TWI534293B - 熱浸鍍Zn-Al系合金鋼板及其製造方法 - Google Patents

熱浸鍍Zn-Al系合金鋼板及其製造方法 Download PDF

Info

Publication number
TWI534293B
TWI534293B TW101128834A TW101128834A TWI534293B TW I534293 B TWI534293 B TW I534293B TW 101128834 A TW101128834 A TW 101128834A TW 101128834 A TW101128834 A TW 101128834A TW I534293 B TWI534293 B TW I534293B
Authority
TW
Taiwan
Prior art keywords
steel sheet
alloy
hot dip
hot
dip
Prior art date
Application number
TW101128834A
Other languages
English (en)
Chinese (zh)
Other versions
TW201307612A (zh
Inventor
藤澤英嗣
大居利彥
古田彰彥
佐藤進
妹川透
Original Assignee
杰富意鋼板股份有限公司
杰富意鋼鐵股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杰富意鋼板股份有限公司, 杰富意鋼鐵股份有限公司 filed Critical 杰富意鋼板股份有限公司
Publication of TW201307612A publication Critical patent/TW201307612A/zh
Application granted granted Critical
Publication of TWI534293B publication Critical patent/TWI534293B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/40Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing molybdates, tungstates or vanadates
    • C23C22/42Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing molybdates, tungstates or vanadates containing also phosphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/40Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing molybdates, tungstates or vanadates
    • C23C22/44Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing molybdates, tungstates or vanadates containing also fluorides or complex fluorides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • C23C28/3455Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Coating With Molten Metal (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
TW101128834A 2011-08-09 2012-08-09 熱浸鍍Zn-Al系合金鋼板及其製造方法 TWI534293B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011174017A JP5649181B2 (ja) 2011-08-09 2011-08-09 耐食性に優れた溶融Zn−Al系合金めっき鋼板およびその製造方法

Publications (2)

Publication Number Publication Date
TW201307612A TW201307612A (zh) 2013-02-16
TWI534293B true TWI534293B (zh) 2016-05-21

Family

ID=47668615

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101128834A TWI534293B (zh) 2011-08-09 2012-08-09 熱浸鍍Zn-Al系合金鋼板及其製造方法

Country Status (8)

Country Link
JP (1) JP5649181B2 (ko)
KR (1) KR101615459B1 (ko)
CN (1) CN103732780B (ko)
AU (1) AU2012293118B2 (ko)
MY (1) MY165649A (ko)
SG (1) SG2014007579A (ko)
TW (1) TWI534293B (ko)
WO (1) WO2013022118A1 (ko)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6165529B2 (ja) * 2013-07-12 2017-07-19 日新製鋼株式会社 化成処理鋼板の製造方法および製造装置
KR101568474B1 (ko) * 2013-10-30 2015-11-11 주식회사 포스코 내흑변성 및 표면외관이 우수한 용융아연합금 도금강판 및 그 제조방법
KR101758529B1 (ko) * 2014-12-24 2017-07-17 주식회사 포스코 인산염 처리성과 스폿 용접성이 우수한 아연합금도금강판 및 그 제조방법
WO2016105157A1 (ko) * 2014-12-24 2016-06-30 주식회사 포스코 인산염 처리성과 스폿 용접성이 우수한 아연합금도금강판 및 그 제조방법
KR101767788B1 (ko) 2015-12-24 2017-08-14 주식회사 포스코 내마찰성 및 내백청성이 우수한 도금 강재 및 그 제조방법
JP6515973B2 (ja) * 2016-10-11 2019-05-22 Jfeスチール株式会社 亜鉛系めっき鋼板用表面処理液、表面処理皮膜付き亜鉛系めっき鋼板の製造方法、及び表面処理皮膜付き亜鉛系めっき鋼板
WO2018070350A1 (ja) * 2016-10-11 2018-04-19 Jfeスチール株式会社 亜鉛系めっき鋼板用表面処理液、表面処理皮膜付き亜鉛系めっき鋼板の製造方法、及び表面処理皮膜付き亜鉛系めっき鋼板
KR101879093B1 (ko) 2016-12-22 2018-07-16 주식회사 포스코 내부식성 및 표면 품질이 우수한 합금도금강재 및 그 제조방법
JP6753369B2 (ja) * 2017-06-29 2020-09-09 Jfeスチール株式会社 溶融Zn系めっき鋼板及びその製造方法
EP4022102A1 (en) * 2019-08-30 2022-07-06 Rijksuniversiteit Groningen Characterization method of formability properties of zinc alloy coating on a metal substrate
CN111155044B (zh) * 2019-12-13 2021-09-21 首钢集团有限公司 一种提高锌铝镁镀层钢表面质量的方法、锌铝镁镀层
CN111733410B (zh) * 2020-07-07 2022-08-02 奎克化学(中国)有限公司 一种用于锌铝镁钢板的无铬钝化液及其制备方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5735671A (en) * 1980-08-11 1982-02-26 Nippon Kokan Kk <Nkk> Continuously galvanizing method for strip
JP3179401B2 (ja) * 1996-12-13 2001-06-25 日新製鋼株式会社 耐食性および表面外観の良好な溶融Zn−Al−Mgめっき鋼板およびその製造法
JP2001262303A (ja) * 2000-03-21 2001-09-26 Kawasaki Steel Corp 溶融めっき性に優れた溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板の製造方法
JP2002371345A (ja) * 2001-06-13 2002-12-26 Sumitomo Metal Ind Ltd 溶融Zn−Al−Mg合金めっき鋼板の製造方法
JP3927167B2 (ja) * 2003-11-14 2007-06-06 日新製鋼株式会社 耐食性,耐黒変性に優れた溶融Mg含有亜鉛合金めっき鋼板
JP2005146339A (ja) * 2003-11-14 2005-06-09 Nisshin Steel Co Ltd 耐黒変性に優れた溶融Al含有亜鉛合金めっき鋼板
JP5101249B2 (ja) * 2006-11-10 2012-12-19 Jfe鋼板株式会社 溶融Zn−Al系合金めっき鋼板およびその製造方法
JP5317516B2 (ja) * 2007-04-27 2013-10-16 Jfeスチール株式会社 表面処理溶融Zn−Al系合金めっき鋼板
JP5600398B2 (ja) * 2009-04-28 2014-10-01 Jfe鋼板株式会社 溶融Zn系めっき鋼板

