TWI479675B - 發光之奈米複合顆粒 - Google Patents

發光之奈米複合顆粒 Download PDF

Info

Publication number
TWI479675B
TWI479675B TW097124448A TW97124448A TWI479675B TW I479675 B TWI479675 B TW I479675B TW 097124448 A TW097124448 A TW 097124448A TW 97124448 A TW97124448 A TW 97124448A TW I479675 B TWI479675 B TW I479675B
Authority
TW
Taiwan
Prior art keywords
core
semiconductor
shell
quantum dots
conductive
Prior art date
Application number
TW097124448A
Other languages
English (en)
Other versions
TW200908397A (en
Inventor
Keith B Kahen
Original Assignee
Eastman Kodak Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eastman Kodak Co filed Critical Eastman Kodak Co
Publication of TW200908397A publication Critical patent/TW200908397A/zh
Application granted granted Critical
Publication of TWI479675B publication Critical patent/TWI479675B/zh

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • H05B33/145Arrangements of the electroluminescent material

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Luminescent Compositions (AREA)

Description

發光之奈米複合顆粒 與聯邦贊助之研究或開發相關之聲明
本發明係在政府支持下根據DOE授予之合作協定#DE-FC26-06NT42864進行。政府對本發明具有某些權利。
自20世紀60年代初期以來已製成半導體發光二極體(LED)裝置,且目前製造半導體發光二極體(LED)裝置以用於廣泛範圍之消費者及商業應用中。包含LED之層係基於需要超高真空技術(諸如,金屬有機化學氣相沈積(MOCVD))用於其生長之晶態半導體材料。另外,該等層通常需要生長於幾乎晶格匹配之基板上以形成無缺陷層。該等基於結晶之無機LED具有以下優點:高亮度(歸因於具有高導電性之層)、長壽命、良好環境穩定性及良好外部量子效率。使用產生所有該等優點之晶態半導體層亦導致若干缺點。顯著的缺點為製造成本高、組合來自同一晶片之多色輸出存在困難及需要成本高且剛性之基板。
在20世紀80年代中期,基於使用小分子量分子發明了有機發光二極體(OLED)(Tang等人,Appl. Phys. Lett. 51, 913(1987))。在20世紀90年代初期,發明了聚合LED(Burroughes等人,Nature 347, 539 (1990))。在隨後的15年裏,基於有機物之LED顯示器已進入市場且在裝置壽命、效率及亮度方面均有大的改良。舉例而言,含磷光發射體之裝置具有高達19%之外部量子效率;而裝置壽命經常規報告為好幾萬小時。與基於結晶之無機LED相比,OLED具有大大降 低之亮度(主要歸因於小載流子遷移率)、較短壽命,且裝置操作需要昂貴封裝。另一方面,OLED享有以下益處:潛在較低之製造成本、自同一裝置發射多色之能力及可撓性顯示器之發展前景(若可解決封裝問題)。
為了改良OLED之效能,在20世紀90年代後期,引入了含有有機物與量子點之混合發射體的OLED裝置(Matoussi等人,J. Appl. Phys. 83, 7965 (1998))。向發射體層添加量子點之優點在於:可增強裝置之色域;可藉由簡單改變量子點粒度獲得紅色、綠色及藍色發射;且可降低製造成本。由於諸如發射體層中量子點聚集之問題,故與典型OLED裝置相比,該等裝置之效率相當低。當使用量子點之純淨膜(neat film)作為發射體層時,效率甚至更不良(Hikmet等人,J. Appl. Phys. 93, 3509 (2003))。該不良效率係歸因於量子點層之絕緣性質。後來,在有機電洞與電子傳遞層之間沈積量子點單層膜後,效率得以提高(至約1.5 cd/A)(Coe等人,Nature 420, 800 (2002))。據說主要由於有機分子上之激發子之Forster能量轉移(有機分子上發生電子-電洞重組)而發生量子點之發光。不管效率未來有何改良,該等混合式裝置仍具有與純OLED裝置相關之所有缺點。
最近,藉由在真空沈積(MOCVD)n型GaN層與p型GaN層之間夾入單層厚核/殻CdSe/ZnS量子點層來構造幾乎全無機LED(Mueller等人,Nano Letters 5, 1039 (2005))。所得裝置具有0.001%至0.01%之不良外部量子效率。該問題部 分可與據報導在生長後出現之三辛基氧化膦(TOPO)及三辛基膦(TOP)之有機配位體相關。該等有機配位體為絕緣體且會導致電子及電洞於量子點之注入不良。另外,結構之其餘部分歸因於使用由高真空技術來生長之電子及電洞半導電層及使用藍寶石基板而製造成本高昂。
Alivisatos等人之美國專利第5,537,000號(其整體揭示內容係以引用之方式併入本文中)描述一種電致發光裝置,其中發光層包括形成於一或多個單層中之半導體奈米晶體(量子點)。單層係(例如)藉由使用多官能聯結劑形成,該多官能聯結劑使奈米晶體鍵結該又鍵結基板或支撐物之聯結劑以形成第一單層。隨後可再次使用聯結劑以使奈米晶體之第一單層與後續奈米晶體單層鍵結。適用之聯結劑包括雙官能硫酚及含有硫醇基及羧基之聯結劑。有機聯結劑為電子及電洞之不良導體。因此,Alivisatos等人未提供足以將載流子傳導至發光層中且進一步傳導至量子點中以達成高效光發射之構件。
Su等人之美國專利第6,838,816號(其整體揭示內容係以引用之方式併入本文中)描述使用發光膠態奈米顆粒(量子點)製造發光源之方法。膠態奈米顆粒可均勻分散於可塗佈於基板上以形成發光層之液體中。在某些狀況下,向膠態奈米顆粒層中添加SiO2 顆粒,且使該層退火。添加該等顆粒有助於密封該層且保護量子點以免與環境氧相互作用。雖然向LED併入中發光層,然而,所獲得之光發射並不足夠高,因為Su等人之方法亦未提供使電子及電洞在發 光層內傳導且進入量子點發射體中之良好構件。
Kahen之美國專利申請公開案第2007/0057263號(其整體揭示內容係以引用之方式併入本文中)描述由核/殻量子點發射體及半導體奈米顆粒之膠態分散系形成之無機發光層。核/殻量子點係由可承受其合成中所使用之溫度之非揮發性配位體製備。將量子點自合成中所使用之溶劑中分離,且將非揮發性配位體換成揮發性配位體。藉由混合具有揮發性配位體之核/殻量子點分散系與半導體奈米顆粒分散系製備新膠態分散系;將該新分散系塗覆於基板且退火。退火起兩個作用:其移除揮發性配位體且使奈米顆粒轉型為半導體基質(semiconductor matrix)。半導體基質提供可有助於電洞或電子注入發光層中且注入量子點核心中之導電路徑;電洞與電子之隨後重組提供高效光發射。
