TWI593134B - Method and structure for manufacturing graphene quantum dot on light-emitting diode - Google Patents

Method and structure for manufacturing graphene quantum dot on light-emitting diode Download PDF

Info

Publication number
TWI593134B
TWI593134B TW105115439A TW105115439A TWI593134B TW I593134 B TWI593134 B TW I593134B TW 105115439 A TW105115439 A TW 105115439A TW 105115439 A TW105115439 A TW 105115439A TW I593134 B TWI593134 B TW I593134B
Authority
TW
Taiwan
Prior art keywords
light
quantum dot
graphene quantum
emitting diode
graphene
Prior art date
Application number
TW105115439A
Other languages
English (en)
Other versions
TW201742265A (zh
Inventor
zhi-lin Shen
Zi-Neng Lin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to TW105115439A priority Critical patent/TWI593134B/zh
Priority to US15/237,823 priority patent/US20170338386A1/en
Application granted granted Critical
Publication of TWI593134B publication Critical patent/TWI593134B/zh
Publication of TW201742265A publication Critical patent/TW201742265A/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0041Processes relating to semiconductor body packages relating to wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Luminescent Compositions (AREA)
  • Led Devices (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Led Device Packages (AREA)

Description

塗佈石墨烯量子點於發光二極體的製造方法及結構
本發明係有關於一種塗佈石墨烯量子點於發光二極體的製造方法及結構,其尤指一種氮化物半導體發光二極體之出光面具有石墨烯量子點的製造方法及結構。
發光二極體(Light Emitting Diode;LED)的組成材料是半導體,半導體材料是導電能力介於導體和絕緣體之間的一類固體材料。其可為單一元素組成,也可以是兩種或是多種元素的化合物,亦或是合金也可作為半導體材料的來源之一,因而可以區分為元素半導體、化合物半導體與金屬氧化物半導體。
從化合物半導體發光二極體來切入探討,氮化物半導體如氮化鋁(AlN)、氮化鎵(GaN)或氮化銦(InN)等為直接能隙材料,用於光電轉換時,動量及熱能損耗低且效率佳,並且發光範圍大(包含了紫外光至可見光波段),故能製作發光波長從綠光到紫外光的電子元件。以氮化物半導體製成之發光二極體體積小、耗電量小、發熱量低(熱輻射低、發光型態隸屬於冷光)、使用壽命長(一般安全操作環境下可達10萬小時)以及反應速率快(可於高頻環境操作)等優點。其用途之廣泛係涵蓋了照明、光電顯示器、無線通訊、衛星定位以及家電用品等產業,因此若能進一步提高氮化物半導體發光二極體的發光效率,於產業應用性上具有相當之幫助。
