WO2022174818A1 - 一种用于无线通信的节点中的方法和装置 - Google Patents

一种用于无线通信的节点中的方法和装置 Download PDF

Info

Publication number
WO2022174818A1
WO2022174818A1 PCT/CN2022/076867 CN2022076867W WO2022174818A1 WO 2022174818 A1 WO2022174818 A1 WO 2022174818A1 CN 2022076867 W CN2022076867 W CN 2022076867W WO 2022174818 A1 WO2022174818 A1 WO 2022174818A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
carrier
parameter
pucch
sequence
Prior art date
Application number
PCT/CN2022/076867
Other languages
English (en)
French (fr)
Inventor
刘铮
Original Assignee
上海推络通信科技合伙企业(有限合伙)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202111639262.9A external-priority patent/CN114979967A/zh
Application filed by 上海推络通信科技合伙企业(有限合伙) filed Critical 上海推络通信科技合伙企业(有限合伙)
Priority to CN202280006501.3A priority Critical patent/CN117321970A/zh
Publication of WO2022174818A1 publication Critical patent/WO2022174818A1/zh
Priority to US18/225,695 priority patent/US20230370215A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/0012Hopping in multicarrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource

Definitions

  • the present application relates to a transmission method and apparatus in a wireless communication system, and in particular, to a transmission scheme and apparatus for multicast, multicast or broadcast in wireless communication.
  • Multicast multicast
  • Broadcast broadcast
  • NR Rel-17 in order to support multicast and broadcast services, the WI for multicast and broadcast services under NR was approved at the 3GPP RAN#86 plenary meeting, and related standardization work began.
  • the WI of multicast and broadcast transmission supports HARQ feedback for multicast/broadcast transmission to improve the robustness of multicast/broadcast transmission.
  • This application discloses a solution for the HARQ feedback problem of multicast/broadcast transmission. It should be noted that, in the description of this application, multicast/broadcast transmission is only used as a typical application scenario or example; this application is also applicable to other scenarios that face similar problems (such as scenarios where multiple services coexist, Or a scenario where there are multiple parallel downlink transmissions for the same user equipment in one serving cell, etc.), a similar technical effect can also be achieved. In addition, adopting a unified solution for different scenarios (including but not limited to scenarios of multicast/broadcast transmission) also helps to reduce hardware complexity and cost.
  • the present application discloses a method in a first node for wireless communication, which is characterized by comprising:
  • the first PUCCH occupies X1 multi-carrier symbols in the time domain, the first PDCCH is used to determine the starting multi-carrier symbol among the X1 multi-carrier symbols, and the X1 is greater than 1 positive integer of ;
  • the first base sequence is used to generate the first PUCCH, the first base sequence is cyclically shifted to generate X2 sequences, any two sequences in the X2 sequences are different, and the X2 is greater than A positive integer of 1;
  • the target multi-carrier symbol is one of the X1 multi-carrier symbols, the target RE set includes multiple REs occupied by the first PUCCH, and any RE included in the target RE set is in the The time domain occupies the target multi-carrier symbol;
  • the target sequence is one of the X2 sequences, the target parameter is used to determine the cyclic shift of the target sequence, and the target sequence is used to generate a mapping to the The complex-valued symbol on the target RE set;
  • the target parameter is one of the X3 alternative parameters, and any one of the X3 alternative parameters is a non-negative parameter smaller than the length of the first basic sequence Integer, the X3 is a positive integer greater than 1; the difference between two candidate parameters in the X3 candidate parameters is
  • the target parameter is determined by the position of the target multi-carrier symbol, thereby supporting the use of different cyclic shifts on different OFDM symbols to carry the NACK feedback information, increasing the diversity gain and improving the transmission efficiency of the NACK feedback information. robustness.
  • the difference between the two candidate parameters is required to be no less than half of the length of the first basic sequence, thereby increasing the distance between two or more values of the cyclic shift carrying the NACK feedback information, reducing the The probability of missed detection further increases the diversity gain and improves the performance of NACK feedback transmission.
  • the above method is characterized by comprising:
  • the first PDSCH carries a first bit block
  • the first bit block includes a positive integer number of bits
  • the first PUCCH is used to indicate that the first bit block is erroneously decoded.
  • the above method is characterized in that a first parameter is used to determine the cyclic shift of the target sequence, a pseudorandom sequence is used to determine the first parameter, and the first parameter is a non-negative integer ; the target identification is used to determine the initial value of the generator of the pseudo-random sequence; the target identification is configurable, or the target identification is predefined.
  • the above method is characterized by comprising:
  • the first information block is used to determine the X1 multi-carrier symbols, and the first information block is used to determine whether the first PUCCH adopts frequency hopping; when the first PUCCH adopts frequency hopping , the frequency hopping section to which the target multi-carrier symbol belongs is used to determine the target parameter from the X3 candidate parameters; otherwise, the target multi-carrier symbol is in the X1 multi-carrier symbols.
  • the position is used to determine the target parameter from the X3 candidate parameters.
  • the value of the cyclic shift carrying the NACK feedback information is combined with the frequency hopping section in which it is located, so as to achieve a balance point between combining gain and diversity gain, and maximize the transmission performance of the NACK feedback information.
  • the above method is characterized in that a second parameter is used to determine the cyclic shift of the target sequence, and the second parameter is a non-negative integer; at least one of the first identifier or the first measurement value is used to determine the second parameter, the first identifier is an identifier configured by the first node, and the first measurement value is a measurement value obtained by the first node through measurement.
  • the second parameter is determined according to at least one of the first identifier or the first measurement value, so as to support user equipments belonging to different user equipment groups to use different cyclic shifts when feeding back NACK information, so that the base station Different retransmission strategies can be determined according to the feedback conditions of different user equipment groups, so as to improve the resource utilization of NACK feedback information transmission and data retransmission.
  • the above-mentioned method is characterized in that X4 modulation symbols are used to generate the first PUCCH, and any two modulation symbols in the X4 modulation symbols use the same modulation mode, and the X4 modulation symbols adopt the same modulation mode.
  • the phases of any two modulation symbols in the modulation symbols are different, and the X4 is a positive integer greater than 1;
  • the first RE is an RE occupied by the first PUCCH, and the target modulation symbol is used to generate mapping to the The complex-valued symbol on the first RE, the target modulation symbol is one of the X4 modulation symbols, and the time domain position of the multi-carrier symbol occupied by the first RE in the time domain is used to determine the Target modulation symbol.
  • the phase of the modulation symbol is supported to change with the position of the multi-carrier symbol, maximizing the Euclidean distance during modulation, and further improving the diversity gain , to optimize the transmission performance of NACK feedback information.
  • the above method is characterized in that the X3 candidate parameters are arranged in order from small to large, and the difference between any two adjacent candidate parameters in the X3 candidate parameters is equal to the first The difference value, the length of the first base sequence and the X3 are used together to determine the first difference value.
  • the present application discloses a method in a second node for wireless communication, characterized by comprising:
  • the first PUCCH occupies X1 multi-carrier symbols in the time domain, the first PDCCH is used to indicate the starting multi-carrier symbol among the X1 multi-carrier symbols, and the X1 is greater than 1 positive integer of ;
  • the first base sequence is used to generate the first PUCCH, the first base sequence is cyclically shifted to generate X2 sequences, any two sequences in the X2 sequences are different, and the X2 is greater than A positive integer of 1;
  • the target multi-carrier symbol is one of the X1 multi-carrier symbols, the target RE set includes multiple REs occupied by the first PUCCH, and any RE included in the target RE set is in the The time domain occupies the target multi-carrier symbol;
  • the target sequence is one of the X2 sequences, the target parameter is used to determine the cyclic shift of the target sequence, and the target sequence is used to generate a mapping to the The complex-valued symbol on the target RE set;
  • the target parameter is one of the X3 alternative parameters, and any one of the X3 alternative parameters is a non-negative parameter smaller than the length of the first basic sequence Integer, the X3 is a positive integer greater than 1; the difference between two candidate parameters in the X3 candidate parameters is
  • the above method is characterized by comprising:
  • the first PDSCH carries a first bit block
  • the first bit block includes a positive integer number of bits
  • the first PUCCH is used to indicate that the first bit block is erroneously decoded.
  • the above method is characterized in that a first parameter is used to determine the cyclic shift of the target sequence, a pseudorandom sequence is used to determine the first parameter, and the first parameter is a non-negative integer ; the target identification is used to determine the initial value of the generator of the pseudo-random sequence; the target identification is configurable, or the target identification is predefined.
  • the above method is characterized by comprising:
  • the first information block is used to indicate the X1 multi-carrier symbols, and the first information block is used to indicate whether the first PUCCH adopts frequency hopping; when the first PUCCH adopts frequency hopping , the frequency hopping section to which the target multi-carrier symbol belongs is used to determine the target parameter from the X3 candidate parameters; otherwise, the target multi-carrier symbol is in the X1 multi-carrier symbols.
  • the position is used to determine the target parameter from the X3 candidate parameters.
  • the above method is characterized in that a second parameter is used to determine the cyclic shift of the target sequence, and the second parameter is a non-negative integer; at least one of the first identifier or the first measurement value is used to determine the second parameter, the first identifier is an identifier configured by the sender of the first PUCCH, and the first measurement value is obtained by the sender of the first PUCCH through measurement a measurement value.
  • the above-mentioned method is characterized in that X4 modulation symbols are used to generate the first PUCCH, and any two modulation symbols in the X4 modulation symbols use the same modulation mode, and the X4 modulation symbols adopt the same modulation mode.
  • the phases of any two modulation symbols in the modulation symbols are different, and the X4 is a positive integer greater than 1;
  • the first RE is an RE occupied by the first PUCCH, and the target modulation symbol is used to generate mapping to the The complex-valued symbol on the first RE, the target modulation symbol is one of the X4 modulation symbols, and the time domain position of the multi-carrier symbol occupied by the first RE in the time domain is used to determine the Target modulation symbol.
  • the above method is characterized in that the X3 candidate parameters are arranged in order from small to large, and the difference between any two adjacent candidate parameters in the X3 candidate parameters is equal to the first The difference value, the length of the first base sequence and the X3 are used together to determine the first difference value.
  • the present application discloses a first node device for wireless communication, which is characterized by comprising:
  • a first receiver receiving the first PDCCH
  • the first transmitter sends a first PUCCH, the first PUCCH occupies X1 multi-carrier symbols in the time domain, and the first PDCCH is used to determine the starting multi-carrier symbol among the X1 multi-carrier symbols, so Said X1 is a positive integer greater than 1;
  • the first base sequence is used to generate the first PUCCH, the first base sequence is cyclically shifted to generate X2 sequences, any two sequences in the X2 sequences are different, and the X2 is greater than A positive integer of 1;
  • the target multi-carrier symbol is one of the X1 multi-carrier symbols, the target RE set includes multiple REs occupied by the first PUCCH, and any RE included in the target RE set is in the The time domain occupies the target multi-carrier symbol;
  • the target sequence is one of the X2 sequences, the target parameter is used to determine the cyclic shift of the target sequence, and the target sequence is used to generate a mapping to the The complex-valued symbol on the target RE set;
  • the target parameter is one of the X3 alternative parameters, and any one of the X3 alternative parameters is a non-negative parameter smaller than the length of the first basic sequence Integer, the X3 is a positive integer greater than 1; the difference between two candidate parameters in the X3 candidate parameters is
  • the present application discloses a second node device for wireless communication, which is characterized by comprising:
  • the second transmitter sends the first PDCCH
  • the second receiver receives the first PUCCH, the first PUCCH occupies X1 multi-carrier symbols in the time domain, and the first PDCCH is used to indicate the starting multi-carrier symbol among the X1 multi-carrier symbols, so Said X1 is a positive integer greater than 1;
  • the first base sequence is used to generate the first PUCCH, the first base sequence is cyclically shifted to generate X2 sequences, any two sequences in the X2 sequences are different, and the X2 is greater than A positive integer of 1;
  • the target multi-carrier symbol is one of the X1 multi-carrier symbols, the target RE set includes multiple REs occupied by the first PUCCH, and any RE included in the target RE set is in the The time domain occupies the target multi-carrier symbol;
  • the target sequence is one of the X2 sequences, the target parameter is used to determine the cyclic shift of the target sequence, and the target sequence is used to generate a mapping to the The complex-valued symbol on the target RE set;
  • the target parameter is one of the X3 alternative parameters, and any one of the X3 alternative parameters is a non-negative parameter smaller than the length of the first basic sequence Integer, the X3 is a positive integer greater than 1; the difference between two candidate parameters in the X3 candidate parameters is
  • the method in this application has the following advantages:
  • the method in this application supports the use of different cyclic shifts on different OFDM symbols to carry NACK feedback information, which increases diversity gain and improves the robustness of NACK feedback information transmission;
  • the method in this application combines the value of the cyclic shift carrying the NACK feedback information with the frequency hopping section where it is located, so as to achieve a balance between combining gain and diversity gain, maximizing the transmission of NACK feedback information performance;
  • the method in this application supports user equipments belonging to different user equipment groups to adopt different cyclic shifts when feeding back NACK information, so that the base station can determine different retransmission strategies according to the feedback conditions of different user equipment groups and improve NACK Resource utilization of feedback information transmission and data retransmission;
  • the method in this application supports the change of the cyclic shift with the position of the multi-carrier symbol, and supports the change of the phase of the modulation symbol with the position of the multi-carrier symbol, maximizing the Euclidean distance during modulation, and further improving the Diversity gain to optimize the transmission performance of NACK feedback information.
  • FIG. 1 shows a flowchart of a first PDCCH and a first PUCCH according to an embodiment of the present application
  • FIG. 2 shows a schematic diagram of a network architecture according to an embodiment of the present application
  • FIG. 3 shows a schematic diagram of a radio protocol architecture of a user plane and a control plane according to an embodiment of the present application
  • FIG. 4 shows a schematic diagram of a first node device and a second node device according to an embodiment of the present application
  • FIG. 5 shows a flowchart of wireless signal transmission according to an embodiment of the present application
  • FIG. 6 shows a schematic diagram of the relationship between the first PDSCH and the first PUCCH according to an embodiment of the present application
  • FIG. 7 shows a schematic diagram of the first parameter according to an embodiment of the present application.
  • FIG. 8 shows a schematic diagram of a target multi-carrier symbol according to an embodiment of the present application.
  • FIG. 9 shows a schematic diagram of the second parameter according to an embodiment of the present application.
  • Figure 10 shows a schematic diagram of a target modulation symbol according to an embodiment of the present application.
  • FIG. 11 shows a schematic diagram of the first difference according to an embodiment of the present application.
  • FIG. 12 shows a structural block diagram of a processing apparatus in a first node device according to an embodiment of the present application
  • FIG. 13 shows a structural block diagram of a processing apparatus in a second node device according to an embodiment of the present application.
  • Embodiment 1 illustrates a flowchart 100 of the first PDCCH and the first PUCCH according to an embodiment of the present application, as shown in FIG. 1 .
  • each block represents a step, and it should be emphasized that the sequence of each block in the figure does not represent the temporal sequence relationship between the represented steps.
  • the first node device in the present application receives the first PDCCH in step 101, and the first node device in the present application transmits the first PUCCH in step 102, and the first PUCCH occupies X1 in the time domain multi-carrier symbols, the first PDCCH is used to determine the starting multi-carrier symbol among the X1 multi-carrier symbols, where X1 is a positive integer greater than 1; wherein the first base sequence is used to generate all The first PUCCH, the first base sequence is cyclically shifted to generate X2 sequences, any two sequences in the X2 sequences are different, and the X2 is a positive integer greater than 1; the target multi-carrier symbol is all One of the X1 multi-carrier symbols, the target RE set includes multiple REs occupied by the first PUCCH, and any RE included in the target RE set occupies the target multi-carrier symbol in the time domain; The sequence is one of the X2 sequences, the target parameter is used to determine the cycl
  • the first PDCCH includes a radio frequency signal of a PDCCH (Physical Downlink Control Channel, physical downlink control channel).
  • a PDCCH Physical Downlink Control Channel, physical downlink control channel.
  • the first PDCCH includes a baseband signal of the PDCCH.
  • the first PDCCH is transmitted through a wireless interface.
  • the first PDCCH carries DCI (Downlink Control Information, downlink control information).
  • DCI Downlink Control Information, downlink control information
  • a DCI payload (Payload) in a DCI format is used to generate the first PDCCH.
  • the first PDCCH occupies one PDCCH candidate (Candidate).
  • the first PDCCH occupies a positive integer number of CCEs (Control Channel Element, control channel element).
  • the number of CCEs occupied by the first PDCCH is equal to one of 1, 2, 4, 8, and 16.
  • the first PDCCH is a PDCCH for scheduling PDSCH (Physical Downlink Shared Channel, physical downlink shared channel), or the first PDCCH is used for SPS (Semi-Persistent Scheduling, semi-persistent scheduling) PDSCH release ( Release) of the PDCCH.
  • PDSCH Physical Downlink Shared Channel
  • SPS Semi-Persistent Scheduling, semi-persistent scheduling
  • the first PDCCH is a PDCCH that schedules a unicast (Unicast) PDSCH.
  • the first PDCCH is a PDCCH scheduled for multicast or broadcast.
  • the first PDCCH is a PDCCH that schedules a multicast or broadcast PDSCH.
  • the first PDCCH is a PDCCH that schedules PDSCH, and RNTIs other than C-RNTI (Cell-Radio Network Temporary Identifier, cell wireless network temporary identifier) are used to initialize the PDSCH scheduled by the first PDCCH scrambling code generator.
  • C-RNTI Cell-Radio Network Temporary Identifier, cell wireless network temporary identifier
  • the CRC of the first PDCCH is scrambled by the C-RNTI.
  • the CRC of the first PDCCH is scrambled by an RNTI other than the C-RNTI.
  • the first PUCCH includes a radio frequency signal of a PUCCH (Physical Uplink Control Channel, physical uplink control channel).
  • PUCCH Physical Uplink Control Channel, physical uplink control channel
  • the first PUCCH includes a baseband signal of the PUCCH.
  • the first PUCCH carries UCI (Uplink Control Information, uplink control information).
  • UCI Uplink Control Information, uplink control information
  • a UCI payload of a UCI format (Format) is used to generate the first PUCCH.
  • the first PUCCH adopts a PUCCH format (Format) 0.
  • the first PUCCH adopts a PUCCH format (Format) 1.
  • the first PUCCH adopts a PUCCH format (Format) 2.
  • the first PUCCH adopts a PUCCH format (Format) 3 or 4.
  • the first PUCCH only occupies one PRB (Physical Resource Block, physical resource block) in the frequency domain.
  • PRB Physical Resource Block, physical resource block
  • the first PUCCH occupies more than one PRB (Physical Resource Block, physical resource block) in the frequency domain.
  • PRB Physical Resource Block, physical resource block
  • the first PUCCH only occupies one PRB (Physical Resource Block, physical resource block) in the frequency domain within one multi-carrier symbol.
  • PRB Physical Resource Block, physical resource block
  • the time-frequency resources occupied by the first PUCCH are shared by multiple user equipments.
  • the time-frequency resources occupied by the first PUCCH are only used by the first node device in this application.
  • the first PUCCH only carries NACK (Negative Acknowledgement, negative acknowledgment).
  • whether the first PUCCH is transmitted is used to indicate NACK and ACK, respectively.
  • the first PUCCH is transmitted to indicate NACK, and the first PUCCH is not transmitted to indicate ACK.
  • the first PUCCH only occupies the X1 multi-carrier symbols in the time domain.
  • the first PUCCH also occupies multi-carrier symbols other than the X1 multi-carrier symbols in the time domain.
  • the X1 is equal to 2.
  • the X1 is equal to one of the positive integers from 4 to 14.
  • any one of the X1 multi-carrier symbols is an OFDM (Orthogonal Frequency Division Multiplexing, orthogonal frequency division multiplexing) symbol (Symbol).
  • OFDM Orthogonal Frequency Division Multiplexing, orthogonal frequency division multiplexing
  • any one of the X1 multi-carrier symbols is an SC-FDMA (Single carrier Frequency Division Multiple Access, single carrier frequency division multiple access) symbol (Symbol).
  • SC-FDMA Single carrier Frequency Division Multiple Access, single carrier frequency division multiple access
  • any one of the X1 multi-carrier symbols is a time-domain symbol (Symbol).
  • any one of the X1 multi-carrier symbols includes a Cyclic Prefix (CP, Cyclic Prefix) part and a data part.
  • Cyclic Prefix CP, Cyclic Prefix
  • the X1 multi-carrier symbols are consecutive in the time domain.
  • the X1 multi-carrier symbols are discrete in the time domain.
  • any two multi-carrier symbols in the X1 multi-carrier symbols are orthogonal.
  • the starting multi-carrier symbol in the X1 multi-carrier symbols is the earliest multi-carrier symbol in the time domain in the X1 multi-carrier symbols.
  • the starting multi-carrier symbol in the X1 multi-carrier symbols is the multi-carrier symbol with the smallest index among the X1 multi-carrier symbols.
  • any two multi-carrier symbols in the X1 multi-carrier symbols belong to the same time slot (Slot).
  • two multi-carrier symbols in the X1 multi-carrier symbols belong to different time slots.
  • the expression "the first PDCCH is used to determine the starting multi-carrier symbol in the X1 multi-carrier symbols" in the claim includes the following meaning: the first PDCCH is used by all the The first node device is configured to determine a starting multi-carrier symbol in the X1 multi-carrier symbols.
  • the expression "the first PDCCH is used to determine the starting multi-carrier symbol of the X1 multi-carrier symbols" in the claims includes the following meaning: the first PDCCH is used to explicitly Or implicitly indicate the starting multi-carrier symbol among the X1 multi-carrier symbols.
  • the expression "the first PDCCH is used to determine the starting multi-carrier symbol in the X1 multi-carrier symbols" in the claims includes the following meaning: the first PDCCH is used to indicate the present application The number of multi-carrier symbols in the time interval or interval between the ending multi-carrier symbol occupied by the first PDSCH and the starting multi-carrier symbol in the X1 multi-carrier symbols.
  • the expression "the first PDCCH is used to determine the starting multi-carrier symbol in the X1 multi-carrier symbols" in the claims includes the following meaning: the first PDCCH is used to indicate the present application The time interval or the time slot of the interval between the time slot (Slot) to which the ending multi-carrier symbol occupied by the first PDSCH in the X1 multi-carrier symbols belongs and the time slot to which the starting multi-carrier symbol of the X1 multi-carrier symbols belongs quantity.
  • the expression "the first PDCCH is used to determine the starting multi-carrier symbol in the X1 multi-carrier symbols" in the claims includes the following meaning: the first PDCCH is used to indicate the present application The number of time slots spaced between the time slot (Slot) to which the cut-off multi-carrier symbol occupied by the first PDSCH in the X1 multi-carrier symbols belongs and the time slot to which the initial multi-carrier symbol of the X1 multi-carrier symbols belongs; The first information block in the application is used to indicate the time domain position of the starting multi-carrier symbol among the X1 multi-carrier symbols in the corresponding time slot.
  • the expression "the first PDCCH is used to determine the starting multi-carrier symbol of the X1 multi-carrier symbols" in the claims includes the following meaning: the first PDCCH is used to determine the The starting multi-carrier symbol among the X1 multi-carrier symbols is located in the time domain.
  • the expression "the first PDCCH is used to determine the starting multi-carrier symbol of the X1 multi-carrier symbols" in the claims includes the following meaning: the first PDCCH is used to determine the The time slot to which the initial multi-carrier symbol of the X1 multi-carrier symbols belongs is located in the time domain.
  • the expression "the first PDCCH is used to determine the starting multi-carrier symbol among the X1 multi-carrier symbols" in the claims includes the following meaning: the first PDCCH is used to indicate a reference time The first PDCCH indicates the number of time slots in the interval between the time slot to which the initial multi-carrier symbol of the X1 multi-carrier symbols belongs and the reference time slot.
  • the first base sequence is a Zadoff-Chu (ZC) sequence.
  • the first basic sequence is CGS (Computer Generated Sequence, computer generated sequence).
  • the first base sequence is a low peak-to-average ratio (PAPR, Peak to Average Power Ratio) sequence.
  • PAPR Peak to Average Power Ratio
  • the first basic sequence is a Constant Amplitude Zero Auto Correlation (CAZAC, Constant Amplitude Zero Auto Correlation) sequence.
  • CAZAC Constant Amplitude Zero Auto Correlation
  • the first base sequence is a pseudo-random sequence.
  • the first base sequence is predefined.
  • the first base sequence is fixed.
  • the first base sequence is configurable.
  • the first base sequence includes a positive integer number of elements greater than 1.
  • the length of the first basic sequence is the number of elements included in the first basic sequence.
  • any element included in the first basic sequence is a complex number whose modulus is equal to 1.
  • any element included in the first basic sequence is 0 or 1.
  • the length of the first base sequence is equal to 12.
  • the length of the first base sequence is equal to a positive integer multiple of 6.
  • the expression "the first base sequence is used to generate the first PUCCH” in the claims includes the following meaning: the first base sequence is used to generate the X2 sequences, the X2 sequences is used to generate the first PUCCH.
  • the expression "the first basic sequence is used to generate the first PUCCH” in the claims includes the following meaning: the X2 sequences are mapped to the physical resources occupied by the first PUCCH and used for The first PUCCH is generated.
  • the expression "the first basic sequence is used to generate the first PUCCH” in the claims includes the following meaning: the X2 sequences are mapped to the physical resources occupied by the first PUCCH, and then The first PUCCH is obtained through OFDM baseband signal generation.
  • the expression "the first basic sequence is used to generate the first PUCCH” in the claims includes the following meaning: the X2 sequences are mapped to the physical resources occupied by the first PUCCH, and then The first PUCCH is obtained through OFDM baseband signal generation (Baseband Signal Generation) and modulation and upconversion (Modulation and Upconversion).
  • the expression "the first basic sequence is used to generate the first PUCCH” in the claims includes the following meaning: the X2 sequences are sequentially subjected to sequence modulation (Sequence Modulation), mapped to physical resources, OFDM baseband Signal generation obtains the first PUCCH.
  • sequence modulation Sequence Modulation
  • OFDM baseband Signal generation obtains the first PUCCH.
  • the expression "the first basic sequence is used to generate the first PUCCH” in the claims includes the following meaning: the X2 sequences are sequentially subjected to sequence modulation (Sequence Modulation), mapped to physical resources, OFDM baseband
  • sequence modulation Sequence Modulation
  • the first PUCCH is obtained by signal generation, modulation and up-conversion.
  • the expression "the first basic sequence is used to generate the first PUCCH” in the claims includes the following meaning: the X2 sequences are used to generate the first PUCCH after being subjected to sequence modulation (Sequence Modulation). PUCCH.
  • the first basic sequence generates the X2 sequences through X2 mutually different cyclic shifts (Cyclic Shifts).
  • any one of the X2 sequences is generated by cyclic shift of the first basic sequence.
  • the length of any one of the X2 sequences is equal to the length of the first basic sequence.
  • any one of the X2 sequences is generated by the first basic sequence through phase rotation (Phase Rotation).
  • the values of cyclic shifts experienced by any two sequences in the X2 sequences are not equal.
  • any two sequences in the X2 sequences include different elements.
  • the order of elements in any two sequences including the same element in the X2 sequences is not the same.
  • two sequences in the X2 sequences include the same element.
  • the target multi-carrier symbol is a multi-carrier symbol other than the starting multi-carrier symbol among the X1 multi-carrier symbols.
  • the target multi-carrier symbol is a starting multi-carrier symbol in the X1 multi-carrier symbols.
  • the target multi-carrier symbol is any one of the X1 multi-carrier symbols.
  • the number of REs (Resource Elements, resource elements) included in the target RE set is greater than 1.
  • any RE included in the target RE set occupies the target multi-carrier symbol in the time domain, and occupies a subcarrier (subcarrier) in the frequency domain.
  • any RE included in the target RE set is occupied by the first PUCCH.
  • the target RE set includes one RE that is not occupied by the first PUCCH.
  • the number of REs included in the target RE set is equal to 12.
  • the target sequence is any one of the X2 sequences.
  • the target sequence is a sequence in which the multi-carrier symbols mapped in the X2 sequences include the earliest multi-carrier symbol in the X1 multi-carrier symbols.
  • the target sequence is a sequence in which the multi-carrier symbols mapped in the X2 sequences do not include the earliest multi-carrier symbol in the X1 multi-carrier symbols.
  • the target sequence is a sequence in which the multi-carrier symbols mapped in the X2 sequences only include multi-carrier symbols other than the earliest multi-carrier symbol in the X1 multi-carrier symbols.
  • the target sequence is a sequence with the smallest cyclic shift value among the X2 sequences.
  • the target sequence is a sequence with the largest cyclic shift value among the X2 sequences.
  • the target sequence is an initial cyclically shifted sequence among the X2 sequences.
  • the target parameter is m cs .
  • the target parameter is m 0 .
  • the target parameter is mint .
  • the expression "the target parameter is used to determine the cyclic shift of the target sequence” in the claims includes the following meaning: the target parameter is used by the first node device or the second node device in this application The node device is used to determine the cyclic shift of the target sequence.
  • the expression "the target parameter is used to determine the cyclic shift of the target sequence” in the claims includes the following meaning: the target parameter is used to calculate the value of the cyclic shift of the target sequence.
  • the expression "the target parameter is used to determine the cyclic shift of the target sequence” in the claims includes the following meaning: the value of the cyclic shift of the target sequence and the target parameter are linearly related.
  • the expression "the target parameter is used to determine the cyclic shift of the target sequence” in the claims includes the following meaning: the value of the cyclic shift of the target sequence is linearly related to the target remainder, and the target remainder is equal to the remainder obtained by taking the length of the first base sequence by the target parameter.
  • the expression "the target parameter is used to determine the cyclic shift of the target sequence” in the claims includes the following meaning: the target parameter is used to determine the target according to a predefined functional relationship The value of the cyclic shift of the sequence.
  • target parameters are used to determine the cyclic shift of the target sequence.
  • ⁇ target represents the cyclic shift value of the target sequence
  • N seq represents the length of the first base sequence
  • m target represents the target parameter
  • n cs represents the value obtained by the pseudo-random sequence.
  • any complex-valued symbol (complex-valued symbol) mapped to the target RE set is a complex-valued symbol included in the complex-valued sequence before mapping to physical resources (Mapping to physical resources).
  • any complex-valued symbol (complex-valued symbol) mapped to the target RE set is a complex-valued symbol included in an input complex-valued sequence mapped to physical resources (Mapping to physical resources).
  • any complex-valued symbol (complex-valued symbol) mapped to the target RE set is a complex-valued symbol included in a complex-valued sequence mapped to physical resources (Mapping to physical resources).
  • any complex-valued symbol (complex-valued symbol) mapped to the target RE set is a complex-valued sequence before mapping to physical resources (Mapping to physical resources) after amplitude scaling (Amplitude Scaling) A complex-valued symbol is obtained after.
  • any complex-valued symbol (complex-valued symbol) mapped to the target RE set is the input complex-valued sequence mapped to physical resources (Mapping to physical resources) after Amplitude Scaling (Amplitude Scaling) A complex-valued symbol is obtained after.
  • any complex-valued symbol (complex-valued symbol) mapped to the target RE set is a complex-valued symbol after amplitude scaling (Amplitude Scaling).
  • any complex-valued symbol (complex-valued symbol) mapped to the target RE set is a complex-valued symbol before amplitude scaling (Amplitude Scaling).
  • the expression "the target sequence is used to generate complex-valued symbols mapped to the target RE set” in the claims includes the following meaning: the target sequence is used by the first node in this application An apparatus is used to generate complex-valued symbols mapped onto the set of target REs.
  • the expression "the target sequence is used to generate complex-valued symbols mapped to the target RE set” in the claims includes the following meaning: the elements included in the target sequence are mapped to the target Complex-valued symbols on the RE set.
  • the expression "the target sequence is used to generate complex-valued symbols mapped to the target RE set” in the claims includes the following meaning: the target sequence is mapped to a Complex-valued symbols on the target RE set.
  • the expression "the target sequence is used to generate complex-valued symbols mapped to the target RE set” in the claims includes the following meaning: the target sequence is subjected to sequence modulation (Sequence Modulation) and block Spread (Block-wise spread) obtains complex-valued symbols mapped to the target RE set.
  • sequence modulation Sequence Modulation
  • block Spread Block-wise spread
  • the expression "the target sequence is used to generate complex-valued symbols mapped to the target RE set” in the claim includes the following meaning: the target sequence is the target sequence that is mapped to the target RE set The complex-valued symbols are arranged in order of frequency from low to high or from high to low to obtain a sequence.
  • the expression "the target sequence is used to generate complex-valued symbols mapped to the target RE set" in the claims includes the following meaning: the elements included in the target sequence are subjected to amplitude scaling (Amplitude Scaling) ) is then mapped to REs included in the target RE set from low to high or from high to low according to frequency.
  • amplitude scaling Amplitude Scaling
  • the expression "the target sequence is used to generate complex-valued symbols mapped to the target RE set” in the claim includes the following meaning: the target sequence is a complex obtained by Sequence Modulation. The numerical symbols are then mapped to REs included in the target RE set from low to high or from high to low according to frequency after amplitude scaling (Amplitude Scaling).
  • the expression "the target sequence is used to generate complex-valued symbols mapped to the target RE set” in the claims includes the following meaning: the target sequence is subjected to sequence modulation (Sequence Modulation) and block The complex-valued symbols obtained by the block-wise spread are then mapped to REs included in the target RE set from low to high or from high to low according to frequency after amplitude scaling (Amplitude Scaling).
  • an element included in any one of the X2 sequences is mapped to a resource element (RE, Resource Element) set belonging to at least one multi-carrier symbol in the X1 multi-carrier symbols in the time domain on the included REs.
  • RE Resource Element
  • any one of the X2 sequences is associated with at least one multi-carrier symbol in the X1 multi-carrier symbols in the time domain.
  • any one of the X2 sequences is mapped to at least one multi-carrier symbol in the X1 multi-carrier symbols in the time domain.
  • any one of the X2 sequences corresponds to at least one multi-carrier symbol in the X1 multi-carrier symbols.
  • a complex symbol obtained after any one of the X2 sequences is subjected to sequence modulation and block-wise spread (Block-wise spread) is mapped to at least one of the X1 multicarrier symbols belonging to the X1 multicarrier symbols in the time domain on the resource element of a multi-carrier symbol.
  • any one of the X2 sequences is mapped to at least one multi-carrier symbol in the X1 multi-carrier symbols in the time domain after amplitude scaling (Amplitude Scaling).
  • any one of the X2 sequences is mapped to at least one multi-carrier symbol in the X1 multi-carrier symbols in the time domain after sequence modulation, block spreading and amplitude scaling.
  • the elements included in any one of the X2 sequences are mapped to resource elements (RE, Resource Element) on the REs included in the collection.
  • a complex symbol obtained by performing sequence modulation and amplitude scaling on any one of the X2 sequences is mapped to resource elements belonging to at least one multi-carrier symbol in the X1 multi-carrier symbols in the time domain on the REs included in the set.
  • the elements included in any one of the X2 sequences are scaled by amplitude and are mapped from low to high or from high to low according to the subcarrier index to the time domain belonging to the X1 multi-carrier symbols.
  • elements included in any one of the X2 sequences are mapped to the time domain according to the subcarrier index from low to high or from high to low, belonging to the X1 multiple On REs included in the resource element set of at least one multi-carrier symbol in the carrier symbol.
  • the X3 is equal to 2.
  • the X3 is equal to three.
  • the X3 is equal to four.
  • the X3 is equal to six.
  • the X3 is equal to 12.
  • the X3 is equal to the X1.
  • the X3 is smaller than the X1.
  • the X3 is smaller than the X2.
  • the X3 is equal to the X2.
  • the X2 is equal to the X1.
  • the X2 is smaller than the X1.
  • the X1 is used to determine the X3.
  • the X1 is divisible by the X2.
  • the X1 is divisible by the X3.
  • the X3 is predefined.
  • the X3 is configurable.
  • the X3 candidate parameters are fixed.
  • the X3 candidate parameters are predefined.
  • the X3 candidate parameters have nothing to do with the pseudo-random sequence.
  • the X3 candidate parameters have nothing to do with the information or load carried by the first PUCCH.
  • the X3 candidate parameters are related to the X1.
  • any one candidate parameter of the X3 candidate parameters is equal to one of multiple candidate values of m cs .
  • any one of the X3 candidate parameters is equal to one of multiple candidate values of m 0 .
  • any one of the X3 candidate parameters is equal to one of multiple candidate values of mint .
  • the X1 is used to determine the X3 candidate parameters.
  • the format (Format) of the first PUCCH is used to determine the X3 candidate parameters.
  • a difference between two candidate parameters in the X3 candidate parameters is equal to half of the length of the first basic sequence.
  • the X3 candidate parameters are fixed.
  • the X3 candidate parameters are fixed.
  • the X3 candidate parameters are fixed.
  • the X3 is equal to 2, and the X3 alternative parameters are equal to 0 and 6, respectively.
  • the X3 is equal to 2, and the difference between the X3 candidate parameters is equal to 6.
  • the X3 is equal to 3, and the X3 alternative parameters are respectively equal to 0, 4 and 8.
  • the X3 is equal to 3, and the difference between any two adjacent candidate parameters in the X3 candidate parameters is equal to 4.
  • the X3 is equal to 4, and the X3 alternative parameters are equal to 0, 3, 6, and 9, respectively.
  • the X3 is equal to 4, and the difference between any two adjacent candidate parameters in the X3 candidate parameters is equal to 3.
  • the X3 is equal to 6, and the X3 alternative parameters are equal to 0, 2, 4, 6, 8, and 10, respectively.
  • the X3 is equal to 6, and the difference between any two adjacent candidate parameters in the X3 candidate parameters is equal to 2.
  • one candidate parameter in the X3 candidate parameters is equal to 0.
  • any candidate parameter in the X3 candidate parameters is greater than 0.
  • the difference between two candidate parameters in the X3 candidate parameters is equal to the quotient between the length of the first basic sequence and the X3.
  • the difference between two candidate parameters in the X3 candidate parameters is equal to the quotient between half the length of the first basic sequence and the X3.
  • the difference between any two adjacent candidate parameters in the X3 candidate parameters is equal to the quotient between the length of the first basic sequence and the X3.
  • the difference between any two adjacent candidate parameters in the X3 candidate parameters is equal to the quotient between half the length of the first basic sequence and the X3.
  • the expression "any one of the X3 alternative parameters is used to determine the cyclic shift of at least one of the X2 sequences" in the claim includes the following meaning: the X3 Any one of the candidate parameters is used by the first node device or the second node device in this application to determine the cyclic shift of at least one of the X2 sequences.
  • the expression "any one of the X3 alternative parameters is used to determine the cyclic shift of at least one of the X2 sequences" in the claim includes the following meaning: the X3 Any one of the candidate parameters is used to calculate the value of the cyclic shift of at least one of the X2 sequences.
  • the expression "any one of the X3 alternative parameters is used to determine the cyclic shift of at least one of the X2 sequences" in the claim includes the following meaning: the X3 Any one of the candidate parameters is used to calculate the value of the cyclic shift of at least one of the X2 sequences according to a predefined functional relationship.
  • the expression "any one of the X3 alternative parameters is used to determine the cyclic shift of at least one of the X2 sequences" in the claim includes the following meaning: the X2 The value of the cyclic shift of at least one of the sequences is linearly related to one of the X3 candidate parameters.
  • the expression "any one of the X3 alternative parameters is used to determine the cyclic shift of at least one of the X2 sequences" in the claim includes the following meaning: the X2 The value of the cyclic shift of at least one of the sequences is linearly related to the characteristic remainder, and the characteristic remainder is equal to the remainder obtained by taking a remainder of one of the X3 candidate parameters and the length of the first basic sequence .