配位體交換需要自溶劑分離量子點,此可為困難的,因為量子點極小。舉例而言,企圖藉由離心膠態分散系分離量子點可能即使在延長之時間後亦僅使一部分點沈澱。另外,若採用極高離心速度,則其可能很難再分散所得之緊密堆積之量子點沈澱物。
因此,具有形成用於塗佈發光層之含有量子點發射體之膠態分散系的高產率方法將極有益。此外,使用該膠態分散系及低成本沈積技術構造全無機LED將為有益的。另外,希望具有一種單層具有良好導電效能之全無機LED。所得LED將組合晶態LED與有機LED之許多合乎需要之屬性。
根據本發明之一態樣,提供一種製造無機發光層之方法,該方法包含:(a)組合用於半導體奈米顆粒生長之溶劑、核/殻量子點之溶液及半導體奈米顆粒前驅物;(b)使半導體奈米顆粒生長以形成核/殻量子點、半導體奈米顆粒及連接於核/殻量子點之半導體奈米顆粒之粗溶液;(c)形成核/殻量子點、半導體奈米顆粒及連接於核/殻量子點之半導體奈米顆粒之單一膠態分散系;(d)沈積該膠態分散系以形成膜;及(e)使該膜退火以形成無機發光層。
在本發明之另一態樣中,發光奈米複合顆粒包含連接於核/殻量子點之奈米顆粒。
本發明之一優點包括提供形成同時發光且導電之發光層之方式,該發光層之發射物質為量子點。發光層包括導電性寬能帶隙奈米顆粒與連接於該等奈米顆粒之殻量子點發射體之複合物。使用熱退火使導電性奈米顆粒彼此間燒結且增強導電性奈米顆粒與量子點表面之間的電連接。因此,發光層之導電性增強,電子-電洞於量子點中之注入亦增強。為使得量子點能夠經受得住退火步驟而其發光效率無損失(因為在該退火過程期間,鈍化量子點之有機配位體蒸發離去),設計量子點殻以束縛電子及電洞以使其波函數不影響外層無機殻之表面態。
將導電性且發光之發光層併入全無機發光二極體裝置中亦為本發明之一優點。在一實施例中,電子及電洞傳遞層包含導電性奈米顆粒;另外,使用獨立的熱退火步驟增強該等層之導電性。所有奈米顆粒及連接於奈米顆粒之量子點均經化學合成且製成膠態分散系。因此,藉由諸如滴落澆鑄法或噴墨印刷之低成本方法沈積所有裝置層。所得全無機發光二極體裝置成本低,可形成於多種基板上,且可經調節以在寬範圍之可見波長及紅外波長內發光。與基於有機物之發光二極體裝置相比,其亮度將增強且其封裝要求將減少。
使用量子點作為發光二極體中之發射體賦予可藉由改變量子點顆粒之尺寸來簡單調節發射波長之優點。因而,可自相同基板產生窄頻譜(產生較大色域)多色發射。若由膠態化法(colloidal method)製備量子點(且不藉由高真空沈積技術(S. Nakamura等人,Electron. Lett. 34, 2435 (1998))來生長),則基板不再需要為昂貴的或與LED半導體系統晶格匹配。舉例而言,基板可為玻璃、塑膠、金屬箔或矽。極希望使用該等技術形成量子點LED,尤其使用低成本沈積技術沈積LED層之情況。
圖1a中展示核/殻量子點發射體100之示意圖。該顆粒含有一發光核心102、一半導體殻104及有機配位體106。因為典型量子點之尺寸約數奈米且與其內在激發子成比例,因此奈米顆粒之吸收峰與發射峰相對於其本體值(bulk value)藍移(R. Rossetti等人,J. Chem. Phys. 79, 1086 (1983))。由於量子點尺寸小,故該等點之表面電子態對點之螢光量子產率產生很大影響。可藉由使適當有機配位體(諸如一級脂族胺)附著於表面或藉由使另一半導體(半導體殻104)包圍發光核心102外延式生長使發光核心102之電子表面態鈍化。使半導體殻104生長之優點(相對於有機鈍化核心)在於:電洞與電子核心顆粒表面態可同時鈍化,所得量子產率通常較高,且量子點更具光安定性且更具化學穩定性。
因為半導體殻104具有有限厚度(通常1-3個單層),所以其電子表面態亦需要鈍化。又,有機配位體106為通常之選擇。以CdSe/ZnS核/殻量子點為實例,在核/殻介面處之價帶及導帶偏移使得所得電勢起作用以將電洞與電子束縛於核心區。因為電子通常比重電洞輕,所以電洞很大程度上束縛於核心,而電子穿透至殻中且影響與金屬表面原子相關之電子表面態(R. Xie等人,J. Am. Chem. Soc. 127, 7480 (2005))。因此,對於CdSe/ZnS核/殻量子點之狀況而言,僅殻之電子表面態需要鈍化。合適有機配位體106之實例將為形成與表面鋅原子鍵結之供體/受體鍵之脂族一級胺(X. Peng等人,J. Am. Chem. Soc. 119, 7019 (1997))。總之,典型的高度發光量子點具有核/殻結構(較高能帶隙環繞較低能帶隙)且具有附著於殻表面之非導電性有機配位體106。
在過去的十年裏,許多工作者已製造了高度發光核/殻 量子點之膠態分散系(O. Masala及R. Sesbadri, Annu. Rev. Mater. Res. 34, 41 (2004))。美國專利第6,322,901號亦描述製備核/殻量子點之適用方法。發光核心102通常由IV型、III-V型、II-VI型或IV-VI型半導電材料組成。
IV型係指包括選自週期表第IVB族之元素之半導電材料,例如Si。III-V型係指包括選自週期表第IIIB族之元素以及選自週期表第VB族之元素的半導電材料,例如InAs。同樣地,II-VI型係指包括選自週期表第IIB族之元素以及選自週期表第VIB族之元素的半導電材料,例如CdTe,且IV-VI型材料包括第IVB族元素以及第VIB族元素,例如PbSe。
對於光譜可見部分內之發射,CdSe為較佳核心材料,因為藉由改變CdSe核心之直徑(1.9 nm至6.7 nm),可使發射波長自465 nm調節至640 nm。另一較佳材料包括Cdx Znl-x Se,其中x係介於0與1之間。然而,如此項技術所熟知,可由其他材料系統製造發射可見光之適用量子點,該等材料系統諸如摻雜ZnS(A. A. Bol等人,Phys. Stat. Sol. B224, 291(2001))或InP。發光核心102可由此項技術熟知之化學方法製造。典型的合成路徑包括高溫下在配位溶劑中分解分子前驅物之溶劑熱法(solvothermal method)(O. Masala及R. Seshadri, Annu. Rev. Mater. Res. 34, 41 (2004))及停滯沈澱(arrested precipitation)(R. Rossetti等人,J. Chem. Phys. 80, 4464 (1984))。
半導體殻104通常由IV型、III-V型、IV-VI型或II-VI型半 導電材料組成。在一理想實施例中,殻包括II-VI型半導電材料,諸如CdS或ZnSe。在一合適實施例中,殻含有選自由Zn、S及Se或其組合組成之群之元素。殻半導體通常經選擇以與核心材料幾乎晶格匹配且具有使得核心電洞及電子很大程度上束縛於量子點之核心區之價帶及導帶能級。CdSe核心之較佳殻材料為ZnSey S1-y ,其中y在0.0至約0.5範圍內變化。通常經由高溫下在配位溶劑中分解分子前驅物(M. A. Hines等人,J. Phys. Chem. 102, 468 (1996))或反微胞技術(A. R. Kortan等人,J. Am. Chem. Soc. 112, 1327(1990))來實現包圍發光核心102形成半導體殻104。
在一理想實施例中,合適核/殻量子點具有足夠厚的殻以使核心電子及電洞之波函數不會顯著延伸至核/殻量子點表面。亦即,波函數不會影響表面態。舉例而言,在ZnS殻之狀況下,使用熟知技術(S. A. Ivanov等人,J. Phys. Chem. 108, 10625 (2004))可計算出,為排除ZnS表面態之影響,ZnS殻之厚度應為至少5個單層(ML)厚。然而,歸因於殻與核心材料之晶格之間的錯配,通常很難在不產生晶格缺陷之情況下生長厚殻,例如超過2 ML之ZnS(D. V. Talapin等人,J. Phys. Chem. 108, 18826 (2004))。
為獲得厚殻且避免晶格缺陷,可希望在核心與外層殻之間生長一中間殻。舉例而言,為避免該等晶格缺陷,可在CdSe核心與ZnS外層殻之間生長一ZnSe中間殻。該方法係由Talapin等人(D. V. Talapin等人,J. Phys. Chem. B108, 18826 (2004))描述,其中在CdSe核心上生長8 ML厚之ZnS外層殻,而ZnSe中間殻具有1.5 ML之厚度。亦可採用更複雜的方法使晶格錯配差異最小,例如,在若干單層之距離上將中間殻之半導體內含物由CdSe平滑改變為ZnS(R. Xie等人,J. Am. Chem. Soc. 127, 7480 (2005))。
另外,必要時,向量子點中添加適當半導體內含物之中間殻以免產生與厚半導體殻104相關之缺陷。理想地,核/殻量子點之外層殻及任何內部殻之厚度係足夠厚以使游離核心電子與電洞均不影響外層殻之表面態。
如此項技術中所熟知,用於形成量子點膜之兩種低成本方法為藉由滴落澆鑄及旋轉澆鑄沈積核/殻量子點100之膠態分散系。用於滴落澆鑄量子點之常見溶劑為己烷:辛烷之9:1混合物(C. B. Murray等人,Annu. Rev. Mater. Sci. 30, 545 (2000))。有機配位體106需要經選擇以使得量子點顆粒可溶解於己烷中。因而,具有基於烴之尾端之有機配位體(諸如,烷基胺)為良好選擇。使用此項技術中之熟知程序,可將來自生長程序之配位體(例如,TOPO)換成所選擇之有機配位體106(C. B. Murray等人,Annu. Rev. Mater. Sci. 30, 545 (2000))。當旋轉澆鑄量子點之膠態分散系時,溶劑之要求為:其易於散布於沈積表面上且在旋轉過程中溶劑以適度速率蒸發。可見醇基溶劑為良好選擇;例如,組合低沸點醇(諸如,乙醇)與較高沸點醇(諸如,丁醇-己醇混合物)使得形成良好膜。相應地,可使用配位體交換使尾端可溶解於極性溶劑中之有機配位體附著(於量 子點);吡啶為合適配位體之一實例。由該兩種沈積過程所產生之量子點膜為發光的,但並非導電的。因為非導電有機配位體分離核/殻量子點100顆粒,所以該等膜具有電阻。因為當遷移電荷沿量子點傳播時,遷移電荷因半導體殻104之束縛勢壘而截留於核心區中,所以該等膜亦具有電阻。
如以上所討論,典型量子點膜為發光,但絕緣。圖1b示意性說明提供同時發光且具導電性之無機發光層250之先前技術方式。該概念係基於共沈積小(<2 nm)的導電無機奈米顆粒240以及核/殻量子點100來形成無機發光層250。使用後續惰性氣體(Ar或N2 )退火步驟汽化揮發性有機配位體106且使較小無機奈米顆粒240彼此間燒結及燒結於較大核/殻量子點100之表面上。燒結無機奈米顆粒240導致形成連續之導電性半導體基質230。經由該燒結過程,該基質亦連接於核/殻量子點100。因而,形成自無機發光層250邊緣經由半導體基質230且到達各核/殻量子點100之導電路徑,其中電子及電洞於發光核心102處重組。亦應注意將核/殻量子點100包裹於導電性半導體基質230中具有環境上保護量子點免受氧與水分影響之附加益處。
以該先前技術方法製造發光層要求由發光量子點分散系單獨形成半導體奈米顆粒分散系。將兩種分散系混合以形成塗佈發光層之共分散系。在本發明之一實施例中,半導體奈米顆粒係形成於具有發光量子點之溶液中,從而導致形成半導體奈米複合顆粒。適用之半導體發光奈米複合顆 粒包括連接於一或多個半導體奈米顆粒之核/殻量子點,其中所連接之奈米顆粒突出量子點之表面。突出物可具有多種形狀,包括(例如)類似棒、線及球之形狀。
一種本發明之形成發光奈米複合顆粒之膠態分散系的方法包括組合用於半導體奈米顆粒生長之溶劑、核/殻量子點之溶液及半導體奈米顆粒前驅物以形成混合物。奈米顆粒之生長導致形成奈米複合顆粒。舉例而言,在一實施例中,奈米顆粒前驅物可反應以形成奈米顆粒核,其為半導體材料之小晶體。在核/殻量子點存在下奈米顆粒核之生長導致形成含有發光奈米複合顆粒之混合物。該混合物通常亦包括不附著於量子點之游離奈米顆粒;混合物亦可包括未改變之量子點以及奈米顆粒核及奈米顆粒核之聚集體。
較佳核/殻量子點包括由第二組合物之殻(例如,ZnS)包圍之核心(例如,CdSe)。適用之核/殻對之非限制性實例包括:CdSe/ZnS、CdSe/CdS、CdZnSe/ZnSeS及InAs/CdSe量子點。
合適奈米顆粒前驅物為將形成由半導電材料(包括IV型、III-V型、IV-VI型或II-VI型材料)組成之奈米顆粒的彼等者。在一理想實施例中,奈米顆粒含有IV型(例如,Si)、III-V型(例如,GaP)、II-VI型(例如,ZnS或ZnSe)或IV-VI型(例如,PbS)半導體。IV型、III-V型、II-VI型及IV-VI型材料先前已描述。在一理想實施例中,半導體奈米顆粒包括ZnS或ZnSe或其混合物。
在一較佳實施例中,無機半導體奈米顆粒包括具有可與核/殻量子點之半導體殻104之能帶隙相當的能帶隙、更尤其在量子點殻之能帶隙之0.2 eV內的能帶隙的半導體材料。舉例而言,若核/殻量子點之外層殻104包括ZnS,則合乎需要之無機奈米顆粒之實例包括ZnS或由ZnSSe組成而Se含量低之材料。
生長半導體奈米顆粒之方法在此項技術中為熟知的。適用之方法包括Khosravi等人報導之方法(A. A. Khosravi等人,Appl. Phys. Lett. 67, 2506 (1995))。舉例而言,可藉由組合為X供體之前驅物及為Y供體之前驅物於溶劑中形成由元素XY組成之奈米顆粒核。舉例而言,可藉由組合Zn供體(例如,ZnCl2 )及S供體(例如,雙(三甲基矽烷基)硫醚(TMS)2 S)形成由ZnS(X=Zn且Y=S)組成之奈米顆粒核。在過量前驅物存在下且在適當反應條件下,奈米顆粒核得以形成且將生長成奈米顆粒。
尤其適用之X供體包括供給IV、IIB、IIIB或IVB元素之材料。非限制性實例包括二乙基鋅、乙酸鋅、乙酸鎘及氧化鎘。
尤其適用之Y供體包括供給第VB族元素或第VIB族元素之供體。適用之Y供體之非限制性實例包括硒化三烷基膦,諸如硒化(三正辛基膦)(TOPSe)或硒化(三正丁基膦)(TBPSe);碲化三烷基膦,諸如碲化(三正辛基膦)(TOPTe)或碲化六丙基亞磷醯三胺(HPPTTe);碲化雙(三甲基矽烷基)((TMS)2 Te)、雙(三甲基矽烷基)硫醚 ((TMS)2 S);硒化雙(三甲基矽烷基)((TMS)2 Sc);及三烷基膦硫醚,諸如(三正辛基膦)硫醚(TOPS)。
在某些實施例中,X供體及Y供體可為同一分子內之部分。舉例而言,十六基黃原酸鋅含有形成ZnS之Zn前驅物與S前驅物。在一些實施例中,可存在超過兩種奈米顆粒前驅物。在其他實施例中,奈米顆粒核可含有一種、兩種或兩種以上元素。
在一些實施例中,可適用的是形成包括摻雜物之奈米複合顆粒。摻雜物通常為少量可併入材料中以改良其導電效能之化合物。此通常可藉由向初始反應混合物中或在奈米顆粒生長過程中添加一或多種摻雜物前驅物來實現。摻雜物通常為變得併入奈米複合顆粒之奈米顆粒部分之晶格結構中的元素。舉例而言,若希望生長含有摻雜有Al之ZnSe之奈米複合物,則可在量子點存在下及在少量Al前驅物存在下生長ZnSe奈米顆粒。舉例而言,可組合量子點、Zn供體(諸如於己烷中之二乙基鋅)、Se供體(諸如溶解於TOP中之Se粉末,其形成TOPSe)、少量Al供體(諸如三甲基鋁)及配位溶劑(諸如十六烷基胺(HDA))。此提供現場摻雜方法。
在生長過程中,經常希望存在配位溶劑。為較佳地控制生長過程且穩定所得膠體,可使配位溶劑可逆性配位於生長之奈米顆粒之表面。該溶劑可充當配位配位體,或可與非配位溶劑組合使用配位配位體。合乎需要之配位配位體具有一或多個可供給到生長之奈米顆粒表面之未共享電子 對。適用之配位配位體之實例包括膦類,例如三正辛基膦(TOP);氧化膦類,例如三正辛基氧化膦(TOPO);膦酸類,例如十四基膦酸;及脂族硫酚類。胺尤其適合用作配位配位體。諸如十六烷基胺或辛胺之脂族一級胺或脂族一級胺之組合尤其具有價值。
生長過程可由多種方式控制,該等方式為例如控制反應混合物之溫度、控制前驅物之濃度及類型、選擇溶劑及選擇配位配位體及控制配位配位體之濃度。在一較佳實施例中,希望加熱反應混合物以促進生長過程。可適用的是在加熱或不加熱之情況下使反應混合物經受微波輻射或在壓力下進行反應或其組合。
在一較佳實施例中,添加前驅物之速率以及反應混合物之溫度為用於優化奈米顆粒形成及生長之因素。在一合適實施例中,例如藉由在溶劑及一或多種配位配位體存在下快速注入或添加所有前驅物快速組合兩種或兩種以上奈米顆粒前驅物。在一合適實施例中,溶劑為脂族一級胺。在一較佳實施例中,將配位溶劑與一種前驅物混合,且將反應混合物加熱至反應溫度且向該混合物中快速注入或添加第二前驅物。
典型反應溫度經常大於80℃,通常等於或大於100℃且可為120℃或甚至更高。較佳將溶劑加熱至100℃與300℃之間的反應溫度。
良好奈米顆粒生長所必需之反應條件之準確特徵將視奈米顆粒及其前驅物之組成而變化。反應條件可由熟習此項 技術者決定而無需過多的實驗。
通常適用的是在不存在實質量之氧之情況下及在惰性條件下進行生長過程。此經常可阻止不合乎需要之金屬氧化物之形成。舉例而言,可在氮氣或氬氣氣氛下進行反應。
理想地,繼續生長過程直至大部分量子點轉化為奈米複合顆粒。一種監測生長過程之方法包括自反應混合物移出等分樣品且使樣品經受離心以形成沈澱物及可含有量子點之清液層。將上清液暴露於光源中,其中光之波長係經選擇以致當為量子點所吸收時會發生光致發光。藉由小心校正,可由光致發光測定上清液中量子點之濃度。在一實施例中,繼續生長過程直至上清液中量子點之濃度小於最初量子點濃度之20%且較佳小於10%。
圖2展示反應混合物之一實施例之示意圖,其包括核/殻量子點100、半導體核108及配位配位體106。在生長過程中,一或多個核將變得附著於量子點表面;該核可自量子點表面向外生長以形成發光奈米複合顆粒112。該奈米複合顆粒112示意性描繪於圖3中,且包括一量子點部分112A及一奈米顆粒部分112B。配位配位體106結合於奈米複合顆粒112之兩個部分之表面且使該等表面穩定。一些奈米複合顆粒112含有連接於超過一個奈米顆粒之量子點。在生長過程中,預期亦將形成未附著於量子點之游離奈米顆粒116A且其將具有與其表面締合之配位體。
奈米複合顆粒112包括突出核/殻量子點外層殻之奈米顆粒。如先前所述,突出物視反應物及生長條件而定可具有 多種形狀,包括彼等類似棒、線及球之形狀。在一較佳實施例中,突出物類似奈米線。藉由延長生長過程,可獲得如圖4中示意性所示之具有長線狀突出物之奈米複合物118。舉例而言,奈米線狀突出物之長度可為20 nm、50 nm、100 nm、500 nm或甚至1000 nm(1微米)或1000 nm以上,而量子點通常具有小於8 nm之直徑。為賦予良好燒結性質,連接於量子點之奈米顆粒之平均直徑較佳小於20 nm,理想地小於10 nm且較佳小於5 nm。奈米複合顆粒之奈米線部分亦可用其縱橫比來表徵,該縱橫比為奈米顆粒之長度除以其直徑。尤其合乎需要之奈米線狀突出物具有大於10、適當大於30且較佳大於100或甚至大於500之縱橫比。
此項技術中熟知具有多種形狀之奈米顆粒之製備。舉例而言,Pradhan等人描述奈米線之製備(N. Pradhan等人,Nano Letters 6, 720 (2006))。Alivisatos等人之美國專利第6,306,736號及美國專利第6,225,198號亦描述藉由組合半導體奈米顆粒前驅物、溶劑及能夠促進球型半導體奈米顆粒或桿樣半導體奈米顆粒生長之含磷有機界面活性劑之二元混合物(諸如膦酸與膦酸衍生物之混合物)形成成形之第III-V族及第II-VI族半導體奈米顆粒之方法。藉由調節二元混合物中界面活性劑之比率控制奈米顆粒之形狀。
如先前所述,奈米複合顆粒之外表面較佳應包括一在生長過程中所使用之配位配位體106之層。經常希望改變與奈米複合物締合之配位體以改良奈米複合物於塗佈溶劑中 之溶解性且促進退火步驟過程中配位體之移除。配位體交換之適用方法包括Murray等人描述之方法(C.B. Murray等人,Annu. Rev. Mater. Sci. 30, 545 (2000))及Schulz等人描述之方法(Schulz等人,美國專利第6,126,740號)。舉例而言,可使用配位體交換使尾端可溶解於極性溶劑中且相對揮發之有機配位體附著於奈米複合物;吡啶為合適配位體之一實例。
含有發光奈米複合物之膠態分散系亦可含有游離奈米顆粒或游離量子點。在一些實施例中,可希望以類似於Kahen於美國專利申請公開案第2007/0057263號中所述之方式使該分散系與含有可與游離奈米顆粒相同或不同之其他奈米顆粒之第二分散系組合。在一些實施例中,可希望向膠態分散系中添加其他量子點。
可將膠態分散系塗佈於基板上以形成發光層。由顆粒之膠態分散系形成膜之兩種低成本方式包括滴落澆鑄及旋轉澆鑄。經常使用非極性揮發性溶劑來塗佈。舉例而言,適用於沈積量子點之滴落澆鑄之常見溶劑為己烷:辛烷之9:1混合物(C. B. Murray等人,Annu. Rev. Mater. Sci. 30, 545 (2000))。在一實施例中,奈米複合物之交換配位體係經選擇以致奈米複合物可溶解於諸如己烷之非極性溶劑。因而,諸如脂族胺之具有基於烴之尾端之有機配位體為良好選擇。
合乎旋轉澆鑄膠態分散系之需要之溶劑包括易於散布於沈積表面且在旋轉過程中以適當速率蒸發之溶劑。適用之 溶劑包括醇基溶劑且尤其低沸點醇與較高沸點醇之混合物。舉例而言,使用由乙醇與丁醇與己醇之混合物之組合形成之塗佈溶劑在旋轉澆鑄後引起形成良好之薄膜。
含有奈米複合顆粒之膜可藉由旋轉澆鑄法形成,然而如此塗佈之所得膜為發光的,但並非導電的。因為非導電有機配位體將奈米複合顆粒相互分離且分離奈米複合顆粒與游離奈米顆粒,所以該等膜具有電阻。圖5展示發光層120之一實施例之示意圖,發光層120係由奈米複合顆粒118、奈米顆粒(奈米線)116B及核/殻量子點100之膠態分散系形成。為移除絕緣配位體且形成導電性發光層,需要通常在惰性氣氛下(例如,在氮氣或氬氣下)執行之退火步驟。退火所塗佈之膠態分散系燒結奈米複合顆粒118於其自身中且燒結奈米複合顆粒118與游離奈米顆粒116B以形成半導體基質。另外,若存在游離核/殻量子點,則退火步驟可使該等量子點與半導體基質連接。
如上所說明,燒結產生多晶導電性半導體基質。因而,形成自無機發光層之邊緣經由半導體基質且到達位於基質內之核/殻量子點的導電路徑。電子及電洞在基質內傳遞且可在量子點之核心中重組,從而產生光發射。將發光奈米複合物熔結於導電性半導體基質中具有保護發光層中之量子點免受環境氧及水分影響之附加益處。
如此項技術中所熟知,奈米尺寸奈米顆粒在相對於其本體對應物大大降低之溫度下熔融(A. N. Goldstein等人,Science 256, 1425 (1992))。因此,在一實施例中,為增強 燒結過程,希望附著於量子點之奈米顆粒及任何所存在之游離奈米顆粒的直徑小於20 nm,適當地小於10 nm,理想地小於5 nm,較佳小於2 nm且更佳小於1.5 nm。另外,為在最終層中獲得良好的導電性,希望膠態分散系中之大多數奈米複合顆粒之奈米顆粒部分與量子點部分之表面積比為1:1或更大,理想地2:1或更大且較佳3:1或更大。
燒結溫度可經選擇以使得奈米複合物之奈米顆粒部分在大體上不影響量子點部分之形狀及尺寸之情況下至少部分熔融。舉例而言,已報導某些具有ZnS殻之核/殻量子點對至多350℃之退火溫度相對穩定(S. B. Qadri等人,Phys. Rev B60, 9191 (1999))。因此,在一實施例中,退火溫度小於350℃。較佳控制生長過程以使奈米複合物之奈米顆粒部分之直徑小於其量子點部分之直徑且因此將具有較低熔點。理想地,奈米複合物之奈米顆粒部分在低於350℃、理想地低於250℃且較佳低於200℃之溫度下至少部分熔融。
使退火過程進行足夠長之時間以確保在所得膜中獲得良好導電性。在一實施例中,適用之退火步驟包括在250℃至300℃之溫度下加熱至多60分鐘。
如先前所述,經常希望使奈米複合物經受配位體交換程序以增加其在塗佈溶劑中之溶解性。亦希望選擇揮發性足以使其可在退火過程中大體上移除之配位體。揮發性配位體為具有低於200℃、理想地低於175℃且較佳低於150℃之沸點之配位體。若配位體不具揮發性且不能移除,則其在 燒結過程中可能分解。配位體或其分解產物可能藉由充當絕緣體而干擾膜導電性。為增強無機發光層之導電性(及電子-電洞注入過程),較佳地,附著於奈米複合物之有機配位體106因在惰性氣氛中退火無機發光層120而蒸發。藉由選擇具有低沸點之有機配位體106,可使其在退火過程中自膜蒸發(C. B. Murray等人,Annu. Rev. Mater. Sci. 30, 545 (2000))。
可希望分兩個或兩個以上階段執行退火步驟。在一實施例中,退火過程包括兩個退火步驟:初次退火移除揮發性配位體且二次退火產生半導體基質。舉例而言,可在120℃與220℃之間的溫度下進行初次退火步驟歷時至多60分鐘之時間,且在250℃與400℃之間的溫度下進行二次退火步驟歷時至多60分鐘之時間。
使薄膜在高溫下退火可導致該等膜由於膜與基板之間的熱膨脹錯配而破裂。為避免該問題,較佳使退火溫度自室溫勻變至退火溫度且自退火溫度回落至室溫。較佳勻變時間為約30分鐘。
在退火步驟後,包埋於半導體基質中之核/殻量子點大體上缺乏有機配位體外層殻。如先前所述,希望核/殻量子點具有足夠大以使核心區中之電子或電洞之波函數不影響殻之表面態的殻厚度。
圖6展示合併有藉由退火沈積於基板126上之層120所形成之無機發光層124之簡單電致發光LED裝置122之示意圖。無機發光層124之厚度應足以提供良好光發射。在一 實施例中,膜厚度為10 nm或10 nm以上且較佳在10 nm與100 nm之間。
較佳地,基板126係經選擇以致其具有足夠剛性而能夠進行沈積過程且足夠熱穩定而能承受退火過程。對於一些應用而言,可希望使用透明支撐物。適用之基板材料之實例包括玻璃、矽、金屬箔及一些塑膠。
在基板126上沈積陽極128。對於基板126為p型矽之狀況,陽極128需要沈積於基板126之下表面。p型矽之合適陽極金屬為Al。陽極128可由熟知方法(諸如熱蒸鍍或濺鍍)沈積。在沈積後,經常希望將陽極128退火。舉例而言,在Al陽極之狀況下,在430℃下退火20分鐘為合適的。
對於許多不包括p型矽材料之基板類型而言,陽極128可沈積於基板126之上表面(如圖6中所示)。理想地,陽極128包括透明導體,諸如氧化銦錫(ITO)。該ITO可藉由濺鍍或此項技術中之其他熟知程序沈積。通常在300℃下使ITO退火1小時以改良其透明度。因為諸如ITO之透明導體的薄層電阻比金屬之薄層電阻大得多,所以可使用熱蒸鍍或濺鍍降低自接觸焊墊至實際裝置之電壓降來經由遮蔽罩選擇性沈積匯流排金屬132。可在陽極128上沈積無機發光層120。如先前所討論,發光層可滴落或旋轉澆鑄於透明導體(或矽基板)上。亦有可能為其他沈積技術,諸如,噴墨印刷膠狀量子點-無機奈米顆粒混合物。在沈積後,例如在270℃之溫度下使無機發光層120退火45分鐘以形成發光層124。
最後,可在無機發光層124之上沈積陰極130金屬。合適之陰極金屬為與發光層及半導體基質形成歐姆接觸之金屬。舉例而言,對於含有具有ZnS殻之核/殻量子點之奈米複合物的狀況而言,較佳陰極金屬為In。其可藉由熱蒸鍍沈積,接著(例如)在約250℃下熱退火10分鐘。在一些實施例中,層結構可倒置,如此陰極130係沈積於基板126上且陽極128可形成於無機發光層124上。
圖7提供合併有無機發光層124之電致發光LED裝置134之另一實施例的示意圖。該圖展示向裝置中添加P型傳遞層136及n型傳遞層138,且該等層包圍無機發光層124。如此項技術中所熟知,LED結構通常含有摻雜之n型及p型傳遞層。其起若干不同作用。若摻雜半導體,則與半導體形成歐姆接觸變得簡單。因為發射體層通常為固有的或經輕微摻雜,所以與摻雜之傳遞層形成歐姆接觸簡單得多。由於表面電漿效應(K. B. Kahen, Appl. Phys. Lett. 78, 1649 (2001)),具有鄰近於發射體層之金屬層導致發射體效率損失。因此,經常有利地使發射體層與金屬接觸間隔足夠厚(較佳至少約150 nm)之傳遞層。不僅可藉由傳遞層將電子及電洞注入發射體層而且可藉由適當選擇材料來阻止載流子自發射體層漏出。舉例而言,若奈米複合物112之無機奈米顆粒部分112B及游離奈米顆粒116由ZnS0.5 Se0.5 組成且傳遞層由ZnS組成,則電子及電洞將由ZnS勢壘束縛於發射體層中。p型傳遞層之合適材料包括II-VI及III-V半導體。典型II-VI半導體為ZnSe、CdS及ZnS。為獲得足夠高 之p型導電性,應向所有三種材料中添加其他p型摻雜物。對於II-VI p型傳遞層之狀況而言,可能的候選摻雜物為鋰及氮。舉例而言,文獻中已展示可在350℃下使Li3 N擴散至ZnSe中以形成p型ZnSe,其中電阻率低至0.4 ohm-cm(S. W. Lim, Appl. Phys. Lett. 65, 2437 (1994),其整體揭示內容係以引用之方式併入本文中)。
n型傳遞層之合適材料包括II-VI及III-V半導體。典型II-VI半導體較佳為ZnSe或ZnS。至於p型傳遞層,為獲得足夠高之n型導電性,應向半導體中添加其他n型摻雜物。對於II-VI n型傳遞層之狀況而言,可能的候選摻雜物為Al、In或Ga之III型摻雜物。
合適電致發光裝置可包括多種裝置結構。含有發光層及基板之裝置可包括形成於基板上之陽極、形成於基板上之陰極及形成於基板上之兩者。
在一較佳實施例中,根據以上所引之共同讓渡之美國專利申請案第11/668,041號、美國專利申請案第11/677,794號及美國專利申請案第11/678,734號中所述之方法形成基於多晶奈米顆粒之半導體傳遞層,該等申請案之揭示內容係併入本文中。
在一實施例中,由可與先前所述之游離奈米顆粒相同或不同之半導體奈米顆粒形成發光裝置中之可經摻雜之基於奈米顆粒之傳遞層及摻雜半導體結。由現場過程或現場外過程用摻雜物摻雜奈米顆粒。對於現場摻雜程序,在膠態奈米顆粒合成生長過程期間添加摻雜物材料。對於現場外 摻雜程序,藉由在半導體及摻雜物材料奈米顆粒之混合物表面上塗佈形成裝置層,其中執行退火以熔結半導體奈米顆粒且使得摻雜物材料原子能夠自摻雜物材料奈米顆粒中擴散出且進入熔結之半導體奈米顆粒網狀物中。
由無機奈米顆粒組成之半導體結通常具有高電阻,其限制合併有該等結之裝置之效用,即使該等裝置成本較低。藉由形成合併有現場或現場外摻雜之無機奈米顆粒的摻雜之半導體結,可製造低成本半導體結裝置同時仍維持良好裝置效能。摻雜之半導體結藉由加強各傳遞層中之n費米能級(Fermi level)與p費米能級之分離、降低歐姆加熱且有助於形成歐姆接觸來增強裝置效能。
在一較佳實施例中,發光裝置包括至少一個藉由使半導體奈米顆粒之混合物退火形成之基於奈米顆粒的傳遞層,亦即,至少n型層或p型層。在一實施例中,奈米顆粒包括平均直徑小於10 nm且較佳小於5 nm且縱橫比為10或10以上且理想地100或100以上之奈米線。合適之退火條件先前已加以描述。
藉由由無機奈米顆粒形成傳遞層及摻雜之半導體結,裝置層可藉由諸如滴落澆鑄、旋塗或噴墨印刷之低成本方法沈積。所得基於奈米顆粒之裝置亦可形成於包括可撓性基板之多種基板上。
呈現以下實例以進一步瞭解本發明且不應將該等實例解釋為對本發明之限制。
實例1: 發光奈米複合顆粒之製備及發光層之形成 量子點之製備
藉由以下程序製備CdSe/ZnSeS核殻量子點。關於合成按照標準希萊克程序(Schlenk line procedure)。按照Talapin等人之未成熟合成程序(D. V. Talapin等人,J. Phys. Chem B108, 18826 (2004))形成CdSe核心。更詳言之,在260℃下劇烈攪拌反應混合物7.5分鐘後獲得532 nm發射CdSe核心。將CdSe粗溶液冷卻回至室溫後,向希萊克試管(Schlenk tube)中之1.5 ml粗溶液(未洗滌)中添加4 ml TOPO及3 ml HDA。在110℃下使混合物脫氣30分鐘後,在氬超壓及持續攪拌下使溶液升至190℃。關於由ZnSeS組成之外殻,在乾燥箱中製備Zn、Se及S之前軀物。Zn前軀物為己烷中之1 M二乙基鋅,Se前軀物為1 M TOPSe(由標準方法製備)且S前軀物為於TOP中之1 M (TMS)2 S。向注射器中添加200 μmol Zn前軀物、100 μmol Se前軀物及100 μmol S前軀物(以形成ZnSe0.5 S0.5 )。亦向注射器中再添加1 ml TOP。隨後以10 ml/hr之速率將注射器之內容物緩慢滴入希萊克試管中。滴完注射器中之內容物後,在180℃下使核/殻量子點退火1小時。成殻程序未改變發射波長。
發光奈米複合顆粒之製備
在量子點存在下形成ZnSe量子線。藉由類似於Pradhan等人所述之程序(N. Pradhan等人,Nano Letters 6, 720 (2006))的程序使用乙酸鋅之鋅前軀物及硒脲之硒前軀物合成該等線。合成中使用等莫耳(1.27×10-4 莫耳)量之前軀物。配位溶劑為辛胺(OA),其在使用之前在30℃下脫氣30 分鐘。
在乾燥箱內之小瓶中,向4 ml OA中添加0.03 g乙酸鋅以形成混濁溶液。緩慢加熱且持續混合後,溶液在5-10分鐘內變得澄清。將該混合物置放於三頸燒瓶中且連接於希萊克管(Schlenk line)。向溶液中添加如上所述合成之2.0 ml核/殻量子點粗(未洗滌)溶液。在室溫下,使內容物經受三個氣體抽空循環,接著再充滿氬。在第三個循環後,將反應混合物加熱至120℃。
藉由向小瓶中之550 μl OA中添加(在乾燥箱中)0.016 g硒脲製備硒前軀物。在緩慢加熱且連續攪拌25-30分鐘後混合物變得澄清。將溶液轉移至注射器中且注入在120℃之溫度下之反應混合物中。在數秒注射內,反應混合物變混濁。在緩慢攪拌下,在120℃下使ZnSe奈米線在量子點存在下繼續生長4-6小時,接著最後在140℃下加熱20分鐘。此提供含有奈米複合顆粒及奈米線之產物混合物。
向離心管中之3 ml甲苯及10 ml甲醇中添加約1-2 ml粗產物混合物。離心數分鐘後,形成沈澱物,且上清液澄清且當其暴露於紫外光下時不發光。傾析出上清液且添加3-4 ml吡啶。沈澱物溶解於吡啶中從而提供澄清溶液。
將含有奈米複合顆粒及奈米線之吡啶溶液在連續攪拌下在80℃下加熱24小時以使非揮發性OA配位體換成揮發性吡啶配位體。隨後藉由真空移除部分過量吡啶,之後向溶液中添加約12 ml己烷。隨後離心該溶液,傾析上清液且向沈澱塞中添加1-丙醇與乙醇之混合物以得到透明分散 系。
發光層之形成
旋塗分散系之等分試樣於潔淨矽酸硼玻璃上之後,獲得基於奈米顆粒之鏡面膜。在乾燥箱中旋塗膜。隨後在160℃下在管式爐中(在氬吹拂下)使膜退火30分鐘,接著在275℃下退火30分鐘以使吡啶配位體汽化且燒結奈米複合顆粒及奈米線。第二退火步驟形成半導體基質。所得退火之發光層在暴露於365 nm紫外光後產生高度可見光致發光(在亮室內光下觀察)。
實例2: 量子點自溶劑之比較分離
以與實例1之第1部分中所述大體上相同之方式使僅含有核/殻量子點(與實例1中所使用之量子點相同的量子點)具有非揮發性TOPO、HDA及TOP配位體之粗溶液配位體交換(換成吡啶配位體)。第一洗滌(用甲苯及甲醇)中未遇到實質性問題。因而,離心後會形成塞且所得上清液澄清。接著如前所述添加吡啶且將混合物在80℃下攪拌24小時。當用己烷洗滌交換溶液(如前所述)且離心以獲得塞時,出現問題。即使在比實例1大得多之速率下離心,亦僅可獲得極小塞。實際上,使上清液暴露於紫外光下揭露大部分量子點保留在溶液中(大於75%)。
實例2說明分離量子點之困難。許多量子點丟失,因為其不能容易地與於其中形成量子點之溶劑分離。此產生效率極低之方法。效率可如實例1中所說明藉由連接量子點與奈米顆粒形成新發光奈米複合顆粒得以顯著改良。如此 項技術中所熟知,自溶劑分離奈米顆粒之效能以奈米顆粒之表面積計量。本發明之增加表面積之方式在於使奈米顆粒(諸如奈米線)於量子點表面上生長,從而產生表面積大大增加之奈米複合物。該方法之另一益處在於奈米顆粒與量子點之間的電連接因奈米複合物生長程序而增強。奈米複合顆粒可用於形成發光層。使該層退火形成具有包埋之量子點之半導體基質。
應注意,上述實驗提供部分ZnSe奈米線於CdSe/ZnSeS量子點表面上生長之間接證明。如以上所討論,吡啶交換後,量子點僅在形成奈米複合物後可成功逃出己烷。若奈米複合物僅含有經分離之量子點及ZnSe奈米線,則僅ZnSe奈米線會逃出溶液(此實際上發生在吾人之早期實驗嘗試中)。
本發明之實施例可提供具有增強之光發射、改良之穩定性、降低之電阻、降低之成本及改良之可製造性的發光材料。雖然本發明已特定參考本發明之某些較佳實施例加以詳細描述,但應瞭解可在本發明之精神及範疇內實現變動及修改。
100‧‧‧核/殻量子點
102‧‧‧核/殻量子點之核心
104‧‧‧核/殻量子點之殻/核/殻量子點之外層殻
106‧‧‧有機配位體/非導電性有機配位體/配位配位體
108‧‧‧奈米顆粒核
110‧‧‧奈米顆粒核聚集體
112‧‧‧奈米複合顆粒/發光奈米複合顆粒/奈米複合物
112A‧‧‧奈米複合顆粒之量子點部分
112B‧‧‧奈米複合顆粒之奈米顆粒部分/無機奈米顆粒部分
116A‧‧‧游離奈米顆粒
116B‧‧‧游離奈米線/奈米顆粒(奈米線)/游離奈米顆粒
118‧‧‧奈米複合顆粒/具有長線狀突出物之奈米複合物
120‧‧‧發光層/無機發光層
122‧‧‧電致發光LED/簡單電致發光LED裝置
124‧‧‧退火後之發光層/無機發光層/發光層
126‧‧‧基板
128‧‧‧陽極
130‧‧‧陰極
132‧‧‧匯流排金屬
134‧‧‧具有傳遞層之電致發光LED/電致發光LED裝置
136‧‧‧p型傳遞層
138‧‧‧n型傳遞層
230‧‧‧半導體基質/連續之導電性半導體基質
240‧‧‧無機奈米顆粒/小的導電無機奈米顆粒
250‧‧‧無機發光層
圖1a展示先前技術核/殻量子點之示意圖;圖1b展示先前技術無機發光層之一部分之示意圖;圖2展示包括核/殻量子點及奈米顆粒核之膠態分散系之示意圖;圖3展示奈米複合顆粒及奈米線之示意圖; 圖4展示另一奈米複合顆粒之示意圖;圖5展示無機發光層之示意圖;圖6展示本發明之無機發光裝置之側視示意圖;圖7展示本發明之無機發光裝置之另一實施例的側視示意圖。
100‧‧‧核/殻量子點
106‧‧‧有機配位體/非導電性有機配位體/配位配位體
108‧‧‧奈米顆粒核
110‧‧‧奈米顆粒核聚集體

Claims (15)

  1. 一種製造無機發光層之方法,其包含:(a)組合用於導電性半導體奈米顆粒生長之溶劑、核/殻半導體量子點之溶液及半導體奈米顆粒前驅物,該半導體奈米顆粒前驅物係經選擇以提供經由導電性半導體奈米顆粒且到達核/殼量子點之電子及電洞的導電路徑;(b)使導電性半導體奈米顆粒生長以形成核/殻半導體量子點、導電性半導體奈米顆粒及連接於該等核/殻半導體量子點之導電性半導體奈米顆粒之粗溶液;(c)形成核/殻半導體量子點、導電性半導體奈米顆粒及連接於該等核/殻半導體量子點之導電性半導體奈米顆粒之單一膠態分散液;(d)沈積該膠態分散液以形成一膜;及(e)使該膜退火以形成該無機發光層,以提供自該無機發光層之邊緣經由導電性半導體奈米顆粒且到達核/殼量子點之電子及電洞的導電路徑。
  2. 如請求項1之方法,其中該用於導電性半導體奈米顆粒生長之溶劑為配位溶劑。
  3. 如請求項1之方法,其中步驟(a)包含組合該用於導電性半導體奈米顆粒生長之溶劑與該等核/殻半導體量子點及第一前驅物,加熱至100℃或100℃以上之溫度,及添加第二半導體前驅物。
  4. 如請求項1之方法,其中該生長步驟包括加熱,使該粗溶液經受高壓或向該混合物提供微波能或其組合。
  5. 如請求項1之方法,其進一步包括執行配位體交換以用沸點低於200℃之有機配位體覆蓋該等核/殻半導體量子點、導電性半導體奈米顆粒及連接於該等核/殻半導體量子點之導電性半導體奈米顆粒的表面。
  6. 如請求項1之方法,其中該等核/殻半導體量子點之核心包含IV型、III-V型、IV-VI型或II-VI型半導體材料。
  7. 如請求項1之方法,其中該等連接於核/殻半導體量子點之導電性半導體奈米顆粒包含第一半導體材料且該等核/殻半導體量子點之殻包含第二半導體材料且其中該第一半導體材料之能帶隙能級係在該第二半導體材料之能帶隙能級之0.2eV內。
  8. 如請求項1之方法,其中該等核/殻半導體量子點之殻包含IV型、III-V型、IV-VI型或II-VI型半導體材料。
  9. 如請求項1之方法,其中該等核/殻半導體量子點包括含有Cdx Zn1-x Se之核心及含有選自由Zn、S及Se或其組合組成之群之元素的殻,其中x介於0與1之間。
  10. 如請求項1之方法,其中該等核/殻半導體量子點包括一足夠厚以致束縛導帶電子或價帶電洞於核心區之殻,且其中當如此束縛時,該電子或該電洞之波函數並不延伸至該核/殻半導體量子點之表面。
  11. 如請求項1之方法,其中該等連接於核/殻半導體量子點之導電性半導體奈米顆粒包含IV型、III-V型、IV-VI型或II-VI型半導體材料。
  12. 如請求項1之方法,其中該等連接於核/殻半導體量子點 之導電性半導體奈米顆粒包含導電性奈米線,其中該等導電性奈米線具有小於20nm之平均直徑及大於10之縱橫比。
  13. 如請求項12之方法,其中該等導電性奈米線具有小於5nm之平均直徑及大於30之縱橫比。
  14. 如請求項1之方法,其進一步包括向該單一膠態分散液添加包含半導體奈米線之第二膠態分散液的步驟。
  15. 如請求項1之方法,其中該退火步驟包括在120℃與220℃之間的溫度下歷時至多60分鐘之時間的初次退火步驟及在250℃與400℃之間的溫度下歷時至多60分鐘之時間的二次退火步驟。
TW097124448A 2007-06-29 2008-06-27 發光之奈米複合顆粒 TWI479675B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/770,833 US8361823B2 (en) 2007-06-29 2007-06-29 Light-emitting nanocomposite particles

Publications (2)

Publication Number Publication Date
TW200908397A TW200908397A (en) 2009-02-16
TWI479675B true TWI479675B (zh) 2015-04-01

Family

ID=40159274

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097124448A TWI479675B (zh) 2007-06-29 2008-06-27 發光之奈米複合顆粒

Country Status (6)

Country Link
US (1) US8361823B2 (zh)
EP (1) EP2163135A2 (zh)
JP (1) JP2010532409A (zh)
CN (1) CN101690401B (zh)
TW (1) TWI479675B (zh)
WO (1) WO2009014588A2 (zh)

Families Citing this family (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008063657A2 (en) * 2006-11-21 2008-05-29 Qd Vision, Inc. Light emitting devices and displays with improved performance
KR20110008206A (ko) 2008-04-03 2011-01-26 큐디 비젼, 인크. 양자점들을 포함하는 발광 소자
US9525148B2 (en) 2008-04-03 2016-12-20 Qd Vision, Inc. Device including quantum dots
WO2011044391A1 (en) * 2009-10-07 2011-04-14 Qd Vision, Inc. Device including quantum dots
WO2010099313A1 (en) 2009-02-25 2010-09-02 University Of Virginia Patent Foundation Cgm-based prevention of hypoglycemia via hypoglycemia risk assessment and smooth reduction insulin delivery
JP5561723B2 (ja) * 2009-05-14 2014-07-30 独立行政法人産業技術総合研究所 半導体ナノ粒子からなる蛍光性ファイバー
EP2478572A4 (en) * 2009-09-18 2013-11-13 Hewlett Packard Development Co LUMINAIRE DIODE WITH METAL DIELECTRIC METAL AFUBAU
KR101664180B1 (ko) * 2010-03-22 2016-10-12 삼성디스플레이 주식회사 양자점 제조 방법
WO2011158531A1 (ja) * 2010-06-16 2011-12-22 コニカミノルタエムジー株式会社 半導体ナノ粒子集積体
WO2013019299A2 (en) 2011-05-11 2013-02-07 Qd Vision, Inc. Method for processing devices including quantum dots and devices
WO2012161179A1 (ja) * 2011-05-26 2012-11-29 株式会社 村田製作所 発光デバイス
GB201116517D0 (en) 2011-09-23 2011-11-09 Nanoco Technologies Ltd Semiconductor nanoparticle based light emitting materials
KR101537296B1 (ko) * 2012-10-26 2015-07-17 삼성전자 주식회사 반도체 나노결정 및 그 제조방법
WO2014097878A1 (ja) * 2012-12-20 2014-06-26 株式会社村田製作所 発光デバイス、及び該発光デバイスの製造方法
US20140209856A1 (en) * 2013-01-31 2014-07-31 Sunpower Technologies Llc Light Emitting Device with All-Inorganic Nanostructured Films
US20150243837A1 (en) * 2013-03-15 2015-08-27 Moonsub Shim Multi-heterojunction nanoparticles, methods of manufacture thereof and articles comprising the same
KR102093625B1 (ko) * 2013-04-30 2020-03-26 엘지디스플레이 주식회사 퀀텀 로드 및 그 제조 방법
CN105493295B (zh) * 2013-08-29 2019-03-29 佛罗里达大学研究基金会有限公司 来自溶液处理的无机半导体的空气稳定红外光探测器
JP6233417B2 (ja) 2013-10-17 2017-11-22 株式会社村田製作所 発光デバイス
WO2015056749A1 (ja) 2013-10-17 2015-04-23 株式会社村田製作所 ナノ粒子材料、及び発光デバイス
CN107148683B (zh) * 2013-12-12 2019-08-30 内诺光学有限公司 提升量子点发光二极管的正老化效应和稳定性的方法和结构
TW201523934A (zh) * 2013-12-12 2015-06-16 Lextar Electronics Corp 封裝材料及包含其之發光二極體的封裝結構
US20160027966A1 (en) * 2014-07-25 2016-01-28 Nanosys, Inc. Porous Quantum Dot Carriers
US11725088B2 (en) * 2014-09-30 2023-08-15 The Boeing Company Prepreg compositions, their manufacture, and determination of their suitability for use in composite structures
TWI584494B (zh) * 2015-08-04 2017-05-21 國立臺東大學 具備量子井結構之膠體量子點電激發光元件及其製作方法
CN105140377A (zh) * 2015-08-10 2015-12-09 深圳市华星光电技术有限公司 量子点玻璃盒及其制备方法和应用
CN105206757B (zh) * 2015-11-05 2016-09-07 京东方科技集团股份有限公司 有机发光二极管及其制作方法、显示基板和显示装置
KR102415248B1 (ko) * 2015-12-29 2022-06-30 삼성디스플레이 주식회사 양자점 및 이를 이용한 발광 소자
TWI593134B (zh) * 2016-05-19 2017-07-21 Method and structure for manufacturing graphene quantum dot on light-emitting diode
WO2018062041A1 (ja) * 2016-09-29 2018-04-05 富士フイルム株式会社 半導体ナノ粒子含有分散液、及び、フィルム
CN106384767B (zh) * 2016-11-18 2019-07-09 Tcl集团股份有限公司 量子点发光二极管及其制备方法与发光模组、显示装置
US20190382655A1 (en) 2016-12-12 2019-12-19 Dic Corporation Luminescent nanocrystal complex
CN108258092B (zh) * 2016-12-29 2020-05-15 乐金显示有限公司 量子棒以及具有量子棒的量子棒膜和量子棒显示装置
JP6878915B2 (ja) * 2017-01-26 2021-06-02 東洋インキScホールディングス株式会社 量子ドットおよび量子ドット含有組成物
US20200095498A1 (en) * 2017-03-31 2020-03-26 Merck Patent Gmbh Semiconducting light emitting nanoparticle
US10096743B1 (en) 2017-05-26 2018-10-09 Unique Materials Co., Ltd. Gigantic quantum dots
US10209560B2 (en) 2017-07-17 2019-02-19 Gl Vision Inc. Backlight unit comprising a quantum dot powder having a first quantum dot, a first quantum dot, a second quantum dot, a first chain molecule, a second chain molecule, and a bead and display device including the same
KR101982011B1 (ko) * 2017-07-17 2019-05-27 주식회사 지엘비젼 양자점필름 및 이를 이용하는 광학부재
KR20200065007A (ko) * 2017-10-04 2020-06-08 디아이씨 가부시끼가이샤 입자, 잉크 및 발광 소자
US20210184074A1 (en) * 2017-11-08 2021-06-17 Ns Materials Inc. Display device
EP3492552A1 (en) * 2017-12-04 2019-06-05 Fachhochschule Münster Method of fabricating a bulk nano-composite
US10741782B2 (en) 2018-03-22 2020-08-11 Sharp Kabushiki Kaisha Light-emitting device with mixed nanoparticle charge transport layer
CN110885672A (zh) * 2018-09-07 2020-03-17 Tcl集团股份有限公司 一种量子点的配体交换方法
CN110885673A (zh) * 2018-09-07 2020-03-17 Tcl集团股份有限公司 一种量子点的配体交换方法
KR102106226B1 (ko) * 2018-11-12 2020-05-04 재단법인 철원플라즈마 산업기술연구원 양자점 파우더 및 이를 이용한 광학부재
CN111378429A (zh) * 2018-12-29 2020-07-07 苏州星烁纳米科技有限公司 量子点及其制备方法
KR102265175B1 (ko) * 2019-02-14 2021-06-15 한양대학교 에리카산학협력단 금속 구조체 및 그 제조 방법
CN111909682B (zh) * 2019-05-10 2024-04-19 苏州星烁纳米科技有限公司 核壳结构量子点的制备方法及由其制备的产品
WO2021044495A1 (ja) * 2019-09-02 2021-03-11 シャープ株式会社 発光素子および表示装置
CN110783474B (zh) * 2019-11-14 2022-03-01 佛山科学技术学院 一种基于量子点的电致发光二极管及光电设备
KR20210083058A (ko) * 2019-12-26 2021-07-06 삼성전자주식회사 양자점 복합체 및 이를 포함하는 디스플레이 장치
US20230337448A1 (en) * 2020-06-17 2023-10-19 Sharp Kabushiki Kaisha Display device
JP2022138051A (ja) * 2021-03-09 2022-09-22 三菱マテリアル株式会社 コロイド粒子の製造方法及びコロイド粒子
CN114197015B (zh) * 2021-12-10 2023-06-27 深圳市华星光电半导体显示技术有限公司 纳米粒子膜、纳米粒子膜的制造方法以及显示面板
WO2023155605A1 (zh) * 2022-02-18 2023-08-24 Tcl科技集团股份有限公司 纳米颗粒、发光二极管及显示装置
WO2024079908A1 (ja) * 2022-10-14 2024-04-18 シャープディスプレイテクノロジー株式会社 発光素子および表示装置並びに発光素子の製造方法
WO2024079909A1 (ja) * 2022-10-14 2024-04-18 シャープディスプレイテクノロジー株式会社 発光素子、表示デバイス
WO2024084572A1 (ja) * 2022-10-18 2024-04-25 シャープディスプレイテクノロジー株式会社 発光素子、表示装置及び発光層の形成方法
CN117116743B (zh) * 2023-10-19 2024-06-07 长春理工大学 提高胶体量子点电导率的方法及高导电率的胶体量子点

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040004982A1 (en) * 2001-11-16 2004-01-08 Eisler Hans J. Nanocrystal structures
US20050214967A1 (en) * 2002-09-05 2005-09-29 Nanosys, Inc. Nanostructure and nanocomposite based compositions and photovoltaic devices
US20060236918A1 (en) * 2004-11-11 2006-10-26 Samsung Electronics Co., Ltd. Interfused nanocrystals and method of preparing the same
US20070012355A1 (en) * 2005-07-12 2007-01-18 Locascio Michael Nanostructured material comprising semiconductor nanocrystal complexes for use in solar cell and method of making a solar cell comprising nanostructured material
TW200706687A (en) * 2005-06-02 2007-02-16 Eastman Kodak Co Deposition of uniform layer of desired material
TW200717873A (en) * 2005-09-14 2007-05-01 Eastman Kodak Co Quantum dot light emitting layer
US20070138932A1 (en) * 2005-12-01 2007-06-21 Tatsuya Morioka Light emitting device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5537000A (en) 1994-04-29 1996-07-16 The Regents, University Of California Electroluminescent devices formed using semiconductor nanocrystals as an electron transport media and method of making such electroluminescent devices
DE10223706A1 (de) 2002-05-28 2003-12-18 Nat Taiwan University Taipeh T Lichtemissionsdiode
EP1577957B1 (en) * 2004-03-18 2009-05-13 C.R.F. Società Consortile per Azioni Light emitting device using a three-dimension percolated layer, and manufacturing process thereof
US8337721B2 (en) 2005-12-02 2012-12-25 Vanderbilt University Broad-emission nanocrystals and methods of making and using same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040004982A1 (en) * 2001-11-16 2004-01-08 Eisler Hans J. Nanocrystal structures
US20050214967A1 (en) * 2002-09-05 2005-09-29 Nanosys, Inc. Nanostructure and nanocomposite based compositions and photovoltaic devices
US20060236918A1 (en) * 2004-11-11 2006-10-26 Samsung Electronics Co., Ltd. Interfused nanocrystals and method of preparing the same
TW200706687A (en) * 2005-06-02 2007-02-16 Eastman Kodak Co Deposition of uniform layer of desired material
US20070012355A1 (en) * 2005-07-12 2007-01-18 Locascio Michael Nanostructured material comprising semiconductor nanocrystal complexes for use in solar cell and method of making a solar cell comprising nanostructured material
TW200717873A (en) * 2005-09-14 2007-05-01 Eastman Kodak Co Quantum dot light emitting layer
US20070138932A1 (en) * 2005-12-01 2007-06-21 Tatsuya Morioka Light emitting device

Also Published As

Publication number Publication date
TW200908397A (en) 2009-02-16
WO2009014588A8 (en) 2009-07-30
CN101690401A (zh) 2010-03-31
CN101690401B (zh) 2012-05-30
EP2163135A2 (en) 2010-03-17
US8361823B2 (en) 2013-01-29
WO2009014588A2 (en) 2009-01-29
US20090001349A1 (en) 2009-01-01
JP2010532409A (ja) 2010-10-07
WO2009014588A3 (en) 2009-04-09

Similar Documents

Publication Publication Date Title
TWI479675B (zh) 發光之奈米複合顆粒
JP5043848B2 (ja) 量子ドット発光層
US10164205B2 (en) Device including quantum dots
CN102916097B (zh) 一种电致发光器件
TWI436496B (zh) 量子點發光裝置
US9093657B2 (en) White light emitting devices
US9520573B2 (en) Device including quantum dots and method for making same
US20140027713A1 (en) Device including quantum dots
US9722133B2 (en) Methods for processing quantum dots and devices including quantum dots
KR20120095379A (ko) 양자점을 포함하는 소자
US20220407024A1 (en) Method for producing a light-emitting diode having polarized emission

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees