TWI490041B - 用於寡聚乙烯之觸媒組成物、寡聚方法及其製備方法 - Google Patents

用於寡聚乙烯之觸媒組成物、寡聚方法及其製備方法 Download PDF

Info

Publication number
TWI490041B
TWI490041B TW097145271A TW97145271A TWI490041B TW I490041 B TWI490041 B TW I490041B TW 097145271 A TW097145271 A TW 097145271A TW 97145271 A TW97145271 A TW 97145271A TW I490041 B TWI490041 B TW I490041B
Authority
TW
Taiwan
Prior art keywords
water
transition metal
metal compound
solution
catalyst
Prior art date
Application number
TW097145271A
Other languages
English (en)
Other versions
TW200930457A (en
Inventor
O Aliyev Vugar
Mosa Fuad
Hassan Al-Hazmi Mohammed
Original Assignee
Saudi Basic Ind Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saudi Basic Ind Corp filed Critical Saudi Basic Ind Corp
Publication of TW200930457A publication Critical patent/TW200930457A/zh
Application granted granted Critical
Publication of TWI490041B publication Critical patent/TWI490041B/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/04Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing carboxylic acids or their salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/12Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides
    • B01J31/128Mixtures of organometallic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/12Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides
    • B01J31/14Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides of aluminium or boron
    • B01J31/143Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides of aluminium or boron of aluminium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/02Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons
    • C07C2/04Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation
    • C07C2/06Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation of alkenes, i.e. acyclic hydrocarbons having only one carbon-to-carbon double bond
    • C07C2/08Catalytic processes
    • C07C2/26Catalytic processes with hydrides or organic compounds
    • C07C2/30Catalytic processes with hydrides or organic compounds containing metal-to-carbon bond; Metal hydrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/20Olefin oligomerisation or telomerisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2531/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • C07C2531/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • C07C2531/04Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing carboxylic acids or their salts
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2531/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • C07C2531/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • C07C2531/12Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides
    • C07C2531/14Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides of aluminium or boron
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Description

用於寡聚乙烯之觸媒組成物、寡聚方法及其製備方法
本發明係關於用於寡聚乙烯之觸媒組成物,藉由寡聚乙烯製備直鏈α-烯烴之方法以及製備觸媒組成物之方法。
具有4至20個碳原子的直鏈α-烯烴在界面活性劑、增塑劑、合成潤滑劑及聚烯烴的製造上為關鍵原料。高純度α-烯烴在低密度聚乙烯的製造及酮化(oxo)製程中特別有價值。直鏈α-烯烴比分枝鏈α-烯烴更具反應性;於α-碳之分枝使反應性急劇降低。在此方面,具有6至18個碳原子(尤其是具有6至10個碳原子)之直鏈α-烯烴特別有用,且被廣泛地以大量使用。
雖然直鏈烯烴為直鏈烷類的脫氫產物,此種產物的主要部分由內部烯烴構成。α-烯烴之製備主要基於乙烯之寡聚化。
此等直鏈α-烯烴通常於乙烯在齊格勒(Ziegler)型觸媒存在下進行催化性寡聚而製備。乙烯寡聚化之關鍵為得到期望之選擇性及產物分布。觸媒及製程條件在此範疇中擔任重要的角色。
用於將乙烯寡聚成直鏈C4 -C30 α-烯烴之觸媒已知包括四氯化鋯及有機鋁化合物。
該已知觸媒之寡聚化通常在溫度約100至150℃及升壓至4-8MPa,於烴溶劑介質中進行。
然而,該已知觸媒之主要缺點為四氯化鋯在烴溶劑中的溶解性不良,觸媒操作的條件嚴苛及其選擇性相對低。在乙烯寡聚化過程中,大量的蠟及多達3.0重量%高分子聚乙烯與該直鏈α-烯烴一起生成。
US 4,783,573中揭示一種基於鋯/鋁錯合物之觸媒系統,其係使用無水氯化鋯與倍半氯化鋁及三乙基鋁在無水苯溶劑中形成。此等成分係在氬氣下攪拌一段時間,形成活性觸媒錯合物。將噻吩加入該觸媒中,推測係做為調節劑。
在120℃,3.4MPa,於無水苯中進行寡聚化之專利實施例,顯示製造具有長鏈長度之α-烯烴的能力,結果如下:C4 -14.9重量%,C6 -15.1重量%,C8 -14.0重量%,C10 -C18 -40.2重量%,C20+ -14.2重量%,及蠟-1.6重量%。此方法之缺點為C20+ 之α-烯烴的高產率。另一個缺點為高反應溫度。此方法之另一個缺點,為用做溶劑之苯為已知之致癌物質。
US 5,260,500中揭示使用醇(甲醇及/或乙醇)做為第三成份,以製造無污染物之高純度α-烯烴。此系統之缺點為C20+ 部分的高產率。
EP 0 953 556 B1中揭示一種基於鎳之觸媒系統,其中在乙烯寡聚化之方法中,於極性有機液體中添加水做為觸媒系統之溶劑下所製造之直鏈α-烯烴寡聚物,與無水存在下所形成者相較,純度較高。根據此專利,無水存在下,癸烯部分之95.05重量%為癸烯-1;於含約1.0重量%水之環丁碸存在下,該癸烯部分之95.99重量%為癸烯-1。
再者,WO 80/00224及DE 4338414亦揭示一種觸媒,其包括通式(RCOO)m ZrCl4-m 之羧酸鋯及通式Rn AlX3-n 之有機鋁化合物。此觸媒系統之主要缺點為產生非預期且有問題之副產物,諸如蠟及/或聚合物(聚乙烯,分枝及/或交聯PE)的形成。此觸媒系統之另一項缺點為高助觸媒/活化劑消耗量。觸媒/助觸媒比率為能夠進行α-烯烴分佈之調節的關鍵參數。觸媒/助觸媒比率高利於產生低分子量寡聚物,但代價為產生分枝之C10+ 部分。
蠟及/或聚合物之形成,即使為少量,對於製造寡聚物的整個製程有不利影響,因為副產物不僅降低預期之寡聚物的產率及其純度,並且降低製程設備的工作時間,因為蓄積在反應器中的固體聚合物必須定期去除,其只有在暫停寡聚化製程的情況下才能進行,代價為設備的時間損失。
因此,目前存在一個大需求:開發一種改良之觸媒系統,其可提供相等或甚至較大之觸媒活性,同時消除全部或至少一部分上述的問題,並降低最後觸媒的成本。
於是,本發明之目的為提供一種能克服先前技藝之缺失之觸媒組成物,更特定而言,為提供一種能使所產生之α-烯烴之純度較高,同時使反應器中形成之蠟/聚合物減至最少之觸媒組成物。尤其,提供具有6至10個碳原子之α-烯烴。
再者,提供一種藉由乙烯之寡聚化製備直鏈α-烯烴之方法,以及製備該觸媒組成物之方法。
該第一目的係藉由一種寡聚乙烯之觸媒組成物而達成,該觸媒組成物包含:
(i)至少經部份水解之過渡金屬化合物,其係藉由以控制方式將水添加至具有通式MXm (OR’)4-m 或MXm (OOCR’)4-m 之過渡金屬化合物而得到,其中R’為烷基、烯基、芳基、芳烷基或環烷基;X為鹵素,以Cl或Br為較佳;以及m為0至4,以0至3為較佳;以及
(ii)作為助觸媒之有機鋁化合物,
其中水與過渡金屬化合物之莫耳比為在約0.01:1至3:1之範圍內。
該水與過渡金屬化合物之莫耳比以在約0.1:1至2:1之範圍內為較佳。
該過渡金屬化合物以鋯化合物為更佳。
該鋯化合物最佳為具有式(R2 COO)m ZrCl4-m 之羧酸鋯,式中R2 為烷基、烯基、芳基、芳烷基或環烷基,以及m為在0至4之範圍內的任何數目。
在一個具體實施例中,該有機鋁化合物具有通式R1 n AlZ3-n 或Al2 Z3 R1 3 ,式中R1 代表具有1至20個碳原子之烷基;Z代表Cl、Br或I;n係在範圍內的任何數目。
該有機鋁化合物以Al(C2 H5 )3 、Al2 Cl3 (C2 H5 )3 、AlCl(C2 H5 )2 或其混合物為較佳。根據本發明之更佳具體實施例,該有機鋁化合物為乙基鋁倍半氯化物及/或二乙基鋁氯化物。
再者,該有機鋁化合物與該過渡金屬化合物之莫耳比以在1:1至40:1之範圍內為較佳。
該過渡金屬化合物以經部分水解為更佳。
根據本發明,亦為一種藉由於存在有機溶劑及本發明觸媒組成物下寡聚乙烯而製備直鏈α-烯烴之方法。
同時提供一種製備本發明觸媒組成物之方法,包含下述步驟:
(i)以控制方式將水添加至過渡金屬化合物,其中該過渡金屬化合物係以溶液形式提供;以及
(ii)將有機鋁化合物與至少經部分水解之過渡金屬化合物之溶液合併。
其中在步驟(i)中之水係遞增地添加,如水蒸氣形態,以分段或依續的方式,較佳為滴加,或藉由從含水的固體釋出而添加。
更佳者係於添加水期間或之後,將該溶液攪拌1分鐘至60分鐘,較佳1分鐘至約30分鐘,較佳係於室溫進行。
令人驚異地,發現控制水之添加量以至少將過渡金屬化合物(以鋯化合物為較佳)部分水解,可改善該觸媒組成物,提供具有較高純度的α-烯烴,其中反應器中蠟/聚合物之形成亦減至最少。以控制量之水做為調節劑,將過渡金屬化合物部分水解。尤其將鋯觸媒前驅物(precursor)與做為助觸媒的氯化有機鋁化合物合用,將使乙烯選擇性寡聚化,形成高純度的直鏈α-烯烴且聚合物/蠟之形成明顯降低。
再者,該觸媒組成物亦呈現高活性及生產性,且僅需比先前技術之觸媒量相對低之助觸媒量,即可生產在期望之分子量範圍內(亦即C4 -C20 範圍,而以C6 -C10 為較佳)的直鏈烯烴。
再者,製程設備的工作時間可延長,且清除反應器中固態聚合物堆積的費用可降低。因此,生產批次可增加。
對於熟習此技術者而言,可清楚明白術語「部分水解」的涵義。詳細而言,使用過渡金屬化合物係做為起始原料,非常小心地添加水後,將該過渡金屬化合物水解,亦即將烷醇或羧酸基團(至少一部分)從金屬移除(可能分別形成ROH或ROOH脫離基)。換句話說,上述水與過渡金屬化合物之莫耳比,為以控制方式加入之水與過渡金屬起始化合物的莫耳比。
製備直鏈α-烯烴之方法中使用的觸媒組成物以存在於惰性有機溶劑為較佳。適合之有機溶劑的實例包括未經取代或經鹵素取代之芳香族烴溶劑,諸如甲苯、苯、二甲苯、氯苯、二氯苯、氯甲苯等;脂肪族石蠟烴,諸如戊烷、己烷、庚烷、辛烷、壬烷、癸烷等;脂環族烴化合物,諸如環己烷、十氫萘等;鹵化烷類諸如二氯乙烷、二氯丁烷等。可使用溶劑之混合物控制產物分子量分佈,以得到對期望之烯烴產物的最大選擇性。
特定水解比(水對過渡金屬化合物之莫耳比)可用以控制水解程度。該水解比影響反應速率。再者,添加水於過渡金屬化合物溶液之模式確實影響水解速率。例如,加水之後,立即產生群聚狀顆粒,或未出現可見到的顆粒形成,此係取決於添加之方法。
有數個能影響水解速率的因素,例如有機基的性質、金屬配位數目、前驅物的官能性等。該水解反應本身可藉由直接被供應至過渡金屬化合物的水量及添加速率而控制。水可間歇地,或以階段或接續方式供應,總體添加無法獲得期望的反應,造成過量水解連帶不溶物之沉澱。加水有各種方法。較佳的方法為使過渡金屬化合物溶於烴之溶液保持攪拌下逐滴進行。為能具有期望的結果,攪拌時間很重要。攪拌時間可在1分鐘至60分鐘之範圍內,以約1分鐘至約30分鐘為較佳,又以在室溫下為較佳。
此外,該水可使用氮氣流添加,以將水蒸氣導入反應中。亦可使用含水固體,其可為水合材料或已吸收水分的多孔性材料。
因此,必須控制水的添加,水之總量不可以總體方式添加,亦即不一次進料,而必須以控制方式小心地添加,以特別防止沉澱之形成。
在一個較佳具體實施例中,使用注射器於室溫下將已計量的水逐滴添加至過渡金屬化合物之溶液中。當加水時,較佳同時將混合物攪拌。依據水之用量,當添加水時,由於水解,可能觀察到一些沉澱。通常,攪拌之後不再觀察到沉澱。
本發明之觸媒組成物可被利用於製備直鏈α-烯烴之方法,反應溫度為約50℃至約110℃,而以在約60℃與約100℃之間為較佳。
鋯化合物中之Zr金屬濃度(重量%)可從2重量百分比變化至10重量百分比,而以3重量百分比至7重量百分比為較佳。
此寡聚化可在熟習此技術者所知之通常反應條件(如溫度、壓力等)下進行。
本發明之更多特徵及優點從以下實施例對於較佳具體實施例的詳細說明當可顯而易知。
實驗條件:
所有物料係在氮氣中操作,使用舒倫克技術(Schlenk techniques)或充滿氮氣的手套箱(glove box)。氮氣及甲苯係由工廠來源供應,可視需要經由另加之分子篩床乾燥。
實施例
羧酸鋯之合成係依照已知之方法進行。
乙烯之寡聚化係以下列步驟進行:
寡聚化係在2公升不銹鋼反應器中進行。將製備之觸媒溶液加入反應器中。將乙烯倒入反應器中,直到獲得預期之壓力,並於整個反應期間維持預期的溫度。以足以維持反應壓力所需之量之方式持續導入乙烯。持續反應1小時並維持此反應條件後,將乙烯供應中斷,並藉由添加約20ml乙醇使反應停止。將反應混合物之溫度調至10℃後,藉由位於反應器底部之閥收集溶液樣本,並藉由氣體層析法分析,測定形成之烯烴的量及類型。去除乙烯超出之壓力後,打開反應器,檢測任何可能之聚合物形成。從舒爾茨-弗洛里(Schulz-Flory)分佈估算C4 -C6 部分之產率,因為在操作樣本時無可避免地有某種程度之損失。
實施例1
在Zr(i-C3 H7 COO)4 (1.25mmol)溶於甲苯(3.25mL)之溶液中,將水逐滴注入,成為H2 O/Zr=0.44。將此混合物在室溫攪拌15分鐘。繼而從此溶液中抽取0.25mmol之Zr(i-C3 H7 COO)4 並加入放置於250ml圓底燒瓶之200ml甲苯中。繼而將純淨的EASC(Al/Zr=17.5)加入此混合物中。繼而將由此形成之觸媒溶液在惰性氣流下轉移至反應器。反應在80℃及30巴(bar)乙烯壓力下進行。寡聚化時間為60分鐘。形成193g之LAO;LAO之產量為8465g LAO/g Zr。得到澄清之液體。在產物中未觀察到蠟形成。只有微量固體聚合物被檢測到,亦即因含量太低而無法精確地測定。
實施例2
在Zr(i-C3 H7 COO)4 (1.25mmol)於甲苯(3.25mL)之溶液中,將水逐滴注入,成為H2 O/Zr=1.08。將此混合物攪拌15分鐘。繼而從此溶液中抽取0.25mmol之Zr(i-C3 H7 COO)4 並加入放置於250ml圓底燒瓶之200ml甲苯中。繼而將純淨的EASC(Al/Zr=17.5)加入此混合物中。繼而將如此形成之觸媒溶液在惰性氣流下轉移至反應器。反應在80℃及30巴乙烯壓力下進行。寡聚化時間為60分鐘。形成173g之LAO;LAO之產量為7588g LAO/g Zr。得到澄清之液體。在產物中未觀察到蠟形成。只有微量固體聚合物被檢測到,亦即因含量太低而無法精確地測定。
實施例3
在Zr(i-C3 H7 COO)4 (1.25mmol)於甲苯(3.25mL)之溶液中,將水逐滴注入,成為H2 O/Zr=1.32。將此混合物攪拌15分鐘。繼而從此溶液中抽取0.25mmol之Zr(i-C3 H7 COO)4 並加入放置於250ml圓底燒瓶之200ml甲苯中。繼而將純淨的EASC(Al/Zr=17.5)加入此混合物中。將如此形成之觸媒溶液在惰性氣流下轉移至反應器。反應在80℃及30巴乙烯壓力下進行。寡聚化時間為60分鐘。形成162g之LAO;LAO之產量為7105g LAO/g Zr。得到澄清之液體。未觀察到蠟/聚合物形成。
實施例4
在Zr(i-C3 H7 COO)4 (1.25mmol)於甲苯(3.25mL)之溶液中,將水逐滴注入,成為H2 O/Zr=0.44。將此混合物攪拌15分鐘。繼而從此溶液中抽取0.25mmol之Zr(i-C3 H7 COO)4 並加入放置於250ml圓底燒瓶之200ml甲苯中。繼而將純淨的EASC(Al/Zr=35)加入此混合物中。繼而將如此形成之觸媒溶液在惰性氣流下轉移至反應器。反應在80℃及30巴乙烯壓力下進行。寡聚化時間為60分鐘。形成155g之LAO;LAO之產量為6798g LAO/g Zr。得到澄清之液體。未觀察到蠟/聚合物形成。
實施例5
在Zr(i-C3 H7 COO)4 (1.35mmol)於甲苯(3.25mL)之溶液中,將水逐滴注入,成為H2 O/Zr=0.82。將此混合物攪拌15分鐘。繼而從此溶液中抽取0.25mmol之Zr(i-C3 H7 COO)4 並加入放置於250ml圓底燒瓶之200ml甲苯中。繼而將純淨的EASC(Al/Zr=17.5)加入此混合物中。將由此形成之觸媒溶液在惰性氣流下轉移至反應器。反應在70℃及30巴乙烯壓力下進行。寡聚化時間為60分鐘。形成186g之LAO;LAO之產量為8157g LAO/g Zr。得到澄清之液體。未觀察到蠟/聚合物形成。
實施例6
在Zr(i-C3 H7 COO)4 (6.25mmol)於甲苯(11ml)之溶液中,將水注入,成為H2 O/Zr=0.68。將此混合物攪拌15分鐘。繼而從此溶液中抽取0.25mmol之Zr(i-C3 H7 COO)4 並加入放置於250ml圓底燒瓶之200ml甲苯中。繼而將純淨的EASC(Al/Zr=17.5)加入此混合物中。繼而將由此形成之觸媒溶液在惰性氣流下轉移至反應器。反應在75℃及30巴乙烯壓力下進行。寡聚化時間為60分鐘。形成245g之LAO;LAO之產量為10745g LAO/g Zr。得到澄清之液體。未觀察到蠟/聚合物形成。
實施例7
1個月後,使用與實施例6中記載之相同步驟測試實施例6所製備之經相同水解的鋯觸媒溶液(在取得需要量之前,將樣本混合1分鐘),以驗證其再製性(reproducibility)。如果觸媒溶液貯存較長時間,可能需要將該溶液週期性攪拌以防止沉澱。形成234g之LAO;LAO之產量為10263g LAO/g Zr。得到澄清之液體。未觀察到蠟/聚合物形成。
比較例1
將200ml甲苯、0.25mmol之Zr(i-C3 H7 COO)4 及純淨的乙基鋁倍半氯化物(EASC)(Al/Zr=35)在250ml圓底燒瓶中混合。繼而將由此形成之觸媒溶液在惰性氣流下轉移至反應器。反應在80℃及30巴乙烯壓力下進行。寡聚化時間為60分鐘。形成213g之LAO;產量為9342g LAO/g Zr。可觀察到微量之固體聚合物。
比較例2
除Al/Zr=17.5之外,重覆與比較例1相同之步驟。反應在80℃及30巴乙烯壓力下進行。寡聚化時間為60分鐘。形成460g之LAO及0.2g之副產物聚乙烯;產量為20175g LAO/g Zr。形成高含量之蠟,其無法藉由GC精確地分析。
比較例3
除在甲苯中刻意加入設定量之水,於甲苯中有20ppm水之外,重覆與比較例1相同之步驟。形成153g之LAO;產量為6710g LAO/g Zr。此實驗結果顯示產物純度急劇地降低(主要由於甲苯之Friedel-Crafts烷化反應)。同時可觀察到聚合物形成之明顯增加,其主要沉積在反應器壁、攪拌器及測溫插套(thermowell)。
以下表1總結記載所得到之α-烯烴的鏈長分佈,而表2總結記載所得到之LAO-部分之純度。
從上述表格,可發現依據本發明之觸媒組成物可獲得具有高含量預期之C6 -C10 α-烯烴的α-烯烴分佈。如表2中所示,依據本發明之觸媒組成物所得到之部分之純度亦明顯地改善。
以上說明及申請專利範圍中所揭示之特徵,無論為分開或以任何組合方式,均包含以各種形式實現本發明之事物。

Claims (6)

  1. 一種藉由寡聚乙烯而製備直鏈α-烯烴之方法,包含:在寡聚合條件下,將乙烯與一觸媒組成物接觸,該觸媒組成物包含:(i)至少經部份水解之過渡金屬化合物,其係藉由以控制方式將水添加至具有通式MXm (OOCR’)4-m 之過渡金屬化合物而得到,其中R’為烷基、烯基、芳基、芳烷基或環烷基;X為鹵素;以及m為0至3;以及(ii)作為助觸媒之有機鋁化合物,其中水與過渡金屬化合物之莫耳比為在約0.01:1至3:1之範圍內。
  2. 一種製備觸媒組成物之方法,該觸媒組成物包含(a)至少經部份水解之過渡金屬化合物,其係藉由以控制方式將水添加至具有通式MXm (OOCR’)4-m 之過渡金屬化合物而得到,其中R’為烷基、烯基、芳基、芳烷基或環烷基;X為鹵素;以及m為0至3;以及(b)作為助觸媒之有機鋁化合物,其中水與過渡金屬化合物之莫耳比為在約0.01:1至3:1之範圍內,該方法包含下述步驟:(i)以控制方式將水添加至過渡金屬化合物,其中該過渡金屬化合物係以溶液形式提供;以及(ii)將有機鋁化合物與至少經部分水解之過渡金屬化合物之溶液合併。
  3. 如申請專利範圍第2項之方法,其中在步驟(i)中之水係遞增地添加,以分段或依序的方式,如水蒸氣形態,或 藉由從含水的固體釋出而添加。
  4. 如申請專利範圍第3項之方法,其中在步驟(i)中之水係以滴加。
  5. 如申請專利範圍第2至4項中任一項之方法,其中於添加水期間及/或之後,將該溶液攪拌1分鐘至60分鐘,且於室溫進行。
  6. 如申請專利範圍第5項之方法,其中該溶液攪拌1分鐘至30分鐘。
TW097145271A 2007-12-12 2008-11-21 用於寡聚乙烯之觸媒組成物、寡聚方法及其製備方法 TWI490041B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP07024098 2007-12-12

Publications (2)

Publication Number Publication Date
TW200930457A TW200930457A (en) 2009-07-16
TWI490041B true TWI490041B (zh) 2015-07-01

Family

ID=39345145

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097145271A TWI490041B (zh) 2007-12-12 2008-11-21 用於寡聚乙烯之觸媒組成物、寡聚方法及其製備方法

Country Status (12)

Country Link
US (1) US8481444B2 (zh)
EP (1) EP2225033B1 (zh)
JP (1) JP5450439B2 (zh)
KR (1) KR101495386B1 (zh)
CN (1) CN101888902B (zh)
BR (1) BRPI0820666B1 (zh)
CA (1) CA2707122C (zh)
MY (1) MY152801A (zh)
RU (1) RU2462309C2 (zh)
SG (1) SG186615A1 (zh)
TW (1) TWI490041B (zh)
WO (1) WO2009074203A1 (zh)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2013207783B2 (en) 2012-01-13 2017-07-13 Lummus Technology Llc Process for providing C2 hydrocarbons via oxidative coupling of methane and for separating hydrocarbon compounds
EP2855005A2 (en) 2012-05-24 2015-04-08 Siluria Technologies, Inc. Oxidative coupling of methane systems and methods
US9969660B2 (en) 2012-07-09 2018-05-15 Siluria Technologies, Inc. Natural gas processing and systems
US9598328B2 (en) 2012-12-07 2017-03-21 Siluria Technologies, Inc. Integrated processes and systems for conversion of methane to multiple higher hydrocarbon products
WO2015081122A2 (en) 2013-11-27 2015-06-04 Siluria Technologies, Inc. Reactors and systems for oxidative coupling of methane
US10301234B2 (en) 2014-01-08 2019-05-28 Siluria Technologies, Inc. Ethylene-to-liquids systems and methods
EP3097068A4 (en) 2014-01-09 2017-08-16 Siluria Technologies, Inc. Oxidative coupling of methane implementations for olefin production
US10377682B2 (en) 2014-01-09 2019-08-13 Siluria Technologies, Inc. Reactors and systems for oxidative coupling of methane
ES2913079T3 (es) * 2014-07-18 2022-05-31 Sabic Global Technologies Bv Composición catalizadora y proceso para preparar alfa-olefinas lineales
US9334204B1 (en) 2015-03-17 2016-05-10 Siluria Technologies, Inc. Efficient oxidative coupling of methane processes and systems
US10793490B2 (en) 2015-03-17 2020-10-06 Lummus Technology Llc Oxidative coupling of methane methods and systems
US20160289143A1 (en) 2015-04-01 2016-10-06 Siluria Technologies, Inc. Advanced oxidative coupling of methane
WO2016205411A2 (en) 2015-06-16 2016-12-22 Siluria Technologies, Inc. Ethylene-to-liquids systems and methods
US9328297B1 (en) 2015-06-16 2016-05-03 Siluria Technologies, Inc. Ethylene-to-liquids systems and methods
US10513473B2 (en) 2015-09-18 2019-12-24 Chevron Phillips Chemical Company Lp Ethylene oligomerization/trimerization/tetramerization reactor
US10519077B2 (en) 2015-09-18 2019-12-31 Chevron Phillips Chemical Company Lp Ethylene oligomerization/trimerization/tetramerization reactor
EP3362425B1 (en) 2015-10-16 2020-10-28 Lummus Technology LLC Separation methods and systems for oxidative coupling of methane
CN107282114B (zh) * 2016-03-31 2020-04-07 中国石油化工股份有限公司 一种乙烯三聚用催化剂组合物及其应用
CN107282131B (zh) * 2016-03-31 2020-04-07 中国石油化工股份有限公司 催化剂组合物及其在乙烯四聚中的应用
CN107282128B (zh) * 2016-03-31 2020-02-18 中国石油化工股份有限公司 一种乙烯四聚催化剂组合物及乙烯四聚方法
CN107282133B (zh) * 2016-03-31 2020-02-18 中国石油化工股份有限公司 乙烯四聚催化剂组合物及应用
CN107282129B (zh) * 2016-03-31 2020-04-03 中国石油化工股份有限公司 一种乙烯三聚、四聚催化剂组合物及其应用
WO2017180910A1 (en) 2016-04-13 2017-10-19 Siluria Technologies, Inc. Oxidative coupling of methane for olefin production
WO2018118105A1 (en) 2016-12-19 2018-06-28 Siluria Technologies, Inc. Methods and systems for performing chemical separations
RU2764097C2 (ru) 2017-05-23 2022-01-13 Люммус Текнолоджи Ллс Интеграция окислительного сочетания в метановые установки
CN109206447B (zh) * 2017-07-06 2021-07-09 中国石油化工股份有限公司 乙烯齐聚催化剂及其制备方法和应用
RU2020102298A (ru) 2017-07-07 2021-08-10 Люммус Текнолоджи Ллс Системы и способы окислительного сочетания метана
IN201921051272A (zh) * 2019-12-11 2022-01-06
US11667590B2 (en) * 2021-05-26 2023-06-06 Chevron Phillips Chemical Company, Lp Ethylene oligomerization processes

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4513095A (en) * 1980-11-24 1985-04-23 National Distillers And Chemical Corporation Intermetallic compounds of polymeric transition metal oxide alkoxides and catalytic use thereof

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE973626C (de) * 1953-11-17 1960-04-14 Karl Dr Dr E H Ziegler Verfahren zur Herstellung von hochmolekularen Polyaethylenen
US4442309A (en) * 1960-09-14 1984-04-10 Exxon Reserch And Engineering Co. Preparation of linear olefin products
FR1458120A (fr) * 1965-02-19 1966-03-04 Inst Francais Du Petrole Procédé de polymérisation d'oxydes d'alcoylènes
US3803105A (en) * 1969-01-10 1974-04-09 Montedison Spa Polymerization catalysts
US4434312A (en) * 1978-03-02 1984-02-28 Exxon Research And Engineering Co. Preparation of linear olefin products
SU1042701A1 (ru) 1978-07-19 1983-09-23 Отделение ордена Ленина института химической физики АН СССР Катализатор дл олигомеризации этилена в высшие альфа-олефины
US4668838A (en) * 1986-03-14 1987-05-26 Union Carbide Corporation Process for trimerization
DE3675385D1 (de) * 1986-04-17 1990-12-06 Idemitsu Petrochemical Co Verfahren zur herstellung von linearen alpha-olefinen.
JP2761544B2 (ja) * 1989-09-14 1998-06-04 出光石油化学株式会社 線状α―オレフィンの製造方法
JP2538811B2 (ja) 1990-10-19 1996-10-02 出光石油化学株式会社 線状α―オレフィンの製造方法
DE4338414C1 (de) 1993-11-10 1995-03-16 Linde Ag Verfahren zur Herstellung linearer Olefine
DE4338416C1 (de) * 1993-11-10 1995-04-27 Linde Ag Löslicher Katalysator für die Herstellung von linearen alpha-Olefinen durch Oligomerisierung von Ethylen
US5744679A (en) * 1996-12-27 1998-04-28 Uop Llc Using water concentration to control ethylene oligomerization
JP3936009B2 (ja) * 1997-02-03 2007-06-27 出光興産株式会社 線状α−オレフィンの製造方法
US6930218B2 (en) * 2001-01-23 2005-08-16 Indian Petrochemicals Corporation Limited Process for the preparation of linear low molecular weight olefins by the oligomerization of ethylene
DE10103446C5 (de) * 2001-01-25 2007-06-28 Kettenbach Gmbh & Co. Kg Zweistufig härtbare mischergängige Materialien
US20050014983A1 (en) * 2003-07-07 2005-01-20 De Boer Eric Johannes Maria Process for producing linear alpha olefins
US7323611B2 (en) * 2005-06-28 2008-01-29 Sumitomo Chemical Company Limited Process for producing olefin oligomer
US7550639B2 (en) * 2005-07-27 2009-06-23 Sumitomo Chemical Company, Limited Process for producing olefin oligomer
EP1759766B1 (en) * 2005-08-31 2010-10-13 Saudi Basic Industries Corporation Process for the preparation of linear alpha-olefins and catalyst used therein

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4513095A (en) * 1980-11-24 1985-04-23 National Distillers And Chemical Corporation Intermetallic compounds of polymeric transition metal oxide alkoxides and catalytic use thereof

Also Published As

Publication number Publication date
JP5450439B2 (ja) 2014-03-26
TW200930457A (en) 2009-07-16
JP2011506069A (ja) 2011-03-03
WO2009074203A1 (en) 2009-06-18
CA2707122C (en) 2016-04-26
CA2707122A1 (en) 2009-06-18
US20100292423A1 (en) 2010-11-18
EP2225033B1 (en) 2017-10-04
US8481444B2 (en) 2013-07-09
KR101495386B1 (ko) 2015-02-24
BRPI0820666B1 (pt) 2019-01-22
BRPI0820666A2 (pt) 2018-05-29
CN101888902A (zh) 2010-11-17
EP2225033A1 (en) 2010-09-08
RU2462309C2 (ru) 2012-09-27
MY152801A (en) 2014-11-28
KR20100092448A (ko) 2010-08-20
RU2010128550A (ru) 2012-01-20
SG186615A1 (en) 2013-01-30
CN101888902B (zh) 2013-11-13

Similar Documents

Publication Publication Date Title
TWI490041B (zh) 用於寡聚乙烯之觸媒組成物、寡聚方法及其製備方法
CN106061607B (zh) 具有原位催化剂制备的连续乙烯低聚化
EP2646401B2 (en) Heat management in ethylene oligomerization
JP6228724B2 (ja) チタンをベースとする錯体と、ヘテロ原子によって官能基化されたアルコキシリガンドとを含む組成物を用いる、エチレンのブタ−1−エンへの二量体化のための方法
US9260358B2 (en) Process for oligomerization of olefins that uses a catalytic composition that comprises an organometallic complex that contains a phenoxy ligand that is functionalized by a heteroatom
EP3077350B1 (en) Ethylene oligomerization with mixed ligands
TWI434733B (zh) 催化劑組合物及其用於製備直鏈型α-烯烴之方法
US8524845B2 (en) Catalyst composition and a process for the oligomerization of ethylene
JP5229898B2 (ja) 線状アルファオレフィンの調製方法およびそれに用いられる触媒
JP2538811B2 (ja) 線状α―オレフィンの製造方法
TWI544962B (zh) 用於寡聚乙烯之觸媒組成物
JP2002020413A (ja) α−オレフィンの製造方法

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees