TWI492433B - 可逆性可編程電阻式記憶體及提供方法、相變記憶體、電子系統 - Google Patents

可逆性可編程電阻式記憶體及提供方法、相變記憶體、電子系統 Download PDF

Info

Publication number
TWI492433B
TWI492433B TW100129686A TW100129686A TWI492433B TW I492433 B TWI492433 B TW I492433B TW 100129686 A TW100129686 A TW 100129686A TW 100129686 A TW100129686 A TW 100129686A TW I492433 B TWI492433 B TW I492433B
Authority
TW
Taiwan
Prior art keywords
reversible
programmable resistive
diode
memory
resistive element
Prior art date
Application number
TW100129686A
Other languages
English (en)
Other versions
TW201220566A (en
Inventor
Chien Shine Chung
Original Assignee
Chien Shine Chung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chien Shine Chung filed Critical Chien Shine Chung
Publication of TW201220566A publication Critical patent/TW201220566A/zh
Application granted granted Critical
Publication of TWI492433B publication Critical patent/TWI492433B/zh

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C17/00Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards
    • G11C17/06Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards using diode elements
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/161Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1659Cell access
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1675Writing or programming circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0004Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements comprising amorphous/crystalline phase transition cells
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0007Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements comprising metal oxide memory material, e.g. perovskites
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0009RRAM elements whose operation depends upon chemical change
    • G11C13/0011RRAM elements whose operation depends upon chemical change comprising conductive bridging RAM [CBRAM] or programming metallization cells [PMCs]
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0023Address circuits or decoders
    • G11C13/0028Word-line or row circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/003Cell access
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/004Reading or sensing circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0069Writing or programming circuits or methods
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • H10B61/10Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having two electrodes, e.g. diodes or MIM elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/20Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having two electrodes, e.g. diodes
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0069Writing or programming circuits or methods
    • G11C2013/0073Write using bi-directional cell biasing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/70Resistive array aspects
    • G11C2213/72Array wherein the access device being a diode
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/70Resistive array aspects
    • G11C2213/74Array wherein each memory cell has more than one access device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/785Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/231Multistable switching devices, e.g. memristors based on solid-state phase change, e.g. between amorphous and crystalline phases, Ovshinsky effect
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/826Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/882Compounds of sulfur, selenium or tellurium, e.g. chalcogenides
    • H10N70/8828Tellurides, e.g. GeSbTe

Description

可逆性可編程電阻式記憶體及提供方法、相變記憶體、電子系統
本發明涉及到可編程記憶體元件,如使用在記憶體陣列之可編程電阻元件。
可編程電阻元件通常是指元件之電阻狀態可在編程後改變。電阻狀態可以由電阻值來決定。例如,電阻性元件可以是單次性可編程OTP(One-Time Programmable)元件(如電性熔絲),而編程方法可以施用高電壓,來產生高電流通過OTP元件。當這大電流經由打開的編程選擇器流過OTP元件,OTP元件將被燒成高或低電阻狀態(取決於是熔絲或反熔絲)而加以編程。
電性熔絲是一種常見的OTP,而這種可編程電阻元件,可以是多晶矽,矽化多晶矽,矽化物,熱隔離的主動區,金屬,金屬合金或它們的組合。金屬可以是鋁,銅或其他過渡金屬。其中最常用的電性熔絲是矽化的多晶矽,用互補式金氧半導體晶體管(CMOS)的閘極製成,用來作為內連接(interconnect)。電性熔絲也可以是一個或多個接點(contact)或層間接點(via),而不是小片段的內連接。高電流可把接點或層間接點燒成高電阻狀態。電性熔絲 可以是反熔絲,其中高電壓使電阻降低,而不是提高電阻。反熔絲可由一個或多個接點或層間接點組成,並含有絕緣體於其間。反熔絲也可由CMOS閘極耦合於CMOS本體,其含有閘極氧化層當做為絕緣體。
一種傳統的可編程電阻式記憶存儲單元如第一圖所示。存儲單元10包含電阻元件11和N型金氧半導體晶體管(NMOS)編程選擇器12。電阻元件11一端耦合到NMOS的汲極,另一端耦合到正電壓V+。NMOS12的閘極耦合到選擇信號(SEL),源極耦合到負電壓V-。當高電壓加在V+而低電壓加在V-時,電阻元件10則可被編程,經由提高編程選擇信號(SEL)來打開NMOS12。一種最常見的電阻元件是矽化多晶矽,乃是在同時製作MOS閘極時用的同樣材料。NMOS編程選擇器12的面積,需要足夠大,以提供所需的編程電流持續幾微秒。矽化多晶矽的編程電流通常是從幾毫安(對寬度約40奈米的熔絲)至20毫安(對寬度約0.6微米熔絲)。因此使用矽化多晶矽的電性熔絲存儲單元面積往往是非常大的。
可編程電阻元件可以是可逆的電阻元件,可以重複編程且可逆編程成數位邏輯值“0”或“1”。可編程電阻元件可從相變材料來製造,如鍺(Ge),銻(Sb),碲(Te)的組成Ge2Sb2Te5(GST-225)或包括成分銦(In),錫(Sn)或硒(Se)的GeSbTe類材料。經由高電壓短脈衝或低電壓長脈衝,相變材料可被編程成非晶體態高電阻狀態或結晶態低電阻狀態。可逆電阻元件可以是電阻式隨機存取記憶體(電阻式記憶體RRAM),存儲單元由在金屬或金屬合金電極之間的金屬氧化物,如鉑/氧化鎳/鉑(Pt/NiO/Pt),氮化鈦/氧化鋅/氧化鉿/氮化鈦 (TiN/TiOx/HfO2/TiN)製成。該電阻狀態可逆性的改變是經由電壓或電流脈衝的極性,強度,持續時間,產生或消滅導電細絲。另一種類似電阻式隨機存取記憶體(RRAM)的可編程電阻元件,就是導電橋隨機存取記憶體(CBRAM)。此記憶體是基於電化學沉積和移除在金屬或金屬合金電極之間的固態電解質薄膜裏的金屬離子。電極可以是一個可氧化陽極和惰性陰極,而且電解質可以是摻銀或銅的硫系玻璃如硒化鍺(GeSe)或硒化硫(GeS)等。該電阻狀態可逆性的改變是經由電壓或電流脈衝的極性,強度,持續時間,產生或消滅導電橋。
如第二圖a所示,相變記憶體(PCM)是另一種傳統的可編程電阻元件20。PCM存儲單元包含相變薄膜(Phase Change Material)21和當作編程選擇器的雙極性電晶體22,其具有P+射極23、N型基極27和集極25(為P型基體)。相變薄膜21一端耦合到雙極性電晶體22的射極23,另一端耦合到正電壓V+。雙極性電晶體22的N型基極27耦合到負電壓V-,而集極25耦合到接地。在V+和V-間施加適當的電壓持續適當的時間,相變薄膜21可被編程成高或低電阻狀態,根據電壓和持續時間而定。按照慣例,編程相變記憶體成高電阻狀態(或重設狀態)大約需要持續50ns的3V電壓,消耗大約300uA的電流。編程相變記憶體成低電阻狀態(或設置狀態)需要持續300ns左右的2V電壓,消耗大約100uA的電流。
另一種相變記憶體(PCM)的可編程電阻元件如第二圖b所示。相變記憶體材料有相變薄膜21'和一二極體22'。相變薄膜21'被耦合在二極體陽極22'和正電壓V+之間。二極體的陰極22'被耦合到負電壓V-。施加適當的電壓在V+和V-之間持續一段適當的時 間,相變薄膜21'可以被編程為高或低電阻狀態,根據電壓和持續時間而定。請見“Kwang-Jin Lee et al.,“A90nm 1.8V 512Mb Diode-Switch PRAM with 266MB/s Read Throughput,”International Solid-State Circuit Conference,2007,pp.472-273。第二圖b所示為使用一個二極體作為每一個相變記憶體(PCM)存儲單元的編程選擇器的例子。雖然這項技術可以減少PCM存儲單元尺寸到只有6.8F2(F代表特徵大小),二極體需要非常複雜的製造過程,如選擇性磊晶成長(SEG)。如此一來對嵌入式PCM的應用,將變的非常昂貴。
第二圖c顯示了一種傳統雙極性電晶體22的截面圖。雙極性電晶體22包括P+主動區(active region)23、N淺井24、N+主動區27、P型基體25和用來隔離元件的淺溝槽隔離(STI)26。P+主動區23和N+主動區27耦合到N井24,且為雙極性電晶體22裏射極和基極二極體的P和N端,而P型基體25是雙極性電晶體22的集極。這種存儲單元需要N淺井24比淺溝槽隔離26淺,來妥善隔離每個存儲單元,因而需要比標準CMOS邏輯制程多3-4道光罩,而使得它的製作比較昂貴。
二極體也可以從多晶矽製造。第三圖顯示一多晶矽二極體的橫截面。要形成多晶矽二極體,多晶矽是由N+植入一端而P+植入另一端,二端之間的間距Lc含有固有(intrinsic)的摻雜劑。固有的摻雜劑是由外擴散或污染所造成之些微N型或P型摻雜劑,而非刻意的摻雜。矽化物阻擋層應用於多晶矽上以防止矽化物在多晶矽的表面上形成,從而防止短路。多晶矽的P+和N+兩端由接點帶出以形成二極體的PN兩端。作為一例子,多晶矽二極體可見 Ming-Dou Ker et al.,“Ultra High-Voltage Charge Pump Circuit in Low-Voltage Bulk CMOS Processes with Polysilicon Diodes,”IEEE Transaction of Circuit and System-II,Vol.54,No.1,January 2007,pp.47-51。
第四圖顯示第三圖的多晶矽二極體的電流電壓特性。目前的電流電壓曲線顯示有用的二極體行為,如二極體的閾值電壓約為0.6V而漏電流低於1nA。經由改變間距Lc,多晶矽二極體的擊穿電壓和漏電流可以相應調整。
這項專利是關於使用二極體作為編程選擇器的可編程電阻元件存儲單元之實施例。可編程的電阻元件可以使用標準CM0S邏輯製程,以減少存儲單元的大小和成本。
因此本發明提供一種可逆性可編程電阻式記憶體,包括:多個可逆性可編程電阻式存儲單元,至少有一可逆性可編程電阻式存儲單元包括:一可逆性可編程電阻式元件耦合到第一電源電壓線;及一二極體建構於多晶矽上,包括至少一第一端和一第二端,其中該第一端具有一第一型摻雜,該第二端具有一第二型的摻雜,該第一端提供了該二極體的一第一端,該第二端提供二極體的一第二端,該第一端和第二端皆存在一共同的多晶矽上,該第一端被耦合到該可逆性可編程電阻式元件,而該第二端被耦合到第二電源電壓線;其中第一和第二端的摻雜劑是從互補式金氧半導體(CMOS)元件的源極或汲極的摻雜植入製造,其中,經由施加電壓到該第一和第二電源電壓線,該可逆性可編程電阻式元件被配置為可編程,從而改變電阻為不同的邏輯狀態。
本發明提供一種相變記憶體,包括:多個相變存儲單元,至少有一相變存儲單元包括:一相變薄膜耦合到第一電源電壓線;及一二極體包括至少一第一端和一第二端,其中該第一端具有一第一型摻雜,該第二端具有一第二型摻雜,該第一端提供了該二極體的一第一端而該第二端提供該二極體的一第二端,該第一端和第二端皆存在一個共同的多晶矽上,該第一端耦合到相變薄膜,而該第二端耦合到第二電源電壓線;其中該第一和第二端的摻雜是從互補式金氧半導體(CMOS)元件的源極或汲極的摻雜植入製造,其中,經由施加電壓到第一和第二電源電壓線,相變薄膜被配置為可編程,從而可逆的改變電阻為不同的邏輯狀態。
本發明提供一種電子系統,包括:一種處理器;及一可逆性可編程電阻式記憶體可操作地連接到處理器,該可逆性可編程電阻式記憶體包括至少數個可逆性可編程電阻存儲單元來提供數據存儲,每個可逆性可編程電阻存儲單元包括:一可逆性可編程電阻元件被耦合到第一電源電壓線;及一二極體包含至少一第一端和一第二端,其中該第一端具有第一型摻雜,而該第二端具有第二型摻雜,該第一端提供了二極體的一第一端,該第二端提供二極體的一第二端,該第一和第二端皆存在一個共同的多晶矽上,該第一端耦合到該可逆性可編程電阻元件而該第二端耦合到一第二電源電壓線;其中該第一和第二端的摻雜是從互補式金氧半導體(CMOS)元件的源極或汲極的摻雜植入製造;其中,經由施加電壓到第一和第二電源電壓線,可逆性可編程電阻元件被配置為可編程,從而可逆的改變電阻到不同的邏輯狀態。
本發明提供一種方法來提供一個可逆性電阻式記憶體,包括:提 供多個可逆性可編程電阻存儲單元,至少有一可逆性可編程電阻存儲單元包括至少(i)一可逆性可編程電阻元件被耦合到第一電源電壓線;及(ii)一二極體包含至少一第一端和一第二端,該第一端具有第一型摻雜,而該第二端具有第二型摻雜,該第一端提供了該二極體的一第一端,該第二端提供該二極體的一第二端,該第一和第二端皆存在一個共同的多晶矽上,而其摻雜是從互補式金氧半導體(CMOS)元件的源極或汲極的摻雜植入製造,該第一端耦合到電阻元件而該第二端耦合到一第二電源電壓線;及經由施加電壓到第一和第二電壓線,來編程至少一可逆性可編程電阻存儲單元到一邏輯狀態。
[習知]
10‧‧‧存儲單元
11‧‧‧電阻元件
12‧‧‧NMOS編程選擇器
21‧‧‧相變薄膜
20,20’‧‧‧可編程電阻元件
22‧‧‧雙極性電晶體
23‧‧‧P+射極
27‧‧‧N型基極
25‧‧‧集極
22'‧‧‧二極體
23‧‧‧P+主動區
24‧‧‧N淺井
27‧‧‧N+主動區
25‧‧‧P型基體
26‧‧‧淺溝槽隔離
[本發明]
30‧‧‧存儲單元
31‧‧‧可逆性可編程電阻元件
32‧‧‧多晶矽二極體
34‧‧‧多晶矽
33‧‧‧P+植入層
37‧‧‧N+植入層
d‧‧‧距離
36‧‧‧矽化物阻擋層
39‧‧‧選項層
50‧‧‧可逆性可編程電阻元件存儲單元
42‧‧‧電阻元件
41,43‧‧‧緩衝金屬
30‧‧‧多晶矽二極體
42‧‧‧薄膜
40-1,40-2,40-3‧‧‧接點填塞物
32‧‧‧陽極接點
39‧‧‧陰極接點
35‧‧‧矽化物阻擋層
49‧‧‧介電質
44‧‧‧金屬
70‧‧‧邊界為
71‧‧‧多晶矽二極體
75‧‧‧相變材料元件
73‧‧‧P+植入層
77‧‧‧N+植入層
72‧‧‧陽極
79‧‧‧陰極
80‧‧‧矽化物阻擋層
78‧‧‧位元線
77‧‧‧字元線
76‧‧‧第一層金屬(metal1)
100‧‧‧可編程電阻記憶體
101‧‧‧陣列
110‧‧‧記憶體存儲單元
111‧‧‧電阻元件
112‧‧‧二極體
150-i‧‧‧字元線驅動器
BLR0175-0‧‧‧參考位元線
WLBi152-i‧‧‧字元線
172-i‧‧‧後解碼器
LWLBi‧‧‧局部字元線
vddi‧‧‧電源電壓
120-j,125‧‧‧Y-write通道閘
130-j,135‧‧‧Y-read通道閘
S700-S760,S800-S870‧‧‧步驟
700‧‧‧處理器系統
740‧‧‧記憶體
744‧‧‧可編程電阻元件
742‧‧‧存儲單元陣列
710‧‧‧中央處理單元
715‧‧‧共同匯流排
720‧‧‧輸入輸出單元
730‧‧‧硬盤驅動器
750‧‧‧光碟
740‧‧‧記憶體
760‧‧‧其他記憶體
第一圖顯示一種傳統的可編程電阻式記憶存儲單元示意圖。
第二圖a顯示相變記憶體(PCM)用的另一種傳統可編程電阻式元件示意圖,其採用雙極型晶體管作為編程選擇器。
第二圖b顯示一種傳統相變記憶體(PCM)截面圖,其採用二極體作為編程選擇器。
第二圖c顯示另一種傳統相變記憶體(PCM)存儲單元的橫截面,其採用雙極型晶體管作為編程選擇器。
第三圖顯示一多晶矽二極體的橫截面。
第四圖顯示如第三圖所示的多晶矽二極體的電流電壓特性圖。
第五圖顯示使用一根據本發明的多晶矽二極體於可逆性可編程電阻式存儲單元的方塊圖。
第六圖顯示一可逆性可編程電阻式存儲單元的頂視圖。此存儲單元實施例使用多晶矽二極體為編程選擇器。
第七圖顯示一可逆性可編程電阻元件的截面圖。此電阻元件使用相變材料作為電阻元件。此外根據此實施例,具有緩衝金屬層耦合相變材料層和其他金屬及多晶矽二極體。
第八圖顯示一相變記憶體存儲單元的頂視圖。根據此實施例,其使用多晶矽二極體當編程選擇器。
第九圖顯示一可逆性可編程電阻式記憶體的一部分示意圖。根據此一實施例,由n行和(m+1)列的單二極體存儲單元與n個字元線驅動器一起構成。
第十圖a描繪一種可編程電阻式記憶體編程方法流程圖。
第十圖b描繪一種可編程電阻式記憶體方讀取法流程圖。
第十一圖顯示一種處理器(Processor)的系統的實施例示意圖。
在此揭露實施例,使用至少一多晶矽二極體當編程選擇器的可編程電阻式元件。此二極體可以包括植入層於一多晶矽基板內之P+和N。由於P+和N+植入層都是以現成的標準CMOS邏輯製程,這些元件可用一個有效率及符合成本效益的方法做成。沒有額外的光罩或製程步驟,以節省成本。這可編程電阻式元件可以包括在電子系統裏。
第五圖所示為使用一多晶矽二極體的可逆性可編程電阻式記憶體存儲單元30的實施例方塊圖。特別是,存儲單元30包括一可逆性可編程電阻元件31和一多晶矽二極體32。電阻元件31可耦合在多晶矽二極體32的陽極和高電壓V+之間。多晶矽二極體32的陰極可耦合到低電壓V-。在一實施例裏,記憶體存儲單元30可以是相變記憶體存儲單元,其含有相變材料的電阻元件31。多晶矽二極體 32可作為編程選擇器。可逆性可編程電阻元件31和多晶矽二極體32於電源電壓V+和V-之間是可互換的。經由一適當的時間裏施加適當的電壓在V+和V-之間,可逆性可編程電阻元件31可根據電壓和持續時間被編程為高或低電阻狀態,因此編程記憶體存儲單元30可存儲數據值(例如,數據的位元)。多晶矽二極體的P+和N+植入層可以使用矽化物阻擋層(SBL)來隔離。
第六圖顯示用多晶矽二極體32作為編程選擇器的可逆性可編程電阻存儲單元30實施例頂視圖。可逆性可編程電阻單元30包括一可逆性可編程元件31耦合到第一電源電壓V+和一二極體32。二極體32作為可逆性可編程電阻單元30的編程選擇器。該二極體32是建立在一塊多晶矽34,即多晶矽基板。構建PMOS或NMOS元件源極或汲極的P+和N+植入層33和37用來形成多晶矽二極體32的P,N兩端於多晶矽34上。矽化物阻擋層36阻擋矽化物形成於多晶矽的表面,以防止多晶矽二極體32的P和N端短路。P+植入層33和N+植入層37的距離d可用於調整擊穿電壓和漏電流。一選項層39可以引進N型淺源汲極(NLDD)、P型淺源汲極(PLDD)植入層、或NMOS和PMOS門檻電壓的摻雜植入技術於N+植入層37和P+植入層33之間,以進一步控制二極體的導通電阻。該選項層39所植入區可於標準CMOS上產生各種類的植入層,且不會增加額外費用。
第七圖顯示了一可逆性可編程電阻元件存儲單元50的截面圖。根據此一實施例,其使用相變材料(Phase Change Material)作為電阻元件42,具緩衝金屬41和43,和多晶矽二極體30(位在矽基體上的介電質49上)。多晶矽二極體30在多晶矽基板31上有P+植入區33和N+植入區37,且此兩個植入區通過陽極接點32和陰極接 點39為二極體的P,N兩端。矽化物阻擋層(STI)35隔離P+植入區33和N+植入區37。二極體31的P+植入區33經由接點填塞物40-1被耦合到作為緩衝層的下層金屬41。這下層金屬41,經由接點填塞物40-2被耦合到相變材料的一層薄膜42(如GST薄膜)。上層金屬43也被耦合到相變材料的薄膜42。上層金屬43經過接點填塞物40-3被耦合到位元線(Bitline)的另一種金屬44。相變薄膜42可以有化學成分鍺(Ge)、銻(Sb)和碲(Te),如GexSbyTez(x,y和z是任意數字),或如Ge2Sb2Te5(GST-225)。GST可以摻至少有一或更多種的銦(In),錫(Sn)或硒(Se),以提高性能。相變的存儲單元結構,可顯著平面化。這意味著相變薄膜42的面積大於被耦合到編程選擇器薄膜的接觸面積;或從矽基體表面到相變薄膜42的高度,遠小於平行於矽基體薄膜的尺寸。在此實施例裏,相變薄膜42的有效區遠遠大於接觸面積,使編程特性可以更均勻,和具可重複性。相變薄膜42不是垂直結構,不坐落在高大的接點上面,能更適合嵌入式相變記憶體的應用,尤其是當多晶矽二極體30作為編程選擇器時,可使存儲單元的面積非常小。對此技藝知悉者可知結構和製造過程可能會有所不同,而且上述相變薄膜(如GST film)的結構和緩衝金屬只作說明用途。
第八圖顯示了一種相變材料(Phase Change Material)存儲單元的頂視圖。按照此實例,存儲單元擁有一多晶矽二極體作為編程選擇器,其邊界為70。相變材料的存儲單元有多晶矽二極體71和相變材料元件75。多晶矽二極體71具有陽極72和陰極79,分別被P+植入層73和N+植入層77所覆蓋。矽化物阻擋層(STI)80阻擋矽化物形成於多晶矽二極體71的表面,防止多晶矽二極體71的陽極 72和陰極79短路。陽極72經由第一層金屬(metal1)76耦合到相變材料薄膜75。相變材料薄膜75耦合到垂直方向的第三層金屬(metal3)78位元線(BL)。多晶矽二極體71的陰極79耦合到水平方向的第二層金屬(metal2)77字元線(WL)。施加適當的電壓於位元線78和字元線77之間一段適當的時間,相變材料75可被編程為相應的0或1狀態。由於編程相變材料存儲單元是依據溫度升高,而不是如對電性熔絲的電遷移,相變薄膜(如GST薄膜)的陽極和陰極可以有對稱的面積。對此技藝知悉者可知相變薄膜,結構和佈線風格,和金屬的結構可在其他實施例裏有所不同。
編程相變記憶體(PCM),如相變薄膜,取決於相變薄膜的物理特性,如玻璃化轉變溫度和熔化溫度。要重設(寫1),需要被加熱超出熔化溫度,然後驟降溫。要設置(寫0),相變薄膜需要被加熱到熔化和玻璃化轉變之間的溫度,然後退火處理。典型的相變材料薄膜的玻璃化轉變溫度約200℃,熔融溫度約攝氏600度。這些溫度決定相變記憶體(PCM)的操作溫度,因為在特定溫度下一段長時間後電阻狀態可能會發生變化。但是,大多數應用需要保留數據10年,從工作溫度0到85℃或-40到125℃。為了在元件的壽命期限和在如此寬的溫度範圍內維持存儲單元的穩定性,相變記憶體可以被定期讀取出,然後將數據寫回相同的存儲單元,此為更新機制。更新週期可能會相當長,如超過一秒鐘(例如,分鐘,小時,天,星期,甚至幾個月)。更新機制可由記憶體內部產生或從記憶體外部觸發。長時間的更新週期以維持存儲單元的穩定性,也可以應用於其他新興的記憶體,如電阻式隨機存取記憶體(RRAM),導電橋隨機存取記憶體(CBRAM),和磁化隨 機存取記憶體(MRAM)等。
根據另一實施例,可編程電阻元件可用於建立一記憶體。根據此實施例,第九圖顯示了可編程電阻記憶體100的一部分,由n行x(m+1)列的單二極體存儲單元110的一陣列101和n個字元線驅動器150-i(i=0,1,...,n-1)所構建。記憶體陣列101有m個正常列和一參考列,共用一感應放大器做差動感應。於同一列的每個記憶體存儲單元110有一電阻元件111被耦合到當編程選擇器的一二極體112的P端和到一位元線BL j170-j(j=0,1,..m-1)或參考位元線BLR01-0。在同一行的記憶體存儲單元110的二極體112的N端經由局部字元線LWLBi154-i,(i=0,1,…,n-1)被耦合到一字元線WLBi152-i,。每個字元線WLBi被耦合到至少一局部字元線LWLBi,此處i=0,1,…,n-1。該LWLBi154-i通常由高電阻材料,如N井或多晶矽構建,來連接存儲單元,然後經由接點或層間接點、緩衝器或後解碼器172-i(i=0,1,...,n-1)耦合到WLBi(例如,低電阻金屬WLBi)。當使用二極體作為編程選擇器,可能需要緩衝器或後解碼器172-i,因為有電流流過WLBi,特別是當WLBi驅動多個存儲單元來同時編程和讀取。該字元線WLBi是由字元線驅動器150-i所驅動,為了編程和讀取,其電源電壓vddi可以在不同的電壓之間被切換。每個BLj170-j或BLR0175-0都經由一Y-寫(Y-write)通道閘120-j或125被耦合到一電源電壓VDDP來編程,其中BLj170-j及BLR0175-0分別由被YSWBj(j=0,1,..,m-1)及YSWRB0選取。Y-write通道閘120-j(j=0,1,…,m-1)或125可以由PMOS所建構,然而NMOS,二極體,或雙極型元件可以在一些實施例裏使用。每BL或BLR0經由一Y-read通道閘130-j或135被耦合 到一數據線DLj或參考數據線DLR0,且BL及BLR0分別由YSRj(j=0,1,..,m-1)及YSRR0所選定。在記憶體陣列101這一部分,m正常的數據線DLj(j=0,1,…,m-1)被連接到一感應放大器140的一輸入端160。該參考數據線DLR0提供了感應放大器140的另一輸入端161(一般在參考部分裏不需要多工器)。感應放大器140的輸出端是Q0。
要編程一存儲單元,特定的WLBi和YSWBj被開啟而高電壓被提供到VDDP,其中i=0,1,..,n-1而j=0,1,...,m-1。在一些實例裏,經由打開WLRBi(i=0,1,...,n-1)和YSWRB0,參考存儲單元可以被編程為0或1。要讀取一存儲單元,一數據列線160可以由啟用特定的WLBi和YSRj,(其中i=0,1,...,n-1,和j=0,1,...,m-1)來選到,而一參考數據線DLR0161可以由啟用特定的一參考存儲單元來選到,其皆被耦合到感應放大器140。此感應放大器140可以被用來感應和比較DLj和DLR0與接地之間的電阻差異,同時關閉所有YSWBj和YSWRB0,其中j=0,1,..,m-1。
第十圖a和第十圖b顯示一流程圖實施例,分別描繪一可編程電阻式記憶體的編程方法S700和讀取方法S800。方法S700和S800描述了可編程電阻式記憶體(如第九圖的可編程電阻記憶體100)的編程和讀取。此外,雖然說是一個步驟流程,對此技藝知悉者可知至少一些步驟可能會以不同的順序進行,包括同時或跳過。
第十圖a描繪可編程電阻記憶體編程方法S700的流程。根據此實施例,在第一步驟S710,選擇適當的電源選擇器以施加高電壓電源到字元線和位元線驅動器。在第二步驟S720,在控制邏輯(第九圖裏沒有顯示)裏進行分析要被編程的數據,根據什麼類型的 可編程電阻元件。對於相變記憶體(PCM),編程到一個0(設定)和編程到一個1(重設)需要不同的電壓和持續時間,所以一個控制邏輯決定了輸入數據,並選擇適當的電源選擇器和啟動適當的時序控制信號。在第三步驟S730,選擇一個存儲單元的一行(群),所以相對的局部字元線可被開啟。在第四步驟S740,停用感應放大器,以節省電源和防止干擾到編程的運作。在第五步驟S750,一存儲單元的一列(群),可以被選定並且相對應的Y-write通道閘可以被打開來耦合所選的位元線(群)到一電源電壓。在最後一步驟S760,在一已建立的傳導路徑來驅動所需的電流一段所需要的時間來完成編程的運作。對於大多數可編程電阻記憶體,這個傳導路徑是由一個高壓電源,通過被選的一位元線(群),電阻元件,作為編程選擇器的二極體,以及一局部字元線(群)驅動器的NMOS下拉元件到接地。
第十圖b描繪可編程電阻記憶體讀取方法S800流程圖。在第一步驟S810,提供合適的電源選擇器來選電源電壓給局部字元線驅動器,感應放大器和其他電路。在第二步驟S820,所有Y-write通道閘,例如位元線編程選擇器,可以被關閉。在第三步驟S830,所需的局部字元線驅動器(群)可以被選,使作為編程選擇器(群)的二極體(群)具有傳導路徑到接地。在第四步驟S840,啟動感應放大器和準備感應的輸入信號。在第五步驟S850,數據線和參考數據線被預先充電到可編程電阻元件存儲單元的V-電壓。在第六步驟S860,選所需的Y-read通道閘,使所需的位元線被耦合到感應放大器的一輸入端。一傳導路徑於是被建立,從位元線到所要的存儲單元的電阻元件,作為編程選擇器(群)的二極體 (群)和局部字元線驅動器的下拉元件到接地。這同樣適用於參考分支。在最後一步驟S870,感應放大器可以比較讀取電流與參考電流的差異來決定邏輯輸出是0或1以完成讀取操作。
第十一圖顯示了一種處理器系統700的一實施例。根據此實施例,處理器系統700可以包括在記憶體740中的可編程電阻元件744(例如在存儲單元陣列742裏)。處理器系統700可以,例如屬於一電腦系統。電腦系統可以包括中央處理單元(CPU)710,它經由共同匯流排715來和多種記憶體和周邊裝置溝通,如輸入輸出單元720,硬盤驅動器730,光碟750,記憶體740,和其他記憶體760。其他記憶體760是一種傳統的記憶體如靜態記憶體(SRAM),動態記憶體(DRAM),或閃存記憶體(flash),通常經由記憶體控制器來和與中央處理單元710溝通。中央處理單元710一般是一種微處理器,一種數位信號處理器,或其他可編程數位邏輯元件。記憶體740最好是以積體電路來構造,其中包括具有至少有一可編程電阻元件744的存儲單陣列742。通常,記憶體740經由記憶體控制器來接觸中央處理單元710。如果需要,可合併記憶體740與處理器(例如中央處理單元710)在單片積體電路。
本發明可以部分或全部實現於積體電路上,在印刷電路板(PCB)上,或在系統上。該可編程電阻元件可以是熔絲,反熔絲,或新出現的非揮發行性記憶體。熔絲可以是矽化或非矽化多晶矽熔絲,熱隔離的主動區熔絲,金屬熔絲,接點熔絲,或層間接點熔絲。反熔絲可以是一個閘極氧化層崩潰反熔絲,介電質於其間的接點或層間接點反熔絲。新出現的非揮發行性記憶體可以是磁性記憶體(MRAM),相變記憶體(PCM),導電橋隨機存取記憶 體(CBRAM),或電阻隨機存取記憶體(RRAM)。雖然編程機制不同,其邏輯狀態可以由不同的電阻值來區分。
然以上所述者,僅為本發明之較佳實施例,當不能限定本發明實施之範圍,即凡依本發明申請專利範圍所作之均等變化與修飾等,皆應仍屬本發明之專利涵蓋範圍意圖保護之範疇。
30‧‧‧存儲單元
31‧‧‧可逆性可編程電阻元件
32‧‧‧多晶矽二極體

Claims (14)

  1. 一種可逆性可編程電阻式記憶體,包括:多個可逆性可編程電阻式存儲單元,至少有一可逆性可編程電阻式存儲單元包括:一可逆性可編程電阻式元件耦合到第一電源電壓線;及一二極體建構於多晶矽上,包括至少一第一端和一第二端,其中該第一端具有一第一型摻雜,該第二端具有一第二型的摻雜,該第一端提供了該二極體的一第一端,該第二端提供二極體的一第二端,該第一端和第二端皆存在一共同的多晶矽上,該第一端被耦合到該可逆性可編程電阻式元件,而該第二端被耦合到第二電源電壓線;該多晶矽係位於一矽基體上;其中第一和第二端的摻雜劑是從互補式金氧半導體(CMOS)元件的源極或汲極的摻雜植入製造,其中,經由施加電壓到該第一和第二電源電壓線,該可逆性可編程電阻式元件被配置為可編程,從而改變電阻為不同的邏輯狀態;其中該可逆性可編程電阻式元件在平行於該矽基體的兩個維度上,至少沿一個維度上該可逆性可編程電阻式元件之長度大於從可逆性可編程電阻式元件到多晶矽表面的高度。
  2. 如申請專利範圍第1項之可逆性可編程電阻式記憶體,其中可逆性電阻元件是相變薄膜可以有化學成分鍺(Ge),銻(Sb)和碲(Te)。
  3. 如申請專利範圍第1項之可逆性可編程電阻式記憶體,其中可逆性電阻元件是金屬或金屬合金電極和電極之間的金屬氧化物。
  4. 如申請專利範圍第1項之可逆性可編程電阻式記憶體,其中可逆性電阻元件是電極和電極之間的固態電解質薄膜。
  5. 如申請專利範圍第1項之可逆性可編程電阻式記憶體,其中可逆性電阻元件在不同的存儲單元裏彼此分離。
  6. 如申請專利範圍第1項之可逆性可編程電阻式記憶體,其中可逆性電阻元件實質是平面的。
  7. 如申請專利範圍第1項之可逆性可編程電阻式記憶體,其中該可逆性可編程電阻式元件具有一薄膜,該薄膜面積為A,該薄膜經由一接點而耦合到多晶矽表面,該接點面積為B,且其中A和B滿足關係:A/B>2。
  8. 如申請專利範圍第1項之可逆性可編程電阻式記憶體,其中兩摻雜植入端為二極體的兩端,被一矽化物阻擋層分開,其矽化物阻擋層至少重疊第一和第二端的一部分。
  9. 如申請專利範圍第1項之可逆性可編程電阻式記憶體,其中該可逆性可編程電阻式元件被構建成可編程,由一高電壓和/或短持續時間到一狀態,而一低電壓和/或長持續時間到另一狀態。
  10. 如申請專利範圍第1項之可逆性可編程電阻式記憶體,其中該可逆性可編程電阻式元件被構建成由使用的電流限制或電壓限制來編程。
  11. 一種相變記憶體,包括:多個相變存儲單元,至少有一相變存儲單元包括:一相變薄膜耦合到第一電源電壓線;及一二極體包括至少一第一端和一第二端,其中該第一端具有一第 一型摻雜,該第二端具有一第二型摻雜,該第一端提供了該二極體的一第一端而該第二端提供該二極體的一第二端,該第一端和第二端皆存在一個共同的多晶矽上,該第一端耦合到相變薄膜,而該第二端耦合到第二電源電壓線;該多晶矽係位於一矽基體上;其中該第一和第二端的摻雜是從互補式金氧半導體(CMOS)元件的源極或汲極的摻雜植入製造,其中,經由施加電壓到第一和第二電源電壓線,相變薄膜被配置為可編程,從而可逆的改變電阻為不同的邏輯狀態;其中該相變存儲單元在平行於該矽基體的兩個維度上,至少沿一個維度上該相變存儲單元之長度大於從該相變存儲單元到多晶矽表面的高度。
  12. 一種電子系統,包括:一種處理器;及一可逆性可編程電阻式記憶體可操作地連接到處理器,該可逆性可編程電阻式記憶體包括至少數個可逆性可編程電阻存儲單元來提供數據存儲,每個可逆性可編程電阻存儲單元包括:一可逆性可編程電阻元件被耦合到第一電源電壓線;及一二極體包含至少一第一端和一第二端,其中該第一端具有第一型摻雜,而該第二端具有第二型摻雜,該第一端提供了二極體的一第一端,該第二端提供二極體的一第二端,該第一和第二端皆存在一個共同的多晶矽上,該第一端耦合到該可逆性可編程電阻元件而該第二端耦合到一第二電源電壓線;其中該第一和第二端的摻雜是從互補式金氧半導體(CMOS)元件的源極或汲極的摻雜植入製造; 其中,經由施加電壓到第一和第二電源電壓線,可逆性可編程電阻元件被配置為可編程,從而可逆的改變電阻到不同的邏輯狀態;其中該可逆性可編程電阻式元件在平行於該矽基體的兩個維度上,至少沿一個維度上該可逆性可編程電阻式元件之長度大於從可逆性可編程電阻式元件到多晶矽表面的高度。
  13. 如申請專利範圍第12項之電子系統,其中該電子系統被構建成定期讀取每個存儲單元的內容,並寫回內容。
  14. 一種方法來提供一個可逆性電阻式記憶體,包括:提供多個可逆性可編程電阻存儲單元,至少有一可逆性可編程電阻存儲單元包括至少(i)一可逆性可編程電阻元件被耦合到第一電源電壓線;及(ii)一二極體包含至少一第一端和一第二端,該第一端具有第一型摻雜,而該第二端具有第二型摻雜,該第一端提供了該二極體的一第一端,該第二端提供該二極體的一第二端,該第一和第二端皆存在一個共同的多晶矽上,該多晶矽係位於一矽基體上,而其摻雜是從互補式金氧半導體(CMOS)元件的源極或汲極的摻雜植入製造,該第一端耦合到電阻元件而該第二端耦合到一第二電源電壓線;及經由施加電壓到第一和第二電壓線,來編程至少一可逆性可編程電阻存儲單元到一邏輯狀態;其中該可逆性可編程電阻式元件在平行於該矽基體的兩個維度上,至少沿一個維度上該可逆性可編程電阻式元件之長度大於從可逆性可編程電阻式元件到多晶矽表面的高度。
TW100129686A 2010-08-20 2011-08-19 可逆性可編程電阻式記憶體及提供方法、相變記憶體、電子系統 TWI492433B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US37566010P 2010-08-20 2010-08-20

Publications (2)

Publication Number Publication Date
TW201220566A TW201220566A (en) 2012-05-16
TWI492433B true TWI492433B (zh) 2015-07-11

Family

ID=45593990

Family Applications (3)

Application Number Title Priority Date Filing Date
TW100129686A TWI492433B (zh) 2010-08-20 2011-08-19 可逆性可編程電阻式記憶體及提供方法、相變記憶體、電子系統
TW100129684A TWI479487B (zh) 2010-08-20 2011-08-19 磁性記憶體、電子系統、記憶體及其方法
TW100129685A TWI445137B (zh) 2010-08-20 2011-08-19 單次性可編程記憶體、電子系統、電性熔絲記憶體、可編程電阻式記憶體及其方法

Family Applications After (2)

Application Number Title Priority Date Filing Date
TW100129684A TWI479487B (zh) 2010-08-20 2011-08-19 磁性記憶體、電子系統、記憶體及其方法
TW100129685A TWI445137B (zh) 2010-08-20 2011-08-19 單次性可編程記憶體、電子系統、電性熔絲記憶體、可編程電阻式記憶體及其方法

Country Status (3)

Country Link
US (1) US8804398B2 (zh)
CN (3) CN102522499B (zh)
TW (3) TWI492433B (zh)

Families Citing this family (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9224496B2 (en) 2010-08-11 2015-12-29 Shine C. Chung Circuit and system of aggregated area anti-fuse in CMOS processes
US9236141B2 (en) 2010-08-20 2016-01-12 Shine C. Chung Circuit and system of using junction diode of MOS as program selector for programmable resistive devices
US10229746B2 (en) 2010-08-20 2019-03-12 Attopsemi Technology Co., Ltd OTP memory with high data security
US10916317B2 (en) 2010-08-20 2021-02-09 Attopsemi Technology Co., Ltd Programmable resistance memory on thin film transistor technology
US8488359B2 (en) 2010-08-20 2013-07-16 Shine C. Chung Circuit and system of using junction diode as program selector for one-time programmable devices
US8649203B2 (en) 2010-08-20 2014-02-11 Shine C. Chung Reversible resistive memory using polysilicon diodes as program selectors
US9824768B2 (en) 2015-03-22 2017-11-21 Attopsemi Technology Co., Ltd Integrated OTP memory for providing MTP memory
US9818478B2 (en) 2012-12-07 2017-11-14 Attopsemi Technology Co., Ltd Programmable resistive device and memory using diode as selector
US9431127B2 (en) 2010-08-20 2016-08-30 Shine C. Chung Circuit and system of using junction diode as program selector for metal fuses for one-time programmable devices
US9496033B2 (en) 2010-08-20 2016-11-15 Attopsemi Technology Co., Ltd Method and system of programmable resistive devices with read capability using a low supply voltage
US8830720B2 (en) 2010-08-20 2014-09-09 Shine C. Chung Circuit and system of using junction diode as program selector and MOS as read selector for one-time programmable devices
US9042153B2 (en) 2010-08-20 2015-05-26 Shine C. Chung Programmable resistive memory unit with multiple cells to improve yield and reliability
US8804398B2 (en) 2010-08-20 2014-08-12 Shine C. Chung Reversible resistive memory using diodes formed in CMOS processes as program selectors
US9711237B2 (en) 2010-08-20 2017-07-18 Attopsemi Technology Co., Ltd. Method and structure for reliable electrical fuse programming
US9251893B2 (en) 2010-08-20 2016-02-02 Shine C. Chung Multiple-bit programmable resistive memory using diode as program selector
US10923204B2 (en) 2010-08-20 2021-02-16 Attopsemi Technology Co., Ltd Fully testible OTP memory
US9460807B2 (en) 2010-08-20 2016-10-04 Shine C. Chung One-time programmable memory devices using FinFET technology
US9025357B2 (en) 2010-08-20 2015-05-05 Shine C. Chung Programmable resistive memory unit with data and reference cells
US9019742B2 (en) 2010-08-20 2015-04-28 Shine C. Chung Multiple-state one-time programmable (OTP) memory to function as multi-time programmable (MTP) memory
US10249379B2 (en) 2010-08-20 2019-04-02 Attopsemi Technology Co., Ltd One-time programmable devices having program selector for electrical fuses with extended area
US9070437B2 (en) 2010-08-20 2015-06-30 Shine C. Chung Circuit and system of using junction diode as program selector for one-time programmable devices with heat sink
US9019791B2 (en) 2010-11-03 2015-04-28 Shine C. Chung Low-pin-count non-volatile memory interface for 3D IC
US8913449B2 (en) 2012-03-11 2014-12-16 Shine C. Chung System and method of in-system repairs or configurations for memories
US9076513B2 (en) 2010-11-03 2015-07-07 Shine C. Chung Low-pin-count non-volatile memory interface with soft programming capability
US8988965B2 (en) 2010-11-03 2015-03-24 Shine C. Chung Low-pin-count non-volatile memory interface
US9496265B2 (en) 2010-12-08 2016-11-15 Attopsemi Technology Co., Ltd Circuit and system of a high density anti-fuse
US10586832B2 (en) 2011-02-14 2020-03-10 Attopsemi Technology Co., Ltd One-time programmable devices using gate-all-around structures
US10192615B2 (en) 2011-02-14 2019-01-29 Attopsemi Technology Co., Ltd One-time programmable devices having a semiconductor fin structure with a divided active region
US8848423B2 (en) 2011-02-14 2014-09-30 Shine C. Chung Circuit and system of using FinFET for building programmable resistive devices
US8607019B2 (en) 2011-02-15 2013-12-10 Shine C. Chung Circuit and method of a memory compiler based on subtractive approach
KR20130043533A (ko) * 2011-10-20 2013-04-30 삼성전자주식회사 도전성 버퍼 패턴을 갖는 비-휘발성 메모리소자 및 그 형성 방법
US8912576B2 (en) 2011-11-15 2014-12-16 Shine C. Chung Structures and techniques for using semiconductor body to construct bipolar junction transistors
US9324849B2 (en) 2011-11-15 2016-04-26 Shine C. Chung Structures and techniques for using semiconductor body to construct SCR, DIAC, or TRIAC
US9136261B2 (en) 2011-11-15 2015-09-15 Shine C. Chung Structures and techniques for using mesh-structure diodes for electro-static discharge (ESD) protection
US8861249B2 (en) 2012-02-06 2014-10-14 Shine C. Chung Circuit and system of a low density one-time programmable memory
US8917533B2 (en) 2012-02-06 2014-12-23 Shine C. Chung Circuit and system for testing a one-time programmable (OTP) memory
US9007804B2 (en) 2012-02-06 2015-04-14 Shine C. Chung Circuit and system of protective mechanisms for programmable resistive memories
US9076526B2 (en) 2012-09-10 2015-07-07 Shine C. Chung OTP memories functioning as an MTP memory
US9183897B2 (en) 2012-09-30 2015-11-10 Shine C. Chung Circuits and methods of a self-timed high speed SRAM
TW201417102A (zh) 2012-10-23 2014-05-01 Ind Tech Res Inst 電阻式記憶體裝置
US9324447B2 (en) 2012-11-20 2016-04-26 Shine C. Chung Circuit and system for concurrently programming multiple bits of OTP memory devices
TWI608483B (zh) * 2012-12-07 2017-12-11 上峰科技股份有限公司 可程式編輯電阻元件記憶體、可程式編輯電阻記憶體操作方法及電子系統
US9178143B2 (en) * 2013-07-29 2015-11-03 Industrial Technology Research Institute Resistive memory structure
WO2015023290A1 (en) * 2013-08-16 2015-02-19 Intel Corporation Memory cell with retention using resistive memory
CN104425448B (zh) * 2013-09-10 2019-04-09 中芯国际集成电路制造(上海)有限公司 一种反熔丝结构
WO2015042478A1 (en) * 2013-09-21 2015-03-26 Chung Shine C Circuit and system of using junction diode as program selector for one-time programmable devices
TWI550621B (zh) * 2013-09-21 2016-09-21 上峰科技股份有限公司 單次可編程記憶體、電子系統、操作單次可編程記憶體方法及編程單次可編程記憶體方法
US9087841B2 (en) * 2013-10-29 2015-07-21 International Business Machines Corporation Self-correcting power grid for semiconductor structures method
US9437815B1 (en) * 2014-04-30 2016-09-06 Adesto Technologies Corporation Resistive switching memory device architecture for reduced cell damage during processing
US9412473B2 (en) 2014-06-16 2016-08-09 Shine C. Chung System and method of a novel redundancy scheme for OTP
WO2016080973A1 (en) * 2014-11-19 2016-05-26 Hewlett-Packard Development Company, L.P. A resistive random-access memory in printed circuit board
US20160343719A1 (en) * 2015-05-22 2016-11-24 Globalfoundries Singapore Pte. Ltd. Interposers for integrated circuits with one-time programming and methods for manufacturing the same
US9495627B1 (en) * 2015-12-15 2016-11-15 International Business Machines Corporation Magnetic tunnel junction based chip identification
KR102465966B1 (ko) 2016-01-27 2022-11-10 삼성전자주식회사 메모리 소자, 및 그 메모리 소자를 포함한 전자 장치
CN107204397B (zh) * 2016-03-18 2019-06-21 中国科学院微电子研究所 用于双极性阻变存储器的选择器件及其制备方法
US9953705B2 (en) 2016-04-26 2018-04-24 Western Digital Technologies, Inc. Planar memory cell architectures in resistive memory devices
CN107887389B (zh) * 2016-09-30 2020-08-04 财团法人交大思源基金会 集成电路记忆体及其操作方法
CN108630722B (zh) * 2017-03-22 2020-10-30 中芯国际集成电路制造(上海)有限公司 存储单元及其形成方法、存储阵列结构及其形成方法
US11615859B2 (en) 2017-04-14 2023-03-28 Attopsemi Technology Co., Ltd One-time programmable memories with ultra-low power read operation and novel sensing scheme
US10535413B2 (en) 2017-04-14 2020-01-14 Attopsemi Technology Co., Ltd Low power read operation for programmable resistive memories
US10726914B2 (en) 2017-04-14 2020-07-28 Attopsemi Technology Co. Ltd Programmable resistive memories with low power read operation and novel sensing scheme
US11062786B2 (en) 2017-04-14 2021-07-13 Attopsemi Technology Co., Ltd One-time programmable memories with low power read operation and novel sensing scheme
US10770160B2 (en) 2017-11-30 2020-09-08 Attopsemi Technology Co., Ltd Programmable resistive memory formed by bit slices from a standard cell library
US10991756B2 (en) 2018-10-23 2021-04-27 Taiwan Semiconductor Manufacturing Co., Ltd. Bipolar selector with independently tunable threshold voltages
US11637235B2 (en) 2019-01-18 2023-04-25 Everspin Technologies, Inc. In-plane spin orbit torque magnetoresistive stack/structure and methods therefor
US11107859B2 (en) 2019-08-05 2021-08-31 Taiwan Semiconductor Manufacturing Company, Ltd. Memory cell with unipolar selectors
US11348652B2 (en) * 2019-10-30 2022-05-31 Hefei Reliance Memory Limited Neural network inference accelerator based on one-time-programmable (OTP) memory arrays with one-way selectors
US11663455B2 (en) * 2020-02-12 2023-05-30 Ememory Technology Inc. Resistive random-access memory cell and associated cell array structure
CN113078160A (zh) * 2021-03-30 2021-07-06 上海华力微电子有限公司 一种电可编程熔丝单元及电可编程熔丝阵列

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040113183A1 (en) * 2002-12-13 2004-06-17 Ilya Karpov Isolating phase change memory devices
US20040264244A1 (en) * 2003-06-12 2004-12-30 Sharp Kabushiki Kaisha Nonvolatile semiconductor memory device and control method thereof
US20060108625A1 (en) * 2004-11-23 2006-05-25 Moon-Sook Lee Methods of programming non-volatile memory devices including transition metal oxide layer as data storage material layer and devices so operated
US20070267675A1 (en) * 2006-05-19 2007-11-22 Samsung Electronics Co., Ltd. Nonvolatile memory devices including oxygen-deficient metal oxide layers and methods of manufacturing the same
US20090097300A1 (en) * 2005-12-27 2009-04-16 Kazuya Ishihara Variable resistance element, its manufacturing method and semiconductor memory device comprising the same
US20090272958A1 (en) * 2008-05-02 2009-11-05 Klaus-Dieter Ufert Resistive Memory

Family Cites Families (86)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3198670A (en) 1961-03-09 1965-08-03 Bunker Ramo Multi-tunnel diode
US4148046A (en) 1978-01-16 1979-04-03 Honeywell Inc. Semiconductor apparatus
US4192059A (en) 1978-06-06 1980-03-11 Rockwell International Corporation Process for and structure of high density VLSI circuits, having inherently self-aligned gates and contacts for FET devices and conducting lines
US5962903A (en) 1995-06-08 1999-10-05 Taiwan Semiconductor Manufacturing Company, Ltd. Planarized plug-diode mask ROM structure
JP3220055B2 (ja) 1997-07-17 2001-10-22 松下電器産業株式会社 機械語命令列またはアセンブリ言語命令列を最適化する最適化装置、及び、高級言語で記載されたソースプログラムを機械語またはアセンブリ言語の命令列に変換するコンパイラ装置。
US20030075778A1 (en) 1997-10-01 2003-04-24 Patrick Klersy Programmable resistance memory element and method for making same
US6405160B1 (en) 1998-08-03 2002-06-11 Motorola, Inc. Memory compiler interface and methodology
ATE557342T1 (de) 1998-08-24 2012-05-15 Microunity Systems Eng Prozessor und verfahren zur matrixmultiplikation mit einem breiten operand
JP2000150634A (ja) 1998-11-13 2000-05-30 Mitsubishi Electric Corp 半導体装置およびその製造方法
US6400540B1 (en) 1999-03-12 2002-06-04 Sil.Able Inc. Clamp circuit to prevent ESD damage to an integrated circuit
US6813705B2 (en) 2000-02-09 2004-11-02 Hewlett-Packard Development Company, L.P. Memory disambiguation scheme for partially redundant load removal
JP3367500B2 (ja) 2000-03-15 2003-01-14 日本電気株式会社 半導体装置
US20010043449A1 (en) 2000-05-15 2001-11-22 Nec Corporation ESD protection apparatus and method for fabricating the same
US7058788B2 (en) 2001-02-23 2006-06-06 Falconstor Software, Inc. Dynamic allocation of computer memory
US6483734B1 (en) 2001-11-26 2002-11-19 Hewlett Packard Company Memory device having memory cells capable of four states
US6707729B2 (en) 2002-02-15 2004-03-16 Micron Technology, Inc. Physically alternating sense amplifier activation
US6937528B2 (en) 2002-03-05 2005-08-30 Micron Technology, Inc. Variable resistance memory and method for sensing same
US6803804B2 (en) 2002-05-24 2004-10-12 Raminda U. Madurawe Programmable latch array using antifuses
US6850438B2 (en) 2002-07-05 2005-02-01 Aplus Flash Technology, Inc. Combination nonvolatile memory using unified technology with byte, page and block write and simultaneous read and write operations
US7196369B2 (en) 2002-07-15 2007-03-27 Macronix International Co., Ltd. Plasma damage protection circuit for a semiconductor device
US6778420B2 (en) 2002-09-25 2004-08-17 Ovonyx, Inc. Method of operating programmable resistant element
JP2004193282A (ja) 2002-12-10 2004-07-08 Renesas Technology Corp 不揮発性半導体記憶装置
US7800933B2 (en) 2005-09-28 2010-09-21 Sandisk 3D Llc Method for using a memory cell comprising switchable semiconductor memory element with trimmable resistance
US7638841B2 (en) 2003-05-20 2009-12-29 Fairchild Semiconductor Corporation Power semiconductor devices and methods of manufacture
US20050035410A1 (en) * 2003-08-15 2005-02-17 Yee-Chia Yeo Semiconductor diode with reduced leakage
US7461371B2 (en) 2003-09-11 2008-12-02 Taiwan Semiconductor Manufacturing Company, Ltd. General purpose memory compiler system and associated methods
US6952038B2 (en) 2003-12-08 2005-10-04 Macronix International Co., Ltd. 3D polysilicon ROM and method of fabrication thereof
US7027326B2 (en) 2004-01-05 2006-04-11 International Business Machines Corporation 3T1D memory cells using gated diodes and methods of use thereof
US7511982B2 (en) 2004-05-06 2009-03-31 Sidense Corp. High speed OTP sensing scheme
US7212432B2 (en) 2004-09-30 2007-05-01 Infineon Technologies Ag Resistive memory cell random access memory device and method of fabrication
US7423897B2 (en) 2004-10-01 2008-09-09 Ovonyx, Inc. Method of operating a programmable resistance memory array
US8179711B2 (en) 2004-10-26 2012-05-15 Samsung Electronics Co., Ltd. Semiconductor memory device with stacked memory cell and method of manufacturing the stacked memory cell
US20060092689A1 (en) 2004-11-04 2006-05-04 Daniel Braun Reference current source for current sense amplifier and programmable resistor configured with magnetic tunnel junction cells
US7035141B1 (en) 2004-11-17 2006-04-25 Spansion Llc Diode array architecture for addressing nanoscale resistive memory arrays
US7391064B1 (en) 2004-12-01 2008-06-24 Spansion Llc Memory device with a selection element and a control line in a substantially similar layer
US7487320B2 (en) 2004-12-15 2009-02-03 International Business Machines Corporation Apparatus and system for dynamically allocating main memory among a plurality of applications
US8183665B2 (en) 2005-11-15 2012-05-22 Nantero Inc. Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same
US8217490B2 (en) 2005-05-09 2012-07-10 Nantero Inc. Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same
EP2249351B1 (en) 2005-06-03 2013-05-01 STMicroelectronics Srl Method for multilevel programming of phase change memory cells using a percolation algorithm
US7433247B2 (en) 2005-09-26 2008-10-07 Macronix International Co., Ltd. Method and circuit for reading fuse cells in a nonvolatile memory during power-up
US8115280B2 (en) 2005-10-31 2012-02-14 Taiwan Semiconductor Manufacturing Company, Ltd. Four-terminal gate-controlled LVBJTs
US7701038B2 (en) 2005-10-31 2010-04-20 Taiwan Semiconductor Manufacturing Company, Ltd. High-gain vertex lateral bipolar junction transistor
US20070132049A1 (en) * 2005-12-12 2007-06-14 Stipe Barry C Unipolar resistance random access memory (RRAM) device and vertically stacked architecture
US7728384B2 (en) 2006-05-30 2010-06-01 Macronix International Co., Ltd. Magnetic random access memory using single crystal self-aligned diode
US7495947B2 (en) 2006-07-31 2009-02-24 Sandisk 3D Llc Reverse bias trim operations in non-volatile memory
US20080094885A1 (en) * 2006-10-24 2008-04-24 Macronix International Co., Ltd. Bistable Resistance Random Access Memory Structures with Multiple Memory Layers and Multilevel Memory States
JP4577695B2 (ja) 2006-11-07 2010-11-10 エルピーダメモリ株式会社 半導体記憶装置及び半導体記憶装置の製造方法
US7436695B2 (en) 2006-11-21 2008-10-14 Infineon Technologies Ag Resistive memory including bipolar transistor access devices
CN101271881A (zh) 2007-03-20 2008-09-24 联华电子股份有限公司 熔断后不会造成非线性电流的反熔丝及存储单元
US7802057B2 (en) 2007-12-27 2010-09-21 Intel Corporation Priority aware selective cache allocation
JP4482039B2 (ja) 2008-01-11 2010-06-16 株式会社東芝 抵抗変化型メモリ
US7859043B2 (en) 2008-02-25 2010-12-28 Tower Semiconductor Ltd. Three-terminal single poly NMOS non-volatile memory cell
US20090230446A1 (en) 2008-03-17 2009-09-17 Technology Alliance Group, Inc. Semiconductor device and bypass capacitor module
JP5371274B2 (ja) 2008-03-27 2013-12-18 ルネサスエレクトロニクス株式会社 半導体装置
US8154005B2 (en) 2008-06-13 2012-04-10 Sandisk 3D Llc Non-volatile memory arrays comprising rail stacks with a shared diode component portion for diodes of electrically isolated pillars
US20100091546A1 (en) 2008-10-15 2010-04-15 Seagate Technology Llc High density reconfigurable spin torque non-volatile memory
US20100108980A1 (en) 2008-11-03 2010-05-06 Industrial Technology Research Institute Resistive memory array
KR20100064715A (ko) 2008-12-05 2010-06-15 삼성전자주식회사 저항체를 이용한 비휘발성 메모리 장치
US8089137B2 (en) 2009-01-07 2012-01-03 Macronix International Co., Ltd. Integrated circuit memory with single crystal silicon on silicide driver and manufacturing method
US8305790B2 (en) 2009-03-16 2012-11-06 Taiwan Semiconductor Manufacturing Company, Ltd. Electrical anti-fuse and related applications
US8488362B2 (en) 2009-04-29 2013-07-16 Macronix International Co., Ltd. Graded metal oxide resistance based semiconductor memory device
US8168538B2 (en) 2009-05-26 2012-05-01 Macronix International Co., Ltd. Buried silicide structure and method for making
US8154904B2 (en) 2009-06-19 2012-04-10 Sandisk 3D Llc Programming reversible resistance switching elements
KR20110061912A (ko) 2009-12-02 2011-06-10 삼성전자주식회사 비휘발성 메모리 셀 및 이를 포함하는 비휘발성 메모리 장치
US8589851B2 (en) 2009-12-15 2013-11-19 Memoir Systems, Inc. Intelligent memory system compiler
US20110297912A1 (en) 2010-06-08 2011-12-08 George Samachisa Non-Volatile Memory Having 3d Array of Read/Write Elements with Vertical Bit Lines and Laterally Aligned Active Elements and Methods Thereof
US9019742B2 (en) 2010-08-20 2015-04-28 Shine C. Chung Multiple-state one-time programmable (OTP) memory to function as multi-time programmable (MTP) memory
US20120047322A1 (en) 2010-08-20 2012-02-23 Chung Shine C Method and System of Using One-Time Programmable Memory as Multi-Time Programmable in Code Memory of Processors
US9251893B2 (en) 2010-08-20 2016-02-02 Shine C. Chung Multiple-bit programmable resistive memory using diode as program selector
US9070437B2 (en) 2010-08-20 2015-06-30 Shine C. Chung Circuit and system of using junction diode as program selector for one-time programmable devices with heat sink
US8649203B2 (en) 2010-08-20 2014-02-11 Shine C. Chung Reversible resistive memory using polysilicon diodes as program selectors
US9042153B2 (en) 2010-08-20 2015-05-26 Shine C. Chung Programmable resistive memory unit with multiple cells to improve yield and reliability
US8488359B2 (en) 2010-08-20 2013-07-16 Shine C. Chung Circuit and system of using junction diode as program selector for one-time programmable devices
US8804398B2 (en) 2010-08-20 2014-08-12 Shine C. Chung Reversible resistive memory using diodes formed in CMOS processes as program selectors
US9025357B2 (en) 2010-08-20 2015-05-05 Shine C. Chung Programmable resistive memory unit with data and reference cells
US8913449B2 (en) 2012-03-11 2014-12-16 Shine C. Chung System and method of in-system repairs or configurations for memories
US8988965B2 (en) 2010-11-03 2015-03-24 Shine C. Chung Low-pin-count non-volatile memory interface
US9496265B2 (en) 2010-12-08 2016-11-15 Attopsemi Technology Co., Ltd Circuit and system of a high density anti-fuse
US8848423B2 (en) 2011-02-14 2014-09-30 Shine C. Chung Circuit and system of using FinFET for building programmable resistive devices
US8607019B2 (en) 2011-02-15 2013-12-10 Shine C. Chung Circuit and method of a memory compiler based on subtractive approach
US9136261B2 (en) 2011-11-15 2015-09-15 Shine C. Chung Structures and techniques for using mesh-structure diodes for electro-static discharge (ESD) protection
JP5293800B2 (ja) 2011-12-08 2013-09-18 第一精工株式会社 電気コネクタ
US8861249B2 (en) 2012-02-06 2014-10-14 Shine C. Chung Circuit and system of a low density one-time programmable memory
US8917533B2 (en) 2012-02-06 2014-12-23 Shine C. Chung Circuit and system for testing a one-time programmable (OTP) memory
US9007804B2 (en) 2012-02-06 2015-04-14 Shine C. Chung Circuit and system of protective mechanisms for programmable resistive memories
US9076526B2 (en) 2012-09-10 2015-07-07 Shine C. Chung OTP memories functioning as an MTP memory

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040113183A1 (en) * 2002-12-13 2004-06-17 Ilya Karpov Isolating phase change memory devices
US20040264244A1 (en) * 2003-06-12 2004-12-30 Sharp Kabushiki Kaisha Nonvolatile semiconductor memory device and control method thereof
US20060108625A1 (en) * 2004-11-23 2006-05-25 Moon-Sook Lee Methods of programming non-volatile memory devices including transition metal oxide layer as data storage material layer and devices so operated
US20090097300A1 (en) * 2005-12-27 2009-04-16 Kazuya Ishihara Variable resistance element, its manufacturing method and semiconductor memory device comprising the same
US20070267675A1 (en) * 2006-05-19 2007-11-22 Samsung Electronics Co., Ltd. Nonvolatile memory devices including oxygen-deficient metal oxide layers and methods of manufacturing the same
US20090272958A1 (en) * 2008-05-02 2009-11-05 Klaus-Dieter Ufert Resistive Memory

Also Published As

Publication number Publication date
US20120044747A1 (en) 2012-02-23
US8804398B2 (en) 2014-08-12
TWI479487B (zh) 2015-04-01
CN102522499B (zh) 2014-09-24
CN102522499A (zh) 2012-06-27
TWI445137B (zh) 2014-07-11
CN102376360B (zh) 2015-03-04
CN102376359A (zh) 2012-03-14
CN102376359B (zh) 2014-10-01
TW201225219A (en) 2012-06-16
TW201214430A (en) 2012-04-01
TW201220566A (en) 2012-05-16
CN102376360A (zh) 2012-03-14

Similar Documents

Publication Publication Date Title
TWI492433B (zh) 可逆性可編程電阻式記憶體及提供方法、相變記憶體、電子系統
TWI452680B (zh) 相變記憶體、電子系統、可逆性電阻存儲單元及其提供方法
US9305973B2 (en) One-time programmable memories using polysilicon diodes as program selectors
US8488359B2 (en) Circuit and system of using junction diode as program selector for one-time programmable devices
US10128313B2 (en) Non-volatile memory device and structure thereof
CN106133841B (zh) 单次可编程记忆体、电子系统、操作单次可编程记忆体方法及编程单次可编程记忆体方法
US20220199900A1 (en) Phase-change memory and methods for manufacturing, programming, and reading thereof