Also Published As

Publication number Publication date
JP2013036094A (ja) 2013-02-21
AU2012293118A1 (en) 2014-02-20
JP5649181B2 (ja) 2015-01-07
MY165649A (en) 2018-04-18
WO2013022118A1 (ja) 2013-02-14
CN103732780B (zh) 2016-01-20
SG2014007579A (en) 2014-03-28
TW201307612A (zh) 2013-02-16
KR20140043471A (ko) 2014-04-09
AU2012293118B2 (en) 2015-08-27
CN103732780A (zh) 2014-04-16
KR101615459B1 (ko) 2016-04-25

Similar Documents

Publication Publication Date Title
TWI534293B (zh) 熱浸鍍Zn-Al系合金鋼板及其製造方法
US10662516B2 (en) Hot-dip Al—Zn—Mg—Si coated steel sheet and method of producing same
EP2957648B1 (en) Hot-dip al-zn alloy coated steel sheet and method for producing same
JPWO2020179147A1 (ja) 溶融Al−Zn−Mg−Si−Srめっき鋼板及びその製造方法
KR101748921B1 (ko) 용융 Al-Zn 계 도금 강판
JP2012126993A (ja) 溶融Al−Zn系めっき鋼板およびその製造方法
KR101727424B1 (ko) 합금화 용융 아연 도금 강판 및 그 제조 방법
TW201903168A (zh) 高強度Zn-Al-Mg系表面被覆鋼板及其製造方法
TWI521092B (zh) 熔融Al-Zn系鍍覆鋼板及其製造方法
JP2008111189A (ja) 溶融めっき鋼板の温間加工方法及び温間加工成形品
KR102168599B1 (ko) 코팅된 금속 기판 및 제조 방법
JP7332943B2 (ja) ホットスタンプ成形体
SG194952A1 (en) Molten zn-al-based alloy-plated steel sheet having excellent corrosion resistance and workability, and method for producing same
CN116685706B (zh) 镀覆钢材
CN114901853B (zh) 加工部耐蚀性优异的Zn-Al-Mg系热浸镀合金钢材及其制造方法
JP6480132B2 (ja) 溶融Al系めっき鋼板
JP2020143369A (ja) 塗装鋼板及び塗装鋼板の製造方法
JP6771749B2 (ja) 複層めっき鋼板およびその製造方法
JP2003183800A (ja) 耐黒変性および耐食性に優れた溶融亜鉛系めっき鋼板およびその製造方法
JP2021195564A (ja) 溶融Zn−Al−Mg系めっき鋼材
JP2016186097A (ja) 耐遅れ破壊性と耐食性に優れた高強度鋼板