  • the expression "the time domain position of the target multi-carrier symbol is used to determine the target parameter from the X3 candidate parameters" in the claim includes the following meaning: The time domain position is used by the first node device in this application to determine the target parameter from the X3 candidate parameters.
  • the expression "the time domain position of the target multi-carrier symbol is used to determine the target parameter from the X3 candidate parameters" in the claim is realized by claim 4 in the present application .
  • the expression "the time domain position of the target multi-carrier symbol is used to determine the target parameter from the X3 candidate parameters" in the claim includes the following meaning: the target multi-carrier symbol is in The order or index in the slot to which it belongs is used to determine the target parameter from the X3 candidate parameters.
  • the expression "the time domain position of the target multi-carrier symbol is used to determine the target parameter from the X3 candidate parameters" in the claim includes the following meaning: the target multi-carrier symbol is in The order or index in the X1 multi-carrier symbols is used to determine the target parameter from the X3 candidate parameters.
  • the expression "the time domain position of the target multi-carrier symbol is used to determine the target parameter from the X3 candidate parameters" in the claim includes the following meaning: the target multi-carrier symbol belongs to The frequency hopping section of is used to determine the target parameter from the X3 candidate parameters.
  • the expression "the time domain position of the target multi-carrier symbol is used to determine the target parameter from the X3 candidate parameters" in the claim includes the following meaning: the target multi-carrier symbol belongs to The index of the multi-carrier symbol set is used to determine the target parameter from the X3 candidate parameters, and the multi-carrier symbol set to which the target multi-carrier symbol belongs includes more than one multi-carrier symbol.
  • the expression "the time domain position of the target multi-carrier symbol is used to determine the target parameter from the X3 candidate parameters" in the claim includes the following meaning: the X3 multi-carrier symbol sets are respectively One-to-one correspondence to the X3 candidate parameters, any one of the X3 multi-carrier symbol sets includes a positive integer number of multi-carrier symbols; the target multi-carrier symbol belongs to the target multi-carrier symbol set, and the The target multi-carrier symbol set is one of the X3 multi-carrier symbol sets; the target parameter is the candidate parameter corresponding to the target multi-carrier symbol set among the X3 candidate parameters.
  • any one of the X3 multi-carrier symbol sets includes multi-carrier symbols that are continuous in the time domain.
  • the X3 multi-carrier symbol sets include one multi-carrier symbol set including time-domain discrete multi-carrier symbols.
  • any one of the X3 multi-carrier symbol sets includes multi-carrier symbols with equal time-domain intervals.
  • any two multi-carrier symbol sets in the X3 multi-carrier symbol sets include the same number of multi-carrier symbols.
  • the number of multi-carrier symbols included in any one of the X3 multi-carrier symbol sets is equal to 2 or 3 or 4 or 6.
  • Embodiment 2 illustrates a schematic diagram of a network architecture according to the present application, as shown in FIG. 2 .
  • FIG. 2 illustrates a diagram of a network architecture 200 of a 5G NR, LTE (Long-Term Evolution, Long Term Evolution) and LTE-A (Long-Term Evolution Advanced, Enhanced Long Term Evolution) system.
  • the 5G NR or LTE network architecture 200 may be referred to as 5GS (5G System)/EPS (Evolved Packet System) 200 or some other suitable terminology.
  • 5GS/EPS 200 may include one or more UE (User Equipment, user equipment) 201, NG-RAN (Next Generation Radio Access Network) 202, 5GC (5G Core Network, 5G Core Network)/EPC (Evolved Packet Core, Evolved Packet Core) 210, HSS (Home Subscriber Server, Home Subscriber Server)/UDM (Unified Data Management, Unified Data Management) 220 and Internet Service 230.
  • 5GS/EPS can be interconnected with other access networks, but for simplicity Show these entities/interfaces. As shown, 5GS/EPS provides packet-switched services, however those skilled in the art will readily appreciate that the various concepts presented throughout this application can be extended to networks that provide circuit-switched services or other cellular networks.
  • NG-RAN includes NR/evolved Node B (gNB/eNB) 203 and other gNBs (eNB) 204 .
  • the gNB (eNB) 203 provides user and control plane protocol termination towards the UE 201 .
  • gNBs (eNBs) 203 may connect to other gNBs (eNBs) 204 via Xn/X2 interfaces (eg, backhaul).
  • gNB (eNB) 203 may also be referred to as a base station, base transceiver station, radio base station, radio transceiver, transceiver function, Basic Service Set (BSS), Extended Service Set (ESS), TRP (Transmit Receive Node), or some other appropriate term.
  • BSS Basic Service Set
  • ESS Extended Service Set
  • TRP Transmit Receive Node
  • the gNB (eNB) 203 provides the UE 201 with an access point to the 5GC/EPC 210 .
  • UE 201 include cellular phones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radios, non-terrestrial base station communications, satellite mobile communications, global positioning systems, multimedia devices , video devices, digital audio players (eg, MP3 players), cameras, game consoles, drones, aircraft, narrowband IoT devices, machine type communication devices, land vehicles, automobiles, wearables, test equipment , test instrument, test tool or any other similar functional device.
  • SIP Session Initiation Protocol
  • PDAs personal digital assistants
  • satellite radios non-terrestrial base station communications
  • satellite mobile communications global positioning systems
  • multimedia devices video devices
  • digital audio players eg, MP3 players
  • cameras game consoles, drones, aircraft, narrowband IoT devices, machine type communication devices, land vehicles, automobiles, wearables, test
  • UE 201 may also refer to UE 201 as a mobile station, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, Mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client or some other suitable term.
  • the gNB (eNB) 203 is connected to the 5GC/EPC 210 through the S1/NG interface.
  • the 5GC/EPC 210 includes MME (Mobility Management Entity, mobility management entity)/AMF (Authentication Management Field, authentication management field)/SMF (Session Management Function, Session management function) 211, other MME/AMF/SMF214, S-GW (Service Gateway, service gateway)/UPF (User Plane Function, user plane function) 212 and P-GW (Packet Date Network Gateway, packet data network gateway) /UPF213.
  • MME/AMF/SMF 211 is the control node that handles signaling between the UE 201 and the 5GC/EPC 210 . In general, MME/AMF/SMF 211 provides bearer and connection management.
  • the Internet service 230 includes the Internet Protocol service corresponding to the operator, and may specifically include the Internet, an intranet, an IMS (IP Multimedia Subsystem, IP Multimedia Subsystem), and a packet-switched streaming service.
  • IMS IP Multimedia Subsystem, IP Multimedia Subsystem
  • the UE201 corresponds to the first node device in this application.
  • the UE 201 supports multicast or broadcast service transmission.
  • the gNB (eNB) 201 corresponds to the second node device in this application.
  • the gNB (eNB) 201 supports multicast or broadcast service transmission.
  • Embodiment 3 shows a schematic diagram of an embodiment of a radio protocol architecture of a user plane and a control plane according to the present application, as shown in FIG. 3 .
  • Figure 3 is a schematic diagram illustrating an embodiment of a radio protocol architecture for the user plane 350 and the control plane 300, showing three layers for a first node device (UE or gNB) and a second node device (gNB or UE) ) of the radio protocol architecture of the control plane 300: Layer 1, Layer 2, and Layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (Physical Layer) signal processing functions.
  • the L1 layer will be referred to herein as PHY301.
  • Layer 2 (L2 layer) 305 is above PHY 301 and is responsible for the link between the first node device and the second node device through PHY 301 .
  • L2 layer 305 includes MAC (Medium Access Control, Media Access Control) sublayer 302, RLC (Radio Link Control, Radio Link Layer Control Protocol) sublayer 303 and PDCP (Packet Data Convergence Protocol, Packet Data Convergence Protocol) sublayer 304, the sublayers are terminated at the second node device.
  • the PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer 304 also provides for providing security by encrypting data packets, as well as providing handoff support for the first node device between the second node devices.
  • the RLC sublayer 303 provides segmentation and reassembly of upper layer packets, retransmission of lost packets, and reordering of packets to compensate for out-of-order reception due to HARQ.
  • the MAC sublayer 302 provides multiplexing between logical and transport channels.
  • the MAC sublayer 302 is also responsible for allocating various radio resources (eg, resource blocks) in a cell among the first node devices.
  • the MAC sublayer 302 is also responsible for HARQ operations.
  • the RRC (Radio Resource Control, Radio Resource Control) sublayer 306 in the layer 3 (L3 layer) in the control plane 300 is responsible for obtaining radio resources (ie, radio bearers) and using the communication between the second node device and the first node device.
  • the radio protocol architecture of the user plane 350 includes layer 1 (L1 layer) and layer 2 (L2 layer), the radio protocol architecture for the first node device and the second node device in the user plane 350
  • L1 layer layer 1
  • L2 layer layer 2
  • the PDCP sublayer 354 in the L2 layer 355, the RLC sublayer 353 in the L2 layer 355, and the MAC sublayer 352 in the L2 layer 355 are substantially the same as the corresponding layers and sublayers in the control plane 300, but the PDCP sublayer 354 also provides Header compression on upper layer packets to reduce radio transmission overhead.
  • the L2 layer 355 in the user plane 350 also includes an SDAP (Service Data Adaptation Protocol, Service Data Adaptation Protocol) sublayer 356, and the SDAP sublayer 356 is responsible for the mapping between the QoS flow and the data radio bearer (DRB, Data Radio Bearer). , to support business diversity.
  • the first node device may have several upper layers above the L2 layer 355, including a network layer (eg, IP layer) terminating at the P-GW on the network side and terminating at the other end of the connection Application layer at (eg, remote UE, server, etc.).
  • the radio protocol architecture in FIG. 3 is applicable to the first node device in this application.
  • the wireless protocol architecture in FIG. 3 is applicable to the second node device in this application.
  • the first PDCCH in this application is generated in the PHY 301 or the PHY 351.
  • the first PUCCH in this application is generated in the PHY 301 or the PHY 351.
  • the first PDSCH in this application is generated in the RRC306, or the MAC302, or the MAC352, or the PHY301, or the PHY351
  • the first information block in this application is generated in the RRC306, or the MAC302, or the MAC352, or the PHY301, or the PHY351.
  • Embodiment 4 shows a schematic diagram of a first node device and a second node device according to an embodiment of the present application, as shown in FIG. 4 .
  • a controller/processor 490, a data source/buffer 480, a receive processor 452, a transmitter/receiver 456 and a transmit processor 455 may be included in the first node device (450), the transmitter/receiver 456 including an antenna 460.
  • a controller/processor 440, a data source/buffer 430, a receive processor 412, a transmitter/receiver 416 and a transmit processor 415 may be included in the second node device (410), the transmitter/receiver 416 including an antenna 420.
  • upper layer packets such as the first information block in this application and the upper layer information carried by the first PDSCH are provided to the controller/processor 440 .
  • the controller/processor 440 implements the functions of the L2 layer and above.
  • the controller/processor 440 provides packet header compression, encryption, packet segmentation and reordering, multiplexing between logical and transport channels, and radio to the first node device 450 based on various priority metrics Resource allocation.
  • the controller/processor 440 is also responsible for HARQ operation, retransmission of lost packets, and signaling to the first node device 450, such as the high layer information included in the first information block in this application and the high layer information carried by the first PDSCH
  • the information is all generated in the controller/processor 440 .
  • Transmit processor 415 implements various signal processing functions for the L1 layer (ie, physical layer), including coding, interleaving, scrambling, modulation, power control/allocation, precoding, and physical layer control signaling generation, etc., such as this
  • the generation of the physical layer signal of the first PDCCH in the application, the physical layer signal of the first PDSCH and the physical layer signal carrying the first information block is completed in the transmit processor 415 .
  • the generated modulation symbols are split into parallel streams and each stream is mapped to corresponding multi-carrier sub-carriers and/or multi-carrier symbols, which are then mapped by transmit processor 415 via transmitter 416 to antenna 420 for transmission as a radio frequency signal.
  • each receiver 456 receives the radio frequency signal through its corresponding antenna 460 , each receiver 456 recovers the baseband information modulated onto the radio frequency carrier, and provides the baseband information to the receive processor 452 .
  • the reception processor 452 implements various signal reception processing functions of the L1 layer.
  • the signal reception processing function includes the reception of the first PDCCH, the first PDSCH and the physical layer signal carrying the first information block in this application, and the multi-carrier symbols in the multi-carrier symbol stream are performed based on various modulation schemes (for example, binary Demodulation of Phase Shift Keying (BPSK), Quadrature Phase Shift Keying (QPSK)) followed by descrambling, decoding and de-interleaving to recover the data or control transmitted by the second node device 410 on the physical channel, followed by the data and control signals are provided to controller/processor 490 .
  • BPSK Binary Demodulation of Phase Shift Keying
  • QPSK Quadrature Phase Shift Keying
  • the controller/processor 490 is responsible for the L2 layer and above, and the controller/processor 490 interprets the high-level information included in the first information block in this application and the high-level information carried by the first PDSCH.
  • the controller/processor may be associated with memory 480 that stores program codes and data. Memory 480 may be referred to as a computer-readable medium.
  • the high-level information is generated by the controller/processor 490 through the transmit processor 455 to implement various signal transmission processing functions for the L1 layer (ie, the physical layer).
  • the first PUCCH in the PUCCH is generated in the transmit processor 455, and then mapped to the antenna 460 by the transmit processor 455 via the transmitter 456 and transmitted in the form of a radio frequency signal.
  • the receivers 416 receive the radio frequency signals through their respective antennas 420 , and each receiver 416 recovers the baseband information modulated onto the radio frequency carrier and provides the baseband information to the receive processor 412 .
  • the receive processor 412 implements various signal receive processing functions for the L1 layer (ie, the physical layer), including receive processing the first PUCCH in this application, followed by providing data and/or control signals to the controller/processor 440 .
  • L2 layer functions at the controller/processor 440 includes the interpretation of higher layer information.
  • the controller/processor may be associated with a buffer 430 that stores program codes and data.
  • the buffer 430 may be a computer-readable medium.
  • the first node device 450 apparatus includes: at least one processor and at least one memory, the at least one memory including computer program code; the at least one memory and the computer program code are configured to interact with all If used together with the at least one processor, the first node device 450 means at least: receive a first PDCCH; send a first PUCCH, the first PUCCH occupies X1 multi-carrier symbols in the time domain, and the first PDCCH is used for determining a starting multi-carrier symbol among the X1 multi-carrier symbols, where X1 is a positive integer greater than 1; wherein, the first base sequence is used to generate the first PUCCH, and the first base sequence is Cyclic shift generates X2 sequences, any two sequences in the X2 sequences are different, and the X2 is a positive integer greater than 1; the target multi-carrier symbol is one of the X1 multi-carrier symbols, and the target RE
  • the set includes multiple REs occupied by the first PUCCH, and any RE
  • the first node device 450 includes: a memory for storing a computer-readable instruction program, the computer-readable instruction program generates actions when executed by at least one processor, and the actions include: receiving The first PDCCH; send the first PUCCH, the first PUCCH occupies X1 multi-carrier symbols in the time domain, the first PDCCH is used to determine the starting multi-carrier symbol among the X1 multi-carrier symbols, the X1 is a positive integer greater than 1; wherein, the first base sequence is used to generate the first PUCCH, the first base sequence is cyclically shifted to generate X2 sequences, any two sequences in the X2 sequences are not the same, the X2 is a positive integer greater than 1; the target multi-carrier symbol is one of the X1 multi-carrier symbols, the target RE set includes multiple REs occupied by the first PUCCH, and the target RE Any RE included in the set occupies the target multi-carrier symbol in the time domain; the target sequence is one of the
  • the second node device 410 device includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to interact with all used together with the at least one processor.
  • the second node device 410 means at least: sending a first PDCCH; receiving a first PUCCH, the first PUCCH occupies X1 multi-carrier symbols in the time domain, and the first PDCCH is used to indicate the X1 multi-carrier symbols the starting multi-carrier symbol in the symbol, the X1 is a positive integer greater than 1; wherein, the first base sequence is used to generate the first PUCCH, and the first base sequence is cyclically shifted to generate X2 sequences, Any two sequences in the X2 sequences are different, and the X2 is a positive integer greater than 1; the target multi-carrier symbol is one of the X1 multi-carrier symbols, and the target RE set includes the first PUCCH A plurality of occupied REs, any RE
  • the second node device 410 includes: a memory for storing a computer-readable instruction program, the computer-readable instruction program generates an action when executed by at least one processor, and the action includes: sending the first One PDCCH; receive the first PUCCH, the first PUCCH occupies X1 multi-carrier symbols in the time domain, the first PDCCH is used to indicate the starting multi-carrier symbol among the X1 multi-carrier symbols, the X1 is a positive integer greater than 1; wherein, the first base sequence is used to generate the first PUCCH, the first base sequence is cyclically shifted to generate X2 sequences, and any two sequences in the X2 sequences are not The same, the X2 is a positive integer greater than 1; the target multi-carrier symbol is one of the X1 multi-carrier symbols, the target RE set includes multiple REs occupied by the first PUCCH, and the target RE set Any RE included occupies the target multi-carrier symbol in the time domain; the target sequence is one of
  • the first node device 450 is a user equipment (UE).
  • UE user equipment
  • the first node device 450 is a user equipment that supports multicast or broadcast services.
  • the second node device 410 is a base station device (gNB/eNB).
  • the second node device 410 is a base station device that supports multicast or broadcast services.
  • receiver 456 (including antenna 460) and receive processor 452 are used in this application to receive the first PDCCH.
  • transmitter 456 (including antenna 460) and transmit processor 455 are used in this application to transmit the first PUCCH.
  • receiver 456 (including antenna 460), receive processor 452 and controller/processor 490 are used in this application to receive the first PDSCH.
  • receiver 456 (including antenna 460), receive processor 452 and controller/processor 490 are used in this application to receive the first block of information.
  • transmitter 416 (including antenna 420) and transmit processor 415 are used to transmit the first PDCCH in this application.
  • the receiver 416 (including the antenna 420) and the receive processor 412 are used to receive the first PUCCH in this application.
  • transmitter 416 (including antenna 420), transmit processor 415 and controller/processor 440 are used to transmit the first PDSCH in this application.
  • transmitter 416 (including antenna 420), transmit processor 415 and controller/processor 440 are used to transmit the first information block in this application.
  • Embodiment 5 illustrates a flowchart of wireless signal transmission according to an embodiment of the present application, as shown in FIG. 5 .
  • the second node device N500 is the maintenance base station of the serving cell of the first node device U550, and the steps included in the dotted box marked by Opt1 are optional. It is particularly noted that the order in this example does not limit the order of signal transmission and the order of implementation in this application.
  • the first information block is sent in step S501, the first PDCCH is sent in step S502, the first PDSCH is sent in step S503, and the first PUCCH is received in step S504.
  • the first information block is received in step S551
  • the first PDCCH is received in step S552
  • the first PDSCH is received in step S553
  • the first PUCCH is sent in step S554.
  • the first PUCCH occupies X1 multi-carrier symbols in the time domain, the first PDCCH is used to determine a starting multi-carrier symbol among the X1 multi-carrier symbols, and the X1 is greater than A positive integer of 1;
  • the first base sequence is used to generate the first PUCCH, the first base sequence is cyclically shifted to generate X2 sequences, any two sequences in the X2 sequences are different, the X2 is a positive integer greater than 1;
  • the target multi-carrier symbol is one of the X1 multi-carrier symbols, the target RE set includes multiple REs occupied by the first PUCCH, and any One RE occupies the target multi-carrier symbol in the time domain;
  • the target sequence is one of the X2 sequences, the target parameter is used to determine the cyclic shift of the target sequence, and the target sequence is used to generate a mapping to the complex-valued symbol on the target RE set;
  • the target parameter is one of the X3 candidate parameters, and any one
  • the first information block is transmitted over an air interface.
  • the first information block is transmitted over a wireless interface.
  • the first information block includes all or part of a higher layer signaling.
  • the first information block includes all or part of a physical layer signaling.
  • the first information block includes all or part of an RRC (Radio Resource Control, radio resource control) signaling.
  • RRC Radio Resource Control, radio resource control
  • the first information block includes all or part of a MAC (Medium Access Control, medium access control) layer signaling.
  • MAC Medium Access Control, medium access control
  • the first information block includes all or part of a system information block (SIB, System Information Block).
  • SIB system information block
  • the first information block is cell specific (Cell Specific).
  • the first information block is user equipment-specific (UE-specific).
  • the first information block is configured (Per BWP Configured) per BWP (Bandwidth Part, bandwidth part).
  • the first information block includes all or part of a field (Field) of a DCI (Downlink Control Information) signaling.
  • Field Field of a DCI (Downlink Control Information) signaling.
  • the first information block includes more than one sub-information block, and each sub-information block included in the first information block is an IE (Information) in the RRC signaling to which the first information block belongs. Element, information unit) or a field (Field); one or more sub-information blocks included in the first information block are used to determine the X1 multi-carrier symbols.
  • IE Information
  • Element information unit
  • Field Field
  • the first information block includes all or part of fields (Fields) in an IE (Information Element, information element) "PUCCH-ConfigCommon" in an RRC signaling.
  • Fields Information Element, information element
  • the first information block includes all or part of fields (Field) in an IE (Information Element, information element) "BWP-UplinkDedicated" in an RRC signaling.
  • Field Information Element, information element
  • the first information block includes all or part of the fields in an IE (Information Element, information element) "PUCCH-Config" in an RRC signaling.
  • IE Information Element, information element
  • the first information block includes a field "PUCCH-format0” or a field “PUCCH-format1” or a field “PUCCH” in an IE (Information Element, information element) "PUCCH-Config" in an RRC signaling -format2" or field “nrofSymbols” in field “PUCCH-format3” or field “PUCCH-format4".
  • IE Information Element, information element
  • the first information block includes a field "intraSlotFrequencyHopping" in a field “PUCCH-Resource” in an IE (Information Element, information element) "PUCCH-Config" in an RRC signaling.
  • IE Information Element, information element
  • the expression "the first information block is used to determine the X1 multi-carrier symbols" in the claims includes the following meaning: the first information block is used by the first node device in this application used to determine the X1 multi-carrier symbols.
  • the expression "the first information block is used to determine the X1 multi-carrier symbols" in the claims includes the following meaning: the first information block is used to explicitly or implicitly indicate the X1 multi-carrier symbols.
  • the expression "the first information block is used to determine the X1 multi-carrier symbols" in the claims includes the following meaning: the first information block is used to indicate the X1.
  • the expression "the first information block is used to determine whether frequency hopping is used for the first PUCCH" in the claims includes the following meaning: the first information block is used by the first information block in this application The node device is used to determine whether the first PUCCH adopts frequency hopping.
  • the expression "the first information block is used to determine whether the first PUCCH adopts frequency hopping" in the claims includes the following meaning: the first information block is used to explicitly or implicitly to indicate whether the first PUCCH adopts frequency hopping.
  • the expression "the first information block is used to determine whether the first PUCCH adopts frequency hopping" in the claims includes the following meaning: the first information block is used to enable the The first PUCCH frequency hopping.
  • Embodiment 6 illustrates a schematic diagram of the relationship between the first PDSCH and the first PUCCH according to an embodiment of the present application, as shown in FIG. 6 .
  • the user equipment when the user equipment decodes the PDSCH correctly, the user equipment does not send ACK; when the user equipment decodes the PDSCH incorrectly, the user equipment sends the PUCCH.
  • the first PDSCH in this application carries a first bit block
  • the first bit block includes a positive integer number of bits
  • the first PUCCH in this application is used to indicate the first bit block Bit blocks are decoded incorrectly.
  • the first PDSCH includes a PDSCH (Physical Downlink Shared Channel, physical downlink shared channel) radio frequency signal.
  • PDSCH Physical Downlink Shared Channel, physical downlink shared channel
  • the first PDSCH includes a baseband signal of the PDSCH.
  • the first PDSCH is transmitted through a wireless interface.
  • the first PDSCH is a semi-persistent scheduling (SPS, Semi-Persistent Scheduling) PDSCH.
  • SPS Semi-Persistent Scheduling
  • the first PDSCH is a dynamically scheduled PDSCH.
  • the first PDSCH is unicast.
  • the first PDSCH is multicast or broadcast.
  • an RNTI other than the C-RNTI is used to initialize a generator (Generator) of the scrambling code of the first PDSCH.
  • the first PDCCH is used to determine at least one of time domain resources or frequency domain resources occupied by the first PDSCH.
  • the first PDCCH is used to determine a redundancy version (RV, Redundancy Version) and a modulation and coding scheme (MCS, Modulation and Coding Scheme) adopted by the first PDSCH.
  • RV redundancy version
  • MCS modulation and coding scheme
  • the first PDCCH is used to activate an SPS process (Process) to which the first PDSCH belongs.
  • the first bit block is a transport block (TB, Transport Block).
  • the first bit block is a code block (CB, Code Block).
  • the first bit block is a Code Block Group (CBG, Code Block Group).
  • CBG Code Block Group
  • the first bit block includes all or part of a transport block.
  • the expression "the first PDSCH carries a first block of bits" in the claims includes the following meaning: the first block of bits is used to generate the first PDSCH.
  • the expression "the first PDSCH carries the first bit block" in the claims includes the following meaning: the first PDSCH is used to transmit the first bit block.
  • the expression "the first PDSCH carries the first bit block" in the claims includes the following meaning: the first PDSCH is a physical channel that transmits the first bit block.
  • the expression "the first PDSCH carries the first bit block" in the claims includes the following meaning: the first bit block passes through the transport block CRC Attachment (Attachment), LDPC (Low Density Parity Check Code) in sequence, Low density parity check code) Base graph selection, coding block segmentation (Segmentation) and coding block CRC attachment, channel coding (Channel Coding), rate matching (Rate Matching), coding block concatenation (Concatenation), Scrambling, Modulation, Layer mapping, Antenna port mapping, Mapping to virtual resource blocks, mapping from virtual resource blocks to physical resource blocks ( Mapping from virtual to physical resource blocks), OFDM baseband signal generation (baseband signal generation) to generate the first PDSCH.
  • the transport block CRC Attachment Alignment
  • LDPC Low Density Parity Check Code
  • Base graph selection Base graph selection
  • coding block segmentation (Segmentation) and coding block CRC attachment channel coding (Channel Coding), rate matching (Rate
  • the expression "the first PDSCH carries the first bit block" in the claims includes the following meaning: the first bit block passes through the transport block CRC Attachment (Attachment), LDPC (Low Density Parity Check Code) in sequence, Low density parity check code) Base graph selection, coding block segmentation (Segmentation) and coding block CRC attachment, channel coding (Channel Coding), rate matching (Rate Matching), coding block concatenation (Concatenation), Scrambling, Modulation, Layer mapping, Antenna port mapping, Mapping to virtual resource blocks, mapping from virtual resource blocks to physical resource blocks ( Mapping from virtual to physical resource blocks), OFDM baseband signal generation, modulation and upconversion to generate the first PDSCH.
  • the first bit block is a transport block, and the first PDSCH only carries the first bit block.
  • the first bit block is a transport block
  • the first PDSCH also carries transport blocks other than the first bit block.
  • the expression "the first PUCCH is used to indicate that the first bit block is erroneously decoded” in the claims includes the following meaning: the first PUCCH is used by the first node in this application The apparatus is used to indicate that the first block of bits is erroneously decoded.
  • the expression "the first PUCCH is used to indicate that the first bit block is erroneously decoded” in the claims includes the following meaning: the first PUCCH is used to explicitly or implicitly Indicates that the first block of bits was erroneously decoded.
  • the expression "the first PUCCH is used to indicate that the first bit block is erroneously decoded” in the claims includes the following meaning: Energy Detection for the first PUCCH is used for determining that the first bit block is erroneously decoded.
  • the expression "the first PUCCH is used to indicate that the first bit block is erroneously decoded” in the claims includes the following meaning: whether the first PUCCH is sent to indicate the first Whether the bit block was decoded incorrectly.
  • the expression "the first PUCCH is used to indicate that the first bit block is erroneously decoded” in the claims includes the following meaning: the first PUCCH is transmitted or detected to represent the first PUCCH A block of bits is erroneously decoded, the first PUCCH not being sent or not being detected means that the first block of bits is correctly decoded.
  • the expression "the first PUCCH is used to indicate that the first bit block is erroneously decoded" in the claims includes the following meaning: the first PUCCH is used to indicate the first bit block the NACK.
  • the expression "the first PUCCH is used to indicate that the first bit block is erroneously decoded” in the claims includes the following meaning: the first PUCCH is only used to indicate the first bit Block is decoded incorrectly.
  • the expression "the first PUCCH is used to indicate that the first bit block is erroneously decoded" in the claims includes the following meaning: the first PUCCH carries a NACK- only information.
  • the first information block in this application is used to determine that the first PUCCH only carries the NACK feedback of the first bit block.
  • the first information block in this application is used to indicate whether the first node device feeds back ACK/NACK or only NACK.
  • the first PDCCH is used to indicate whether the first node device feeds back ACK/NACK or only NACK.
  • the first receiver receives a second information block, wherein the second information block is used to indicate whether the first node device feeds back ACK/NACK or only NACK.
  • the transmission or detection of the first PUCCH does not indicate that the first block of bits is correctly decoded.
  • the transmitted or detected first PUCCH cannot represent the ACK information of the first bit block.
  • Embodiment 7 illustrates a schematic diagram of the first parameter according to an embodiment of the present application, as shown in FIG. 7 .
  • each box represents an intermediate value or intermediate variable
  • the arrows represent the relationship between determination and determination.
  • the first parameter is used to determine the cyclic shift of the target sequence in this application, the pseudorandom sequence is used to determine the first parameter, and the first parameter is a non-negative integer; target identifier is used to determine the initial value of the generator of the pseudo-random sequence; the target identification is configurable, or the target identification is predefined.
  • the first parameter is less than 256.
  • the first parameter is equal to an integer from 0 to 255.
  • the first parameter may be greater than or equal to 256.
  • the expression "the first parameter is used to determine the cyclic shift of the target sequence" in the claims includes the following meaning: the first parameter is used by the first node device or the The second node device is used to determine the cyclic shift of the target sequence.
  • the expression "the first parameter is used to determine the cyclic shift of the target sequence" in the claims includes the following meaning: the cyclic shift of the target sequence and the first parameter are linearly related.
  • the expression "the first parameter is used to determine the cyclic shift of the target sequence" in the claims includes the following meaning: the first parameter is used to calculate the value of the cyclic shift of the target sequence .
  • the expression "the first parameter is used to determine the cyclic shift of the target sequence” in the claims includes the following meaning: the value of the cyclic shift of the target sequence is linearly related to the first remainder, so The first remainder is equal to the remainder obtained by the first parameter taking the remainder of the length of the first basic sequence.
  • the expression "the first parameter is used to determine the cyclic shift of the target sequence" in the claims includes the following meaning: the first parameter is used to determine the Specifies the value of the cyclic shift of the target sequence.
  • the expression "the first parameter is used to determine the cyclic shift of the target sequence" in the claims is implemented by the following formula:
  • ⁇ target represents the cyclic shift value of the target sequence
  • N seq represents the length of the first base sequence
  • m target represents the target parameter in this application
  • n cs represents the first parameter.
  • the first parameter has nothing to do with the position or index of the target multi-carrier symbol in the X1 multi-carrier symbols.
  • the position or index of the target multi-carrier symbol in the X1 multi-carrier symbols is used to determine the first parameter.
  • the position or index of the target multi-carrier symbol in the time slot to which it belongs is used to determine the first parameter.
  • the index of the target multi-carrier symbol in the X1 multi-carrier symbols and the index of the target multi-carrier symbol in the time slot to which it belongs are only the target multi-carrier symbol.
  • the index in the associated time slot is used to determine the first parameter.
  • the number of the time slot in the radio frame (Radio Frame) to which the initial multi-carrier symbol of the X1 multi-carrier symbols belongs is used to determine the first parameter.
  • the first parameter is applicable to each multi-carrier symbol in the X1 multi-carrier symbols.
  • the first parameter is used to determine the value of the cyclic shift of each of the X2 sequences.
  • the first parameter applies to each of the X2 sequences.
  • the first parameter is only generated in the initial multi-carrier symbol among the X1 multi-carrier symbols.
  • the first parameter is generated on the target multi-carrier symbol.
  • the cyclic shift of each of the X2 sequences adopts the same first parameter.
  • the first parameter is only used to determine the value of the cyclic shift of the target sequence in the X2 sequences.
  • a pseudo-random sequence is used to determine the first parameter in the claims includes the following meaning: a pseudo-random sequence is used by the first node device in this application to determine the first parameter .
  • a pseudo-random sequence is used to determine the first parameter in the claims includes the following meaning: a pseudo-random sequence is used to determine the first parameter based on a predefined functional relationship.
  • the expression "a pseudorandom sequence is used to determine the first parameter" in the claims includes the following meaning: a Gold sequence of length equal to 31 is used to determine the first parameter.
  • l represents the index of the target multi-carrier symbol in the time slot to which it belongs
  • l represents the number of multi-carrier symbols included in the time slot to which the initial multi-carrier symbol of the X1 multi-carrier symbols belongs
  • the target identifier is a non-negative integer.
  • the target identifier is equal to one of the integers from 0 to 1023.
  • the target identifier is equal to one of the integers from 0 to 1007.
  • the target identifier is equal to the identifier of a cell.
  • the target identity is a physical-layer cell identity (Physical-layer cell identity).
  • the target identifier is equal to the identifier of the cell to which the first PDCCH belongs.
  • the expression "the target identifier is used to determine the initial value of the generator of the pseudo-random sequence" in the claims includes the following meaning: the target identifier is used by the first node device or the other device in this application.
  • the second node device is used to determine the initial value of the generator of the pseudo-random sequence.
  • the expression "the target identifier is used to determine the initial value of the generator of the pseudorandom sequence" in the claims includes the following meaning: the target identifier is equal to the initial value of the generator of the pseudorandom sequence.
  • the expression "the target identifier is used to determine the initial value of the generator of the pseudorandom sequence” in the claims includes the following meaning: the target identifier is used to calculate the generator of the pseudorandom sequence. initial value.
  • the expression "the target identifier is used to determine the initial value of the generator of the pseudo-random sequence” in the claims includes the following meaning: the binary value corresponding to the initial state of the register of the generator of the pseudo-random sequence The value is equal to the target identification represented in binary.
  • the expression "the target identifier is used to determine the initial value of the generator of the pseudo-random sequence” in the claims includes the following meaning: the initial value of the generator of the pseudo-random sequence and the target identifier are linear related.
  • the expression "the target identification is configurable” in the claims includes the following meaning: the first information block in this application is used to indicate the target identification explicitly or implicitly.
  • the expression "the target identifier is configurable" in the claims includes the following meaning: signaling other than the first information block in this application is used to indicate the target identifier.
  • the expression "the target identifier is configurable” in the claims includes the following meaning: the target identifier is configured through signaling.
  • the expression "the target identifier is predefined" in the claims includes the following meaning: the target identifier is fixed.
  • the expression "the target identifier is predefined" in the claims includes the following meaning: the target identifier is equal to the cell identifier of the physical layer.
  • the expression "the target identifier is predefined" in the claims includes the following meaning: the target identifier is equal to the identifier of the cell to which the first PDCCH belongs.
  • the target parameter has nothing to do with the target identifier.
  • any candidate parameter in the X3 candidate parameters has nothing to do with the target identifier.
  • the target parameter has nothing to do with the pseudo-random sequence.
  • any candidate parameter in the X3 candidate parameters has nothing to do with the pseudo-random sequence.
  • Embodiment 8 illustrates a schematic diagram of a target multi-carrier symbol according to an embodiment of the present application, as shown in FIG. 8 .
  • the horizontal axis represents time
  • the vertical axis represents frequency
  • each rectangular box represents the time-frequency resource occupied by the first PUCCH; in case A, the first PUCCH adopts frequency hopping ; In case B, the first PUCCH does not use frequency hopping.
  • the first information block in the present application is used to determine the X1 multi-carrier symbols in the present application, and the first information block is used for determining the first information block in the present application Whether the PUCCH adopts frequency hopping; when the first PUCCH adopts frequency hopping, the frequency hopping section to which the target multi-carrier symbol in this application belongs is used to determine from the X3 candidate parameters in this application The target parameter in the present application; otherwise, the position of the target multi-carrier symbol in the X1 multi-carrier symbols in the present application is used to determine the target parameter from the X3 candidate parameters.
  • the number of frequency hopping sections of the first PUCCH is equal to two.
  • the number of frequency hopping sections of the first PUCCH is greater than 2.
  • the number of hops of the first PUCCH is equal to 2.
  • the number of hops of the first PUCCH is greater than 2.
  • the frequency hopping segment to which the target multi-carrier symbol belongs refers to a hop (Hop) to which the target multi-carrier symbol belongs in the time domain.
  • the frequency hopping section to which the target multi-carrier symbol belongs refers to the order or index of hops (Hop) to which the target multi-carrier symbol belongs in the time domain.
  • the expression "the frequency hopping section to which the target multi-carrier symbol belongs is used to determine the target parameter from the X3 candidate parameters" in the claim includes the following meaning: the target multi-carrier symbol
  • the frequency hopping section to which the symbol belongs is used by the first node device or the second node device in this application to determine the target parameter from the X3 candidate parameters.
  • the expression "the frequency hopping section to which the target multi-carrier symbol belongs is used to determine the target parameter from the X3 candidate parameters" in the claim includes the following meaning: the target multi-carrier symbol
  • the frequency hopping section to which the symbol belongs determines the target parameter from the X3 candidate parameters according to a predefined mapping relationship or a corresponding relationship.
  • the expression "the frequency hopping section to which the target multi-carrier symbol belongs is used to determine the target parameter from the X3 candidate parameters" in the claim includes the following meaning: the target multi-carrier symbol
  • the frequency hopping section to which the symbol belongs is one of the X3 frequency hopping sections of the first PUCCH, the X3 frequency hopping sections respectively correspond to the X3 candidate parameters, and the target parameter is the Among the X3 candidate parameters, the candidate parameters corresponding to the frequency hopping section to which the target multi-carrier symbol belongs.
  • the expression "the frequency hopping section to which the target multi-carrier symbol belongs is used to determine the target parameter from the X3 candidate parameters" in the claim includes the following meaning: the target multi-carrier symbol The order or index of the frequency hopping section to which the symbol belongs is used to determine the target parameter from the X3 candidate parameters.
  • the expression "the frequency hopping section to which the target multi-carrier symbol belongs is used to determine the target parameter from the X3 candidate parameters" in the claim includes the following meaning: the target multi-carrier symbol The order or index of the frequency hopping section to which the symbol belongs is used to determine the index of the target parameter among the X3 candidate parameters.
  • the expression "the frequency hopping section to which the target multi-carrier symbol belongs is used to determine the target parameter from the X3 candidate parameters" in the claim includes the following meaning: the target multi-carrier symbol
  • the index of the frequency hopping section to which the symbol belongs is used to determine the index of the target parameter in the X3 candidate parameters according to a predefined function.
  • the expression "the frequency hopping section to which the target multi-carrier symbol belongs is used to determine the target parameter from the X3 candidate parameters" in the claim includes the following meaning: the target multi-carrier symbol
  • the frequency hopping section to which the symbol belongs belongs to one of X3 frequency hopping section groups, and any one of the X3 frequency hopping section groups includes a positive integer number of frequency hopping sections of the first PUCCH segment, the X3 frequency hopping segment groups correspond to the X3 candidate parameters one-to-one, and the target parameter is the frequency hopping segment to which the X3 candidate parameters and the target multicarrier symbol belong.
  • any one of the X3 frequency hopping segment groups includes a positive integer number of frequency hopping segments of the first PUCCH greater than 1.
  • any one of the X3 frequency hopping segment groups includes a positive integer number of consecutive frequency hopping segments of the first PUCCH greater than 1 in the time domain.
  • the X3 frequency hopping segment groups include a frequency hopping segment group that includes a positive integer greater than 1 frequency hopping segments of the first PUCCH that are discrete in the time domain.
  • the position of the target multi-carrier symbol in the X1 multi-carrier symbols includes: the time domain order of the target multi-carrier symbol in the X1 multi-carrier symbols.
  • the position of the target multi-carrier symbol in the X1 multi-carrier symbols includes: the index of the target multi-carrier symbol in the X1 multi-carrier symbols.
  • the X1 multi-carrier symbols are indexed in a first-to-last or last-to-first order, and "the position of the target multi-carrier symbol in the X1 multi-carrier symbols" includes: the target The index of the multi-carrier symbol in the X1 multi-carrier symbols.
  • the expression "the position of the target multi-carrier symbol in the X1 multi-carrier symbols is used to determine the target parameter from the X3 candidate parameters" in the claim includes the following meanings: The position of the target multi-carrier symbol in the X1 multi-carrier symbols is used by the first node device or the second node device in this application to determine the target from the X3 candidate parameters parameter.
  • the expression "the position of the target multi-carrier symbol in the X1 multi-carrier symbols is used to determine the target parameter from the X3 candidate parameters" in the claim includes the following meanings:
  • the index of the target multi-carrier symbol in the X1 multi-carrier symbols is used to determine the target parameter from the X3 candidate parameters according to a predefined mapping relationship or a corresponding relationship.
  • the expression "the position of the target multi-carrier symbol in the X1 multi-carrier symbols is used to determine the target parameter from the X3 candidate parameters" in the claim includes the following meanings:
  • the index of the target multi-carrier symbol in the X1 multi-carrier symbols is used to determine the index of the target parameter in the X3 candidate parameters according to a predefined function.
  • the expression "the position of the target multi-carrier symbol in the X1 multi-carrier symbols is used to determine the target parameter from the X3 candidate parameters" in the claim includes the following meanings:
  • the X1 multi-carrier symbols are divided into X3 multi-carrier symbol sets, the X3 multi-carrier symbol sets correspond to the X3 candidate parameters one-to-one, and any one of the X3 multi-carrier symbol sets is multi-carrier.
  • the symbol set includes a positive integer number of multi-carrier symbols; the target multi-carrier symbol belongs to the target multi-carrier symbol set, and the target multi-carrier symbol set is one of the X3 multi-carrier symbol sets; the target parameter is the The candidate parameters corresponding to the target multi-carrier symbol set among the X3 candidate parameters.
  • the expression "the position of the target multi-carrier symbol in the X1 multi-carrier symbols is used to determine the target parameter from the X3 candidate parameters" in the claim includes the following meanings: The remainder of dividing the index of the target multi-carrier symbol in the X1 multi-carrier symbols by X3 is used to determine the index of the target parameter in the X3 candidate parameters.
  • the expression "the position of the target multi-carrier symbol in the X1 multi-carrier symbols is used to determine the target parameter from the X3 candidate parameters" in the claim includes the following meanings:
  • the index of the target parameter in the X3 candidate parameters is equal to the remainder of dividing the index of the target multi-carrier symbol in the X1 multi-carrier symbols by X3.
  • Embodiment 9 illustrates a schematic diagram of the second parameter according to an embodiment of the present application, as shown in FIG. 9 .
  • each box represents an intermediate value or intermediate variable
  • the arrows represent the relationship between determination and determination.
  • a second parameter is used to determine the cyclic shift of the target sequence in this application, and the second parameter is a non-negative integer; at least one of the first identifier or the first measurement value is used
  • the first identifier is an identifier configured by the first node device in this application, and the first measurement value is a measurement obtained by the first node device through measurement value.
  • the second parameter is a non-negative integer less than the length of the first base sequence.
  • the second parameter is a positive integer.
  • the second parameter is greater than or equal to the length of the first base sequence.
  • the second parameter is not greater than the length of the first base sequence.
  • the second parameter is m cs .
  • the second parameter is m 0 .
  • the second parameter is mint .
  • the second parameter is equal to one of W1 candidate parameter values, any one of the W1 candidate parameter values is equal to a non-negative integer, and the W1 is a positive value greater than 1 Integer; the W1 candidate parameter values are arranged in ascending order, and the difference between two adjacently arranged candidate parameter values in the W1 candidate parameter values is equal to the value of the first basic sequence.
  • the minimum value of the W1 candidate parameter values is equal to the initial parameter value, and the initial parameter value is predefined, or the initial parameter value is configurable.
  • the minimum value of the W1 candidate parameter values is equal to the initial parameter value, and the first information block in this application is used to indicate the initial parameter value.
  • the W1 is predefined, or the W1 is configurable.
  • the first information block in this application is used to indicate the W1.
  • information blocks other than the first information block in this application are used to indicate the W1.
  • the expression "the second parameter is used to determine the cyclic shift of the target sequence" in the claims includes the following meaning: the second parameter is used by the first node device or the The second node device is used to determine the cyclic shift of the target sequence.
  • the expression "the second parameter is used to determine the cyclic shift of the target sequence" in the claims includes the following meaning: the second parameter is used to calculate the value of the cyclic shift of the target sequence .
  • the expression "the second parameter is used to determine the cyclic shift of the target sequence" in the claims includes the following meaning: the value of the cyclic shift of the target sequence and the second parameter are linearly related.
  • the expression "the second parameter is used to determine the cyclic shift of the target sequence" in the claims includes the following meaning: the value of the cyclic shift of the target sequence is linearly related to the second remainder, so The second remainder is equal to the remainder obtained by the second parameter taking the remainder of the length of the first basic sequence.
  • the expression "the second parameter is used to determine the cyclic shift of the target sequence" in the claims includes the following meaning: the second parameter is used to determine the Specifies the value of the cyclic shift of the target sequence.
  • the second parameter and the target parameter are independent of each other.
  • the second parameter is independent of the target parameter.
  • the second parameter and the first parameter are independent.
  • the second parameter is independent of the first parameter.
  • the expression "the second parameter is used to determine the cyclic shift of the target sequence" in the claims is implemented by the following formula:
  • ⁇ target represents the value of the cyclic shift of the target sequence
  • N seq represents the length of the first base sequence
  • m target represents the target parameter
  • m 1 represents the first parameter in this application
  • m 2 represents the second parameter in this application.
  • the first identity is RNTI (Radio Network Temporary Identity, wireless network temporary identity).
  • RNTI Radio Network Temporary Identity, wireless network temporary identity
  • the first identifier is a C-RNTI.
  • the first identifier is CS-RNTI (Configured Scheduling-Radio Network Temporary Identifier, configuration scheduling wireless network temporary identifier).
  • CS-RNTI Configured Scheduling-Radio Network Temporary Identifier, configuration scheduling wireless network temporary identifier
  • the first identifier is G-RNTI (Group-Radio Network Temporary Identifier, group wireless network temporary identifier).
  • the first identifier is M-RNTI (Multicast (and Broadcast Services)-Radio Network Temporary Identifier, multicast (and broadcast) wireless network temporary identifier).
  • M-RNTI Multicast (and Broadcast Services)-Radio Network Temporary Identifier, multicast (and broadcast) wireless network temporary identifier
  • the first identifier is SC-RNTI (Single Cell-Radio Network Temporary Identifier, single cell radio network temporary identifier).
  • the first identifier is SC-N-RNTI (Single Cell-Notification-Radio Network Temporary Identifier, single cell notification wireless network temporary identifier).
  • SC-N-RNTI Single Cell-Notification-Radio Network Temporary Identifier, single cell notification wireless network temporary identifier
  • the first identifier is one of C-RNTI, CS-RNTI, G-RNTI, M-RNTI, SC-RNTI, and SC-N-RNTI.
  • the first identifier is one of C-RNTI and G-RNTI.
  • the first identifier is an index value.
  • the first identifier is a non-negative integer.
  • the first identifier is a positive integer.
  • the first identifier is an integer.
  • the first identifier is an integer represented by a decimal system.
  • the first identifier is an integer represented by hexadecimal.
  • the first identifier is configured by the sender of the first PDCCH.
  • the first identifier is configured through RRC (Radio Resource Control, radio resource control) signaling.
  • RRC Radio Resource Control, radio resource control
  • the first identifier is configured through a MAC (Medium Access Control, medium access control) CE (Control Element, control unit).
  • MAC Medium Access Control, medium access control
  • CE Control Element, control unit
  • the first identifier is configured through MCE (Multicell/Multicast Coordination Entity, multicell/multicast authoring entity).
  • MCE Multicell/Multicast Coordination Entity, multicell/multicast authoring entity
  • the first identifier is an identifier of a user equipment group (UE group).
  • UE group user equipment group
  • the target recipient of the first PDCCH includes Q1 user equipments, the Q1 is a positive integer greater than 1, and the first node device is one user equipment among the Q1 user equipments.
  • the first identifier is used to identify the Q1 user equipments.
  • any user equipment among the Q1 user equipments is configured with the first identifier.
  • the first measurement value is SS-RSRP (Synchronization Signal-Reference Signal Receiving Power, synchronization signal reference signal received power).
  • SS-RSRP Synchronization Signal-Reference Signal Receiving Power, synchronization signal reference signal received power
  • the first measurement value is SS-RSRQ (Synchronization Signal-Reference Signal Receiving Quality, synchronization signal reference signal receiving quality).
  • SS-RSRQ Synchronization Signal-Reference Signal Receiving Quality, synchronization signal reference signal receiving quality
  • the first measurement value is CSI-RSRP (Channel Status Information-Reference Signal Receiving Power, channel status information reference signal received power).
  • CSI-RSRP Channel Status Information-Reference Signal Receiving Power, channel status information reference signal received power
  • the first measurement value is CSI-RSRQ (Channel Status Information-Reference Signal Receiving Quality, channel status information reference signal receiving quality).
  • CSI-RSRQ Channel Status Information-Reference Signal Receiving Quality, channel status information reference signal receiving quality
  • the first measurement value is an SS-SINR (Synchronization Signal-Signal to Interference plus Noise Ratio, synchronization signal-signal-to-interference plus noise ratio) value measured by the first node device.
  • SS-SINR Synchronization Signal-Signal to Interference plus Noise Ratio, synchronization signal-signal-to-interference plus noise ratio
  • the first measurement value is a CSI-SINR (Synchronization Signal-Signal to Interference plus Noise Ratio, Channel State Information-Signal to Interference plus Noise Ratio) value measured by the first node device.
  • CSI-SINR Synchronization Signal-Signal to Interference plus Noise Ratio, Channel State Information-Signal to Interference plus Noise Ratio
  • the first measurement value is a value of path loss (Pathloss).
  • the first measurement value is a value of CQI (Channel Quality Indicator, channel quality indicator).
  • the first measurement value is the value of RSRP of L1 (Layer 1, layer one).
  • the expression "at least one of the first identification or the first measurement value is used to determine the second parameter" in the claims includes the following meaning: the first identification or the first measurement value At least one of them is used by the first node device in this application to determine the second parameter.
  • the expression "at least one of the first identification or the first measurement value is used to determine the second parameter" in the claims includes the following meanings: the first identification and the first measurement value are used to determine the second parameter.
  • the expression "at least one of the first identification or the first measurement value is used to determine the second parameter" in the claims includes the following meaning: the first identification or the first measurement value One of them is used to determine the second parameter.
  • the expression "at least one of the first identification or the first measurement value is used to determine the second parameter" in the claims includes the following meaning: the first identification or the first measurement value At least one of them is used to determine the second parameter according to a predefined mapping relationship or corresponding relationship.
  • the expression "at least one of the first identification or the first measurement value is used to determine the second parameter" in the claims includes the following meaning: the first identification or the first measurement value At least one of them is used to determine the second parameter according to a predefined functional relationship.
  • the expression "at least one of the first identification or the first measurement value is used to determine the second parameter" in the claims includes the following meaning: at least one of the first identification or the first measurement value A is used to determine the value of the second parameter.
  • the expression "at least one of the first identification or the first measurement value is used to determine the second parameter" in the claims includes the following meaning: the second parameter is equal to W1 alternative parameter values One of the alternative parameter values of the W1 alternative parameter values is equal to a non-negative integer, and the W1 is a positive integer greater than 1; at least one of the first identification or the first measurement value is used as to determine the second parameter from the W1 candidate parameter values.
  • the W1 candidate parameter values are arranged in ascending order, and the difference between two adjacently arranged candidate parameter values in the W1 candidate parameter values is equal to the quotient between the length of the first base sequence and the W1.
  • the minimum value of the W1 candidate parameter values is equal to the initial parameter value, and the initial parameter value is predefined, or the initial parameter value is configurable.
  • the minimum value of the W1 candidate parameter values is equal to the initial parameter value, and the first information block in this application is used to indicate the initial parameter value.
  • the W1 is predefined, or the W1 is configurable.
  • the first information block in this application is used to indicate the W1.
  • information blocks other than the first information block in this application are used to indicate the W1.
  • At least one of the first identifier or the first measurement value is used to determine the index of the second parameter in the W1 candidate parameter values.
  • the index of the second parameter in the W1 candidate parameter values is equal to the remainder of dividing the first identifier by the W1.
  • the first identifier is equal to one of the W1 candidate identifiers
  • the W1 candidate identifiers correspond to the W1 candidate parameter values one-to-one
  • the second parameter is equal to The candidate parameter values corresponding to the first identifier among the W1 candidate parameter values; the one-to-one correspondence between the W1 candidate identifiers and the W1 candidate parameter values is predefined or available. configured.
  • the first measurement value belongs to one of the W1 measurement value intervals, and any measurement interval in the W1 measurement intervals is a value range of a measurement value; the W1 measurement intervals The measurement intervals respectively correspond to the W1 candidate parameter values, and the second parameter is equal to the candidate parameter value corresponding to the measurement interval to which the first measurement value belongs in the W1 candidate parameter values; so
  • the one-to-one correspondence between the W1 measurement intervals and the W1 candidate parameter values is predefined or configurable.
  • the first measurement value belongs to a first measurement interval, and the first measurement interval is a value range of a measurement value; the first identifier and the first measurement interval belong to One of the W1 candidate combinations, any one of the W1 candidate combinations includes an identifier and a measurement interval; the W1 candidate combinations respectively correspond to the W1 candidate parameter values one-to-one,
  • the second parameter is equal to the candidate parameter value of the W1 candidate parameter values and the candidate parameter value corresponding to the candidate combination including the first identifier and the first measurement interval; the W1 candidate combination and the candidate parameter value.
  • the one-to-one correspondence between the W1 candidate parameter values is predefined or configurable.
  • the first information block in this application is used to determine the second parameter.
  • information blocks other than the first information block in this application are used to determine the second parameter.
  • Embodiment 10 illustrates a schematic diagram of a target modulation symbol according to an embodiment of the present application, as shown in FIG. 10 .
  • the horizontal axis represents time
  • the vertical axis represents frequency
  • each small rectangular box represents a RE occupied by the first PUCCH
  • the rectangular box filled with oblique lines represents the first RE
  • the dotted circle represents the polar coordinate system
  • the solid black dots represent the target modulation symbols
  • the hollow solid line dots represent modulation symbols other than the target modulation symbols among the X4 modulation symbols.
  • X4 modulation symbols are used to generate the first PUCCH in this application, and any two modulation symbols in the X4 modulation symbols adopt the same modulation mode, and the X4 modulation symbols
  • the phases of any two modulation symbols are not the same, and the X4 is a positive integer greater than 1;
  • the first RE is an RE occupied by the first PUCCH in this application, and the target modulation symbol is used to generate and map to The complex-valued symbol on the first RE, the target modulation symbol is one of the X4 modulation symbols, and the time domain position of the multi-carrier symbol occupied by the first RE in the time domain is used to determine the describe the target modulation symbol.
  • the modulation mode adopted by any one of the X4 modulation symbols is BPSK (Binary Phase Shift Keying, binary phase shift keying).
  • the modulation mode adopted by any one of the X4 modulation symbols is Pi/2BPSK.
  • the modulation mode adopted by any one of the X4 modulation symbols is QPSK (Quadrature Phase Shift Keying, quadrature phase shift keying).
  • the modulation mode adopted by any one of the X4 modulation symbols is Pi/4QPSK (Quadrature Phase Shift Keying, quadrature phase shift keying).
  • the constellation points of any two modulation symbols in the X4 modulation symbols are different.
  • two complex numbers representing any two modulation symbols in the X4 modulation symbols have different phases in polar coordinates.
  • two complex numbers representing any two modulation symbols in the X4 modulation symbols are not equal.
  • the expression "X4 modulation symbols are used to generate the first PUCCH" in the claims includes the following meaning: the X4 modulation symbols and the X2 sequences are used together to generate the first PUCCH PUCCH.
  • the expression "X4 modulation symbols are used to generate the first PUCCH" in the claims includes the following meaning: the X4 modulation symbols are used by the first node device in this application to generate the first PUCCH. describe the first PUCCH.
  • the expression "X4 modulation symbols are used to generate the first PUCCH" in the claims includes the following meaning: the X4 modulation symbols perform sequence modulation on the X2 sequences and then for generating the first PUCCH.
  • the expression "X4 modulation symbols are used to generate the first PUCCH” in the claims includes the following meaning: the X4 modulation symbols and the elements included in the sequence of the X2 sequences are is used to generate a complex-valued symbol (Complex-valued symbol) mapped to the RE occupied by the first PUCCH, and then obtain the described First PUCCH.
  • the expression "X4 modulation symbols are used to generate the first PUCCH" in the claims includes the following meaning: the X4 modulation symbols and the elements included in the sequence of the X2 sequences are It is used to generate complex-valued symbols mapped to the REs occupied by the first PUCCH, and then obtain the first PUCCH through OFDM baseband signal generation (Baseband Signal Generation).
  • the expression "X4 modulation symbols are used to generate the first PUCCH" in the claims includes the following meaning: the complex-valued symbols mapped to any RE occupied by the first PUCCH are determined by the One modulation symbol of the X4 modulation symbols is multiplied by an element included in one of the X2 sequences, and then obtained by block-wise spread (Block-wise spread) and amplitude scaling.
  • the X4 is equal to two.
  • the X4 is equal to four.
  • the X4 is greater than 4.
  • the first RE is any RE among all REs occupied by the first PUCCH.
  • the multi-carrier symbol occupied by the first RE in the time domain is the initial multi-carrier symbol in the X1 multi-carrier symbols.
  • the multi-carrier symbols occupied by the first RE in the time domain are multi-carrier symbols other than the initial multi-carrier symbols in the X1 multi-carrier symbols.
  • the first RE is one RE included in the target RE set.
  • the first RE is an RE other than the REs included in the target RE set.
  • the multi-carrier symbol occupied by the first RE in the time domain is the target multi-carrier symbol.
  • the multi-carrier symbols occupied by the first RE in the time domain are multi-carrier symbols other than the target multi-carrier symbols.
  • the complex-valued symbol (complex-valued symbol) mapped to the first RE is a complex-valued symbol included in the complex-valued sequence before mapping to physical resources (Mapping to physical resources).
  • the complex-valued symbol mapped to the first RE is a complex-valued symbol included in the input complex-valued sequence mapped to the physical resource.
  • the complex-valued symbol mapped to the first RE is one complex-valued symbol included in the complex-valued sequence mapped to the physical resource.
  • the complex-valued symbol mapped to the first RE is a complex-valued symbol obtained after amplitude scaling (Amplitude Scaling) of the complex-valued sequence before mapping to the physical resource.
  • the complex-valued symbol mapped to the first RE is a complex-valued symbol obtained after amplitude scaling (Amplitude Scaling) of the input complex-valued sequence mapped to the physical resource.
  • the complex-valued symbols mapped onto the first RE are complex-valued symbols after amplitude scaling (Amplitude Scaling).
  • the complex-valued symbols mapped onto the first RE are complex-valued symbols before amplitude scaling (Amplitude Scaling).
  • target modulation symbols are used to generate complex-valued symbols mapped to the first RE
  • the expression "target modulation symbols are used to generate complex-valued symbols mapped to the first RE” in the claims includes the following meaning: the target modulation symbols are used by the first node in this application A device is used to generate complex-valued symbols mapped onto the first RE.
  • target modulation symbols are used to generate complex-valued symbols mapped to the first RE
  • the expression "target modulation symbols are used to generate complex-valued symbols mapped to the first RE” in the claims includes the following meaning: the target modulation symbols and one of the X2 sequences An element of is used together to generate a complex-valued symbol that maps onto the first RE.
  • target modulation symbols are used to generate complex-valued symbols mapped to the first RE
  • the expression "target modulation symbols are used to generate complex-valued symbols mapped to the first RE” in the claims includes the following meaning: the target modulation symbols are used for the X2 sequences A complex-valued symbol mapped to the first RE is obtained after sequence modulation (Sequence Modulation) of a sequence.
  • target modulation symbols are used to generate complex-valued symbols mapped to the first RE
  • the expression "target modulation symbols are used to generate complex-valued symbols mapped to the first RE” in the claims includes the following meaning: the target modulation symbols are used for the X2 sequences Sequence modulation of a sequence (Sequence Modulation), and then block-wise spread (Block-wise spread) to obtain complex-valued symbols mapped to the first RE set.
  • target modulation symbols are used to generate complex-valued symbols mapped to the first RE
  • the expression "target modulation symbols are used to generate complex-valued symbols mapped to the first RE” in the claims includes the following meaning: the target modulation symbols are used for the X2 sequences A complex-valued symbol obtained after a sequence of sequence modulation (Sequence Modulation) is then subjected to amplitude scaling (Amplitude Scaling) to be mapped onto the first RE.
  • target modulation symbols are used to generate complex-valued symbols mapped to the first RE
  • the expression "target modulation symbols are used to generate complex-valued symbols mapped to the first RE” in the claims includes the following meaning: the target modulation symbols are used for the X2 sequences A sequence of sequence modulation (Sequence Modulation), and then a complex-valued symbol obtained through block-wise spread (Block-wise spread) is then mapped to the first RE after amplitude scaling (Amplitude Scaling).
  • the expression "the time domain position of the multi-carrier symbol occupied by the first RE in the time domain is used to determine the target modulation symbol" in the claim includes the following meaning: the first RE is in the time domain The time domain position of the multi-carrier symbol occupied by the domain is used by the first node device in this application to determine the target modulation symbol.
  • the expression "the time domain position of the multi-carrier symbol occupied by the first RE in the time domain is used to determine the target modulation symbol" in the claim includes the following meaning: the first RE is in the time domain The time domain positions of the multi-carrier symbols occupied by the domain are used to determine the target modulation symbol from the X4 modulation symbols.
  • the expression "the time domain position of the multi-carrier symbol occupied by the first RE in the time domain is used to determine the target modulation symbol" in the claim includes the following meaning: the first RE is in the time domain The time domain positions of the multicarrier symbols occupied by the domain are used to determine the phase of the target modulation symbol.
  • the expression "the time domain position of the multi-carrier symbol occupied by the first RE in the time domain is used to determine the target modulation symbol" in the claim includes the following meaning: the first RE is in the time domain The time-domain positions of the multi-carrier symbols occupied by the domain are used to determine the phase in polar coordinates of the complex number representing the target modulation symbol.
  • the expression "the time domain position of the multi-carrier symbol occupied by the first RE in the time domain is used to determine the target modulation symbol" in the claim includes the following meaning: the first RE is in the time domain The order or index of the multi-carrier symbols occupied by the domain is used to determine the target modulation symbol.
  • the expression "the time domain position of the multi-carrier symbol occupied by the first RE in the time domain is used to determine the target modulation symbol" in the claim includes the following meaning: the first RE is in the time domain The order or index of the multi-carrier symbols occupied by the domain in the slot to which they belong is used to determine the target modulation symbol.
  • the expression "the time domain position of the multi-carrier symbol occupied by the first RE in the time domain is used to determine the target modulation symbol" in the claim includes the following meaning: the first RE is in the time domain The order or index of the multi-carrier symbols occupied by the domain among the X1 multi-carrier symbols is used to determine the target modulation symbol.
  • the expression "the time domain position of the multi-carrier symbol occupied by the first RE in the time domain is used to determine the target modulation symbol" in the claim includes the following meaning: the first RE is in the time domain The order or index of the multi-carrier symbols occupied by the domain is used to determine the target modulation symbol according to a predefined mapping relationship or a corresponding relationship or a functional relationship.
  • the expression "the time domain position of the multi-carrier symbol occupied by the first RE in the time domain is used to determine the target modulation symbol" in the claim includes the following meaning: the first RE is in the time domain
  • the multi-carrier symbols occupied by the domain belong to the first multi-carrier symbol group, and the first multi-carrier symbol group is one of the X4 multi-carrier symbol groups, and any one of the X4 multi-carrier symbol groups is a multi-carrier symbol group.
  • the X4 multi-carrier symbol groups are in one-to-one correspondence with the X4 modulation symbols, and the target modulation symbol is the first multi-carrier symbol group in the X4 modulation symbols and the first multi-carrier symbol group the corresponding modulation symbol.
  • any one of the X4 multi-carrier symbol groups includes a positive integer number of multi-carrier symbols greater than 1.
  • one multi-carrier symbol group in the X4 multi-carrier symbol groups only includes one multi-carrier symbol.
  • any one of the X4 multi-carrier symbol groups includes multiple consecutive multi-carrier symbols in the time domain.
  • one multi-carrier symbol group in the X4 multi-carrier symbol groups, includes a plurality of time-domain discrete multi-carrier symbols.
  • the expression "the time domain position of the multi-carrier symbol occupied by the first RE in the time domain is used to determine the target modulation symbol" in the claim includes the following meaning: the first RE is in the time domain
  • the frequency hopping segment to which the multicarrier symbols occupied by the domain belong is used to determine the target modulation symbol.
  • the sequence or index of the frequency hopping section to which the multicarrier symbols occupied by the first RE in the time domain belong are used to determine the target according to a predefined mapping relationship or corresponding relationship modulation symbol.
  • the frequency hopping section to which the multi-carrier symbol occupied by the first RE in the time domain belongs is one of X4 frequency hopping sections, and the X4 frequency hopping sections and The X4 modulation symbols are in one-to-one correspondence, and the target modulation symbol is the modulation symbol corresponding to the frequency hopping segment to which the multicarrier symbol occupied by the first RE in the time domain belongs among the X4 modulation symbols .
  • Embodiment 11 illustrates a schematic diagram of the first difference according to an embodiment of the present application, as shown in FIG. 11 .
  • each small square represents the minimum granularity allowed to configure an alternative parameter among the X3 alternative parameters
  • each small square filled with slashes represents an alternative parameter among the X3 alternative parameters .
  • the X3 candidate parameters in this application are arranged in order from small to large, and the difference between any two adjacent candidate parameters in the X3 candidate parameters is equal to the first difference value,
  • the length of the first base sequence in this application is used together with the X3 to determine the first difference.
  • the first difference is greater than 0.
  • the first difference is a positive integer.
  • the first difference is a positive integer greater than 1.
  • the first difference value is a positive integer greater than 1, and the first difference value can divide the length of the first basic sequence.
  • the first difference is equal to one of 1, 2, 3, 4, and 6.
  • the first difference value is equal to the absolute value of the difference between any two adjacent candidate parameters in the X3 candidate parameters.
  • the difference between the sum of the smallest candidate parameter in the X3 candidate parameters and the length of the first basic sequence minus the largest candidate parameter in the X3 candidate parameters is equal to the first difference.
  • the expression "the length of the first base sequence and the X3 are used together to determine the first difference" in the claims includes the following meanings: the length of the first base sequence and the X3 is used together by the first node device or the second node device in this application to determine the first difference.
  • the expression "the length of the first base sequence and the X3 are used together to determine the first difference" in the claims includes the following meanings: the length of the first base sequence and the Together X3 is used to calculate the first difference.
  • the expression "the length of the first base sequence and the X3 are used together to determine the first difference" in the claims includes the following meanings: the length of the first base sequence and the The quotient of division between X3 is equal to the first difference.
  • the expression "the length of the first base sequence and the X3 are used together to determine the first difference" in the claims includes the following meanings: the length of the first base sequence and the The remainder of the division between X3 is equal to the first difference.
  • the expression "the length of the first base sequence and the X3 are used together to determine the first difference" in the claims includes the following meanings: the length of the first base sequence and the The rounded down value of the quotient of the division between X3 is equal to the first difference.
  • the expression "the length of the first base sequence and the X3 are used together to determine the first difference" in the claims includes the following meaning: the first difference and the first difference
  • the length of the base sequence is proportional, and the first difference is inversely proportional to the X3.
  • Embodiment 12 illustrates a structural block diagram of a processing apparatus in a first node device of an embodiment, as shown in FIG. 12 .
  • the first node device processing apparatus 1200 includes a first receiver 1201 and a first transmitter 1202 .
  • the first receiver 1201 includes the transmitter/receiver 456 (including the antenna 460 ), the receiving processor 452 and the controller/processor 490 in FIG. 4 of the present application;
  • the first transmitter 1202 includes the Transmitter/receiver 456 (including antenna 460 ) and transmit processor 455 .
  • the first receiver 1201 receives the first PDCCH, the first transmitter 1202 sends the first PUCCH, the first PUCCH occupies X1 multi-carrier symbols in the time domain, and the first PDCCH is used to determine The starting multi-carrier symbol among the X1 multi-carrier symbols, where X1 is a positive integer greater than 1; wherein, the first base sequence is used to generate the first PUCCH, and the first base sequence is cyclically shifted Bit generates X2 sequences, any two sequences in the X2 sequences are different, and the X2 is a positive integer greater than 1; the target multi-carrier symbol is one of the X1 multi-carrier symbols, and the target RE set includes Multiple REs occupied by the first PUCCH, any RE included in the target RE set occupies the target multi-carrier symbol in the time domain; the target sequence is one of the X2 sequences, and the target parameter is used to determine the cyclic shift of the target sequence, and the target sequence is used
  • the first receiver 1201 receives the first PDSCH; wherein the first PDSCH carries a first bit block, the first bit block includes a positive integer number of bits, and the first PUCCH is used to indicate the The first bit block is erroneously decoded.
  • the first parameter is used to determine the cyclic shift of the target sequence
  • the pseudo-random sequence is used to determine the first parameter
  • the first parameter is a non-negative integer
  • the target identifier is used to determine the The initial value of the generator of the pseudo-random sequence
  • the target identification is configurable, or the target identification is predefined.
  • the first receiver 1201 receives a first information block; wherein the first information block is used to determine the X1 multi-carrier symbols, and the first information block is used to determine the first information block Whether the PUCCH adopts frequency hopping; when the first PUCCH adopts frequency hopping, the frequency hopping section to which the target multi-carrier symbol belongs is used to determine the target parameter from the X3 candidate parameters; otherwise, the The position of the target multi-carrier symbol in the X1 multi-carrier symbols is used to determine the target parameter from the X3 candidate parameters.
  • a second parameter is used to determine the cyclic shift of the target sequence, the second parameter is a non-negative integer; at least one of a first identifier or a first measurement value is used to determine the first Two parameters, the first identifier is an identifier configured by the first node device, and the first measurement value is a measurement value obtained by the first node device through measurement.
  • X4 modulation symbols are used to generate the first PUCCH, and any two modulation symbols in the X4 modulation symbols adopt the same modulation mode, and any two modulation symbols in the X4 modulation symbols use the same modulation mode.
  • the phases of the modulation symbols are different, and the X4 is a positive integer greater than 1;
  • the first RE is an RE occupied by the first PUCCH, and the target modulation symbol is used to generate a complex value mapped to the first RE symbol, the target modulation symbol is one of the X4 modulation symbols, and the time domain position of the multi-carrier symbol occupied by the first RE in the time domain is used to determine the target modulation symbol.
  • the X3 candidate parameters are arranged in order from small to large, and the difference between any two adjacent candidate parameters in the X3 candidate parameters is equal to the first difference value, and the first basis The length of the sequence is used together with the X3 to determine the first difference.
  • Embodiment 13 illustrates a structural block diagram of a processing apparatus in a second node device of an embodiment, as shown in FIG. 13 .
  • the second node device processing apparatus 1300 includes a second transmitter 1301 and a second receiver 1302 .
  • the second transmitter 1301 includes the transmitter/receiver 416 (including the antenna 460) in FIG. 4 of the present application, the transmit processor 415 and the controller/processor 440;
  • the second receiver 1302 includes the transmitter/receiver 416 in FIG. 4 of the present application Transmitter/receiver 416 (including antenna 460 ) and receive processor 412 .
  • the second transmitter 1301 sends the first PDCCH
  • the second receiver 1302 receives the first PUCCH
  • the first PUCCH occupies X1 multi-carrier symbols in the time domain
  • the first PDCCH is used to indicate The starting multi-carrier symbol among the X1 multi-carrier symbols, where X1 is a positive integer greater than 1;
  • the first base sequence is used to generate the first PUCCH, and the first base sequence is cyclically shifted Bit generates X2 sequences, any two sequences in the X2 sequences are different, and the X2 is a positive integer greater than 1;
  • the target multi-carrier symbol is one of the X1 multi-carrier symbols, and the target RE set includes Multiple REs occupied by the first PUCCH, any RE included in the target RE set occupies the target multi-carrier symbol in the time domain;
  • the target sequence is one of the X2 sequences, and the target parameter is used to determine the cyclic shift of the target sequence, and the target sequence is used
  • the second transmitter 1301 sends a first PDSCH; wherein the first PDSCH carries a first bit block, the first bit block includes a positive integer number of bits, and the first PUCCH is used to indicate the The first bit block is erroneously decoded.
  • the first parameter is used to determine the cyclic shift of the target sequence
  • the pseudo-random sequence is used to determine the first parameter
  • the first parameter is a non-negative integer
  • the target identifier is used to determine the The initial value of the generator of the pseudo-random sequence
  • the target identification is configurable, or the target identification is predefined.
  • the second transmitter 1301 sends a first information block; wherein, the first information block is used to indicate the X1 multi-carrier symbols, and the first information block is used to indicate the first information block Whether the PUCCH adopts frequency hopping; when the first PUCCH adopts frequency hopping, the frequency hopping section to which the target multi-carrier symbol belongs is used to determine the target parameter from the X3 candidate parameters; otherwise, The position of the target multi-carrier symbol in the X1 multi-carrier symbols is used to determine the target parameter from the X3 candidate parameters.
  • a second parameter is used to determine the cyclic shift of the target sequence, the second parameter is a non-negative integer; at least one of a first identifier or a first measurement value is used to determine the first Two parameters, the first identifier is an identifier configured by the sender of the first PUCCH, and the first measurement value is a measurement value obtained by the sender of the first PUCCH through measurement.
  • X4 modulation symbols are used to generate the first PUCCH, and any two modulation symbols in the X4 modulation symbols adopt the same modulation mode, and any two modulation symbols in the X4 modulation symbols use the same modulation mode.
  • the phases of the modulation symbols are different, and the X4 is a positive integer greater than 1;
  • the first RE is an RE occupied by the first PUCCH, and the target modulation symbol is used to generate a complex value mapped to the first RE symbol, the target modulation symbol is one of the X4 modulation symbols, and the time domain position of the multi-carrier symbol occupied by the first RE in the time domain is used to determine the target modulation symbol.
  • the X3 candidate parameters are arranged in order from small to large, and the difference between any two adjacent candidate parameters in the X3 candidate parameters is equal to the first difference value, and the first basis The length of the sequence is used together with the X3 to determine the first difference.
  • the first node device or second node device or UE or terminal in this application includes but is not limited to mobile phones, tablet computers, notebooks, network cards, low-power devices, eMTC devices, NB-IoT devices, in-vehicle communication devices, aircraft, Aircraft, drones, remote control aircraft, test devices, test equipment, test instruments and other equipment.
  • the base station equipment or base station or network side equipment in this application includes but is not limited to macro cell base station, micro cell base station, home base station, relay base station, eNB, gNB, transmission and reception node TRP, relay satellite, satellite base station, air base station, Test devices, test equipment, test instruments and other equipment.

Abstract

本申请公开了一种用于无线通信的节点中的方法和装置。节点接收第一PDCCH;节点发送第一PUCCH,所述第一PUCCH在时域占用X1个多载波符号;第一基础序列生成所述第一PUCCH,所述第一基础序列生成X2个序列;目标多载波符号是所述X1个多载波符号中之一,目标RE集合包括多个RE,所述目标RE集合所包括的RE在时域占用所述目标多载波符号;目标序列是所述X2个序列中的一个序列,目标参数被用于确定所述目标序列的循环移位,所述目标序列生成映射到所述目标RE集合上的复数值符号;所述目标参数是X3个备选参数中之一;所述目标多载波符号的时域位置被用于确定所述目标参数。本申请提高HARQ反馈传输性能。

Description

一种用于无线通信的节点中的方法和装置 技术领域
本申请涉及无线通信系统中的传输方法和装置,尤其涉及无线通信中的组播、多播或广播的传输方案和装置。
背景技术
未来无线通信系统的应用场景越来越多元化,不同的应用场景对系统提出了不同的性能要求。为了满足多种应用场景的不同的性能需求,在3GPP(3rd Generation Partner Project,第三代合作伙伴项目)RAN(Radio Access Network,无线接入网)#72次全会上决定对新空口技术(NR,New Radio)(或5G)进行研究,在3GPP RAN#75次全会上通过了新空口技术(NR,New Radio)的WI(Work Item,工作项目),开始对NR进行标准化工作。在3GPP RAN#86次全会上决定开始NR Rel-17的SI(Study Item,研究项目)和WI(Work Item,工作项目)的工作。
采用新空口技术的众多应用场景中需要支持多播(Multicast)与广播(Broadcast)业务传输,比如固件升级、视频广播等。在NR Rel-17中,为了支持多播与广播业务,在3GPP RAN#86次全会上通过了NR下的多播与广播业务的WI,开始相关的标准化工作。
发明内容
多播与广播传输的WI中支持针对多播/广播传输的HARQ反馈来提高多播/广播传输的鲁棒性。针对多播/广播传输的HARQ反馈问题,本申请公开了一种解决方案。需要说明的是,在本申请的的描述中,只是将多播/广播传输作为一个典型应用场景或者例子;本申请也同样适用于面临相似问题的其它场景(比如存在多种业务共存的场景,或者一个服务小区内对同一个用户设备存在多个并行的下行传输的场景等),也可以取得类似的技术效果。此外,不同场景(包括但不限于多播/广播传输的场景)采用统一解决方案还有助于降低硬件复杂度和成本。在不冲突的情况下,本申请的第一节点设备中的实施例和实施例中的特征可以应用到第二节点设备中,反之亦然。特别的,对本申请中的术语(Terminology)、名词、函数、变量的解释(如果未加特别说明)可以参考3GPP的规范协议TS36系列、TS38系列、TS37系列中的定义。
本申请公开了一种用于无线通信的第一节点中的方法,其特征在于,包括:
接收第一PDCCH;
发送第一PUCCH,所述第一PUCCH在时域占用X1个多载波符号,所述第一PDCCH被用于确定所述X1个多载波符号中的起始多载波符号,所述X1是大于1的正整数;
其中,第一基础序列被用于生成所述第一PUCCH,所述第一基础序列经过循环移位生成X2个序列,所述X2个序列中的任意两个序列不相同,所述X2是大于1的正整数;目标多载波符号是所述X1个多载波符号中之一,目标RE集合包括被所述第一PUCCH所占用的多个RE,所述目标RE集合所包括的任意一个RE在时域占用所述目标多载波符号;目标序列是所述X2个序列中的一个序列,目标参数被用于确定所述目标序列的循环移位,所述目标序列被用于生成映射到所述目标RE集合上的复数值符号;所述目标参数是X3个备选参数中之一,所述X3个备选参数中的任意一个备选参数是小于所述第一基础序列的长度的非负整数,所述X3是大于1的正整数;所述X3个备选参数中存在两个备选参数之间的差不小于所述第一基础序列的长度的一半,所述X3个备选参数中的任意一个备选参数被用于确定所述X2个序列中至少一个序列的循环移位;所述目标多载波符号的时域位置被用于从所述X3个备选参数中确定所述目标参数。
作为一个实施例,通过目标多载波符号的位置来确定目标参数,从而支持在不同的OFDM符号上采用不同的循环移位来携带NACK反馈信息,增大了分集增益,提高了NACK反馈信息传输的鲁棒性。
作为一个实施例,要求两个备选参数之间的差不小于第一基础序列的长度的一半,从而增大携带NACK反馈信息的循环移位的两个或多个值之间的距离,降低漏检概率,进一步增大分集增益和提高NACK反馈传输的性能。
根据本申请的一个方面,上述方法的特征在于,包括:
接收第一PDSCH;
其中,所述第一PDSCH携带第一比特块,所述第一比特块包括正整数个比特,所述第一PUCCH被用于指示所述第一比特块被错误译码。
根据本申请的一个方面,上述方法的特征在于,第一参数被用于确定所述目标序列的循环移位,伪随机序列被用于确定所述第一参数,所述第一参数是非负整数;目标标识被用于确定所述伪随机序列的生成器的初始值;所述目标标识是可配置的,或者所述目标标识是预定义的。
根据本申请的一个方面,上述方法的特征在于,包括:
接收第一信息块;
其中,所述第一信息块被用于确定所述X1个多载波符号,所述第一信息块被用于确定所述第一PUCCH是否采用跳频,;当所述第一PUCCH采用跳频时,所述目标多载波符号所属的跳频区段被用于从所述X3个备选参数中确定所述目标参数;否则,所述目标多载波符号在所述X1个多载波符号中的位置被用于从所述X3个备选参数中确定所述目标参数。
作为一个实施例,将携带NACK反馈信息的循环移位的值和所处的跳频区段结合起来,从而在合并增益和分集增益之间达到一个平衡点,最大化NACK反馈信息的传输性能。
根据本申请的一个方面,上述方法的特征在于,第二参数被用于确定所述目标序列的循环移位,所述第二参数是非负整数;第一标识或者第一测量值中的至少之一被用于确定所述第二参数,所述第一标识是所述第一节点被配置的一个标识,所述第一测量值是所述第一节点经过测量所得到的一个测量值。
作为一个实施例,根据第一标识或者第一测量值中的至少之一来确定第二参数,从而支持属于不同的用户设备组的用户设备在反馈NACK信息时采用不同的循环移位,使得基站可以根据不同的用户设备组的反馈情况确定不同的重传策略,提高NACK反馈信息的传输和数据重传的资源利用率。
根据本申请的一个方面,上述方法的特征在于,X4个调制符号被用于生成所述第一PUCCH,所述X4个调制符号中的任意两个调制符号所采用的调制方式相同,所述X4个调制符号中的任意两个调制符号的相位不相同,所述X4是大于1的正整数;第一RE是所述第一PUCCH所占用的一个RE,目标调制符号被用于生成映射到所述第一RE上的复数值符号,所述目标调制符号是所述X4个调制符号中之一,所述第一RE在时域所占用的多载波符号的时域位置被用于确定所述目标调制符号。
作为一个实施例,在支持循环移位随着多载波符号的位置进行变化的同时,支持调制符号的相位随着多载波符号的位置进行变化,最大化调制时的欧氏距离,进一步提高分集增益,优化NACK反馈信息的传输性能。
根据本申请的一个方面,上述方法的特征在于,所述X3个备选参数从小到大依次排列,所述X3个备选参数中的任意两个排列相邻的备选参数的差等于第一差值,所述第一基础序列的长度和所述X3一起被用于确定所述第一差值。
本申请公开了一种用于无线通信的第二节点中的方法,其特征在于,包括:
发送第一PDCCH;
接收第一PUCCH,所述第一PUCCH在时域占用X1个多载波符号,所述第一PDCCH被用于指示所述X1个多载波符号中的起始多载波符号,所述X1是大于1的正整数;
其中,第一基础序列被用于生成所述第一PUCCH,所述第一基础序列经过循环移位生成X2个序列,所述X2个序列中的任意两个序列不相同,所述X2是大于1的正整数;目标多载波符号是所述X1个多载波符号中之一,目标RE集合包括被所述第一PUCCH所占用的多个RE,所述目标RE集合所包括的任意一个RE在时域占用所述目标多载波符号;目标序列是所述X2个序列中的一个序列,目标参数被用于确定所述目标序列的循环移位,所述目标序列被用于生成映射到所述目标RE集合上的复数值符号;所述目标参数是X3个备选参数中之一,所述X3个备选参数中的任意一个备选参数是小于所述第一基础序列的长度的非负整数,所述X3是大于1的正整数;所述X3个备选参数中存在两个备选参数之间的差不小于所述第一基础序列的长度的一半,所述X3个备选参数中的任意一个备选参数被用于确定所述X2个序列中至少一个序列的循环移位;所述目标多载波符号的时域位置被用于从所述X3个备选参数中确定所述目标参数。
根据本申请的一个方面,上述方法的特征在于,包括:
发送第一PDSCH;
其中,所述第一PDSCH携带第一比特块,所述第一比特块包括正整数个比特,所述第一PUCCH被用于指示所述第一比特块被错误译码。
根据本申请的一个方面,上述方法的特征在于,第一参数被用于确定所述目标序列的循环移位,伪随机序列被用于确定所述第一参数,所述第一参数是非负整数;目标标识被用于确定所述伪随机序列的生成器的初始值;所述目标标识是可配置的,或者所述目标标识是预定义的。
根据本申请的一个方面,上述方法的特征在于,包括:
发送第一信息块;
其中,所述第一信息块被用于指示所述X1个多载波符号,所述第一信息块被用于指示所述第一PUCCH是否采用跳频,;当所述第一PUCCH采用跳频时,所述目标多载波符号所属的跳频区段被用于从所述X3个备选参数中确定所述目标参数;否则,所述目标多载波符号在所述X1个多载波符号中的位置被用于从所述X3个备选参数中确定所述目标参数。
根据本申请的一个方面,上述方法的特征在于,第二参数被用于确定所述目标序列的循环移位,所述第二参数是非负整数;第一标识或者第一测量值中的至少之一被用于确定所述第二参数,所述第一标识是所述第一PUCCH的发送者被配置的一个标识,所述第一测量值是所述第一PUCCH的发送者经过测量所得到的一个测量值。
根据本申请的一个方面,上述方法的特征在于,X4个调制符号被用于生成所述第一PUCCH,所述X4个调制符号中的任意两个调制符号所采用的调制方式相同,所述X4个调制符号中的任意两个调制符号的相位不相同,所述X4是大于1的正整数;第一RE是所述第一PUCCH所占用的一个RE,目标调制符号被用于生成映射到所述第一RE上的复数值符号,所述目标调制符号是所述X4个调制符号中之一,所述第一RE在时域所占用的多载波符号的时域位置被用于确定所述目标调制符号。
根据本申请的一个方面,上述方法的特征在于,所述X3个备选参数从小到大依次排列,所述X3个备选参数中的任意两个排列相邻的备选参数的差等于第一差值,所述第一基础序列的长度和所述X3一起被用于确定所述第一差值。
本申请公开了一种用于无线通信的第一节点设备,其特征在于,包括:
第一接收机,接收第一PDCCH;
第一发射机,发送第一PUCCH,所述第一PUCCH在时域占用X1个多载波符号,所述第一PDCCH被用于确定所述X1个多载波符号中的起始多载波符号,所述X1是大于1的正整数;
其中,第一基础序列被用于生成所述第一PUCCH,所述第一基础序列经过循环移位生成X2个序列,所述X2个序列中的任意两个序列不相同,所述X2是大于1的正整数;目标多载波符号是所述X1个多载波符号中之一,目标RE集合包括被所述第一PUCCH所占用的多个RE,所述目标RE集合所包括的任意一个RE在时域占用所述目标多载波符号;目标序列是所述X2个序列中的一个序列,目标参数被用于确定所述目标序列的循环移位,所述目标序列被用于生成映射到所述目标RE集合上的复数值符号;所述目标参数是X3个备选参数中之一,所述X3个备选参数中的任意一个备选参数是小于所述第一基础序列的长度的非负整数,所述X3是大于1的正整数;所述X3个备选参数中存在两个备选参数之间的差不小于所述第一基础序列的长度的一半,所述X3个备选参数中的任意一个备选参数被用于确定所述X2个序列中至少一个序列的循环移位;所述目标多载波符号的时域位置被用于从所述X3个备选参数中确定所述目标参数。
本申请公开了一种用于无线通信的第二节点设备,其特征在于,包括:
第二发射机,发送第一PDCCH;
第二接收机,接收第一PUCCH,所述第一PUCCH在时域占用X1个多载波符号,所述第一PDCCH被用于指示所述X1个多载波符号中的起始多载波符号,所述X1是大于1的正整数;
其中,第一基础序列被用于生成所述第一PUCCH,所述第一基础序列经过循环移位生成X2个序列,所述X2个序列中的任意两个序列不相同,所述X2是大于1的正整数;目标多载波符号是所述X1个多载波符号中之一,目标RE集合包括被所述第一PUCCH所占用的多个RE,所述目标RE集合所包括的任意一个RE在时域占用所述目标多载波符号;目标序列是所述X2个序列中的一个序列,目标参数被用于确定所述目标序列的循环移位,所述目标序列被用于生成映射到所述目标RE集合上的复数值符号;所述目标参数是X3个备选参数中之一,所述X3个备选参数中的任意一个备选参数是小于所述第一基础序列的长度的非 负整数,所述X3是大于1的正整数;所述X3个备选参数中存在两个备选参数之间的差不小于所述第一基础序列的长度的一半,所述X3个备选参数中的任意一个备选参数被用于确定所述X2个序列中至少一个序列的循环移位;所述目标多载波符号的时域位置被用于从所述X3个备选参数中确定所述目标参数。
作为一个实施例,本申请中的方法具备如下优势:
-.本申请中的方法支持在不同的OFDM符号上采用不同的循环移位来携带NACK反馈信息,增大了分集增益,提高了NACK反馈信息传输的鲁棒性;
-.采用本申请中的方法,增大携带NACK反馈信息的循环移位的两个或多个值之间的距离,降低漏检概率,进一步增大分集增益和提高NACK反馈传输的性能;
-.本申请中的方法将携带NACK反馈信息的循环移位的值和所处的跳频区段结合起来,从而在合并增益和分集增益之间达到一个平衡点,最大化NACK反馈信息的传输性能;
-.本申请中的方法支持属于不同的用户设备组的用户设备在反馈NACK信息时采用不同的循环移位,使得基站可以根据不同的用户设备组的反馈情况确定不同的重传策略,提高NACK反馈信息的传输和数据重传的资源利用率;
-.本申请中的方法在支持循环移位随着多载波符号的位置进行变化的同时,支持调制符号的相位随着多载波符号的位置进行变化,最大化调制时的欧氏距离,进一步提高分集增益,优化NACK反馈信息的传输性能。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的第一PDCCH和第一PUCCH的流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的示意图;
图4示出了根据本申请的一个实施例的第一节点设备和第二节点设备的示意图;
图5示出了根据本申请的一个实施例的无线信号传输流程图;
图6示出了根据本申请的一个实施例的第一PDSCH和第一PUCCH之间的关系的示意图;
图7示出了根据本申请的一个实施例的第一参数的示意图;
图8示出了根据本申请的一个实施例的目标多载波符号的示意图;
图9示出了根据本申请的一个实施例的第二参数的示意图;
图10示出了根据本申请的一个实施例的目标调制符号的示意图;
图11示出了根据本申请的一个实施例的第一差值的示意图;
图12示出了根据本申请的一个实施例的第一节点设备中的处理装置的结构框图;
图13示出了根据本申请的一个实施例的第二节点设备中的处理装置的结构框图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了根据本申请的一个实施例的第一PDCCH和第一PUCCH的流程图100,如附图1所示。在附图1中,每个方框代表一个步骤,特别需要强调的是图中的各个方框的顺序并不代表所表示的步骤之间在时间上的先后关系。
在实施例1中,本申请中的第一节点设备在步骤101中接收第一PDCCH,本申请中的第一节点设备在步骤102中发送第一PUCCH,所述第一PUCCH在时域占用X1个多载波符号,所述第一PDCCH被用于确定所述X1个多载波符号中的起始多载波符号,所述X1是大于1的正整数;其中,第一基础序列被用于生成所述第一PUCCH,所述第一基础序列经过循环移位生成X2个序列,所述X2个序列中的任意两个序列不相同,所述X2是大于1的正整数;目标多载波符号是所述X1个多载波符号中之一,目标RE集合包括被所述第 一PUCCH所占用的多个RE,所述目标RE集合所包括的任意一个RE在时域占用所述目标多载波符号;目标序列是所述X2个序列中的一个序列,目标参数被用于确定所述目标序列的循环移位,所述目标序列被用于生成映射到所述目标RE集合上的复数值符号;所述目标参数是X3个备选参数中之一,所述X3个备选参数中的任意一个备选参数是小于所述第一基础序列的长度的非负整数,所述X3是大于1的正整数;所述X3个备选参数中存在两个备选参数之间的差不小于所述第一基础序列的长度的一半,所述X3个备选参数中的任意一个备选参数被用于确定所述X2个序列中至少一个序列的循环移位;所述目标多载波符号的时域位置被用于从所述X3个备选参数中确定所述目标参数。
作为一个实施例,所述第一PDCCH包括PDCCH(Physical Downlink Control Channel,物理下行控制信道)的射频信号。
作为一个实施例,所述第一PDCCH包括PDCCH的基带信号。
作为一个实施例,所述第一PDCCH通过无线接口传输的。
作为一个实施例,所述第一PDCCH携带DCI(Downlink Control Information,下行控制信息)。
作为一个实施例,一个DCI格式的DCI负载(Payload)被用于生成所述第一PDCCH。
作为一个实施例,所述第一PDCCH占用一个PDCCH备选(Candidate)。
作为一个实施例,所述第一PDCCH占用正整数个CCE(Control Channel Element,控制信道元素)。
作为一个实施例,所述第一PDCCH占用的CCE的数量等于1、2、4、8、16中之一。
作为一个实施例,所述第一PDCCH是调度PDSCH(Physical Downlink Shared Channel,物理下行共享信道)的PDCCH,或者所述第一PDCCH是用于SPS(Semi-Persistent Scheduling,半静态调度)PDSCH释放(Release)的PDCCH。
作为一个实施例,所述第一PDCCH是调度单播(Unicast)的PDSCH的PDCCH。
作为一个实施例,所述第一PDCCH是调度组播或广播的PDCCH。
作为一个实施例,所述第一PDCCH是调度组播或广播的PDSCH的PDCCH。
作为一个实施例,所述第一PDCCH是调度PDSCH的PDCCH,C-RNTI(Cell-Radio Network Temporary Identifier,小区无线网络临时标识)之外的RNTI被用于初始化所述第一PDCCH所调度的PDSCH的扰码生成器。
作为一个实施例,所述第一PDCCH的CRC被C-RNTI加扰。
作为一个实施例,所述第一PDCCH的CRC被C-RNTI之外的RNTI加扰。
作为一个实施例,所述第一PUCCH包括PUCCH(Physical Uplink Control Channel,物理上行控制信道)的射频信号。
作为一个实施例,所述第一PUCCH包括PUCCH的基带信号。
作为一个实施例,所述第一PUCCH携带UCI(Uplink Control Information,上行控制信息)。
作为一个实施例,一个UCI格式(Format)的UCI负载被用于生成所述第一PUCCH。
作为一个实施例,所述第一PUCCH采用PUCCH格式(Format)0。
作为一个实施例,所述第一PUCCH采用PUCCH格式(Format)1。
作为一个实施例,所述第一PUCCH采用PUCCH格式(Format)2。
作为一个实施例,所述第一PUCCH采用PUCCH格式(Format)3或4。
作为一个实施例,所述第一PUCCH在频域仅占用一个PRB(Physical Resource Block,物理资源块)。
作为一个实施例,所述第一PUCCH在频域占用多于一个PRB(Physical Resource Block,物理资源块)。
作为一个实施例,所述第一PUCCH在一个多载波符号内在频域仅占用一个PRB(Physical Resource Block,物理资源块)。
作为一个实施例,所述第一PUCCH所占用的时频资源是由多个用户设备共享的。
作为一个实施例,所述第一PUCCH所占用的时频资源仅被本申请中的所述第一节点设备使用。
作为一个实施例,所述第一PUCCH仅携带NACK(Negative Acknowledgement,否定确认)。
作为一个实施例,所述第一PUCCH是否被传输分别被用于指示NACK和ACK。
作为一个实施例,所述第一PUCCH被传输被用于指示NACK,所述第一PUCCH不被传输被用于指示ACK。
作为一个实施例,所述第一PUCCH在时域仅占用所述X1个多载波符号。
作为一个实施例,所述第一PUCCH在时域还占用所述X1个多载波符号之外的多载波符号。
作为一个实施例,所述X1等于2。
作为一个实施例,所述X1等于从4到14的正整数中之一。
作为一个实施例,所述X1个多载波符号中的任意一个多载波符号是OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号(Symbol)。
作为一个实施例,所述X1个多载波符号中的任意一个多载波符号是SC-FDMA(Single carrier Frequency Division Multiple Access,单载波频分多址)符号(Symbol)。
作为一个实施例,所述X1个多载波符号中的任意一个多载波符号是时域符号(Symbol)。
作为一个实施例,所述X1个多载波符号中的任意一个多载波符号包括循环前缀(CP,Cyclic Prefix)部分和数据部分。
作为一个实施例,所述X1个多载波符号在时域是连续的。
作为一个实施例,所述X1个多载波符号在时域是离散的。
作为一个实施例,所述X1个多载波符号中的任意两个多载波符号正交。
作为一个实施例,所述X1个多载波符号中的起始多载波符号是所述X1个多载波符号中的时域最早的多载波符号。
作为一个实施例,所述X1个多载波符号中的起始多载波符号是所述X1个多载波符号中的索引最小的多载波符号。
作为一个实施例,所述X1个多载波符号中的任意两个多载波符号属于同一个时隙(Slot)。
作为一个实施例,所述X1个多载波符号中存在两个多载波符号属于不同的时隙。
作为一个实施例,权利要求中的表述“所述第一PDCCH被用于确定所述X1个多载波符号中的起始多载波符号”包括以下含义:所述第一PDCCH被本申请中的所述第一节点设备用于确定所述X1个多载波符号中的起始多载波符号。
作为一个实施例,权利要求中的表述“所述第一PDCCH被用于确定所述X1个多载波符号中的起始多载波符号”包括以下含义:所述第一PDCCH被用于显式地或隐式地指示所述X1个多载波符号中的起始多载波符号。
作为一个实施例,权利要求中的表述“所述第一PDCCH被用于确定所述X1个多载波符号中的起始多载波符号”包括以下含义:所述第一PDCCH被用于指示本申请中的所述第一PDSCH所占用的截止多载波符号和所述X1个多载波符号中的起始多载波符号之间的时间间隔或间隔的多载波符号的数量。
作为一个实施例,权利要求中的表述“所述第一PDCCH被用于确定所述X1个多载波符号中的起始多载波符号”包括以下含义:所述第一PDCCH被用于指示本申请中的所述第一PDSCH所占用的截止多载波符号所属的时隙(Slot)和所述X1个多载波符号中的起始多载波符号所属的时隙之间的时间间隔或间隔的时隙的数量。
作为一个实施例,权利要求中的表述“所述第一PDCCH被用于确定所述X1个多载波符号中的起始多载波符号”包括以下含义:所述第一PDCCH被用于指示本申请中的所述第一PDSCH所占用的截止多载波符号所属的时隙(Slot)和所述X1个多载波符号中的起始多载波符号所属的时隙之间间隔的时隙的数量;本申请中的所述第一信息块被用于指示和所述X1个多载波符号中的起始多载波符号在所属的时隙中的时域位置。
作为一个实施例,权利要求中的表述“所述第一PDCCH被用于确定所述X1个多载波符号中的起始多载波符号”包括以下含义:所述第一PDCCH被用于确定所述X1个多载波符号中的起始多载波符号在时域位置。
作为一个实施例,权利要求中的表述“所述第一PDCCH被用于确定所述X1个多载波符号中的起始多载波符号”包括以下含义:所述第一PDCCH被用于确定所述X1个多载波符号中的起始多载波符号所属的时隙在时域位置。
作为一个实施例,权利要求中的表述“所述第一PDCCH被用于确定所述X1个多载波符号中的起始多载波符号”包括以下含义:所述第一PDCCH被用于指示参考时隙,所述第一PDCCH指示所述X1个 多载波符号中的起始多载波符号所属的时隙和所述参考时隙之间的间隔的时隙数量。
作为一个实施例,所述第一基础序列是Zadoff-Chu(ZC)序列。
作为一个实施例,所述第一基础序列是CGS(Computer Generated Sequence,计算机产生序列)。
作为一个实施例,所述第一基础序列是低峰均比(PAPR,Peak to Average Power Ratio)序列。
作为一个实施例,所述第一基础序列是恒包络零自相关(CAZAC,Constant Amplitude Zero Auto Correlation)序列。
作为一个实施例,所述第一基础序列是伪随机序列。
作为一个实施例,所述第一基础序列是预定义的。
作为一个实施例,所述第一基础序列是固定的。
作为一个实施例,所述第一基础序列是可配置的。
作为一个实施例,所述第一基础序列包括大于1的正整数个元素。
作为一个实施例,所述第一基础序列的长度是所述第一基础序列所包括的元素的数量。
作为一个实施例,所述第一基础序列所包括的任意一个元素是一个模等于1的复数。
作为一个实施例,所述第一基础序列所包括的任意一个元素是0或者1。
作为一个实施例,所述第一基础序列的长度等于12。
作为一个实施例,所述第一基础序列的长度等于6的正整数倍。
作为一个实施例,权利要求中的表述“第一基础序列被用于生成所述第一PUCCH”包括以下含义:所述第一基础序列被用于生成所述X2个序列,所述X2个序列被用于生成所述第一PUCCH。
作为一个实施例,权利要求中的表述“第一基础序列被用于生成所述第一PUCCH”包括以下含义:所述X2个序列映射到所述第一PUCCH所占用的物理资源上被用于生成所述第一PUCCH。
作为一个实施例,权利要求中的表述“第一基础序列被用于生成所述第一PUCCH”包括以下含义:所述X2个序列被映射到所述第一PUCCH所占用的物理资源上,然后经过OFDM基带信号生成得到所述第一PUCCH。
作为一个实施例,权利要求中的表述“第一基础序列被用于生成所述第一PUCCH”包括以下含义:所述X2个序列被映射到所述第一PUCCH所占用的物理资源上,然后经过OFDM基带信号生成(Baseband Signal Generation)和调制与上变频(Modulation and Upconversion)得到所述第一PUCCH。
作为一个实施例,权利要求中的表述“第一基础序列被用于生成所述第一PUCCH”包括以下含义:所述X2个序列依次经过序列调制(Sequence Modulation),映射到物理资源,OFDM基带信号生成得到所述第一PUCCH。
作为一个实施例,权利要求中的表述“第一基础序列被用于生成所述第一PUCCH”包括以下含义:所述X2个序列依次经过序列调制(Sequence Modulation),映射到物理资源,OFDM基带信号生成和调制与上变频得到所述第一PUCCH。
作为一个实施例,权利要求中的表述“第一基础序列被用于生成所述第一PUCCH”包括以下含义:所述X2个序列经过序列调制(Sequence Modulation)后被用于生成所述第一PUCCH。
作为一个实施例,所述第一基础序列分别经过X2个互不相同的循环移位(Cyclic Shift)生成所述X2个序列。
作为一个实施例,所述X2个序列中的任意一个序列是所述第一基础序列经过循环移位生成的。
作为一个实施例,所述X2个序列中的任意一个序列的长度等于所述第一基础序列的长度。
作为一个实施例,所述X2个序列中的任意一个序列是所述第一基础序列经过相位旋转(Phase Rotation)生成的。
作为一个实施例,所述X2个序列中的任意两个序列所经过的循环移位的值不相等。
作为一个实施例,所述X2个序列中的任意两个序列包括不相同的元素。
作为一个实施例,所述X2个序列中任意两个包括相同的元素的序列中的元素的顺序不相同。
作为一个实施例,所述X2个序列中存在两个序列包括相同的元素。
作为一个实施例,所述目标多载波符号是所述X1个多载波符号中的起始多载波符号之外的一个多载波符号。
作为一个实施例,所述目标多载波符号是所述X1个多载波符号中的起始多载波符号。
作为一个实施例,所述目标多载波符号是所述X1个多载波符号中的任意一个多载波符号。
作为一个实施例,所述目标RE集合所包括的RE(Resource Element,资源元素)的数量大于1。
作为一个实施例,所述目标RE集合所包括的任意一个RE在时域占用所述目标多载波符号,在频域占用一个子载波(subcarrier)。
作为一个实施例,所述目标RE集合所包括的任意一个RE被所述第一PUCCH占用。
作为一个实施例,所述目标RE集合包括一个RE未被所述第一PUCCH占用。
作为一个实施例,所述目标RE集合所包括的RE的数量等于12。
作为一个实施例,所述目标序列是所述X2个序列中任意一个序列。
作为一个实施例,所述目标序列是所述X2个序列中所映射的多载波符号包括所述X1个多载波符号中的最早的多载波符号的序列。
作为一个实施例,所述目标序列是所述X2个序列中所映射的多载波符号不包括所述X1个多载波符号中的最早的多载波符号的序列。
作为一个实施例,所述目标序列是所述X2个序列中所映射的多载波符号仅包括所述X1个多载波符号中的最早的多载波符号之外的多载波符号的序列。
作为一个实施例,所述目标序列是所述X2个序列中所经过的循环移位的值最小的序列。
作为一个实施例,所述目标序列是所述X2个序列中所经过的循环移位的值最大的序列。
作为一个实施例,所述目标序列是所述X2个序列中的经过初始循环移位的序列。
作为一个实施例,所述目标参数是m cs
作为一个实施例,所述目标参数是m 0
作为一个实施例,所述目标参数是m int
作为一个实施例,权利要求中的表述“目标参数被用于确定所述目标序列的循环移位”包括以下含义:所述目标参数被本申请中的所述第一节点设备或者所述第二节点设备用于确定所述目标序列的循环移位。
作为一个实施例,权利要求中的表述“目标参数被用于确定所述目标序列的循环移位”包括以下含义:所述目标参数被用于计算所述目标序列的循环移位的值。
作为一个实施例,权利要求中的表述“目标参数被用于确定所述目标序列的循环移位”包括以下含义:所述目标序列的循环移位的值和所述目标参数线性相关。
作为一个实施例,权利要求中的表述“目标参数被用于确定所述目标序列的循环移位”包括以下含义:所述目标序列的循环移位的值和目标余数线性相关,所述目标余数等于所述目标参数对所述第一基础序列的长度取余所得到的余数。
作为一个实施例,权利要求中的表述“目标参数被用于确定所述目标序列的循环移位”包括以下含义:所述目标参数被用于根据预定义的函数关系被用于确定所述目标序列的循环移位的值。
作为一个实施例,权利要求中的表述“目标参数被用于确定所述目标序列的循环移位”是通过下式实现的:
Figure PCTCN2022076867-appb-000001
其中,α target代表所述目标序列的循环移位的值,N seq代表所述第一基础序列的长度,m target代表目标参数,n cs代表通过伪随机序列得到的值。
作为一个实施例,映射到所述目标RE集合上的任意一个复数值符号(complex-valued symbol)是在映射到物理资源(Mapping to physical resources)之前的复数值序列所包括的一个复数值符号。
作为一个实施例,映射到所述目标RE集合上的任意一个复数值符号(complex-valued symbol)是映射到物理资源(Mapping to physical resources)的输入的复数值序列所包括的一个复数值符号。
作为一个实施例,映射到所述目标RE集合上的任意一个复数值符号(complex-valued symbol)是被映射到物理资源(Mapping to physical resources)的复数值序列所包括的一个复数值符号。
作为一个实施例,映射到所述目标RE集合上的任意一个复数值符号(complex-valued symbol)是在 映射到物理资源(Mapping to physical resources)之前的复数值序列在经过幅度缩放(Amplitude Scaling)之后得到的一个复数值符号。
作为一个实施例,映射到所述目标RE集合上的任意一个复数值符号(complex-valued symbol)是映射到物理资源(Mapping to physical resources)的输入的复数值序列在经过幅度缩放(Amplitude Scaling)之后得到的一个复数值符号。
作为一个实施例,映射到所述目标RE集合上的任意一个复数值符号(complex-valued symbol)是在经过幅度缩放(Amplitude Scaling)之后的复数值符号。
