TWI525095B - 新穎的雜環式化合物,其中間體的製造方法,及其用途 - Google Patents

新穎的雜環式化合物,其中間體的製造方法,及其用途 Download PDF

Info

Publication number
TWI525095B
TWI525095B TW101106275A TW101106275A TWI525095B TW I525095 B TWI525095 B TW I525095B TW 101106275 A TW101106275 A TW 101106275A TW 101106275 A TW101106275 A TW 101106275A TW I525095 B TWI525095 B TW I525095B
Authority
TW
Taiwan
Prior art keywords
group
compound
formula
synthesis
aryl
Prior art date
Application number
TW101106275A
Other languages
English (en)
Other versions
TW201247677A (en
Inventor
瀧宮和男
新見一樹
桑原博一
貞光雄一
狩野英成
Original Assignee
日本化藥股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本化藥股份有限公司 filed Critical 日本化藥股份有限公司
Publication of TW201247677A publication Critical patent/TW201247677A/zh
Application granted granted Critical
Publication of TWI525095B publication Critical patent/TWI525095B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C319/00Preparation of thiols, sulfides, hydropolysulfides or polysulfides
    • C07C319/14Preparation of thiols, sulfides, hydropolysulfides or polysulfides of sulfides
    • C07C319/18Preparation of thiols, sulfides, hydropolysulfides or polysulfides of sulfides by addition of thiols to unsaturated compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C319/00Preparation of thiols, sulfides, hydropolysulfides or polysulfides
    • C07C319/14Preparation of thiols, sulfides, hydropolysulfides or polysulfides of sulfides
    • C07C319/20Preparation of thiols, sulfides, hydropolysulfides or polysulfides of sulfides by reactions not involving the formation of sulfide groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C323/00Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups
    • C07C323/10Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and singly-bound oxygen atoms bound to the same carbon skeleton
    • C07C323/18Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and singly-bound oxygen atoms bound to the same carbon skeleton having the sulfur atom of at least one of the thio groups bound to a carbon atom of a six-membered aromatic ring of the carbon skeleton
    • C07C323/21Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and singly-bound oxygen atoms bound to the same carbon skeleton having the sulfur atom of at least one of the thio groups bound to a carbon atom of a six-membered aromatic ring of the carbon skeleton with the sulfur atom of the thio group bound to a carbon atom of a six-membered aromatic ring being part of a condensed ring system
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/484Insulated gate field-effect transistors [IGFETs] characterised by the channel regions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Thin Film Transistor (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

新穎的雜環式化合物,其中間體的製造方法,及其用途
本發明係關於新穎雜環式化合物與可進行該合成的中間體之新穎製造方法以及用途。更詳細為本發明係關於作為有機半導體等可利用的新穎[1]苯並噻吩並[3,2-b][1]苯並噻吩衍生物與可進行該合成之中間體的有效性製造方法。又,有關利用該化合物的電場效果電晶體。
電場效果電晶體係為一般於基板上具有半導體層(半導體膜)、源電極、汲電極、及對於這些電極介著絕緣體層設有閘電極等之元件,作為理論電路元件使用於積體電路以外,亦可廣泛地使用於開關電源元件等。上述半導體層於一般情況下藉由半導體材料所形成。現在於電場效果電晶體,使用將矽為中心的無機系半導體材料,特別為使用非晶質矽,於玻璃等基板上製作半導體層之薄膜電晶體利用於顯示器等。使用如此無機系半導體材料時,電場效果電晶體的製造時必須以高溫或真空進行處理,因為必須要高額設備投資或製造上的大量能量,故製造成本變的非常高。又,這些電場效果電晶體的製造時必須曝曬於高溫下,故作為基板之薄膜或如塑質的耐熱性未充分的材料難以被利用。因此,例如具有可折曲等之柔軟性的素材難作為基板而被利用,其應用範圍受到限制。
另一方面,使用有機半導體材料之電場效果電晶體的 研究、開發正盛行者。藉由使用有機材料,無須在高溫下處理,可在低溫製程下製造,所使用的基板材料範圍變大。
其結果,近年來可實現比過去更具可撓性,且輕量不易被破壞的電場效果電晶體之製作。又,對於電場效果電晶體之製作步驟,有時採用溶解半導體材料之溶液的塗佈、濺射等之印刷等手法,可在低成分下製造大面積之電場效果電晶體。又,作為有機半導體材料用之化合物,可選擇種種化合物,活化該特性之至今尚未表現之功能受到期待。
將有機化合物作為半導體材料使用的例子,至今已有各種檢討,例如已知並五苯、噻吩或利用這些寡聚物或聚合物者可作為具有電洞輸送特性之材料(參照專利文獻1及專利文獻2)。並五苯表示5個苯環以直線狀進行縮合的並苯系芳香族烴基,已有報告指出將此作為半導體材料使用的電場效果電晶體已顯示可與現在被實用化之非晶質矽匹敵之電荷移動度(載體移動度)。然而使用並五苯之電場效果電晶體會有因環境引起劣化的安定性問題。又,於使用噻吩系化合物之情況時亦具有同樣問題點,於現狀皆非實用性高之材料。近年來,在大氣中顯示安定且高載體移動度之二萘酚並[2,3-b:2’,3’-f]噻吩並[3,2-b]噻吩(DNTT)等開發逐漸受到注目(參照專利文獻3及非專利文獻1)。然而,欲將這些化合物使用於有機EL等顯示器之應用時,需要更高載體移動度,由耐久性之觀點來看,亦要求高 品質.高性能有機半導體材料之開發。
作為具有取代基之DNTT衍生物的先行文獻可舉出專利文獻3、4及專利文獻5,作為具體例所舉出的取代基,可舉出甲基、己基、烷氧基、取代炔基,作為實施例所舉出者為,作為DNTT衍生物之取代基僅為甲基與取代炔基,皆僅顯示與不具有取代基之DNTT同等或此以下的半導體特性。
其後,文獻6中記載構造式1之二萘酚並[2,3-b:2’,3’-f]噻吩並[3,2-b]噻吩(Alkyl DNTT,式中,Alkyl表示C5~C16的烷基)在、上述點上具有比過去有機半導體材料更優良之特性。使用該化合物之電場效果電晶體元件對於元件製作時之基板或絕緣膜之狀態不會造成影響(或與基板處理之有無無相關),半導體特性可非常提高,且於元件製作時進行熱處理下,可顯著提高該效果。
如上述,作為這些有機半導體進行有益DNTT衍生物之開發,至今的製造法中,特別在噻吩並噻吩構造部分之構築法上有制約,因為難以製造在第2,9-位以外的位置上具有選擇性取代基的DNTT,有關DNTT的衍生物之開發較為遲。作為DNTT衍生物的製造方法,已知以下的主要 3種方法。
第一種方法為將具有以噻吩並噻吩構造為主的四溴噻吩並噻吩作為啟始物質而構築之方法(專利文獻5)。但該製造法中若為無取代之苯甲醛即沒問題,但使用具有取代基之苯甲醛時,有著所得之DNTT衍生物成為種種位置上具有取代基之混合物的缺點。
第2種方法為由乙烯衍生物製造之方法,大部分的DNTT衍生物可藉由該方法進行合成(非專利文獻1、專利文獻3、專利文獻6、專利文獻7、專利文獻8)。
例如,專利文獻6揭示專利文獻3及非專利文獻1所揭示的公知方法之由2-烷基-6-萘甲醛(A)得到2-烷基-7-甲基硫-6-萘甲醛(B),將此縮合後得到1,2-雙(2-烷基-7-甲基硫-6-萘基)伸乙基(C)。又,進一步藉由閉環得到目的化合物之2,9-二烷基二萘酚並[2,3-b:2’,3’-f]噻吩並[3,2-b]噻吩(2,9-二烷基DNTT)。
換言之,專利文獻6為於化合物(A)將二甲基硫化物 進行反應後得到化合物(B),藉由馬克馬林偶合得到縮合物(C)。進一步於氯仿中使用縮合物(C)與碘進行閉環反應後得到目的物之DNTT衍生物。且,與第1例相異,其為僅得到目的位置上具有取代基之DNTT衍生物的製造方法。
但,作為該合成流程之缺點,化合物(A)的SMe化反應之選擇性為60%程度,即於萘的第7位上如目的僅有60%程度的SMe化產生,對於剩餘的約30%,第5位進行SMe化,原料回收成為約10%。作為結果,化合物(B)的分離與純化變的極為困難可舉出。
由此可知,Alkyl取代之化合物(B)無法在工業上以便宜方法之再結晶等進行分離,必須為使用高價設備投資等之吸附劑(矽膠等)的管柱純化,有著無法便宜地製造之缺點。且,該取代基為芳基時分離變的更難,難進行製造。又,在反應式(2)之反應中,於原料制約上,無法製造於第3,10位具有取代基之DNTT。即使具有如此問題點,欲有效率地生成化合物(C),於過去必須選擇將化合物(B)作為原料之方法。
如此在DNTT衍生物的開發上雖為重要化合物(C),但已知該原料之化合物(B)的合成與分離在工業上難以便宜方式進行,此為造成具有取代基之DNTT的開發遲緩的原因。因此,可容易地推測若進行賦予化合物(C)的中間體化合物之開發,隨之具有取代基之DNTT的衍生物之開發亦可大大地前進,如此中間體製造方法之開發成為必要。
作為第3種方法,可舉出由乙炔衍生物(E)之古典合成法(專利文獻7)。此合成方法之情況為,原料的Br體(D)之工業上製法尚未確立,因此有著乙炔衍生物(E)的合成成為困難之問題(專利文獻7、專利文獻9)。又,在乙炔衍生物之碘的環化反應上,一般亦有產率低之問題(專利文獻7中產率為10%~40%程度)。
[先行技術文獻] [專利文獻]
[專利文獻1]特開2001-94107號公報
[專利文獻2]特開平6-177380號公報
[專利文獻3]WO2008/050726公報
[專利文獻4]特開2008-10541號公報
[專利文獻5]KR2008100982公報
[專利文獻6]WO2010/098372公報
[專利文獻7]特開2009-196975號公報
[專利文獻8]WO2009/009790公報
[專利文獻9]特開2010-258214號公報
[非專利文獻]
[非專利文獻1]J.Am.Chem.Soc.,Vol.129,2224-2225(2007)
本發明為提供具有作為顯示優良載體移動度之實用半導體的特性,新穎雜環式化合物與該合成可成為可能之中間體的新穎製造方法,由該化合物所成的半導體材料、以及具有由該化合物所形成之有機半導體薄膜之電場效果電晶體及該製造方法為目的。
本發明者們欲解決上述課題而進行詳細檢討結果,成功地開發出新穎雜環式化合物與該合成成為可能之中間體的新穎製造方法,發現該新穎雜環式化合物具有作為顯示優良載體移動度之實用半導體的特性,可提供由該化合物 所成之半導體材料、以及具有藉由該化合物所形成之有機半導體薄膜的電場效果電晶體及其製造方法而完成本發明。
即,本發明的其中一態樣中,
[1]下述式(1)所示雜環式化合物。
(式中,R1及R2表示氫原子、C2-C16烷基,或芳基中任一,但R1各獨立表示C2-C16烷基或芳基時,R2表示氫原子或各獨立表示芳基,R1表示氫原子時,R2各獨立表示芳基)
[2]式(1)中,R1各獨立為直鏈的C5-C12烷基,R2為氫原子之[1]所記載的雜環式化合物。
[3]式(1)中,R1各獨立為具有苯基、萘基、聯苯基中任一骨架的芳基,且R2為氫原子之[1]所記載的雜環式化合物。
[4]式(1)中,R1為氫原子,且R2各獨立表示具有苯基、萘基、聯苯基中任一骨架之芳基的[1]所記載的雜環式化合物。
[5]式(1)中,R1各獨立為選自苯基、4-烷基苯基、1-萘基 、及聯苯基的芳基,且R2為氫原子之[3]所記載的雜環式化合物。
[6]式(1)中,R1為氫原子,且R2各獨立為選自苯基、4-烷基苯基、1-萘基、及聯苯基的芳基之[4]所記載的雜環式化合物。
[7]其為式(2)所示雜環式化合物的製造中之式(4)所示中間體化合物的製造方法,其中含有反應式(3)所示化合物與二甲基二硫化物者之中間體化合物(4)的製造方法。
(式中,R3表示取代基)。
(式中,R3、R4表示取代基)。
[8]其為式(2)所示雜環式化合物的製造中,式(6)所示中間體化合物的製造方法,含有反應式(4)所示化合物與式(5)所示錫化合物者之中間體化合物(6)的製造方法。
(式中,R3、R4、R5表示取代基)。
[9]含有[1]至[6]中任一所記載之式(1)所示雜環式化合物的一種或複數種之有機半導體材料。
[10]含有[1]至[6]中任一所記載之式(1)所示雜環式化合物之一種或複數種之半導體裝置製作用墨水。
[11]含有[1]至[6]中任一所記載之式(1)所示雜環式化合物的一種或複數種之有機薄膜。
[12][11]所記載的有機薄膜藉由蒸鍍法而形成之有機薄膜的製造方法。
[13][11]所記載的有機薄膜藉由塗佈[10]所記載的半導體裝置製作用墨水而形成之有機薄膜的製造方法。
[14]具有[11]所記載的有機薄膜之電場效果電晶體。
[15]其為底部接觸型之[14]所記載的電場效果電晶體。
[16]其為頂部接觸型之[14]所記載的電場效果電晶體。
[17]含有將[1]至[6]中任一所記載之式(1)所示雜環式化合 物的一種或複數種所成的有機薄膜藉由[12]或[13]所記載的方法而形成於基板上之步驟的電場效果電晶體的製造方法。
將式(1)所示新穎雜環化合物所成的有機薄膜作為半導體層的電場效果電晶體與過去由有機半導體材料所成者做比較,可提供具有顯示較高載體移動度或較高耐久性等優良半導體特性之電場效果電晶體。且,可在工業上製造這些化合物之關鍵中間體的新穎製造方法係為高選擇性反應,至今無法獲得之於第2,9位具有芳基之DNTT或於第3,10位具有取代基之DNTT的製造成為可能,可提供一種可利用在工業上的製造方法。
[實施發明之形態]
詳細說明本發明。本發明係關於將特定有機化合物作為半導體材料使用的有機系電場效果電晶體,作為半導體材料使用前述式(1)所示化合物,形成半導體層者。於此首先對上述式(1)的化合物做說明。
式(1)中,R1及R2表示氫原子、C2-C16烷基,或芳基中任一,但R1各獨立表示C2-C16烷基或芳基時,R2表示氫原子或各獨立表示芳基,R1表示氫原子時,R2各獨立表示芳基。
作為R1的烷基可舉出直鏈、分支鏈或環狀之烷基, 一般該碳數為2~16,較佳為4~14,更佳為6~12。
於此作為直鏈烷基的具體例,可舉出乙基、n-丙基、n-丁基、n-戊基、n-己基、n-庚基、n-辛基、n-壬基、n-癸基、n-十一烷基、n-十二烷基、n-十三烷基、n-十四烷基、n-十五烷基、n-十六烷基等。
作為分支鏈烷基的具體例,可舉出i-丙基、i-丁基、i-戊基、i-己基、i-癸基等C3-C16的飽和分支烷基。
作為環狀烷基的具體例,可舉出環己基、環戊基、金剛烷基、降莰烷基等C5-C16的環烷基。
作為C2-C16烷基,飽和比不飽和烷基還佳,無取代者比具有取代基者為佳。其中C4-C14的飽和直鏈烷基為佳,較佳為C6-C12的飽和直鏈烷基,更佳為n-己基、n-辛基、n-癸基、n-十二烷基。
作為R1及R2的芳基表示苯基、聯苯基、此基、2-甲基苯基、3-甲基苯基、4-甲基苯基、4-丁基苯基、4-己基苯基、4-辛基苯基、4-癸基苯基、二甲苯基、均三甲苯基、枯烯基、苯甲基、苯基乙基、α-甲基苯甲基、三苯基甲基、苯乙烯基、肉桂基、聯苯基、1-萘基、2-萘基、蒽基、菲基等芳香族烴基、2-噻吩基等雜環基,這些基可具有取代基,可為相同或相異。
較佳為具有苯基、萘基、聯苯基骨架之芳基,更佳為苯基、4-甲基苯基、4-己基苯基、4-辛基苯基、4-癸基苯基、1-萘基、2-萘基、聯苯基。
R1皆表示C2-C16烷基或芳基時,R2表示氫原子或各 獨立表示芳基,R1表示氫原子時,R2各獨立表示芳基。R1、R2各可相同或相異,但R1、R2各獨立表示相同時為佳。此為R1為左右相同,R2為左右相同為佳,但表示R1、R2非必相同的意思。
式(1)所示化合物可藉由後述製造式(2)的方法合成。
式(1)所示化合物的純化方法並無特別限定,可採用再結晶、管柱層析法、及真空昇華純化等公知方法。又視必要可組合這些方法。
表1表示式(1)所示化合物的具體例。n表示正,i表示異,s表示第二,t表示第三,cy表示環。又,Ph表示苯基,Tolyl表示甲苯基,PhPh表示聯苯基,Nap表示萘基,2-thienyl表示2-噻吩基。且空白表示氫。
以下,對於本發明的化合物的製造方法做詳細敘述。本發明的化合物之製造方法係為新穎的製造方法,該製造方法並非僅可製造出新穎化合物之式(1)的化合物,亦可非常高效率下製造R1為氫原子,R2為烷基((C2-C16)烷基等)之如DNTT的公知DNTT。本發明的反應式如以下所示。以下以反應式(4)、(5)、(6)之順序進行說明。
首先對於化合物(2)的啟始物質之化合物(3)、及反應式(4)的生成物之化合物(4)做說明。
對於化合物(3)及化合物(4),R3表示取代基,但作為取代基可舉出氫原子、烷基、芳基、醚基、硫醚基、酯基、醯基、胺基、氰基、硝基等,這些基可具有取代基,可為相同或相異。
其中,所謂R3中之烷基為直鏈、分支鏈或環狀C1~C16的烷基,芳基與化合物(1)的R1及R2之芳基相同意思。
所謂醚基為,具有與氧原子結合之碳數1~16的烷基之烷氧基,或與氧原子結合之芳基(芳氧基)。
所謂硫醚基為,具有與硫原子結合之碳數1~16的烷基之硫烷氧基,或與硫原子結合之芳基(芳基硫基)。
作為R3,較佳為C1-C16的飽和直鏈烷基、及具有苯基、萘基、聯苯基骨架之芳基。更佳為C4-C14的飽和直鏈烷基、苯基、4-甲基苯基、聯苯基。
對於化合物(3)及化合物(4),R4表示氫原子;烷基;芳基;烷基SO2基;芳基SO2基;1個以上之氫原子由氟原子取代之烷基、芳基、烷基SO2基或芳基SO2基。
其中烷基表示R3的烷基相同意思。芳基表示與R1及R2的芳基相同意思。所謂烷基SO2基、芳基SO2基為各由上述烷基所取代之SO2基、由上述芳基所取代之SO2基。
所謂1個以上之氫原子由氟原子之烷基表示烷基的至少1個氫原子由氟原子所取代之烷基,亦含有所有氫原子由氟原子取代之烷基(以下將此等總稱為氟化烷基)。作為較佳氟化烷基為所有氫原子皆取代為氟原子的烷基,可舉出三氟甲基、全氟己基(n-C6F13)。
所謂1個以上的氫原子由氟原子所取代之芳基為,取代基R3的芳基之至少1個氫原子由氟原子取代之芳基,亦含有所有氫原子皆被氟原子取代之芳基(以下將此等總稱為氟化芳基)。作為較佳氟化芳基可舉出4-三氟甲基苯基(4-CF3C6H5)、所有氫原子皆由氟原子取代的芳基之五氟苯基(C6F5)。
所謂1個以上之氫原子由氟原子取代的烷基SO2基為氟化烷基SO2基。作為較佳氟化烷基SO2基為所有氫原子皆由氟原子取代之烷基SO2基,可舉出三氟甲基SO2基、全氟己基SO2基。
所謂1個以上氫原子由氟原子所取代之芳基SO2基為上述氟化芳基SO2基。作為較佳氟化芳基SO2可舉出4-氟苯基SO2基、4-三氟甲基苯基SO2基、所有氫原子皆由氟原子取代的芳基SO2基之五氟苯基SO2基。
作為R4,較佳可舉出甲基、三氟甲基、全氟己基、4-三氟甲基苯基、所有氫原子皆由氟原子取代的芳基之五氟苯基、三氟甲基SO2基、全氟己基SO2基、4-三氟甲基苯基SO2基、所有氫原子皆由氟原子取代的芳基之五氟苯基SO2基。作為較佳的R4,可舉出甲基、三氟甲基SO2基。
其次對反應式(4)做說明。作為啟始物質之下述式(3)的化合物大多為可入手的販賣品,或可由實施例所示方法容易合成者。
以下雖記載啟始原料的式(3)所示化合物之具體例化合物(3)-01~化合物(3)-85,但本發明並未受限於此等。簡便上將R3如下述記載為R31及R32。且空欄表示氫原子。
以下雖記載中間體之化合物(4)的具體例(化合物(4)-01~化合物(4)-85),但本發明並未限定於此等。且空欄表示氫原子。
其次對於反應式(4)做詳細說明。該反應係為新穎反應,在第2位的位置上與氧原子結合之啟始物質的化合物(3)之第3位上高選擇性地使用二甲基二硫化物(Me2S2)使其進行SMe化者為特徵。欲開發該反應,發明者們對於欲進行藉由第3位氫的脫離而進行金屬化之鹼(烷基金屬試藥、烷基土類金屬試藥)、反應溶劑、反應溫度、操作順序進行檢討,發現於化合物(3)第3位上高選擇性地使用二甲基二硫化物進行SMe化之製造方法。
作為使用反應之鹼,以使用鹼金屬試藥之鋰試藥、鈉試藥、鉀試藥;以使用烷基土類金屬試藥之鎂試藥、鈣試藥為佳。具體可使用甲基鋰、n-丁基鋰、t-丁基鋰、苯基鋰、甲基鎂氯化物、丁基鎂氯化物等。特佳為使用穩定且強力之鹼的丁基鋰。
鹼之使用量對於1mol的化合物(3)而言,以0.5mol以上10mol以下為佳。在於鹼中添加化合物(3)的反應溶液,可進一步添加上述使用量之範圍的鹼。藉由將此鹼以2段階方式添加下可順利地使化合物(3)的第3位氫原子脫離。
又,對於本實施之形態中的化合物之製造方法,與烷基金屬試藥同時可添加以鋰試藥之安定化等為目的之鹼性 化合物(添加劑)。作為鹼性化合物,可舉出N,N,N’-三甲基伸乙基二胺、二甲基胺、二異丙基胺、嗎啉等。
反應在氬氣環境下、氮氣取代下、乾燥氬氣環境下、乾燥氮氣流下等惰性氣體環境下進行為佳。
作為使上述化合物(3)與鹼進行反應時之反應溫度,以-100℃~30℃的範圍為佳,以-80℃~10℃為更佳。
該反應中可使用任意溶劑,但以醚系溶劑、脂肪族系溶劑,或芳香族系溶劑為佳。又,這些溶劑以使用於使水分乾燥之溶劑為佳。
作為使用於反應之醚系溶劑,可舉出四氫呋喃(THF)、二乙基醚、二甲氧基乙烷、二噁烷等。作為脂肪族系溶劑可舉出n-戊烷、n-己烷、n-庚烷等,作為芳香族系溶劑可舉出甲苯、二甲苯等。
使用於反應之二甲基二硫化物的使用量,對於1mol化合物(3)而言,0.5mol以上10mol以下者為佳。
純化上述所得之化合物(4)時,純化方法並無特別限定,可配合化合物之物性使用公知純化方法。具體可藉由再結晶、管柱層析法等進行純化。
過去對於第2位具有氧原子之化合物(3)的第3位上高選擇性地使用二甲基二硫化物而進行SMe化反應為未知。欲開發該反應,發明者們對於如上述使用於藉由脫離第3位氫而進行金屬化的鹼(烷基金屬試藥、烷基土類金屬試藥)、反應溶劑、反應溫度、操作順序進行檢討結果,發現使用二甲基二硫化物可於化合物(3)的第3位上進行高選 擇性SMe化的製造方法,即發現化合物(4)的高選擇性製造方法。
繼續對於化合物(4)、進行反應之化合物(5)、與反應式(5)的生成物之化合物(6)做說明。
對於錫化合物之式(5),R5表示烷基。作為烷基可舉出直鏈或分支鏈的烷基,該碳數為1~8,較佳為1~4,更佳為4。其中,作為直鏈烷基之具體例,可舉出甲基、乙基、n-丙基、n-丁基、n-戊基、n-己基等。作為分支鏈烷基之具體例,可舉出i-丙基、i-丁基、t-丁基、i-戊基、i-己基等C3-C6的飽和分支烷基。較佳為容易獲得之n-丁基。
以下雖記載式(5)所示錫化合物的具體例,但本發明並未限定於此等。
對於化合物(6),R3(R31及R32)與化合物(3)的R3(R31及R32)相同意思。
以下雖記載化合物(6)的具體例(化合物(6)-01~化合物(6)-71),但本發明並未限定於此等。且,對於化合物(6)之R3,簡易上以R31及R32記載。
過去技術中,對於合成化合物(6)時的原料醛體(前述反應式2之化合物(B))之合成感到非常辛苦(專利文獻3及 非專利文獻1),但本發明中,與第3位具有MeS基之2分子化合物(4)的第2位之氧原子的脫離之同時反應化合物(5),可高選擇性上製造化合物(6)(參照反應式(5))。一般而言,反應式(5)的反應為作為觸媒使用Pd系化合物,但Pd容易對硫化合物起作用,而馬上失去活性。因此,本發明者們對於如上述將化合物(4)的氧有效率地脫離,與化合物(5)進行反應之觸媒、反應溶劑、反應溫度、操作順序進行檢討,發現由2分子化合物(4)可高選擇的.高產率下製造化合物(6)之方法。
以下對於反應式(5)做詳細說明。
其中,化合物(4)的R4於進行反應式(5)的反應時,視必要可變換為最適取代基後使用。即,如實施例所示可適時地變換。
進行反應式(5)的反應時的化合物(4)與化合物(5)之混合比,對於1mol的化合物(5)而言,使用化合物(4)1.8mol~2.5mol為佳。以1.95mol~2.10mol進行為較佳,以1.95mol~2.05mol進行為更佳。
又,最初以約1:1的比率使化合物(4)與化合物(5)進 行反應,其後加入具有與最初加入的化合物(4)相異的其他取代基之化合物(4)後使其反應後,亦可合成非對稱之中間體(6)。
作為使用於反應之觸媒,若為Pd或Ni系觸媒之任一種即可使用,但至少1個觸媒為含有選自具有選自三-tert-丁基膦、三金剛烷基膦、1,3-雙(2,4,6-三甲基苯基)咪唑鎓氯化物、1,3-雙(2,6-二異丙基苯基)咪唑鎓氯化物、1,3-二金剛烷基咪唑鎓氯化物,或這些混合物;金屬Pd、Pd/C(含水或非含水)、雙(三苯基膦)鈀二氯化物(Pd(PPh3)2Cl2)、乙酸鈀(II)(Pd(OAc)2)、肆(三苯基膦)鈀(Pd(PPh3)4)、肆(三苯基膦)鎳(Ni(PPh3)4)、鎳(II)乙醯丙酮酸鹽Ni(acac)2、二氯(2,2’-聯吡啶)鎳、二溴雙(三苯基膦)鎳(Ni(PPh3)2Br2)、雙(二苯基膦)丙烷鎳二氯化物(Ni((dppp)Cl2)、雙(二苯基膦)乙烷鎳二氯化物Ni(dppe)Cl2、及這些混合物群之配體的鎳及鈀觸媒所成群之至少1種化合物即可。作為較佳觸媒,可舉出Pd/C(含水或非含水)、Pd(PPh3)2Cl2、Pd(PPh3)4,較佳可舉出Pd(PPh3)2Cl2、Pd(PPh3)4
觸媒之使用量對於1mol之化合物(4)而言,以0.001mol以上0.5mol以下為佳。於添加化合物(4)、化合物(5)與觸媒之反應溶液中,亦可進一步以上述使用量範圍下添加觸媒。觸媒因硫等作用而使觸媒失去活性時,可藉由將觸媒分為2段階以上進行添加,可抑制反應率之降低,而可有效果地發揮。