依常理而言,一種新的技術研發問世,伴隨著激勵與其相互鏈結之設備/元件帶來相對應的革新,如此一來方可因應新的生產效率下的需求。在光電產業技術快速演進及產品功能的多樣性發展之下,為了因應需求,許多具有應用價值的新材料陸續被開發。為了增進氮化物半導體發光二極體的螢光效率,進而於各產業提升利用性之述求,目前新興發展的一種二維材料-石墨烯(Graphene)已經受到相當程度的重視與利用。
石墨烯(Graphene)是一種由碳原子以sp 2雜化軌道組成六角型呈蜂巢晶格的平面薄膜,只有一個碳原子厚度的二維材料。該材料於2004年經由英國若干科學家所組成之研究團隊實驗出其存在性後,開闢了石墨烯於各領域中製備結合之輝煌成就。尤其,石墨烯的廣泛應用性亦有觸及與化合物半導體所製成之電子元件進行結合之製程,石墨烯優異的化學、熱、導電、機械等特性,創建了石墨烯料材與光電元件新的研究方向,可構建出相較於目前習知化合物半導體發光二極體類型具有更佳螢光效率之產品。
石墨烯量子點是由石墨烯組成,其橫向直徑小於數十奈米且表面和側面具有化學官能基修飾的奈米粒子。石墨烯量子點表現出顯著的量子侷限效應和邊緣效應,導致能階不連續而放出螢光。石墨烯量子點具有良好的化學穩定性和生物相容性、低毒性、低成本、無光致漂白等優越的特性,在生醫感測、細胞成像、光電元件等領域有無限的應用潛力。
本發明之一目的係提供一種塗佈石墨烯量子點於發光二極體的製造方法及結構,其係依序利用雷射消融法、離心純化以及分子篩過濾等處理程序,將石墨烯和乙醇溶液混合之液體製造出一石墨烯量子點溶液。
本發明之一目的係提供一種塗佈石墨烯量子點於發光二極體的製造方法及結構,其係利用液滴塗佈法將石墨烯量子點溶液滴塗於一發光二極體之出光面,靜置蒸發乙醇溶液後,形成一石墨烯量子點塗佈層。藉由石墨烯量子點塗佈層與發光二極體表面層的功函數差,使得石墨烯量子點塗佈層因發光二極體照射所產生的光致載子,可以流向發光二極體之出光面,進而增加發光二極體的載子濃度與發光量子效率,藉此提升發光二極體的螢光效率。
本發明之一目的係提供一種塗佈石墨烯量子點於發光二極體的製造方法及結構,其中製備發光二極體之出光面具有石墨烯量子點塗佈層之方法簡易、成本低廉且無汙染等優點。
為了達到上述目的、功效所採用之技術手段,本發明係提供一種塗佈石墨烯量子點於發光二極體的製造方法及結構,其係將一石墨烯與一乙醇溶液均勻混合,兩者置放於一旋轉速率為80rpm之旋轉台上利用雷射消融法照射5分鐘,而後再以6000rpm之旋轉速率的一離心機離心純化,並以孔徑為0.22μm之分子篩過濾取得一石墨烯量子點為3.5nm之溶液。最後利用液滴塗佈法將石墨烯量子點溶液滴塗於一發光二極體之出光面,靜置數分鐘以將乙醇溶液蒸發,而於發光二極體之出光面形成一石墨烯量子點塗佈層。其中,石墨烯量子點塗佈層比發光二極體之出光面具有較小之功函數,因此石墨烯量子點塗佈層因發光二極體照射所產生的光致載子可流向發光二極體之出光面,增加了發光二極體的載子濃度與發光量子效率,進而提升了發光二極體的發光效率。
為使對本發明之特徵及所達成之功效有更進一步之瞭解與認識,謹佐以較佳之實施例及配合詳細之說明,說明如後:
參閱第一圖,其為本發明之塗佈石墨烯量子點於發光二極體的製造方法之流程方塊圖。如圖所示,本發明製造石墨烯量子點於發光二極體的方法係包含以下步驟: 步驟S1: 提供一石墨烯與一乙醇溶液均勻混合成一樣品,固定該樣品於一旋轉台上進行旋轉並以一雷射消融法以雷射照射該樣品; 步驟S2:再將該樣品離心純化後,以複數分子篩過濾取得一石墨烯量子點溶液;以及 步驟S3:利用一液滴塗佈法將該石墨烯量子點溶液滴塗於一發光二極體之出光面,靜置處理使該乙醇溶液蒸發,而於該發光二極體之出光面形成一石墨烯量子點塗佈層。
承接前段,並一併參閱第二圖以及第四圖,其為本發明之第一實施例的石墨烯量子點塗佈層與發光二極體之示意圖,以及本發明之石墨烯量子點觀測圖。本發明係將石墨烯與乙醇溶液均勻混合,取600微升固定於一旋轉台(未圖示)上,旋轉台之旋轉速率設定為80rpm。而雷射消融法係以波長為415nm,能量為48mJ之脈衝雷射(Optical parametric oscillator pulsed laser)聚焦於石墨烯與乙醇溶液上照射5分鐘。之後再以6000rpm之旋轉速率的一離心機(未圖示)離心純化,並以孔徑為0.22μm之分子篩(未圖示)過濾,以取得一石墨烯量子點(Graphene Quantum Dots)溶液1(如第二圖所示);其中,如第四圖所示,係以5nm之比例尺量測石墨烯量子點於穿透式電子顯微鏡(Transmission Electron Microscope)觀測之尺寸大約為3.5nm。