作为一个实施例,映射到所述目标RE集合上的任意一个复数值符号(complex-valued symbol)是在经过幅度缩放(Amplitude Scaling)之前的复数值符号。
作为一个实施例,权利要求中的表述“所述目标序列被用于生成映射到所述目标RE集合上的复数值符号”包括以下含义:所述目标序列被本申请中的所述第一节点设备用于生成映射到所述目标RE集合上的复数值符号。
作为一个实施例,权利要求中的表述“所述目标序列被用于生成映射到所述目标RE集合上的复数值符号”包括以下含义:所述目标序列所包括的元素就是映射到所述目标RE集合上的复数值符号。
作为一个实施例,权利要求中的表述“所述目标序列被用于生成映射到所述目标RE集合上的复数值符号”包括以下含义:所述目标序列经过序列调制(Sequence Modulation)得到映射到所述目标RE集合上的复数值符号。
作为一个实施例,权利要求中的表述“所述目标序列被用于生成映射到所述目标RE集合上的复数值符号”包括以下含义:所述目标序列经过序列调制(Sequence Modulation)和分块扩展(Block-wise spread)得到映射到所述目标RE集合上的复数值符号。
作为一个实施例,权利要求中的表述“所述目标序列被用于生成映射到所述目标RE集合上的复数值符号”包括以下含义:所述目标序列就是映射到所述目标RE集合上的复数值符号按照频率从低到高或者从高到低排列得到序列。
作为一个实施例,权利要求中的表述“所述目标序列被用于生成映射到所述目标RE集合上的复数值符号”包括以下含义:所述目标序列所包括的元素经过幅度缩放(Amplitude Scaling)之后按照频率从低到高或者从高到低映射到所述目标RE集合所包括的RE上。
作为一个实施例,权利要求中的表述“所述目标序列被用于生成映射到所述目标RE集合上的复数值符号”包括以下含义:所述目标序列经过序列调制(Sequence Modulation)得到的复数值符号再经过幅度缩放(Amplitude Scaling)之后按照频率从低到高或者从高到低映射到所述目标RE集合所包括的RE上。
作为一个实施例,权利要求中的表述“所述目标序列被用于生成映射到所述目标RE集合上的复数值符号”包括以下含义:所述目标序列经过序列调制(Sequence Modulation)和分块扩展(Block-wise spread)得到的复数值符号再经过幅度缩放(Amplitude Scaling)之后按照频率从低到高或者从高到低映射到所述目标RE集合所包括的RE上。
作为一个实施例,所述X2个序列中的任意一个序列所包括的元素被映射到在时域属于所述X1个多载波符号中的至少一个多载波符号的资源元素(RE,Resource Element)集合所包括的RE上。
作为一个实施例,所述X2个序列中的任意一个序列在时域和所述X1个多载波符号中的至少一个多载波符号关联。
作为一个实施例,所述X2个序列中的任意一个序列经过序列调制后在时域被映射到所述X1个多载波符号中的至少一个多载波符号上。
作为一个实施例,所述X2个序列中的任意一个序列对应所述X1个多载波符号中的至少一个多载波符号。
作为一个实施例,所述X2个序列中的任意一个序列经过序列调制和分块扩展(Block-wise spread)后得到的复数符号被映射到在时域属于所述X1个多载波符号中的至少一个多载波符号的资源元素上。
作为一个实施例,所述X2个序列中的任意一个序列经过幅度缩放(Amplitude Scaling)后在时域被映射到所述X1个多载波符号中的至少一个多载波符号上。
作为一个实施例,所述X2个序列中的任意一个序列经过序列调制、分块扩展和幅度缩放后在时域被 映射到所述X1个多载波符号中的至少一个多载波符号上。
作为一个实施例,所述X2个序列中的任意一个序列所包括的元素经过幅度缩放后被映射到在时域属于所述X1个多载波符号中的至少一个多载波符号的资源元素(RE,Resource Element)集合所包括的RE上。
作为一个实施例,所述X2个序列中的任意一个序列经过序列调制和幅度缩放后得到的复数符号被映射到在时域属于所述X1个多载波符号中的至少一个多载波符号的资源元素集合所包括的RE上。
作为一个实施例,所述X2个序列中的任意一个序列所包括的元素经过幅度缩放按照子载波索引从低到高或者从高到低被映射到时域属于所述X1个多载波符号中的至少一个多载波符号的资源元素集合所包括的RE上。
作为一个实施例,所述X2个序列中的任意一个序列所包括的元素经过序列调制和幅度缩放后按照子载波索引从低到高或者从高到低被映射到时域属于所述X1个多载波符号中的至少一个多载波符号的资源元素集合所包括的RE上。
作为一个实施例,所述X3等于2。
作为一个实施例,所述X3等于3。
作为一个实施例,所述X3等于4。
作为一个实施例,所述X3等于6。
作为一个实施例,所述X3等于12。
作为一个实施例,所述X3等于所述X1。
作为一个实施例,所述X3小于所述X1。
作为一个实施例,所述X3小于所述X2。
作为一个实施例,所述X3等于所述X2。
作为一个实施例,所述X2等于所述X1。
作为一个实施例,所述X2小于所述X1。
作为一个实施例,所述X1被用于确定所述X3。
作为一个实施例,所述X1能够被所述X2整除。
作为一个实施例,所述X1能够被所述X3整除。
作为一个实施例,所述X3是预定义的。
作为一个实施例,所述X3是可配置的。
作为一个实施例,所述X3个备选参数是固定的。
作为一个实施例,所述X3个备选参数是预定义的。
作为一个实施例,所述X3个备选参数和伪随机序列无关。
作为一个实施例,所述X3个备选参数和所述第一PUCCH所携带的信息或负载无关。
作为一个实施例,所述X3个备选参数和所述X1有关。
作为一个实施例,所述X3个备选参数中的任意一个备选参数等于m cs的多个备选值中的一个。
作为一个实施例,所述X3个备选参数中的任意一个备选参数等于m 0的多个备选值中的一个。
作为一个实施例,所述X3个备选参数中的任意一个备选参数等于m int的多个备选值中的一个。
作为一个实施例,所述X1被用于确定所述X3个备选参数。
作为一个实施例,所述第一PUCCH的格式(Format)被用于确定所述X3个备选参数。
作为一个实施例,所述X3个备选参数中存在两个备选参数之间的差等于所述第一基础序列的长度的一半。
作为一个实施例,所述X3个备选参数中存在两个备选参数之间的差大于所述第一基础序列的长度的一半。
作为一个实施例,对于给定的所述X1,所述X3个备选参数是固定的。
作为一个实施例,对于给定的所述第一PUCCH的格式(Format),所述X3个备选参数是固定的。
作为一个实施例,对于给定的所述X1和给定的所述第一PUCCH的格式(Format),所述X3个备选参数是固定的。
作为一个实施例,所述X3等于2,所述X3个备选参数分别等于0和6。
作为一个实施例,所述X3等于2,所述X3个备选参数之间的差等于6。
作为一个实施例,所述X3等于3,所述X3个备选参数分别等于0、4和8。
作为一个实施例,所述X3等于3,所述X3个备选参数中任意两个大小相邻的备选参数之间的差等于4。
作为一个实施例,所述X3等于4,所述X3个备选参数分别等于0、3、6和9。
作为一个实施例,所述X3等于4,所述X3个备选参数中任意两个大小相邻的备选参数之间的差等于3。
作为一个实施例,所述X3等于6,所述X3个备选参数分别等于0、2、4、6、8和10。
作为一个实施例,所述X3等于6,所述X3个备选参数中任意两个大小相邻的备选参数之间的差等于2。
作为一个实施例,所述X3个备选参数中存在一个备选参数等于0。
作为一个实施例,所述X3个备选参数中的任意一个备选参数大于0。
作为一个实施例,所述X3个备选参数中存在两个备选参数之间的差等于所述第一基础序列的长度和所述X3之间的商。
作为一个实施例,所述X3个备选参数中存在两个备选参数之间的差等于所述第一基础序列的长度的一半和所述X3之间的商。
作为一个实施例,所述X3个备选参数中任意两个大小相邻的备选参数之间的差等于所述第一基础序列的长度和所述X3之间的商。
作为一个实施例,所述X3个备选参数中任意两个大小相邻的备选参数之间的差等于所述第一基础序列的长度的一半和所述X3之间的商。
作为一个实施例,权利要求中的表述“所述X3个备选参数中的任意一个备选参数被用于确定所述X2个序列中至少一个序列的循环移位”包括以下含义:所述X3个备选参数中的任意一个备选参数被本申请中的所述第一节点设备或者所述第二节点设备用于确定所述X2个序列中至少一个序列的循环移位。
作为一个实施例,权利要求中的表述“所述X3个备选参数中的任意一个备选参数被用于确定所述X2个序列中至少一个序列的循环移位”包括以下含义:所述X3个备选参数中的任意一个备选参数被用于计算所述X2个序列中至少一个序列的循环移位的值。
作为一个实施例,权利要求中的表述“所述X3个备选参数中的任意一个备选参数被用于确定所述X2个序列中至少一个序列的循环移位”包括以下含义:所述X3个备选参数中的任意一个备选参数被用于根据预定义的函数关系计算所述X2个序列中至少一个序列的循环移位的值。
作为一个实施例,权利要求中的表述“所述X3个备选参数中的任意一个备选参数被用于确定所述X2个序列中至少一个序列的循环移位”包括以下含义:所述X2个序列中至少一个序列的循环移位的值和所述X3个备选参数中的一个备选参数线性相关。
作为一个实施例,权利要求中的表述“所述X3个备选参数中的任意一个备选参数被用于确定所述X2个序列中至少一个序列的循环移位”包括以下含义:所述X2个序列中至少一个序列的循环移位的值和特征余数线性相关,所述特征余数等于所述X3个备选参数中的一个备选参数对所述第一基础序列的长度取余得到的余数。
作为一个实施例,权利要求中的表述“所述目标多载波符号的时域位置被用于从所述X3个备选参数中确定所述目标参数”包括以下含义:所述目标多载波符号的时域位置被本申请中的所述第一节点设备用于从所述X3个备选参数中确定所述目标参数。
作为一个实施例,权利要求中的表述“所述目标多载波符号的时域位置被用于从所述X3个备选参数中确定所述目标参数”是通过本申请中的权利要求4实现的。
作为一个实施例,权利要求中的表述“所述目标多载波符号的时域位置被用于从所述X3个备选参数中确定所述目标参数”包括以下含义:所述目标多载波符号在所属的时隙中的顺序或索引被用于从所述X3个备选参数中确定所述目标参数。
作为一个实施例,权利要求中的表述“所述目标多载波符号的时域位置被用于从所述X3个备选参 数中确定所述目标参数”包括以下含义:所述目标多载波符号在所述X1个多载波符号中的顺序或索引被用于从所述X3个备选参数中确定所述目标参数。
作为一个实施例,权利要求中的表述“所述目标多载波符号的时域位置被用于从所述X3个备选参数中确定所述目标参数”包括以下含义:所述目标多载波符号所属的跳频区段被用于从所述X3个备选参数中确定所述目标参数。
作为一个实施例,权利要求中的表述“所述目标多载波符号的时域位置被用于从所述X3个备选参数中确定所述目标参数”包括以下含义:所述目标多载波符号所属的多载波符号集合的索引被用于从所述X3个备选参数中确定所述目标参数,所述目标多载波符号所属的多载波符号集合包括大于1个多载波符号。
作为一个实施例,权利要求中的表述“所述目标多载波符号的时域位置被用于从所述X3个备选参数中确定所述目标参数”包括以下含义:X3个多载波符号集合分别一一对应所述X3个备选参数,所述X3个多载波符号集合中的任意一个多载波符号集合包括正整数个多载波符号;所述目标多载波符号属于目标多载波符号集合,所述目标多载波符号集合是所述X3个多载波符号集合中之一;所述目标参数是所述X3个备选参数中和所述目标多载波符号集合所对应的备选参数。作为上述实施例的一个附属实施例,所述X3个多载波符号集合中的任意一个多载波符号集合包括时域连续的多载波符号。作为上述实施例的一个附属实施例,所述X3个多载波符号集合中包括一个多载波符号集合包括时域离散的多载波符号。作为上述实施例的一个附属实施例,所述X3个多载波符号集合中的任意一个多载波符号集合包括等时域间隔的多载波符号。作为上述实施例的一个附属实施例,所述X3个多载波符号集合中的任意两个多载波符号集合包括的多载波符号的数量相等。作为上述实施例的一个附属实施例,所述X3个多载波符号集合中的任意一个多载波符号集合包括的多载波符号的数量等于2或3或4或6。
实施例2
实施例2示例了根据本申请的一个网络架构的示意图,如附图2所示。附图2说明了5G NR,LTE(Long-Term Evolution,长期演进)及LTE-A(Long-Term Evolution Advanced,增强长期演进)系统的网络架构200的图。5G NR或LTE网络架构200可称为5GS(5G System)/EPS(Evolved Packet System,演进分组系统)200或某种其它合适术语。5GS/EPS 200可包括一个或一个以上UE(User Equipment,用户设备)201,NG-RAN(下一代无线接入网络)202,5GC(5G Core Network,5G核心网)/EPC(Evolved Packet Core,演进分组核心)210,HSS(Home Subscriber Server,归属签约用户服务器)/UDM(Unified Data Management,统一数据管理)220和因特网服务230。5GS/EPS可与其它接入网络互连,但为了简单未展示这些实体/接口。如图所示,5GS/EPS提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络或其它蜂窝网络。NG-RAN包括NR/演进节点B(gNB/eNB)203和其它gNB(eNB)204。gNB(eNB)203提供朝向UE201的用户和控制平面协议终止。gNB(eNB)203可经由Xn/X2接口(例如,回程)连接到其它gNB(eNB)204。gNB(eNB)203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收节点)或某种其它合适术语。gNB(eNB)203为UE201提供对5GC/EPC210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、非地面基站通信、卫星移动通信、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物联网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,测试设备、测试仪表、测试工具或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB(eNB)203通过S1/NG接口连接到5GC/EPC210。5GC/EPC210包括MME(Mobility Management Entity,移动性管理实体)/AMF(Authentication Management Field,鉴权管理域)/SMF(Session Management Function,会话管理功能)211、其它MME/AMF/SMF214、S-GW(Service Gateway,服务网关)/UPF(User Plane Function,用户面功能)212以及P-GW(Packet Date Network  Gateway,分组数据网络网关)/UPF213。MME/AMF/SMF211是处理UE201与5GC/EPC210之间的信令的控制节点。大体上,MME/AMF/SMF211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW/UPF212传送,S-GW/UPF212自身连接到P-GW/UPF213。P-GW提供UE IP地址分配以及其它功能。P-GW/UPF213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子系统)和包交换串流服务。
作为一个实施例,所述UE201对应本申请中的所述第一节点设备。
作为一个实施例,所述UE201支持组播或广播业务传输。
作为一个实施例,所述gNB(eNB)201对应本申请中的所述第二节点设备。
作为一个实施例,所述gNB(eNB)201支持组播或广播业务传输。
实施例3
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。图3是说明用于用户平面350和控制平面300的无线电协议架构的实施例的示意图,图3用三个层展示用于第一节点设备(UE或gNB)和第二节点设备(gNB或UE)的控制平面300的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,且负责通过PHY301在第一节点设备与第二节点设备之间的链路。L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于第二节点设备处。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供通过加密数据包而提供安全性,以及提供第二节点设备之间的对第一节点设备的越区移动支持。RLC子层303提供上部层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ造成的无序接收。MAC子层302提供逻辑与传输信道之间的多路复用。MAC子层302还负责在第一节点设备之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。控制平面300中的层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306负责获得无线电资源(即,无线电承载)且使用第二节点设备与第一节点设备之间的RRC信令来配置下部层。用户平面350的无线电协议架构包括层1(L1层)和层2(L2层),在用户平面350中用于第一节点设备和第二节点设备的无线电协议架构对于物理层351,L2层355中的PDCP子层354,L2层355中的RLC子层353和L2层355中的MAC子层352来说和控制平面300中的对应层和子层大体上相同,但PDCP子层354还提供用于上部层数据包的标头压缩以减少无线电发射开销。用户平面350中的L2层355中还包括SDAP(Service Data Adaptation Protocol,服务数据适配协议)子层356,SDAP子层356负责QoS流和数据无线承载(DRB,Data Radio Bearer)之间的映射,以支持业务的多样性。虽然未图示,但第一节点设备可具有在L2层355之上的若干上部层,包括终止于网络侧上的P-GW处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第一节点设备。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第二节点设备。
作为一个实施例,本申请中的所述第一PDCCH生成于所述PHY301,或者PHY351。
作为一个实施例,本申请中的所述第一PUCCH生成于所述PHY301,或者PHY351。
作为一个实施例,本申请中的所述第一PDSCH生成于所述RRC306,或者MAC302,或者MAC352,或者所述PHY301,或者PHY351
作为一个实施例,本申请中的所述第一信息块生成于所述RRC306,或者MAC302,或者MAC352,或者所述PHY301,或者PHY351。
实施例4
实施例4示出了根据本申请的一个实施例的第一节点设备和第二节点设备的示意图,如附图4所示。
在第一节点设备(450)中可以包括控制器/处理器490,数据源/缓存器480,接收处理器452,发射 器/接收器456和发射处理器455,发射器/接收器456包括天线460。
在第二节点设备(410)中可以包括控制器/处理器440,数据源/缓存器430,接收处理器412,发射器/接收器416和发射处理器415,发射器/接收器416包括天线420。
在DL(Downlink,下行)中,上层包,比如本申请中的第一信息块和第一PDSCH所携带的上层信息提供到控制器/处理器440。控制器/处理器440实施L2层及以上层的功能。在DL中,控制器/处理器440提供包头压缩、加密、包分段和重排序、逻辑与输送信道之间的多路复用,以及基于各种优先级量度对第一节点设备450的无线电资源分配。控制器/处理器440还负责HARQ操作、丢失包的重新发射,和到第一节点设备450的信令,比如本申请中的第一信息块所包括的高层信息和第一PDSCH所携带的高层信息均在控制器/处理器440中生成。发射处理器415实施用于L1层(即,物理层)的各种信号处理功能,包括编码、交织、加扰、调制、功率控制/分配、预编码和物理层控制信令生成等,比如本申请中第一PDCCH的物理层信号、第一PDSCH的物理层信号和携带第一信息块的物理层信号的生成在发射处理器415完成。生成的调制符号分成并行流并将每一流映射到相应的多载波子载波和/或多载波符号,然后由发射处理器415经由发射器416映射到天线420以射频信号的形式发射出去。在接收端,每一接收器456通过其相应天线460接收射频信号,每一接收器456恢复调制到射频载波上的基带信息,且将基带信息提供到接收处理器452。接收处理器452实施L1层的各种信号接收处理功能。信号接收处理功能包括对本申请中的第一PDCCH、第一PDSCH和携带第一信息块的物理层信号的接收,通过多载波符号流中的多载波符号进行基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK))的解调,随后解扰,解码和解交织以恢复在物理信道上由第二节点设备410发射的数据或者控制,随后将数据和控制信号提供到控制器/处理器490。控制器/处理器490负责L2层及以上层,控制器/处理器490对本申请中的第一信息块所包括的高层信息和第一PDSCH所携带的高层信息进行解读。控制器/处理器可与存储程序代码和数据的存储器480相关联。存储器480可称为计算机可读媒体。
在上行(UL)传输中,和下行传输类似,高层信息在控制器/处理器490生成后经过发射处理器455实施用于L1层(即,物理层)的各种信号发射处理功能,本申请中的第一PUCCH在发射处理器455生成,然后由发射处理器455经由发射器456映射到天线460以射频信号的形式发射出去。接收器416通过其相应天线420接收射频信号,每一接收器416恢复调制到射频载波上的基带信息,且将基带信息提供到接收处理器412。接收处理器412实施用于L1层(即,物理层)的各种信号接收处理功能,包括接收处理本申请中第一PUCCH,随后将数据和/或控制信号提供到控制器/处理器440。在控制器/处理器440实施L2层的功能包括对高层信息进行解读。控制器/处理器可与存储程序代码和数据的缓存器430相关联。缓存器430可以为计算机可读媒体。
作为一个实施例,所述第一节点设备450装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用,所述第一节点设备450装置至少:接收第一PDCCH;发送第一PUCCH,所述第一PUCCH在时域占用X1个多载波符号,所述第一PDCCH被用于确定所述X1个多载波符号中的起始多载波符号,所述X1是大于1的正整数;其中,第一基础序列被用于生成所述第一PUCCH,所述第一基础序列经过循环移位生成X2个序列,所述X2个序列中的任意两个序列不相同,所述X2是大于1的正整数;目标多载波符号是所述X1个多载波符号中之一,目标RE集合包括被所述第一PUCCH所占用的多个RE,所述目标RE集合所包括的任意一个RE在时域占用所述目标多载波符号;目标序列是所述X2个序列中的一个序列,目标参数被用于确定所述目标序列的循环移位,所述目标序列被用于生成映射到所述目标RE集合上的复数值符号;所述目标参数是X3个备选参数中之一,所述X3个备选参数中的任意一个备选参数是小于所述第一基础序列的长度的非负整数,所述X3是大于1的正整数;所述X3个备选参数中存在两个备选参数之间的差不小于所述第一基础序列的长度的一半,所述X3个备选参数中的任意一个备选参数被用于确定所述X2个序列中至少一个序列的循环移位;所述目标多载波符号的时域位置被用于从所述X3个备选参数中确定所述目标参数。
作为一个实施例,所述第一节点设备450装置包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收第一PDCCH;发送第一PUCCH,所述第一PUCCH在时域占用X1个多载波符号,所述第一PDCCH被用于确定所述X1个多载波符号中的起始 多载波符号,所述X1是大于1的正整数;其中,第一基础序列被用于生成所述第一PUCCH,所述第一基础序列经过循环移位生成X2个序列,所述X2个序列中的任意两个序列不相同,所述X2是大于1的正整数;目标多载波符号是所述X1个多载波符号中之一,目标RE集合包括被所述第一PUCCH所占用的多个RE,所述目标RE集合所包括的任意一个RE在时域占用所述目标多载波符号;目标序列是所述X2个序列中的一个序列,目标参数被用于确定所述目标序列的循环移位,所述目标序列被用于生成映射到所述目标RE集合上的复数值符号;所述目标参数是X3个备选参数中之一,所述X3个备选参数中的任意一个备选参数是小于所述第一基础序列的长度的非负整数,所述X3是大于1的正整数;所述X3个备选参数中存在两个备选参数之间的差不小于所述第一基础序列的长度的一半,所述X3个备选参数中的任意一个备选参数被用于确定所述X2个序列中至少一个序列的循环移位;所述目标多载波符号的时域位置被用于从所述X3个备选参数中确定所述目标参数。
作为一个实施例,所述第二节点设备410装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第二节点设备410装置至少:发送第一PDCCH;接收第一PUCCH,所述第一PUCCH在时域占用X1个多载波符号,所述第一PDCCH被用于指示所述X1个多载波符号中的起始多载波符号,所述X1是大于1的正整数;其中,第一基础序列被用于生成所述第一PUCCH,所述第一基础序列经过循环移位生成X2个序列,所述X2个序列中的任意两个序列不相同,所述X2是大于1的正整数;目标多载波符号是所述X1个多载波符号中之一,目标RE集合包括被所述第一PUCCH所占用的多个RE,所述目标RE集合所包括的任意一个RE在时域占用所述目标多载波符号;目标序列是所述X2个序列中的一个序列,目标参数被用于确定所述目标序列的循环移位,所述目标序列被用于生成映射到所述目标RE集合上的复数值符号;所述目标参数是X3个备选参数中之一,所述X3个备选参数中的任意一个备选参数是小于所述第一基础序列的长度的非负整数,所述X3是大于1的正整数;所述X3个备选参数中存在两个备选参数之间的差不小于所述第一基础序列的长度的一半,所述X3个备选参数中的任意一个备选参数被用于确定所述X2个序列中至少一个序列的循环移位;所述目标多载波符号的时域位置被用于从所述X3个备选参数中确定所述目标参数。
作为一个实施例,所述第二节点设备410包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:发送第一PDCCH;接收第一PUCCH,所述第一PUCCH在时域占用X1个多载波符号,所述第一PDCCH被用于指示所述X1个多载波符号中的起始多载波符号,所述X1是大于1的正整数;其中,第一基础序列被用于生成所述第一PUCCH,所述第一基础序列经过循环移位生成X2个序列,所述X2个序列中的任意两个序列不相同,所述X2是大于1的正整数;目标多载波符号是所述X1个多载波符号中之一,目标RE集合包括被所述第一PUCCH所占用的多个RE,所述目标RE集合所包括的任意一个RE在时域占用所述目标多载波符号;目标序列是所述X2个序列中的一个序列,目标参数被用于确定所述目标序列的循环移位,所述目标序列被用于生成映射到所述目标RE集合上的复数值符号;所述目标参数是X3个备选参数中之一,所述X3个备选参数中的任意一个备选参数是小于所述第一基础序列的长度的非负整数,所述X3是大于1的正整数;所述X3个备选参数中存在两个备选参数之间的差不小于所述第一基础序列的长度的一半,所述X3个备选参数中的任意一个备选参数被用于确定所述X2个序列中至少一个序列的循环移位;所述目标多载波符号的时域位置被用于从所述X3个备选参数中确定所述目标参数。
作为一个实施例,所述第一节点设备450是一个用户设备(UE)。
作为一个实施例,所述第一节点设备450是一个支持组播或广播业务的用户设备。
作为一个实施例,所述第二节点设备410是一个基站设备(gNB/eNB)。
作为一个实施例,所述第二节点设备410是一个支持组播或广播业务的基站设备。
作为一个实施例,接收器456(包括天线460)和接收处理器452被用于本申请中接收所述第一PDCCH。
作为一个实施例,发射器456(包括天线460)和发射处理器455被用于本申请中发送所述第一PUCCH。
作为一个实施例,接收器456(包括天线460),接收处理器452和控制器/处理器490被用于本申请中接收所述第一PDSCH。
作为一个实施例,接收器456(包括天线460),接收处理器452和控制器/处理器490被用于本申请 中接收所述第一信息块。
作为一个实施例,发射器416(包括天线420)和发射处理器415被用于发送本申请中的所述第一PDCCH。
作为一个实施例,接收器416(包括天线420)和接收处理器412被用于接收本申请中的所述第一PUCCH。
作为一个实施例,发射器416(包括天线420),发射处理器415和控制器/处理器440被用于发送本申请中的所述第一PDSCH。
作为一个实施例,发射器416(包括天线420),发射处理器415和控制器/处理器440被用于发送本申请中的所述第一信息块。
实施例5
实施例5示例了根据本申请的一个实施例的无线信号传输流程图,如附图5所示。在附图5中,第二节点设备N500是第一节点设备U550的服务小区的维持基站,Opt1标注的虚线框所包括的步骤是可选的。特别说明的是本示例中的顺序并不限制本申请中的信号传输顺序和实施的顺序。
对于 第二节点设备N500,在步骤S501中发送第一信息块,在步骤S502中发送第一PDCCH,在步骤S503中发送第一PDSCH,在步骤S504中接收第一PUCCH。
对于 第一节点设备U550,在步骤S551中接收第一信息块,在步骤S552中接收第一PDCCH,在步骤S553中接收第一PDSCH,在步骤S554中发送第一PUCCH。
在实施例5中,所述第一PUCCH在时域占用X1个多载波符号,所述第一PDCCH被用于确定所述X1个多载波符号中的起始多载波符号,所述X1是大于1的正整数;第一基础序列被用于生成所述第一PUCCH,所述第一基础序列经过循环移位生成X2个序列,所述X2个序列中的任意两个序列不相同,所述X2是大于1的正整数;目标多载波符号是所述X1个多载波符号中之一,目标RE集合包括被所述第一PUCCH所占用的多个RE,所述目标RE集合所包括的任意一个RE在时域占用所述目标多载波符号;目标序列是所述X2个序列中的一个序列,目标参数被用于确定所述目标序列的循环移位,所述目标序列被用于生成映射到所述目标RE集合上的复数值符号;所述目标参数是X3个备选参数中之一,所述X3个备选参数中的任意一个备选参数是小于所述第一基础序列的长度的非负整数,所述X3是大于1的正整数;所述X3个备选参数中存在两个备选参数之间的差不小于所述第一基础序列的长度的一半,所述X3个备选参数中的任意一个备选参数被用于确定所述X2个序列中至少一个序列的循环移位;所述目标多载波符号的时域位置被用于从所述X3个备选参数中确定所述目标参数;所述第一PDSCH携带第一比特块,所述第一比特块包括正整数个比特,所述第一PUCCH被用于指示所述第一比特块被错误译码;所述第一信息块被用于确定所述X1个多载波符号,所述第一信息块被用于确定所述第一PUCCH是否采用跳频。
作为一个实施例,所述第一信息块通过空中接口传输。
作为一个实施例,所述第一信息块通过无线接口传输。
作为一个实施例,所述第一信息块包括了一个高层信令中的全部或部分。
作为一个实施例,所述第一信息块包括了一个物理层信令中的全部或部分。
作为一个实施例,所述第一信息块包括了一个RRC(Radio Resource Control,无线资源控制)信令中的全部或部分。
作为一个实施例,所述第一信息块包括了一个MAC(Medium Access Control,媒体接入控制)层信令中的全部或部分。
作为一个实施例,所述第一信息块包括了一个系统信息块(SIB,System Information Block)中的全部或部分。
作为一个实施例,所述第一信息块是小区特定的(Cell Specific)。
作为一个实施例,所述第一信息块是用户设备特定的(UE-specific)。
作为一个实施例,所述第一信息块是每BWP(Bandwidth Part,带宽部分)配置的(Per BWP Configured)。
作为一个实施例,所述第一信息块包括一个DCI(Downlink Control Information)信令的全部或部分域(Field)。
作为一个实施例,所述第一信息块包括多于1个子信息块,所述第一信息块所包括的每个子信息块是所述第一信息块所属的RRC信令中的一个IE(Information Element,信息单元)或者一个域(Field);所 述第一信息块所包括的一个或多个子信息块被用于确定所述X1个多载波符号。
作为一个实施例,所述第一信息块包括一个RRC信令中的IE(Information Element,信息单元)“PUCCH-ConfigCommon”中的全部或部分域(Field)。
作为一个实施例,所述第一信息块包括一个RRC信令中的IE(Information Element,信息单元)“BWP-UplinkDedicated”中的全部或部分域(Field)。
作为一个实施例,所述第一信息块包括一个RRC信令中的IE(Information Element,信息单元)“PUCCH-Config”中的全部或部分域。
作为一个实施例,所述第一信息块包括一个RRC信令中的IE(Information Element,信息单元)“PUCCH-Config”中的域“PUCCH-format0”或域“PUCCH-format1”或域“PUCCH-format2”或域“PUCCH-format3”或域“PUCCH-format4”中的域“nrofSymbols”。
作为一个实施例,所述第一信息块包括一个RRC信令中的IE(Information Element,信息单元)“PUCCH-Config”中的域“PUCCH-Resource”中的域“intraSlotFrequencyHopping”。
作为一个实施例,权利要求中的表述“所述第一信息块被用于确定所述X1个多载波符号”包括以下含义:所述第一信息块被本申请中的所述第一节点设备用于确定所述X1个多载波符号。
作为一个实施例,权利要求中的表述“所述第一信息块被用于确定所述X1个多载波符号”包括以下含义:所述第一信息块被用于显式地或隐式地指示所述X1个多载波符号。
作为一个实施例,权利要求中的表述“所述第一信息块被用于确定所述X1个多载波符号”包括以下含义:所述第一信息块被用于指示所述X1。
作为一个实施例,权利要求中的表述“所述第一信息块被用于确定所述第一PUCCH是否采用跳频”包括以下含义:所述第一信息块被本申请中的所述第一节点设备用于确定所述第一PUCCH是否采用跳频。
作为一个实施例,权利要求中的表述“所述第一信息块被用于确定所述第一PUCCH是否采用跳频”包括以下含义:所述第一信息块被用于显式地或隐式地指示所述第一PUCCH是否采用跳频。
作为一个实施例,权利要求中的表述“所述第一信息块被用于确定所述第一PUCCH是否采用跳频”包括以下含义:所述第一信息块被用于打开(enable)所述第一PUCCH跳频。
实施例6
实施例6示例了根据本申请的一个实施例的第一PDSCH和第一PUCCH之间的关系的示意图,如附图6所示。在附图6中,当用户设备正确译码PDSCH时,用户设备不发送ACK;当用户设备错误译码PDSCH时,用户设备发送PUCCH。
在实施例6中,本申请中的所述第一PDSCH携带第一比特块,所述第一比特块包括正整数个比特,本申请中的所述第一PUCCH被用于指示所述第一比特块被错误译码。
作为一个实施例,所述第一PDSCH包括PDSCH(Physical Downlink Shared Channel,物理下行共享信道)的射频信号。
作为一个实施例,所述第一PDSCH包括PDSCH的基带信号。
作为一个实施例,所述第一PDSCH通过无线接口传输的。
作为一个实施例,所述第一PDSCH是半静态调度(SPS,Semi-Persistent Scheduling)的PDSCH。
作为一个实施例,所述第一PDSCH是动态调度的PDSCH。
作为一个实施例,所述第一PDSCH是单播的。
作为一个实施例,所述第一PDSCH是组播或广播的。
作为一个实施例,C-RNTI之外的RNTI被用于初始化所述第一PDSCH的扰码的生成器(Generator)。
作为一个实施例,所述第一PDCCH被用于确定所述第一PDSCH所占用的时域资源或频域资源中的至少之一。
作为一个实施例,所述第一PDCCH被用于确定所述第一PDSCH所采用的冗余版本(RV,Redundancy Version)和调制编码方式(MCS,Modulation and Coding Scheme)。
作为一个实施例,所述第一PDCCH被用于激活所述第一PDSCH所属的SPS进程(Process)。
作为一个实施例,所述第一比特块是一个传输块(TB,Transport Block)。
作为一个实施例,所述第一比特块是一个编码块(CB,Code Block)。
作为一个实施例,所述第一比特块是一个编码块组(CBG,Code Block Group)。
作为一个实施例,所述第一比特块包括一个传输块的全部或部分。
作为一个实施例,权利要求中的表述“所述第一PDSCH携带第一比特块”包括以下含义:所述第一比特块被用于生成所述第一PDSCH。
作为一个实施例,权利要求中的表述“所述第一PDSCH携带第一比特块”包括以下含义:所述第一PDSCH被用于传输所述第一比特块。
作为一个实施例,权利要求中的表述“所述第一PDSCH携带第一比特块”包括以下含义:所述第一PDSCH是传输所述第一比特块的物理信道。
作为一个实施例,权利要求中的表述“所述第一PDSCH携带第一比特块”包括以下含义:所述第一比特块依次经过传输块CRC附着(Attachment)、LDPC(Low Density Parity Check Code,低密度奇偶校验码)基图选择(Base graph selection)、编码块分段(Segmentation)和编码块CRC附着、信道编码(Channel Coding)、速率匹配(Rate Matching)、编码块串联(Concatenation)、加扰(Scrambling)、调制(Modulation)、层映射(Layer mapping)、天线端口映射(Antenna port mapping)、映射到虚拟资源块(Mapping to virtual resource blocks)、从虚拟资源块映射到物理资源块(Mapping from virtual to physical resource blocks)、OFDM基带信号生成(baseband signal generation)生成所述第一PDSCH。
作为一个实施例,权利要求中的表述“所述第一PDSCH携带第一比特块”包括以下含义:所述第一比特块依次经过传输块CRC附着(Attachment)、LDPC(Low Density Parity Check Code,低密度奇偶校验码)基图选择(Base graph selection)、编码块分段(Segmentation)和编码块CRC附着、信道编码(Channel Coding)、速率匹配(Rate Matching)、编码块串联(Concatenation)、加扰(Scrambling)、调制(Modulation)、层映射(Layer mapping)、天线端口映射(Antenna port mapping)、映射到虚拟资源块(Mapping to virtual resource blocks)、从虚拟资源块映射到物理资源块(Mapping from virtual to physical resource blocks)、OFDM基带信号生成(baseband signal generation)、调制和上变频(Modulation and upconversion)生成所述第一PDSCH。
作为一个实施例,所述第一比特块是一个传输块,所述第一PDSCH仅携带所述第一比特块。
作为一个实施例,所述第一比特块是一个传输块,所述第一PDSCH还携带所述第一比特块之外的传输块。
作为一个实施例,权利要求中的表述“所述第一PUCCH被用于指示所述第一比特块被错误译码”包括以下含义:所述第一PUCCH被本申请中的所述第一节点设备用于指示所述第一比特块被错误译码。
作为一个实施例,权利要求中的表述“所述第一PUCCH被用于指示所述第一比特块被错误译码”包括以下含义:所述第一PUCCH被用于显式地或隐式地指示所述第一比特块被错误译码。
作为一个实施例,权利要求中的表述“所述第一PUCCH被用于指示所述第一比特块被错误译码”包括以下含义:针对所述第一PUCCH的能量监测(Energy Detection)被用于确定所述第一比特块被错误译码。
作为一个实施例,权利要求中的表述“所述第一PUCCH被用于指示所述第一比特块被错误译码”包括以下含义:所述第一PUCCH是否发送被用于指示所述第一比特块是否被错误译码。
作为一个实施例,权利要求中的表述“所述第一PUCCH被用于指示所述第一比特块被错误译码”包括以下含义:所述第一PUCCH被发送或者被检测到代表所述第一比特块被错误译码,所述第一PUCCH没有被发送或没有被检测到代表所述第一比特块被正确译码。
作为一个实施例,权利要求中的表述“所述第一PUCCH被用于指示所述第一比特块被错误译码”包括以下含义:所述第一PUCCH被用于指示所述第一比特块的NACK。
作为一个实施例,权利要求中的表述“所述第一PUCCH被用于指示所述第一比特块被错误译码”包括以下含义:所述第一PUCCH仅被用于指示所述第一比特块被错误译码。
作为一个实施例,权利要求中的表述“所述第一PUCCH被用于指示所述第一比特块被错误译码”包括以下含义:所述第一PUCCH携带所述第一比特块的NACK-only信息。
作为一个实施例,本申请中的所述第一信息块被用于确定所述第一PUCCH仅携带所述第一比特块的 NACK反馈。
作为一个实施例,本申请中的所述第一信息块被用于指示所述第一节点设备是反馈ACK/NACK还是仅反馈NACK。
作为一个实施例,所述第一PDCCH被用于指示所述第一节点设备是反馈ACK/NACK还是仅反馈NACK。
作为一个实施例,所述第一接收机接收第二信息块,其中,所述第二信息块被用于指示所述第一节点设备是反馈ACK/NACK还是仅反馈NACK。
作为一个实施例,所述第一PUCCH的被发送或者被检测到不能表示所述第一比特块被正确译码。
作为一个实施例,所述第一PUCCH的被发送或者被检测到不能表示所述第一比特块的ACK信息。
实施例7
实施例7示例了根据本申请的一个实施例的第一参数的示意图,如附图7所示。在附图7中,每个方框代表一个中间数值或中间变量,箭头代表确定与被确定的关系。
在实施例7中,第一参数被用于确定本申请中的所述目标序列的循环移位,伪随机序列被用于确定所述第一参数,所述第一参数是非负整数;目标标识被用于确定所述伪随机序列的生成器的初始值;所述目标标识是可配置的,或者所述目标标识是预定义的。
作为一个实施例,所述第一参数小于256。
作为一个实施例,所述第一参数等于从0到255的整数中的一个整数。
作为一个实施例,所述第一参数可以大于或者等于256。
作为一个实施例,权利要求中的表述“第一参数被用于确定所述目标序列的循环移位”包括以下含义:所述第一参数被本申请中的所述第一节点设备或者所述第二节点设备用于确定所述目标序列的循环移位。
作为一个实施例,权利要求中的表述“第一参数被用于确定所述目标序列的循环移位”包括以下含义:所述目标序列的循环移位和所述第一参数线性相关。
作为一个实施例,权利要求中的表述“第一参数被用于确定所述目标序列的循环移位”包括以下含义:所述第一参数被用于计算所述目标序列的循环移位的值。
作为一个实施例,权利要求中的表述“第一参数被用于确定所述目标序列的循环移位”包括以下含义:所述目标序列的循环移位的值和第一余数线性相关,所述第一余数等于所述第一参数对所述第一基础序列的长度取余所得到的余数。
作为一个实施例,权利要求中的表述“第一参数被用于确定所述目标序列的循环移位”包括以下含义:所述第一参数被用于根据预定义的函数关系被用于确定所述目标序列的循环移位的值。
作为一个实施例,权利要求中的表述“第一参数被用于确定所述目标序列的循环移位”是通过下式实现的:
Figure PCTCN2022076867-appb-000002
其中,α target代表所述目标序列的循环移位的值,N seq代表所述第一基础序列的长度,m target代表本申请中的目标参数,n cs代表所述第一参数。
作为一个实施例,所述第一参数和所述目标多载波符号在所述X1个多载波符号中的位置或索引无关。
作为一个实施例,所述目标多载波符号在所述X1个多载波符号中的位置或索引被用于确定所述第一参数。
作为一个实施例,所述目标多载波符号在所属的时隙中的位置或索引被用于确定所述第一参数。
作为一个实施例,所述目标多载波符号在所述X1个多载波符号中的索引、所述目标多载波符号在所属的时隙中的索引这两个索引中仅有所述目标多载波符号在所属的时隙中的索引被用于确定所述第一参数。
作为一个实施例,所述X1个多载波符号中的起始多载波符号所属的时隙在无线帧(Radio Frame)中的编号被用于确定所述第一参数。
作为一个实施例,所述第一参数适用所述X1个多载波符号中的每个多载波符号。
作为一个实施例,所述第一参数被用于确定所述X2个序列中的每个序列的循环移位的值。
作为一个实施例,所述第一参数适用所述X2个序列中的每个序列。
作为一个实施例,所述第一参数仅在所述X1个多载波符号中的起始多载波符号生成。
作为一个实施例,所述第一参数在所述目标多载波符号上生成。
作为一个实施例,所述X2个序列中的每个序列的循环移位都采用相同的所述第一参数。
作为一个实施例,所述第一参数仅被用于确定所述X2个序列中的所述目标序列的循环移位的值。
作为一个实施例,权利要求中的表述“伪随机序列被用于确定所述第一参数”包括以下含义:伪随机序列被本申请中的所述第一节点设备用于确定所述第一参数。
作为一个实施例,权利要求中的表述“伪随机序列被用于确定所述第一参数”包括以下含义:伪随机序列基于预定义的函数关系被用于确定所述第一参数。
作为一个实施例,权利要求中的表述“伪随机序列被用于确定所述第一参数”包括以下含义:长度等于31的Gold序列被用于确定所述第一参数。
作为一个实施例,权利要求中的表述“伪随机序列被用于确定所述第一参数”是通过下式实现的:
Figure PCTCN2022076867-appb-000003
其中,
Figure PCTCN2022076867-appb-000004
代表所述第一参数,l代表所述X1个多载波符号中的起始多载波符号在所属的时隙中的索引,
Figure PCTCN2022076867-appb-000005
代表所述X1个多载波符号中的起始多载波符号所属的时隙所包括的多载波符号的数量,
Figure PCTCN2022076867-appb-000006
代表所述X1个多载波符号中的起始多载波符号所属的时隙在无线帧(Radio Frame)中的编号,c(i),i=0,1,2…代表一个伪随机序列。
作为一个实施例,权利要求中的表述“伪随机序列被用于确定所述第一参数”是通过下式实现的:
Figure PCTCN2022076867-appb-000007
其中,
Figure PCTCN2022076867-appb-000008
代表所述第一参数,l代表所述目标多载波符号在所属的时隙中的索引,
Figure PCTCN2022076867-appb-000009
代表所述X1个多载波符号中的起始多载波符号所属的时隙所包括的多载波符号的数量,
Figure PCTCN2022076867-appb-000010
代表所述X1个多载波符号中的起始多载波符号所属的时隙在无线帧(Radio Frame)中的编号,c(i),i=0,1,2…代表一个伪随机序列。
作为一个实施例,所述目标标识是非负整数。
作为一个实施例,所述目标标识等于从0到1023的整数中之一。
作为一个实施例,所述目标标识等于从0到1007的整数中之一。
作为一个实施例,所述目标标识等于一个小区的标识。
作为一个实施例,所述目标标识是物理层小区标识(Physical-layer cell identity)。
作为一个实施例,所述目标标识等于所述第一PDCCH所属的小区的标识。
作为一个实施例,权利要求中的表述“目标标识被用于确定所述伪随机序列的生成器的初始值”包括以下含义:所述目标标识被本申请中的所述第一节点设备或者所述第二节点设备用于确定所述伪随机序列的生成器的初始值。
作为一个实施例,权利要求中的表述“目标标识被用于确定所述伪随机序列的生成器的初始值”包括以下含义:所述目标标识等于所述伪随机序列的生成器的初始值。
作为一个实施例,权利要求中的表述“目标标识被用于确定所述伪随机序列的生成器的初始值”包括以下含义:所述目标标识被用于计算所述伪随机序列的生成器的初始值。
作为一个实施例,权利要求中的表述“目标标识被用于确定所述伪随机序列的生成器的初始值”包括以下含义:所述伪随机序列的生成器的寄存器的初始状态所对应的二进制值等于二进制所表示的所述目标标识。
作为一个实施例,权利要求中的表述“目标标识被用于确定所述伪随机序列的生成器的初始值”包括以下含义:所述伪随机序列的生成器的初始值和所述目标标识线性相关。
作为一个实施例,权利要求中的表述“所述目标标识是可配置的”包括以下含义:本申请中的所述第一信息块被用于显式地或者隐式地指示所述目标标识。
作为一个实施例,权利要求中的表述“所述目标标识是可配置的”包括以下含义:本申请中的所述第一信息块之外的信令被用于指示所述目标标识。
作为一个实施例,权利要求中的表述“所述目标标识是可配置的”包括以下含义:所述目标标识是通过信令配置的。
作为一个实施例,权利要求中的表述“所述目标标识是预定义的”包括以下含义:所述目标标识是固定的。
作为一个实施例,权利要求中的表述“所述目标标识是预定义的”包括以下含义:所述目标标识等于物理层的小区标识。
作为一个实施例,权利要求中的表述“所述目标标识是预定义的”包括以下含义:所述目标标识等于所述第一PDCCH所属的小区的标识。
作为一个实施例,所述目标参数和所述目标标识无关。
作为一个实施例,所述X3个备选参数中的任意一个备选参数和所述目标标识无关。
作为一个实施例,所述目标参数和伪随机序列无关。
作为一个实施例,所述X3个备选参数中的任意一个备选参数和伪随机序列无关。
实施例8
实施例8示例了根据本申请的一个实施例的目标多载波符号的示意图,如附图8所示。在附图8中,在情况A和情况B中,横轴代表时间,纵轴代表频率,每个矩形框代表第一PUCCH所占用的时频资源;在情况A中,第一PUCCH采用跳频;在情况B中,第一PUCCH不采用跳频。
在实施例8中,本申请中的所述第一信息块被用于确定本申请中的所述X1个多载波符号,所述第一信息块被用于确定本申请中的所述第一PUCCH是否采用跳频;当所述第一PUCCH采用跳频时,本申请中的所述目标多载波符号所属的跳频区段被用于从本申请中的所述X3个备选参数中确定本申请中的所述目标参数;否则,所述目标多载波符号在本申请中的所述X1个多载波符号中的位置被用于从所述X3个备选参数中确定所述目标参数。
作为一个实施例,当所述第一PUCCH采用跳频时,所述第一PUCCH的跳频区段的数量等于2。
作为一个实施例,当所述第一PUCCH采用跳频时,所述第一PUCCH的跳频区段的数量大于2。
作为一个实施例,当所述第一PUCCH采用跳频时,所述第一PUCCH的跳数等于2。
作为一个实施例,当所述第一PUCCH采用跳频时,所述第一PUCCH的跳数大于2。
作为一个实施例,所述目标多载波符号所属的跳频区段是指所述目标多载波符号在时域所属的跳(Hop)。
作为一个实施例,所述目标多载波符号所属的跳频区段是指所述目标多载波符号在时域所属的跳(Hop)的顺序或索引。
作为一个实施例,权利要求中的表述“所述目标多载波符号所属的跳频区段被用于从所述X3个备选参数中确定所述目标参数”包括以下含义:所述目标多载波符号所属的跳频区段被本申请中的所述第一节点设备或所述第二节点设备用于从所述X3个备选参数中确定所述目标参数。
作为一个实施例,权利要求中的表述“所述目标多载波符号所属的跳频区段被用于从所述X3个备选参数中确定所述目标参数”包括以下含义:所述目标多载波符号所属的跳频区段按照预定义的映射关系或对应关系从所述X3个备选参数中确定所述目标参数。
作为一个实施例,权利要求中的表述“所述目标多载波符号所属的跳频区段被用于从所述X3个备选参数中确定所述目标参数”包括以下含义:所述目标多载波符号所属的跳频区段是所述第一PUCCH的X3个跳频区段中之一,所述X3个跳频区段分别一一对应所述X3个备选参数,所述目标参数是所述X3个备选参数中和所述目标多载波符号所属的跳频区段所对应的备选参数。
作为一个实施例,权利要求中的表述“所述目标多载波符号所属的跳频区段被用于从所述X3个备选参数中确定所述目标参数”包括以下含义:所述目标多载波符号所属的跳频区段的顺序或索引被用于从所 述X3个备选参数中确定所述目标参数。
作为一个实施例,权利要求中的表述“所述目标多载波符号所属的跳频区段被用于从所述X3个备选参数中确定所述目标参数”包括以下含义:所述目标多载波符号所属的跳频区段的顺序或索引被用于确定所述目标参数在所述X3个备选参数中的索引。
作为一个实施例,权利要求中的表述“所述目标多载波符号所属的跳频区段被用于从所述X3个备选参数中确定所述目标参数”包括以下含义:所述目标多载波符号所属的跳频区段的索引按照预定义的函数用于确定所述目标参数在所述X3个备选参数中的索引。
作为一个实施例,权利要求中的表述“所述目标多载波符号所属的跳频区段被用于从所述X3个备选参数中确定所述目标参数”包括以下含义:所述目标多载波符号所属的跳频区段属于X3个跳频区段组中之一,所述X3个跳频区段组中的任意一个跳频区段组包括正整数个所述第一PUCCH的跳频区段,所述X3个跳频区段组分别一一对应所述X3个备选参数,所述目标参数是所述X3个备选参数中和所述目标多载波符号所属的跳频区段所属的跳频区段组所对应的备选参数。作为上述实施例的一个附属实施例,所述X3个跳频区段组中的任意一个跳频区段组包括大于1的正整数个所述第一PUCCH的跳频区段。作为上述实施例的一个附属实施例,所述X3个跳频区段组中的任意一个跳频区段组包括大于1的正整数个时域连续的所述第一PUCCH的跳频区段。作为上述实施例的一个附属实施例,所述X3个跳频区段组中包括一个跳频区段组包括大于1的正整数个时域离散的所述第一PUCCH的跳频区段。
作为一个实施例,“所述目标多载波符号在所述X1个多载波符号中的位置”包括:所述目标多载波符号在所述X1个多载波符号中的时域顺序。
作为一个实施例,“所述目标多载波符号在所述X1个多载波符号中的位置”包括:所述目标多载波符号在所述X1个多载波符号中的索引。
作为一个实施例,所述X1个多载波符号按照从先到后或者从后到先的顺序索引,“所述目标多载波符号在所述X1个多载波符号中的位置”包括:所述目标多载波符号在所述X1个多载波符号中的索引。
作为一个实施例,权利要求中的表述“所述目标多载波符号在所述X1个多载波符号中的位置被用于从所述X3个备选参数中确定所述目标参数”包括以下含义:所述目标多载波符号在所述X1个多载波符号中的位置被本申请中的所述第一节点设备或者所述第二节点设备用于从所述X3个备选参数中确定所述目标参数。
作为一个实施例,权利要求中的表述“所述目标多载波符号在所述X1个多载波符号中的位置被用于从所述X3个备选参数中确定所述目标参数”包括以下含义:所述目标多载波符号在所述X1个多载波符号中的索引按照预定义的映射关系或对应关系被用于从所述X3个备选参数中确定所述目标参数。
作为一个实施例,权利要求中的表述“所述目标多载波符号在所述X1个多载波符号中的位置被用于从所述X3个备选参数中确定所述目标参数”包括以下含义:所述目标多载波符号在所述X1个多载波符号中的索引按照预定义的函数被用于确定所述目标参数在所述X3个备选参数中的索引。
作为一个实施例,权利要求中的表述“所述目标多载波符号在所述X1个多载波符号中的位置被用于从所述X3个备选参数中确定所述目标参数”包括以下含义:所述X1个多载波符号被分成X3个多载波符号集合,所述X3个多载波符号集合分别一一对应所述X3个备选参数,所述X3个多载波符号集合中的任意一个多载波符号集合包括正整数个多载波符号;所述目标多载波符号属于目标多载波符号集合,所述目标多载波符号集合是所述X3个多载波符号集合中之一;所述目标参数是所述X3个备选参数中和所述目标多载波符号集合所对应的备选参数。
作为一个实施例,权利要求中的表述“所述目标多载波符号在所述X1个多载波符号中的位置被用于从所述X3个备选参数中确定所述目标参数”包括以下含义:所述目标多载波符号在所述X1个多载波符号中的索引除以X3的余数被用于确定所述目标参数在所述X3个备选参数中的索引。
作为一个实施例,权利要求中的表述“所述目标多载波符号在所述X1个多载波符号中的位置被用于从所述X3个备选参数中确定所述目标参数”包括以下含义:所述目标参数在所述X3个备选参数中的索引等于所述目标多载波符号在所述X1个多载波符号中的索引除以X3的余数。
实施例9
实施例9示例了根据本申请的一个实施例的第二参数的示意图,如附图9所示。在附图9中,每个方框代表一个中间数值或中间变量,箭头代表确定与被确定的关系。
在实施例9中,第二参数被用于确定本申请中的所述目标序列的循环移位,所述第二参数是非负整数;第一标识或者第一测量值中的至少之一被用于确定所述第二参数,所述第一标识是本申请中的所述第一节点设备被配置的一个标识,所述第一测量值是所述第一节点设备经过测量所得到的一个测量值。
作为一个实施例,所述第二参数是小于所述第一基础序列的长度的非负整数。
作为一个实施例,所述第二参数是正整数。
作为一个实施例,所述第二参数大于或等于所述第一基础序列的长度。
作为一个实施例,所述第二参数不大于所述第一基础序列的长度。
作为一个实施例,所述第二参数是m cs
作为一个实施例,所述第二参数是m 0
作为一个实施例,所述第二参数是m int
作为一个实施例,所述第二参数等于W1个备选参数值中之一,所述W1个备选参数值中的任意一个备选参数值等于非负整数,所述W1是大于1的正整数;所述W1个备选参数值按照从小到大依次排列,所述W1个备选参数值中的两个相邻排列的备选参数值之间的差值等于所述第一基础序列的长度和所述W1之间的商值。作为上述实施例的一个附属实施例,所述W1个备选参数值中的最小值等于初始参数值,所述初始参数值是预定义的,或者所述初始参数值是可配置的。作为上述实施例的一个附属实施例,所述W1个备选参数值中的最小值等于初始参数值,本申请中的所述第一信息块被用于指示所述初始参数值。作为上述实施例的一个附属实施例,所述W1是预定义的,或者所述W1是可配置的。作为上述实施例的一个附属实施例,本申请中的所述第一信息块被用于指示所述W1。作为上述实施例的一个附属实施例,本申请中的所述第一信息块之外的信息块被用于指示所述W1。
作为一个实施例,权利要求中的表述“第二参数被用于确定所述目标序列的循环移位”包括以下含义:所述第二参数被本申请中的所述第一节点设备或者所述第二节点设备用于确定所述目标序列的循环移位。
作为一个实施例,权利要求中的表述“第二参数被用于确定所述目标序列的循环移位”包括以下含义:所述第二参数被用于计算所述目标序列的循环移位的值。
作为一个实施例,权利要求中的表述“第二参数被用于确定所述目标序列的循环移位”包括以下含义:所述目标序列的循环移位的值和所述第二参数线性相关。
作为一个实施例,权利要求中的表述“第二参数被用于确定所述目标序列的循环移位”包括以下含义:所述目标序列的循环移位的值和第二余数线性相关,所述第二余数等于所述第二参数对所述第一基础序列的长度取余所得到的余数。
作为一个实施例,权利要求中的表述“第二参数被用于确定所述目标序列的循环移位”包括以下含义:所述第二参数被用于根据预定义的函数关系被用于确定所述目标序列的循环移位的值。
作为一个实施例,所述第二参数和所述目标参数之间相互独立。
作为一个实施例,所述第二参数和所述目标参数无关。
作为一个实施例,所述第二参数和所述第一参数独立。
作为一个实施例,所述第二参数和所述第一参数无关。
作为一个实施例,权利要求中的表述“第二参数被用于确定所述目标序列的循环移位”是通过下式实现的:
Figure PCTCN2022076867-appb-000011
其中,α target代表所述目标序列的循环移位的值,N seq代表所述第一基础序列的长度,m target代表目标参数,m 1代表本申请中的所述第一参数,m 2代表本申请中的所述第二参数。
作为一个实施例,所述第一标识是RNTI(Radio Network Temporary Identity,无线网络临时标识)。
作为一个实施例,所述第一标识是C-RNTI。
作为一个实施例,所述第一标识是CS-RNTI(Configured Scheduling-Radio Network Temporary Identifier,配置调度无线网络临时标识)。
作为一个实施例,所述第一标识是G-RNTI(Group-Radio Network Temporary Identifier,组无线网络临时标识)。
作为一个实施例,所述第一标识是M-RNTI(Multicast(and Broadcast Services)-Radio Network Temporary Identifier,组播(和广播)无线网络临时标识)。
作为一个实施例,所述第一标识是SC-RNTI(Single Cell-Radio Network Temporary Identifier,单小区无线网络临时标识)。
作为一个实施例,所述第一标识是SC-N-RNTI(Single Cell-Notification-Radio Network Temporary Identifier,单小区通知无线网络临时标识)。
作为一个实施例,所述第一标识是C-RNTI、CS-RNTI、G-RNTI、M-RNTI、SC-RNTI、SC-N-RNTI中之一。
作为一个实施例,所述第一标识是C-RNTI、G-RNTI中之一。
作为一个实施例,所述第一标识是一个索引值。
作为一个实施例,所述第一标识是非负整数。
作为一个实施例,所述第一标识是正整数。
作为一个实施例,所述第一标识是整数。
作为一个实施例,所述第一标识是一个十进制表示的整数。
作为一个实施例,所述第一标识是一个十六进制表示的整数。
作为一个实施例,所述第一标识通过所述第一PDCCH的发送者配置的。
作为一个实施例,所述第一标识通过RRC(Radio Resource Control,无线电资源控制)信令配置。
作为一个实施例,所述第一标识通过MAC(Medium Access Control,媒体接入控制)CE(Control Element,控制单元)配置。
作为一个实施例,所述第一标识通过MCE(Multicell/Multicast Coordination Entity,多小区/多播写作实体)配置。
作为一个实施例,所述第一标识是一个用户设备组(UE group)的标识。
作为一个实施例,所述第一PDCCH的目标接收者包括Q1个用户设备,所述Q1是大于1的正整数,所述第一节点设备是所述Q1个用户设备中的一个用户设备。作为上述实施例的一个附属实施例,所述第一标识被用于标识所述Q1个用户设备。作为上述实施例的一个附属实施例,所述Q1个用户设备中的任意一个用户设备都被配置了所述第一标识。
作为一个实施例,所述第一测量值是SS-RSRP(Synchronization Signal-Reference Signal Receiving Power,同步信号参考信号接收功率)。
作为一个实施例,所述第一测量值是SS-RSRQ(Synchronization Signal-Reference Signal Receiving Quality,同步信号参考信号接收质量)。
作为一个实施例,所述第一测量值是CSI-RSRP(Channel Status Information-Reference Signal Receiving Power,信道状态信息参考信号接收功率)。
作为一个实施例,所述第一测量值是CSI-RSRQ(Channel Status Information-Reference Signal Receiving Quality,信道状态信息参考信号接收质量)。
作为一个实施例,所述第一测量值是所述第一节点设备测量到的SS-SINR(Synchronization Signal-Signal to Interference plus Noise Ratio,同步信号-信号与干扰加噪声比)值。
作为一个实施例,所述第一测量值是所述第一节点设备测量到的CSI-SINR(Synchronization Signal-Signal to Interference plus Noise Ratio,信道状态信息-信号与干扰加噪声比)值。
作为一个实施例,所述第一测量值是路径损耗(Pathloss)的值。
作为一个实施例,所述第一测量值是CQI(Channel Quality Indicator,信道质量指示)的值。
作为一个实施例,所述第一测量值是L1(Layer 1,层一)的RSRP的值。
作为一个实施例,权利要求中的表述“第一标识或者第一测量值中的至少之一被用于确定所述第二参数”包括以下含义:所述第一标识或者所述第一测量值中的至少之一被本申请中的所述第一节点设备用于确定所述第二参数。
作为一个实施例,权利要求中的表述“第一标识或者第一测量值中的至少之一被用于确定所述第二参数”包括以下含义:所述第一标识和所述第一测量值都被用于确定所述第二参数。
作为一个实施例,权利要求中的表述“第一标识或者第一测量值中的至少之一被用于确定所述第二参数”包括以下含义:所述第一标识或者所述第一测量值中之一被用于确定所述第二参数。
作为一个实施例,权利要求中的表述“第一标识或者第一测量值中的至少之一被用于确定所述第二参数”包括以下含义:所述第一标识或者所述第一测量值中至少之一按照预定义的映射关系或对应关系被用于确定所述第二参数。
作为一个实施例,权利要求中的表述“第一标识或者第一测量值中的至少之一被用于确定所述第二参数”包括以下含义:所述第一标识或者所述第一测量值中至少之一按照预定义的函数关系被用于确定所述第二参数。
作为一个实施例,权利要求中的表述“第一标识或者第一测量值中的至少之一被用于确定所述第二参数”包括以下含义:第一标识或者第一测量值中的至少之一被用于确定所述第二参数的值。
作为一个实施例,权利要求中的表述“第一标识或者第一测量值中的至少之一被用于确定所述第二参数”包括以下含义:所述第二参数等于W1个备选参数值中之一,所述W1个备选参数值中的任意一个备选参数值等于非负整数,所述W1是大于1的正整数;第一标识或者第一测量值中的至少之一被用于从所述W1个备选参数值中确定所述第二参数。
作为上述实施例的一个附属实施例,所述W1个备选参数值按照从小到大依次排列,所述W1个备选参数值中的两个相邻排列的备选参数值之间的差值等于所述第一基础序列的长度和所述W1之间的商值。
作为上述实施例的一个附属实施例,所述W1个备选参数值中的最小值等于初始参数值,所述初始参数值是预定义的,或者所述初始参数值是可配置的。
作为上述实施例的一个附属实施例,所述W1个备选参数值中的最小值等于初始参数值,本申请中的所述第一信息块被用于指示所述初始参数值。
作为上述实施例的一个附属实施例,所述W1是预定义的,或者所述W1是可配置的。
作为上述实施例的一个附属实施例,本申请中的所述第一信息块被用于指示所述W1。
作为上述实施例的一个附属实施例,本申请中的所述第一信息块之外的信息块被用于指示所述W1。
作为上述实施例的一个附属实施例,所述第一标识或者所述第一测量值中的至少之一被用于确定所述第二参数在所述W1个备选参数值中的索引。
作为上述实施例的一个附属实施例,所述第二参数在所述W1个备选参数值中的索引等于所述第一标识除以所述W1的余数。
作为上述实施例的一个附属实施例,所述第一标识等于W1备选标识中之一,所述W1个备选标识分别一一对应所述W1个备选参数值,所述第二参数等于所述W1个备选参数值中和所述第一标识相对应的备选参数值;所述W1个备选标识和所述W1个备选参数值的一一对应关系是预定义的或者可配置的。
作为上述实施例的一个附属实施例,所述第一测量值属于W1测量值区间中之一,所述W1个测量区间中的任意一个测量区间是一个测量值的取值范围;所述W1个测量区间分别一一对应所述W1个备选参数值,所述第二参数等于所述W1个备选参数值中和所述第一测量值所属的测量区间相对应的备选参数值;所述W1个测量区间和所述W1个备选参数值的一一对应关系是预定义的或者可配置的。
作为上述实施例的一个附属实施例,所述第一测量值属于第一测量区间,所述第一测量区间是一个测量值的取值范围;所述第一标识和所述第一测量区间属于W1备选组合中之一,所述W1个备选组合中的任意一个备选组合包括一个标识和一个测量区间;所述W1个备选组合分别一一对应所述W1个备选参数值,所述第二参数等于所述W1个备选参数值中和包括所述第一标识和所述第一测量区间的备选组合相对应的备选参数值;所述W1个备选组合和所述W1个备选参数值的一一对应关系是 预定义的或者可配置的。
作为一个实施例,本申请中的所述第一信息块被用于确定所述第二参数。
作为一个实施例,本申请中的所述第一信息块之外的信息块被用于确定所述第二参数。
实施例10
实施例10示例了根据本申请的一个实施例的目标调制符号的示意图,如附图10所示。在附图10中,横轴代表时间,纵轴代表频率,每个小矩形框代表第一PUCCH所占用的一个RE,斜线填充的矩形框代表第一RE,虚线圆形代表极坐标系,实心黑色小圆点代表目标调制符号,空心实线小圆点代表X4个调制符号中的目标调制符号之外的调制符号。
在实施例10中,X4个调制符号被用于生成本申请中的所述第一PUCCH,所述X4个调制符号中的任意两个调制符号所采用的调制方式相同,所述X4个调制符号中的任意两个调制符号的相位不相同,所述X4是大于1的正整数;第一RE是本申请中的所述第一PUCCH所占用的一个RE,目标调制符号被用于生成映射到所述第一RE上的复数值符号,所述目标调制符号是所述X4个调制符号中之一,所述第一RE在时域所占用的多载波符号的时域位置被用于确定所述目标调制符号。
作为一个实施例,所述X4个调制符号中的任意一个调制符号所采用的调制方式是BPSK(Binary Phase Shift Keying,二进制相移键控)。
作为一个实施例,所述X4个调制符号中的任意一个调制符号所采用的调制方式是Pi/2BPSK。
作为一个实施例,所述X4个调制符号中的任意一个调制符号所采用的调制方式是QPSK(Quadrature Phase Shift Keying,正交相移键控)。
作为一个实施例,所述X4个调制符号中的任意一个调制符号所采用的调制方式是Pi/4QPSK(Quadrature Phase Shift Keying,正交相移键控)。
作为一个实施例,所述X4个调制符号中的任意两个调制符号的星座点不相同。
作为一个实施例,表示所述X4个调制符号中的任意两个调制符号的两个复数在极坐标的相位不相同。
作为一个实施例,表示所述X4个调制符号中的任意两个调制符号的两个复数不相等。
作为一个实施例,权利要求中的表述“X4个调制符号被用于生成所述第一PUCCH”包括以下含义:所述X4个调制符号和所述X2个序列一起被用于生成所述第一PUCCH。
作为一个实施例,权利要求中的表述“X4个调制符号被用于生成所述第一PUCCH”包括以下含义:所述X4个调制符号被本申请中的所述第一节点设备用于生成所述第一PUCCH。
作为一个实施例,权利要求中的表述“X4个调制符号被用于生成所述第一PUCCH”包括以下含义:所述X4个调制符号对所述X2个序列进行序列调制(sequence modulation)后被用于生成所述第一PUCCH。
作为一个实施例,权利要求中的表述“X4个调制符号被用于生成所述第一PUCCH”包括以下含义:所述X4个调制符号和所述X2个序列中的序列所包括的元素一起被用于生成映射到所述第一PUCCH所占用的RE上的复数值符号(Complex-valued symbol),然后经过OFDM基带信号生成(Baseband Signal Generation)和调制与上变频(Modulation and Upconversion)得到所述第一PUCCH。
作为一个实施例,权利要求中的表述“X4个调制符号被用于生成所述第一PUCCH”包括以下含义:所述X4个调制符号和所述X2个序列中的序列所包括的元素一起被用于生成映射到所述第一PUCCH所占用的RE上的复数值符号,然后经过OFDM基带信号生成(Baseband Signal Generation)得到所述第一PUCCH。
作为一个实施例,权利要求中的表述“X4个调制符号被用于生成所述第一PUCCH”包括以下含义:映射到所述第一PUCCH所占用的任意一个RE上的复数值符号是由所述X4个调制符号的一个调制符号和所述X2个序列中的一个序列所包括的元素相乘之后再经过分块扩展(Block-wise spread)和幅度缩放得到的。
作为一个实施例,所述X4等于2。
作为一个实施例,所述X4等于4。
作为一个实施例,所述X4大于4。
作为一个实施例,所述第一RE是所述第一PUCCH所占用的所有RE中的任意一个RE。
作为一个实施例,所述第一RE在时域所占用的多载波符号是所述X1个多载波符号中的起始多载波符号。
作为一个实施例,所述第一RE在时域所占用的多载波符号是所述X1个多载波符号中的起始多载波符号之外的多载波符号。
作为一个实施例,所述第一RE是所述目标RE集合所包括的一个RE。
作为一个实施例,所述第一RE是所述目标RE集合所包括RE之外的一个RE。
作为一个实施例,所述第一RE在时域所占用的多载波符号是所述目标多载波符号。
作为一个实施例,所述第一RE在时域所占用的多载波符号是所述目标多载波符号之外的多载波符号。
作为一个实施例,映射到所述第一RE上的复数值符号(complex-valued symbol)是在映射到物理资源(Mapping to physical resources)之前的复数值序列所包括的一个复数值符号。
作为一个实施例,映射到所述第一RE上的复数值符号是映射到物理资源的输入的复数值序列所包括的一个复数值符号。
作为一个实施例,映射到所述第一RE上的复数值符号是被映射到物理资源的复数值序列所包括的一个复数值符号。
作为一个实施例,映射到所述第一RE上的复数值符号是在映射到物理资源之前的复数值序列在经过幅度缩放(Amplitude Scaling)之后得到的一个复数值符号。
作为一个实施例,映射到所述第一RE上的复数值符号是映射到物理资源的输入的复数值序列在经过幅度缩放(Amplitude Scaling)之后得到的一个复数值符号。
作为一个实施例,映射到所述第一RE上的复数值符号是在经过幅度缩放(Amplitude Scaling)之后的复数值符号。
作为一个实施例,映射到所述第一RE上的复数值符号是在经过幅度缩放(Amplitude Scaling)之前的复数值符号。
作为一个实施例,权利要求中的表述“目标调制符号被用于生成映射到所述第一RE上的复数值符号”包括以下含义:所述目标调制符号被本申请中的所述第一节点设备用于生成映射到所述第一RE上的复数值符号。
作为一个实施例,权利要求中的表述“目标调制符号被用于生成映射到所述第一RE上的复数值符号”包括以下含义:所述目标调制符号和所述X2个序列中的一个序列中的一个元素一起被用于生成映射到所述第一RE上的复数值符号。
作为一个实施例,权利要求中的表述“目标调制符号被用于生成映射到所述第一RE上的复数值符号”包括以下含义:所述目标调制符号被用于所述X2个序列中的一个序列的序列调制(Sequence Modulation)后得到映射到所述第一RE上的复数值符号。
作为一个实施例,权利要求中的表述“目标调制符号被用于生成映射到所述第一RE上的复数值符号”包括以下含义:所述目标调制符号被用于所述X2个序列中的一个序列的序列调制(Sequence Modulation),然后经过分块扩展(Block-wise spread)得到映射到所述第一RE集合上的复数值符号。
作为一个实施例,权利要求中的表述“目标调制符号被用于生成映射到所述第一RE上的复数值符号”包括以下含义:所述目标调制符号被用于所述X2个序列中的一个序列的序列调制(Sequence Modulation)后得到的一个复数值符号再经过幅度缩放(Amplitude Scaling)之后得到映射到所述第一RE上。
作为一个实施例,权利要求中的表述“目标调制符号被用于生成映射到所述第一RE上的复数值符号”包括以下含义:所述目标调制符号被用于所述X2个序列中的一个序列的序列调制(Sequence Modulation),然后经过分块扩展(Block-wise spread)得到的一个复数值符号再经过幅度缩放(Amplitude Scaling)之后映射到所述第一RE上。
作为一个实施例,权利要求中的表述“所述第一RE在时域所占用的多载波符号的时域位置被用于确定所述目标调制符号”包括以下含义:所述第一RE在时域所占用的多载波符号的时域位置被本申请中的所述第一节点设备用于确定所述目标调制符号。
作为一个实施例,权利要求中的表述“所述第一RE在时域所占用的多载波符号的时域位置被用于确定所述目标调制符号”包括以下含义:所述第一RE在时域所占用的多载波符号的时域位置被用于从所述 X4个调制符号中确定所述目标调制符号。
作为一个实施例,权利要求中的表述“所述第一RE在时域所占用的多载波符号的时域位置被用于确定所述目标调制符号”包括以下含义:所述第一RE在时域所占用的多载波符号的时域位置被用于确定所述目标调制符号的相位。
作为一个实施例,权利要求中的表述“所述第一RE在时域所占用的多载波符号的时域位置被用于确定所述目标调制符号”包括以下含义:所述第一RE在时域所占用的多载波符号的时域位置被用于确定代表所述目标调制符号的复数在极坐标的相位。
作为一个实施例,权利要求中的表述“所述第一RE在时域所占用的多载波符号的时域位置被用于确定所述目标调制符号”包括以下含义:所述第一RE在时域所占用的多载波符号的顺序或索引被用于确定所述目标调制符号。
作为一个实施例,权利要求中的表述“所述第一RE在时域所占用的多载波符号的时域位置被用于确定所述目标调制符号”包括以下含义:所述第一RE在时域所占用的多载波符号在所属的时隙(slot)中的顺序或索引被用于确定所述目标调制符号。
作为一个实施例,权利要求中的表述“所述第一RE在时域所占用的多载波符号的时域位置被用于确定所述目标调制符号”包括以下含义:所述第一RE在时域所占用的多载波符号在所述X1个多载波符号中的顺序或索引被用于确定所述目标调制符号。
作为一个实施例,权利要求中的表述“所述第一RE在时域所占用的多载波符号的时域位置被用于确定所述目标调制符号”包括以下含义:所述第一RE在时域所占用的多载波符号的顺序或索引按照预定义的映射关系或对应关系或函数关系被用于确定所述目标调制符号。
作为一个实施例,权利要求中的表述“所述第一RE在时域所占用的多载波符号的时域位置被用于确定所述目标调制符号”包括以下含义:所述第一RE在时域所占用的多载波符号属于第一多载波符号组,所述第一多载波符号组是X4个多载波符号组中之一,所述X4个多载波符号组中的任意一个多载波符号组包括正整数个多载波符号;所述X4个多载波符号组和所述X4个调制符号一一对应,所述目标调制符号是所述X4个调制符号中的和所述第一多载波符号组相对应的调制符号。作为上述实施例的一个附属实施例,所述X4个多载波符号组中的任意一个多载波符号组包括大于1的正整数个多载波符号。作为上述实施例的一个附属实施例,所述X4个多载波符号组中存在一个多载波符号组仅包括1个多载波符号。作为上述实施例的一个附属实施例,所述X4个多载波符号组中的任意一个多载波符号组包括多个时域连续的多载波符号。作为上述实施例的一个附属实施例,所述X4个多载波符号组中存在一个多载波符号组包括多个时域离散的多载波符号。
作为一个实施例,权利要求中的表述“所述第一RE在时域所占用的多载波符号的时域位置被用于确定所述目标调制符号”包括以下含义:所述第一RE在时域所占用的多载波符号所属的跳频区段被用于确定所述目标调制符号。作为上述实施例的一个附属实施例,所述第一RE在时域所占用的多载波符号所属的跳频区段的顺序或索引按照预定义的映射关系或对应关系被用于确定所述目标调制符号。作为上述实施例的一个附属实施例,所述第一RE在时域所占用的多载波符号所属的跳频区段是X4个跳频区段中之一,所述X4个跳频区段和所述X4个调制符号一一对应,所述目标调制符号是所述X4个调制符号中的和所述第一RE在时域所占用的多载波符号所属的跳频区段所对应的调制符号。
实施例11
实施例11示例了根据本申请的一个实施例的第一差值的示意图,如附图11所示。在附图11中,每个小方格代表X3个备选参数中的备选参数允许配置的最小颗粒度,每个斜线填充的小方格代表X3个备选参数中的一个备选参数。
在实施例11中,本申请中的所述X3个备选参数从小到大依次排列,所述X3个备选参数中的任意两个排列相邻的备选参数的差等于第一差值,本申请中的所述第一基础序列的长度和所述X3一起被用于确定所述第一差值。
作为一个实施例,所述第一差值大于0。
作为一个实施例,所述第一差值是正整数。
作为一个实施例,所述第一差值是大于1的正整数。
作为一个实施例,所述第一差值是大于1的正整数,所述第一差值能够整除所述第一基础序列的长度。
作为一个实施例,所述第一差值等于1、2、3、4、6中之一。
作为一个实施例,所述第一差值等于所述X3个备选参数中的任意两个排列相邻的备选参数的差的绝对值。
作为一个实施例,所述X3个备选参数中最小的备选参数与所述第一基础序列的长度的加和减去所述X3个备选参数中的最大的备选参数的差值等于所述第一差值。
作为一个实施例,权利要求中的表述“所述第一基础序列的长度和所述X3一起被用于确定所述第一差值”包括以下含义:所述第一基础序列的长度和所述X3一起被本申请中的所述第一节点设备或者所述第二节点设备用于确定所述第一差值。
作为一个实施例,权利要求中的表述“所述第一基础序列的长度和所述X3一起被用于确定所述第一差值”包括以下含义:所述第一基础序列的长度和所述X3一起被用于计算所述第一差值。
作为一个实施例,权利要求中的表述“所述第一基础序列的长度和所述X3一起被用于确定所述第一差值”包括以下含义:所述第一基础序列的长度和所述X3之间相除的商等于所述第一差值。
作为一个实施例,权利要求中的表述“所述第一基础序列的长度和所述X3一起被用于确定所述第一差值”包括以下含义:所述第一基础序列的长度和所述X3之间相除的余数等于所述第一差值。
作为一个实施例,权利要求中的表述“所述第一基础序列的长度和所述X3一起被用于确定所述第一差值”包括以下含义:所述第一基础序列的长度和所述X3之间相除的商向下取整的值等于所述第一差值。
作为一个实施例,权利要求中的表述“所述第一基础序列的长度和所述X3一起被用于确定所述第一差值”包括以下含义:所述第一差值和所述第一基础序列的长度成正比,所述第一差值和所述X3成反比。
实施例12
实施例12示例了一个实施例的第一节点设备中的处理装置的结构框图,如附图12所示。在附图12中,第一节点设备处理装置1200包括第一接收机1201和第一发射机1202。第一接收机1201包括本申请附图4中的发射器/接收器456(包括天线460)、接收处理器452和控制器/处理器490;第一发射机1202包括本申请附图4中的发射器/接收器456(包括天线460)和发射处理器455。
在实施例12中,第一接收机1201接收第一PDCCH,第一发射机1202发送第一PUCCH,所述第一PUCCH在时域占用X1个多载波符号,所述第一PDCCH被用于确定所述X1个多载波符号中的起始多载波符号,所述X1是大于1的正整数;其中,第一基础序列被用于生成所述第一PUCCH,所述第一基础序列经过循环移位生成X2个序列,所述X2个序列中的任意两个序列不相同,所述X2是大于1的正整数;目标多载波符号是所述X1个多载波符号中之一,目标RE集合包括被所述第一PUCCH所占用的多个RE,所述目标RE集合所包括的任意一个RE在时域占用所述目标多载波符号;目标序列是所述X2个序列中的一个序列,目标参数被用于确定所述目标序列的循环移位,所述目标序列被用于生成映射到所述目标RE集合上的复数值符号;所述目标参数是X3个备选参数中之一,所述X3个备选参数中的任意一个备选参数是小于所述第一基础序列的长度的非负整数,所述X3是大于1的正整数;所述X3个备选参数中存在两个备选参数之间的差不小于所述第一基础序列的长度的一半,所述X3个备选参数中的任意一个备选参数被用于确定所述X2个序列中至少一个序列的循环移位;所述目标多载波符号的时域位置被用于从所述X3个备选参数中确定所述目标参数。
作为一个实施例,第一接收机1201接收第一PDSCH;其中,所述第一PDSCH携带第一比特块,所述第一比特块包括正整数个比特,所述第一PUCCH被用于指示所述第一比特块被错误译码。
作为一个实施例,第一参数被用于确定所述目标序列的循环移位,伪随机序列被用于确定所述第一参数,所述第一参数是非负整数;目标标识被用于确定所述伪随机序列的生成器的初始值;所述目标标识是可配置的,或者所述目标标识是预定义的。
作为一个实施例,第一接收机1201接收第一信息块;其中,所述第一信息块被用于确定所述X1个多载波符号,所述第一信息块被用于确定所述第一PUCCH是否采用跳频;当所述第一PUCCH采用跳频时,所述目标多载波符号所属的跳频区段被用于从所述X3个备选参数中确定所述目标参数;否 则,所述目标多载波符号在所述X1个多载波符号中的位置被用于从所述X3个备选参数中确定所述目标参数。
作为一个实施例,第二参数被用于确定所述目标序列的循环移位,所述第二参数是非负整数;第一标识或者第一测量值中的至少之一被用于确定所述第二参数,所述第一标识是所述第一节点设备被配置的一个标识,所述第一测量值是所述第一节点设备经过测量所得到的一个测量值。
作为一个实施例,X4个调制符号被用于生成所述第一PUCCH,所述X4个调制符号中的任意两个调制符号所采用的调制方式相同,所述X4个调制符号中的任意两个调制符号的相位不相同,所述X4是大于1的正整数;第一RE是所述第一PUCCH所占用的一个RE,目标调制符号被用于生成映射到所述第一RE上的复数值符号,所述目标调制符号是所述X4个调制符号中之一,所述第一RE在时域所占用的多载波符号的时域位置被用于确定所述目标调制符号。
作为一个实施例,所述X3个备选参数从小到大依次排列,所述X3个备选参数中的任意两个排列相邻的备选参数的差等于第一差值,所述第一基础序列的长度和所述X3一起被用于确定所述第一差值。
实施例13
实施例13示例了一个实施例的第二节点设备中的处理装置的结构框图,如附图13所示。在附图13中,第二节点设备处理装置1300包括第二发射机1301和第二接收机1302。第二发射机1301包括本申请附图4中的发射器/接收器416(包括天线460),发射处理器415和控制器/处理器440;第二接收机1302包括本申请附图4中的发射器/接收器416(包括天线460)和接收处理器412。
在实施例13中,第二发射机1301发送第一PDCCH,第二接收机1302接收第一PUCCH,所述第一PUCCH在时域占用X1个多载波符号,所述第一PDCCH被用于指示所述X1个多载波符号中的起始多载波符号,所述X1是大于1的正整数;其中,第一基础序列被用于生成所述第一PUCCH,所述第一基础序列经过循环移位生成X2个序列,所述X2个序列中的任意两个序列不相同,所述X2是大于1的正整数;目标多载波符号是所述X1个多载波符号中之一,目标RE集合包括被所述第一PUCCH所占用的多个RE,所述目标RE集合所包括的任意一个RE在时域占用所述目标多载波符号;目标序列是所述X2个序列中的一个序列,目标参数被用于确定所述目标序列的循环移位,所述目标序列被用于生成映射到所述目标RE集合上的复数值符号;所述目标参数是X3个备选参数中之一,所述X3个备选参数中的任意一个备选参数是小于所述第一基础序列的长度的非负整数,所述X3是大于1的正整数;所述X3个备选参数中存在两个备选参数之间的差不小于所述第一基础序列的长度的一半,所述X3个备选参数中的任意一个备选参数被用于确定所述X2个序列中至少一个序列的循环移位;所述目标多载波符号的时域位置被用于从所述X3个备选参数中确定所述目标参数。
作为一个实施例,第二发射机1301发送第一PDSCH;其中,所述第一PDSCH携带第一比特块,所述第一比特块包括正整数个比特,所述第一PUCCH被用于指示所述第一比特块被错误译码。
作为一个实施例,第一参数被用于确定所述目标序列的循环移位,伪随机序列被用于确定所述第一参数,所述第一参数是非负整数;目标标识被用于确定所述伪随机序列的生成器的初始值;所述目标标识是可配置的,或者所述目标标识是预定义的。
作为一个实施例,第二发射机1301发送第一信息块;其中,所述第一信息块被用于指示所述X1个多载波符号,所述第一信息块被用于指示所述第一PUCCH是否采用跳频,;当所述第一PUCCH采用跳频时,所述目标多载波符号所属的跳频区段被用于从所述X3个备选参数中确定所述目标参数;否则,所述目标多载波符号在所述X1个多载波符号中的位置被用于从所述X3个备选参数中确定所述目标参数。
作为一个实施例,第二参数被用于确定所述目标序列的循环移位,所述第二参数是非负整数;第一标识或者第一测量值中的至少之一被用于确定所述第二参数,所述第一标识是所述第一PUCCH的发送者被配置的一个标识,所述第一测量值是所述第一PUCCH的发送者经过测量所得到的一个测量值。
作为一个实施例,X4个调制符号被用于生成所述第一PUCCH,所述X4个调制符号中的任意两个调制符号所采用的调制方式相同,所述X4个调制符号中的任意两个调制符号的相位不相同,所述X4是大于1的正整数;第一RE是所述第一PUCCH所占用的一个RE,目标调制符号被用于生成映射到所述第一RE上的 复数值符号,所述目标调制符号是所述X4个调制符号中之一,所述第一RE在时域所占用的多载波符号的时域位置被用于确定所述目标调制符号。
作为一个实施例,所述X3个备选参数从小到大依次排列,所述X3个备选参数中的任意两个排列相邻的备选参数的差等于第一差值,所述第一基础序列的长度和所述X3一起被用于确定所述第一差值。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的第一节点设备或者第二节点设备或者UE或者终端包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC设备,NB-IoT设备,车载通信设备,飞行器,飞机,无人机,遥控飞机,测试装置,测试设备,测试仪表等设备。本申请中的基站设备或者基站或者网络侧设备包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,eNB,gNB,传输接收节点TRP,中继卫星,卫星基站,空中基站,测试装置,测试设备,测试仪表等设备。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所做的任何修改,等同替换,改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种用于无线通信的第一节点设备,其特征在于,包括:
    第一接收机,接收第一PDCCH;
    第一发射机,发送第一PUCCH,所述第一PUCCH在时域占用X1个多载波符号,所述第一PDCCH被用于确定所述X1个多载波符号中的起始多载波符号,所述X1是大于1的正整数;
    其中,第一基础序列被用于生成所述第一PUCCH,所述第一基础序列经过循环移位生成X2个序列,所述X2个序列中的任意两个序列不相同,所述X2是大于1的正整数;目标多载波符号是所述X1个多载波符号中之一,目标RE集合包括被所述第一PUCCH所占用的多个RE,所述目标RE集合所包括的任意一个RE在时域占用所述目标多载波符号;目标序列是所述X2个序列中的一个序列,目标参数被用于确定所述目标序列的循环移位,所述目标序列被用于生成映射到所述目标RE集合上的复数值符号;所述目标参数是X3个备选参数中之一,所述X3个备选参数中的任意一个备选参数是小于所述第一基础序列的长度的非负整数,所述X3是大于1的正整数;所述X3个备选参数中存在两个备选参数之间的差不小于所述第一基础序列的长度的一半,所述X3个备选参数中的任意一个备选参数被用于确定所述X2个序列中至少一个序列的循环移位;所述目标多载波符号的时域位置被用于从所述X3个备选参数中确定所述目标参数。
  2. 根据权利要求1所述的第一节点设备,其特征在于,所述第一接收机接收第一PDSCH;其中,所述第一PDSCH携带第一比特块,所述第一比特块包括正整数个比特,所述第一PUCCH被用于指示所述第一比特块被错误译码。
  3. 根据权利要求1或2中任一权利要求所述的第一节点设备,其特征在于,第一参数被用于确定所述目标序列的循环移位,伪随机序列被用于确定所述第一参数,所述第一参数是非负整数;目标标识被用于确定所述伪随机序列的生成器的初始值;所述目标标识是可配置的,或者所述目标标识是预定义的。
  4. 根据权利要求1至3中任一权利要求所述的第一节点设备,其特征在于,所述第一接收机接收第一信息块;其中,所述第一信息块被用于确定所述X1个多载波符号,所述第一信息块被用于确定所述第一PUCCH是否采用跳频;当所述第一PUCCH采用跳频时,所述目标多载波符号所属的跳频区段被用于从所述X3个备选参数中确定所述目标参数;否则,所述目标多载波符号在所述X1个多载波符号中的位置被用于从所述X3个备选参数中确定所述目标参数。
  5. 根据权利要求1至4中任一权利要求所述的第一节点设备,其特征在于,第二参数被用于确定所述目标序列的循环移位,所述第二参数是非负整数;第一标识或者第一测量值中的至少之一被用于确定所述第二参数,所述第一标识是所述第一节点设备被配置的一个标识,所述第一测量值是所述第一节点设备经过测量所得到的一个测量值。
  6. 根据权利要求1至5中任一权利要求所述的第一节点设备,其特征在于,X4个调制符号被用于生成所述第一PUCCH,所述X4个调制符号中的任意两个调制符号所采用的调制方式相同,所述X4个调制符号中的任意两个调制符号的相位不相同,所述X4是大于1的正整数;第一RE是所述第一PUCCH所占用的一个RE,目标调制符号被用于生成映射到所述第一RE上的复数值符号,所述目标调制符号是所述X4个调制符号中之一,所述第一RE在时域所占用的多载波符号的时域位置被用于确定所述目标调制符号。
  7. 根据权利要求1至6中任一权利要求所述的第一节点设备,其特征在于,所述X3个备选参数从小到大依次排列,所述X3个备选参数中的任意两个排列相邻的备选参数的差等于第一差值,所述第一基础序列的长度和所述X3一起被用于确定所述第一差值。
  8. 一种用于无线通信的第二节点设备,其特征在于,包括:
    第二发射机,发送第一PDCCH;
    第二接收机,接收第一PUCCH,所述第一PUCCH在时域占用X1个多载波符号,所述第一PDCCH被用于指示所述X1个多载波符号中的起始多载波符号,所述X1是大于1的正整数;
    其中,第一基础序列被用于生成所述第一PUCCH,所述第一基础序列经过循环移位生成X2个序列,所述X2个序列中的任意两个序列不相同,所述X2是大于1的正整数;目标多载波符号是所述X1个多载波符号中之一,目标RE集合包括被所述第一PUCCH所占用的多个RE,所述目标RE集合所 包括的任意一个RE在时域占用所述目标多载波符号;目标序列是所述X2个序列中的一个序列,目标参数被用于确定所述目标序列的循环移位,所述目标序列被用于生成映射到所述目标RE集合上的复数值符号;所述目标参数是X3个备选参数中之一,所述X3个备选参数中的任意一个备选参数是小于所述第一基础序列的长度的非负整数,所述X3是大于1的正整数;所述X3个备选参数中存在两个备选参数之间的差不小于所述第一基础序列的长度的一半,所述X3个备选参数中的任意一个备选参数被用于确定所述X2个序列中至少一个序列的循环移位;所述目标多载波符号的时域位置被用于从所述X3个备选参数中确定所述目标参数。
  9. 一种用于无线通信的第一节点中的方法,其特征在于,包括:
    接收第一PDCCH;
    发送第一PUCCH,所述第一PUCCH在时域占用X1个多载波符号,所述第一PDCCH被用于确定所述X1个多载波符号中的起始多载波符号,所述X1是大于1的正整数;
    其中,第一基础序列被用于生成所述第一PUCCH,所述第一基础序列经过循环移位生成X2个序列,所述X2个序列中的任意两个序列不相同,所述X2是大于1的正整数;目标多载波符号是所述X1个多载波符号中之一,目标RE集合包括被所述第一PUCCH所占用的多个RE,所述目标RE集合所包括的任意一个RE在时域占用所述目标多载波符号;目标序列是所述X2个序列中的一个序列,目标参数被用于确定所述目标序列的循环移位,所述目标序列被用于生成映射到所述目标RE集合上的复数值符号;所述目标参数是X3个备选参数中之一,所述X3个备选参数中的任意一个备选参数是小于所述第一基础序列的长度的非负整数,所述X3是大于1的正整数;所述X3个备选参数中存在两个备选参数之间的差不小于所述第一基础序列的长度的一半,所述X3个备选参数中的任意一个备选参数被用于确定所述X2个序列中至少一个序列的循环移位;所述目标多载波符号的时域位置被用于从所述X3个备选参数中确定所述目标参数。
  10. 一种用于无线通信的第二节点中的方法,其特征在于,包括:
    发送第一PDCCH;
    接收第一PUCCH,所述第一PUCCH在时域占用X1个多载波符号,所述第一PDCCH被用于指示所述X1个多载波符号中的起始多载波符号,所述X1是大于1的正整数;
    其中,第一基础序列被用于生成所述第一PUCCH,所述第一基础序列经过循环移位生成X2个序列,所述X2个序列中的任意两个序列不相同,所述X2是大于1的正整数;目标多载波符号是所述X1个多载波符号中之一,目标RE集合包括被所述第一PUCCH所占用的多个RE,所述目标RE集合所包括的任意一个RE在时域占用所述目标多载波符号;目标序列是所述X2个序列中的一个序列,目标参数被用于确定所述目标序列的循环移位,所述目标序列被用于生成映射到所述目标RE集合上的复数值符号;所述目标参数是X3个备选参数中之一,所述X3个备选参数中的任意一个备选参数是小于所述第一基础序列的长度的非负整数,所述X3是大于1的正整数;所述X3个备选参数中存在两个备选参数之间的差不小于所述第一基础序列的长度的一半,所述X3个备选参数中的任意一个备选参数被用于确定所述X2个序列中至少一个序列的循环移位;所述目标多载波符号的时域位置被用于从所述X3个备选参数中确定所述目标参数。
PCT/CN2022/076867 2021-02-20 2022-02-18 一种用于无线通信的节点中的方法和装置 WO2022174818A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280006501.3A CN117321970A (zh) 2021-02-20 2022-02-18 一种用于无线通信的节点中的方法和装置
US18/225,695 US20230370215A1 (en) 2021-02-20 2023-07-25 Method and device in nodes used for wireless communication

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202110190875 2021-02-20
CN202110190875.2 2021-02-20
CN202111639262.9 2021-12-29
CN202111639262.9A CN114979967A (zh) 2021-02-20 2021-12-29 一种用于无线通信的节点中的方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/225,695 Continuation US20230370215A1 (en) 2021-02-20 2023-07-25 Method and device in nodes used for wireless communication

Publications (1)

Publication Number Publication Date
WO2022174818A1 true WO2022174818A1 (zh) 2022-08-25

Family

ID=82931184

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/076867 WO2022174818A1 (zh) 2021-02-20 2022-02-18 一种用于无线通信的节点中的方法和装置

Country Status (2)

Country Link
US (1) US20230370215A1 (zh)
WO (1) WO2022174818A1 (zh)

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102460991A (zh) * 2009-05-11 2012-05-16 Lg电子株式会社 多天线系统中的基准信号发射方法和装置
CN102934404A (zh) * 2010-05-04 2013-02-13 Lg电子株式会社 用于在无线通信系统中发送参考信号的方法和装置
CN103119886A (zh) * 2010-09-28 2013-05-22 Lg电子株式会社 在无线系统中发送接收确认的方法和装置
US20130163535A1 (en) * 2011-12-23 2013-06-27 Research In Motion Limited Method Implemented in a User Equipment
US20170086219A1 (en) * 2014-05-18 2017-03-23 Lg Electronics Inc. Method and apparatus for transmitting uplink data in a wireless communication system
CN106797641A (zh) * 2014-06-09 2017-05-31 艾尔瓦纳有限合伙公司 在无线电接入网络中调度相同的资源
CN107027181A (zh) * 2016-02-02 2017-08-08 电信科学技术研究院 一种上行控制信息的传输方法及装置
CN107852318A (zh) * 2015-08-12 2018-03-27 Lg电子株式会社 用于执行上行链路传输的方法和用户设备
CN108432312A (zh) * 2015-12-31 2018-08-21 日本电气株式会社 用于传输和接收上行链路信息的方法和装置
CN109474402A (zh) * 2017-09-08 2019-03-15 华为技术有限公司 一种发送、接收物理上行控制信道的方法及设备
CN109565429A (zh) * 2017-06-09 2019-04-02 Lg 电子株式会社 在无线通信系统中发送/接收参考信号的方法及其设备
CN110392997A (zh) * 2017-09-08 2019-10-29 Lg电子株式会社 在无线通信系统中发送和接收无线信号的方法和设备
CN110637430A (zh) * 2017-05-03 2019-12-31 Idac控股公司 用于传输上行链路控制信息的方法、系统及设备
US20200045691A1 (en) * 2017-02-11 2020-02-06 Lg Electronics Inc. Method for physical uplink control channel transmission/reception between terminal and base station in wireless communication system, and apparatus supporting same
CN111052658A (zh) * 2017-08-11 2020-04-21 韦勒斯标准与技术协会公司 在无线通信系统中发送或接收上行链路控制信道的方法、设备和系统
CN111344983A (zh) * 2017-11-13 2020-06-26 Lg电子株式会社 在无线通信系统中发送和接收数据的方法及其装置
WO2020153721A1 (ko) * 2019-01-21 2020-07-30 엘지전자 주식회사 무선통신시스템에서 사이드링크 harq 피드백을 전송하는 방법
CN111567117A (zh) * 2018-01-13 2020-08-21 韦勒斯标准与技术协会公司 无线通信系统的资源分配方法、装置和系统
WO2020226406A1 (ko) * 2019-05-03 2020-11-12 엘지전자 주식회사 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2020252469A1 (en) * 2019-06-13 2020-12-17 Yunjung Yi Power control for multiple services
WO2021020955A1 (ko) * 2019-08-01 2021-02-04 주식회사 윌러스표준기술연구소 무선 통신 시스템에서 상향링크 공유 채널(physical uplink shared channel: pusch)를 송수신하는 방법, 장치 및 시스템

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102460991A (zh) * 2009-05-11 2012-05-16 Lg电子株式会社 多天线系统中的基准信号发射方法和装置
CN102934404A (zh) * 2010-05-04 2013-02-13 Lg电子株式会社 用于在无线通信系统中发送参考信号的方法和装置
CN103119886A (zh) * 2010-09-28 2013-05-22 Lg电子株式会社 在无线系统中发送接收确认的方法和装置
US20130163535A1 (en) * 2011-12-23 2013-06-27 Research In Motion Limited Method Implemented in a User Equipment
US20170086219A1 (en) * 2014-05-18 2017-03-23 Lg Electronics Inc. Method and apparatus for transmitting uplink data in a wireless communication system
CN106797641A (zh) * 2014-06-09 2017-05-31 艾尔瓦纳有限合伙公司 在无线电接入网络中调度相同的资源
CN107852318A (zh) * 2015-08-12 2018-03-27 Lg电子株式会社 用于执行上行链路传输的方法和用户设备
CN108432312A (zh) * 2015-12-31 2018-08-21 日本电气株式会社 用于传输和接收上行链路信息的方法和装置
CN107027181A (zh) * 2016-02-02 2017-08-08 电信科学技术研究院 一种上行控制信息的传输方法及装置
US20200045691A1 (en) * 2017-02-11 2020-02-06 Lg Electronics Inc. Method for physical uplink control channel transmission/reception between terminal and base station in wireless communication system, and apparatus supporting same
CN110637430A (zh) * 2017-05-03 2019-12-31 Idac控股公司 用于传输上行链路控制信息的方法、系统及设备
CN109565429A (zh) * 2017-06-09 2019-04-02 Lg 电子株式会社 在无线通信系统中发送/接收参考信号的方法及其设备
CN111052658A (zh) * 2017-08-11 2020-04-21 韦勒斯标准与技术协会公司 在无线通信系统中发送或接收上行链路控制信道的方法、设备和系统
CN110392997A (zh) * 2017-09-08 2019-10-29 Lg电子株式会社 在无线通信系统中发送和接收无线信号的方法和设备
CN109474402A (zh) * 2017-09-08 2019-03-15 华为技术有限公司 一种发送、接收物理上行控制信道的方法及设备
CN111344983A (zh) * 2017-11-13 2020-06-26 Lg电子株式会社 在无线通信系统中发送和接收数据的方法及其装置
CN111567117A (zh) * 2018-01-13 2020-08-21 韦勒斯标准与技术协会公司 无线通信系统的资源分配方法、装置和系统
WO2020153721A1 (ko) * 2019-01-21 2020-07-30 엘지전자 주식회사 무선통신시스템에서 사이드링크 harq 피드백을 전송하는 방법
WO2020226406A1 (ko) * 2019-05-03 2020-11-12 엘지전자 주식회사 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2020252469A1 (en) * 2019-06-13 2020-12-17 Yunjung Yi Power control for multiple services
WO2021020955A1 (ko) * 2019-08-01 2021-02-04 주식회사 윌러스표준기술연구소 무선 통신 시스템에서 상향링크 공유 채널(physical uplink shared channel: pusch)를 송수신하는 방법, 장치 및 시스템

Also Published As

Publication number Publication date
US20230370215A1 (en) 2023-11-16

Similar Documents

Publication Publication Date Title
CN110266450B (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
US11943161B2 (en) Method and device in UE and base station used for dynamic scheduling
CN112350806A (zh) 一种被用于无线通信的节点中的方法和装置
WO2022121832A1 (zh) 一种用于无线通信的节点中的方法和装置
CN111615193A (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
US11711185B2 (en) Method and device in communication node for wireless communication
WO2022227428A1 (zh) 一种用于无线通信的节点中的方法和装置
CN112312350A (zh) 一种被用于无线通信的节点中的方法和装置
WO2021031899A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN112118081B (zh) 一种被用于无线通信的节点中的方法和装置
CN110611546B (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2022205848A1 (zh) 一种用于无线通信的节点中的方法和装置
CN110662254B (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2022174818A1 (zh) 一种用于无线通信的节点中的方法和装置
CN114666021A (zh) 一种用于无线通信的节点中的方法和装置
CN114979968B (zh) 一种用于无线通信的节点中的方法和装置
US20220303066A1 (en) Method and device in nodes used for wireless communication
WO2023045863A1 (zh) 一种用于无线通信的节点中的方法和装置
CN114979967A (zh) 一种用于无线通信的节点中的方法和装置
CN112688762B (zh) 一种被用于无线通信的节点中的方法和装置
CN112688765B (zh) 一种被用于无线通信的节点中的方法和装置
WO2023051491A1 (zh) 一种用于无线通信的节点中的方法和装置
CN114978448A (zh) 一种被用于无线通信的节点中的方法和装置
CN115208525A (zh) 一种被用于无线通信的节点中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22755591

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE