成功,有的用户设备无法译码成功,网络设备进行重传的时候将使用没有译码成功的用户设备的原始信息比特序列和译码成功的用户设备的新信息比特序列得到新的联合比特序列。
当网络设备向用户设备发送的码块长度较小时,编码的增益较小,从而导致通信性能较差,尤其是机器到机器(Machine to Machine,M2M)通信系统中,向每个用户设备发送的数据包非常小,即向每个用户设备发送的码块长度非常小,此时,编码增益小的问题将更加突出。
图4是发明另一实施例的信息处理的方法的示意性流程图,该方法的执行主体可以为用户设备,如图4所示,该方法400包括:
S410,第一用户设备接收网络设备发送的第一编码比特序列,第一编码比特序列由所述网络设备利用第一编码方式对第一联合比特序列进行编码得到,第一联合比特序列由网络设备向多个用户设备中每个用户设备发送的第一信息比特序列组合得到,该多个用户设备包括所述第一用户设备;
S420,第一用户设备根据第一联合比特序列,得到第一用户设备所需的第一信息比特序列。
在步骤410中,当第一用户设备参与多用户联合编码时,基站将第一用户设备所需的第一信息比特序列与其它用户设备的第一信息比特序列进行前述的组合操作得到联合比特序列,那么基站在对该联合比特序列利用第一编码方式进行编码后得到第一编码比特序列,将向第一用户设备发送该第一编码比特序列。
在步骤420中,当第一用户设备接收到该第一编码比特序列,将根据该第一编码比特序列译码得到第一用户设备所需的第一信息比特序列。
因此,本发明实施例提供了一种信息处理的方法,将至少两个用户设备中每个设备的信息比特序列进行组合得到联合比特序列,对该联合比特序列统一进行编码得到编码比特序列,用户设备能够从该编码比特序列中获得自己对应的信息比特序列,该方法有利于够提高编码增益,改善信道编码性能。
可选地,作为本发明一个实施例,采用第一编码方式产生的编码错误概率随着第一联合比特序列中的比特数量的增多而减小。
也就是说,当采用时第一编码方式,第一联合比特序列中的比特数量越多,编码增益越大,例如,第一编码方式可以为极化Polar码、Turbo码或者低密度奇偶校验(英文:Low-density Parity-check,简写:LDPC)码。
因此,当采用第一编码方式对联合比特序列进行编码的时候,会相较于单个用户的信息比特序列进行编码,获得更大的编码增益。
可选地,作为本发明一个实施例,上述方法还包括:若第一联合比特序列还包括控制比特序列,控制比特序列携带第一用户设备的第一指示信息,根据第一指示信息,确定第一用户设备的第一信息比特序列在第一联合比特序列中的位置,其中,第一用户设备的第一指示信息比特序列包括第一用户设备的设备标识信息。
可选地,作为本发明一个实施例,上述方法还包括:接收网络设备发送的第二指示信息,第二指示信息用于指示第一用户设备的第一信息比特序列在第一联合比特序列中的位置;根据第二指示信息,确定第一用户设备的第一信息比特序列在第一联合比特序列中的位置。
可选地,作为本发明一个实施例,上述方法还包括:若第一用户设备的第一信息比特序列已添加第一循环冗余校验CRC比特序列,第一CRC比特 序列已与所述第一用户的小区无线网络临时标识C-RNTI信息或每个用户的用户标识信息进行加扰运算述第一用户设备根据加扰后的所述CRC比特序列确定第一用户设备的第一数据信息比特序列。
可选地,作为本发明一个实施例,上述方法还包括:若第一用户设备无法正确译码第一用户设备对应的第一信息比特序列,接收网络设备发送的第二编码比特序列,第二编码比特序列由所述网络设备利用第一编码方式对所述第一联合比特序列进行编码得到。
具体地,当第一信息比特序列为数据信息比特序列时,可以有上述的重传过程。也就是说,当参与联合编码的用户设备中只有一个用户设备的数据信息比特序列没有正确接收,那么参与多用户联合编码的全部用户设备都要重新传输各自的数据信息比特序列,直到所有的用户设备都正确接收。由于重传过程中可能选择不同的冗余版本,因此第二编码比特序列可能与第一编码比特序列不同。当采用相同的冗余版本进行传输时,第一编码比特序列与第二编码比特序列相同;当采用不同的冗余版本进行传输时,第一编码比特序列与第二编码比特序列不同。
应理解,为了告知用户设备选择正确的合并方式,控制信息需要指示冗余版本以及参与多用户联合编码的所有用户是否都重传,也就是相邻的两次传输参与多用户联合编码的所有用户的原始比特序列是否一致。
可选地,作为本发明一个实施例,根据所述第一联合比特序列,得到第一用户设备所需的第一信息比特序列,包括:对第一编码比特序列进行解调处理,得到第一软值序列;对第二编码比特序列进行解调处理,得到第二软值序列;对第一软值序列和第二软值序列进行合并,得到第三软值序列;对第三软值序列进行译码,得到第一用户设备的第一信息比特序列。
具体地,软值指的是对数似然比(英文:Logarithm Likelihood Ratio,简写:LLR),因此在这里的第一软值序列也就是第一联合比特序列的对应的LLR序列,第二软值序列也就是第二联合比特序列的对应的LLR序列。
进一步地,如果两次传输使用相同的冗余版本,那么用户设备在接收编码比特序列时,将对接收到的编码比特序列进行解调后得到的软值进行Chase合并;如果两次传输使用不同的冗余版本,那么用户设备在接收编码比特序列时,将对接收到的编码比特序列进行解调后得到的软值进行IR合并。应理解,实际上,用户设备在接收编码比特序列时,将对接收到的编码 比特序列进行解调后得到的软值序列既可以进行HRAQ合并,基于不同的重传方案,既可以进行Chase合并,也可以进行IR合并,IR合并能获得比Chase合并更高的合并增益。如果某个用户设备已经成功译码自己所需的第一信息比特序列,即获得网络设备发向该用户设备的数据,如果网络设备又重传了与上次接收到的相同数据包,那么该终端直接丢弃该数据包,不对其进行解调和译码。具体地,用户设备可以从下行控制信息中得知该数据包是否是新数据包。
应理解,也可以对第一编码比特序列和第二编码比特序列进行译码后得到的软值序列进行合并,获取第一用户设备的信息比特序列。
可选地,作为本发明一个实施例,为了使终端使用正确的合并方式,控制信息需要指示冗余版本以及参与多用户联合编码的所有用户是否都重传,也就是相邻的两次传输参与多用户联合编码的所有用户的原始比特序列是否一致,终端设备通过网络设备发送的该指示信息,确定采用何种合并方式以及确定是进行解调后的软值序列合并还是进行译码后的软值序列合并。
由于第一编码比特序列和第二编码比特序列都是由第一联合比特序列进行编码获得的,因此第一用户设备将第一编码比特序列解调后得到第一软值序列和第二编码比特序列解调后得到的第二软值序列进行合并,可以得到第三软值序列,对第三软值序列进行译码,能够获得第一用户设备所需的第一信息比特序列。
应理解,如果第一编码比特序列和第二编码比特序列的软值序列合并后,第一用户设备仍无法正确译码,那么网络设备将再次发送由第一联合比特序列编码得到的编码比特序列,第一用户设备将新收到的编码比特序列进行解调后得到软值序列,跟上次缓存的软值序列进行合并,看是否能够正确译码第一用户设备的信息比特序列。
还应理解,也可以对第一编码比特序列和第二编码比特序列进行译码后的软值序列合并,但这样的编码增益会变小。
可选地,作为本发明一个实施例,上述方法还包括:若第一用户设备无法正确译码第一用户设备对应的第一信息比特序列,接收网络设备发送的第三编码比特序列,第三编码比特序列由所述网络设备利用第一编码方式对第二联合比特序列进行信道编码得到,第二联合比特序列由第一用户设备的第一信息比特序列和多个用户设备中第二用户设备的第二信息比特序列组合 得到。
也就是说,若第一编码比特序列有多个用户设备的第一信息比特序列联合编码得到,当网络设备向多个用户设备发送该第一编码比特序列后,这多个用户设备中的第二用户设备能够译码成功,第一用户设备无法译码成功,网络设备进行重传的时候将使用没有译码成功的第一用户设备的原始信息比特序列(即第一用户设备的第一信息比特序列)和译码成功的第二用户设备的新信息比特序列(即第二用户设备的第二信息比特序列)进行组合得到新的联合比特序列(即第二联合比特序列),该第二联合利用第一编码方式可以得到第三编码比特序列,网络设备将向多个用户设备中的每个用户设备发送该第三编码比特序列。
可选地,作为发明一个实施例,上述根据第一联合比特序列,得到第一用户设备所需的第一信息比特序列,包括:对第一编码比特序列进行译码,得到第一用户设备对应的第四软值序列;对第三编码比特序列进行译码,得到第一用户设备对应的第五软值序列;对第四软值序列和第五软值序列进行合并处理,得到第六软值序列;对第六软值序列进行软值硬判,得到第一用户设备的第一信息比特序列。
具体地,如果在参与多用户联合编码的用户设备中,第二用户设备已经成功译码,而第一用户设备没有译码成功,那么对第一用户设备重传的第三编码比特序列是由第一用户设备的第一信息比特序列和第二用户设备的第二信息比特序列进行编码得到的,那么第一用户设备在接收到重传的第三编码比特序列时,需要译码得到第一编码比特序列的软值序列,并获取第一用户设备对应的第四软值序列,还需要译码得到第三编码比特序列的软值序列,进行合并得到第六软值序列,对第六软值序列进行软值硬判,以获得译码结果。
例如,当基站向参与多用户联合编码的用户A发送重传数据,但向参与多用户联合编码的另外一个用户设备B发送新的数据,那么用户A就不能按照常规的方式进行混合自动重传请求(英文:Hybrid Automatic Repeat Request,简写:HARQ)合并,只能在译码后再合并。这要求信道译码器(例如Turbo码译码器)输出用户A的信源比特序列(编码前的原始比特序列)对应LLR软值序列。现有译码器输出的是将译码后的软值序列硬判以后得到的0、1比特,即最终的硬值作为译码结果,而译码后的软值指的是 在译码之后且还未进行软值硬判的时候的值。
第一编码比特序列得到的第四软值序列和第三编码比特序列得带的第五软值序列,进行合并指的就是:将上次接收到的编码比特序列进行译码后的第四软值序列缓存在本地,与本次接收到的编码比特序列进行译码后的第五软值序列缓存在本地,将第四软值序列和第五软值序列进行合并,具体的,可以是两次软值相加,也可以是其它方式的合并,例如根据LLR定义的不同,有可能需要乘以一个常数系数等进行线性合并,本发明不限于此,对合并后的第六软值序列再进行硬判,能够得到最终的硬值译码结果。
应理解,如果第一用户设备初传和第一次重传的软值序列合并后仍然无法得到所需的译码结果,那么网络设备将对第一用户设备进行第二次重传,对第一次重传和第二次重传的编码比特序列进行译码后得到的软值序列合并,以尝试译码获得正确的译码结果。也就是说,在第一用户设备接收网络设备第N+1次的重传时,需要将第N次重传和第N+1次重传的编码比特序列进行译码后的软值序列进行合并,尝试译码获得正确的译码结果。
可选地,作为本发明一个实施例,上述根据第一联合比特序列,得到第一用户设备所需的第一信息比特序列,包括:对第一编码比特序列进行译码,得到第一用户设备对应的第一硬值比特序列;对第三编码比特序列进行译码,得到第一用户设备对应的第二硬值比特序列;确定第二硬值比特序列中与第一硬值比特序列中位置相同且比特值不同的N个异常比特,N为正整数;对第二硬值比特序列的N个异常比特中的M个异常比特进行比特反转,其中,0<M<N,M为正整数;当对M个异常比特进行比特反转后的第二硬值比特通过校验时,将经过M个异常比特反转后的第二硬值比特序列作为所述第一用户设备的第一信息比特序列。
具体地,第一编码比特序列进行译码得到第一用户设备对应的第一硬值比特序列,第三编码比特序列进行译码得到第一用户设备对应的第二硬值比特序列,通过判断第一硬值比特序列和第二硬值比特序列中有哪些比特位置的比特值不同,在第二硬值比特序列中确定出N个异常比特,对这N个异常比特中的至少1个比特至多N-1个比特进行比特反转,比特反转指的是将比特值为0的比特变为比特值为1的比特,或将比特值为1的比特变为比特值为0的比特。进一步地,如果对N个异常比特中的M个异常比特进行反转后,该经过M个异常比特反转后的第二硬值比特序列能够通过CRC校验, 那么将经过M个异常比特反转后的第二硬值比特序列作为第一用户设备的第一信息比特序列。
具体地,如果经过了N-1次比特反转后的第二硬值比特序列仍然无法通过CRC校验,那么需要再接收网络设备的再次重传,并相应的获得第一用户设备对应的第三硬值比特序列,在第三硬值比特序列中确定出K个异常比特,这K个异常比特为第一、第二和第二硬值比特序列中任意两个比特序列中位置相同且比特位置不同的比特。同理,对第三硬值比特序列中的L个异常比特进行比特反转,如果经过L个异常比特反转后的第三硬值比特序列通过了CRC校验,那么将经过L个异常比特反转后的第三硬值比特序列作为第一用户设备的第一信息比特序列,其中,K≥N,0<L<K。
应理解,如果在第N次重传后仍然无法正确译码,那么就接收第N+1次重传,从第N+1次重传的编码比特序列中获得第一用户设备的第N+1个硬值比特序列,与前N个硬值比特序列进行比较,找出异常比特,进行比特反转,直至译码成功。一般地,不论几个序列进行比较,都是找出这几个序列比特不完全一样的位置,然后在这些位置上分别指定比特0和1,看各种排列组合下CRC校验是否成功。当重传的次数变多时,比特不完全一样的位置也会变多。尝试的次数就会变大,复杂度变大。
尝试翻转方法的前提是译码后的BER较低,并且每个用户的原始比特序列的长度较小,这符合小包传输的特点。因此这种情况下,每个用户的比特序列中出错的比特的个数较少,这些出错的比特落到同一个位置的概率就低。两次硬值译码结果不一致的位置就是出错比特的候选位置。因此有可能通过上述尝试翻转的方法获得正确的译码结果。
因此,本发明实施例提供了一种信息处理的方法,将至少两个用户设备中每个设备的信息比特序列进行组合得到联合比特序列,对该联合比特序列统一进行编码得到编码比特序列,用户设备能够从该编码比特序列中获得自己对应的信息比特序列,该方法有利于够提高编码增益,改善信道编码性能。
下面结合具体的例子详细描述本发明的实施例。以下描述中,将“用户设备”简称为“用户”。
图5是本发明一个实施例的多用户联合编码的流程的示意性流程图。
如图5所示,共有N个用户分别为用户1、用户2……用户N,其中N为大于或等于2的整数。在步骤501中,首先将这个N个用户的信息比特序 列分别加CRC校验;在步骤502中,将根据这N个用户的信息比特序列级联得到的多用户级联比特序列;在步骤503中,将根据步骤502得到的多用户级联比特序列进行信道编码;步骤504中,对进行信道编码后的多用户级联比特序列进行速率匹配。其中,信息比特序列包括数据信息比特序列,也可以包括控制信息比特序列。
应理解,N个用户的信息比特序列进行级联为前述将多个用户设备的信息比特序列进行组合的方式之一,经过组合得到的联合比特序列就是这里所指的多用户级联比特序列。
图6是本发明另一实施例的多用户联合编码的流程的示意性流程图。
如图6所示,共有N个用户分别为用户1、用户2……用户N,其中N为大于或等于2的整数。在步骤601中,首先将N个用户的信息比特序列进行级联,得到多用户级联比特序列;在步骤602中,将多用户级联比特序列统一加CRC校验;在步骤603中,对加入CRC校验比特序列的多用户级联比特序列进行信道编码;步骤604中,对编码后的多用户级联比特序列进行速率匹配。其中,信息比特序列包括数据信息比特序列,也可以包括控制信息比特序列。
图7是本发明另一实施例的多用户联合编码的流程的示意性流程图。
如图7所示,共有N个用户分别为用户1、用户2……用户N,其中N为大于或等于2的整数。在步骤701中,首先将这个N个用户的信息比特序列分别加CRC校验;在步骤702中,将根据这N个用户的信息比特序列级联得到的多用户级联比特序列;在步骤703中,对多用户级联比特序列进行码块分割,对分割后的每个码块加入CRC校验;在步骤704中,对由步骤703得到加入CRC校验的码块进行信道编码;在步骤705中,进行编码的速率匹配;在步骤706中,对码块分割的多个码块进行码块级联。
图8是本发明另一实施例的多用户联合编码的流程的示意性流程图。
如图8所示,共有N个用户分别为用户1、用户2……用户N,其中N为大于或等于2的整数。在步骤801中,首先将这个N个用户的信息比特序列分别加CRC校验;在步骤802中,将根据这N个用户的信息比特序列级联得到的多用户级联比特序列;在步骤803中,对多用户级联比特序列统一加入CRC校验块;在步骤804中,对多用户级联比特序列进行码块分割,对分割后的每个码块加入CRC校验;在步骤805中,对由步骤804得到加 入CRC校验的码块进行信道编码;在步骤806中,进行编码的速率匹配;在步骤807中,对码块分割的多个码块进行码块级联。
图9是本发明一个实施例的多用户联合比特序列的示意图。
如图9所示,共有N个用户分别为用户1、用户2……用户N,其中N为大于或等于2的整数。这N个用户的比特序列长度分别是L1、L2、……、LN,它们包括数据信息比特序列,也可以包括控制信息比特序列,L1、L2、……、LN可以相等,也可以不相等。其中,多个用户设备中每个用户设备的的比特序列进行组合(也可以说多用户比特序列级联)的过程可以是直接将用户的比特序列按预设的规律拼接在一起,也可以拼接后再交织,得到多用户联合比特序列。如果不使用交织,那么N个用户的比特序列级联后如图9所示。
网络设备在进行多用户信息比特序列级联的过程中,还需要告知每个用户设备如何确定属于自己的信息比特序列。下面结合图10与图11介绍网络设备如何指示用户设备确定属于自己的信息比特序列。
图10是本发明另一个实施例的多用户联合比特序列的示意图。
如图10所示,共有N个用户分别为用户1、用户2……用户N,其中N为大于或等于2的整数。这N个用户的比特序列长度分别是L1、L2、……、LN。L1、L2、……、LN可以相等,也可以不相等。当这N个用户的比特序列组合后得到多用户级联比特序列,此时可以在多用户级联比特序列的头部或其它与终端约定好的位置增加控制区域,也即加入控制比特序列,该控制比特序列中增加指示信息,如图10在级联比特序列的头部增加控制区域,该指示信息用来指示N个用户中每个用户的用户标识和每个用户的信息比特序列的起始和终止的地址。应理解,该指示信息中还可以携带其它的用户信息,用于用户设备确定属于自己的信息比特序列,例如,指明每个用户设备的信息比特序列的长度等参数,本发明不限于此。
图11是本发明另一个实施例的多用户联合比特序列的示意图。
如图11所示,共有N个用户分别为用户1、用户2……用户N,其中N为大于或等于2的整数。这N个用户的比特序列长度分别是L1、L2、……、LN。L1、L2、……、LN可以相等,也可以不相等。在本实施例中,当这N个用户的比特序列组合后得到多用户级联比特序列,此时在每个用户信息比特序列的头部增加用户标识,或者增加每个用户的用户标识和分隔符。当每个用户信息比特序列的头部只包括用户标识时,那么需要网络设备和用户设备 双方约定好比特序列长度(一般约定为相等的数值),即L1、L2、……、LN是网络设备和用户设备收发双方都已知的。当每个用户信息比特序列的头部不只包括用户标识和分隔符时,分割符用来指示用户设备确定其对应的信息比特序列的起始位置和终止的位置。分隔符有可能出现在用户信息比特序列中,可以将用户信息比特序列中出现的分隔符字符串替换成其他字符串,这种方法不要求参与级联的用户的比特序列长度接收端事先已知。
可选地,作为本发明一个实施例,如果每个用户比特序列在比特级联前单独加CRC,将每个用户的CRC校验比特序列与小区无线网络临时标识(Cell Radio Network Temporary Identifier,C-RNTI)或与用户设备的设备标识的相关参数加扰或进行其它运算。用户设备通过解码参与级联的所有用户的CRC比特序列后,才能确定是否有属于自己的信息比特序列,该方法将不增加开销。
可选地,作为本发明一个实施例,下行数据信息使用多用户联合编码,而下行控制信息不使用多用户联合编码。在控制信息中指示某个用户的数据信息比特序列在所有用户比特序列中的起止位置或第几个分段。如果指示第几个分段,那么必须要求参与多用户联合编码的用户的原始比特序列长度相等。该方法没有增加参与多用户联合编码的数据信息的开销,而是增加没有参与多用户联合编码的控制信息的开销。由于用户本来就有办法识别哪些控制信息是发向自己的,例如,LTE下行在寻呼时和连接态时分别通过寻呼无线网络临时标识(Paging RNTI,P-RNTI)和C-RNTI对CRC加扰。这种方法需要的开销并不大,特别是当指示用户的数据处于第几个分段时。
可选地,作为本发明一个实施例,网络设备进行多用户联合编码时,需要选择多个用户设备进行联合编码,优选的,网络设备希望选择的多个用户的比特序列级联后再编码,能够使得每个用户都能获得比每个用户设备单独编码更好的性能。例如,在LTE系统中下行控制信息调制方式为QPSK,那么此时选择码率相同或相近的用户进行多用户联合编码,并且使得多用户联合编码码率与原码率近似相等,其中,多用户联合编码码率近似等于多用户级联比特序列的长度与速率匹配后的长度比值,在这种情况下,每个用户将会获得更好的编码增益。因此,进行多用户联合编码的用户选择时,方法包括以下几个:第一,将调制方式相同并且码率相同或相近的用户分为一组;第二,根据用户反馈的上报量对用户分组,其中用户反馈的上报量可以为信 道质量指示(Channel Quality Indicator,CQI)等,将上报量相同或相近的用户分为一组;第三,在M2M系统中选择覆盖等级相同或相近的终端分为一组;第四,通过测试或仿真得到在不同条件组合下(例如,调制方式、码率区间、块长区间等),要达到参与联合编码的用户设备在联合编码后维持性能不变,也即码率(Code Rate,CR)的变化量(△CR)与码块长度(Block Size,BS)的变化量(△BS)的对应关系要满足一定的约束关系,该约束关系可以指如果多用户联合编码后码率(码率越大,性能越差)上升了△CR,那么需要多用户联合编码后块长至少相应上升△BS才能维持性能不变,以使得所有参与多用户联合编码的用户都能获得较明显的性能增益,该约束关系可以根据用户设备的比特序列中比特数目、调制方式等各种因素进行仿真得到。应理解,进行多用户联合编码的用户选择时,还可以根据其它的因素确定,本发明不限于此。
实际应用中,按照上面的方法选择用户分组后,最后有可能剩余的若干用户无法配对。虽然按照上面的方法无法配对,但并不意味着对他们进行多用户联合编码就一定不能获得性能增益。例如,某个用户如果参与多用户联合编码,那么多用户联合编码的码率大于该用户单独编码(即该用户不参与多用户联合编码,按已有系统的流程编码)的码率,但同时多用户联合编码的块长变大(这里块长指级联后的比特序列长度,肯定大于每个用户的比特序列长度)。该用户仍然是有可能获得性能增益的。究竟能否获得性能增益需要进行细致的仿真或测试,能获得增益就进行多用户联合编码,否则就像现有系统那样分别对单个用户的比特序列进行编码。
图12是本发明一个实施例的多用户联合编码后的资源映射的示意图。
具体地,如果多个用户进行多用户联合编码,那么编码后的联合比特序列可以固定选用一种调制方式,QPSK,也可以从多种其它调制方式中选择,例如BPSK、QPSK、16QAM和64QAM等。在每个用户设备选择时频资源时,那么调制后的星座图符号既可以映射到整个带宽上,也可以映射到整个带宽的某个子带上在每个用户设备选择码道资源或时隙资源,调制后的星座图符号可以映射到全部或部分码道资源或时隙资源上。以时频资源为例,上述过程的示意图12所示。其中,从“原始比特序列”到“多用户联合编码及相关处理后的比特序列”的过程可以如上述实施例所述,在此不再赘述。应理解,图12所示的过程既可以用于数据信息比特序列,也可以用于控制 信息比特序列。如图12所示,包括向三个用户设备发送的信息比特序列,分别为向用户设备1发送的信息比特序列、向用户设备2发送的信息比特序列和向用户设备3发送的信息比特序列,这三个用户进行多用户联合编码以及如前所述的相关处理后,三个用户使用相同的调制方式进行调制并进行资源映射。
具体地,对于每个用户的控制信息比特序列,可以像已有系统那样固定调制方式;对于数据信息比特序列,选择调制方式的前提是要保证数据传输性能。在保证性能的前提下,选择调制方式的一个依据是参与多用户联合编码的用户在映射的子带或全带上的信道的状况,信道状况越好,调制阶数就可以越高;另一个依据是待传输的信息比特序列中比特的数量与可用时频资源数量的关系,时频资源充足时可以用低阶调制(每个星座图符号所含的数少)。进一步地,调制后的星座图符号按规律分散映射到分给该用户设备的时频资源(往往是带宽较宽的子带)上。分散映射可以获得时间分集和频率分集。与现有技术相比,图12中的每个用户的原始信息被分散在了更多的时频资源上,这就获得了更高的时间分集和频率分集。
具体地,对于LTE以及与LTE有类似时频结构的空口技术(例如,WiFi,WiMAX,以及未来4.5G和5G可能使用的某些空口技术),多用户联合编码后的调制及资源映射如图12所述的实施例。对于没有明显的时频结构的空口技术,例如UMTS、GSM、TD-SCDMA、CDMA2000等,参与多用户联合编码的用户仍然只能选择共同的一种调制方式。对于使用了多用户联合编码的UMTS,多用户联合编码后的数据使用1到15个HS-PDSCH,这与不使用多用户联合编码的已有系统类似。在已有UMTS系统,每个用户编码后的数据映射到一个或多个HS-PDSCH,而多用户联合编码使得一个用户的数据占用了更多的HS-PDSCH。这些HS-PDSCH占用相同的频带和时间,通过扩频码相互区分,同样可以获得码分集。多用户联合编码用于CDMA2000或TD-SCDMA系统与用于UMTS系统类似。对于使用多用户联合编码的GSM系统,每个用户的数据需要占用更多的时隙发送,因此可以获得时间分集。
下面结合图13至图18详细介绍数据信息重传与合并的过程。由于控制信息比特序列不存在HARQ重传,因此如果多用户联合联合编码对控制信息比特序列进行编码,那么就不存在重传与合并的问题。
图13是本发明一个实施例的通信方法的示意图,该方法的执行主体为网络设备,例如,可以为基站,图中包括用户设备1、用户设备2和用户设备3。其中图13(a)是基站第一次向3个用户设备发送数据信息比特序列,即信息比特序列的初传;图13(b)是基站第二次向3个用户设备发送的数据信息比特序列,即信息比特序列的重传,第一次和第二次向该3个用户设备发送的数据信息比特序列相同,也就是说,参与多用户联合编码的用户中只要有一个用户没有正确接收,那么参与多用户联合编码的全部用户都要重传,直到所有用户都正确接收。与现有HARQ重传类似,重传进行速率匹配时可以选择相同或者不同的冗余版本。
以上述3个用户参与多用户联合编码为例,其中用户设备1和用户设备3一次就解对,一个用户重传一次后才解对。按照该方式,基站和终端的处理过程如图13所示。图中初传和重传的“多用户联合编码及相关处理后的比特”有可能不一样,因为速率匹配使用的冗余版本有可能不一样。图13中的(a)和(b)中的多用户联合编码及相关处理后的示意性长条填充图案不一样就是为了表示冗余版本不同导致“多用户联合编码及相关处理后的比特”是不一样的,尽管输入的“原始比特”一样。
图14是本发明一个实施例的通信方法的示意图,该方法的执行主体为用户设备,例如,终端设备,图中包括用户设备1、用户设备2和用户设备3,图14所示实施例是与图13所示实施例相对应的接收侧的流程图。其中图14(a)是3个用户设备分别接收基站第一次发送数据信息比特序列,即数据信息比特序列的初传;图14(b)是3个用户设备分别接收基站第二次向发送的数据信息比特序列,即数据信息比特序列的重传,该3个用户设备在第一次和第二次接收的数据信息比特序列相同,也就是说,参与多用户联合编码的用户中只要有一个用户没有正确接收,那么参与多用户联合编码的全部用户都要重传,直到所有用户都正确接收。与现有HARQ重传类似,重传进行速率匹配时可以选择相同或者不同的冗余版本。如果初传和重传中使用相同的冗余版本,那么接收端可以进行Chase合并;如果初传和重传中使用不同的冗余版本,那么接收端可以进行IR合并。实际应用中,IR合并能够获得比Chase合并更高的合并增益。如果某个用户设备(或终端)已经解对了发向自己的数据,因为其他用户重传又收到了上次收到的数据包,那么该终端直接丢弃该数据包,不对其进行解调和译码。终端可以从下行控制 信息中得知该数据包是否是新数据包。
具体地,如图14(a)所示,三个用户设备接收到联合比特序列,进行解调后得到第一次解调后的软值序列,其中用户设备1和用户设备3在第一次接收基站发送的联合比特序列就解出了自己数据信息比特序列,用户设备2的第一次接收基站发送的联合比特序列时未能解出自己所需的数据信息比特序列;那么进一步地,如图14(b)所示,用户设备1、用户设备2和用户设备3将第二次接收基站发送的联合比特序列,进行解调后得到第二次解调后的软值序列,将第一次解调后的软值序列和第二次解调后的软值序列进行HARQ合并,用户设备2对HARQ合并的软值序列进行译码,解出了自己所需的数据信息比特序列。图14中的“√”表示终端接收正确,“×”表示终端接收错误。
图15是本发明一个实施例的通信方法的示意图。如图15所示,该方法的执行主体为网络设备,例如,基站,图中包括用户设备1、用户设备2和用户设备3。其中图15(a)是基站第一次向3个用户设备分别发送数据信息比特序列,即信息比特序列的初传;图15(b)是基站第二次向3个用户设备分别发送的数据信息比特序列,由于在第一次向用户设备发送数据信息比特序列时,该3个用户设备全部没有解码成功,那么将在第二次向用户设备发送的数据信息比特序列与第一次发送的数据信息比特序列完全相同。如图15(a)中和15(b)中的原始比特序列,用户设备1、用户设备2和用户设备3分别在第一次和第二次对应的原始比的示意图中的填充图案相同,也就是意味着基站向用户设备在第一次和第二次发送的原始比特序列是相同的;由于比特序列重传的时候选择不同的冗余版本,那么第一次多用户联合编码及相关处理后的比特序列与第二次多用户联合编码及相关处理后的比特序列可能不同,这是因为第一次和第二次使用的冗余版本不同;进一步地,如果用户设备1和用户设备3接收初传和第一次重传的数据信息比特序列后解码成功,用户设备2接收初传和第一次重传的数据信息比特序列后仍未解码成功,那么基站在第三次向用户设备发送数据信息比特序列(也即原始比特序列)的时候,将向用户设备1和用户设备3发送新的数据信息比特序列,可以看到,图15(a)中用户设备1、用户设备2和用户设备3的原始比特序列与图15(b)中用户设备1、用户设备2和用户设备3的原始比特序列相同,图15(c)中用户设备1和用户设备3的原始比特序列与前两次传输 的原始比特序列以及不同,而用户设备2第二次重传的原始比特序列与前两次传输的原始比特序列相同。
图16是本发明一个实施例的通信方法的示意图。如图16所示,该方法的执行主体为用户设备,例如,终端设备,图中包括用户设备1、用户设备2和用户设备3。其中图16(a)是3个用户设备分别接收基站第一次发送数据信息比特序列,即信息比特序列的初传;图16(b)是3个用户设备分别接收基站第二次向发送的数据信息比特序列,由于在第一次向用户设备发送数据信息比特序列时,该3个用户设备全部没有解码成功,那么基站第二次向用户设备发送的数据信息比特序列与第一次发送的数据信息比特序列完全相同,即图16(a)和图16(b)中的每个用户的原始比特序列都相同;此时,优选地,三个用户设备可以缓存初传解调后的软值序列和第一次重传后的软值序列,每个用户设备对HARQ合并后的软值序列进行译码,用户设备1和用户设备3分别找出自己所需的数据信息比特序列;在另外一种实施方式中,用户设备可以对初传时解调后的软值序列进行译码,得到初传译码后的软值序列,对第一次重传时解调后的软值序列进行译码后得到第一次重传译码后的软值序列,对该两次译码后的软值序列进行合并,具体地,可以为译码后的软值序列相加。
更进一步地,在第一次重传之后,用户设备1和用户设备3译码成功,因此基站在第二次重传时将使用用户设备1和用户设备3的新的数据信息比特序列(即新的原始比特序列)、以及用户设备2之前传输的原始比特序列进行联合编码,向图16(c)示出了3个用户设备分别接收基站第三次发送的联合比特序列的过程,此时,由于基站向用户设备1和用户设备3发送的原始比特序列是新传的数据比特序列,而向用户设备2发送的是前两次数据传输没有译码成功的原始比特序列,那么此时用户设备2则需要第第二次重传的联合比特序列进行解调后的软值序列进行译码得到用户设备2对应的第二次重传译码的软值序列,将用户设备2对应的上次重传译码后的软值序列(也就是用户设备2对应的第一次重传译码后的软值序列)和第二次重传译码后的软值序列进行合并,对合并后的软值序列进行软值硬判,最终得到硬值译码结果。
为了使终端使用正确的合并方式,控制信息需要指示冗余版本以及参与多用户联合编码的所有用户是否都重传,也就是相邻的两次传输参与多用户 联合编码的所有用户的原始比特序列是否一致。
因此,该方式可以有限地获取IR合并增益,这是因为参与多用户联合编码的用户全部传错的概率是比较低的,重传后很快就有用户接收正确,还没接收正确的用户就只能使用译码后合并。
图17是本发明一个实施例的通信方法的示意图。如图17所示,该方法的执行主体为用户设备,例如,终端设备,图中包括用户设备1、用户设备2和用户设备3。其中图17(a)是3个用户设备分别接收基站第一次发送的数据信息比特序列(即信息比特序列)的初传,在初传之后,用户设备1和用户设备3译码成功,用户设备2译码未成功,那么用户设备2缓存第一次传输的译码后的比特序列,即硬值比特序列;如图17(b)基站在第一次重传时,如果将用户设备1的新传比特序列、用户设备3的新传比特序列和用户设备2上次传输的原始比特序列进行比特级联进行发送,那么终端设备2将缓存该设备对应的第一次重传译码后的比特序列,将第一次重传译码后的比特序列和初传译码后的比特序列进行译码硬判。
具体地,译码硬判的过程如图17(c)所示,处理的方法为将两次硬值译码结果(即包括CRC比特序列的比特序列)进行比较,找出其中不同的比特,然后尝试翻转其中的一个或几个比特,具体地,就是将比特序列中的0变为1,将比特序列中的1变为0,最后进行CRC校验。如果校验正确,那么就停止尝试进行比特翻转。在17(c)包括序列1和序列2,序列1为如图17(a)所示的初传时,用户设备2缓存的初传译码后的比特序列;序列2为如图17(b)所示的第一次重传时,用户设备2缓存的第一次重传译码后的比特序列。两次译码后的序列中A、B、C三处的比特不同。可以依次尝试翻转序列1或序列2(选一个序列,不能同时翻转两个序列)如下位置的一个或几个比特:(1)A,(2)B,(3)C,(4)A和B,(5)A和C,(6)B和C。每次翻转后都进行一次CRC校验。注意,A、B和C三个位置不需要同时翻转,因为翻转后会变成另一个序列(即序列1变成序列2,序列2变成序列1),CRC校验一定是失败的。可以预见,当两次译码不一样的比特个数变多时,尝试的次数会急剧上升,复杂度高,变的不实用。
假设序列1和序列2经过上面所述的6次翻转尝试后仍然CRC校验失败。基站进行第二次重传,该第二次重传译码后得到17(c)所示的序列3。三个序列的比特不完全相同的位置标为A、B、C和D。D位置是新出现的 错误候选位置。因此,很有可能前两次传输D位置都出错了。这样,猜测D位置的比特为1,A、B和C处的比特通过尝试确定。优选的,先尝试三个序列在A、B和C位置个数占优的比特(例如,A、B和C位置个数占优的比特都是1)是否使得CRC校验成功,如果当对序列3中A、B、C和D中的M个比特进行反转后能够通过校验,那么进行M个比特翻转后的序列3就可以作为终端设备2的译码后的比特序列。
一般地,不论几个序列进行比较,都是找出这几个序列比特不完全一样的位置,然后在这些位置上分别指定比特0和1,看各种排列组合下CRC校验是否成功。当重传的次数变多时,比特不完全一样的位置也会变多。尝试的次数就会变大,复杂度变大。
尝试翻转方法的前提是译码后的误比特率(英文:Bit Error Rate,简写:BER)较低,并且每个用户的原始比特序列的长度较小(这符合小包传输的特点)。这样,每个用户的比特序列中出错的比特的个数较少,这些出错的比特落到同一个位置的概率就低。两次硬值译码结果不一致的位置就是出错比特的候选位置。因此有可能通过上述尝试翻转的方法获得正确的译码结果。
由此可见,该方式的优点是不需要译码器输出软值序列信息,在产品实现时,译码有可能在第三方提供的芯片中实现,虽然有软值序列但没有输出,这时就可以采用该方式。
可选地,作为本发明一个实施例,假设M个用户参与多用户联合编码。只有当有大于或等于N(1≤N≤M)个用户正确接收发向自己的数据时,下一次传输才向那些已经正确接收的用户发送新数据包,否则已经正确接收的用户也跟着重传。终端选择合并方式的原则如下:第一,如果某个终端接收初传数据,那么该终端不进行合并;第二,如果某个终端接收重传数据,并且前后两次传输参与多用户联合编码的所有用户的原始比特序列都相同,那么该终端就像现有LTE或UMTS系统那样在译码前进行HARQ合并,根据冗余版本是否相同选择Chase合并或IR合并,这时,终端需要缓存解调后的软值序列;第三,如果某个终端接收重传数据,并且前后两次传输参与多用户联合编码的所有用户的原始比特序列不完全相同,那么该终端就对译码后的软值序列进行合并,这时,终端需要缓存译码后的软值序列。
实际上,终端并不知道接收下一次重传数据时需要进行传统的HARQ 合并还是译码后的软值序列合并,因此,终端既要缓存解调后的软值序列也要缓存译码后的软值序列。具体操作时,为了节省缓存空间,终端仅需要缓存当次接收数据包时HARQ合并后的软值序列(例如图17(b)的“HARQ合并后的软值序列”)和译码后的软值序列与前次软值序列的合并结果(例如图17(c)的“本次译码和上次译码后的软值序列的合并”)。如果是接收初传数据包,那么就缓存当次解调后的软值序列(例如图17(a)图的“终端解调后的软值序列”)和当次译码后的软值序列(例如图17(a)图没有画出的与“终端译码后的比特序列”对应的软值序列),因为这时没有与前一次的合并结果。
可选地,作为本发明一个实施例,假设M个用户参与多用户联合编码。只有当有大于或等于N(1≤N≤M)个用户正确接收发向自己的数据时,下一次传输才向那些已经正确接收的用户发送新数据包,否则已经正确接收的用户也跟着重传。终端选择合并方式的原则如下:第一,如果某个终端接收初传数据,那么该终端不进行合并;第二,如果某个终端接收重传数据,并且前后两次传输参与多用户联合编码的所有用户的原始比特序列都相同,那么该终端就像现有LTE或UMTS系统那样在译码前进行HARQ合并(含Chase合并和IR合并)。这时,终端需要缓存解调后的软值序列。第三,如果某个终端接收重传数据,并且前后两次传输参与多用户联合编码的所有用户的原始比特序列不完全相同,那么该终端就对译码后的硬值进行比较和尝试翻转。这时,终端需要缓存译码后的比特序列。实际上,终端并不知道接收下一次重传数据时需要进行传统的HARQ合并还是译码后的硬值尝试翻转,因此,终端既要缓存解调后的软值序列也要缓存译码后的硬值。具体操作时,为了节省缓存空间,终端仅需要缓存当次接收数据包时HARQ合并后的软值序列和当次以及以往各次接收该数据包时译码后的比特序列(例如,如果这是该数据包的第二次重传,那么就要缓存该数据包在第二次重传、第一次重传和初传的译码后的比特序列)。在这种情况时,由于硬值比特是不能合并的,只能把各次的译码硬值结果都缓存。
图18至图21为本发明实施例在具体通信中的应用的详细介绍。
图18是本发明另一实施例的通信方法的示意图。
在本实施例中,需要对每个用户设备的下行控制信息(英文:Downlink Control Information,简写:DCI)进行多用户联合编码,编码方式为Turbo 编码。多个用户设备的DCI通过级联进行多用户联合编码,并且每个用户的CRC通过各自的C-RNTI进行加扰。规定每个用户的DCI的长度相等并且基站和各个用户设备已事先约定好。在这种情况下,每个用户设备进行完信道译码(即Turbo译码)后分段进行CRC校验,如果校验通过了就认为是发向自己的DCI。在本发明实施例中,DCI属于控制信息,不进行HARQ重传。
如图18所示的实施例中网络设备为基站。
图中示出了N个用户设备分别为用户设备1、用户设备2……用户设备N,在步骤1801中,首先对每个用户设备的DCI添加与对该用户设备对应的C-RNTI加扰后的CRC比特序列,得到每个用户设备添加了CRC的DCI,在步骤1802中,对这N个用户设备添加了CRC的DCI进行比特序列的级联,得到N个用户设备对应的联合比特序列,在步骤1803中,对联合比特序列进行Turbo编码、步骤1804的速率匹配、步骤1805调制以及步骤1806资源映射,最后发送至每个用户设备。
应理解,图中没有绘出资源映射后按照空口技术进行发射的过程。例如,对于LTE,资源映射后要进行IFFT,加CP等操作。
还应理解,基站执行上述方法的具体过程对应于上述实施例中描述的各个流程和/或步骤,为避免重复,在此不再赘述。
图19是本发明另一实施例的通信方法的示意图。图19示出的流程图与图18所示出的基站的流程相对应。如图19(a)所示,N个用户设备中的某个用户设备通过资源提取、解调、去速率匹配、Turbo码译码后、数据分段。Turbo译码后一个用户就得到了所有N个用户的DCI和CRC。为了叙述简洁,不妨假设基站直接将每个用户的DCI和CRC前后拼接,没有进行交织操作,并且每个用户DCI与CRC的长度相等。
如图19(b)所示,终端设备进行资源提取、解调、去速率匹配和Turbo码译码后就可以通过数据分段得到所有N个用户的DCI和对应的CRC,然后该用户用自己的C-RNTI分别对所有N段数据中的CRC进行解扰,最后对N段数据分别进行CRC校验。如果某段数据校验正确,那么那段数据的DCI就是该用户的DCI。
已有LTE系统的DCI是每个用户单独编码并单独进行资源映射。DCI在PDCCH上传输。为了保障DCI的解调性能,信道质量差的用户的DCI 需要占用更多的CCE,例如4个或8个CCE。当用户数多时,PDCCH的容量会受限。
已有LTE系统的DCI采用卷积编码。在本实施例中,多个用户的DCI进行多用户联合编码,并且采用Turbo编码方式。当块长小时,卷积编码的性能优于Turbo编码,这是已有系统控制信息采用卷积编码的原因。但是多个用户的DCI级联后块长变大,这时Turbo编码能获得比卷积编码更大的编码增益。
DCI不需要占用太多的资源就能达到性能指标,节省了控制信道的资源,使控制信道能够服务更多的用户,提升了控制信道的容量。
图20是本发明另一实施例的上行无调度系统中的应用的示意性流程图。
在现有技术中,不论上行有调度系统还是上行无调度系统,如果UE发送上行数据信息,那么基站都要向UE反馈物理层ACK/NACK以指示是否正确接收UE上行发送的数据。在已有的LTE系统中,基站反馈的ACK/NACK使用的时频资源索引与通过调度分给UE上行使用的资源索引有一定关系。这样,UE知道了自己在上行发送数据使用的资源,也就知道了基站反馈ACK/NACK使用的资源。
然而,上行无调度系统中,UE以竞争的方式使用上行资源,有可能两个UE同时使用相同的资源(例如,时频资源)向基站发送数据。这时,按照已有的协议,这两个UE都认为基站在某个资源上发送的ACK/NACK是发向自己的,但实际上,由于上行发生资源碰撞,基站有可能只解对了其中一个UE的数据(例如,该UE距离基站近,达到基站的功率高),根本不知道另一个UE也发送了数据(例如,该UE距离基站远,达到基站的功率低,被当做了干扰)。由此可见,在上行无调度系统中,基站向UE反馈物理层ACK/NACK时必须携带UE ID,否则UE无法区分ACK/NACK是否是发给自己的。
因此,在图20(a)和图20(b)所示的实施例中,多个UE的UE ID和ACK/NACK的标志被级联在一起进行多用户联合编码,编码方式为Turbo编码。UE ID和ACK/NACK的标识的长度,以及参与多用户联合编码的UE的个数是固定且预先配置好的。这样,UE在Turbo译码后就可以对数据段查找是否有自己的UE ID以及对应的ACK/NACK,ACK/NACK不需要重传。
因此,用户设备能够从编码比特序列中获得自己对应的ACK/NACK信 息,当采用编码增益随码长变大而变大的编码方式进行编码时,能够提高编码增益,改善信道编码性能,也有利于降低译码的复杂度。
图21为本发明实施例的中继通信系统应用多用户联合编码的示意图。
如图21(a)所示,图中包括宿主基站、中继基站和四个终端设备,在现有中继通信系统中,中继基站需要将收到的终端的信号发给宿主基站。已有系统的做法是将收到的每个终端的信号解调译码后重新编码,调制,资源映射后再发给宿主基站,每个终端设备的信号单独发送。
如图21(b)所示,如果应用多用户联合编码,那么中继基站首先将每个用户的译码解调译码,然后将每个用户的原始比特序列级联,再进行信道编码、调制,资源映射后发送给宿主基站,也就是多个用户设备的信息比特序列一起发送至宿主基站,中继基站采用联合编码节省了中继基站到宿主基站的链路资源。
因此,本发明实施例提供了一种信息处理的方法,将多个用户设备中每个设备的信息比特序列进行组合得到联合比特序列,对该联合比特序列统一进行编码得到编码比特序列,用户设备能够从编码比特序列中获得自己对应的信息比特序列,当采用编码增益随码长变大而变大的编码方式进行编码时,能够提高编码增益,改善信道编码性能。
图22为本发明实施例的网络设备的示意性框图。如图22所示,该网络设备2200包括:
组合单元2201,所述组合单元2201用于将由至少两个用户设备的第一信息比特序列进行组合处理,得到第一联合比特序列;
编码单元2202,所述编码单元2202用于采用第一编码方式对所述第一联合比特序列进行信道编码,得到第一编码比特序列;
发送单元2203,所述发送单元2403用于向接收端发送所述第一编码比特序列。
因此,本发明实施例提供了一种信息处理的方法,将多个用户设备中每个设备的信息比特序列进行组合得到联合比特序列,对该联合比特序列统一进行编码得到编码比特序列,用户设备能够从编码比特序列中获得自己对应的信息比特序列,当采用编码增益随码长变大而变大的编码方式进行编码时,能够提高编码增益,改善信道编码性能。
可选地,作为本发明一个实施例,采用所述第一编码方式产生的编码错 误概率与所述第一联合比特序列中的比特数量成反比例关系。
可选地,作为本发明一个实施例,所述每个用户设备的第一信息比特序列包括冗余循环校验CRC比特序列。
可选地,作为本发明一个实施例,所述组合单元2201具体用于:采用所述至少两个用户设备中每个用户设备的标识信息对应的用户设备的第一信息比特序列包括的CRC比特序列进行加扰运算
可选地,作为本发明一个实施例,所述第一联合比特序列包括CRC比特序列。
可选地,作为本发明一个实施例,,所述第一联合比特序列中还包括控制比特序列,所述控制比特序列携带第一指示信息,所述第一指示信息用于指示所述至少两个用户设备中的每个用户设备的第一信息比特序列在所述第一联合比特序列中的位置,所述第一指示信息包括所述至少两个用户设备中每个用户设备的标识信息。
可选地,作为本发明一个实施例,所述发送单元2203还用于:向所述至少两个用户设备中的每个用户设备发送第二指示信息,所述第二指示信息用于指示所述至少两个用户设备中的每个用户设备的第一信息比特序列在所述第一联合比特序列中的位置。
可选地,作为本发明一个实施例,所述至少两个用户设备的调制方式相同,并且所述至少两个用户设备中的任意两个用户设备传输的码率差别小于第一阈值;或者,所述至少两个用户设备中的任意两个用户设备的信道质量差别小于第二阈值;或者,所述至少两个用户设备在设备到设备M2M通信系统中的覆盖等级相同的。
可选地,作为本发明一个实施例,所述网络设备还包括确定单元,所述确定单元用于进行下列操作中的一种:确定所述第一编码比特的调制方式为预设调制方式;对所述第一编码比特进行信道映射,以得到所述第一编码比特占用的频带,并且根据所述频带的部分带宽或全部带宽上的当前信道状态,确定所述第一编码比特的调制方式,其中,所述频带的部分带宽或全部带宽上的信道状态越好,所述调制方式的调制阶数越高;根据所述每个用户设备的信息比特大小与可用时频资源大小的关系,确定所述第一联合比特的调制方式,相同信息比特大小时,可用时频资源越大,调制阶数越低。
可选地,作为本发明一个实施例,所述接收端为所述至少两个用户设备 中的每个用户,所述至少两个用户设备的数量为N,所述至少两个用户设备中存在M个用户设备无法正确译码所述M个用户设备中每个用户设备对应的第一信息比特序列,所述N-M个用户设备中的每个用户设备能够正确译码其对应的所述第一信息比特序列,其中,N、M为正整数,所述方法还包括:当M≥Q时,向所述多个用户设备中的每个用户设备发送第二编码比特序列,所述第二编码比特序列由所述第一联合比特序列利用所述第一编码方式进行信道编码得到;当M<Q时,向所述多个用户设备中的每个用户设备发送第三编码比特序列,所述第三编码比特序列由第二联合比特序列利用所述第一编码方式进行信道编码得到,所述第二联合比特序列由所述M个用户设备中每个用户设备对应的第一信息比特序列和所述N-M个用户设备中每个用户设备对应的第三信息比特序列得到,其中,Q为正整数,1≤Q≤N。
可选地,作为本发明一个实施例,所述第一编码方式为以下方式中的一种:Turbo码,低密度奇偶校验LDPC码和Polar码。
因此,本发明实施例提供了一种信息处理的方法,将多个用户设备中每个设备的信息比特序列进行组合得到联合比特序列,对该联合比特序列统一进行编码得到编码比特序列,用户设备能够从编码比特序列中获得自己对应的信息比特序列,当采用编码增益随码长变大而变大的编码方式进行编码时,能够提高编码增益,改善信道编码性能。
图23为本发明实施例的第一用户设备的示意性框图。如图23所示,该第一用户设备2300包括:
接收单元2301,所述接收单元2301用于接收网络设备发送的第一编码比特序列,所述第一编码比特序列由第一联合比特序列利用第一编码方式进行编码得到,所述第一联合比特序列由所述网络设备向多个用户设备中每个用户设备发送的第一信息比特序列组合得到,所述多个用户设备包括所述第一用户设备;
解码单元2302,所述解码单元2302用于根据所述第一联合比特序列,得到所述第一用户设备所需的第一信息比特序列。
因此,本发明实施例提供了一种信息处理的方法,将多个用户设备中每个设备的信息比特序列进行组合得到联合比特序列,对该联合比特序列统一进行编码得到编码比特序列,用户设备能够从编码比特序列中获得自己对应的信息比特序列,当采用编码增益随码长变大而变大的编码方式进行编码 时,能够提高编码增益,改善信道编码性能。
可选地,作为本发明一个实施例,采用所述第一编码方式产生的编码错误概率随着所述第一联合比特序列中的比特数量的增多而减小。
可选地,作为本发明一个实施例,所述接收单元2301具体用于:若所述第一联合比特序列还包括控制比特序列,所述控制比特序列携带所述第一用户设备的第一指示信息,根据所述第一指示信息,确定所述第一用户设备的第一信息比特序列在所述第一联合比特序列中的位置,其中,所述第一用户设备的第一指示信息比特序列包括所述第一用户设备的设备标识信息。
可选地,作为本发明一个实施例,所述接收单元2301具体用于:接收所述网络设备发送的第二指示信息,所述第二指示信息用于指示所述第一用户设备的第一信息比特序列在所述第一联合比特序列中的位置;根据所述第二指示信息,确定所述第一用户设备的第一信息比特序列在所述第一联合比特序列中的位置。
可选地,作为本发明一个实施例,所述接收单元2301具体用于:若所述第一用户设备的第一信息比特序列已添加第一冗余循环校验CRC比特序列,所述第一CRC比特序列已与所述第一用户的小区无线网络临时标识C-RNTI信息或所述每个用户的用户标识信息进行加扰运算,所述第一用户设备根据加扰后的所述CRC比特序列确定所述第一用户设备的第一数据信息比特序列。
可选地,作为本发明一个实施例,所述接收单元2301具体用于:若所述第一用户设备无法正确译码所述第一用户设备对应的第一信息比特序列,接收网络设备发送的第二编码比特序列,所述第二编码比特序列由所述第一联合比特序列利用所述第一编码方式进行编码得到。
可选地,作为本发明一个实施例,所述解码单元2302具体用于:对所述第一编码比特序列进行解调处理,得到第一软值序列;对所述第二编码比特序列进行解调处理,得到第二软值序列;所述第一软值序列和所述第二软值序列进行合并,得到第三软值序列;对所述第三软值序列进行译码,得到所述第一用户设备的第一信息比特序列。
可选地,作为本发明一个实施例,所述接收单元2301具体用于:若所述第一用户设备无法正确译码所述第一用户设备对应的第一信息比特序列,接收网络设备发送的第三编码比特序列,所述第三编码比特序列由第二联合 比特序列利用所述第一编码方式进行信道编码得到,所述第二联合比特序列由所述第一用户设备的第一信息比特序列和所述多个用户设备中第二用户设备的第二信息比特序列组合得到。
可选地,作为本发明一个实施例,所述解码单元2302具体用于:对所述第一编码比特序列进行译码,得到所述第一用户设备对应的第四软值序列;对所述第三编码比特序列进行译码,得到所述第一用户设备对应的第五软值序列;对所述第四软值序列和所述第五软值序列进行合并,得到第六软值序列;对所述第六软值序列进行软值硬判,得到所述第一用户设备的第一信息比特序列。
可选地,作为本发明一个实施例,所述解码单元2302具体用于:对所述第一编码比特序列进行译码,得到所述第一用户设备对应的第一硬值比特序列;所述第三编码比特序列进行译码,得到所述第一用户设备对应的第二硬值比特序列;确定所述第二硬值比特序列中与所述第一硬值比特序列中位置相同且比特值不同的N个异常比特,N为正整数;对所述第二硬值比特序列的N个异常比特中的M个异常比特进行比特反转,其中,0<M<N,M为正整数;当对所述M个异常比特进行比特反转后的第二硬值比特序列通过校验时,将经过M个异常比特反转后的第二硬值比特序列作为所述第一用户设备的第一信息比特序列。
可选地,作为本发明一个实施例,所述第一编码方式为以下方式中的至少一种:Turbo码,LDPC码和Polar码。
因此,本发明实施例提供了一种信息处理的方法,将多个用户设备中每个设备的信息比特序列进行组合得到联合比特序列,对该联合比特序列统一进行编码得到编码比特序列,用户设备能够从编码比特序列中获得自己对应的信息比特序列,当采用编码增益随码长变大而变大的编码方式进行编码时,能够提高编码增益,改善信道编码性能。
图24为本发明实施例用于信息处理的装置的示意图。
如图24,该装置2400包括发送器2401、接收器2402、处理器2403、存储器2404和总线系统2405。其中,发送器2401、接收器2402、处理器2403和存储器2404通过总线系统2405相连,该存储器2404用于存储指令,该处理器2403用于执行该存储器2404存储的指令,以控制该发送器2701发送信号,并控制该接收器2402接收信号。装置2400能够实现前述方法实 施例中的相应流程,为避免重复,这里不再赘述。
图25为本发明实施例用于信息处理的装置的示意图。
如图25,该装置2500包括接收器2501、处理器2502、存储器2503和总线系统2504。其中,接收器2501、处理器2502和存储器2503通过总线系统2504相连,该存储器2503用于存储指令,该处理器2502用于执行该存储器2503存储的指令,以控制该发送器2501发送信号,并控制该接收器2502接收信号。装置2500能够实现前述方法实施例中的相应流程,为避免重复,这里不再赘述。
应理解,在本发明实施例中,该处理器可以是中央处理单元(Central Processing Unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器执行存储器中的指令,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例中描述的各方法步骤和单元,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各实施例的步骤及组成。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。本领域普通技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,上述提到的第一用户设 备、第二用户设备、第三用户设备以及其它描述中出现的第一、第二、第三仅仅是为了区别描述对象,不构成顺序限定、优先级和优劣限定。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本发明实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,简称为“ROM”)、随机存取存储器(Random Access Memory,简称为“RAM”)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (42)

  1. 一种处理信息的方法,其特征在于,包括:
    将至少两个用户设备的第一信息比特序列进行组合处理,得到第一联合比特序列;
    采用第一编码方式对所述第一联合比特序列进行信道编码,得到第一编码比特序列;
    向接收端发送所述第一编码比特序列。
  2. 根据权利要求1所述的方法,其特征在于,采用所述第一编码方式产生的编码错误概率与所述第一联合比特序列中的比特数量成反比例关系。
  3. 根据权利要求1或2所述的方法,其特征在于,所述每个用户设备的第一信息比特序列包括冗余循环校验CRC比特序列。
  4. 根据权利要求3所述的方法,其特征在于,所述方法还包括:
    采用所述至少两个用户设备中每个用户设备的标识信息对应的用户设备的第一信息比特序列包括的CRC比特序列进行加扰运算。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述第一联合比特序列包括CRC比特序列。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述第一联合比特序列中还包括控制比特序列,所述控制比特序列携带第一指示信息,所述第一指示信息用于指示所述至少两个用户设备中的每个用户设备的第一信息比特序列在所述第一联合比特序列中的位置,所述第一指示信息包括所述至少两个用户设备中每个用户设备的标识信息。
  7. 根据权利要求1至5中任一项所述的方法,其特征在于,所述方法还包括:
    向所述至少两个用户设备中的每个用户设备发送第二指示信息,所述第二指示信息用于指示所述至少两个用户设备中的每个用户设备的第一信息比特序列在所述第一联合比特序列中的位置。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,
    所述至少两个用户设备的调制方式相同,并且所述至少两个用户设备中的任意两个用户设备传输的码率差别小于第一阈值;或者
    所述至少两个用户设备中的任意两个用户设备的信道质量差别小于第二阈值;或者
    所述至少两个用户设备在设备到设备M2M通信系统中的覆盖等级相同的。
  9. 根据权利要求1至8中任一项所述的方法,其特征在于,所述接收端为所述至少两个用户设备中的每个用户,所述至少两个用户设备的数量为N,所述至少两个用户设备中存在M个用户设备无法正确译码所述M个用户设备中每个用户设备对应的第一信息比特序列,所述N-M个用户设备中的每个用户设备能够正确译码其对应的所述第一信息比特序列,其中,N、M为正整数,
    当M≥Q时,所述方法还包括:向所述多个用户设备中的每个用户设备发送第二编码比特序列,所述第二编码比特序列由所述第一联合比特序列利用所述第一编码方式进行信道编码得到;或者
    当M<Q时,所述方法还包括:向所述多个用户设备中的每个用户设备发送第三编码比特序列,所述第三编码比特序列由第二联合比特序列利用所述第一编码方式进行信道编码得到,所述第二联合比特序列由所述M个用户设备中每个用户设备对应的第一信息比特序列和所述N-M个用户设备中每个用户设备对应的第三信息比特序列得到,其中,Q为正整数,1≤Q≤N。
  10. 根据权利要求1至9中任一项所述的方法,其特征在于,所述第一编码方式为以下方式中的任意一种:Turbo码,低密度奇偶校验LDPC码和Polar码。
  11. 一种信息处理的方法,其特征在于,包括:
    第一用户设备接收网络设备发送的第一编码比特序列,所述第一编码比特序列由所述网络设备利用第一编码方式对第一联合比特序列进行编码得到,所述第一联合比特序列由所述网络设备向多个用户设备中每个用户设备发送的第一信息比特序列组合得到,所述多个用户设备包括所述第一用户设备;
    所述第一用户设备根据所述第一联合比特序列,得到所述第一用户设备的第一信息比特序列。
  12. 根据权利要求11所述的方法,其特征在于,采用所述第一编码方式产生的编码错误概率随着所述第一联合比特序列中的比特数量的增多而减小。
  13. 根据权利要求11或12所述的方法,其特征在于,所述第一联合比 特序比特序列还包括控制比特序列,且所述控制比特序列携带所述第一用户设备的第一指示信息,所述方法还包括:
    根据所述第一指示信息,确定所述第一用户设备的第一信息比特序列在所述第一联合比特序列中的位置,其中,所述第一用户设备的第一指示信息比特序列包括所述第一用户设备的设备标识信息。
  14. 根据权利要求11或12所述的方法,其特征在于,所述方法还包括:
    接收所述网络设备发送的第二指示信息,所述第二指示信息用于指示所述第一用户设备的第一信息比特序列在所述第一联合比特序列中的位置;
    根据所述第二指示信息,确定所述第一用户设备的第一信息比特序列在所述第一联合比特序列中的位置。
  15. 根据权利要求11至14中任一项所述的方法,其特征在于,所述第一用户设备的第一信息比特序列包括第一冗余循环校验CRC比特序列,且所述第一CRC比特序列已与所述第一用户设备的标识信息进行加扰运算,所述方法还包括:
    所述第一用户设备根据加扰后的所述第一CRC比特序列确定所述第一用户设备的第一信息比特序列。
  16. 根据权利要求11至15中任一项所述的方法,其特征在于,所述根据所述第一联合比特序列,得到所述第一用户设备所需的第一信息比特序列,包括:
    接收所述网络设备发送的第二编码比特序列,所述第二编码比特序列由所述网络设备利用所述第一编码方式对所述第一联合比特序列进行编码得到。
  17. 根据权利要求16所述的方法,其特征在于,所述根据所述第一联合比特序列,得到所述第一用户设备所需的第一信息比特序列,包括:
    对所述第一编码比特序列进行解调处理,得到第一软值序列;
    对所述第二编码比特序列进行解调处理,得到第二软值序列;
    对所述第一软值序列和所述第二软值序列进行合并,得到第三软值序列;
    对所述第三软值序列进行译码,得到所述第一用户设备的第一信息比特序列。
  18. 根据权利要求11至15中任一项所述的方法,其特征在于,所述根 据所述第一联合比特序列,得到所述第一用户设备所需的第一信息比特序列,包括:
    若所述第一用户设备无法正确译码所述第一用户设备对应的第一信息比特序列,接收网络设备发送的第三编码比特序列,所述第三编码比特序列由所述网络设备利用所述第一编码方式对第二联合比特序列进行信道编码得到,所述第二联合比特序列由所述第一用户设备的第一信息比特序列和所述多个用户设备中第二用户设备的第二信息比特序列组合得到。
  19. 根据权利要求18所述的方法,其特征在于,所述根据所述第一联合比特序列,得到所述第一用户设备所需的第一信息比特序列,包括:
    对所述第一编码比特序列进行译码,得到所述第一用户设备对应的第四软值序列;
    对所述第三编码比特序列进行译码,得到所述第一用户设备对应的第五软值序列;
    对所述第四软值序列和所述第五软值序列进行合并,得到第六软值序列;
    对所述第六软值序列进行软值硬判,得到所述第一用户设备的第一信息比特序列。
  20. 根据权利要求19所述的方法,其特征在于,所述根据所述第一联合比特序列,得到所述第一用户设备所需的第一信息比特序列,包括:
    对所述第一编码比特序列进行译码,得到所述第一用户设备对应的第一硬值比特序列;
    对所述第三编码比特序列进行译码,得到所述第一用户设备对应的第二硬值比特序列;
    确定所述第二硬值比特序列中与所述第一硬值比特序列中位置相同且比特值不同的N个异常比特,N为正整数;
    对所述第二硬值比特序列的N个异常比特中的M个异常比特进行比特反转,其中,0<M<N,M为正整数;
    当对所述M个异常比特进行比特反转后的第二硬值比特序列通过校验时,将经过M个异常比特反转后的第二硬值比特序列作为所述第一用户设备的第一信息比特序列。
  21. 根据权利要求11至20中任一项所述的方法,其特征在于,所述第 一编码方式为以下方式中的至少一种:Turbo码,LDPC码和Polar码。
  22. 一种网络设备,其特征在于,包括:
    组合单元,所述组合单元用于将由至少两个用户设备的第一信息比特序列进行组合处理,得到第一联合比特序列;
    编码单元,所述编码单元用于采用第一编码方式对所述第一联合比特序列进行信道编码,得到第一编码比特序列;
    发送单元,所述发送单元用于向接收端发送所述第一编码比特序列。
  23. 根据权利要22所述的网络设备,其特征在于,采用所述第一编码方式产生的编码错误概率与所述第一联合比特序列中的比特数量成反比例关系。
  24. 根据权利要求22或23所述的网络设备,其特征在于,所述每个用户设备的第一信息比特序列包括冗余循环校验CRC比特序列。
  25. 根据权利要求24中任一项所述的网络设备,其特征在于,所述组合单元具体用于:采用所述至少两个用户设备中每个用户设备的标识信息对应的用户设备的第一信息比特序列包括的CRC比特序列进行加扰运算
  26. 根据权利要求22至25中任一项所述的网络设备,其特征在于,所述第一联合比特序列包括CRC比特序列。
  27. 根据权利要求22至26中任一项所述的网络设备,其特征在于,所述第一联合比特序列中还包括控制比特序列,所述控制比特序列携带第一指示信息,所述第一指示信息用于指示所述至少两个用户设备中的每个用户设备的第一信息比特序列在所述第一联合比特序列中的位置,所述第一指示信息包括所述至少两个用户设备中每个用户设备的标识信息。
  28. 根据权利要求22至26中任一项所述的网络设备,其特征在于,所述发送单元还用于:
    向所述至少两个用户设备中的每个用户设备发送第二指示信息,所述第二指示信息用于指示所述至少两个用户设备中的每个用户设备的第一信息比特序列在所述第一联合比特序列中的位置。
  29. 根据权利要求22至28中任一项所述的网络设备,其特征在于,
    所述至少两个用户设备的调制方式相同,并且所述至少两个用户设备中的任意两个用户设备传输的码率差别小于第一阈值;或者
    所述至少两个用户设备中的任意两个用户设备的信道质量差别小于第 二阈值;或者
    所述至少两个用户设备在设备到设备M2M通信系统中的覆盖等级相同的。
  30. 根据权利要求22至29中任一项所述的网络设备,其特征在于,所述接收端为所述至少两个用户设备中的每个用户,所述至少两个用户设备的数量为N,所述至少两个用户设备中存在M个用户设备无法正确译码所述M个用户设备中每个用户设备对应的第一信息比特序列,所述N-M个用户设备中的每个用户设备能够正确译码其对应的所述第一信息比特序列,其中,N、M为正整数,所述方法还包括:
    当M≥Q时,向所述多个用户设备中的每个用户设备发送第二编码比特序列,所述第二编码比特序列由所述第一联合比特序列利用所述第一编码方式进行信道编码得到;
    当M<Q时,向所述多个用户设备中的每个用户设备发送第三编码比特序列,所述第三编码比特序列由第二联合比特序列利用所述第一编码方式进行信道编码得到,所述第二联合比特序列由所述M个用户设备中每个用户设备对应的第一信息比特序列和所述N-M个用户设备中每个用户设备对应的第三信息比特序列得到,其中,Q为正整数,1≤Q≤N。
  31. 根据权利要求22至30中任一项所述的网络设备,其特征在于,所述第一编码方式为以下方式中的任意一种:Turbo码,低密度奇偶校验LDPC码和Polar码。
  32. 一种第一用户设备,其特征在于,包括:
    接收单元,所述接收单元用于接收网络设备发送的第一编码比特序列,所述第一编码比特序列由所述网络设备利用第一编码方式对第一联合比特序列进行编码得到,所述第一联合比特序列由所述网络设备向多个用户设备中每个用户设备发送的第一信息比特序列组合得到,所述多个用户设备包括所述第一用户设备;
    解码单元,所述解码单元用于根据所述第一联合比特序列,得到所述第一用户设备所需的第一信息比特序列。
  33. 根据权利要求32所述的第一用户设备,其特征在于,采用所述第一编码方式产生的编码错误概率随着所述第一联合比特序列中的比特数量的增多而减小。
  34. 根据权利要求32或33所述的第一用户设备,其特征在于,所述接收单元具体用于:
    若所述第一联合比特序列还包括控制比特序列,所述控制比特序列携带所述第一用户设备的第一指示信息,根据所述第一指示信息,确定所述第一用户设备的第一信息比特序列在所述第一联合比特序列中的位置,其中,所述第一用户设备的第一指示信息比特序列包括所述第一用户设备的设备标识信息。
  35. 根据权利要求32或33所述的第一用户设备,其特征在于,所述接收单元具体用于:
    接收所述网络设备发送的第二指示信息,所述第二指示信息用于指示所述第一用户设备的第一信息比特序列在所述第一联合比特序列中的位置;
    根据所述第二指示信息,确定所述第一用户设备的第一信息比特序列在所述第一联合比特序列中的位置。
  36. 根据权利要求32至35中任一项所述的第一用户设备,其特征在于,所述接收单元具体用于:
    若所述第一用户设备的第一信息比特序列包括第一冗余循环校验CRC比特序列,所述第一CRC比特序列已与所述第一用户设备的标识信息进行加扰运算,所述第一用户设备根据加扰后的所述第一CRC比特序列确定所述第一用户设备的第一信息比特序列。
  37. 根据权利要求32至36中任一项所述的第一用户设备,其特征在于,所述接收单元具体用于:
    若所述第一用户设备无法正确译码所述第一用户设备对应的第一信息比特序列,接收所述网络设备发送的第二编码比特序列,所述第二编码比特序列由所述网络设备利用第一编码方式对所述第一联合比特序列进行编码得到。
  38. 根据权利要求37所述的第一用户设备,其特征在于,所述编码单元具体用于:
    对所述第一编码比特序列进行解调处理,得到第一软值序列;
    对所述第二编码比特序列进行解调处理,得到第二软值序列;
    对所述第一软值序列和所述第二软值序列进行合并,得到第三软值序列;
    对所述第三软值序列进行译码,得到所述第一用户设备的第一信息比特序列。
  39. 根据权利要求32至36中任一项所述的第一用户设备,其特征在于,所述接收单元具体还用于:
    若所述第一用户设备无法正确译码所述第一用户设备对应的第一信息比特序列,接收网络设备发送的第三编码比特序列,所述第三编码比特序列由所述网络设备利用第一编码方式对第二联合比特序列进行信道编码得到,所述第二联合比特序列由所述第一用户设备的第一信息比特序列和所述多个用户设备中第二用户设备的第二信息比特序列组合得到。
  40. 根据权利要求39所述的第一用户设备,其特征在于,所述解码单元具体用于:
    对所述第一编码比特序列进行译码,得到所述第一用户设备对应的第四软值序列;
    对所述第三编码比特序列进行译码,得到所述第一用户设备对应的第五软值序列;
    对所述第四软值序列和所述第五软值序列进行合并,得到第六软值序列;
    对所述第六软值序列进行软值硬判,得到所述第一用户设备的第一信息比特序列。
  41. 根据权利要求40所述的第一用户设备,其特征在于,所述解码单元具体用于,包括:
    对所述第一编码比特序列进行译码,得到所述第一用户设备对应的第一硬值比特序列;
    对所述第三编码比特序列进行译码,得到所述第一用户设备对应的第二硬值比特序列;
    确定所述第二硬值比特序列中与所述第一硬值比特序列中位置相同且比特值不同的N个异常比特,N为正整数;
    对所述第二硬值比特序列的N个异常比特中的M个异常比特进行比特反转,其中,0<M<N,M为正整数;
    当对所述M个异常比特进行比特反转后的第二硬值比特序列通过校验时,将经过M个异常比特反转后的第二硬值比特序列作为所述第一用户设 备的第一信息比特序列。
  42. 根据权利要求32至41中任一项所述的方法,其特征在于,所述第一编码方式为以下方式中的任意一种:Turbo码,LDPC码和Polar码。
PCT/CN2015/097454 2015-12-15 2015-12-15 通信方法及网络设备、用户设备 WO2017101023A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/097454 WO2017101023A1 (zh) 2015-12-15 2015-12-15 通信方法及网络设备、用户设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/097454 WO2017101023A1 (zh) 2015-12-15 2015-12-15 通信方法及网络设备、用户设备

Publications (1)

Publication Number Publication Date
WO2017101023A1 true WO2017101023A1 (zh) 2017-06-22

Family

ID=59055597

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/097454 WO2017101023A1 (zh) 2015-12-15 2015-12-15 通信方法及网络设备、用户设备

Country Status (1)

Country Link
WO (1) WO2017101023A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111448771A (zh) * 2017-11-17 2020-07-24 高通股份有限公司 极化码的用户特定加扰
CN112804312A (zh) * 2020-12-31 2021-05-14 上海掌门科技有限公司 文件上传方法、设备以及计算机可读介质
US11211947B2 (en) 2017-08-04 2021-12-28 Huawei Technologies Co., Ltd. Polar code encoding method and apparatus, polar code decoding method and apparatus, and device
CN114978411A (zh) * 2021-02-25 2022-08-30 中国移动通信有限公司研究院 一种传输块处理方法及设备、存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994006217A1 (en) * 1992-09-07 1994-03-17 Millicom Holdings (Uk) Ltd. Spread spectrum communication system with adaptive power control
CN1247419A (zh) * 1998-07-28 2000-03-15 朗迅科技公司 通信系统
CN102149134A (zh) * 2004-08-13 2011-08-10 索尼公司 用于在蜂窝通信系统中传送用户设备特定信息的设备和方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994006217A1 (en) * 1992-09-07 1994-03-17 Millicom Holdings (Uk) Ltd. Spread spectrum communication system with adaptive power control
CN1247419A (zh) * 1998-07-28 2000-03-15 朗迅科技公司 通信系统
CN102149134A (zh) * 2004-08-13 2011-08-10 索尼公司 用于在蜂窝通信系统中传送用户设备特定信息的设备和方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11211947B2 (en) 2017-08-04 2021-12-28 Huawei Technologies Co., Ltd. Polar code encoding method and apparatus, polar code decoding method and apparatus, and device
CN111448771A (zh) * 2017-11-17 2020-07-24 高通股份有限公司 极化码的用户特定加扰
CN111448771B (zh) * 2017-11-17 2023-09-01 高通股份有限公司 一种极化码的用户特定加扰的方法和装置
CN112804312A (zh) * 2020-12-31 2021-05-14 上海掌门科技有限公司 文件上传方法、设备以及计算机可读介质
CN112804312B (zh) * 2020-12-31 2023-06-30 上海掌门科技有限公司 文件上传方法、设备以及计算机可读介质
CN114978411A (zh) * 2021-02-25 2022-08-30 中国移动通信有限公司研究院 一种传输块处理方法及设备、存储介质

Similar Documents

Publication Publication Date Title
CN111954982B (zh) 无线通信系统和广播系统中使用极性码进行编码和解码的装置和方法
JP6731115B2 (ja) 情報送信方法、送信端デバイス及び受信端デバイス
US11197281B2 (en) Control information transmission method and apparatus
US11212036B2 (en) Data communication method, device, and system
EP4075708B1 (en) Communication method and communication apparatus
KR101633326B1 (ko) 전송 방법
US11374687B2 (en) Data sending method, data receiving method, and related device
US10516505B2 (en) Baseband processors, base station, user device, and methods thereof
CN108462554B (zh) 一种极性码的传输方法和装置
WO2010150512A1 (ja) 無線通信基地局装置、無線通信端末装置、制御チャネル送信方法および制御チャネル受信方法
WO2020166230A1 (ja) 通信装置及び通信方法
JP7165954B2 (ja) チャネル符号化に用いるユーザー装置、基地局における方法及び装置
WO2017101023A1 (zh) 通信方法及网络设备、用户设备
US11750215B2 (en) Method and device in UE and base station for channel coding
US20210203361A1 (en) Method and apparatus for transmitting information
TWI791023B (zh) 編碼輸入資料為極性碼的方法及設備、解碼方法及用以解碼碼字的設備
CN108631977B (zh) 一种广播信息指示的发送方法和发送设备
CN109952709B (zh) 一种基站、用户设备中的用于信道编码的方法和装置
CN109644066B (zh) 一种被用于无线通信的用户、基站中的方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15910496

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15910496

Country of ref document: EP

Kind code of ref document: A1