作為反應化合物(4)與化合物(5)時的反應溫度,一般 在-10℃~200℃下進行。較佳在40℃~180℃,更佳在80℃~150℃進行。
進行反應時,可在氬氣環境下、氮取代下、乾燥氬氣環境下、乾燥氮氣流下等惰性氣體環境下進行為佳。
反應時,可使用或不使用溶劑。若為一般使用於有機合成之溶劑即可。例如可舉出氯苯、o-二氯苯、溴苯、硝苯、甲苯、二甲苯等芳香族化合物,或n-己烷、n-庚烷、n-戊烷等飽和脂肪族烴基;環己烷、環庚烷、環戊烷等脂環式烴基、n-丙基溴化物、n-丁基氯化物、n-丁基溴化物、二氯甲烷、二溴甲烷、二氯丙烷、二溴丙烷、二氯乙烷、二溴乙烷、二氯丙烷、二溴丙烷、二氯丁烷、氯仿、溴仿、四氯化碳、四溴化碳、三氯乙烷、四氯乙烷、五氯乙烷等飽和脂肪族鹵化烴基;氯環己烷、氯環戊烷、溴環戊烷等鹵化環狀烴基;乙酸乙酯、乙酸丙酯、乙酸丁酯、丙酸甲酯、丙酸乙酯、丙酸丙酯、丙酸丁酯、丁酸甲酯、丁酸乙酯、丁酸丙酯、丁酸丁酯等酯;丙酮、甲基乙基酮、甲基異丁基酮等酮。這些溶劑可單獨或混合2種以上使用。
又,作為反應溶劑,若使用至少一種沸點100℃以上的高沸點溶劑時,可大幅度提高反應速度,或進一步增加反應之選擇性故較佳。
所謂沸點100℃以上之高沸點溶劑為醯胺類(N-甲基-2-吡咯烷酮(以下、NMP)、N,N-二甲基甲醯胺(以下簡稱為DMF)、N,N-二甲基乙醯胺(以下、DMAc));甘醇類(乙二 醇、丙二醇、聚乙二醇);及亞碸類(二甲基亞碸(以下簡稱為DMSO))為佳,較佳為N-甲基-2-吡咯烷酮、N,N-二甲基甲醯胺、N,N-二甲基乙醯胺。
純化所得之化合物(6)時,純化方法並無特別限定,可配合化合物(6)之物性,使用公知純化方法。具體而言可藉由再結晶、管柱層析法等進行純化。
其次,對於反應式(6)做說明。將由反應式(5)之反應所得之化合物(6)進行環化所得之化合物(2)的具體例如以下所示,但本發明並未限定於彼等。且,化合物(2)-01~53與化合物(1)-01~53為相同化合物,以下當記載該化合物時表示使用該化合物(1)-01~53。藉由本發明的製造方法,以在非專利文獻1、專利文獻3、專利文獻6、專利文獻7、專利文獻8中詳細記載的同樣方法,可由化合物(6)以高產率下產生化合物(2)。對於化合物(2)亦簡易地將R3以R31及R32記載。
本發明的電場效果電晶體(Field effect transistor,以下有時簡稱為FET)具有銜接於半導體之2個電極(源電極 及汲電極),於該電極間所流動的電流以輸入稱為閘電極的另一電極的電壓進行控制者。
一般而言,電場效果電晶體大多使用閘電極以絕緣膜被絕緣之構造(Metal-Insulator-Semiconductor;MIS構造)。於絕緣膜使用金屬氧化膜者稱為MOS構造。其他介著肖特基障壁而形成閘電極的構造,即亦具有MES構造,但使用有機半導體材料之FET的情況為大多使用MIS構造。
以下使用圖對於本發明的有機系電場效果電晶體做詳細說明,但本發明並未限定於這些構造。
圖1表示本發明的電場效果電晶體(元件)之幾項態樣例。各例中,1表示源電極,2表示半導體層,3表示汲電極,4表示絕緣體層,5表示閘電極,6表示基板。且各層或電極之配置可依據元件之用途而做適宜選擇。A~D為於與基板之並行方向有電流流入,故稱為橫型FET。A稱為底部接觸式構造,B稱為頂部接觸式構造。又,C為於有機單晶之FET製作上多被使用的構造,於半導體上設有源及汲電極、絕緣體層,且於其上形成閘電極。D為稱為頂部&底部接觸型電晶體之構造。E為具有縱型構造之FET,即靜電感應電晶體(SIT)之模式圖。該SIT因電流的流動會擴充成平面狀,故可一次大量地移動載體。又,因源電極與汲電極以縱方向配置,故可使電極間距離變小故應答高速。因此,流入大電流進行高速開關電源等用途上為較佳適用性。且,圖1中的E中雖無記載基板,一般情 況下,於圖1E中之1及3所示源及汲電極的外側上設有基板。
對於各態樣例之各構成要素做說明。
基板6必須可保持於其上所形成的各層不會剝離。基板6為例如可使用於樹脂板或薄膜、紙、玻璃、石英、陶瓷等絕緣性材料;金屬或合金等導電性基板上藉由塗佈等形成絕緣體層之物質;由樹脂與無機材料等各種組合所成的材料等。作為可使用之樹脂薄膜的例子,例如可舉出聚對苯二甲酸乙二酯、聚萘二甲酸、聚醚碸、聚醯胺、聚醯亞胺、聚碳酸酯、纖維素三乙酸酯、聚醚醯亞胺等。使用樹脂薄膜或紙時,可使元件賦予可撓性,具有可撓性且成為輕量時可提高實用性。作為基板的厚度,一般為1μm~10mm,較佳為5μm~5mm。
源電極1、汲電極3、閘電極5為使用具有導電性的材料。例如可使用鉑、金、銀、鋁、鉻、鎢、鉭、鎳、鈷、銅、鐵、鉛、錫、鈦、銦、鈀、鉬、鎂、鈣、鋇、鋰、鉀、鈉等金屬及含有彼等的合金;InO2、ZnO2、SnO2、ITO等導電性氧化物;聚苯胺、聚吡咯、聚噻吩、聚乙炔、聚對苯(polyparaphenylene)、伸乙烯基、聚二乙炔等導電性高分子化合物;矽、鍺、砷化鎵等半導體;碳黑、富勒烯(Fullerene)、奈米碳管、石墨等碳材料等。又,亦可對於導電性高分子化合物或半導體進行摻合。作為此時的摻合物,例如可舉出具有鹽酸、硫酸等無機酸;磺酸等酸性官能基之有機酸;PF5、AsF5、FeCl3等路易氏酸;碘等 鹵素原子;鋰、鈉、鉀等金屬原子等。硼、磷、砷等亦可作為矽等無機半導體用之摻合物使用。又,亦可使用於上述摻合物中分散碳黑或金屬粒子等導電性複合材料。
源及汲電極為與半導體物質直接接觸,具有將電子或電洞等電荷注入於半導體內的作用。欲降低該接觸電阻,使電荷的注入變的容易,必須將半導體材料之HOMO準位或LUMO準位的功函數與電極配合。欲成為降低歐姆的接觸電阻之元件,藉由進行由氧化鉬或氧化鎢等材料所成的注入改善層之插入或對金屬電極的摻合、由單分子膜進行表面修飾等可改善半導體特性。
源與汲電極間的距離(通道長)係為決定元件特性之重要因素。該通道長一般為0.1~300μm,較佳為0.5~100μm。通道長若過短所取出之電流量會增加,若相反時會產生漏電等,故必須校正通道長。源與汲電極間的寬度(通道幅)一般為10~5000μm,較佳為100~2000μm。又該通道幅為藉由使電極構造成為梳子型構造等時,可形成更長通道幅,藉由必要電流量或元件構造等,使其成為適當長度的通道幅即可。
對於源電極及汲電極的各構造(形)進行說明。源與汲電極之構造各可相同或相異。具有底部接觸式構造時,一般使用光微影術法製作各電極,形成直方體為佳。電極的長度可與前述通道幅相同。電極的寬度雖無特別規定,但可將電氣的特性安定化的範圍下,欲縮小元件面積時以較短為佳。電極的寬度一般為0.1~1000μm,較佳為0.5~ 100μm。電極的厚度一般為0.1~1000nm,較佳為1~500nm,更佳為5~200nm。於各電極1、3、5雖連結配線,但配線亦與電極使用幾乎一樣的材料製作。
作為絕緣體層4使用具有絕緣性之材料。例如使用聚對二甲苯、聚丙烯酸酯、聚甲基甲基丙烯酸酯、聚苯乙烯、聚乙烯酚、聚醯胺、聚醯亞胺、聚碳酸酯、聚酯、聚乙烯醇、聚乙酸乙烯酯、聚胺酯、聚碸、環氧基樹脂、酚樹脂、氟系樹脂等聚合物及組合這些之共聚物;二氧化矽、氧化鋁、氧化鈦、氧化鉭等金屬氧化物;SrTiO3、BaTiO3等強介電性金屬氧化物;氮化矽、氮化鋁等氮化物;硫化物;氟化物等介電質;或者分散這些介電質粒子的聚合物等。絕緣體層4之膜厚依材料而不同,一般為0.1nm~100μm,較佳為0.5nm~50μm,更佳為1nm~10μm。
本發明中之半導體層2係使用由前述化合物(1)所示雜環式化合物的一種或複數種所成的有機薄膜。該有機薄膜中之該化合物可為混合物,但於有機薄膜中化合物(1)一般為含有50質量%以上,較佳為含有80質量%以上,更佳為含有95質量%以上。
對於本發明之電場效果電晶體,雖使用將化合物(1)的至少1種雜環式化合物作為半導體材料的有機薄膜,但實質上作為半導體材料,與使用化合物(1)的複數雜環式化合物之混合物比較,使用將單一雜環式化合物作為半導體材料者為佳。
但,欲賦予電場效果電晶體之特性改善或其他特性, 視必要可混合其他有機半導體材料或各種添加劑。
上述添加劑對於半導體材料的總量,一般可在0.01~10質量%,較佳為0.05~5質量%,更佳為0.1~3質量%之範圍下添加。
又,對於半導體層,亦可由複數有機薄膜層所構成,但以單層構造者為較佳。
半導體層2的膜厚在不會失去必要功能之範圍下越薄越佳。對於如A、B及D所示的橫型電場效果電晶體,若為所定以上的膜厚即可,元件的特性並非取決於膜厚,另一方面膜厚若變厚時,大多會造成漏電的增加。欲顯示必要功能的半導體層之膜厚一般為1nm~10μm,較佳為5nm~5μm,更佳為10nm~3μm。
本發明的電場效果電晶體中,例如於基板與絕緣膜層或絕緣膜層與半導體層之間或元件外面,視必要可設置其他層。例如於半導體層上直接或介著其他層,形成保護層時,可使濕度等外氣影響變小,又亦具有可提高元件之ON/OFF比等可安定化電氣特性的利點。
作為保護層的材料雖無特別限定,例如可使用環氧基樹脂、聚甲基甲基丙烯酸酯等丙烯酸樹脂、聚胺酯、聚醯亞胺、聚乙烯醇、氟樹脂、聚烯烴等各種樹脂所成膜;氧化矽、氧化鋁、氮化矽等無機氧化膜;及氮化膜等介電質所成膜等為佳,特別以氧或水分透過率或吸水率較小的樹脂(聚合物)為佳。近年來亦可使用於有機EL顯示器用被開發之保護材料。保護層的膜厚視該目的可選擇任意膜厚 ,但一般為100nm~1mm。
又,藉由於層合半導體層的基板或絕緣體層上等預先進行表面處理,可提高半導體材料之製膜性或元件特性。特別為有機半導體材料會藉由分子配向等膜狀態而改變特性。例如藉由調整基板表面之親水性/疏水性程度,可改良於其上成膜的膜之膜質。特別為有機半導體材料藉由分子配向等膜狀態可大大改變其特性。因此,藉由對於基板等的表面處理,基板等與其後成膜的半導體層之界面部分的分子配向受到控制,又因基板或絕緣體層上的陷阱部位被減低,載體移動度等特性受到改良。
所謂陷阱部位表示存在於未處理基板的例如如羥基的官能基,存在如此官能基時,電子會被該官能基吸引,作為該結果會降低載體移動度。因此,降低陷阱部位與載體移動度等特性改良皆為有效的情況為多。
作為使用於如上述特性改良之基板處理,例如可舉出藉由六甲基二矽胺烷、環己烯、辛基三氯矽烷、十八烷基三氯矽烷等進行疏水化處理;藉由鹽酸或硫酸、乙酸等之酸處理;藉由氫氧化鈉、氫氧化鉀、氫氧化鈣、氨等之鹼處理;臭氧處理;氟化處理;氧或氬等電漿處理;Langmuir Blodgett膜形成處理;其他絕緣體或半導體之薄膜形成處理;機械處理;電暈放電等電氣處理;又利用纖維等擦拭處理等。然而,使用本發明的化合物之電解效果電晶體為具有對該基板或絕緣體層上材質所造成的影響較為小為特徵。藉此無須進行花費成本的處理或表面狀態之調整等, 可使用更廣範圍的材料,而變的泛用性或成本降低。
對於這些態樣,例如作為設置絕緣膜層或半導體層等各層的方法,例如可適宜地採用真空蒸鍍法、濺鍍法、塗佈法、印刷法、溶膠凝膠法等。
其次,對於有關本發明之電場效果電晶體的製造方法,將圖1的態樣例A所示底部接觸型電場效果電晶體(FET)作為例子,依據圖2說明如下。
該製造方法亦同樣適用於前述其他態樣的電場效果電晶體等。
(基板及基板處理)
本發明的電場效果電晶體為藉由於基板6上設置必要各種層或電極而製作(參照圖2(1))。作為基板,可使用上述說明者。於該基板上可進行前述表面處理等。基板6之厚度,以不會妨礙的必要功能的範圍者即可,較薄為佳。雖依材料而不同,一般為1μm~10mm,較佳為5μm~5mm。又,視必要於基板亦可具有電極功能。
(閘電極之形成)
於基板6上形成閘電極5(圖2(2)參照)。作為電極材料可使用上述說明者。作為電極膜之成膜方法,可使用各種方法,例如可採用真空蒸鍍法、濺鍍法、塗佈法、熱轉印法、印刷法、溶膠凝膠法等。成膜時或成膜後欲成為所望形狀,視必要要進行製圖。作為製圖方法,可使用各種 方法,例如可舉出組合光阻製圖與蝕刻的光微影術法等。又,亦可利用濺射印刷、螢幕印刷、柯式印刷、凸版印刷等印刷法、微接觸式印刷法等軟光微影術之手法、及組合這些複數方法的手法進行製圖。閘電極5之膜厚雖依材料不同而不同,但一般為0.1nm~10μm,較佳為0.5nm~5μm,更佳為1nm~1μm。又,兼具閘電極與基板之情況為上述膜厚可較大。
(絕緣體層之形成)
於閘電極5上形成絕緣體層4(參照圖2(3))。作為絕緣體材料,使用上述所說明者。絕緣體層4的形成可使用各種方法。例如可舉出旋轉塗佈、噴霧塗佈、浸漬塗佈、澆鑄、棒塗佈、抹刀塗佈等塗佈法、螢幕印刷、柯式印刷、濺射等印刷法、真空蒸鍍法、分子線外延成長法、離子束蒸鍍法、離子噴射法、濺鍍法、大氣壓電漿法、CVD法等乾式製程法。其他可採用溶膠凝膠法或如於鋁上之氧化鋁膜處理(alumite)、於矽上之二氧化矽的於金屬上形成氧化物膜之方法等。
且,對於絕緣體層與半導體層之銜接部分,因可良好地定向在兩層界面構成半導體的分子,例如化合物(1)之雜環式化合物的分子,於絕緣體層亦可進行所定表面處理。表面處理的手法可使用與基板表面處理相同者。絕緣體層4的膜厚以不損害該功能之範圍下以較薄者為佳。一般為0.1nm~100μm,較佳為0.5nm~50μm,更佳為5nm~10μm 。
(源電極及汲電極的形成)
源電極1及汲電極3之形成方法等可依據閘電極5的製造方法而形成(參照圖2(4))。
(半導體層的形成)
於絕緣體層4、源電極1及汲電極3上將由化合物(1)所示雜環式化合物的一種或複數種所成的有機薄膜作為半導體層而形成。作為半導體材料如上述說明,使用一般含有總量的50質量%的化合物(1)之雜環式化合物的一種或複數種混合物之有機材料。成膜半導體層時可使用各種方法。可分為濺鍍法、CVD法、分子線外延成長法、真空蒸鍍法等在真空製程之形成方法;浸漬塗佈法、塑模塗佈、輥塗佈法、棒塗佈法、旋轉塗佈法等塗佈法、濺射法、螢幕印刷法、柯式印刷法、微接觸印刷法等在溶液製程之形成方法。
且,將本發明的化合物(1)之雜環式化合物作為半導體材料使用而形成由半導體層所成的有機薄膜時,藉由真空製程成膜之有機薄膜作為半導體層形成之方法為佳,真空蒸鍍法為更佳。亦可藉由溶液製程進行製膜,可採用成本便宜的印刷方法。
對於將有機材料藉由真空製程進行成膜得到有機薄膜之方法做說明。
本發明中,將前述有機材料在坩堝或金屬船中,真空下進行加熱,將經蒸發之有機材料於基板(絕緣體層、源電極及汲電極之露出部)使其附著(蒸鍍)的方法,即採用真空蒸鍍法為佳。此時,真空度一般為1.0×10-1Pa以下,較佳為1.0×10-3Pa以下。又,藉由蒸鍍時之基板溫度,有機半導體膜以及電場效果電晶體的特性有時會產生變化,故必須小心翼翼地選擇基板溫度。蒸鍍時之基板溫度一般為0~200℃,較佳為10~150℃,更佳為15~120℃,進一步更佳為25~100℃。
又,蒸鍍速度一般為0.001nm/秒~10nm/秒,較佳為0.01nm/秒~1nm/秒。由有機材料所成的有機半導體層之膜厚一般為1nm~10μm,較佳為5nm~5μm,更佳為10nm~3μm。
且,取代欲形成半導體層之有機材料經使其加熱、蒸發後附著於基板的蒸鍍法,亦可使用將經加速的氬等離子於材料標靶使其衝突後打出材料原子後附著於基板的濺鍍法。
本發明中之半導體材料為有機化合物,因其為比較低分子化合物,可使用如此真空製程為佳。如此真空製程中,必須為稍高價設備,但有著可得到成膜性良好且均勻的膜之優點。
另一方面,本發明中亦可使用溶液製程,即可使用塗佈法。對於此方法進行說明。本發明中含有化合物(1)之雜環式化合物的半導體材料可於有機溶劑中溶解或分散,藉 由溶液製程得到實用半導體特性。藉由塗佈法之製造方法因無須使製造時的環境成為真空或高溫狀態,故可將大面積之電場效果電晶體在低成本下實現而有利。
首先,藉由將化合物(1)的雜環式化合物溶解或分散於溶劑,調製出半導體裝置製作用之墨水。作為此時的溶劑為可溶解或分散化合物,若可成膜於基板上即可並無特別限定。作為溶劑以有機溶劑為佳,具體可使用氯仿、二氯甲烷、二氯乙烷等鹵化烴基系溶劑;甲醇、乙醇、異丙醇、丁醇等醇系溶劑;八氟戊醇、五氟丙醇等氟化醇系溶劑;乙酸乙酯、乙酸丁酯、安息香酸乙酯、碳酸二乙醇等酯系溶劑;甲苯、己基苯、二甲苯、三甲苯、氯苯、二氯苯、甲氧基苯、氯萘、甲基萘、四氫萘等芳香族烴基系溶劑;丙酮、甲基乙基酮、甲基異丁基酮、環戊酮、環己酮等酮系溶劑;二甲基甲醯胺、二甲基乙醯胺、N-甲基吡咯烷酮等醯胺系溶劑;四氫呋喃、二異丁基醚、二苯基醚、等醚系溶劑;辛烷、癸烷、十氫化萘、環己烷等烴基系溶劑等。這些可單獨或混合後使用。
又,欲提高半導體層的成膜性或後述之摻合等亦可混合添加劑或其他半導體材料。
作為這些添加劑,可舉出導電性、半導體性、絕緣性高分子化合物或低分子化合物、摻合物、分散劑、界面活性劑、塗平劑、表面張力調整劑等各所要求功能之種種物質。
墨水中之化合物(1)的雜環式化合物或彼等混合物之總 量濃度雖依溶劑種類或所製作的半導體層之膜厚而相異,一般為0.001%~50%程度,較佳為0.01%~20%程度。
使用墨水時,將含有化合物(1)的雜環式化合物等之半導體材料等溶解或分散於上述溶劑中,視必要進行加熱溶解處理。將進一步所得之溶液使用濾器等進行過濾,藉由除去雜質等固體成分,得到半導體裝置製作用墨水。使用如此墨水時,可見到半導體層之成膜性提高,於製造半導體層上為佳。
將如上述所調製的半導體元件製作用墨水塗佈於基板(絕緣體層、源電極及汲電極的露出部)。作為塗佈方法,可採用澆鑄、旋轉塗佈、浸漬塗佈、抹刀塗佈、環棒塗佈、噴霧塗佈等塗佈法或濺射印刷、螢幕印刷、柯式印刷、凸版印刷等印刷法、微接觸式印刷法等軟光微影術之手法等,進一步可採用組合複數種這些手法的方法。
且作為與塗佈方法類似的方法,可採用將藉由於水面上滴入上述墨水後所製作的半導體層之單分子膜移至基板上並層合的蘭慕爾-布羅吉(Langmuir-Blodgett)法,或可採用將液晶或熔液狀態的材料以2片基板夾持,以毛管現象導入基板間的方法等。
藉由該方法所製作的有機半導體層之膜厚,在不損害功能之範圍下,較薄者為佳。膜厚若過大時,有著漏電變大的顧慮。有機半導體層的膜厚,一般為1nm~10μm,較佳為5nm~5μm,更佳為10nm~3μm。
如此所形成的半導體層(參照圖2(5)),可藉由後處理 而進一步改良其特性。例如,藉由熱處理可達到半導體特性的提高或安定化。此原因被考慮為藉由熱處理可緩和成膜時所產生的膜中彎曲、或減低針孔(pine hole)等,進而可控制膜中之配列.配向等理由。本發明的電場效果電晶體在製作時進行該熱處理時可有效地提高特性。本熱處理為形成半導體層後,藉由加熱基板而進行。熱處理之溫度並無特別限定,一般為室溫~200℃程度,對於此時的熱處理時間並無特別限定,一般為1分鐘~24小時。此時的環境可為大氣中亦可為氮或氬等惰性氣體環境下。
又,做為其他半導體層之後處理方法,藉由與氧或氫等氧化性或者還原性氣體,或氧化性或者還原性液體等之處理,亦可引發藉由氧化或還原之特性變化。此大多在例如膜中載體密度的增加或減少之目的下利用。
又,對於稱為摻合之手法,藉由添加微量元素、原子團、分子、高分子於半導體層,可使半導體層特性起變化。例如可摻合氧、氫、鹽酸、硫酸、磺酸等酸;PF5、AsF5、FeCl3等路易氏酸;碘等鹵素原子;鈉、鉀等金屬原子等。此可藉由對於半導體層與彼等氣體接觸,或浸漬於溶液中,或進行電化學性摻合處理後達成。這些摻合即使不在半導體層製作後,亦可在半導體材料的合成時添加,又對於使用半導體元件製作用墨水製作半導體層的製程中,可於該墨水中添加,或進一步例如在形成專利文獻2所揭示的前驅體薄膜之步驟段階等時添加。又,於形成半導體層的材料中,添加在蒸鍍時的摻合所使用的材料並進 行共蒸鍍,或於製作半導體層時之周圍環境進行混合(在存在摻合材料的環境下製作半導體層),亦可進一步將離子在真空中加速並於膜起撞擊而摻合。
這些摻合效果可舉出藉由增加或減少載體密度之電傳導度變化、載體之極性變化(p型、n型)、費米能階(Fermi level)之變化等。如此摻合特別在使用矽等無機系材料的半導體元件中被利用。
(保護層)
在有機半導體層上形成保護層7時,可使外氣的影響至最小限度,又有者使有機電場效果電晶體的電氣特性安定化之利點(參照圖2(6))。作為保護層材料可使用前述者。
保護層7的膜厚可視目的而採用任意膜厚,一般為100nm~1mm。
在成膜保護層時,可採用各種方法,但保護層由樹脂所成時,例如可採用將樹脂溶液塗佈後使其乾燥做成樹脂膜之方法;塗佈或蒸鍍樹脂單體後進行聚合的方法等。可進一步在成膜後進行交聯處理。若保護層由無機物所成時,例如亦可使用濺鍍法、蒸鍍法等在真空製程之形成方法或在溶膠凝膠法等溶液製程之形成方法。
對於本發明的電場效果電晶體,於有機半導體層上以外,於各層之間視必要可設置保護層。這些層有時可達成有機電場效果電晶體之電特性之安定化的目的。
本發明為使用有機材料作為半導體材料,故可在較低溫製程下製造。因此,在高溫於進一步條件下無法使用的塑質板、塑質薄膜等可撓性材質亦可作為基板使用。其結果使在輕量且柔軟性優良而不易破壞的元件之製造成為可能,可作為顯示器的主動矩陣(active matrix)之開關電源元件等利用。作為顯示器,例如可舉出液晶顯示器、高分子分散型液晶顯示器、電氣泳動型顯示器、EL顯示器、電致變色型顯示器、粒子回轉型顯示器等。
本發明的電場效果電晶體亦可作為記憶電路元件、訊息驅動電路元件、信號處理回路元件等數位元件及類比訊號元件利用。且藉由組合這些可使IC卡或IC標示的製作成為可能。且本發明的電場效果電晶體會藉由化學物質等外部刺激而使特性產生變化,故亦可作為FET中心利用。
電場效果電晶體之動作特性係由半導體層的載體移動度、電導度、絕緣體層的靜電容量、元件的構成(源.汲電極間距離及幅、絕緣體層的膜厚等)等決定。作為使用於電場效果電晶體之半導體材料,形成半導體層時的載體移動度越高越佳。本發明中之化合物(1)的雜環式化合物具有優良成膜性。且並五苯衍生物等在大氣中會因大氣中含有水分等而產生分解等,其為不穩定且難以處理的化合物,但將本發明的化合物(1)之雜環式化合物作為半導體材料使用時,有著半導體層之製作後亦穩定性高且壽命長的優點。又,具有由化合物(1)之雜環式化合物所形成的半導體層之電晶體,因具有較低閾值電壓,故在實際使用上,驅動 電壓變低,消費電力與過去相比更降低,成為更可省能量化者,例如於使用充電型電池時,對於被要求使用更長時間的驅動的攜帶型顯示器等之使用上為有效。又因閾值電壓變低,能量消費會減低,且藉由閾值電壓之降低,由電極對半導體膜之電荷注入障壁被減低,使得半導體元件及具有此之半導體裝置自體的耐久性提高之效果受到期待。
[實施例]
以下舉出實施例對本發明做更詳細說明,但本發明並未受到彼等例子的限定。實施例中若「份」位特別指定則表示「質量份」,又「%」表示「質量%」。又反應溫度若無特別說明下皆表示反應系內之內溫。
由合成例所得之各種化合物,視必要藉由進行mp(熔點)、NMR(1H,13C)、IR(紅外吸收光譜)、MS(質量分析光譜)、元素分析之各種測定來決定構造式。測定機器如以下所示。
mp:柳本微量熔點測定裝置MP-S3
NMR:JEOL Lambda 400 spectrometer
IR:島津傅立葉變換紅外分光光度計IR Prestige-21
MS光譜:Shimadzu QP-5050A
元素分析:Parkin Elmer2400 CHN型元素分析計
首先對於化合物的合成進行詳細說明。
實施例1 6-n-癸基-2-甲氧基萘化合物(化合物(3)-64)的合成 (實施例1-1):2-癸醯基-6-甲氧基萘的合成
在氮氣環境下,將可容易由試藥公司獲得之2-甲氧基萘(64g,0.41mol)以分子篩(molecular sieve)3A溶解於經乾燥的硝基甲烷(150ml)溶解,在冰浴下加入氯化鋁(80g,0.60mol)。繼續在冰浴下滴入氯化癸醯基(92ml,0.45mol),在室溫下進行5小時攪拌後,將水(100ml)在冰浴下滴入。將反應液以二氯甲烷(200ml×4)萃取,將有機層以水(100ml×3)洗淨。將有機層以無水硫酸鎂乾燥、過濾後,將溶劑減壓下餾去。將所得之黃色固體藉由以己烷進行再結晶,得到2-癸醯基-6-甲氧基萘(102g,82%)的白色固體。
1H-NMR(270 MHz,CDCl3)δ0.88(t,2H,J=6.5 Hz),1.18-1.49(br,16H),1.78(m,2H),3.07(t,2H,J=7.4 Hz),3.95(s,3H),7.16(d,1H,J=2.6 Hz),7.20(dd,1H,J=8.9Hz,2.3 Hz),7.77(d,1H,J=8.6 Hz),7.86(d,1H,J=8.9 Hz),8.01(dd,1H,J=8.6 Hz,1.6Hz),8.40(s,1H);EIMS(70 eV)m/z=312(M+)。
(實施例1-2):6-n-癸基-2-羥基萘的合成
在氮氣環境下,將2-癸醯基-6-甲氧基萘(9.4g,30 mmol)、氫氧化鉀(67g,1.2mol)溶解於聯胺一水合物(70ml,1.4mol)、二乙二醇(200ml),進行17小時迴流後,加入水(36ml),在氮氣流下進行蒸餾,餾去過剩量聯胺與水。進一步在氮氣環境下進行41小時迴流。其後,使用冰浴下於反應液中放入冰,一邊冷卻,一邊慢慢加入鹽酸使其成為中性。將反應液以醚(100ml×3)萃取,將有機層以飽和食鹽水(100ml×5)洗淨。將有機層以無水硫酸鎂乾燥、過濾後,將溶劑減壓下餾去。將所得之褐色固體由己烷進行再結晶後得到6-癸基-2-羥基萘(7.3g,90%)的白色固體。
1H-NMR(270 MHz,CDCl3)δ0.88(t,2H,J=6.5 Hz),1.18-1.43(br,17H),1.59-1.75(br,3H),2.72(t,2H,J=7.7 Hz),4.99(s,1H),7.07(dd,1H,J=8.9Hz,2.6 Hz),7.11(d,J=2.3 Hz),7.28(dd,1H,J=8.4 Hz,1.8 Hz),7.53(br,1H),7.60(d,1H,J=8.6 Hz),7.68(d,1H,J=8.9 Hz);EIMS(70 eV)m/z=284(M+)。
(實施例1-3):6-n-癸基-2-甲氧基萘(化合物(3)-64)的合成
在氮氣環境下,將6-n-癸基-2-羥基萘(5.68g,20mmol)與55%NaH(油分散,880mg,20mmol)的THF(200ml)溶液在 室溫下攪拌40分鐘。於混合液加入CH3I(1.48ml,24mmol),再進行12小時加熱迴流。0℃下於混合物加入水(20ml),以食鹽水洗淨。合併有機層並以MgSO4乾燥,以蒸餾器進行濃縮。將濃縮液由甲醇進行再結晶後得到6-n-癸基-2-甲氧基萘(化合物(3)-64)(5.0g,85%)的白色固體。
1H-NMR(270 MHz,CDCl3)δ0.88-1.70(aliphatic),2.72(t,2H,J=7.2 Hz),3.90(s,3H),7.09-7.13(m,2H,),7.29(dd,1H,J=8.2Hz,1.6 Hz),7.53(br,1H),7.64(d,1H,J=2.0 Hz),7.68(d,1H,J=3.3 Hz);EIMS(70 eV)m/z=298(M+)。
實施例2藉由6-n-癸基-2-甲氧基萘(化合物(3)-64)之其他方法進行合成
於可由試藥公司容易入手的6-溴-2-甲氧基萘(2.37g,10mmol)與Ni(dppp)Cl2(271mg,0.5mmol)之THF(10ml)溶液加入n-癸基鎂溴化物之THF溶液(n-癸基溴化物(2.2ml,11mmol)與Mg(292mg,12mmol)之THF(2ml)溶液所調製),將混合物進行19小時的加熱迴流。冷卻後將混合液以水稀釋(10ml),過濾分離未反應之Mg。將過濾之溶液以醚(5ml×3)萃取,合併萃取之有機層(10ml×3),以MgSO4乾燥,以蒸餾器濃縮。將經濃縮者以己烷進行再結晶,得 到6-n-癸基-2-甲氧基萘(化合物(3)-64)之淡黃色固體。
mp 48.6~49.3℃;1H NMR(270 MHz,CDCl3)δ 0.87(t,J=6.7 Hz,3H),1.25-1.32(m,14H),1.67(quint,J=7.7 Hz,2H),2.72(t,J=7.2 Hz,2H),3.90(s,3H),7.09-7.13(m,2H),7.29(dd,J=8.2Hz,1.6 Hz,1H),7.53(brs,1H),7.64(d,J=2.0 Hz,1H),7.68(d,J=3.3 Hz,1H);13C NMR(100 MHz,CDCl3);δ 14.1,22.7,29.4,29.6(×3),31.5,31.9,35.9,55.2,105.6,118.5,126.1,126.0,127.9,128.9,129.1,132.9,138.1,157.0;EIMS(70 eV)m/z=298(M+);Anal.Calcd for C21H30O:C,84.51;H,10.13%。Found:C,84.62;H,10.41%。
實施例3 7-癸基-2-甲氧基萘(化合物(3)-12)的合成
將1-碳烯(1.2g,6.5mmol)、PdCl2(PPh3)2(0.12g,0.16 mmol)、CuI(13mg,0.065mmol)、與三乙基胺(14ml,9.8 mmol)加入7-甲氧基-2-萘基三氟甲烷磺酸酯(1.0g,3.3 mmol)的THF(20ml)溶液。將該溶液在4小時室溫中進行混合後,以水(30ml)稀釋,以稀鹽酸(2M)成為酸性,並以二氯甲烷(30ml×3)萃取。將萃取液以水(100ml×3)洗淨,以MgSO4乾燥。將此濃縮後,藉由管柱層析法(以矽膠、二 氯甲烷展開),得到7-碳烯-1-基-2-甲氧基萘之淡黃色油狀物。將所得之7-碳烯-1-基-2-甲氧基萘(2.8mmol)與10%Pd/C(0.16g)的THF(13ml)放入50ml之圓底燒杯中,在氫氣環境下,一邊以TLC進行反應追蹤,一邊攪拌至反應終了(約12小時)。反應終了後,將觸媒過濾分離並濃縮濾液。將濃縮液藉由管柱層析法(以矽膠、二氯甲烷展開)進行純化後得到7-癸基-2-甲氧基萘(化合物(3)-12)(0.80g,82%)。
mp 29.9~30.8℃;1H NMR(270 MHz,CDCl3)δ0.88(t,J=7.0 Hz,3H),1.27-1.171(m,16H),2.74(t,J=7.7 Hz,2H),3.92(s,3H),7.07(dd,J=9.7,2.4 Hz,1H),7.09(s,1H),7.19(dd,J=8.3,1.7 Hz,1H),7.51(s,1H),7.68(d,J=8.3 Hz,1H),7.70(d,J=9.7 Hz,1H);13C NMR(100 MHz,CDCl3);δ 14.4,23.0,29.6,29.7,29.9,30.2(×2),31.7,32.3,36.5,55.6,105.8,118.1,125.6,125.7,127.8(×2),129.4,135.1,141.4,158.0;EIMS(70 eV)m/z=298(M+);Anal.Calcd for C21H30O:C,84.51;H,10.13%。Found:C,84.48;H,10.44%。
實施例4 7-苯基-2-甲氧基萘(化合物(3)-22)的合成
將磷酸鉀的n水合物(34g,0.16mol)與苯基硼酸(3.7g,30mmol)加入於7-甲氧基-2-萘基三氟甲烷磺酸酯(6.1g,20mmol)之DMF(350ml)溶液。將此以氮氣起泡30分鐘後由氮氣取代,加入PdCl2(PPh)2(0.71g,1mmol),進行80 ℃下加熱4小時。於混合物加入飽和氯化銨水溶液(500ml),過濾分離藉由該操作所析出之結晶,以水(100ml×3)洗淨,以電乾燥機(60℃)乾燥。將粗製物藉由管柱層析法(以矽膠、二氯甲烷展開)進行純化,得到7-苯基-2-甲氧基萘(化合物(3)-22)3.4g)。
產率73%;黃色結晶(己烷再結晶); mp 65.4~66.3℃;1H NMR(400 MHz,CDCl3)δ3.95(s,3H),7.15(dd,J=8.9,2.5 Hz,1H),7.38(tt,J=7.4,1.2 Hz,1H),7.46-7.50(m,2H),7.60(dd,J=8.5,1.6Hz,1H),7.70-7.72(m,2H),7.76(d,J=8.9 Hz,1H),7.84(d,J=8.5 Hz,1H),7.95(d,J=1.6 Hz,1H);13C NMR(100 MHz,CDCl3)δ 55.7,106.5,119.1,123.7,125.1,127.7,127.8,128.5.(×2),129.2,129.5,135.2,139.5,141.7,158.4;EI-MS,m/z=234(M+);Anal.Calcd for C17H14O:C,87.15;H,6.02%。Found:C,87.23;H,6.03%。
實施例5 6-苯基-2-甲氧基萘(化合物(3)-31)的合成
與實施例4之7-苯基-2-甲氧基萘的合成方法之相同操作下,由6-溴-2-甲氧基萘(可由試藥公司容易入手者)與苯基硼酸得到90%產率之目的物的6-苯基-2-甲氧基萘(化合物(3)-31)。
mp 135.4~136.4℃;1H NMR(400 MHz,CDCl3)δ3.95(s,3H),7.17(s,1H),7.19(dd,J=7.9,2.5 Hz,1H),7.38(tt,J=7.4,1.2 Hz,1H),7.45-7.49(m,2H),7.72(dd, J=8.5,1.8 Hz,1H),7.70-7.72(m,2H),7.80(d,J=7.9 Hz,1H),7.82(d,J=7.9 Hz,1H),7.98(d,J=1.8 Hz,1H);EI-MS,m/z=234(M+);Anal.Calcd for C17H14O:C,87.15;H,6.02%。Found:C,86.86;H,5.94%
實施例6 6-甲苯-2-甲氧基萘(化合物(3)-32)的合成
與實施例4之7-苯基-2-甲氧基萘的合成方法之相同操作下,取代7-甲氧基-2-萘基三氟甲烷磺酸酯使用6-溴-2-甲氧基萘(38.9g,0.16mol),取代4-苯基硼酸使用4-甲基苯基硼酸(25.0g,0.21mol),得到6-甲苯-2-甲氧基萘(化合物(3)-32,33.3g,產率82%)。
EI-MS,m/z=248(M+)
實施例7 7-甲苯-2-甲氧基萘(化合物(3)-23)的合成
與實施例4之7-苯基-2-甲氧基萘的合成方法之相同操作下,使用7-甲氧基-2-萘基三氟甲烷磺酸酯(30.63g,0.10mol)與4-甲基苯基硼酸(16.12g,0.12mol),得到7-甲苯-2-甲氧基萘(化合物(3)-23,22.5g,產率96%)。
EI-MS,m/z=248(M+)
實施例8 6-聯苯基-2-甲氧基萘(化合物(3)-33)的合成
與實施例4之7-苯基-2-甲氧基萘的合成方法之相同操作下,取代7-甲氧基-2-萘基三氟甲烷磺酸酯使用6-溴-2-甲氧基萘(22.5g,94.8mmol)與4-聯苯基硼酸(23.48g, 119mmol),得到6-聯苯基-2-甲氧基萘(化合物(3)-33,24.8g,產率84%)。
EI-MS,m/z=310(M+)
實施例9 7-聯苯基-2-甲氧基萘(化合物(3)-24)的合成
與實施例4之7-苯基-2-甲氧基萘的合成方法之相同操作下,使用7-甲氧基-2-萘基三氟甲烷磺酸酯(29.05g,94.8mmol)與4-聯苯基硼酸(23.48g,119mmol),得到7-聯苯基-2-甲氧基萘的合成(化合物(3)-24,21.9g,產率74%)。
EI-MS,m/z=310(M+)
實施例10 7-丁基-2-甲氧基萘(化合物(3)-04)的合成
與實施例3之7-癸基-2-甲氧基萘的合成方法之相同操作下,使用7-甲氧基-2-萘基三氟甲烷磺酸酯(30.63g,0.10mol)與丁炔氣體(東京化成品,100g,大量過剩),進行7-丁炔-1-基-2-甲氧基萘之合成,藉由管柱層析法(以矽膠、甲苯與己烷之混合物進行展開)得到7-丁炔-1-基-2-甲氧基萘的淡黃色油狀物(18.1g,產率56%)。將所得之7-丁炔-1-基-2-甲氧基萘(全量)於甲苯(275ml)加入10%Pd/C(1.83g),氫氣環境下進行接觸還原,藉由管柱層析法(以矽膠、甲苯與己烷之混合物進行展開)得到7-丁基-2-甲氧基萘(化合物(3)-04,17.80g,產率97%)。
EI-MS,m/z=214(M+)
實施例11 7-己基-2-甲氧基萘(化合物(3)-08)的合成
與實施例3之7-癸基-2-甲氧基萘的合成方法之相同操作下,使用7-甲氧基-2-萘基三氟甲烷磺酸酯(30.63g,0.10mol)與1-己炔(10.27g,0.125mol),進行7-己炔-1-基-2-甲氧基萘之合成,藉由管柱層析法(以矽膠、甲苯與己烷之混合物進行展開)得到7-己炔-1-基-2-甲氧基萘的淡黃色油狀物(20.5g,產率86%)。將所得之7-己炔-1-基-2-甲氧基萘(全量)於甲苯(275ml)中加入10%Pd/C(1.83g),氫氣環境下進行接觸還原,藉由管柱層析法(以矽膠、甲苯與己烷之混合物進行展開)得到7-己基-2-甲氧基萘(化合物(3)-08,20.70g,產率99%)。
EI-MS,m/z=242(M+)
實施例12 7-辛基-2-甲氧基萘(化合物(3)-10)的合成
與實施例3之7-癸基-2-甲氧基萘的合成方法之相同操作下,使用7-甲氧基-2-萘基三氟甲烷磺酸酯(30.63g,0.10mol)與1-辛炔(13.78g,0.125mol),進行7-辛炔-1-基-2-甲氧基萘之合成,藉由管柱層析法(以矽膠、甲苯與己烷之混合物進行展開)得到7-辛炔-1-基-2-甲氧基萘之淡黃色油狀物(22.9g,產率86%)。將所得之7-辛炔-1-基-2-甲氧基萘(全量)於甲苯(213ml)中加入10%Pd/C(2.13g),在氫氣環境下進行接觸還原,藉由管柱層析法(以矽膠、甲苯與己烷之混合物進行展開)得到7-辛基-2-甲氧基萘(化合物 (3)-10,24.30g,產率90%)。
EI-MS,m/z=270(M+)
實施例13 7-十二烷基-2-甲氧基萘(化合物(3)-14)的合成
與實施例3之7-癸基-2-甲氧基萘的合成方法之相同操作下,使用7-甲氧基-2-萘基三氟甲烷磺酸酯(30.63g,0.10mol)與1-二碳烯(20.79g,0.125mol),進行7-二碳烯-1-基-2-甲氧基萘之合成,藉由管柱層析法(以矽膠、甲苯與己烷之混合物進行展開)得到7-二碳烯-1-基-2-甲氧基萘之淡黃色油狀物(32.0g,定量)。將所得之7-二碳烯-1-基-2-甲氧基萘(全量)於甲苯(316ml)中加入10%Pd/C(2.11g),在氫氣環境下進行接觸還原,藉由管柱層析法(以矽膠、甲苯與己烷之混合物進行展開)得到7-十二烷基-2-甲氧基萘的合成(化合物(3)-14,31.10g,產率96%)。
EI-MS,m/z=326(M+)
由化合物(3)衍生為化合物(4)的實施例如以下所示。
實施例14 6-n-癸基-3-甲基硫-2-甲氧基萘(化合物(4)-64)的合成
於6-n-癸基-2-甲氧基萘(化合物(3)-64)(12g,40mmol)的THF(100ml)溶液中於-78℃加入1.57Mn-BuLi的己烷溶液(28ml,44mmol),在室溫下進行1小時攪拌。於此在-78℃下加入二甲基二硫化物(4.4ml,48mmol),進行室溫下攪拌18小時。將反應液添加於飽和氯化銨水溶液 (50ml)並以醚(30ml×3)萃取。合併3次萃取所得之萃取液,並以飽和食鹽水(30ml×3)洗淨後,以MgSO4乾燥。以蒸餾器濃縮後得到6-n-癸基-3-甲基硫-2-甲氧基萘(化合物(4)-64)(15.2g,定量)之黃色油狀物。在下一步驟反應中可無須進行進一步純化後使用。
1H NMR(400 MHz,CDCl3)δ0.87(t,J=6.7 Hz,3H),1.25-1.32(m,14H),1.67(quint,J=7.7 Hz,2H),2.72(t,J=7.2 Hz,2H),2.53(s,3H),2.72(t,J=7.8 Hz,2H),3.98(s,3H),7.05(s,1H),7.23(d,J=6.8 Hz,1H),7.40(s,1H),7.48(s,1H),7.62(d,J=8.8 Hz,1H);13C NMR(100 MHz,CDCl3);δ 14.1,14.6,22.7,29.4,29.6(×3),31.5,31.9,36.0,55.8,104.6,122.9,125.0,126.3,127.0,129.4,130.4,138.7,154.0;EIMS(70 eV)m/z=344(M+)。Anal Calcd for C22H32OS:C,76.69;H,9.36%。Found:C,76.83;H,9.66%。
實施例15 7-癸基-3-甲基硫-2-甲氧基萘(化合物(4)-12)的合成
與實施例14之相同方法下,由7-癸基-2-甲氧基萘(化合物(3)-12)與二甲基二硫化物合成7-癸基-3-甲基硫-2-甲氧基萘(化合物(4)-12)(93%的產率,由己烷進行再結晶後得到黃色結晶)。
mp 49.5~50.4℃;1H NMR(500 MHz,CDCl3)δ0.87(t,J=6.8 Hz,3H),1.24-1.69(m,16H),2.53(s,3H),2.72(t, J=7.8 Hz,2H),3.99(s,3H),7.03(s,1H),7.18(d,J=8.4 Hz,1H),7.44(s,1H),7.48(s,1H),7.62(d,J=8.4 Hz,1H);13CNMR(126 MHz,CDCl3);δ 14.5,15.1,23.0,29.7(×2),29.9(×2),30.0,31.7,32.2,36.4 56.2,104.8,123.7,125.4,126.0,126.6,128.0,128.6,132.7,140.6,155.0;EIMS(70 eV)m/z=344(M+)。Anal Calcd for C22H32OS:C,76.69;H,9.36%。Found:C,76.83;H,9.66%。
實施例16 3-甲基硫-7-苯基-2-甲氧基萘(化合物(4)-22)
與實施例14之相同方法下,由7-苯基-2-甲氧基萘(化合物(3)-22)與二甲基二硫化物得到產率77%之3-甲基硫-7-苯基-2-甲氧基萘(化合物(4)-22)(將再結晶以己烷進行後得到黃色結晶)。
mp 149~150℃;1H NMR(400 MHz,CDCl3)δ2.56(s,3H),4.03(s,3H),7.15(s,1H),7.38(tt,J=7.4,1.3 Hz,1H),7.46-7.49(m,2H),7.47(s,1H),7.61(dd,J=8.4,1.8 Hz,1H),7.70-7.72(m,2H),7.77(d,J=8.5 Hz,1H),7.92(d,J=1.8 Hz,1H);EI-MS,m/z=280(M+);Anal.Calcd for C18H16OS:C,77.11;H,5.75%。Found:C,77.05;H,5.64%。
實施例17 3-甲基硫-6-苯基-2-甲氧基萘(化合物(4)-31)的合成
與實施例14之相同方法下,由6-苯基-2-甲氧基萘(化合物(3)-31)與二甲基二硫化物合成3-甲基硫-6-苯基-2- 甲氧基萘(化合物(4)-31)。
mp 124~125.2℃;1H NMR(400 MHz,CDCl3)δ2.56(s,3H),4.02(s,3H),7.11(s,1H),7.36(tt,J=7.4,1.3 Hz,1H),7.45-7.50(m,2H),7.53(s,1H),7.66(dd,J=8.5,1.6 Hz,1H),7.69-7.72(m,2H),7.77(d,J=8.5 Hz,1H),7.92(d,J=1.6 Hz,1H);13C NMR(100 MHz,CDCl3)δ 14.9,56.3,104.8,123.7,124.8,125.4,127.3,127.4,127.6,129.2,129.9,130.6,131.6,137.2,141.6;EI-MS,m/z=280(M+);Anal.Calcd for C18H16OS:C,77.11;H,5.75%。Found:C,77.22;H,5.75%。
實施例18 6-甲苯-3-甲基硫-2-甲氧基萘(化合物(4)-32)的合成
與實施例14之相同方法下,由6-甲苯-2-甲氧基萘(化合物(3)-32,33.3g)與二甲基二硫化物得到6-甲苯-3-甲基硫-2-甲氧基萘(化合物(4)-32,19.22g,49%)。在下一步驟反應中可無須進行進一步純化後使用。
EI-MS,m/z=294(M+)
實施例19 7-甲苯-3-甲基硫-2-甲氧基萘(化合物(4)-23)的合成
與實施例14之相同方法下,由7-甲苯-2-甲氧基萘(化合物(3)-23,22.2g,89mmol)進行7-甲苯-3-甲基硫-2-甲氧基萘的合成,由甲苯進行再結晶後得到化合物(化合物 (4)-23,11.5g,產率44%)。在下一步驟反應中可無須進行進一步純化後使用。
EI-MS,m/z=294(M+)
實施例20 6-聯苯基-3-甲基硫-2-甲氧基萘(化合物(4)-33)的合成
與實施例14之相同方法下,由6-聯苯基-2-甲氧基萘(化合物(3)-33,24.0g)得到6-聯苯基-3-甲基硫-2-甲氧基萘(化合物(4)-33,22.3g,81%)。在下一步驟反應中可無須進行進一步純化後使用。
EI-MS,m/z=356(M+)
實施例21 7-聯苯基-3-甲基硫-2-甲氧基萘(化合物(4)-24)的合成
與實施例14之相同方法下,由7-聯苯基-2-甲氧基萘(化合物(3)-24,21.5g)進行7-聯苯基-3-甲基硫-2-甲氧基萘的合成(化合物(4)-24)的合成,由甲苯經再結晶後得到化合物(4)-23(16.0g,產率65%)。在下一步驟反應中可無須進行進一步純化後使用。
EI-MS,m/z=356(M+)
實施例22 7-丁基-3-甲基硫-2-甲氧基萘(化合物(4)-04)的合成
與實施例14之相同方法下,由7-丁基-2-甲氧基萘( 化合物(3)-04,17.80g,83.1mmol)得到7-丁基-3-甲基硫-2-甲氧基萘(化合物(4)-04,22.3g,產率100%)。在下一步驟反應中可無須進行進一步純化後使用。
EI-MS,m/z=260(M+)
實施例23 7-己基-3-甲基硫-2-甲氧基萘(化合物(4)-08)的合成
與實施例14之相同方法下,由7-己基-2-甲氧基萘(化合物(3)-08)得到7-己基-3-甲基硫-2-甲氧基萘(化合物(4)-08,24.7g,定量)。在下一步驟反應中可無須進行進一步純化後使用。
EI-MS,m/z=288(M+)
實施例24 7-辛基-3-甲基硫-2-甲氧基萘(化合物(4)-10)的合成
與實施例14之相同方法下,由7-辛基-2-甲氧基萘(化合物(3)-10)得到7-辛基-3-甲基硫-2-甲氧基萘的合成(化合物(4)-10,27.09g,產率95%)。在下一步驟反應中可無須進行進一步純化後使用。
EI-MS,m/z=316(M+)
實施例25 7-十二烷基-3-甲基硫-2-甲氧基萘(化合物(4)-14)的合成
與實施例14之相同方法下,由7-十二烷基-2-甲氧基 萘(化合物(3)-14)得到7-十二烷基-3-甲基硫-2-甲氧基萘(化合物(4)-14,34.1g,產率96%)。在下一步驟反應中可無須進行進一步純化後使用。
EI-MS,m/z=372(M+)
化合物(4)的取代基可藉由以下操作,容易地變換為具有其他取代基之衍生物。
合成例1 6-癸基-3-甲基硫-2-(三氟甲烷磺醯氧基)萘(化合物(4)-81)的合成 (合成例1-1):6-癸基-3-甲基硫-2-羥基萘的合成
將6-癸基-3-甲基硫-2-甲氧基萘(化合物(4)-64)(28g,81mmol)之二氯甲烷(50ml)溶液於-78℃下加入於BBr3(ca.2M70ml,140mmol)之二氯甲烷溶液。在室溫下經12小時攪拌後,於混合物中加入冰(約20g)。將反應液以二氯甲烷(20ml×3)進行萃取。合併藉由3次萃取所得之有機層,以飽和食鹽水(30ml×3)洗淨,以MgSO4乾燥並濃縮。將殘渣以管柱層析法(以矽膠、二氯甲烷:己烷=1:1進行展開)進行純化,藉由己烷進行再結晶後得到6-癸基-3-甲基硫-2-羥基萘(18.1g,72%)的白色結晶。
mp 65.5~66.0℃;1H NMR(270 MHz,CDCl3)δ0.88(t, J=6.7 Hz,3H),1.26-1.32(m,14H),1.67(quint,J=7.7 Hz,2H),2.41(s,3H),2.71(t,J=7.3 Hz,2H),6.57(s,1H),7.28(s,1H),7.28(dd,J=8.2 Hz,1.6 Hz,1H),7.48(brs,1H),7.61(d,J=8.6 Hz,1H),7.94(s,1H);13C NMR(100 MHz,CDCl3)δ14.1,19.9,22.7,29.3,29.6(×3),31.4,31.9,35.9,109.1,124.1,125.7,126.3,128.7,129.1,133.5(×2),138.5,152.1;IR(KBr)v3402 cm-1(OH);EIMS(70 eV)m/z=330(M+);Anal.Calcd for C21H30OS:C,76.31;H,9.15%。Found:C,76.34;H,9.23%。
(合成例1-2):6-癸基-3-甲基硫-2-(三氟甲烷磺醯氧基)萘(化合物(4)-81)的合成
於所得之6-癸基-3-甲基硫-2-羥基萘(3.63g,10mmol)與吡啶(2.5ml,30mmol)之二氯甲烷(50ml)溶液中,0℃下加入三氟甲烷磺酸酐(3ml,15mmol)。將此在室溫下攪拌25分鐘後,將混合物以水(20ml)稀釋並加入鹽酸(4M,20ml)。將該混合物以二氯甲烷(30ml×3)進行萃取。合併經3次萃取所得之有機層,以飽和食鹽水(30ml×3)洗淨,以MgSO4進行乾燥並濃縮後得到6-癸基-3-甲基硫-2-(三氟甲烷磺醯氧基)萘(化合物(4)-81)(4.89g,99%)。
mp 42.0~42.9℃;1H NMR(270 MHz,CDCl3)δ0.88(t,J=6.7 Hz,3H),1.26-1.32(m,14H),1.68(quint,J=7.7 Hz,2H),2.59(s,3H),2.76(t,J=7.3 Hz,2H),7.36(dd,J=8.7 Hz,1.8 Hz,1H),7.57(brs,1H),7.63(s,1H),7.68(s,1H),7.72(d,J=8.2 Hz,1H);13C NMR(100 MHz,CDCl3)δ14.1,15.8,22.7,29.3(×2),29.5,29.6(×2),31.2,31.9,36.1,118.7(q,J=319 Hz),119.2,125.2,126.3,127.7,128.4,129.4,130.7,133.0,142.7,144.8;IR(KBr)v1423,1211 cm-1(-O-SO2-);EIMS(70 eV)m/z=462(M+);Anal.Calcd for C22H29F3O3S2:C,57.12;H,6.32%。Found C,56.91;H,6.15%。
合成例2 7-癸基-3-甲基硫-2-(三氟甲烷磺醯氧基)萘(化合物(4)-77)的合成 (合成例2-1):7-癸基-3-甲基硫-2-羥基萘的合成
將在實施例15所合成之7-癸基-3-甲基硫-2-甲氧基萘(化合物(4)-12)以(合成例1-1)的操作下進行脫甲基化,得到7-癸基-3-甲基硫-2-羥基萘。
產率85%;黃色結晶(己烷再結晶);mp 64.4~65.4℃;1H NMR(400 MHz,CDCl3)δ0.88(t,J=6.9 Hz,3H),1.24-1.72(m,16H),2.40(s,3H),2.72(t,J=7.7 Hz,2H),6.63(s,1H),7.17(dd,J=8.4,1.6 Hz,1H),7.45(s,1H),7.63(d,J=8.4 Hz,1H),7.97(s,1H);13C NMR(100 MHz,CDCl3)δ 14.4,20.4,23.0,29.6,29.7,29.9(×2), 31.6,32.2,36.5,109.1,123.4,125.2,125.9,127.5,127.8,134.5,135.8,142.3,153.2;IR(KBr)v3402 cm-1(OH);EI-MS,m/z=330(M+);Anal.Calcd for C21H30OS:C,76.31;H,9.15%。Found:C,76.62;H,9.38%。
(合成例2-2):7-癸基-3-甲基硫-2-(三氟甲烷磺醯氧基)萘(化合物(4)-77)的合成
與(合成例1-2)中之操作相同操作下,將7-癸基-3-甲基硫-2-羥基萘進行三氟甲烷磺醯化,得到7-癸基-3-甲基硫-2-(三氟甲烷磺醯氧基)萘(化合物(4)-77)。
產率94%;黃色結晶(己烷再結晶);mp 149~150℃;1H NMR(400 MHz,CDCl3)δ2.44(s,3H),6.64(s,1H),7.38-7.40(m,2H),7.48(tt,J=7.6,1.8 Hz,1H),7.60(d,J=8.5 Hz,1H),7.70-7.72(m,2H),7.80(dd,J=8.5,2.0 Hz,1H),7.88(s,1H),8.02(d,J=2.0 Hz,1H);13C NMR(126 MHz,CDCl3)δ14.4,16.4,23.0,29.6,29.7,29.8,29.9,30.0,31.5,32.2,36.3,119.0(q,J=320 Hz),119.3,126.6,127.0,127.5,129.7,129.9,131.6,131.8,142.1,125.9;IR(neat)v1427,1213 cm-1(-O-SO2-);EI-MS,m/z=266(M+);Anal.Calcd for C17H14OS:C,76.66;H,5.30%。Found:C,76.97;H,5.14%。
合成例3 3-甲基硫-7-苯基-2-(三氟甲烷磺醯氧基)萘(化合物(4)-72)的合成 (合成例3-1):3-甲基硫-7-苯基-2-萘酚的合成
將由實施例16所合成之3-甲基硫-7-苯基-2-甲氧基萘(化合物(4)-22)在(合成例1-1)之操作進行脫甲基化後得到3-甲基硫-7-苯基-2-萘酚。
產率94%;黃色結晶(己烷再結晶);mp 149~150℃;1H NMR(400 MHz,CDCl3)δ2.44(s,3H),6.64(s,1H),7.38-7.40(m,2H),7.48(tt,J=7.6,1.8 Hz,1H),7.60(d,J=8.5 Hz,1H),7.70-7.72(m,2H),7.80(dd,J=8.5,2.0 Hz,1H),7.88(s,1H),8.02(d,J=2.0 Hz,1H);13C NMR(100 MHz,CDCl3)δ20.2,109.8,124.1,124.7,127.7,127.9,128.5,129.2(×2),134.1,135.7,140.1,141.3,153.4;IR(KBr)v3497 cm-1(OH);EI-MS,m/z=266(M+);Anal.Calcd for C17H14OS:C,76.66;H,5.30%。Found:C,76.97;H,5.14%。
(合成例3-2):3-甲基硫-7-苯基-2-(三氟甲烷磺醯氧基)萘(化合物(4)-72)的合成
與(合成例1-2)中之操作相同操作下,將3-甲基硫-7-苯基-2-萘酚進行三氟甲烷磺醯化後得到3-甲基硫-7-苯基-2-(三氟甲烷磺醯氧基)萘(化合物(4)-72)。
產率98%;黃色結晶(己烷再結晶);mp 87.8~88.7℃;1H NMR(400 MHz,CDCl3)δ2.62(s,3H),7.41(tt,J=7.2,1.2 Hz,1H),7.45-7.52(m,2H),7.68-7.71(m,2H),7.72(s,1H),7.79(s,1H),7.82(dd,J=8.4,1.6 Hz,1H),7.87(d,J=8.4 Hz,1H),8.00(s,1H);13C NMR(126 MHz,CDCl3)δ16.0,119.0(q,J=321 Hz),120.0,125.9,126.8,127.6,127.7,127.8,128.2,129.3,131.3,131.7,132.3,139.8,140.5,146.0;IR(KBr)v1425,1209 cm-1(O-SO2-);EI-MS,m/z=398(M+);Anal.Calcd for C18H13O3S2F3:C,54.26;H,3.29%。Found:C,54.42;H,3.08%。
合成例4 3-甲基硫-6-苯基-2-(三氟甲烷磺醯氧基)萘(化合物(4)-73)的合成 (合成例4-1):3-甲基硫-6-苯基-2-萘酚的合成
將在實施例17所合成之3-甲基硫-6-苯基-2-甲氧基萘(化合物(4)-31)藉由(合成例1-1)之操作進行脫甲基化後得到3-甲基硫-6-苯基-2-萘酚。
產率73%;黃色結晶(己烷再結晶);mp 128.9~129.8℃;1H NMR(400 MHz,CDCl3)δ 2.45(s,3H),6.63(s,1H),7.35(s,1H),7.37(tt,J=7.4,1.3 Hz,1H),7.45-7.50(m,2H),7.72(dd,J=8.5,1.8 Hz,1H),7.76(d,J=8.6 Hz,1H)7.68-7.72(m,2H),7.76(d,J=8.5 Hz,1H),7.92(d,J=1.8 Hz,1H);13C NMR(100 MHz,CDCl3)δ 20.2,109.4,125.2,125.5,127.1,127.3,127.5,127.6,129.2,129.5,134.5(×2),137.0,141.3,153.1;IR(KBr)v3402 cm-1(OH);EI-MS,m/z=266(M+);Anal.Calcd for C17H14OS:C,76.66;H,5.30%。Found:C,76.50;H,5.15%。
(合成例4-2):3-甲基硫-6-苯基-2-(三氟甲烷磺醯氧基)萘(化合物(4)-73)的合成
與(合成例1-2)的操作相同操作下,將3-甲基硫-6-苯基-2-萘酚進行三氟甲烷磺醯化後得到3-甲基硫-6-苯基-2-(三氟甲烷磺醯氧基)萘(化合物(4)-73)。
產率定量的;黃色結晶(己烷再結晶);mp 79.4~80.3℃;1H NMR(400 MHz,CDCl3)δ2.62(s,3H),7.42(tt,J=7.4,1.3Hz,1H),7.43-7.52(m,2H),7.68-7.71(m,2H),7.74(s,1H),7.75(s,1H),7.77(dd,J=8.5,1.8 Hz,1H),7.88(d,J=8.5 Hz,1H),7.99(d,J=1.8 Hz,1H);13C NMR(126 MHz,CDCl3)δ16.0,119.0(q,J=321 Hz),119.6,124.9,126.8,127.1,127.8,128.2,128.7,129.3,130.5,131.9,133.4,140.7,140.9,145.6;IR(KBr)v1429,1225 cm-1(O-SO2-);EI-MS,m/z=398(M+);Anal.Calcd for C18H13O3S2F3:C,54.26;H,3.29%。Found:C,54.17;H,3.01%。
合成例5 6-甲苯-3-甲基硫-2-三氟甲烷磺醯氧基萘(化合物(4)-83)的合成
與(合成例1-1)之相同方法下,將在實施例18所得之6-甲苯-3-甲基硫-2-甲氧基萘(化合物(4)-32,10.5g)以BBr3的二氯甲烷溶液進行脫甲基化後,進行CF3SO2化後得到6-甲苯-3-甲基硫-2-三氟甲烷磺醯氧基萘的合成(化合 物(4)-83,12.5g,產率85%)。
EI-MS,m/z=412(M+)
合成例6 7-甲苯-3-甲基硫-2-三氟甲烷磺醯氧基萘的合成(化合物(4)-82)
與(合成例1-1)之相同方法下,將在實施例19所得之7-甲苯-3-甲基硫-2-甲氧基萘(化合物(4)-23,15.4g)以BBr3的二氯甲烷溶液進行脫甲基化後,進行CF3SO2化後得到7-甲苯-3-甲基硫-2-三氟甲烷磺醯氧基萘(化合物(4)-82,8.62g,產率67%)。
EI-MS,m/z=412(M+)
合成例7 6-聯苯基-3-甲基硫-2-三氟甲烷磺醯氧基萘的合成(化合物(4)-85)
與(合成例1-1)之相同方法下,將在實施例20所得之6-聯苯基-3-甲基硫-2-甲氧基萘的合成(化合物(4)-33,15.4g)以BBr3的二氯甲烷溶液進行脫甲基化後,進行CF3SO2化後得到6-聯苯基-3-甲基硫-2-三氟甲烷磺醯氧基萘(化合物(4)-85,15.9g,產率77%)。
EI-MS,m/z=474(M+)
合成例8 7-聯苯基-3-甲基硫-2-三氟甲烷磺醯氧基萘(化合物(4)-84)的合成
與(合成例1-1)之相同方法下,將在實施例21所得7- 聯苯基-3-甲基硫-2-甲氧基萘的合成(化合物(4)-24,15.8g)以BBr3的二氯甲烷溶液進行脫甲基化後,進行CF3SO2化後得到7-聯苯基-3-甲基硫-2-三氟甲烷磺醯氧基萘(化合物(4)-84,18.9g,產率93%)。
EI-MS,m/z=474(M+)
合成例9 7-丁基-3-甲基硫-2-三氟甲烷磺醯氧基萘(化合物(4)-74)的合成
與(合成例1-1)之相同方法下,將實施例22所得之7-丁基-3-甲基硫-2-甲氧基萘(化合物(4)-04,21.63g,83.1mmol)以BBr3的二氯甲烷溶液進行脫甲基化後,進行CF3SO2化後得到7-丁基-3-甲基硫-2-三氟甲烷磺醯氧基萘(化合物(4)-74,18.5g,產率59%)。
EI-MS,m/z=378(M+)
合成例10 7-己基-3-甲基硫-2-三氟甲烷磺醯氧基萘的合成(化合物(4)-75)
與(合成例1-1)之相同方法下,將在實施例23所得之7-己基-3-甲基硫-2-甲氧基萘(化合物(4)-08,24.7g)以BBr3的二氯甲烷溶液進行脫甲基化後,進行CF3SO2化後得到7-己基-3-甲基硫-2-三氟甲烷磺醯氧基萘(化合物(4)-75,23.5g,產率70%)。
EI-MS,m/z=406(M+)
合成例11 7-辛基-3-甲基硫-2-三氟甲烷磺醯氧基萘(化合物(4)-76)的合成
與(合成例1-1)之相同方法下,將在實施例24所得之7-辛基-3-甲基硫-2-甲氧基萘(化合物(4)-10,27.09g)以BBr3的二氯甲烷溶液進行脫甲基化後,進行CF3SO2化後得到7-辛基-3-甲基硫-2-三氟甲烷磺醯氧基萘(化合物(4)-76,25.00g,產率64%)。
EI-MS,m/z=434(M+)
合成例12 7-十二烷基-3-甲基硫-2-三氟甲烷磺醯氧基萘(化合物(4)-78)的合成
與(合成例1-1)之相同方法下,將在實施例25所得之7-十二烷基-3-甲基硫-2-甲氧基萘的合成(化合物(4)-14,34.1g)以BBr3的二氯甲烷溶液進行脫甲基化後,進行CF3SO2化後得到7-十二烷基-3-甲基硫-2-三氟甲烷磺醯氧基萘(化合物(4)-78,33.7g,產率72%)。
EI-MS,m/z=490(M+)
合成例13 1,2-雙(三丁基甲錫烷基)乙烯(化合物(5)-05)的合成 (合成例13-1):三丁基甲錫烷基乙炔的合成
在氮氣環境下,於18w%Na乙炔的二甲苯、與礦物油的分散油(10ml,8.5g,32mmol)之THF(60ml)溶液下將三丁基錫氯化物(8.6ml,32mmol)在0℃下加入。在室溫下攪拌17小時後,將混合物以己烷萃取並以食鹽水洗淨。混合有機層,並以MgSO4乾燥後進行濃縮。經減壓蒸餾(85~120℃,約0.7mmHg)後得到三丁基甲錫烷基乙炔(3.6g,34%)之無色油狀物質。
1H-NMR(400 MHz,CDCl3)δ0.91(t,9H,J=8.0 Hz),1.02(t,8H,J=8.0 Hz),1.35(sextet,6H,J=8.0 Hz),1.58(quintet,6H,J=8.0 Hz),2.20(s,1H)
(合成例13-2):1,2-雙(三丁基甲錫烷基)乙烯(化合物(5)-05)的合成
在氮氣環境下,於三丁基甲錫烷基乙炔(1.6g,5mmol)、與三丁基錫鹵化物(1.3ml,5mmol)的甲苯(20ml)溶液中加入偶氮二異丁腈(100mg,0.60mmol)。將該混合物在90℃下加熱攪拌17小時,加入水(20ml)後進行濃縮。將混合物以己烷萃取,將萃取液以食鹽水洗淨後得到 1,2-雙(三丁基甲錫烷基)乙烯(化合物(5)-05)(3.0g,90%)之無色油狀物質。
1H-NMR(400 MHz,CDCl3)δ0.86-0.91(multiplet,15H),1.31(sextet,6H,J=8.0Hz),1.50(quintet,6H,J=8.0 Hz),6.88(s,2H)。
實施例26反式-1,2-雙(6-癸基-3-甲基硫萘-2-基)乙烯(化合物(6)-64)的合成
於6-癸基-3-甲基硫-2-(三氟甲烷磺醯氧基)萘(化合物(4)-81)(1.9g,4.1mmol)與1,2-雙(三丁基甲錫烷基)乙烯(化合物(5)-05)的DMF(40ml)溶液中,加入Pd(PPh3)4(322mg,0.29mmol,7mol%)。將混合物在暗處,在90℃下進行17小時加熱攪拌,以水稀釋後以氯仿萃取。將該萃取液以MgSO4乾燥並濃縮。將殘渣藉由管柱層析法(以矽膠、二氯甲烷展開)進行純化,得到反式-1,2-雙(6-癸基-3-甲基硫萘-2-基)乙烯(化合物(6)-64)(2.3g,定量)之黃色固體。
mp 116.8~117.7℃;1H NMR(400 MHz,CDCl3)δ 0.88(t,J=6.4 Hz,6H),1.29-1.70(m,32H),2.58(s,6H),2.75(t,J=8.4 Hz,4H),7.29(dd,J=8.8,1.6 Hz,2H),7.52(s, 2H),7.59(s,2H),7.64(s,2H),7.76(d,J=8.4 Hz,2H),8.06(s,2H);13C NMR(100 MHz,CDCl3)δ14.4,16.8,23.0,24.2,29.6,29.8,29.9,30.0,31.7,32.2,36.5,124.3,125.2,125.3,127.6,128.0,128.4,130.3,133.9,134.5,136.0,141.6;EI-MS m/z=652(M+)。
實施例27反式-1,2-雙(7-癸基-3-甲基硫萘-2-基)乙烯(化合物(6)-12)的合成
與實施例26之相同操作下,由7-癸基-3-甲基硫-2-(三氟甲烷磺醯氧基)萘(化合物(4)-77)及1,2-雙(三丁基甲錫烷基)乙烯(化合物(5)-05)得到反式-1,2-雙(7-癸基-3-甲基硫萘-2-基)乙烯(化合物(6)-12)。
產率98%;黃色結晶(再結晶己烷);mp 87.8-88.7℃;1H NMR(400 MHz,CDCl3)δ 2.62(s,3H),7.41(tt,J=7.2,1.2Hz,1H),7.45-7.52(m,2H),7.68-7.71(m,2H),7.72(s,1H),7.79(s,1H),7.82(dd,J=8.4,1.6 Hz,1H),7.87(d,J=8.4 Hz,1H),8.00(s,1H);EI-MS,m/z=398(M+);Anal.Calcd for C18H13O3S2F3:C,54.26;H,3.29%。Found:C,54.42;H,3.08%。
實施例28反式-1,2-雙(3-甲基硫-7-苯基萘-2-基)乙烯(化合物(6)-22)的合成
與實施例26之相同操作下,由3-甲基硫-7-苯基-2-(三氟甲烷磺醯氧基)萘(化合物(4)-72)與1,2-雙(三丁基甲錫 烷基)乙烯(化合物(5)-05)得到反式-1,2-雙(3-甲基硫-7-苯基萘-2-基)乙烯(化合物(6)-22)。
產率63%;黃色固體(再結晶己烷);mp 87.8~88.7℃;1H NMR(400 MHz,CDCl3)δ2.63(s,6H),7.40(tt,J=7.4,1.2 Hz,2H),7.48-7.52(m,4H),7.68(s,2H),7.73-7.76(m,4H),7.72(s,2H),7.72(d,J=8.2 Hz,2H),7.83(d,J=8.2 Hz,2H),8.08(s,2H),8.17(s,2H);EI-MS,m/z=524(M+);Anal.Calcd for C34H25S2:C,82.40;H,5.38%。Found:C,82.38;H,5.22%。
實施例29反式-1,2-雙(3-甲基硫-6-苯基萘-2-基)乙烯(化合物(6)-31)的合成
與實施例26之相同操作下,由3-甲基硫-6-苯基-2-(三氟甲烷磺醯氧基)萘(化合物(4)-73)與1,2-雙(三丁基甲錫烷基)乙烯(化合物(5)-05)得到反式-1,2-雙(3-甲基硫-6-苯基萘-2-基)乙烯(化合物(6)-31)。
產率57%;黃色固體(再結晶己烷);mp 191.5~192.4℃;1H NMR(400 MHz,CDCl3)δ 2.64(s,6H),7.40(tt,J=7.2,1.6 Hz,2H),7.48-7.53(m,4H),7.71(s,2H),7.72(s,2H),7.73-7.76(m,4H),7.76(d,J=8.7 Hz,2H),7.94(d,J=8.7 Hz,2H),7.97(s,2H),8.14(s,2H);EI-MS,m/z=524(M+);Anal.Calcd for C34H25S2:C,82.40;H,5.38%。Found:C,82.22;H,5.29%。
實施例30反式-1,2-雙(6-甲苯-3-甲基硫萘-2-基)乙烯(化合物(6)-32)的合成
與實施例26之相同操作下,由6-甲苯-3-甲基硫-2-三氟甲烷磺醯氧基萘的合成(化合物(4)-83,12.5g)得到反式-1,2-雙(6-甲苯-3-甲基硫萘-2-基)乙烯(化合物(6)-32,2.0g,產率24%)之淡黃色固體。
EI-MS,m/z=552(M+)
實施例31反式-1,2-雙(7-甲苯-3-甲基硫萘-2-基)乙烯(化合物(6)-23)的合成
與實施例26之相同操作下,由7-甲苯-3-甲基硫-2-三氟甲烷磺醯氧基萘(化合物(4)-82,8.50g)得到反式-1,2-雙(7-甲苯-3-甲基硫萘-2-基)乙烯(化合物(6)-23,3.64g,產率64%)之淡黃色固體。
EI-MS,m/z=552(M+)
實施例32反式-1,2-雙(6-聯苯基-3-甲基硫萘-2-基)乙烯(化合物(6)-33)的合成
與實施例26之相同操作下,由6-聯苯基-3-甲基硫-2-三氟甲烷磺醯氧基萘(化合物(4)-85,15.8g)得到反式-1,2-雙(6-聯苯基-3-甲基硫萘-2-基)乙烯(化合物(6)-33,8.52g,產率76%)之淡黃色固體。
EI-MS,m/z=676(M+)
實施例33反式-1,2-雙(7-聯苯基-3-甲基硫萘-2-基)乙烯(化合物(6)-24)的合成
與實施例26之相同操作下,由7-聯苯基-3-甲基硫-2-三氟甲烷磺醯氧基萘(化合物(4)-84,18.9g)得到反式-1,2-雙(7-聯苯基-3-甲基硫萘-2-基)乙烯(化合物(6)-24,11.56g,產率86%)之淡黃色固體。
EI-MS,m/z=676(M+)
實施例34反式-1,2-雙(7-丁基-3-甲基硫萘-2-基)乙烯(化合物(6)-04)的合成
與實施例26之相同操作下,由7-丁基-3-甲基硫-2-三氟甲烷磺醯氧基萘(化合物(4)-74,18.20g,47.6mmol)得到反式-1,2-雙(7-丁基-3-甲基硫萘-2-基)乙烯(化合物(6)-04)之淡黃色固體(5.32g,產率45%)。
EI-MS,m/z=492(M+)
實施例35反式-1,2-雙(7-己基-3-甲基硫萘-2-基)乙烯(化合物(6)-08)的合成
與實施例26之相同操作下,由7-己基-3-甲基硫-2-三氟甲烷磺醯氧基萘(化合物(4)-75,23.3g)得到反式-1,2-雙(7-己基-3-甲基硫萘-2-基)乙烯(化合物(6)-08)之淡黃色固體(6.73g,產率43%)。
EI-MS,m/z=540(M+)
實施例36反式-1,2-雙(7-辛基-3-甲基硫萘-2-基)乙烯(化合物(6)-10)的合成
與實施例26之相同操作下,由7-辛基-3-甲基硫-2-三氟甲烷磺醯氧基萘(化合物(4)-76,25.00g)得到反式-1,2-雙(7-辛基-3-甲基硫萘-2-基)乙烯(化合物(6)-10)之淡黃色固體(7.46g,產率43%)。
EI-MS,m/z=596(M+)
實施例37反式-1,2-雙(7-十二烷基-3-甲基硫萘-2-基)乙烯(化合物(6)-14)的合成
與實施例26之相同操作下,由7-辛基-3-甲基硫-2-三氟甲烷磺醯氧基萘的合成(化合物(4)-78,27.8g)得到反式-1,2-雙(7-十二烷基-3-甲基硫萘-2-基)乙烯(化合物(6)-14)之淡黃色固體(8.08g,產率40%)。
EI-MS,m/z=709(M+)
合成例14 2,9-十二烷基二萘酚並[2,3-b:2’,3’-f]噻吩並[2,3-b]噻吩(化合物(2)-64)的合成
將反式-1,2-雙(6-癸基-3-甲基硫萘-2-基)乙烯(化合物(6)-64)(38mg,58mmol)與I2(470mg,1.8mmol)之氯仿 (4ml)溶液在室溫下攪拌20小時。濃縮該混合物後,加入甲醇(5ml)與NaHSO3水溶液(5ml)。經過濾分離後,以水、丙酮、甲醇、及甲苯進行洗淨,得到2,9-十二烷基二萘酚並[2,3-b:2’,3’-f]噻吩並[2,3-b]噻吩(化合物(2)-64)(29mg,81%)之黃色固體。
EIMS(70 eV)m/z=620(M+)。
實施例38 3,10-十二烷基二萘酚並[2,3-b:2’,3’-f]噻吩並[2,3-b]噻吩(化合物(1)-12)的合成
與合成例14之相同方法下,由反式-1,2-雙(7-癸基-3-甲基硫萘-2-基)乙烯(化合物(6)-12)得到3,10-十二烷基二萘酚並[2,3-b:2’,3’-f]噻吩並[2,3-b]噻吩(化合物(1)-12)。
產率71%;mp 187~188℃;1H NMR(400 MHz,CDCl3)δ0.88(t,J=6.9 Hz,6H),1.24-1.79(m,32H),2.82(t,J=7.7 Hz,4H),7.38(dd,J=8.5,1.6 Hz,2H),7.79(s,2H),7.86(d,J=8.5 Hz,2H),8.29(s,2H),8.36(s,2H);EI-MS,m/z=620(M+);Anal.Calcd for C42H52S2:C,81.46;H,8.43%。Found:C,81.13;H,8.43%。
實施例39 3,10-二苯基二萘酚並[2,3-b:2’,3’-f]噻吩並[3,2-b]噻吩(3,10-PhDNTT)(化合物(1)-22)的合成
與合成例14之相同方法下,由反式-1,2-雙(3-甲基硫-7-苯基萘-2-基)乙烯(化合物(6)-22)得到3,10-二苯基二萘 酚並[2,3-b:2’,3’-f]噻吩並[3,2-b]噻吩(3,10-PhDNTT)(化合物(1)-22)。
產率85%;mp>300℃;EI-MS,m/z=492(M+);Anal.Calcd for C34H20S2:C,82.89 H,4.09%。Found:C,82.80 H 3.78%。
實施例40 2,9-二苯基二萘酚並[2,3-b:2’,3’-f]噻吩並[3,2-b]噻吩(2,9-PhDNTT)(化合物(1)-31)的合成
與合成例14之相同方法下,由反式-1,2-雙(3-甲基硫-6-苯基萘-2-基)乙烯(化合物(6)-31)得到2,9-二苯基二萘酚並[2,3-b:2’,3’-f]噻吩並[3,2-b]噻吩(2,9-PhDNTT)(化合物(1)-31)。
產率89%;mp>300℃;EI-MS,m/z=492(M+);Anal.Calcd for C34H20S2:C,82.89 H,4.09%。Found:C,82.73 H,3.75%。
實施例41 2,9-二甲苯二萘酚並[2,3-b:2’,3’-f]噻吩並[2,3-b]噻吩(化合物(1)-32)的合成
與合成例14之相同方法下,由反式-1,2-雙(6-甲苯-3-甲基硫萘-2-基)乙烯的合成(化合物(6)-32,2.0g)得到2,9-二甲苯二萘酚並[2,3-b:2’,3’-f]噻吩並[2,3-b]噻吩(化合物(1)-32)的黃色固體(1.78g,95%)。
EI-MS,m/z=520(M+),427,260(M+/2)。
熱分析(吸熱波峰):492℃(使用TG-DTA、氮)
實施例42 3,10-二甲苯二萘酚並[2,3-b:2’,3’-f]噻吩並[2,3-b]噻吩(化合物(1)-23)的合成
與合成例14之相同方法下,由反式-1,2-雙(7-甲苯-3-甲基硫萘-2-基)乙烯(化合物(6)-23,3.60g)得到3,10-二甲苯二萘酚並[2,3-b:2’,3’-f]噻吩並[2,3-b]噻吩(化合物(1)-23)之黃色固體(3.38g,定量)。
EI-MS,m/z=520(M+),427,260(M+/2),172。
熱分析(吸熱波峰):401℃(使用TG-DTA、氮)
實施例43 2,9-二聯苯基二萘酚並[2,3-b:2’,3’-f]噻吩並[2,3-b]噻吩(化合物(1)-33)的合成
與合成例14之相同方法下,將反式-1,2-雙(6-聯苯基-3-甲基硫萘-2-基)乙烯的合成(化合物(6)-33,8.40g)與碘進行反應後得到2,9-二聯苯基二萘酚並[2,3-b:2’,3’-f]噻吩並[2,3-b]噻吩(化合物(1)-33)之黃色固體(7.76g,97%)。
EI-MS,m/z=644(M+),566,490,429,322(M+/2),207。
熱分析(吸熱波峰):至500℃並無明確波峰(使用TG-DTA、氮)
實施例44 3,10-二聯苯基二萘酚並[2,3-b:2’,3’-f]噻吩並[2,3-b]噻吩(化合物(1)-24)的合成
與合成例14之相同方法下,將反式-1,2-雙(7-聯苯基- 3-甲基硫萘-2-基)乙烯(化合物(6)-24,11.50g)與碘進行反應,得到3,10-二聯苯基二萘酚並[2,3-b:2’,3’-f]噻吩並[2,3-b]噻吩(化合物(1)-24)之黃色固體(10.32g,產率94%)。
EI-MS,m/z=644(M+),492,429,322(M+/2),270。
熱分析(吸熱波峰):至500℃並無明確波峰(使用TG-DTA、氮)
實施例45 3,10-二丁基二萘酚並[2,3-b:2’,3’-f]噻吩並[2,3-b]噻吩(化合物(1)-04)的合成
與合成例14之相同方法下,將反式-1,2-雙(7-丁基-3-甲基硫萘-2-基)乙烯(化合物(6)-04)與碘進行反應後得到3,10-二丁基二萘酚並[2,3-b:2’,3’-f]噻吩並[2,3-b]噻吩(化合物(1)-04)之黃色固體(4.66g,定量)。
EI-MS,m/z=452(M+),409,366,184,183。
熱分析(吸熱波峰):185,283℃(使用DSC、氮)
1H NMR(400 MHz,CDCl3)δ0.98(t,6H),δ1.35~1.50(m,4H),δ1.70-1.80(m,4H),δ2.80-2.90(m,4H)δ7.39(dd,2H,ArH)δ7.78(s,2H,ArH)δ7.84(d,2H,ArH)δ8.27(s,2H,ArH)δ8.34(s,2H,ArH)。
實施例46 3,10-二己基二萘酚並[2,3-b:2’,3’-f]噻吩並[2,3-b]噻吩(化合物(1)-08)的合成
與合成例14之相同方法下,將反式-1,2-雙(7-己基-3- 甲基硫萘-2-基)乙烯(化合物(6)-08,6.50g)與碘進行反應後得到3,10-二己基二萘酚並[2,3-b:2’,3’-f]噻吩並[2,3-b]噻吩(化合物(1)-08)之黃色固體(3.18g,產率52%)。
EI-MS,m/z=508(M+),437,366,184,183。
熱分析(吸熱波峰):202,259℃(使用DSC、氮)
1H NMR(400 MHz,CDCl3)δ0.90(t,6H),δ1.20~1.55(m,12H),δ1.70-1.80(m,4H),δ2.75-2.90(m,4H)δ7.39(dd,2H,ArH)δ7.78(s,2H,ArH)δ7.84(d,2H,ArH)δ8.27(s,2H,ArH)δ8.34(s,2H,ArH)。
實施例47 3,10-二辛基二萘酚並[2,3-b:2’,3’-f]噻吩並[2,3-b]噻吩(化合物(1)-10)的合成
與合成例14之相同方法下,將反式-1,2-雙(7-己基-3-甲基硫萘-2-基)乙烯(化合物(6)-10,7.20g,12.1mmol)與碘進行反應,得到3,10-二辛基二萘酚並[2,3-b:2’,3’-f]噻吩並[2,3-b]噻吩(化合物(1)-10)之黃色固體(3.50g,產率51%)。
EI-MS,m/z=564(M+),465,366,184,183。
熱分析(吸熱波峰):177,237℃(使用DSC、氮)
1H NMR(400 MHz,CDCl3)δ0.88(m,6H),δ1.10~1.50(m,20H),δ1.60-1.85(m,4H),δ2.70-2.90(m,4H)δ7.36(m,2H,ArH)δ7.77(s,2H,ArH)δ7.83(d,2H,ArH)δ8.26(s,2H,ArH)δ8.30(s,2H,ArH)。
實施例48 3,10-雙十二烷基二萘酚並[2,3-b:2’,3’-f]噻吩並[2,3-b]噻吩(化合物(1)-14)的合成
與合成例14之相同方法下,將反式-1,2-雙(7-十二烷基-3-甲基硫萘-2-基)乙烯(化合物(6)-14,7.80,11mmol)與碘進行反應後得到3,10-雙十二烷基二萘酚並[2,3-b:2’,3’-f]噻吩並[2,3-b]噻吩(化合物(1)-14)之黃色固體(6.26g,產率84%)。
EI-MS,m/z=677(M+),521,366,184,183。
熱分析(吸熱波峰):100,123,158,212℃(使用DSC、氮)
1H NMR(400 MHz,CDCl3)δ0.80-0.90(m,6H),δ1.20~1.60(m,36H),δ1.70-1.85(m,4H),δ2.80-2.90(m,4H)δ 7.36(dd,2H,ArH)δ7.80(s,2H,ArH)δ7.83(d,2H,ArH)δ 8.26(s,2H,ArH)δ8.34(s,2H,ArH)。
如以上,藉由開發新穎合成法,種種位置上具有取代基之極高性能有機半導體的各種DNTT衍生物(1)、(2)的合成成為可能。特別為作為半導體顯示優良特性,化合物(1)的合成在本發明中初次成功。
其次,對於化合物(1)之新穎雜環式化合物及具有由該化合物所成的半導體層之電場效果電晶體、及具有由藉由本發明所合成之化合物(2)所成的半導體層之電場效果電晶體進行詳細說明。
實施例49(頂部接觸型電場效果電晶體之製作)
將進行十八烷基三氯矽烷處理的附有300nm之SiO2 熱氧化膜的n摻雜矽晶圓(面電阻0.02Ω.cm以下)設置於真空蒸鍍裝置內,排氣至裝置內的真空度到達5.0×10-3Pa以下為止。藉由電阻加熱蒸鍍法,於該電極以基板溫度約60℃之條件下蒸鍍將化合物(1)-12、(1)-22及(1)-31至各50nm的厚度,形成半導體層(2)。其次於該基板上賦予電極製作用蒸鍍罩,設置於真空蒸鍍裝置內,排氣至裝置內的真空度到達1.0×10-4Pa以下為止,藉由電阻加熱蒸鍍法,將金的電極,即源電極(1)及汲電極(3)蒸鍍至40nm的厚度,得到TC(頂部接觸式)型之本發明的電場效果電晶體。
且,對於電場效果電晶體,附有熱氧化膜之n摻雜矽晶圓中之熱氧化膜具有絕緣體層(4)之功能,n摻雜矽晶圓兼具基板(6)及閘電極(5)之功能(參照圖3)。
將所得之電場效果電晶體設置於探針器內,使用半導體參數測定器4155C(Agilent公司製)測定半導體特性。半導體特性為將閘電壓以20V階段下進行掃描至10V~-100V,又將汲電壓掃描至10V~-100V,測定汲電流-汲電壓。其結果觀測電流飽和程度,藉由所得之電壓電流曲線,本元件顯示p型半導體,所算出之載體移動度如表7所示。
比較例1
取代在實施例49所使用的本案實施化合物,使用DNTT(Ref-01)、3,10-DM-DNTT(Ref-02;(1)中之R1為甲基的化合物)及2,9-DM-DNTT(Ref-03;(1)中之R2為甲基的化合物),藉由與實施例49之相同操作,得到TC型電 場效果電晶體。所使用之化合物、及其結果如表7所示。
Ref-02、Ref-03的烷基鏈較為短的DNTT中,僅顯示母核的DNTT(Ref-01)以下之特性。然而,使用本發明的化合物(1)時,該特性為將一般有機物作為半導體使用蒸鍍法的電場效果電晶體時非常高。其為可與工業上實現性低,使用單晶之電場效果電晶體的移動度匹敵之水準,在適用於工業上的真空蒸鍍法中可得到非常高之移動度。本案 之電場效果電晶體因具有高性能,可使用之應用範圍較為廣,其工業上價值變的非常高。
實施例50
使用由實施例38至實施例48所合成之本案化合物及比較例1的Ref-01化合物、化合物(2)-64,藉由HMDS-SAM使用處理基板,將蒸鍍時基板溫度設定為25℃及100℃,L=50μm,W=2000μm以外,與實施例49之相同操作下,製造出TC型電場效果電晶體。將所得之電晶體的半導體特性仿效實施例49進行測定,將所算出之載體移動度表示於表8。由這些結果得知本案化合物作為p型半導體材料時皆顯示較高性能。
實施例51
使用在實施例39所合成之化合物(1)-22及在合成例14所合成之化合物(2)-64,藉由HMDS-SAM使用處理基 板,蒸鍍時基板溫度設定為100℃,L=40μm,W=1500μm以外,藉由與實施例49之相同操作,製作出TC型電場效果電晶體,進行耐熱性試験。測定結果如表9所示。與初期特性(μ=1.66cm2/Vs,Vth=-14V,Ion/off~109)比較,在100℃、及150℃之退火(annealing)後,移動度依舊有~1.6cm2/Vs,維持於初期值與幾乎同程度,Vth為於低電位側進行位移等特性提高。相對於此,在化合物(2)-64,於120℃程度的移動度減半。由這些實験可確認,本發明之化合物(1)-22等由芳基所取代之化合物,具有高熱安定性,亦可實現耐住工業製程之電晶體之製造。
實施例52
將於第2,9位具有C10烷基之DNTT(化合物(2)-64)或第3,10位具有C10烷基之DNTT(化合物(1)-12)等溶解於氯仿所得之飽和溶液的吸收光譜如圖4所示。具有C10之長鏈烷基的DNTT為藉由取代位置之最長吸收波長中的相對強度得知,將2,9-C10-DNTT(化合物(2)-64)設定為1時,結果3,10-C10-DNTT(化合物(1)-12)為3.9,因取代位置的相異可顯示高溶解性。又,甲苯中在60℃之溶解度,於2,9-C10-DNTT(化合物(2)-64)為45mg/L、於3,10-C10- DNTT(化合物(1)-09)為>260mg/L,對於加溫狀態下亦顯示3,10-C10-DNTT(化合物(1)-12)之高溶解性(表10)。
又,由圖4將DNTT作為1時,Ref-02及Ref-03的烷基鏈較短的DNTT之溶解度比各為0.1及0.5,與母核之DNTT(Ref-01,該化合物幾乎不會溶解於溶劑)同樣地幾乎不溶解於溶劑。與第2,9位由烷基取代之化合物(2)-64比較,第3,10位被烷基取代之化合物(1)-12在任一情況下亦顯示高溶劑溶解性,若考慮到溶液製程,得知第3,10位被取代之化合物更加優良。即,若利用該優良溶解性,藉由實用性半導體裝置製作用墨水的製作或塗佈製作之墨水,可製造電場效果電晶體。
實施例53
將進行十八烷基三氯矽烷處理的附有300nm之SiO2熱氧化膜的n摻雜矽晶圓(面電阻0.02Ω.cm以下)設置於真空蒸鍍裝置內,排氣至裝置內之真空度到達5.0×10-3Pa以下。藉由電阻加熱蒸鍍法,於該電極,在基板溫度約100℃之條件下,將化合物(1)-12、2-(64)蒸鍍至各50nm之厚度,形成半導體層(2)。其次於該基板上賦予通道長L 為40μm或190μm之電極製作用蒸鍍罩(通道幅為1500μm),設置於真空蒸鍍裝置內,排氣至裝置內的真空度到達1.0×10-4Pa以下,藉由電阻加熱蒸鍍法,將金的電極,即源電極(1)及汲電極(3)蒸鍍至40nm之厚度,得到TC(頂部接觸式)型之本發明的電場效果電晶體。與實施例49同樣地,歸納測定這些半導體特性之結果於表11。與於第3,10位經取代的化合物(1)-12為L=40μm與L=190μm時做比較,移動度幾乎無降低,顯示通道長依存性較少。另一方面,第2,9位經取代的化合物(2)-64為L=190μm時,雖移動度為6.1cm2/Vs之電晶體,但通道長依存性顯著,在L=40μm下移動度減為一半以下。
製作裝置時,亦預定要求進一步短通道化,此時移動度之降低等特性降低必須受到抑制,故由該結果得知,藉由使用通道長依存性較低的第3,10取代之DNTT,可製造實際裝置上亦可耐住的電場效果電晶體。
由上得知,本發明的化合物(1)之R1各獨立表示C2-C16烷基時,R2為氫原子的化合物(3,10-烷基取代DNTT),比2,9-烷基取代DNTT更具有較高溶解性。又,若R1、R2的至少一方為芳基,與此不被取代之DNTT相比,得知 可大幅度提高耐熱性,作為有機半導體之特性可進一步提高。藉由如此本發明,可得到具有優良特性之有機電場效果電晶體,製作出顯示實用上載體移動度之元件。藉此對於種種裝置製作製程具有適應性,可使用之製程或應用範圍擴大等工業上價值提高。
圖1~圖3中相同號碼表示相同名稱。
1‧‧‧源電極
2‧‧‧半導體層
3‧‧‧汲電極
4‧‧‧絕緣體層
5‧‧‧閘電極
6‧‧‧基板
7‧‧‧保護層
[圖1]圖1表示本發明的電場效果電晶體之一態樣概略圖。
[圖2]圖2表示製造本發明的電場效果電晶體之一態樣的步驟概略圖。
[圖3]圖3表示比較例1所得之本發明的電場效果電晶體概略圖。
[圖4]各DNTT的氯仿溶液之光吸收光譜。

Claims (17)

  1. 一種雜環式化合物,其為下述式(1)所示雜環式化合物; (式中,R1及R2表示氫原子、C2-C16烷基,或芳基中任一,但R1各獨立表示C2-C16烷基或芳基時,R2表示氫原子或各獨立表示芳基,R1表示氫原子時,R2各獨立表示芳基)。
  2. 如申請專利範圍第1項之雜環式化合物,其中式(1)中R1各獨立為直鏈之C5-C12烷基,R2為氫原子。
  3. 如申請專利範圍第1項之雜環式化合物,其中式(1)中R1各獨立為具有苯基、萘基、聯苯基中任一骨架的芳基,且R2為氫原子。
  4. 如申請專利範圍第1項之雜環式化合物,其中式(1)中R1為氫原子,且R2各獨立為具有苯基、萘基、聯苯基中任一骨架的芳基。
  5. 如申請專利範圍第3項之雜環式化合物,其中式(1)中R1各獨立為選自苯基、4-烷基苯基、1-萘基、及聯苯基之芳基,且R2為氫原子。
  6. 如申請專利範圍第4項之雜環式化合物,其中式(1) 中R1為氫原子,且R2各獨立為選自苯基、4-烷基苯基、1-萘基、及聯苯基的芳基。
  7. 一種中間體化合物(4)的製造方法,其為式(2)所示雜環式化合物的製造中之式(4)所示中間體化合物的製造方法,其特徵為含有反應式(3)所示化合物與二甲基二硫化物者; (式中,R3表示氫原子、烷基、芳基、醚基、硫醚基、酯基、醯基、胺基、氰基或硝基,這些基可具有取代基,可為相同或相異) (式中,R3表示氫原子、烷基、芳基、醚基、硫醚基、酯基、醯基、胺基、氰基或硝基,這些基可具有取代基,可為相同或相異;R4表示氫原子;烷基;芳基;烷基SO2基;芳基SO2基;或1個以上之氫原子由氟原子取代之烷基、芳基、烷基SO2基或芳基SO2基)。
  8. 一種中間體化合物(6)的製造方法,其為式(2)所示雜環式化合物的製造中之式(6)所示中間體化合物的製造方法,其特徵為含有反應式(4)所示化合物與式(5)所示錫化合物者; (式中,R3表示氫原子、烷基、芳基、醚基、硫醚基、酯基、醯基、胺基、氰基或硝基,這些基可具有取代基,可為相同或相異;R4表示氫原子;烷基;芳基;烷基SO2基;芳基SO2基;或1個以上之氫原子由氟原子取代之烷基、芳基、烷基SO2基或芳基SO2基;R5表示碳數1~8的直鏈或分支鏈的烷基)。
  9. 一種有機半導體材料,其特徵為含有一種或複數種如申請專利範圍第1項至第6項中任一項之式(1)所示雜環式化合物。
  10. 一種半導體裝置製作用墨水,其特徵為含有一種 或複數種如申請專利範圍第1項至第6項中任一項之式(1)所示雜環式化合物。
  11. 一種有機薄膜,其特徵為含有一種或複數種如申請專利範圍第1項至第6項中任一項之式(1)所示雜環式化合物。
  12. 一種有機薄膜的製造方法,其特徵為如申請專利範圍第11項之有機薄膜藉由蒸鍍法所形成者。
  13. 一種有機薄膜的製造方法,其特徵為如申請專利範圍第11項之有機薄膜藉由塗佈如申請專利範圍第10項之半導體裝置製作用墨水而形成。
  14. 一種電場效果電晶體,其特徵為具有如申請專利範圍第11項之有機薄膜。
  15. 如申請專利範圍第14項之電場效果電晶體,其為底部接觸型。
  16. 如申請專利範圍第14項之電場效果電晶體,其為頂部接觸型。
  17. 一種電場效果電晶體的製造方法,其特徵為含有將由如申請專利範圍第1項至第6項中任一項之式(1)所示雜環式化合物的一種或複數種所成的有機薄膜藉由如申請專利範圍第12項或第13項方法形成於基板上之步驟。
TW101106275A 2011-02-25 2012-02-24 新穎的雜環式化合物,其中間體的製造方法,及其用途 TWI525095B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011039403 2011-02-25

Publications (2)

Publication Number Publication Date
TW201247677A TW201247677A (en) 2012-12-01
TWI525095B true TWI525095B (zh) 2016-03-11

Family

ID=46721008

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101106275A TWI525095B (zh) 2011-02-25 2012-02-24 新穎的雜環式化合物,其中間體的製造方法,及其用途

Country Status (7)

Country Link
US (1) US9018630B2 (zh)
EP (2) EP2889301B1 (zh)
JP (2) JP5674916B2 (zh)
KR (3) KR20140041439A (zh)
CN (2) CN103391942B (zh)
TW (1) TWI525095B (zh)
WO (1) WO2012115236A1 (zh)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010098372A1 (ja) * 2009-02-27 2010-09-02 国立大学法人広島大学 電界効果トランジスタ
JP6080870B2 (ja) * 2013-01-22 2017-02-15 日本化薬株式会社 溶液プロセス用有機半導体材料及び有機半導体デバイス
WO2014136953A1 (ja) * 2013-03-08 2014-09-12 国立大学法人神戸大学 有機半導体薄膜の作製方法
JP6240544B2 (ja) * 2014-03-28 2017-11-29 富士フイルム株式会社 有機半導体膜形成用組成物
KR20160011244A (ko) * 2014-07-14 2016-02-01 한국과학기술연구원 다층 박막의 제조 방법, 이로 인해 형성된 다층 박막, 이를 포함하는 유기 박막 트랜지스터 제조 방법 및 이를 통해 제조된 유기 박막 트랜지스터
JP6558777B2 (ja) * 2014-12-05 2019-08-14 日本化薬株式会社 有機化合物及びその用途
EP3275884B1 (en) * 2015-03-23 2019-05-08 Nippon Kayaku Kabushiki Kaisha Organic compound, organic semiconductor material, organic thin-film and method for producing same, organic semiconductor composition, and organic semiconductor device
WO2017022735A1 (ja) * 2015-08-04 2017-02-09 富士フイルム株式会社 有機薄膜トランジスタ、有機薄膜トランジスタの製造方法、有機薄膜トランジスタ用材料、有機薄膜トランジスタ用組成物、有機半導体膜、化合物
EP3342769B1 (en) 2015-08-28 2021-09-01 DIC Corporation Organic compound, method for manufacturing same, organic semiconductor material containing same, and organic transistor containing same
JP6643757B2 (ja) * 2016-02-08 2020-02-12 純一 竹谷 有機電界効果トランジスタ
EP3425687B1 (en) * 2016-02-29 2021-09-29 National Institute of Advanced Industrial Science and Technology Organic semiconductor composition, organic thin film comprising same, and use thereof
US10056563B2 (en) 2016-04-08 2018-08-21 Samsung Electronics Co., Ltd. Synthetic method of fused heteroaromatic compound and fused heteroaromatic compound, and intermediate thereof
WO2018016465A2 (ja) * 2016-07-19 2018-01-25 日本化薬株式会社 撮像素子用光電変換素子用材料及びそれを含む光電変換素子
JP6910880B2 (ja) * 2016-08-03 2021-07-28 日本化薬株式会社 有機光電変換素子、有機光電変換素子用材料及びこれらを用いた有機撮像素子
KR102677490B1 (ko) 2016-11-08 2024-06-20 삼성전자주식회사 축합 헤테로방향족 화합물의 합성 방법, 축합 헤테로방향족 화합물 및 그 중간체 및 합성 방법
KR102464890B1 (ko) 2017-10-18 2022-11-07 삼성전자주식회사 축합다환 헤테로방향족 화합물, 유기 박막 및 전자 소자
JP7047608B2 (ja) * 2018-05-29 2022-04-05 Dic株式会社 芳香族化合物の製造方法
EP3663298B1 (en) 2018-12-03 2021-12-22 Samsung Electronics Co., Ltd. Organic thin film and organic thin film transistor and electronic device
JP7241346B2 (ja) * 2019-05-21 2023-03-17 国立大学法人東北大学 芳香族化合物の製造方法
CN114269754A (zh) * 2019-09-17 2022-04-01 日本化药株式会社 稠合多环芳香族化合物
TW202136272A (zh) 2019-12-10 2021-10-01 日商日本化藥股份有限公司 縮合多環芳香族化合物
CN112530989B (zh) * 2020-12-03 2024-04-12 南京大学 一种超高增益有机放大器及其制备方法
CN112531112B (zh) * 2020-12-03 2024-03-22 南京大学 一种超高增益有机薄膜晶体管及其制备方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0821718B2 (ja) 1992-07-30 1996-03-04 日本電気株式会社 電界効果型トランジスタおよびその製造方法
JP2001094107A (ja) 1999-09-20 2001-04-06 Hitachi Ltd 有機半導体装置及び液晶表示装置
EP1138328A1 (en) 2000-03-29 2001-10-04 Eli Lilly And Company Limited Naphthalene derivatives as CNS drugs
DE10229370A1 (de) 2002-06-29 2004-01-15 Covion Organic Semiconductors Gmbh 2,1,3-Benzothiadiazole
WO2006077888A1 (ja) 2005-01-19 2006-07-27 National University Of Corporation Hiroshima University 新規な縮合多環芳香族化合物およびその利用
JP5499422B2 (ja) 2006-06-28 2014-05-21 コニカミノルタ株式会社 有機半導体材料、有機半導体膜、有機薄膜トランジスタ及び有機薄膜トランジスタの製造方法
TWI462359B (zh) 2006-10-20 2014-11-21 Nippon Kayaku Kk 場效電晶體及其製造方法
EP2098527B1 (en) 2006-10-25 2016-03-30 Nippon Kayaku Kabushiki Kaisha Novel fused-ring aromatic compound, process for producing the same, and use thereof
KR20080100982A (ko) * 2007-05-15 2008-11-21 삼성전자주식회사 헤테로아센 화합물, 이를 포함하는 유기 박막 및 상기박막을 포함하는 전자 소자
WO2009009790A1 (en) 2007-07-12 2009-01-15 President And Fellows Of Harvard College Air-stable, high hole mobility thieno-thiophene derivatives
JP2009054809A (ja) * 2007-08-28 2009-03-12 Mitsui Chemicals Inc 有機トランジスタ
JP2009152355A (ja) 2007-12-20 2009-07-09 Konica Minolta Holdings Inc 有機薄膜トランジスタの製造方法、及び有機薄膜トランジスタ
JP5481850B2 (ja) 2008-01-23 2014-04-23 東ソー株式会社 ヘテロアセン誘導体、その前駆化合物及びそれらの製造方法
WO2010098372A1 (ja) 2009-02-27 2010-09-02 国立大学法人広島大学 電界効果トランジスタ
JP5438363B2 (ja) 2009-04-24 2014-03-12 ウシオケミックス株式会社 バンドギャップが広いことを特徴とする有機半導体材料

Also Published As

Publication number Publication date
KR101599688B1 (ko) 2016-03-07
EP2679592B1 (en) 2018-10-03
EP2889301A1 (en) 2015-07-01
US9018630B2 (en) 2015-04-28
KR101599687B1 (ko) 2016-03-07
CN104650110B (zh) 2017-04-12
EP2679592A1 (en) 2014-01-01
CN103391942B (zh) 2015-11-25
EP2679592A4 (en) 2014-07-16
KR20150013906A (ko) 2015-02-05
JP2015110571A (ja) 2015-06-18
KR20150061035A (ko) 2015-06-03
CN103391942A (zh) 2013-11-13
EP2889301B1 (en) 2017-10-25
CN104650110A (zh) 2015-05-27
JP5674916B2 (ja) 2015-02-25
TW201247677A (en) 2012-12-01
US20130330876A1 (en) 2013-12-12
JPWO2012115236A1 (ja) 2014-07-07
WO2012115236A1 (ja) 2012-08-30
JP5901732B2 (ja) 2016-04-13
KR20140041439A (ko) 2014-04-04

Similar Documents

Publication Publication Date Title
TWI525095B (zh) 新穎的雜環式化合物,其中間體的製造方法,及其用途
CN109415310B (zh) 磺酸酯化合物及其利用
KR20110091516A (ko) 신규의 헤테로고리 화합물 및 그 이용
TWI534121B (zh) 含有脫離取代基之化合物,有機半導體材料,含有該材料之有機半導體膜,含有該膜之有機電子裝置,製造膜狀產品之方法,π電子共軛化合物及製備該π電子共軛化合物的方法
TWI549327B (zh) 有機場效電晶體及有機半導體材料
JP5728990B2 (ja) ジカルコゲノベンゾジピロール化合物、該化合物の製造方法、該化合物を含む薄膜及び該薄膜を含む有機半導体デバイス
JP7266409B2 (ja) 電荷輸送性ワニス
JP2006013483A (ja) 小分子チオフェン化合物を備える装置
WO2012115218A1 (ja) ジアントラ[2,3-b:2',3'-f]チエノ[3,2-b]チオフェンの製造方法並びにその用途
JPWO2009125721A1 (ja) 有機薄膜トランジスタ用化合物及び有機薄膜トランジスタ
TW201808881A (zh) 芳胺衍生物及其利用
JP6678515B2 (ja) 化合物、組成物、および有機半導体デバイス
WO2020241582A1 (ja) 有機トランジスタ材料及び有機トランジスタ
JP2018043947A (ja) ヘテロアセン誘導体、有機半導体層、及び有機薄膜トランジスタ
WO2013146631A1 (ja) 有機デバイス材料前駆体およびその製造方法ならびにこれを用いた発光素子およびその製造方法