接續以液滴塗佈法將石墨烯量子點溶液1滴塗於一發光二極體3之出光面30,靜置5分鐘使乙醇溶液蒸發,而於發光二極體3之出光面30形成一石墨烯量子點塗佈層5;其中,液滴塗佈法係以一吸管7吸取約5微升之石墨烯量子點溶液1滴塗於發光二極體3之出光面30。發光二極體3可為氮化物半導體發光二極體(Nitride Semiconductor Light Emitting Diodes)。
由於石墨烯量子點塗佈層5與發光二極體3表面層材料的功率數具有差別,因此當含石墨烯量子點塗佈層5的發光二極體3發出光線時,石墨烯量子點塗佈層5受到照射所產生的光致載子將流向發光二極體3之出光面30。發光二極體3的載子濃度與發光量子效率因此增加,進而提高發光二極體3的發光效率。
請參閱第三圖,其為本發明之第二實施例的石墨烯量子點塗佈層與發光二極體之示意圖。如圖所示,本發明第二實施例中的發光二極體3之出光面30係包含一上出光面302與一側出光面304。其中,第二實施例與第一實施例係採用相同的石墨烯量子點製造以及塗佈方法於發光二極體3之出光面上,上述已於第一實施例中予以說明製造以及塗佈方法,於此不再贅述。惟,值得注意的是,本發明第二實施例的發光二極體3之上出光面302以及側出光面304皆有塗佈石墨烯量子點塗佈層5。藉此當含石墨烯量子點的發光二極體3從上出光面302或側出光面304發出光線時,石墨烯量子點塗佈層5受到照射所產生的光致載子,將流向發光二極體3之出光面30上,即上出光面302以及側出光面304。發光二極體3的載子濃度與發光量子效率因此增加,進而提高發光二極體3的發光效率;其中,發光二極體包含水平式電極、垂直式電極之發光二極體,並進一步包含覆晶式發光二極體,且,發光二極體之量子井所發出之光線包含可見光及不可見光。
請參閱第五圖,其為本發明之氮化物半導體發光二極體的電流-發光強度特性曲線圖。如圖所示,本發明利用電流-發光強度量測來測試含石墨烯量子點的氮化物半導體發光二極體之發光強度,藉由設定一相同之外加電流,比對含/不含石墨烯量子點的氮化物半導體發光二極體兩者之間的發光強度。發現含石墨烯量子點的氮化物半導體發光二極體所測得的發光強度(如第五圖中以圓點連成之曲線),相較於不含石墨烯量子點的氮化物半導體發光二極體的發光強度(如第五圖中以方塊連成之曲線)增加了約20%。
本發明為了再提升氮化物半導體發光二極體的發光效能,係藉由塗佈石墨烯量子點之製程於氮化物半導體發光二極體之出光面上。當中所製成之石墨烯量子點係屬於無毒碳基材、製備方法簡單快速、成本低廉。因此本發明從合成原料、合成過程,乃至最終產物都隸屬於無汙染之物質。
綜合上述,本發明藉由提供一製造石墨烯量子點的方法,並將其塗佈於氮化物半導體發光二極體的出光面上,以此增加氮化物半導體發光二極體的發光效率。其中,製造石墨烯量子點的製備方法簡單、快速、成本低廉,並且隸屬於無汙染之碳基材。當將其塗佈於氮化物半導體發光二極體之出光面上時,可使得氮化物半導體發光二極體作用時兼具石墨烯的優點與氮化物半導體發光二極體的長處,以發揮兩者之最佳效能,將氮化物半導體發光二極體的發光效率更為提升。
本發明確實已經達於突破性之結構,而具有改良之發明內容,同時又能夠達到產業上利用性與進步性,當符合專利法之規定,爰依法提出發明專利申請,懇請 鈞局審查委員授予合法專利權,至為感禱。
S1‧‧‧步驟
S2‧‧‧步驟
S3‧‧‧步驟
1‧‧‧石墨烯量子點溶液
3‧‧‧發光二極體
30‧‧‧出光面
302‧‧‧上出光面
304‧‧‧側出光面
5‧‧‧石墨烯量子點塗佈層
7‧‧‧吸管
第一圖:其為本發明之塗佈石墨烯量子點於發光二極體的製造方法之流程方塊圖; 第二圖:其為本發明之第一實施例的石墨烯量子點塗佈層與發光二極體之示意圖; 第三圖:其為本發明之第二實施例的石墨烯量子點塗佈層與發光二極體之示意圖; 第四圖:其為本發明之石墨烯量子點觀測圖;以及 第五圖:其為本發明之氮化物半導體發光二極體的電流-發光強度特性曲線圖。
S1‧‧‧步驟
S2‧‧‧步驟
S3‧‧‧步驟

Claims (7)

  1. 一種塗佈石墨烯量子點於發光二極體的製造方法,其步驟包含:提供一石墨烯與一乙醇溶液均勻混合成一樣品,固定該樣品於一旋轉台上進行旋轉並以一雷射消融法以雷射照射該樣品;再將該樣品離心純化後,以複數分子篩過濾取得一石墨烯量子點溶液;以及利用液滴塗佈法將該石墨烯量子點溶液滴塗於一發光二極體之出光面,靜置處理使該乙醇溶液蒸發,而於該發光二極體之出光面形成一石墨烯量子點塗佈層。
  2. 如申請專利範圍第1項所述之塗佈石墨烯量子點於發光二極體的製造方法,其中該雷射消融法係以波長415nm、能量48mJ之脈衝雷射照射於該石墨烯與該乙醇溶液5分鐘。
  3. 如申請專利範圍第2項所述之塗佈石墨烯量子點於發光二極體的製造方法,其中該石墨烯與該乙醇溶液係置放於一旋轉速率為80rpm之旋轉台上,再以脈衝雷射照射該石墨烯與該乙醇溶液5分鐘。
  4. 如申請專利範圍第1項所述之塗佈石墨烯量子點於發光二極體的製造方法,其中於離心純化之步驟中,旋轉速率為6000rpm。
  5. 如申請專利範圍第1項所述之塗佈石墨烯量子點於發光二極體的製造方法,其中該些分子篩之孔徑為0.22μm。
  6. 如申請專利範圍第1項所述之塗佈石墨烯量子點於發光二極體的製造方法,其中該石墨烯量子點的尺寸為3.5nm。
  7. 如申請專利範圍第1項所述之塗佈石墨烯量子點於發光二極體的製造方法,其中該發光二極體為氮化物半導體發光二極體。
TW105115439A 2016-05-19 2016-05-19 Method and structure for manufacturing graphene quantum dot on light-emitting diode TWI593134B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW105115439A TWI593134B (zh) 2016-05-19 2016-05-19 Method and structure for manufacturing graphene quantum dot on light-emitting diode
US15/237,823 US20170338386A1 (en) 2016-05-19 2016-08-16 Fabrication method for casting graphene quantum dots on light-emitting diodes and structure thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105115439A TWI593134B (zh) 2016-05-19 2016-05-19 Method and structure for manufacturing graphene quantum dot on light-emitting diode

Publications (2)

Publication Number Publication Date
TWI593134B true TWI593134B (zh) 2017-07-21
TW201742265A TW201742265A (zh) 2017-12-01

Family

ID=60048680

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105115439A TWI593134B (zh) 2016-05-19 2016-05-19 Method and structure for manufacturing graphene quantum dot on light-emitting diode

Country Status (2)

Country Link
US (1) US20170338386A1 (zh)
TW (1) TWI593134B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106876539B (zh) * 2017-02-17 2019-04-05 深圳市华星光电技术有限公司 石墨烯发光晶体管及其制作方法、主动石墨烯发光显示器
CN108767122A (zh) * 2018-05-28 2018-11-06 福州大学 石墨烯量子点修饰的介孔二氧化钛薄膜材料的制备及其应用

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1704596A2 (en) * 2003-09-05 2006-09-27 Dot Metrics Technology, Inc. Quantum dot optoelectronic devices with nanoscale epitaxial lateral overgrowth and methods of manufacture
WO2005094271A2 (en) * 2004-03-25 2005-10-13 The Regents Of The University Of California Colloidal quantum dot light emitting diodes
US20080218068A1 (en) * 2007-03-05 2008-09-11 Cok Ronald S Patterned inorganic led device
US20080237611A1 (en) * 2007-03-29 2008-10-02 Cok Ronald S Electroluminescent device having improved contrast
US8361823B2 (en) * 2007-06-29 2013-01-29 Eastman Kodak Company Light-emitting nanocomposite particles
JP5952561B2 (ja) * 2008-12-12 2016-07-13 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 光発電装置及び光発電装置で使用する導波路
US20100276731A1 (en) * 2009-05-04 2010-11-04 Brookhaven Science Associates, Llc. Inorganic Nanocrystal Bulk Heterojunctions
US8992815B2 (en) * 2010-02-10 2015-03-31 Imra America, Inc. Production of organic compound nanoparticles with high repetition rate ultrafast pulsed laser ablation in liquids
US20120068154A1 (en) * 2010-09-16 2012-03-22 Samsung Led Co., Ltd. Graphene quantum dot light emitting device and method of manufacturing the same
JP5904734B2 (ja) * 2010-09-16 2016-04-20 三星電子株式会社Samsung Electronics Co.,Ltd. グラフェン発光素子及びその製造方法
KR101342664B1 (ko) * 2012-02-01 2013-12-17 삼성전자주식회사 자외선 발광소자
KR101387493B1 (ko) * 2012-05-30 2014-04-25 포항공과대학교 산학협력단 폭발물 검출용 센서 및 그 제조 방법
KR101475928B1 (ko) * 2012-06-11 2014-12-23 서울대학교산학협력단 열플라즈마를 이용한 그래핀 양자점 제조방법
KR101505145B1 (ko) * 2012-11-21 2015-03-24 주식회사 그래핀올 그래핀 양자점 형성 방법
KR101462901B1 (ko) * 2012-11-29 2014-11-20 성균관대학교산학협력단 그래핀 양자점을 이용한 발광 소자 및 이를 포함하는 유기 발광 소자
US9637443B2 (en) * 2013-04-25 2017-05-02 University Of North Dakota Graphene quantum dots and method of making
US9999865B2 (en) * 2013-04-29 2018-06-19 Imra America, Inc. Method of reliable particle size control for preparing aqueous suspension of precious metal nanoparticles and the precious metal nanoparticle suspension prepared by the method thereof
KR101835879B1 (ko) * 2013-05-24 2018-03-07 카운슬 오브 사이언티픽 앤드 인더스트리얼 리서치 나노다공성 그래핀 및 그래핀 양자점을 제조하는 방법
WO2015011726A1 (en) * 2013-07-23 2015-01-29 Council Of Scientific & Industrial Research Conducting carbon cloth electrode for hydrogen generation and dye sensitized solar cells
KR101790275B1 (ko) * 2013-10-24 2017-10-26 한국과학기술원 고품질 그래핀 양자점 및 이의 제조방법
EP3063091B1 (en) * 2013-11-01 2017-08-02 Council of Scientific and Industrial Research Biocompatible graphene quantum dots for drug delivery and bioimaging applications
WO2015089272A2 (en) * 2013-12-12 2015-06-18 Rensselaer Polytechnic Institute Porous graphene network electrodes and an all-carbon lithium ion battery containing the same
US9663370B2 (en) * 2014-01-17 2017-05-30 Shenzhen Cantonnet Energy Services Co., Ltd Large-scale preparation method for graphene quantum dots
WO2015125916A1 (ja) * 2014-02-24 2015-08-27 積水化学工業株式会社 炭素材料、樹脂複合材料及びそれらの製造方法
AU2015302313A1 (en) * 2014-05-26 2016-12-22 William Marsh Rice University Graphene quantum dot-polymer composites and methods of making the same
KR101612514B1 (ko) * 2014-06-16 2016-04-14 포항공과대학교 산학협력단 에멀젼을 이용한 탄소 양자점의 제조 방법
KR102214833B1 (ko) * 2014-06-17 2021-02-10 삼성전자주식회사 그래핀과 양자점을 포함하는 전자 소자
US9505623B1 (en) * 2014-06-24 2016-11-29 University Of South Florida One-step synthesis of graphene quantum dots
US9634315B2 (en) * 2014-08-01 2017-04-25 SiNode Systems, Inc. Carbon containing binderless electrode formation
KR20170040348A (ko) * 2014-08-08 2017-04-12 올란리와주 더블유. 타니몰라 아스팔틴 내 그래핀 파생물과 유도체의 합성 방법, 그래핀 파생물, 2d 재료 및 사용 방법
TWI545178B (zh) * 2014-08-20 2016-08-11 Near infrared light emitting diode and its manufacturing method
KR20160025337A (ko) * 2014-08-27 2016-03-08 성균관대학교산학협력단 그래핀 양자점을 이용한 발광 소자 및 그의 제조 방법
KR101623571B1 (ko) * 2014-08-27 2016-05-23 성균관대학교산학협력단 그래핀 양자점 및 그의 제조 방법
KR102293604B1 (ko) * 2014-09-04 2021-08-24 삼성전자주식회사 자발광 액정 표시 장치
US20160087148A1 (en) * 2014-09-19 2016-03-24 National Cheng Kung University Non-metallic semiconductor quantum dot and method of carrying out chemical reaction or photoluminescence reaction by using the same
US9647223B2 (en) * 2015-07-01 2017-05-09 King Abdulaziz University Single layer nanocomposite photoresponse device
WO2017020046A1 (en) * 2015-07-30 2017-02-02 Pacific Light Technologies Corp. Low cadmium nanocrystalline quantum dot heterostructure
KR101813584B1 (ko) * 2015-09-02 2017-12-29 한국과학기술연구원 탄소나노구조체 및 이의 제조 방법
KR101714904B1 (ko) * 2015-10-19 2017-03-09 경희대학교 산학협력단 실리카 나노입자-그래핀 양자점 하이브리드 구조를 이용한 광전자 소자 및 그 제조방법

Also Published As

Publication number Publication date
US20170338386A1 (en) 2017-11-23
TW201742265A (zh) 2017-12-01

Similar Documents

Publication Publication Date Title
Li et al. Suppression of defects and deep levels using isoelectronic tungsten substitution in monolayer MoSe2
Pfingsten et al. Phonon interaction and phase transition in single formamidinium lead bromide quantum dots
Gangishetty et al. Mn2+ doping enhances the brightness, efficiency, and stability of bulk perovskite light-emitting diodes
Kuriakose et al. Effects of swift heavy ion irradiation on structural, optical and photocatalytic properties of ZnO–CuO nanocomposites prepared by carbothermal evaporation method
Lin et al. Nanodiamond‐embedded p‐type copper (I) oxide nanocrystals for broad‐spectrum photocatalytic hydrogen evolution
Tong et al. Growth and optical properties of faceted hexagonal ZnO nanotubes
Akkanen et al. Optical modification of 2D materials: Methods and applications
Mawlong et al. Direct chemical vapor deposition growth of monolayer MoS2 on TiO2 nanorods and evidence for doping-induced strong photoluminescence enhancement
Zainelabdin et al. Deposition of well-aligned ZnO nanorods at 50 C on metal, semiconducting polymer, and copper oxides substrates and their structural and optical properties
Ghosh et al. Mesoporous Si nanowire templated controlled fabrication of organometal halide perovskite nanoparticles with high photoluminescence quantum yield for light-emitting applications
Lin et al. Photoluminescence origins of the porous silicon nanowire arrays
Granados del Águila et al. Linearly polarized luminescence of atomically thin MoS2 semiconductor nanocrystals
García-Aboal et al. Single crystal growth of hybrid lead bromide perovskites using a spin-coating method
Yang et al. Effective suppression of surface recombination in ZnO nanorods arrays during the growth process
TWI593134B (zh) Method and structure for manufacturing graphene quantum dot on light-emitting diode
Sahare et al. Fabrication of ZnS: Cu/PVA nanocomposite electroluminescence devices for flat panel displays
Zhou et al. Charge transfer boosting moisture resistance of seminude perovskite nanocrystals via hierarchical alumina modulation
Abdullayeva et al. Zinc oxide and metal halide perovskite nanostructures having tunable morphologies grown by nanosecond laser ablation for light-emitting devices
Wu et al. Photo-induced exfoliation of monolayer transition metal dichalcogenide semiconductors
Agarwal et al. Low Temperature Annealing of Cadmium Sulphide Thin Films for Improving Surface-Interface Properties
Chen et al. Investigating the dynamics of excitons in monolayer WSe 2 before and after organic super acid treatment
Rathod et al. Plasma-Treated CsPbBr3 Nanocrystal Films for Anticounterfeiting Applications
Lin et al. Bilayer structure of ZnO nanorod/nanodiamond film based ultraviolet photodetectors
Mohammad et al. Influence of growth temperature and duration on different properties of ultra-long ZnO nanorods grown by modified chemical bath deposition method
Mandal et al. Aging of silicon nanocrystals on elastomer substrates: Photoluminescence effects

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees